
AWS System Administration

Best Practices for Sysadmins in the Amazon Cloud

Mike Ryan and Federico Lucifredi

AWS System Administration

by Mike Ryan and Federico Lucifredi

Copyright © 2018 Mike Ryan, Federico Lucifredi. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

	Acquisitions Editor: Rachel Roumeliotis

		Editor: Andy Oram

		Production Editor: Melanie Yarbrough

		Copyeditor: Kim Cofer

		Proofreader: Jasmine Kwityn

		Indexer: WordCo Indexing Services, Inc.

		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Rebecca Demarest

		August 2018: First Edition

Revision History for the First Edition

		2018-08-06: First Release

			2018-10-19: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449342579 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. AWS System Administration, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views. While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-449-34257-9

[LSI]

Foreword
When Amazon created its first cloud, well before anyone had coined the term “DevOps,” few if
 any could conceive of how expansive it would become. From its humble roots in Amazon Elastic
 Compute Cloud (EC2) in 2002 and Amazon Simple Storage Service (S3) in 2006, AWS has expanded
 to a collection of over 100 services in over 15 regions around the world. This growing
 platform of capabilities can be intimidating at first glance and many wonder where to even
 begin. While there have been scores of blog posts and wikis devoted to passing on the tribal
 wisdom learned through sometimes painful experiences, it has been difficult to find an entry
 point that meets the needs of the budding cloud practitioner.
 But who exactly is a “cloud practitioner”? We’re entering a period where a working knowledge
 of cloud configuration and administration fundamentals are considered a requirement for a wide
 series of industries. We’re currently in an environment that goes well beyond a concept of
 self-service IT. We now assume that users will no longer be just consumers of information
 technology resources, but cocreators. A research scientist developing code to analyze genomic
 data now not only helps create the data schema but also configures the compute and storage
 resources necessary to support their analysis. An industrial engineer executing high-performance
 fluid dynamics calculations has to know how many virtual CPUs and memory to request to best
 optimize the performance of her application.
 We are living in a time of changing infrastructure architectures, serverless applications,
 and containerization. It takes a complete change in mindset to move from asking how to best
 configure a rack with an exact number of servers, disks, and network switches to pondering
 what to do with a potentially unlimited number of configurations of CPUs/GPUs/FPGAs, memory,
 object, block, and file storage connected through high-speed network connections. The
 choices can sometimes be overwhelming. The broad expanses of vast computing resources enable
 us to do things few thought even possible less than a decade ago, and yet the lack of
 physical constraints can almost induce vertigo at times—like a pilot without a horizon,
 enveloped in an actual physical cloud, not a virtual computing one.

Boundaries help us to make sense of our surroundings; looking over the edge of the cliff lets us know where to stop; staying between the lines on the road helps us to drive safely. We learn how to best operate within our constraints even though we may occasionally try to push our limitations. We optimize our behavior based upon our limitations. But what do we do when those limitations, which have helped define us for so long, are now removed? How do we begin to think about operating in an era of cloud computing?

 Mike and Federico have written a book that is approachable, yet not basic; plain spoken, but
 not simple; technical, but not overly complex. It addresses the needs of anyone looking to learn
 how to engage with AWS for the first time. It removes some of the intimidation from the alphabet
 soup of acronyms and new terminology that will be thrown at the new AWS user: EC2, S3, EBS, AMI,
 instance, IAM, ELB, RDS, Route 53, CloudWatch, CloudFormation, Glacier, and more. It is a
 welcome starting point for all who wish to learn more about the essentials of getting started
 using AWS and beginning their journey into the cloud.

—Ian Colle, General Manager for AWS Batch and HPC at Amazon Web Services, has a background in economics and philosophy as well as software engineering.

Preface

System administration is a complicated topic that requires practitioners
to be familiar with an ever-expanding range of applications and services.
In some ways,

Amazon Web Services (AWS) is just another tool to add to your toolkit, yet
it can also be considered a discipline in and of itself. Successfully
building and deploying infrastructure on AWS involves a thorough
understanding of the underlying operating system concerns, software
architecture, and delivery practices, as well as the myriad components
that make up Amazon Web Services.

 Mike runs a DevOps consultancy, helping startups and small businesses reap the benefits of
 tools and processes that were previously available only to organizations with large teams of
 system administrators. Many of these businesses do not have a dedicated system administrator,
 and the development team is responsible for deploying and maintaining the architecture.

In working with these clients, Mike noticed patterns in how people were
working with AWS. Those who came from a pure development background,
without any sysadmin experience, would often build an infrastructure that
left out many of the things sysadmins would take for granted, such as
monitoring and logging. The lack of monitoring and logging would then make
it difficult to track down issues, leading to more downtime than
necessary.

At the other end of the spectrum were clients with a lot of sysadmin
experience, but less or no development experience. This group was more
likely to treat AWS as nothing more than a virtual machine hosting
provider, simply using EC2 to run a fleet of static instances without
taking advantage of any high-availability features such as Auto Scaling
Groups and Elastic Load Balancing. This is akin to buying a Ferrari and
then using it only to buy groceries once per week: fun, but not very
cost-effective.

Using AWS requires a fundamentally different mindset than when deploying
groups of static servers. You do not simply set up some servers and then
periodically perform maintenance. Instead, you use the full AWS toolset
(automatic instance replacement, scaling up and down in response to
demand, etc.) to build a system. In this sense, it is more like
programming than traditional system administration.

Federico’s work as the lead Product Manager for Ubuntu Server at Canonical
placed him on the front lines from the vendor perspective. Looking at how
users and public cloud vendors were integrating Ubuntu into their
infrastructure informed the team’s decisions as to what user problems to
solve first, and led to the creation of Canonical’s Certified Public Cloud
program, which solves integration problems for public cloud vendors and
directly manages the relationship between Ubuntu and the Amazon AWS
technical team.

The Ubuntu Server team’s cloud-first focus led to the creation of
technologies like Cloud-init, and produced the early, smooth integration
of Ubuntu with public cloud that resulted in its popularity there today.
Federico’s aim has been to complement Mike’s knowledge as a power user of
public cloud with his behind-the-scenes insight into where things can go
wrong for users.

 The aim of this book is to help you reach a balance between development and operational
 focus, and help you make the right choice for your application’s specific hosting requirements.
 If you are a developer, this book will give you enough system administration knowledge to ensure
 that you are using AWS effectively, and help you build a robust and resilient application
 infrastructure. For system administrators, it will show you how you can keep your favorite tools
 and processes while working with AWS, and hopefully save you from reinventing some wheels along
 the way.

AWS is a collection of cloud computing services that can be combined to
build scalable and reliable applications and services. It comprises a
number of components, each with their own names and configuration options,
which are offered under the AWS umbrella. Some of these—such as EC2 and
S3—are extremely popular and well-known. Others, such as Kinesis and
CloudFormation, are less well-known. Because covering each of these
services in detail would result in a multivolume tome of formidable size,
this book focuses on the more commonly used services and provides
jumping-off points for learning about the others.

If you are familiar with AWS, feel free to hop between chapters to find
the information that is most interesting or relevant to your current
project. Beginners to AWS should work through the book sequentially, as
each chapter builds on information presented in the previous chapters.

Chapter 1 helps you get set up with the tools
you will need to interact with AWS and build the example infrastructure.

Chapter 2 introduces what is perhaps the most
well-known of all AWS services, EC2. This chapter also introduces our
favorite AWS service, CloudFormation.

In Chapter 3, we look at the most
important security features provided by AWS, and how they combine with
service functionality to enable secure operation.

Chapter 4 introduces configuration
management tools, a common requirement when automating a cloud
infrastructure. Using these tools, Chapters 5 and 6
demonstrate the process of deploying an example application to AWS.

Chapter 7 looks at some of the methods of
deploying application and infrastructure updates to your environment.
Chapter 8 builds on this and discusses the creation
of reusable components to save time.

Log management, a more traditional sysadmin task that has some interesting
implications in the cloud, is the topic of Chapter 9.

Chapter 10 covers another traditional sysadmin task: DNS
with Amazon’s Route 53 service.

Monitoring with Amazon’s CloudWatch service and other monitoring tools is
discussed in Chapter 11.

Finally, Chapter 12 looks at some of the ways of
backing up your data both in and outside the Amazon cloud.

Audience

This book is written for system administrators and developers. We assume
you are comfortable with the basic tools used to administer the operating
system and common services such as DNS. If you plan to use Puppet or Chef
for automation, you need to learn basic information about those tools
elsewhere. You should have a working knowledge of Git or another source
code management system. We do not expect you to have prior knowledge of
AWS or other virtualization and cloud products.

 Where an operating system choice was required, we tested our examples on Ubuntu 16.04
 “Xenial” and Ubuntu 14.04 “Trusty.” For users on Amazon AWS today, Ubuntu is the most popular
 option, so we used it as both client environment and for our EC2 instances; examples will
 nonetheless run on most Linux distributions with minimal or no change. Whenever we used an
 RPM-based distribution, we checked our work against Amazon Linux, which remains the second
 most popular choice of distribution as we write.

Conventions Used in This Book

The following typographical conventions are used in this book:

	Italic
	
 Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	
 Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names, data
 types, and environment variables.

	Constant width
 bold
	
 Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	
 Shows text that should be replaced with user-supplied values
 or by values determined by context.

Note
This icon signifies a general note.

Tip
This icon signifies a tip or suggestion.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. Major examples can be
downloaded from our GitHub repository. Many other small
examples are scattered through the book; we have not bothered to include
them in the repository because they are fairly easy to type in.

In general, you may use the code in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a
significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling
or distributing a CD-ROM of examples from O’Reilly books does require
permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

 We appreciate, but do not require, attribution. An attribution usually includes the title,
 author, publisher, and ISBN. For example: “AWS System Administration by
 Mike Ryan and Federico Lucifredi (O’Reilly). Copyright 2018 by Mike Ryan and Federico
 Lucifredi 978-1-449-34257-9.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Note
Safari (formerly Safari Books Online) is a membership-based training and reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interactive tutorials, and curated playlists from over 250 publishers, including O’Reilly Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and Course Technology, among others.
For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the
publisher:

	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at http://bit.ly/aws-system-administration.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

This book would not exist were it not for the many amazing people who helped us along the way. Mike would like to thank his family for their love and support, which allowed him to become the geek he is today. He would also like to thank Cynthia Stolk for supplying endless cups of coffee to fuel this book, and Rachel Kersten and Rebecca Lay for making sure it actually got finished. Federico thanks his wife Irena for being his loving inspiration and Mark Shuttleworth for convincing him “this cloud thing” was really the top priority in a sea of top priorities.

 Thanks are due to friends and colleagues who gave feedback and suggestions: Bartek
 Swedrowski, Dave Letorey, Guyon Morée, Jurg van Vliet, Keith Perhac, Peter van Kampen, Rick
 van Hattem, Ross Gynn, Sofie Pelmelay, and Thierry Schellenbach. Martin Guenthner, Jess Males,
 Ilan Rabinovitch, Douglas Knight, Kapil Thangavelu, Ben Howard, Peter Bowen, Kyle Bader,
 Stephen Walli, and William Ricker patiently reviewed many drafts, told us what the book
 lacked, and kept us honest. Either directly or indirectly, you helped shape this book.

Finally, we would like to thank the excellent team at O’Reilly for making
this happen. Particular thanks are due to our editor, Andy Oram, for
persevering on the long road. Nikki McDonald’s help was instrumental to
getting this first edition past the finish line. And, of course, this book
would be empty if not for the amazing team behind Amazon Web Services.

Chapter 1. Setting Up AWS Tools
The role of the system administrator is changing. Just a few years
 ago, most sysadmins dealt with server farms of physical hardware and
 performed detailed capacity planning. Scaling up your application meant
 ordering new hardware and perhaps spending time racking it up in the
 datacenter. Now there is a huge section of the industry that has never
 touched physical hardware. We scale up by issuing an API call or clicking a
 button in a web page to bring new capacity online.
Although the term has been co-opted by marketers, the cloud is an
 amazing thing. In this context, we are using cloud to
 refer to the idea of scalable, on-demand computing and
 application services, rather than cloud-based services
 like Google Mail.
As more competition enters the cloud market space, its appeal for
 sysadmins and business owners alike is increasing on an almost daily basis.
 Amazon Web Services continues to drive the cloud computing market forward by
 frequently introducing new tools and services (in fact, they are introduced
 with such regularity that writing a book about them is a never-ending
 pursuit).
Economies of scale are constantly pushing down the price of cloud
 services. Although environments like AWS or Google Compute Engine are not
 yet suitable for every application, it is becoming increasingly clear that
 cloud skills are becoming a required part of a well-rounded sysadmin’s
 toolkit.
For businesses, the cloud opens up new avenues of flexibility. Tech
 teams can do things that would have been prohibitively expensive just a few
 years ago. The games and applications that are lucky enough to become
 runaway hits often require a high amount of backend computing capacity.
 Bringing this capacity online in hours rather than weeks enables these
 companies to quickly respond to success, without requiring multiyear lease
 commitments or upfront capital expenditure.
In the age of the Lean Startup, developers and managers know how
 important it is to quickly iterate and improve their application code.
 Services like AWS allow you to treat your infrastructure the same way,
 letting a relatively small team manage massively scalable application
 infrastructures.
Getting Started
The first step to get your own AWS infrastructure started is to head to aws.amazon.com and create a new
 account, if you do not already have one, as shown in Figure 1-1.
Figure 1-1. Sign up and create your AWS account

AWS accounts do not incur charges until computing, storage, or
 network resources are allocated for actual use, but you will need to
 provide a valid credit card number as part of the signup process. The
 account will be linked to either an email address or a mobile phone number
 identity that Amazon will require you to verify during the initial setup
 (see Figure 1-2). While entering payment
 information and accepting the terms of service you will want to take
 notice of the current Free
 Tier offering. At the time of this writing Amazon welcomes new
 account holders with 750 hours of EC2 compute time per
 month and 5 GB of free storage for their first year. Currently
 this includes free access to 42 different services.
Figure 1-2. Identity validation of new accounts requires a telephone
 number

The final step of account creation consists in selecting a
 support plan. You are not required to initiate a support
 subscription at this time, and we recommend you select the basic, free
 plan to start. You will be able to revisit this decision at a later time,
 and selecting the free plan avoids the recurring monthly support charges
 you would otherwise immediately incur. Amazon has refined its support
 offerings over the years, and you may find the developer subscription a
 valuable resource if you want a more predictable turnaround on your
 technical questions than free community resources like ServerFault
 or AskUbuntu
 may provide.
Account activation will require a few minutes and may take up to
 several hours. As Amazon completes your account’s activation, you will
 receive an email notice.

Preparing Your Tools
There are various ways to manage your AWS infrastructure components.
 The AWS Management Console is the first interface most users see
 (see Figure 1-3). Although great for
 exploring and learning about the services, it does not lend itself to
 automation.
Figure 1-3. The EC2 Dashboard section of the AWS Management Console

The AWS APIs are a collection of API endpoints that can be used to manage
 AWS services from your own application. There are implementations in many
 popular programming languages and platforms, which can be downloaded from
 the AWS site.
The AWS Command Line Interface (AWS CLI)
 is a command-line tool released by Amazon that directly consumes the AWS API. It can be
 used to control any AWS component from the command line, making it suitable to use in
 automated build systems and continuous integration scripts. Before AWS CLI was released,
 Amazon provided a separate management tool for each service. That is, EC2 was managed by one
 program and SQS by another. The legacy tools did not all use a consistent naming convention
 for parameters, making them much less convenient to use.
Amazon’s API interface uses access keys composed of an ID and a secret access key. The pair authenticates and authorizes every programmatic request
 sent to Amazon AWS. AWS provides very sophisticated, advanced access
 control through the Identity and Access Management service (IAM), but for the sake of simplicity we will start by using the
 account’s root access keys. As a security best practice, AWS recommends
 avoiding any use of the root access keys and using IAM instead.
Head to the Security
 Credentials section of the IAM service dashboard. You may see warnings comparable to
 those you heard about using the root user in any UNIX
 system, and with good reason: the account credentials provide unlimited access to your AWS
 resources. Click the Create New Access Key button (see Figure 1-4), and you will receive immediate
 confirmation your new account’s access keys have been created. You need to
 download and save the rootkey.csv credentials file once
 offered, as AWS will not retain the secret component of the key and
 retrieval at a later time is therefore not possible. Keep the credentials
 file confidential, never email it, and never share it outside of your
 organization: it is your virtual datacenter’s root password (see “Throwing Away the Root Password” for the
 most forward-thinking best practice in the matter).
Figure 1-4. Creating the master access key

Warning
Make sure you do not accidentally commit these security keys to a
 public code repository such as GitHub. There have been reports of
 hackers scanning for accidentally published AWS keys and using them to
 gain unauthorized access to AWS accounts.

Installing the AWS Command Line Interface
The AWS CLI is written in Python and requires Python in either version
 2.6.5, 2.7, 3.3, 3.4, 3.5, or 3.6 as its only prerequisite; this
 information will change and is kept updated on the project’s GitHub site. Because AWS
 CLI is a Python package, it can be installed with pip, the Python
 package management tool. This is included on many systems by default,
 but you might need to install it manually. On Ubuntu systems, this can
 be done with the following:
sudo apt install python-pip
On OS X, the same task can be accomplished thusly:
sudo easy_install pip
Once you have pip on your system, the AWS CLI installation is
 incredibly simple:
sudo pip install awscli
Once you have installed the AWS CLI, you can see general usage
 information and a list of the services that can be managed with aws help. For help
 on a specific service, you can use aws ec2
 help. Finally, help on a specific command can be displayed
 with aws ec2 run-instances help. For
 example:
	Command	Action
	 aws ec2 run-instances
	Launch one or more EC2 instances

	aws s3 sync

	Sync a local directory with an S3 bucket

	 aws cloudformation create-stack
	Create a CloudFormation stack

Tip
We have installed AWS CLI from a source other than the Linux
 distribution’s own repositories, therefore we cannot count on the
 operating system’s security team to alert us to any security issue
 that may arise with this package. A production environment should
 monitor the AWS Security
 Bulletins site, which can also be tracked via its RSS
 feed.
You can verify at any time which version of AWS CLI is installed with the
 command
aws --version
to determine if any advisories apply to your present
 setup.

Command completion is a convenient facility configured by default on all Amazon Linux
 instances, which come with AWS CLI preinstalled. On Ubuntu, you can add
 this facility to the default Bash shell with the command:
complete -C '/usr/local/bin/aws_completer' aws
On other Linux distributions, or if you used a Python virtual
 environment in your installation, you will want to validate the path
 location. An active command completion helper will promptly expand
 partial commands when the Tab key is pressed, or present you with
 alternatives when more than one completion is applicable:
$ aws ec2 ter<TAB>
$ aws ec2 terminate-instances
This will assist your recall of less-used commands, not to mention
 speed up your typing.
You will need to run aws configure to initialize the
 tool with your AWS access key ID and secret access key we retrieved
 earlier:
 $ more rootkey.csv
 AWSAccessKeyId=AKIAIKVKZ6IGBVXNRSDA
 AWSSecretKey=hCJ/Fn3nE378Hb7WjGpHSYa9TRCsia/U4cAd+MG7
 $ aws configure
 AWS Access Key ID [None]: AKIAIKVKZ6IGBVXNRSDA
 AWS Secret Access Key [None]: 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
 Default region name [None]: us-east-1
 Default output format [None]: json
 $
Once this step is completed, you have all the resources of Amazon
 AWS’s global infrastructure at your fingertips. For example, let’s
 verify this account is currently not running any cloud instance:
 $ aws ec2 describe-instances
 {
 "Reservations": []
 }
 $
The output format can be controlled with the
 --output option of the command. While JSON output is ideal for parsing in
 our scripts, it is hardly readable to a human operator as it quickly
 becomes verbose. The text and
 table formats come to our rescue when using
 aws in interactive mode:
$ aws ec2 describe-instances --output table
--
| DescribeInstances |
+--+
|| Reservations ||
|+------------------------------------+---------------------------------+|
|| OwnerId | 740376006796 ||
|| ReservationId | r-e047ce48 ||
|+------------------------------------+---------------------------------+|
		Instances			
	+-------------------------+--+				
		AmiLaunchIndex	0		
		Architecture	x86_64		
		ClientToken			
		EbsOptimized	False		
		Hypervisor	xen		
		ImageId	ami-d05e75b8		
		InstanceId	i-6dd1e1ec		
		InstanceType	t2.micro		
		LaunchTime	2016-01-17T05:45:01.000Z		
		PrivateDnsName	ip-172-31-55-216.ec2.internal		
		PrivateIpAddress	172.31.55.216		
		PublicDnsName	ec2-54-86-1-51.compute-1.amazonaws.com		
		PublicIpAddress	54.86.1.51		
...
$
Caution
Relying on the system-wide Python installation may be
 undesirable in a production environment, as it creates an update
 dependency between the AWS tools and any other Python program in the
 system. You can separate the two by using Virtualenv, a tool
 designed to create isolated Python environments. Install it with:
sudo pip install virtualenv
virtualenv ~/.python
This creates a separate Python environment, including
 executables, in the .python directory. Switching
 environments is easy with the built-in activate
 script:
$ echo $PATH
 /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
$ source ~/.python/bin/activate
(.python) $ echo $PATH
 /root/.python/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin
:/usr/bin:/sbin:/bin
(.python) $
This adds the virtualenv’s bin directory as the first argument
 of your $PATH variable, and modifies the
 prompt to remind you of what environment is currently active. As the
 separate environment includes its own copy of pip, installing awscli
 into it requires no special procedure:
pip install awscli
If awscli will be regularly used from the
 user’s shell, we recommend adding the activate script to your
 .profile to ensure the correct environment is
 always loaded at login. Should you need to exit the virtualenv, this can be done with deactivate.

The account’s root credentials provide unlimited access to your
 AWS resources, and you should revisit their use as you learn more about
 AWS IAM in Chapter 3. You will also be
 prompted to optionally configure a default region and output
 format.
The AWS team maintains an extensive command-line interface User Guide that
 details additional native-executable install formats for Microsoft
 Windows, Linux, and macOS, as well as steps to uninstall and upgrade. A
 reference to all command options is also available online.

Parsing JSON Output with jq
The aws command will often
 print out JavaScript Object Notation, commonly known as JSON, as part of its results. For
 example, if you retrieve information about your DNS zones with the
 aws route53 list-hosted-zones
 command, you will see something similar to the following:
{ "HostedZones": [{
 "ResourceRecordSetCount": 9, "CallerReference":
 "A036EFFA-E0CA-2AA4-813B-46565D601BAB", "Config": {}, "Id":
 "/hostedzone/Z1Q7O2Q6MTR3M8", "Name": "epitech.nl." }, {
 "ResourceRecordSetCount": 4, "CallerReference":
 "7456C4D0-DC03-28FE-8C4D-F85FA9E28A91", "Config": {}, "Id":
 "/hostedzone/ZAY3AQSDINMTR", "Name": "awssystemadministration.com." }]
 }
In this example, it is trivial to find any information
 you might be looking for. But what if the results span multiple pages
 and you are interested in only a subset of the returned information?
 Enter jq. This handy tool is like sed for JSON data. It can be used to parse,
 filter, and generate JSON data, and is an excellent partner to the
 aws command.
jq is not installed by default in Amazon Linux
 or Ubuntu. On the latter, this can be resolved as follows:
sudo apt install jq
Continuing the DNS zones example, imagine we want to filter the
 previous list to include only the domain name:
$ aws route53 list-hosted-zones | jq '.HostedZones[].Name'
 "epitech.nl."
 "awssystemadministration.com."

The output of the aws command is piped to jq in this example. .HostedZones[].Name is a jq filter, which acts in a similar way to CSS selectors. It parses the JSON
 object and returns only the Name
 element of each of the HostedZones.
Tip
jq play provides a
 convenient online environment that enables you to test
 jq filters with consistent arbitrary input right in
 your web browser, potentially accelerating your development cycle when
 complex queries need to be crafted.

jq can also be used to filter the results.
 Let’s say we want to find the ResourceRecordSetCount for the epitech.nl domain:
aws route53 list-hosted-zones | jq \
'.HostedZones[] | select(.Name=="epitech.nl.").ResourceRecordSetCount' 9
 This example uses two filters. The first returns all of the HostedZones. This list is passed to the next
 filter, which uses the select()
 function to perform a string comparison. Finally, we request the
 ResourceRecordSetCount element for
 the item that matched the string comparison.
For installation instructions, extensive documentation, and more
 usage examples, see the jq
 homepage.
Tip
Before resorting to grep,
 jq, or bringing your Perl skills to the party, make
 sure you have exhausted the capabilities of the aws
 command’s own --query option. You can limit the
 default page of JSON output that launching a new instance produces to
 the bare essential InstanceId with:
aws ec2 run-instances --region us-east-1 \
--instance-type t2.micro --image-id ami-43a15f3e \
--output text --query 'Instances[*].InstanceId'
This is particularly useful in shell scripts, where the expressive --query command option can keep your code shorter and
 easily readable. The following script terminates all instances in the default EC2 account,
 a handy way to end an experiment:
 #! /bin/bash
 KILL_LIST=$(aws ec2 describe-instances --output text \
 --query 'Reservations[*].Instances[*].InstanceId')
 aws ec2 terminate-instances --instance-ids $KILL_LIST
The --query option uses the JMESPath library to implement a JSON
 query language. The project site hosts the language’s formal
 specification and a helpful tutorial.

Legacy AWS Command-Line Tools
Prior to AWS CLI, Amazon provided separate tools for each service rather than a
 unified command-line tool. Mostly obsolete, these tools are still useful
 in some situations. One such case is evaluating an older script’s
 functionality without refactoring it first. The legacy tools coexist
 effortlessly with the AWS CLI without side effects (and sometimes even
 share configuration), so feel free to experiment. We think you should be
 aware of the existence of these older tools, but advise against using
 them as part of any new infrastructure design.
Each service had its own collection of tools, which must be
 downloaded separately. Because the installation procedure does not vary
 much between packages, this section uses the EC2 tools as an example.
 The process is essentially the same for the rest of the tools.
Unfortunately, the legacy tools cannot be found in consistent
 locations. This inconsistency means it is more difficult than necessary
 to write a script that automates the installation of these tools,
 especially as the URLs for some tools change with each release.
Note
Alestic,
 a great blog full of useful AWS tips, has a handy guide
 containing links to all of the AWS command-line tools, along with
 shell snippets (suitable for copying and pasting) to download,
 extract, and install each of the packages.

By convention, it is common to store the tools in a subdirectory
 specific to that tool, so EC2 tools go in /usr/local/aws/ec2, and Auto Scaling tools go
 in /usr/local/aws/as. The following
 commands create this directory, download the EC2 tools, and move the
 extracted files into the destination directory:
 mkdir -p /usr/local/aws/ec2
 wget http://s3.amazonaws.com/ec2-downloads/ec2-api-tools.zip
 unzip ec2-api-tools.zip
 mv ec2-api-tools-*/* /usr/local/aws/ec2
Another difference between the legacy tools is in how they handle authentication. Some require a set of access keys, whereas others use X.509
 certificates or SSH keys. The EC2 tools use access keys, which can be specified in two ways:
 by setting environment variables containing the access key and secret, or by using the
 --aws-access-key and --aws-secret-key arguments on the command line. Using environment variables is
 more convenient and can be more secure—because specifying the credentials as command-line
 options means they will be visible in your shell history and the list of running
 processes—so I recommend using this approach where possible.
All of the AWS command-line tools require some environment
 variables to be set before they can be used. Set the environment
 variables as follows, updating the paths where necessary:
 export JAVA_HOME=/usr
 export EC2_HOME=/usr/local/aws/ec2
 export AWS_ACCESS_KEY=your_access_key_ID
 export AWS_SECRET_KEY=your_secret_access_key
 export PATH=$PATH:/usr/local/aws/ec2/bin
Note
JAVA_HOME should point to the directory used as the base when Java was
 installed. For example, if the output of which java
 is /usr/bin/java, JAVA_HOME should be set to /usr.

After setting these variables, you can start using the legacy
 command-line tools. For example:
	Command	Action
	 ec2-describe-instance
	Shows information about your running
 instances

	 ec2-describe-regions
	Shows the list of AWS regions

Note
By default, all AWS command-line tools will operate in the US East region (us-east-1). Because US East is one of the cheapest EC2
 regions, this is a sensible default. You can override this behavior by setting the EC2_REGION environment
 variable, or otherwise by passing the --region option on the command line.

Of course, setting these environment variables every time you wish
 to run the EC2 tools will quickly become tiresome, so it is convenient
 to set them automatically upon login. The method for achieving this will
 vary depending on which shell you use. If you are using Bash, for
 example, you will need to add the variables to your $HOME/.bashrc file. The Alestic blog post
 mentioned earlier includes an example .bashrc that sets the environment variables
 required for most of the tools, as well as adding each of the
 tool-specific directories to your PATH. Once you have installed all of the tools, your
 .bashrc might look something like
 this:
 export JAVA_HOME=/usr
 export EC2_HOME=/usr/local/aws/ec2
 export AWS_IAM_HOME=/usr/local/aws/iam
 export AWS_RDS_HOME=/usr/local/aws/rds
 export AWS_ELB_HOME=/usr/local/aws/elb
 export AWS_CLOUDFORMATION_HOME=/usr/local/aws/cfn
 export AWS_AUTO_SCALING_HOME=/usr/local/aws/as
 export CS_HOME=/usr/local/aws/cloudsearch
 export AWS_CLOUDWATCH_HOME=/usr/local/aws/cloudwatch
 export AWS_ELASTICACHE_HOME=/usr/local/aws/elasticache
 export AWS_SNS_HOME=/usr/local/aws/sns
 export AWS_ROUTE53_HOME=/usr/local/aws/route53
 export AWS_CLOUDFRONT_HOME=/usr/local/aws/cloudfront
 for i in $(find /usr/local/aws -type d -name bin)
 do
 PATH=$i/bin:$PATH
 done
 PATH=/usr/local/aws/elasticbeanstalk/eb/linux/python2.7:$PATH
 PATH=/usr/local/aws/elasticmapreduce:$PATH
 export EC2_PRIVATE_KEY=$(echo $HOME/.aws-default/pk-*.pem)
 export EC2_CERT=$(echo $HOME/.aws-default/cert-*.pem)
 export AWS_CREDENTIAL_FILE=$HOME/.aws-default/aws-credential-file.txt
 export ELASTIC_MAPREDUCE_CREDENTIALS=$HOME/.aws-default/aws-credentials.json
 #Some tools use AWS_ACCESS_KEY, others use AWS_ACCESS_KEY_ID
 export AWS_ACCESS_KEY=< your access key ID >
 export AWS_SECRET_KEY=< your secret access key >
 export AWS_ACCESS_KEY_ID=< your access key ID >
 export AWS_SECRET_SECRET_KEY=< your secret access key >
 # Change the default region if desired
 # export EC2_REGION=us-east-1
For more tools and utilities, including all of the AWS
 command-line tools, visit the AWS developer tools
 site.

Managing Your Costs
AWS service charges are structured in a very granular fashion that attempts to
 fairly charge customers in proportion to their use of each service. Any
 and all pricing models inherently have trade-offs, and the potential
 volatility of your monthly AWS expenditures is the most dramatic one in
 this case. Not having to face the huge upfront capital outlay that was
 once required to build a traditional datacenter, CIOs have now begun
 finding fault with the variability of their operational costs
 month-to-month.
Managing costs in AWS is a subject worthy of a book in its own
 right. We certainly do not aspire to settle the eternal game between
 vendors and CIOs here, but in a more limited scope we wish to offer a few
 tips to new users that may feel some degree of anxiety at being charged
 per API call, per resource, or per command executed. In most cases these
 charges amount to merely a few cents, but the multiple pricing models
 applicable to different AWS services and their potential interaction can
 make it rather difficult to forecast more accurately than the order of
 magnitude of the charges incurred. CIO-level executives could aspire to
 see the infrastructure reach a kind of steady-state where charges become
 more roughly predictable, yet one of Amazon AWS’s greatest strengths is in
 its ability to dynamically respond to changes in user demand by scaling
 according to the volume of service requests—a very desirable property, but
 also a fact running counter to that very same desire for a predictable
 budget.
At the individual scale, you can prevent sticker shock in a variety of ways as you learn
 your way to Amazon AWS mastery. In Chapter 2 we will show you how to
 set up custom alerts that trigger as you exhaust your free service credit or incur charges
 crossing a certain predefined threshold. You may also monitor your charges in a more
 interactive fashion through the billing and cost
 management dashboard (Figure 1-5), which not only displays current
 charges but also helpfully tries to forecast what the monthly total cost will be based on your
 current resource usage. The cost management dashboard lets you drill down into every line item
 to determine from which service (and in what region) the charge originated. You can then track
 down and discontinue your perhaps inadvertent use of a service that is padding the bottom line
 of your bill.
Figure 1-5. The billing and cost management dashboard

Tip
Julio Faerman’s amusingly named AWS
 Daleks tool delivers a scripted interface to itemizing and optionally removing
 every resource associated with an AWS account. Exterminating your AWS
 account is a rather drastic approach to cost management, but the very
 existence of this option should make new users more confident in their
 ability to manage costs during their learning.
Another potentially interesting use of Julio’s tool is to easily
 reset an account to its pristine original state, without needing to
 create a new account to this end. This can be quite handy where AWS is
 used as a demo or training environment.

Chapter 2. First Steps with EC2 and CloudFormation
Launched in 2006, Elastic Compute Cloud (or
 EC2, as it is universally known) is a core part of AWS, and
 probably one of the better-known components of the service. It allows
 customers to rent computing resources by the hour in the form of virtual
 machines (known as instances) that run a wide range of operating systems. These instances
 can be customized by users to run any software applications supported by
 their operating system of choice.
The idea of renting computing resources by the hour goes back to the
 1960s, when it was simply not financially feasible for a company or
 university department to own a dedicated computer (the idea of an individual
 owning a computer seeming, at this point, to be the stuff of science
 fiction). This changed as computers became cheaper and more popular, and
 dedicated computing resources became the norm.
The explosive growth of the consumer internet, and thus of the
 services and applications that make up the motivation for its
 ever-increasing use, has helped the pendulum swing back the other way, to
 the point where being able to elastically increase or decrease your
 computing resources (and therefore costs) has become a key financial
 advantage.
In the pre-cloud days, capacity planning required a large amount of
 time and forward thinking. Bringing new servers online was a multistep
 process with the potential for delays at every step: ordering hardware from
 the supplier, waiting for its arrival, visiting the datacenter to unpack and
 rack the server, and installing and configuring the operating system and
 software. Renting a virtual private server, while usually quicker than
 provisioning physical hardware, also had its own set of challenges and
 potential delays. With the launch of EC2, all of this was replaced by a
 single API call.
Particularly in the consumer-driven web application market, it is
 possible for new companies to experience month after month of exponential
 growth. This can lead to service interruption as system administrators
 struggle valiantly to ensure that the demands of their users do not surpass
 their supply of computing power. This process is often one of the key
 factors in the success of young companies and also presents one of their
 most acute challenges—if you do not have enough computing capacity, your
 users will quickly tire of seeing error pages and move on to a competitor.
 But oversupply can be equally terminal, as you will be paying for unused
 computing capacity. This contributed to the failure of many companies in the
 2000 dot-com bubble: they spent a huge amount of money in capital expenses
 building datacenter capacity to support users who never materialized.
EC2 provides a particularly interesting approach to solving this
 problem. As instances can be launched and terminated automatically based on
 your current traffic levels, it is possible to dynamically design your
 infrastructure to operate at (for example) 80% utilization. Large upfront
 hardware purchases are then replaced by a much smaller, ongoing operational
 expense exactly matching your capacity needs.
Flexibility is at the heart of the AWS product offering, and this
 flexibility also extends to the way one interacts with AWS. For most people,
 the first steps with EC2 are taken via the Management Console, which is the public face of EC2. This web
 application lets you control most aspects of your infrastructure, although
 some features (such as Auto Scaling groups, discussed later in the book)
 require the use of API calls or command-line tools. Historically, Amazon has
 usually provided command-line tools and API access to new features before
 they appear in the Management Console.
At the lowest level, AWS is “simply” an HTTP-based API. You can submit
 a request asking for 10 t2.micro
 instances, the API request is processed, and 10 instances are launched. The
 Management Console is merely another way of interacting with this
 API.
This book uses all the available methods provided by AWS. In nearly
 all cases, the methods are interchangeable. If a feature specifically
 requires you to use the command-line tools, we will indicate this. So, if
 you are familiar with AWS, you should feel free to ignore our
 recommendations and use whichever method you feel most comfortable
 with.
What Is an Instance?
At the simplest level, an instance can be thought of
 as a virtual server, the same as you might rent on a monthly basis from a
 virtual private server (VPS) provider. Indeed, some people are using EC2
 in exactly the same way as they would a VPS. While perfectly serviceable
 in this respect, to use it in this way ignores several interesting
 features and technologies that can make your job a lot more
 convenient.
Amazon Machine Images (AMIs) are the main building blocks of EC2. They allow you to
 configure an instance once (say, installing Apache or Nginx) and then
 create an image of that instance. The image can be used to launch more instances, all of which
 are functionally identical to the original. Of course, some
 attributes—such as the IP address or instance ID—must be unique, so there
 will be some differences.
AWS Regions and Availability Zones
AWS services operate in multiple geographic regions around the world.
 At the time of this writing, there are seventeen public AWS
 regions, each of which is further divided into
 multiple availability zones. This geographic disparity has two main benefits: you can
 place your application resources close to your end users for performance
 reasons, and you can design your application so that it is resilient to
 loss of service in one particular region or availability zone. AWS
 provides the tools to build automatic damage control into your
 infrastructure, so if an availability zone fails, more resources can be
 provisioned in the other availability zones to handle the additional
 load.
Each availability zone (AZ) is located in a physically separate
 datacenter within its region. There are three datacenters in or around
 Dublin, Ireland, that make up the three availability zones in the EU
 West 1 region—each with separate power and network connections. In
 theory, this means that an outage in one AZ will not have any effect on
 the other AZs in the region. In practice, however, an outage in one AZ
 can trigger a domino effect on its neighboring AZs, and not necessarily
 due to any failing on Amazon’s part.
Consider a well-architected application that, in the event of an
 AZ failure, will distribute traffic to the remaining AZs. This will
 result in new instances being launched in the AZs that are still
 available. Now consider what happens when hundreds of well-architected
 applications all failover at the same time—the rush for new instances
 could outstrip the capability of AWS to provide them, leaving some
 applications with too few instances.
This is an unlikely event—although AWS has service outages like
 any other cloud provider, deploying your application to multiple AZs
 will usually be sufficient for most use cases. To sustain the loss of a
 significant number of AZs within a region, applications must be deployed
 to multiple regions. This is considerably more challenging than running
 an application in multiple AZs.
Chapter 6 demonstrates an
 example application that can survive the loss of one or more AZs, while
 reserved and spot instances (see “Processing Power”)
 provide a way around capacity shortages in a failover.
A final reminder that AWS services are not uniformly available
 across all regions—validate deployment plans involving regions you are
 not already familiar with against the newest version of the official
 Region
 Table.

Instance Types
EC2 instances come in a range of sizes, referred to as instance types, to
 suit various use cases. The instance types differ wildly in the amount
 of resources allocated to them. The m3.medium instance type has 3.75 GB of memory
 and 1 virtual CPU core, whereas its significantly bigger brother
 c3.8xlarge has 60 GB of memory and 32
 virtual CPU cores. Each virtual CPU is a hyperthread of an Intel Xeon
 core in the m3 and c3 instance
 classes.
For most of the examples in the book, we will use a t2.micro instance, among the smaller and one
 of the cheapest instance types suitable for any operating system choice,
 which makes it ideal for our tests.
In production, picking the right instance type for each component
 in your stack is important to minimize costs and maximize performance,
 and benchmarking can be the key when making this decision.

Processing Power
EC2, along with the rest of AWS, is built using commodity hardware running
 Amazon’s software to provide the services and APIs. Because Amazon adds
 this hardware incrementally, several hardware generations are in service
 at any one time.
Warning
When it comes to discussing the underlying hardware that makes
 up the EC2 cloud, Amazon used to play the cards close to its chest and
 reveal relatively little information about the exact hardware
 specifications. This led to the creation of a dedicated compute
 unit:
One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz
 2007 Opteron or 2007 Xeon processor.

It is easy to encounter this metric in older AWS benchmarks.
 Amazon now openly identifies what hardware underlies the EC2 compute
 layer, and these abstract units are obsolete and no longer in
 use.

Amazon provides a rather vast selection of instance types, the
 current generation of which is described at the
 EC2 Instance
 Types page. The previously mentioned t2.micro instance type therefore refers to a
 second generation general-purpose burstable
 performance instance. An immediate update of already running
 applications is generally not required as older
 generations remain available for provisioning, with their
 original functionality intact. It remains advisable to adopt the latest
 instance type generation when designing a new (or revised) application,
 so as to benefit from the capabilities of the newer hosting
 hardware.
Tip
No EC2 instance type has ever been discontinued in almost 10
 years. This record is made possible by market forces: as newer
 instance types become available, their significantly better
 price/performance ratio induces a user migration away from the
 previous generation. A reduced demand base in turn allows Amazon to
 continue to supply those deprecated instance types without having to
 add capacity with old hardware that may be unavailable.
Older instance types are, however, not available in the newer
 AWS regions they predate—for example, the first generation to be
 deprecated, cc1, is not found in
 the newest region ap-northeast-2
 hosted in Seoul, Korea. If our spirited advice and the cost savings
 produced by migrating to newer instance generations are not sufficient
 to entice you to regularly update your instance selection, perhaps
 your global expansion plans will.

AWS machine images may make use of either of the two virtualization types supported by the Xen hypervisor:
 paravirtualized or hardware virtual machine (HVM). It is not necessary to be
 conversant in the finer differences of the two technologies to make
 effective use of AWS, but the two approaches present boot-time
 differences to the guest OS environment. A given Linux machine image
 will only support booting one virtualization type as a result, a
 requirement easily met by filtering any image search with the
 appropriate virtualization type.
Amazon recommends using HVM virtualization on current-generation
 AMIs. Where that approach is not suitable, it becomes
 necessary to determine what virtualization type is supported by the
 older generation of a specific instance type. This is quickly
 accomplished by launching a test HVM instance from the AWS CLI and watching for a helpful error message. The AWS
 documentation also provides insight into what virtualization
 type is supported by what older instance type.
Different combinations of CPU, memory, network bandwidth, and even
 custom hardware differentiate AWS instance types. There are nine
 instance type classes in the current generation at the time of writing,
 including general purpose (M4, M3), burstable performance (T2), compute optimized (C4, C3), memory intensive (R3), storage optimized (I2 for performance, or D2 for cost), and GPU enabled (G2). These in turn include multiple types with resource
 allotments of increasing size, bringing the total number of choices we
 select from above forty.
Note
Jeff Barr of Amazon has published an interesting timeline
 of EC2’s instance generations.

Taking a scientific approach to benchmarking is the only way to
 really be sure you are using the right instance type. AWS makes it
 really simple to run the very same workload configuration with a
 succession of different instance types, considerably simplifying this
 task. The most common approach in the AWS user community is to start
 with an instance type considered high-CPU for the workload under
 consideration. While running top,
 drive the CPU to 100% using your application’s load generator of choice.
 Now examine memory use: if you observe the instance running out of
 memory before the CPU is at full throttle, switch to a
 higher-memory instance type. Continue this process until you achieve a
 reasonable balance.
Alongside fixed-performance instances, including the C4, C3, and
 R3 types, EC2 offers burstable performance
 instances like the T2 type. Burstable performance instances
 generally operate at a CPU performance baseline but can “burst” above
 this limit for a time. Bursting is governed by CPU
 credits that are accumulated when the instance runs without its
 full allotment of CPU. A CPU credit represents use of a full CPU core
 for one minute.
A practical example will illustrate the accounting mechanism EC2
 employs: a t2.micro instance type
 allocates one virtual CPU to your cloud instance, with six CPU credits
 earned each hour, representing a 10% share of a real CPU core. Let’s
 assume our workload is a web server, often idling while waiting for
 requests. If the CPU load falls below 10%, CPU credits are added to that
 instance’s credit for up to 24 hours. Burstable performance is
 particularly useful for workloads that do not consistently use their
 full share of the CPU, but benefit from having access to additional,
 fast CPUs when the occasion arises—applications include small databases,
 web servers, and development systems.
Stolen CPU Time
Alongside the traditional CPU shares of us (user),
 sy (system), id (idle), and wa (IO wait), the EC2 hypervisor exposes the
 additional metric st, meaning
 stolen:
%Cpu(s): 0.1 us, 0.1 sy, 0.1 ni, 98.2 id, 1.0 wa, 0.0 hi, 0.0 si, 0.5 st

 Stolen CPU time represents the share of time the
 instance’s virtual CPU has been waiting for a real CPU while the
 hypervisor is using it to service another virtual processor. Stolen
 CPU has gained prominence as a metric that Netflix, possibly the most
 prominent AWS tenant, tracks closely. Despite its present fame, Stolen
 CPU is not as significant for workloads that are not sensitive to
 network jitter or real-time in nature.
The Noisy Neighbor is a related compute
 cause célèbre: in any virtual environment, the
 noisy neighbor effect occurs when an instance starves other instances for a
 shared resource, causing performance issues to others on the same
 infrastructure. You will not observe memory or CPU contention as EC2
 instances are generally not overprovisioned; any potential noisy
 neighbor problems will be limited to network or disk I/O.
One simple approach countering this issue is to automatically
 allocate a new instance, replacing the one where the performance
 problem was encountered. Larger instance types are less likely to
 present this problem on account of sharing a host with fewer
 neighbors. SR-IOV support (Enhanced Networking) increases storage and
 network I/O bandwidth, helping to minimize any noise. The ultimate
 solution is to use Dedicated
 Hosts, a facility providing complete control of your instance
 placement for an additional fee.

Specific instance types may provide the latest advanced features
 found in Intel hardware, including on-chip support for AES encryption and the Advanced Vector Extensions instruction set. The G2
 instance type is currently the most prominent example of enhanced
 compute support, featuring more than 1,500 NVIDIA GPU cores. Advanced
 compute options are rapidly evolving; their most recent iteration is
 documented in the instance types
 page, which we recommend you review often.
EC2 instances can be purchased in three ways. Allocated by the hour and
 requiring no upfront commitment, on-demand
 instances are the default and are used exclusively throughout this book.
 Reserved instances represent a prepaid commitment
 on the part of a customer, which is usually rewarded by AWS with very
 steep discounts, up to 75% of on-demand pricing.
 Spot instance pricing requires no upfront
 commitment, and their pricing fluctuates according to the supply and
 demand of compute capacity. The customer may define a maximum hourly
 price not to be exceeded, and EC2 will automatically shut those
 instances down if their spot pricing tops the set threshold.

Storage
There are two options when it comes to virtual disk storage for your instances: instance storage (also
 known as ephemeral storage) and Elastic
 Block Store (or EBS). Both are simply block storage devices that can be attached
 to instances. Once attached, they can be formatted with your operating
 system’s tools and will act like a standard disk. AWS storage comes in
 two flavors: magnetic disks and solid-state drives (SSDs). SSDs provide higher read and
 write performance when compared to magnetic disks, but the cost is
 slightly higher.
There are some key differences between instance storage and EBS.
 Instance storage is directly attached to the physical host that runs
 your instance, whereas EBS is attached over the network. This has
 implications in terms of disk latency and throughput, so we recommend
 performing another series of benchmarks to see which is best if your
 application is sensitive to latency or I/O jitter.
I/O speeds are not the only difference—EBS has features that make
 it preferable to instance storage in nearly all usage scenarios. One of
 the most useful is the ability to create a snapshot from an EBS. A
 snapshot is a copy of an EBS volume at a particular point in time. Once
 you have created a snapshot, you can then create additional EBS volumes
 that will be identical copies of the source snapshot. You could, for
 example, create a snapshot containing your database backups. Every time
 a new instance is launched, it will have a copy of the data ready for
 use. EBS snapshots form the backbone of many AWS backup
 strategies.
When an instance is terminated, any data stored on instance storage volumes is
 lost permanently. EBS volumes can persist after the instance has been
 terminated. Given all of the additional features, using EBS volumes is
 clearly preferable except in a few cases, such as when you need fast
 temporary storage for data that can be safely discarded.
Multiple volumes (of either type) can be attached to an instance,
 leading to pretty flexible storage configurations. The Block
 Device Mapping facility allows multiple volumes to be associated with an instance
 at boot time. It is even possible to attach multiple volumes to an
 instance and build a software RAID array on them—an advantage of volumes
 appearing as block storage devices to the operating system.
Tip
The disk_setup and mounts modules of Cloud-init allow
 customization of all disks associated with an instance
 upon boot, including partitioning and formatting disks as well as
 configuring mount points in /etc/fstab. The
 official documentation also sheds light on the details of how many
 public clouds can initialize
 their instance storage using Cloud-init.

In June 2012, AWS began offering SSDs as a higher-performance
 alternative to magnetic storage, and over time introduced multiple
 options with different performance levels and cost. Some instance types
 now include an SSD-backed instance store to deliver very-high random I/O
 performance, with types I2 and R3 being the first to support TRIM extensions.
 Instance types themselves have evolved to include high-I/O instances
 (type I2), aimed at delivering high IOPS from up to 8 local SSD drives,
 while dense storage instances (type D2) offer the lowest price per-disk throughput in EC2 and
 balance cost and performance, using 24 local magnetic drives.
EBS Magnetic and SSD volumes are currently limited to 16 TB in
 size, limits easily exceeded by dense storage (d2) instances, which can boot with 48 TB of
 local disk storage. Whereas EBS volumes can be provisioned at any time
 and in arbitrary configurations, the number and size of available
 instance store volumes varies with instance type, and can only be
 attached to an instance at boot time. In addition, EBS volumes can be
 dynamically resized, which is also used to redefine their performance at
 runtime.
EBS SSD options include a number of performance flavors.
 General-purpose SSD volumes are provisioned with 3 IOPS per GB, with
 burst performance reaching 3,000 IOPS for extended periods. Provisioned
 IOPS SSD volumes allow the user to define the desired level of
 performance, up to 20,000 IOPS and 320 MB/s of throughput. A less costly
 option is offered by the EBS-optimized
 M4 type instances, which include dedicated EBS bandwidth
 between 450 and 4,000 Mbps depending on the specific instance type.
 EBS-optimized instances use an optimized configuration stack requiring
 corresponding support on the machine image’s part for optimal
 performance (see “Finding Ubuntu Images” for details on
 locating optimized images).
Long-term storage options are best supported by the S3 service, but a block storage option is available
 through Cold HDD EBS volumes. Backed by magnetic drives, Cold HDD
 volumes offer the lowest cost per GB of all EBS volume types, and still
 provide enough performance to support a full-volume scan at burst
 speeds. EBS also supports native
 at-rest encryption that is transparently available to EC2
 instances and requires very little effort on the administrator’s part to
 deploy and maintain. EBS encryption has no IOPS performance impact and
 shows very limited impact on latency, making it a general-purpose
 architectural option even when high security is not strictly required.

Networking
At its simplest, networking in AWS is straightforward—launching an instance
 with the default networking configuration will give you an instance with
 a public IP address. Many applications will require nothing more
 complicated than enabling SSH or HTTP access. At the other end of the
 scale, Amazon offers more-advanced solutions that can, for example, give
 you a secure VPN connection from your datacenter to a Virtual Private Cloud (VPC)
 within EC2.
At a minimum, an AWS instance has one network device attached. The
 maximum number of network devices that can be attached depends on the
 instance type. Running ip addr show on
 your instance will show that it has a private IP address in the default
 172.31.0.0/16 range. Every instance
 has a private IP and may have a
 public IP; this can be configured at launch time
 or later, with the association of an Elastic-IP address.
Warning
AWS accounts created after December 2013 no longer have access
 to the legacy EC2-classic networking model. This book covers the current
 EC2-VPC networking model exclusively.

Amazon Virtual Private Cloud enables you to provision EC2
 instances in a virtual network of your own design. A VPC is a network
 dedicated to your account, isolated from other networks in AWS, and
 completely under your control. You can create subnets and gateways,
 configure routing, select IP address ranges, and define its security
 perimeter—a series of complex tasks that are bypassed by the existence
 of the default VPC. The default
 VPC includes a default subnet in each availability zone, along
 with routing rules, a DHCP setup, and an internet gateway. The default
 VPC enables new accounts to immediately start launching instances
 without having to first master advanced VPC configuration, but its
 security configuration will not allow instances to accept connections
 from the internet until we expressly give our permission, by assigning
 our own security group
 settings.
The default security group allows all outbound traffic from
 instances to reach the internet, and also permits instances in the same
 security group to receive inbound traffic from one another, but not from
 the outside world. Instances launched in the default VPC receive both a
 public and a private IP address. Behind the scenes, AWS will also create
 two DNS entries for convenience.
For example, if an instance has a private IP of 172.31.16.166 and a public IP of 54.152.163.171, their respective DNS entries
 will be ip-172-31-16-166.ec2.internal and ec2-54-152-163-171.compute-1.amazonaws.com.
 These DNS entries are known as the private hostname and
 public hostname.
It is interesting to note that Amazon operates a split-view
 DNS system, which means it is able to provide different
 responses depending on the source of the request. If you query the
 public DNS name from outside EC2 (not from an EC2 instance), you will
 receive the public IP in response. However, if you query the public DNS
 name from an EC2 instance in the same region, the response will contain
 the private IP:
From an EC2 instance
$ dig ec2-54-152-163-171.compute-1.amazonaws.com +short
172.31.16.166
From Digital Ocean
$ dig ec2-54-152-163-171.compute-1.amazonaws.com +short
54.152.163.171
The purpose of this is to ensure that traffic does not leave the
 internal EC2 network needlessly. This is important as AWS has a highly
 granular pricing structure when it comes to networking, and Amazon makes
 a distinction between traffic destined for the public internet and
 traffic that will remain on the internal EC2 network. The full breakdown
 of costs is available on the EC2 Pricing
 page.
If two instances in the same availability zone communicate using
 their private IPs, the data transfer is free of charge. However, using
 their public IPs will incur internet transfer
 charges on both sides of the connection. Although both instances are in
 EC2, using the public IPs means the traffic will need to leave the
 internal EC2 network, which will result in higher data transfer
 costs.
By using the private IP of your instances when possible, you can
 reduce your data transfer costs. AWS makes this easy with their
 split-horizon DNS system: as long as you always reference the public
 hostname of the instance (rather than the public IP), AWS will pick the
 cheapest option.
Most of the early examples in the book use a single interface, and
 we will look at more exotic topologies in later chapters.

Launching Instances
The most useful thing one can do with an instance is launch it, which is a
 good place for us to start. As an automation-loving sysadmin, you will no
 doubt quickly automate this process and rarely spend much time manually
 launching instances. Like any task, though, it is worth stepping slowly
 through it the first time to familiarize yourself with the process.
Launching from the Management Console
Most people take their first steps with EC2 via the Management Console,
 which is the public face of EC2. Our first journey through the
 Launch Instance Wizard will introduce a number of new
 concepts, so we will go through each page in the wizard and take a
 moment to look at each of these in turn. Although there are faster
 methods of launching an instance, the wizard is certainly the best way
 to familiarize yourself with related concepts.
Launching a new instance of an AMI
To launch a new instance, first log in to Amazon’s web
 console, open the EC2 section, and click Launch Instance. This
 shows the first in a series of pages that will let us configure the
 instance options. The first of these pages is shown in Figure 2-1.
Figure 2-1. AMI selection

As described earlier, Amazon Machine Images (AMIs) are used to launch
 instances that already have the required software packages installed,
 configured, and ready to run. Amazon provides AMIs for a variety of
 operating systems, and the Community and Marketplace AMIs provide
 additional choices. For example, Canonical provides officially
 supported AMIs for various versions of its Ubuntu operating system.
 Other open source and commercial operating systems are also available,
 both with and without support. The AWS Marketplace lets you use virtual appliances created by
 Amazon or third-party developers. These are Amazon Machine Images
 already configured to run a particular set of software; for example,
 many variations of AMIs running the popular WordPress blogging
 software exist. While some of these appliances are free to use (i.e.,
 you only pay for the underlying AWS resources you use), others require
 you to pay an additional fee on top of the basic cost of the Amazon
 resources.
If this is your first time launching an instance, the My AMIs
 tab will be empty. Later in this chapter, we will create our own
 custom AMIs, which will subsequently be available via this tab. The
 Quick Start tab lists several popular AMIs that are available for
 public use.
Click the Select button next to the Amazon Linux AMI. This gives you instance types to
 choose from (Figure 2-2).
Figure 2-2. Selecting the instance type

EC2 instances come in a range of shapes and sizes to suit many
 use cases. In addition to offering increasing amounts of memory and
 CPU power, instance types also offer differing ratios of memory to
 CPU. Different components in your infrastructure will vary in their
 resource requirements, so it can pay to benchmark each part of your
 application to see which instance type is best for your particular
 needs. You can also find useful community-developed resources to
 quickly compare instance types at EC2instances.info.
The Micro instance class is part of Amazon’s free usage tier. New customers
 can use 750 instance-hours free of charge each month with the Linux
 and Windows micro instance types. After exceeding
 these limits, normal on-demand prices apply.
Select the checkbox next to t2.micro and click Review and Launch. Now
 you are presented with the review screen, which gives you a chance to
 confirm your options before launching the instance.
EC2 Instance Details and User Data
So far, we have been using only the most common options when launching our
 instance. As you will see on the review screen, there are a number
 of options that we have not changed from the defaults. Some of these
 will be covered in great detail later in the book, whereas others
 will rarely be used in the most common use cases. It is worth
 looking through the advanced options pages to familiarize yourself
 with the possibilities.
User data is an incredibly powerful feature of EC2, and one
 that will be used a lot later in the book to demonstrate some of the
 more interesting things you can do with EC2 instances. Any data
 entered in this box will be available to the instance once it has
 launched, which is a useful thing to have in your sysadmin toolbox.
 Among other things, user data lets you create a single AMI that can
 fulfill multiple roles depending on the user data it receives, which
 can be a huge time-saver when it comes to maintaining and updating
 AMIs. Ubuntu and Amazon Linux support using shell scripts as user
 data, so you can provide a custom script that will be executed when
 the instance is launched.
Furthermore, user data is accessible to configuration management tools such as Puppet or Chef,
 allowing dynamic configuration of the instance based on user data
 supplied at launch time. This is covered in further detail in Chapter 4.
The Kernel ID and RAM Disk ID options will rarely need to be
 changed if you are using AMIs provided by Amazon or other
 developers.
Termination protection provides a small level of protection against operator error in
 the Management Console. When running a large number of instances, it
 can be easy to accidentally select the wrong instance for
 termination. If termination protection is enabled for a particular
 instance, you will not be able to terminate it via the Management
 Console or API calls. This protection can be toggled on or off while
 the instance is running, so there is no need to worry that you will
 be stuck with an immortal instance. Mike can personally attest to
 its usefulness—it once stopped him from erroneously terminating a
 production instance running a master database.
IAM roles are covered in Chapter 3. Briefly, they allow you to assign a security role to the
 instance. Access keys are made available to the instance so it can
 access other AWS APIs with a restricted set of permissions specific
 to its role.
Most of the time your instances will be terminated through the
 Management Console or API calls. Shutdown Behavior controls what
 happens when the instance itself initiates the shutdown, for
 example, after running shutdown -h
 now on a Linux machine. The available options are to stop
 the machine so it can be restarted later, or to terminate it, in
 which case it is gone forever.
Tags are a great way to keep track of your instances and other EC2 resources
 via the Management Console.
Tags perform a similar role to user data, with an important
 distinction: user data is for the instance’s internal use, whereas
 tags are primarily for external use. An instance does not have any
 built-in way to access tags, whereas user data, along with other
 metadata describing the instance, can be accessed by reading a URL
 from the instance. It is, of course, possible for the instance to
 access its own tags by querying the EC2 API, but that would require
 API access privileges to be granted to the instance itself in the
 form of a key, something less than desirable in a healthy security
 posture.
Using the API, you can perform queries to find instances that
 are tagged with a particular key/value combination. For example, two
 tags we always use in our EC2 infrastructures are environment (which can take
 values such as production or
 staging) and role
 (which, for instance, could be webserver
 or database). When scripting common
 tasks—deployments or software upgrades—it becomes a trivial task to
 perform a set of actions on all web servers in the staging
 environment. This makes tags an integral part of any well-managed
 AWS infrastructure.
If the Cost Allocation Reports feature
 (on the billing options page of your account settings
 page) is enabled, your CSV-formatted bill will contain additional
 fields, allowing you to link line-item costs with resource tags.
 This information is invaluable when it comes to identifying areas
 for cost savings, and for larger companies where it is necessary to
 separate costs on a departmental basis for charge-back purposes.
 Even for small companies, it can be useful to know where your
 sources of cost are.

After reviewing the options, click Launch to move to the final
 screen. At the time of this writing, the wizard’s Quick
 Start process will automatically create a convenient
 launch-wizard-1 security group granting the instance SSH
 access from the internet at large. This is not the default security
 group previously discussed, and this helpfulness is not present when
 using the AWS CLI or API interfaces to create instances (Figure 2-3).
Figure 2-3. The Review screen (the prominent security warning is alerting
 you that SSH access has been opened with a default security
 group)

Key pairs
The next screen presents the available key pairs options (Figure 2-4).
Figure 2-4. Key pair selection

Key pairs provide secure access to your
 instances. To understand the benefits of key pairs, consider how we
 could securely give someone access to an AMI that anyone in the world
 can launch an instance of. Using default passwords would be a security
 risk, as it is almost certain some people would forget to change the
 default password at some point. Amazon has implemented SSH key pairs to help avoid this eventuality. Of course,
 it is possible to create an AMI that uses standard usernames and
 passwords, but this is not the default for AWS-supplied AMIs.
All AMIs have a default user: when an
 instance is booted, the public part of your chosen key
 pair is copied to that user’s SSH authorized keys file. This ensures
 that you can securely log in to the instance without a password. In
 fact, the only thing you need to know about the instance is the
 default username and its IP address or hostname.
This also means that only people with access to the private part
 of the key pair will be able to log in to the instance. Sharing your
 private keys is against security best practices, so to allow others
 access to the instance, you will need to create additional system
 accounts and configure them with passwords or SSH authorized
 keys.
Note
The name of the default user varies between AMIs. For example,
 Amazon’s own AMIs use ec2-user,
 whereas Ubuntu’s official AMIs use ubuntu.
If you are unsure of the username, one trick you can use is to
 try to connect to the instance as root. The most friendly AMIs present an
 error message informing you that root login is disabled, and letting
 you know which username you should use to connect instead.
Changing the default user of an existing AMI is not
 recommended, but can be easily done. The details of how to
 accomplish this have been documented by Eric Hammond
 of Alestic. The following table enumerates default usernames
 for most popular Linux distributions:
	Distribution	Default Username
	Amazon Linux	ec2-user
	Ubuntu	ubuntu
	Debian	admin
	RHEL	ec2-user (since 6.4),
 root (before 6.4)
	CentOS	root
	Fedora	ec2-user
	SUSE	root
	FreeBSD	ec2-user
	BitNami	bitnami

You can create a new SSH key pair through the EC2
 Key Pairs page in the AWS Management Console—note that key
 pairs are region-specific, and this URL refers to the US East 1
 region. Keys you create in one EC2 region cannot be immediately used
 in another region, although you can, of course, upload the same key to
 each region instead of maintaining a specific key pair for each
 region. After creating a key, a .pem file will be automatically downloaded.
Alternatively, you can upload the public part of an existing SSH
 key pair to AWS. This can be of great help practically because it may
 eliminate the need to add the -i
 /path/to/keypair.pem option to each SSH command where
 multiple keys are in use (refer to ssh-agent’s
 man page if you need to manage
 multiple keys). It also means that the private part of the key pair
 remains entirely private—you never need to upload this to AWS, it is
 never transmitted over the internet, and Amazon does not need to
 generate it on your behalf, all of which have security implications.
Alestic offers a handy Bash script to
 import an existing public SSH key into each region.
Tip
If you are a Windows user connecting with PuTTY, you will need to convert this to a PPK
 file using PuTTYgen before you can use it. To do this, launch
 PuTTYgen, select Conversions → Import Key, and follow the on-screen
 instructions to save a new key in the correct format. Once the key
 has been converted, it can be used with PuTTY and PuTTY
 Agent.

From the Key Pairs screen in the launch wizard, you can select
 which key pair will be used to access the instance, or to launch the
 instance without any key pair. You can select from your existing key
 pairs or choose to create a new key pair. It is not possible to import
 a new key pair at this point—if you would like to use an existing SSH
 key that you have not yet uploaded to AWS, you will need to upload it first, just follow the instructions on the EC2
 Key Pairs page.
Once you have created a new key pair or imported an existing
 one, click “Choose from your existing Key Pairs,” select your key pair
 from the drop-down menu, and continue to the next screen. You have now
 completed the last step of the wizard—click Launch Instances to
 create the instance.

Waiting for the instance
Phew, we made it. Launching an instance can take a few seconds, depending on the
 instance type, current traffic levels on AWS, and other factors. The
 Instances page of the Management Console will show you the status of
 your new instance. Initially, this will be pending, while the
 instance is being created on the underlying physical hardware. Once
 the instance has been created and has begun the boot process, the page
 will show the running state.
 This does not mean your instance is servicing requests or ready for
 you to log in to, merely that the instance has been created.
Selecting an instance in the Management Console will show you
 its public DNS name, as well as more detail about the settings and
 status of the instance. At this point, you can try to SSH to the
 public hostname. If the connection fails, it means SSH is not yet
 ready to accept connections, so wait a moment and try again. Once you
 manage to log in to the instance, you will see a welcome screen
 specific to the AMI you launched.

Querying information about the instance
Now that you have an instance, what can you do with it? The answer is—anything you can
 do with an equivalent Linux server running on physical hardware. Later
 chapters demonstrate some of the more useful things you can do with
 EC2 instances. For now, let’s take a look at the ec2metadata tool,
 which is included on most well-designed AMIs.
Warning
In the infancy of AWS, EC2 had no real style guide; the
 question of how to name something was up to the developer. A few
 different but equivalent tools parsing instance metadata appeared:
 ec2metadata in the case of
 Ubuntu’s, and ec2-metadata in the
 case of Amazon Linux’s variant.

The ec2metadata tool is
 useful for quickly accessing the metadata attributes of your instance: for
 example, the instance ID, or the ID of the AMI from which this
 instance was created. Running ec2metadata without
 arguments will display all available metadata.
If you are interested in specific metadata attributes, you can
 read the values one at a time by passing the name of the attribute as
 a command-line option. For example:
$ ec2metadata --instance-id
i-ba932720
$ ec2metadata --ami-id
ami-f5f41398
This is useful if you are writing shell scripts that need to
 access this information. Rather than getting all the metadata and
 parsing it yourself, you can do this:
INSTANCE_ID=$(ec2metadata --instance-id)
AMI_ID=$(ec2metadata --ami-id)
echo "The instance $INSTANCE_ID was created from AMI $AMI_ID"
Note
Every instance downloads its metadata from the following URL:
http://169.254.169.254/latest/meta-data/<attribute_name>
So to get the instance ID, you could request the URL
 http://169.254.169.254/latest/meta-data/instance-id.
This URL is accessible only from within the instance, while
 the IP address maps to the hostname
 http://instance-data, which is easier for users
 to remember. See AWS’s Documentation for full details on instance
 metadata.
If you want to query the metadata from outside the instance,
 you will need to use the ec2-describe-instances command.

Terminating the instance
Once you have finished testing and exploring the instance, you can
 terminate it. In the Management Console, right-click the instance and
 select Terminate Instance.
Next, we will look at some of the other available methods of
 launching instances.
Tip
In early 2013, Amazon introduced a mobile app
 interface to the AWS Management Console with versions supporting both
 iOS and Android devices. After multiple updates and enhancements,
 the app has become an excellent tool for administrators who need a
 quick look at the state of their AWS deployment while on the
 move.
The app’s functionality is not as comprehensive as the web
 console’s, but it showcases remarkable usability in its streamlined
 workflow (see Figure 2-5 for an example), and most
 users enjoy the quick access to select functionality it provides:
 some users now even pull up their mobile phone to execute certain
 tasks rather than resorting to their trusted terminal!

Figure 2-5. The AWS console mobile app

Launching with Command-Line Tools
If you followed the steps in the previous section, you probably noticed a few drawbacks to
 launching instances with the Management Console. The number of steps
 involved and the variety of available options engender complex
 documentation that takes a while to absorb. This is not meant as
 criticism of the Management Console—EC2 is a complex beast, thus any
 interface to it requires a certain level of complexity.
Because AWS is a self-service system, it must support the use
 cases of many users, each with differing requirements and levels of
 familiarity with AWS itself. By necessity, the Management Console is
 equivalent to an enormous multipurpose device that can print, scan, fax,
 photocopy, shred, and collate.
This flexibility is great when it comes to discovering and
 learning the AWS ecosystem, but is less useful when you have a specific
 task on your to-do list that must be performed as quickly as possible.
 Interfaces for managing production systems should be streamlined for the
 task at hand, and not be conducive to making mistakes.
Documentation should also be easy to use, particularly in a crisis, and the Management Console
 does not lend itself well to this idea. Picture yourself in the midst of
 a downtime situation, where you need to quickly launch some instances,
 each with different AMIs and user data. Would you rather have to consult
 a 10-page document describing which options to choose in the Launch
 Instance Wizard, or copy and paste some commands into the
 terminal?
Fortunately, Amazon gives us precisely the tools required to do
 the latter. The EC2 command-line tools can be used to perform any action
 available from the Management Console, in a fashion that is much easier
 to document and much more amenable to automation.
Warning
As you start exploring dynamic infrastructure provisioning with
 AWS CLI, we recommend you set
 up a billing alarm. Leveraging the CloudWatch and Simple Notification services, billing
 alerts will notify you if you exceed preset spending
 thresholds.
While not ruinously expensive, forgetting to shut down a few of
 your test instances and letting them run for the rest of the month
 (until you notice as you are billed) will easily exceed your personal
 phone bill. It is a snap to inadvertently make this mistake; we have
 slipped up ourselves and advise you let the system help keep track
 with these friendly notifications.

If you have not already done so, you will need to set up the EC2
 command-line tools according to the instructions in “Preparing Your Tools” before continuing. Make sure you have
 set the AWS_ACCESS_KEY
 and AWS_SECRET_KEY environment
 variables or the equivalent values in the
 .aws/credentials file in your home
 directory.
Access Key IDs and Secrets
When you log in to the AWS Management Console, you will use your
 email address and password to authenticate yourself. Things work a
 little bit differently when it comes to the command-line tools.
 Instead of a username and password, you use an access key ID and
 secret access key. Together, these are often
 referred to as your access credentials.
Although access credentials consist of a pair of keys, they are not the same as an SSH key pair. The former is used to access AWS’s APIs,
 while the latter is used to SSH into an instance to perform work on
 the shell.
When you created your AWS account, you also generated a set of
 access credentials for your root account identity. These keys have
 full access to your AWS account—keep them safe! You are responsible
 for the cost of any resources created using these keys, so if a
 malicious person were to use these keys to launch some EC2 instances,
 you would be left with the bill.
“IAM Users and Groups” discusses how you can
 set up additional accounts and limit which actions they can perform,
 as defined by current security best practices. For the following
 examples, we will just use the access keys you have already created
 during CLI setup.
AWS lets you inspect all active access credentials for your
 account through the Security
 Credentials page of the Management Console, but for increased security you will be unable to
 retrieve their secret access keys after creation. This stops any
 unauthorized access to your account from resulting in a compromise of
 your API credentials, but has the annoying side effect of requiring
 you to replace your access keys if they ever were lost.

To launch an instance from the command line, you need to provide
 values that correspond to the options you can choose from when using the
 Management Console. Because all of this information must be entered in a
 single command, rather than gathered through a series of web pages, it
 is necessary to perform some preliminary steps so you know which values
 to choose. The Management Console can present you with a nice drop-down
 box containing all the valid AMIs for your chosen region, but to use the
 command line, you need to know the ID of the AMI before you can launch
 it.
The easiest way to get a list of available images is in the Instances tab
 of the Management Console, which lets you search through all
 available AMIs. Keep in mind that AMIs exist independently in EC2
 regions—the Amazon Linux AMI in the US East region is not the same image
 as the Amazon Linux AMI in Europe, although they are functionally
 identical. Amazon, Canonical, and other providers make copies of their
 AMIs available in each region as a convenience to their users, but the
 same AMI will show a different ID in different regions.
Finding Ubuntu Images
Searching for Ubuntu images yields 27,175 results in the us-east-1 region alone at the time of this
 writing. Filtering for official images released by Canonical (owner
 099720109477) reduces the crop to only 6,074
 images. These high numbers are due to Ubuntu’s high popularity in
 public cloud environments, and to Canonical’s commitment to refreshing
 AMIs with the newest packages as security updates or bug fixes are
 published. Older AMIs remain available as new ones are issued by the
 vendor, the timing of when to switch to newer images being entirely
 under the admin’s control, not AWS’s. All these factors conspire to
 make finding the correct Ubuntu image a rather nontrivial task.
Ubuntu AMIs can be most easily found using Canonical’s AMI Locator
 (see Figure 2-6), which shows only the most
 recent release by default and which updates results as you search by
 substring or select from prepopulated pull-down menus. This is an
 essential resource for navigating the sea of Ubuntu images found on
 AWS. At the time of this writing, the Locator narrows down our options
 to twelve images varying in storage and system bit width.
Figure 2-6. Ubuntu EC2 AMI Locator (clicking the selected AMI ID
 launches it from the Management Console)

Equally interesting to power users is the collection of official Ubuntu cloud images
 found on Ubuntu.com. This site includes both daily builds and
 official releases. Finding the latter is accomplished by navigating to
 the release/ subdirectory of any Ubuntu version,
 which is
 http://cloud-images.ubuntu.com/releases/16.04/release/
 for Xenial.

If you need to find an AMI using the command-line tools, you can do so with the
 aws ec2 describe-images command. A
 few examples follow:
Describe all of your own images in the US East region
aws ec2 describe-images --owners self --region us-east-1

Find Amazon-owned images for Windows Server 2012, 64-bit version
aws ec2 describe-images --owners amazon --filters Name=architecture,Values=x86_64 | grep Server-2012

List the AMIs that have a specific set of key/value tags
aws ec2 describe-images --owners self --filters Name=tag:role,Values=webserver Name=tag:environment,Values=production
The first query should of course yield no results, unless you have
 already created some AMIs of your own. Later examples showcase combining
 the tool’s own filtering and grep to
 find the image you are really looking for. In our second example we are
 searching for a Windows Server image created by another party. Note that
 we explicitly searched for Amazon-owned images, as any AWS customer can
 decide to make her AMIs accessible to all other customers. Image names
 are freely chosen by their creator just like their contents, thus not
 only complicating our search with a very large number of results, but
 potentially posing a security problem if one carelessly selects an
 unknown party’s bits.
At the time of writing, the most popular Ubuntu long-term support
 (LTS) version on AWS is 16.04, going by the nickname of Xenial Xerus. In
 the Eastern US EC2 region, the latest version of Canonical’s official
 AMI is ami-43a15f3e (64b, HVM, EBS storage), which is used in many of
 the examples. Make sure to update this with your chosen AMI. If you are
 not sure which to use, or have no real preference, the authors recommend
 using the latest LTS version of Ubuntu for 64-bit systems.
The command used to launch an instance is aws ec2
 run-instances. The most basic invocation is simply aws ec2 run-instances --image-id ami-6d060707,
 which will launch an older m1.small
 instance in the default us-east-1
 region. If you are paying attention, you noticed we used a different AMI
 ID with paravirtualization support as the older m1.small instance type does not support the
 newer HVM
 virtualization style. However, if you run this command and attempt to
 log in to the instance, you will soon notice a rather large problem:
 because no key pair name was specified, there is no way to log in to the
 instance. Instead, try running the command with the -key option to specify one of the SSH key
 pairs you created earlier. In the following example, we have also
 changed the instance type to t2.micro, the smallest instance type all AWS
 operating systems are currently comfortable with:
$ aws ec2 run-instances --image-id ami-43a15f3e --region us-east-1 \
--key federico --instance-type t2.micro --output text
740376006796	r-bbcfff10
INSTANCES	0	x86_64		False	xen	ami-43a15f3e	i-64a8a6fe	t2.micro	federico	2016-04-03T07:40:48.000Z	ip-172-31-52-118.ec2.internal	172.31.52.118		/dev/sda1	ebs	True		subnet-2a45b400	hvm	vpc-934935f7
[output truncated]
Once EC2 receives the request to launch an instance, it prints
 some information about the pending instance. The value we need for the
 next command is the instance ID, in this case, i-64a8a6fe.
Although this command returns almost immediately, you will still
 need to wait a short while before your instance is ready to accept SSH
 connections. You can check on the status of the instance while it is
 booting with the aws ec2
 describe-instance-status command. While the instance is still
 booting, its status will be listed as pending. This will change to running once the
 instance is ready. Remember that ready in this context means that the virtual
 instance has been created, and the operating system’s boot process has
 started. It does not necessarily mean that the instance is ready to
 receive an SSH connection, which is important when writing scripts that
 automate these commands.
Tip
Granting access to an already running image can involve multiple
 manual steps adding the new user’s SSH credentials to the authorized
 keys file. Juggling files can be avoided working with Ubuntu images
 thanks to the ssh-import-id
 command. Just invoking the following:
ssh-import-id lp:f2
will retrieve Federico’s SSH identity from
 Launchpad.net and grant him access, since he’s
 the user the command was run under. You can accomplish the same for
 Mike by using his GitHub user ID:
ssh-import-id gh:mikery
All that is required is the user ID from either site. This is
 roughly equivalent to running the following (which could be used
 to derive alternative import strategies for other
 sites):
wget https://launchpad.net/~f2/+sshkeys -0 - >>
~/.ssh/authorized_keys && echo >> ~/.ssh/authorized_keys

Once your instance is running, the output should look similar to
 this:
$ aws ec2 describe-instance-status --instance-ids i-64a8a6fe --region us-east-1 --output text
INSTANCESTATUSES	us-east-1a	i-64a8a6fe
INSTANCESTATE	16	running
INSTANCESTATUS	ok
DETAILS	reachability	passed
SYSTEMSTATUS	ok
DETAILS	reachability	passed
Another way to display information about your instance is
 with aws ec2
 describe-instances, which will show much more detail. In
 particular, it will show the public DNS name (for example, ec2-54-247-40-225.eu-west-1.compute.amazonaws.com),
 which you can use to SSH into your instance:
$ aws ec2 describe-instances --instance-ids i-64a8a6fe --region us-east-1 --output text
RESERVATIONS	740376006796	r-bbcfff10
INSTANCES	0	x86_64		False	xen	ami-43a15f3e	i-64a8a6fe	t2.micro	federico	2016-04-03T07:40:48.000Z	ip-172-31-52-118.ec2.internal	172.31.52.118	ec2-52-90-56-122.compute-1.amazonaws.com	52.90.56.122	/dev/sda1	ebs	True		subnet-2a45b400	hvm	vpc-934935f7
BLOCKDEVICEMAPPINGS	/dev/sda1
[output truncated]
EBS	2016-04-03T07:40:48.000Z	True	attached	vol-e9c0c637
MONITORING	disabled
NETWORKINTERFACES		12:5a:33:b3:b5:97	eni-ce4084ea	740376006796	ip-172-31-52-118.ec2.internal	172.31.52.118	True	in-use	subnet-2a45b400	vpc-934935f7
ASSOCIATION	amazon	ec2-52-90-56-122.compute-1.amazonaws.com	52.90.56.122
ATTACHMENT	2016-04-03T07:40:48.000Z	eni-attach-2545d3d4	True	0	attached
GROUPS	sg-384f3a41	default
PRIVATEIPADDRESSES	True	ip-172-31-52-118.ec2.internal	172.31.52.118
ASSOCIATION	amazon		52.90.56.122
PLACEMENT	us-east-1a		default
SECURITYGROUPS	sg-384f3a41	default
STATE	16	running
To terminate the running instance, issue aws ec2
 terminate-instance. To verify that this instance has indeed
 been terminated, you can use the aws ec2
 describe-instances command again:
$ aws ec2 terminate-instances --instance-ids i-64a8a6fe --region us-east-1
INSTANCE	i-64a8a6fe	running	shutting-down
$ aws ec2 describe-instances --instance-ids i-64a8a6fe --region us-east-1
RESERVATION	r-991230d1	612857642705	default
INSTANCE	i-64a8a6fe	ami-43a15f3e			terminated	mike	0		t1.micro	2012-11-25T15:51:45+0000
[output truncated]
As you find yourself using the command-line tools more frequently,
 and for more complex tasks, you will probably begin to identify
 procedures that are good candidates for automation. Besides saving you
 both time and typing, automating the more complex tasks has the
 additional benefits of reducing the risk of human error and simply
 removing some thinking time from the process.
The command-line tools are especially useful when it comes to
 documenting these procedures. Processes become more repeatable. Tasks
 can be more easily delegated and shared among the other members of the
 team.
Tip
Trying to connect multiple times as an instance boots is
 inelegant. Fortunately, we can one-line script our way out of this.
 The BSD version of ping, notably
 on macOS,
 includes a convenient “one ping only” option (-o)
 that we like to think honors Sean Connery’s famous quote in
 Hunt for Red October. The option terminates
 ping once the first reply is
 received. Like Captain Marko Ramius, we can use this to ask for “one
 ping only, please”:
$ ping -o 52.90.56.122; sleep 2; ssh ubuntu@52.90.56.122
PING 52.90.56.122 (52.90.56.122): 56 data bytes
Request timeout for icmp_seq 0
Request timeout for icmp_seq 1
Request timeout for icmp_seq 2
64 bytes from 52.90.56.122: icmp_seq=3 ttl=48 time=40.492 ms
[output truncated]

Welcome to Ubuntu 16.04.4 LTS (GNU/Linux 4.4.0-1052-aws x86_64)
Perhaps less steeped in movie lore, but nonetheless equally
 effective is this GNU-compatible version that waits in a loop for the
 SSH service to start up:
$ until ssh ubuntu@52.90.56.122; do sleep 1; done
ssh: connect to host 52.90.56.122 port 22: Connection refused
ssh: connect to host 52.90.56.122 port 22: Connection refused
[output truncated]

Welcome to Ubuntu 16.04.4 LTS (GNU/Linux 4.4.0-1052-aws x86_64)

Launching from Your Own Programs and Scripts
The command-line tools are useful from an automation perspective, as it is
 trivial to call them from Bash or any other scripting language. While
 the output for some of the services can be rather complex, it is
 relatively straightforward to parse this output and perform dynamic
 actions based on the current state of your infrastructure. At a certain
 level of complexity, though, calling all of these external commands and
 parsing their output becomes time-consuming and error prone. At this
 point, it can be useful to move to a programming language with a client
 library to help you work with AWS directly.
Officially supported client libraries are available for many
 programming languages and platforms, including:
	Java

	PHP

	Python

	Ruby

	.NET

	iOS

	Android

The full set of AWS programming resources can be found at the
 AWS Sample Code
 site.
Most of the examples in this book use the popular Python-based Boto
 library although other, equally capable libraries exist. Even if
 you are not a Python developer, the examples should be easy to transfer
 to your language of choice, because each library is calling the same
 underlying AWS API.
Regardless of your language choice, the high-level concepts for
 launching an instance remain the same: first, decide which attributes
 you will use for the instance, such as which AMI it will be created
 from, and then issue a call to the RunInstances method
 of the EC2 API.
When exploring a new API from Python, it can often be helpful to
 use the interactive interpreter. This lets you type in lines of Python
 code one at a time, instead of executing them all at once in a script.
 The benefit here is that you have a chance to explore the API and
 quickly get to grips with the various functions and objects that are
 available. We will use this method in the upcoming examples. If you
 prefer, you can also copy the example code to a file and run it all in
 one go with python
 filename.py.
If you do not already have the Boto library installed, you will
 need to install it with pip (pip install boto)
 before continuing with the examples. Once this is done, open the Python
 interactive interpreter by running python without any arguments:
$ python
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
When you connect to an AWS service with Boto, Boto needs to know
 which credentials it should use to authenticate. You can
 explicitly pass the aws_access_key_id
 and aws_secret_access_key keyword
 arguments when calling connect_to_region, as shown here:
>>> AWS_ACCESS_KEY_ID = "your-access-key"
>>> AWS_SECRET_ACCESS_KEY = "your-secret-key"
>>> from boto.ec2 import connect_to_region
>>> ec2_conn = connect_to_region('us-east-1',
... aws_access_key_id=AWS_ACCESS_KEY_ID,
... aws_secret_access_key=AWS_SECRET_ACCESS_KEY)
Alternatively, if the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables are set, Boto will use these
 automatically:
$ export AWS_SECRET_ACCESS_KEY='your access key'
$ export AWS_ACCESS_KEY_ID='your secret key'
$ python
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from boto.ec2 import connect_to_region
>>> ec2_conn = connect_to_region('us-east-1')
Boto will also automatically attempt to retrieve your credentials
 from the file ~/.aws/credentials if one is present,
 in which case exporting them to environment variables is not
 necessary.
Once you have connected to the EC2 API, you can issue a call
 to run_instances to
 launch a new instance. You will need two pieces of information
 before you can do this—the ID of the AMI you would like to launch, and
 the name of the SSH key pair you will use when connecting to the
 instance:
>>> ssh = ec2_conn.create_security_group('ssh', 'SSH access group')
>>> ssh
SecurityGroup:ssh
>>> ssh.authorize('tcp', 22, 22, '0.0.0.0/0')
True
>>> reservation = ec2_conn.run_instances('ami-43a15f3e',
... instance_type='t2.micro', key_name='your-key-pair-name',
... security_group_ids=['ssh'])
>>> instance = reservation.instances[0]
The call to run_instances does
 not, as might initially be suspected, return an object representing an
 instance. Because you can request more than one instance when calling
 the run_instances function, it
 returns a reservation, which is an object
 representing one or more instances. The reservation object lets you
 iterate over the instances. Here, we requested only one instance, so we
 simply took the first element of the list of instances in the
 reservation (in Python, that is done with reservation.instances[0]) to get our
 instance.
Now the instance is launching, and we have an instance (in the
 programming sense) of the instance (in the EC2 sense), so we can begin
 to query its attributes. Some of these are available immediately,
 whereas others do not get set until later in the launch process. For
 example, the DNS name is not available until the instance is nearly
 running. The instance will be in the pending state
 initially. We can check on the current state by calling the update()
 function:
>>> instance.state
u'pending'
>>> instance.update()
u'pending'
After some time…
>>> instance.update()
u'running'
Once the instance reaches the running state, we
 should be able to connect to it via SSH. But first we need to know its
 hostname or IP address, which are available as attributes on the
 instance object:
>>> instance.public_dns_name
u'ec2-54-152-96-69.compute-1.amazonaws.com'
>>> instance.private_ip_address
u'172.31.51.214'
>>> instance.id
u'i-53f2e7c9'
Terminating a running instance is just a matter of calling
 the terminate()
 function. Before we do that, let’s take a moment to look at how Boto can
 work with EC2 tags to help make administration easier. A tag is a
 key/value pair that you can assign to any number of instances to track
 arbitrary properties. The metadata stored in tags
 can be used as a simple but effective administration database for your
 EC2 resources. Setting a tag is simple:
>>> ec2_conn.create_tags([instance.id], {'environment': 'staging'})
True
Once an instance has been tagged, we can use the get_all_instances()
 method to find it again. get_all_instances() returns a list of
 reservations, each of which, in turn, contains a list of instances.
 These lists can be iterated over to perform an action on all instances
 that match a specific tag query. As an example, we will terminate any
 instances that have been tagged as being part of our staging environment:
>>> tagged_reservations = ec2_conn.get_all_instances(filters={'tag:environment': 'staging'})
>>> tagged_reservations
[Reservation:r-6a4a76c1]
>>> tagged_reservations[0]
Reservation:r-6a4a76c1
>>> tagged_reservations[0].instances[0]
Instance:i-53f2e7c9
>>> for res in tagged_reservations:
... for inst in res.instances:
... inst.terminate()
>>>
Note
Given that nearly all resource types support tagging, and that
 Amazon provides this feature free of charge, it would be a shame not
 to take advantage of the many ways this can help you automate and
 control your infrastructure. Think of it as an incredibly simple query
 language for your infrastructure. Conceptually, our previous example
 was similar to SELECT * FROM instances WHERE
 tag_environment='staging'.

The previous example iterated over all the matching instances
 (only one, in this case) and terminated them. We can now check on the
 status of our instance and see that it is heading toward the terminated
 state:
>>> instance.update()
u'shutting-down'
After a moment or two…
>>> instance.update()
u'terminated'
This example only scratches the surface of what Boto and other
 client libraries are capable of. The Boto
 documentation provides a more thorough introduction to other AWS
 services. Having the ability to dynamically control your infrastructure
 is one of the best features of AWS from a system administration
 perspective, and it gives you plenty of opportunities to automate
 recurring processes.
Note
Managing AWS with Python is the subject of Mitch Garnaat’s Python
 and AWS Cookbook (O’Reilly). Written by the very
 author of Boto, this cookbook gets you started with more than two
 dozen complete recipes.

Introducing CloudFormation
There is another method of launching instances that deserves its own section. Among the
 many Amazon Web Services features, a favorite is CloudFormation. It
 fundamentally changes how AWS infrastructure is managed, and is something
 whose absence is strongly felt when working in non-AWS environments. In a
 nutshell, CloudFormation is a resource-provisioning tool that accepts a
 JSON file describing the resources you require and then
 creates them for you. Such a simple idea, yet so powerful.
Consider this example checklist for launching an instance. Using the
 three methods of launching instances we have already looked at, how could
 you most efficiently perform these tasks? More importantly, how would you
 document the process so it is repeatable?
	Launch a t2.micro instance of
 ami-43a15f3e in the us-east-1 region. The instance should have a
 10 GB EBS volume attached to the sdf device and belong to the security group
 named webservers. It should be
 given the string webserver as user
 data and have a role tag with the
 value of webserver.

	Create a CNAME for www.example.com that
 points to the public hostname of the instance.

If the task is a one-off procedure, it might make sense to perform
 it using the Management Console, but the documentation would be
 time-consuming to write and tedious to follow. Automating the task through
 programming (either by calling the EC2 command-line tools, or using one of
 the client libraries) means the documentation could be reduced to a single
 command: “run this script.” While benefiting the person following the
 documentation, this comes at a cost to whomever must write and maintain
 the script.
Using CloudFormation, the burden of maintaining the tool itself is
 shifted to Amazon, with the user retaining responsibility solely for
 maintaining the configuration itself. You simply create a JSON-formatted
 file (a stack template) describing the attributes of the instance, and then let AWS do the
 rest. The documentation is reduced to one step: “Create a stack named
 webservers, using the stack template webserver.json.”
 A stack can be thought of as a collection of resources, along with a list
 of events associated with changes to those resources and the stack
 itself.
Successfully submitting a stack template to CloudFormation will
 result in the creation of a stack, which will, in
 turn, create one or more AWS resources (such as EC2 instances or Elastic
 Load Balancers).There are no additional scripts to write or maintain,
 although writing and maintaining stack templates can become rather
 complicated as well once your infrastructure starts growing. The
 CloudFormation stack template language has its own learning curve.
Being plain-text files, stack templates can be stored in your
 version control system alongside your application code and server
 configurations. The same processes used to review changes to your code can
 be applied to changes in your infrastructure. By browsing the history of
 commits to your stack templates, you can quickly audit changes to your
 infrastructure, as long as you have a consistent policy in place to run
 stacks only after they have been committed to version control.
An additional benefit of stack templates is that they can be reused:
 it is possible to create multiple stacks from the same template. This can
 be used to give each developer a self-contained copy of their development
 stack. When new members join the team, they simply need to launch a new
 copy of the stack, and they can start familiarizing themselves with the
 application and infrastructure almost immediately.
The same stack template can also be used to create multiple copies
 of the stack in the different AWS regions. Operating an application across
 multiple AWS regions requires a lot of careful planning at both the
 application and infrastructure layers, but CloudFormation makes one aspect
 of the task very easy: by deploying a stack template to multiple regions,
 you can be sure that your infrastructure is identical in each region,
 without needing to manually configure a series of resources in each
 one.
Aside from the cost of the underlying resources, CloudFormation is
 free of charge. Although it adds a small bump in the AWS learning curve,
 it is well worth taking the time to deploy your infrastructure with
 CloudFormation, especially if you find yourself managing complicated or
 frequently changing infrastructures. Routing all changes to your
 infrastructure through a single process (i.e., updating the CloudFormation
 stack) is imperative when working with a team, as it gives you an easy way
 to answer those questions of “who changed what, and when.”
For more examples of what can be achieved with CloudFormation, have
 a look at the example
 templates provided by Amazon.
Warning
Are there limits on just how many servers you can dynamically
 request from AWS? New accounts are usually limited to 20 on-demand instances, an additional 20
 reserved instances, and up to 20
 spot instances in each region. Additional
 restrictions are enforced on certain instance types, and
 filing a support
 request is all that is necessary to increase your account
 limits.

Working with CloudFormation Stacks
CloudFormation stacks are themselves a type of AWS resource, and can
 thus be managed in similar ways. They can be created, updated, and deleted
 via the same methods we use for interacting with other AWS services—the
 Management Console, command-line tools, or client libraries. They can also
 be tagged for ease of administration.
Creating the Stack
In this section, we will start with a basic stack template that simply launches an
 EC2 instance. Example 2-1 shows one of the
 simplest CloudFormation stacks.
Example 2-1. Basic CloudFormation stack in JSON
{
 "AWSTemplateFormatVersion" : "2010-09-09",
 "Description" : "A simple stack that launches an instance.",
 "Resources" : {
 "Ec2Instance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 "InstanceType": "t2.micro",
 "ImageId" : "ami-43a15f3e"
 }
 }
 }
}

Warning
CloudFormation requires stack templates to be strictly valid
 JSON, so keep an eye out for trailing commas when copying or modifying
 templates.
Templates can be validated and checked for errors with the AWS command-line tool. For
 example:
aws cloudformation validate-template \
--template-body file://MyStack.json
Some editors, including Eclipse and Vim, can be extended with
 plug-ins to help produce and validate JSON files.

The Resources section is an
 object that can contain multiple children, although this example
 includes only one (EC2Instance). The
 EC2Instance object has attributes
 that correspond to the values you can choose when launching an instance
 through the Management Console or command-line tools.
CloudFormation stacks can be managed through the Management
 Console, with the command-line tools, or with scripts leveraging
 client-side libraries such as Boto.
One advantage of using the Management Console is that a list of
 events is displayed in the bottom pane of the interface. With liberal
 use of the refresh button, this will let you know what is happening when
 your stack is in the creating or
 updating stages. Any problems encountered while
 creating or updating resources will also be displayed here, which makes
 it a good place to start when debugging CloudFormation problems. These
 events can also be read by using the command-line tools, but the
 Management Console output is a much more friendly human
 interface.
It is not possible to simply paste the stack template file contents into the Management Console.
 Rather, you must create a local text file and upload it to the
 Management Console when creating the stack. Alternatively, you can make
 the stack accessible on a website and provide the URL instead. The same
 applies when using the command-line tools and API.
To see the example stack in action, copy the JSON shown in Example 2-1 into a text file. You may need to
 substitute the AMI (ami-43a15f3e)
 with the ID of an AMI in your chosen EC2 region (our preset value comes
 from the ever-popular default us-east-1). Use the command-line tools or
 Management Console to create the stack. Assuming you have stored your
 stack template in a file named example-stack.json, you can create the stack
 with this command:
 aws cloudformation create-stack --template-body file://example-stack.json \
 --stack-name example-stack
If your JSON file is not correctly formed, you will see a helpful
 message letting you know the position of the invalid portion of the
 file. If CloudFormation accepted the request, it is now in the process
 of launching an EC2 instance of your chosen AMI. You can verify this
 with the aws cloudformation
 describe-stack-resources and aws
 cloudformation describe-stack-events commands:
$ aws cloudformation describe-stack-events--stack-name example-stack \
--output text
STACKEVENTS	9b5ea230-fcc7-11e5-89de-500c217b26c6	example-stack	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2		CREATE_COMPLETE		AWS::CloudFormation::Stack	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2	example-stack	2016-04-07T13:49:53.884Z
STACKEVENTS	Ec2Instance-CREATE_COMPLETE-2016-04-07T13:49:52.222Z	Ec2Instance	i-ebe00376	{"ImageId":"ami-43a15f3e","InstanceType":"t2.micro"}
	CREATE_COMPLETE		AWS::EC2::Instance	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758dexample-stack	2016-04-07T13:49:52.222Z
STACKEVENTS	Ec2Instance-CREATE_IN_PROGRESS-2016-04-07T13:49:05.313Z	Ec2Instance	i-ebe00376	{"ImageId":"ami-43a15f3e","InstanceType":"t2.micro"}
	CREATE_IN_PROGRESS	Resource creation Initiated	AWS::EC2::Instance	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2	example-stack	2016-04-07T13:49:05.313Z
STACKEVENTS	Ec2Instance-CREATE_IN_PROGRESS-2016-04-07T13:49:04.113Z	Ec2Instance		{"ImageId":"ami-43a15f3e","InstanceType":"t2.micro"}
	CREATE_IN_PROGRESS		AWS::EC2::Instance	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2	example-stack	2016-04-07T13:49:04.113Z
STACKEVENTS	7b1fc800-fcc7-11e5-a700-50d5cd2758d2	example-stack	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2		CREATE_IN_PROGRESS	User Initiated	AWS::CloudFormation::Stack	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2	example-stack	2016-04-07T13:48:59.905Z

$ aws cloudformation describe-stack-resources --stack-name example-stack \
--output text
STACKRESOURCES	Ec2Instance	i-ebe00376	CREATE_COMPLETE	AWS::EC2::Instance	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2	example-stack	2016-04-07T13:49:52.222Z
aws cloudformation
 describe-stack-events prints a list of events associated with
 the stack, in reverse chronological order. Following the chain of
 events, we can see that AWS first created the stack, and then spent
 around 60 seconds creating the instance, before declaring the stack
 creation complete. The second command shows us the ID of the newly
 launched instance: i-5689cc1d.

Updating the Stack
Updating a running stack is an equally straightforward task. But before doing this,
 a brief digression into the way AWS handles resource updates is called
 for.
Some attributes of AWS resources cannot be modified once the
 instance has been created. Say, for example, you launch an EC2 instance
 with some user data. You then realize that the user data was incorrect,
 so you would like to change it. Although the Management Console provides
 the option to View/Change User Data, the instance must be in the stopped state
 before the user data can be modified. This means you must stop the
 instance, wait for it to enter the stopped state, modify the user data, and then
 start the instance again.
This has an interesting implication for CloudFormation. Using the
 previous example, imagine you have a CloudFormation stack containing an
 EC2 instance that has some user data. You want to modify the user data,
 so you update the stack template file and run the aws cloudformation
 update-stack command. Because CloudFormation is unable to
 modify the user data on a running instance, it must instead either reload or
 replace the instance, depending on whether this is an EBS-backed or
 instance store−backed instance.
If this instance was your production web server, you would have
 had some unhappy users during this period. Therefore, making changes to
 your production stacks requires some planning to ensure that you won’t
 accidentally take down your application. We won’t list all of the safe
 and unsafe types of updates here, simply because there are so many
 permutations to consider that it would take an additional book to
 include them all. The simplest thing is to try the operation you want to
 automate by using the Management Console or command-line tools to find
 out whether they require stopping the server.
We already know that user data cannot be changed without causing
 the instance to be stopped, because any attempt to change the user data
 of a running instance in the Management Console will fail. Conversely,
 we know that instance tags can be modified on a running instance via the
 Management Console; therefore, updating instance tags with
 CloudFormation does not require instance replacement.
Changing some other attributes, such as the AMI used for an
 instance, will also require the instance to be replaced. CloudFormation
 will launch a new instance using the update AMI ID and then terminate
 the old instance. Obviously, this is not something you want to do on
 production resources without taking care to ensure that service is not
 disrupted while resources are being replaced. Mitigating these effects
 is discussed later, when we look at Auto Scaling and launch
 configurations.
If in doubt, test with an example stack first. CloudFormation lets
 you provision your infrastructure incredibly efficiently—but it also
 lets you make big mistakes with equal efficiency. With great power
 (which automation offers) comes great responsibility.
Warning
Be careful when updating stacks that provide production
 resources. Once you submit the request to modify the stack, there is
 no going back. Furthermore, you cannot request any additional changes
 until the update is complete, so if you accidentally terminate all of
 your production resources, you will have no option but to sit back and
 watch it happen, after which you can begin re-creating the stack as
 quickly as possible.
To remove any doubt, review the CloudFormation documentation for
 the resource type you are modifying. The documentation will let you
 know if this resource can be updated in place, or if a replacement
 resource is required in order to apply changes.

To see this in action, we will first update the instance to
 include some tags. Update the example-stack.json file so that it includes
 the following line in bold—note the addition of the comma to the end of
 the first line:
…
 "InstanceType": "t2.micro",
 "Tags": [{"Key": "foo", "Value": "bar"}]
 }
…
 Now we can update the running stack with aws cloudformation update-stack and watch the
 results of the update process with aws cloudformation
 describe-stack-events:
$ aws cloudformation update-stack --template-body file://example-stack.json \
--stack-name example-stack --output text
arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2

$ aws cloudformation describe-stack-events --stack-name example-stack \
--output text
STACKEVENTS	beaeaca0-fcca-11e5-a119-500c2866f062	example-stack	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2		UPDATE_COMPLETE		AWS::CloudFormation::Stack	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2	example-stack	2016-04-07T14:12:21.550Z
STACKEVENTS	bda21ea0-fcca-11e5-b6dd-50d5ca6e60ae	example-stack	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2		UPDATE_COMPLETE_CLEANUP_IN_PROGRESS		AWS::CloudFormation::Stack	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2	example-stack	2016-04-07T14:12:19.911Z
STACKEVENTS	Ec2Instance-UPDATE_COMPLETE-2016-04-07T14:12:18.229Z	Ec2Instance	i-ebe00376	{"ImageId":"ami-43a15f3e","Tags":[{"Value":"bar","Key":"foo"}],"InstanceType":"t2.micro"}
	UPDATE_COMPLETE		AWS::EC2::Instance	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758dexample-stack	2016-04-07T14:12:18.229Z
STACKEVENTS	Ec2Instance-UPDATE_IN_PROGRESS-2016-04-07T14:12:02.354Z	Ec2Instance	i-ebe00376	{"ImageId":"ami-43a15f3e","Tags":[{"Value":"bar","Key":"foo"}],"InstanceType":"t2.micro"}
	UPDATE_IN_PROGRESS		AWS::EC2::Instance	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2	example-stack	2016-04-07T14:12:02.354Z
STACKEVENTS	b0537140-fcca-11e5-bc1e-500c286f3262	example-stack	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2		UPDATE_IN_PROGRESS	User Initiated	AWS::CloudFormation::Stack	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2	example-stack	2016-04-07T14:11:57.557Z

 $ aws cloudformationdescribe-stack-resources --stack-name example-stack \
 --output text
STACKRESOURCES	Ec2Instance	i-ebe00376	UPDATE_COMPLETE	AWS::EC2::Instance	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2	example-stack	2016-04-07T14:12:18.229Z
Finally, the aws ec2
 describe-tags command will show that the instance is now tagged with foo=bar:
$ aws ec2 describe-tags --filters Name=resource-type,Values=instance \
Name=resource-id,Values=i-ebe00376 --output text
TAGS	aws:cloudformation:logical-id	i-ebe00376	instance	Ec2Instance
TAGS	aws:cloudformation:stack-id	i-ebe00376	instance	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/7b1d5700-fcc7-11e5-a700-50d5cd2758d2
TAGS	aws:cloudformation:stack-name	i-ebe00376	instance	example-stack
TAGS	foo	i-ebe00376	instance	bar
Notice the additional tags in the aws:cloudformation namespace. When provisioning resources that support tagging,
 CloudFormation will automatically apply tags to the resource. These tags
 let you keep track of that stack, which “owns” each
 resource, and make it easy to find CloudFormation-managed resources in
 the Management Console.

Looking Before You Leap
When you have more than one person working on a stack template, it can be
 easy to find yourself in a situation where your local copy of the stack
 template does not match the template used by the running stack.
Imagine that two people are both making changes to a stack template stored in a Git repository. If
 one person makes a change and updates the stack without committing that
 change to Git, the next person to make an update will be working with an
 out-of-date stack template. The next update will then revert the
 previous changes, which, as previously discussed, could have negative
 consequences. This is a typical synchronization problem whenever you
 have two independent activities that could be happening concurrently: in
 this case, updating Git and updating the actual AWS stack.
Happily, Amazon has provided a tool that, in combination with a
 couple of Linux tools, will let you make certain that your local copy of
 the stack does indeed match the running version. Use the aws cloudformation get-template command
 to get a JSON file describing the running template, clean
 the output with sed and
 head, and finally use diff to compare the local and remote versions.
 If we did this before updating the example stack to include tags, we
 would have obtained the following results:
$ aws cloudformation get-template --stack-name example-stack \
| grep -v "TemplateBody" | head -n -1 > example-stack.running
$ diff <(jq '.' example-stack.running) <(jq '.' example-stack.json)
9c9,10
4a5,10
< "Tags": [
< {
< "Value": "bar",
< "Key": "foo"
< }
<],
Warning
We use jq to pretty-print the
 JSON in a consistent format that saves diff from getting caught up in formatting or
 whitespace differences. Element ordering is still a factor; however,
 one easily addressed by making your initial git commit of a new stack with the format
 exported by aws cloudformation
 get-template.

These commands could be wrapped in a simple script to save typing. Changes to production
 CloudFormation stacks should always be preceded by a check like this,
 especially if working in a team. This check should be incorporated into
 the script used for updating the stack: if it happens automatically,
 there is no chance of forgetting it.

Deleting the Stack
Deleting a running stack will, by default, result in the termination of its associated
 resources. This is quite frequently the desired behavior, so it makes
 for a sensible default, but at times, you would like the resources to
 live on after the stack itself has been terminated. This is done by
 setting the DeletionPolicy attribute on the resource. This
 attribute has a default value of Delete.
All resource types also support the Retain value. Using this means that the
 resource will not be automatically deleted when the stack is deleted.
 For production resources, this can be an added safety net to ensure that
 you don’t accidentally terminate the wrong instance. The downside is
 that, once you have deleted the stack, you will need to manually hunt
 down the retained resources if you want to delete them at a later
 date.
The final option for the DeletionPolicy attribute is Snapshot, which is applicable only to the
 subset of resources that support snapshots. Currently, these include the
 Relational Database Service (RDS) database instances,
 Amazon Redshift data warehouse clusters, and EBS volumes. With this
 value, a snapshot of the database or volume will be taken when the stack
 is terminated.
Remember that some resources will be automatically tagged with the
 name of the CloudFormation stack to which they belong. This can save
 some time when searching for instances that were created with the Retain
 deletion policy.
Deleting a stack is done with the aws cloudformation
 delete-stack command. Again, you can view the changes made to
 the stack with aws cloudformation
 describe-stack-events:
$ aws cloudformation delete-stack \
--stack-name example-stack

$ aws cloudformation describe-stack-events --stack-name example-stack --output text
STACKEVENTS	Ec2Instance-DELETE_IN_PROGRESS-2016-04-08T07:22:22.919Z	Ec2Instance	i-05fe1098	{"ImageId":"ami-43a15f3e","InstanceType":"t2.micro"}
	DELETE_IN_PROGRESS		AWS::EC2::Instance	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/76b64990-fd5a-11e5-9750-500c286f3262	example-stack	2016-04-08T07:22:22.919Z
[output truncated]
Events are available only until the stack has been deleted. You
 will be able to see the stack while it is in the DELETE_IN_PROGRESS state, but once it has been fully deleted, aws cloudformation describe-stack-events will
 fail.

Which Method Should I Use?
As we have already seen, AWS provides a lot of choices. When deciding which method is
 best for your use case, there are several things to consider. One of the
 most important is the return on investment of any effort spent automating
 your system administration tasks.
The main factors to consider are as follows:
	How frequently is the action performed?

	How difficult is it?

	How many people will have to perform it?

If you are part of a small team that does not make frequent changes
 to your infrastructure, the Management Console might be all you need. Personal preference will also play a
 part: some people are more at home in a web interface than they are on the
 command line. Once you have a complicated infrastructure or a larger team,
 it becomes more important that processes are documented and automated,
 which is not a strong point of the Management Console.
For production services, we cannot recommend using CloudFormation strongly enough. Given the benefits outlined
 in the previous section—an audit trail, stack templates stored in source
 control—how could any sysadmin not immediately fall in love with this
 technology? Unless you have a compelling reason not to, you should be
 using CloudFormation for any AWS resources that are important to your
 infrastructure.
Mike’s golden rule for any infrastructure he is responsible for is
 “If it’s in production, it’s in Git.” Meaning that if a
 resource—application code, service configuration files, and so on—is
 required for that infrastructure to operate, it must be under version
 control. CloudFormation ties into this philosophy perfectly.
No matter how useful CloudFormation is, at times you will need to
 perform tasks that fall outside its capabilities. For these occasions,
 some combination of the command-line tools and client libraries are the
 next best thing in terms of ease of documentation and automation.
Combining the AWS client libraries with existing system management
 software can be a powerful tool. Packages such as Fabric (Python)
 and Capistrano
 (Ruby) make it easy to efficiently administer large numbers of systems. By
 combining these with the respective language’s client library, you can use
 them to administer a fleet of EC2 instances.
Automating too early can waste as much time as automating too late,
 as demonstrated in Figure 2-7. Especially at the
 beginning of a project, processes can change frequently, and updating your
 automation scripts each time can be a drain on resources. For this reason,
 I recommend using the Management Console when first learning a new AWS
 service—once you have performed the same task a few times, you will have a
 clear idea of which tasks will provide the most “automation ROI.”
Figure 2-7. XKCD’s take on
 automation, courtesy of Randall Munroe

Note
If you are interested in strategies to help decide which tasks
 warrant automation, the authors would like to recommend Time
 Management for System Administrators by Thomas A.
 Limoncelli (O’Reilly).

Regardless of which method you choose, it is important to have a
 documented process describing how to perform updates. Errors
 will inevitably occur if there is no policy in place to organize everyone
 in a coherent fashion.

Amazon Machine Images
Some AMIs are virtual appliances—preconfigured server images running a
 variety of operating systems and software stacks. Amazon provides a number
 of its own images, running open source and commercial software, and allows
 any third party to distribute their images through the AWS Marketplace.
 You can also create your own images, configured exactly to meet your
 requirements, and share them with a few selected accounts or choose to
 make them public altogether.
Building your own AMIs has a number of benefits. You get to
 customize the software selection and configure which services will start
 when the instance is launched. Any services that are not required can be
 disabled to cut down on wasted resources. Later chapters show how to
 launch instances automatically in response to external conditions such as
 traffic levels (when instances are launched in response to growing demand,
 it is important they are ready for service as soon as possible).
Once an instance has been configured and an image created from it,
 that configuration is baked into the AMI. As we look at configuration
 management tools in Chapter 4, we will see
 how tools like Puppet can be used to dynamically configure an instance.
 This raises the question of how much of the configuration should be baked
 into the AMI, and how much should be dynamically configured.
At one end of the spectrum, you can deploy an entirely vanilla
 Ubuntu image, automatically install a configuration management tool such
 as Puppet, and then apply your desired configuration to start up the
 correct services (such as Nginx for a web server). At the other end of the
 spectrum, you could create a custom AMI for each specific role within the
 application: one for the database server, one for the web server, and so
 on. In the latter case, all configuration options are baked into the AMI,
 and no dynamic configuration is performed when the instance is
 launched.
In our experience, the best option is somewhere in the middle: some
 roles have their own AMI, whereas other AMIs perform multiple roles. The
 most efficient place will depend on various factors, including the type of
 software you deploy and how frequently you modify the server
 configuration. If it is important for newly launched instances to start
 serving requests as quickly as possible (which includes practically all
 uses of Auto Scaling), you’ll want to reduce the amount of automatic
 configuration that takes place on boot.
At its core, an AMI is essentially a disk image and a metadata file
 describing how that disk image can be used to launch a virtual server. The
 metadata file keeps track of some internal information that is required
 when launching instances from this AMI, such as which Linux kernel to
 use.
In the early days of EC2, the only available AMI type was what is
 now known as an instance store−backed AMI. As the
 Elastic Block Store service was introduced and evolved, an additional type
 of AMI was created: the EBS-backed AMI. The key
 architectural difference between the two is in where the disk image that
 contains the root volume is stored.
For EBS-backed AMIs, this is simply an EBS snapshot. When launching
 a new instance from such an image, a volume is created using this
 snapshot, and this new volume is used as the root device on the
 instance.
Instance store−backed AMIs are created from template disk images
 stored in S3, which means the disk image must be copied from S3 each
 time an instance is launched, introducing a startup delay over EBS-backed
 instances. Because the image must be downloaded from S3 each time, the
 root volume size is also limited to 10 GB, whereas EBS-backed instances
 have their root volumes limited to a more generous 16 TB.
In practice, an EBS-backed AMI is nearly always the best option.
 This type of AMI can be temporarily stopped and restarted without losing
 any data, whereas instance store−backed AMIs can only be terminated, at
 which point all data stored on the volume is lost.
Upgrading a Running Instance’s Hardware
AWS’s capability to change the hardware underlying your instance with just a
 few API calls is a great perk: you can upgrade your systems (or scale
 back your expense) with unprecedented ease. This complements AWS’s
 ability to scale out by adding more instances with
 the ability to scale up by moving existing
 instances to more powerful virtual hardware.
To take advantage of this capability your instances must be
 EBS-backed, as they will need to be restarted in order to change
 instance type. You will want to use an elastic IP address to be able to
 maintain the same network endpoint for your existing service. Lastly you
 should standardize on 64-bit AMIs across your EC2 deployment, as
 changing bit width requires replacing the AMI itself. For this very same
 reason the instance’s existing virtualization technology and root volume
 support choices cannot be altered.
Let’s play it all out in practice:
 $ aws ec2 run-instances --image-id ami-43a15f3e --region us-east-1 \
--instance-type t2.micro --output text
740376006796	r-40546f92
INSTANCES	0	x86_64		False	xen	ami-43a15f3e	i-995fa01e	t2.micro	2016-04-10T14:52:12.000Z	ip-172-31-5-195.ec2.internal	172.31.5.195		/dev/sda1	ebs	True		subnet-d14ae8a7	hvm	vpc-934935f7
[output truncated]

 $ aws ec2 describe-instances --instance-ids i-995fa01e | grep Type
 "InstanceType": "t2.micro",
 "RootDeviceType": "ebs",
 "VirtualizationType": "hvm",

$ aws ec2 stop-instances --instance-ids i-995fa01e --output text
STOPPINGINSTANCES	i-995fa01e
CURRENTSTATE	64	stopping
PREVIOUSSTATE	16	running

$ aws ec2 modify-instance-attribute --instance-type m4.xlarge --instance-id i-995fa01e

$ aws ec2 start-instances --instance-ids i-995fa01e --output text
STARTINGINSTANCES	i-995fa01e
CURRENTSTATE	0	pending
PREVIOUSSTATE	80	stopped

$ aws ec2 describe-instances --instance-ids i-995fa01e | grep Type
 "InstanceType": "m4.xlarge",
 "RootDeviceType": "ebs",
 "VirtualizationType": "hvm",
After you re-associate the elastic IP address, your server will
 have just received an on-the-fly upgrade from a flimsy single core with
 only one gigabyte of RAM to a considerably beefier 16 GBs powered by
 four cores—not bad for a few seconds’ work.

Building Your Own AMI
AMI builds should be automated as soon as possible, if you do it with any kind
 of regularity. It is tedious work and involves a lot of waiting around.
 Automating the process means you’ll probably update AMIs more
 frequently, reducing a barrier to pushing out new features and software
 upgrades. Imagine you learn of a critical security flaw in your web
 server software that must be updated immediately. Having a procedure in
 place to create new AMIs and push them into production will help you
 respond to such scenarios rapidly and without wasting lots of
 time.
To demonstrate the procedures for creating an AMI and some of the
 useful features that AMIs provide, let’s create an AMI using the
 command-line tools. This AMI will run an Nginx web server that displays a simple welcome page. We
 will look at a method of automating this procedure later in the book, in
 “Building AMIs with Packer”.
Begin by selecting an AMI to use as a base. We will be using our
 usual Ubuntu 16.04 image with the ID ami-43a15f3e. Launch an instance of this AMI
 with aws ec2 run-instances,
 remembering to specify a valid key pair name and security group granting
 access to SSH, then use aws ec2
 describe-instances to find out the public DNS name for the instance:
$ # if you have not created a security group for SSH access yet,
$ # you need to do that first:

$ aws ec2 create-security-group --group-name ssh --description "SSH Access"
{
 "GroupId": "sg-4ebd8b36"
}

$ aws ec2 authorize-security-group-ingress --group-name ssh --protocol tcp \
--port 22 --cidr 0.0.0.0/0

$ aws ec2 describe-security-groups --group-names ssh --output text
SECURITYGROUPS	SSH Access	sg-4ebd8b36	ssh	740376006796	vpc-934935f7
IPPERMISSIONS	22	tcp	22
IPRANGES	0.0.0.0/0
IPPERMISSIONSEGRESS	-1
IPRANGES	0.0.0.0/0

$ aws ec2 run-instances --image-id ami-43a15f3e --region us-east-1 \
--key your-key-pair-name --security-groups ssh --instance-type t2.micro
740376006796	r-315a9492
INSTANCES	0	x86_64		False	xen	ami-43a15f3e	i-d9c83544	t2.micro	federico	2016-04-10T22:40:26.000Z	ip-172-31-55-4.ec2.internal	172.31.55.4		/dev/sda1	ebs	True		subnet-2a45b400	hvm	vpc-934935f7
[output truncated]

$ aws ec2 describe-instances --instance-ids i-d9c83544 --region us-east-1 \
--output text
RESERVATIONS	740376006796	r-315a9492
INSTANCES	0	x86_64		False	xen	ami-43a15f3e	i-d9c83544	t2.micro	federico	2016-04-10T22:40:26.000Z	ip-172-31-55-4.ec2.internal	172.31.55.4	ec2-54-84-237-158.compute-1.amazonaws.com	54.84.237.158	/dev/sda1	ebs	True		subnet-2a45b400	hvm	vpc-934935f7
[output truncated]
Once the instance has launched, we need to log in via SSH to install Nginx. If you are not using
 Ubuntu, the installation instructions will differ slightly. On Ubuntu,
 update the package repositories and install Nginx as follows:
$ ssh ubuntu@ec2-54-84-237-158.compute-1.amazonaws.com
The authenticity of host 'ec2-54-84-237-158.compute-1.amazonaws.com (54.84.237.158)' can't be established.
ECDSA key fingerprint is a0:d1:5a:ef:02:32:bd:72:28:41:fd:f1:b1:c6:75:4e.
Are you sure you want to continue connecting (yes/no)? yes

$ sudo apt update
[output truncated]

$ sudo apt install nginx-full --assume-yes
[output truncated]
By default, Nginx is installed with a welcome page stored at
 /usr/share/nginx/www/index.html. If
 you like, you can modify this file to contain some custom
 content.
Once the instance is configured, we need to create a matching
 AMI using aws ec2
 create-image. This command will automatically create an AMI
 from a running instance. Doing so requires that the instance be stopped
 and restarted, so your SSH session will be terminated when you run this
 command. In the background, a snapshot of the EBS volumes used for your
 instance will be made. This snapshot will be used when launching new
 instances through a newfangled AMI ID. Because it can take some time
 before snapshots are ready to use, your new AMI will remain in the
 pending state for a while after aws ec2
 create-image completes. The image cannot be used until it
 enters the available state.
 You can check on the status in the Management Console or with the aws ec2
 describe-images command:
$ aws ec2 create-image --instance-id i-d9c83544 --region us-east-1 \
--name test-image --output text
ami-4dc5d527

$ aws ec2 describe-images --region us-east-1 --image-ids ami-4dc5d527\
--output text
IMAGES	x86_64	2016-04-10T22:51:06.000Z	xen	ami-4dc5d527	740376006796/test-image	machine	test-image	740376006796	False	/dev/sda1	ebs	simple	pending	hvm
BLOCKDEVICEMAPPINGS	/dev/sda1	
EBS	True	False	snap-f407b282	8	standard
BLOCKDEVICEMAPPINGS	/dev/sdb	ephemeral0
BLOCKDEVICEMAPPINGS	/dev/sdc	ephemeral1
When your new image is ready, it can be launched by any of the
 means described previously. Launch a new instance based on this image
 and get the public DNS name with aws ec2
 describe-instances. Connect via SSH, then confirm that Nginx
 has started automatically:
$ service nginx status
 * nginx is running
Although we have configured Nginx and have a running web server,
 you can’t access the Nginx welcome page just yet. If you try to visit
 the instance’s public DNS name in your web browser, the request will
 eventually time out. This is because EC2 instances are, by default,
 protected by a firewall that allows only connections from instances in
 the same security group—incoming HTTP connections have to be explicitly
 enabled with the same processes we used to allow inbound SSH
 connections. These firewalls, known as security
 groups, are discussed in the next chapter.
SUSE studio
We have focused on automation where AMIs are concerned, but an
 interactive approach to build AMIs reminiscent of the Management
 Console also exists. SUSE
 Studio (Figure 2-8) provides a
 web-based interface to building various types of images based on the
 eponymous Linux distribution. A creation of Nat Friedman’s fertile imagination during his time as
 SUSE’s CTO, SUSE Studio possibly offers the best interactive path to
 AMI building, the trade-off being the use of a distribution decidedly
 off the mainstream of public cloud adoption.

Figure 2-8. SUSE Studio provides a friendly web interface to AMI
 creation

Remember that both this instance and the original instance from
 which we created the image are still running. You might want to
 terminate those before moving on to the next section. The two-line
 script in “Parsing JSON Output with jq” can be used to
 terminate all running EC2 instances in your account to clean the slate
 after running a few experiments.
Tagging your images is a good way to keep track of them. This can
 be done with the aws ec2 create-tags
 command. By using backticks to capture the output of shell commands, you
 can quickly add useful information, such as who created the AMI, as well
 as static information like the role:
$ aws ec2 create-tags --resources ami-4dc5d527 --tags Key=role,Value=webserver\
Key=created-by,Value=`whoami` Key=stage,Value=production

$ aws ec2 describe-tags --output text
TAGS	created-by	ami-4dc5d527	image	federico
TAGS	role	ami-4dc5d527	image	webserver
TAGS	stage	ami-4dc5d527	image	production
Tagging Strategy
Your AMI tagging strategy should let you keep track of the purpose of the
 image, when it was created, and its current state. Consider the
 lifecycle of an image: first it will be created and tested, then used
 in production for a while, and then finally retired when a new
 instance is created to replace it. The state tag can be used to keep track of this process, with values such
 as dev, production, or retired. A companion state-changed tag can track when changes were made.
Automate the process of moving images through the lifecycle so
 that you never forget to add or remove the relevant tags.

Deregistering AMIs
Once an AMI is no longer required, it should be deregistered,
 which means it will no longer be available to use for launching new
 instances. Although they are not particularly expensive, it is important
 to regularly remove old AMIs because they clutter up the interface and
 contribute to a gradual increase of your AWS costs.
Warning
A good way to identify snapshots in your account ripe for
 deletion is to retrieve the complete listing of snapshots associated
 with your OwnerID and applying additional filtering. The
 OwnerID for your account can be found in the
 Account Identifiers section of the Security
 Credentials page, but the handy alias self is always available. To list all your
 snapshots, enter:
aws ec2 describe-snapshots --owner-ids self --output text

You must also delete the snapshot used to create the root volume.
 This will not happen automatically.
AWS allows you to delete the snapshot before deregistering the
 AMI. Doing so means you will have an AMI that looks as though it is
 available and ready for use, but will, in fact, fail when you try to
 launch an instance. If the deregistered AMI is referenced in Auto
 Scaling groups, it might be some time before you notice the problem. The
 only option in that case is to quickly create a new AMI and update the
 Auto Scaling group.
You can check to see whether a particular AMI is in use by running
 instances with the aws ec2
 describe-instances command. For example:
$ aws ec2 describe-instances --filters Name=image-id,Values=ami-4dc5d527 \
--output text
RESERVATIONS	740376006796	r-726ca2d1
INSTANCES	0	x86_64		False	xen	ami-4dc5d527	i-8d30cd10	t2.micro	federico	2016-04-10T23:05:25.000Z	ip-172-31-55-118.ec2.internal	172.31.55.118	ec2-52-91-46-86.compute-1.amazonaws.com	52.91.46.86	/dev/sda1	ebs	True		subnet-2a45b400	hvm	vpc-934935f7
[output truncated]
TAGS	aws:cloudformation:logical-id	Ec2Instance
TAGS	aws:cloudformation:stack-id	arn:aws:cloudformation:us-east-1:740376006796:stack/example-stack/ffad2160-069c-11e6-b07a-50d5caf92cd2
TAGS	aws:cloudformation:stack-name	example-stack
This works for individual instances. For instances that were
 launched as part of an Auto Scaling group, we can use the aws autoscaling describe-launch-configurations
 command. Unfortunately, this command does not accept a filter argument, so it cannot be
 used in quite the same way. As a workaround, you can grep the output of aws autoscaling describe-launch-configs for
 the AMI ID.
Performing these checks before deleting AMIs en masse can save you
 from a rather irritating cleanup exercise.
Once you are sure the AMI is safe to deregister, you can do so
 with aws ec2
 deregister-image:
$ aws ec2 deregister-image --image-id ami-4dc5d527 --region us-east-1
Remember to delete the snapshot that was used as the root volume of the AMI. You can find it
 through the aws ec2
 describe-snapshots command. When AWS creates a new snapshot, it uses the description
 field to store the ID of the AMI it was created for, as well as the
 instance and volume IDs referencing the resources it was created from.
 Therefore, we can use the AMI ID as a filter in our search, returning
 the ID of the snapshot we want to delete:
$ aws ec2 describe-snapshots --region us-east-1 \
--filters Name=description,Values="Created by CreateImage*for ami-4dc5d527*" \
--output text

SNAPSHOTS	Created by CreateImage(i-d9c83544) for ami-4dc5d527 from vol-7df10dac	False	740376006796	100%	snap-f407b282	2016-04-10T22:51:18.000Z	completed	vol-7df10dac	8

$ aws ec2 delete-snapshot --region us-east-1 --snapshot-id snap-f407b282
Automatic snapshot management has long made everyone’s list of
 Amazon AWS missing features. Any Google search can produce a long list
 of (mostly out of date) scripts using the EC2 API meant by different
 users to manage this deficiency. The AWS CLI has improved over the years
 to the point where finding snapshots is much easier; it just requires a
 little skill with the --query filter. For
 example, one can find all the snapshots taken before a certain date with
 the following:
$ aws ec2 describe-snapshots --owner-ids self --output text \
--query 'Snapshots[?StartTime<=`2016-05-31`]'

False	740376006796	100%	snap-bde3fbcf	2016-04-20T04:52:43.000completed	vol-00b633d1	8
False	740376006796	100%	snap-ca0c4487	2016-04-20T04:53:10.000completed	vol-00b633d1	8
Similarly, we can tabulate all snapshots belonging to our account with only selected
 attributes included in our query’s results:
$ aws ec2 describe-snapshots --owner-ids self \
--query 'Snapshots[*].{ID:SnapshotId,Time:StartTime}'

[
 {
 "ID": "snap-bde3fbcf",
 "Time": "2016-04-20T04:52:43.000Z"
 },
 {
 "ID": "snap-ca0c4487",
 "Time": "2016-04-20T04:53:10.000Z"
 },
 {
 "ID": "snap-514c5be2",
 "Time": "2016-09-25T23:22:52.000Z"
 },
 {
 "ID": "snap-6d9afde5",
 "Time": "2016-10-16T07:39:19.000Z"
 },
 {
 "ID": "snap-428f90da",
 "Time": "2016-09-03T20:49:26.000Z"
 }
]
Combining and extending these commands, we can automate our annual snapshot cleanup with just a little
 bit of help from the Linux shell to manipulate dates:
#! /bin/bash
REGION=us-east-1

echo "Clearing all EC2 snapshots older than one year from $REGION"

AGE_FILTER=\``date +%Y-%m-%d --date '1 year ago'`\`
SNAPSHOTS=$(aws ec2 describe-snapshots --owner-ids self \
--query "Snapshots[?StartTime<=$AGE_FILTER].{ID:SnapshotId}" --output text)
for i in $SNAPSHOTS
do
 echo "deleting $i"
 aws ec2 delete-snapshot --region $REGION --snapshot-id $i
done
The application of --filters
 enables searching for items tagged with a certain value. The following
 searches for any images tagged as retired from our production environment:
$ aws ec2 describe-images --filters Name=tag-key,Values="environment" \
Name=tag-value,Values="retired" --output text
IMAGES	x86_64	2017-05-29T04:16:43.000Z	xen	ami-838ac495	740376006796/test-image	machine	test-image	740376006796	False	/dev/sda1	ebs	simple	available	hvm
BLOCKDEVICEMAPPINGS	/dev/sda1	
EBS	True	False	snap-1b793584	8	standard
BLOCKDEVICEMAPPINGS	/dev/sdb	ephemeral0
BLOCKDEVICEMAPPINGS	/dev/sdc	ephemeral1
TAGS	environment	retired
The cleanup we performed manually can be automated with a single
 consolidated Boto script, shown in Example 2-2. This script will delete all
 images with a staging environment tag
 set to a value of retired.
Example 2-2. Deleting images with a Python script
#!/usr/bin/env python

from boto.ec2 import connect_to_region

ec2_conn = connect_to_region('us-east-1')

print 'Deleting retired AMI images.\n'

for image in ec2_conn.get_all_images(owners='self', filters={'tag:environment': 'retired'}):
 print ' Deleting image %s and associated snapshot' % (image.id)
 image.deregister(delete_snapshot=True)

This script relies on your AWS_ACCESS_KEY_ID
 and AWS_SECRET_ACCESS_KEY environment
 variables being set—Boto will attempt to read these automatically. It
 will delete all images (and the associated snapshots) that have been
 placed in the retired staging
 environment. To use this script, make sure your instances follow the
 tagging strategy described in “Tagging Strategy”. Save
 this file as delete-retired-amis.py
 and use chmod to make it
 executable.
The call to get_all_images
 specifies some filter conditions: we are interested in images that
 have an environment tag with a value
 of retired.
Deleting an image does not automatically delete the snapshot it
 uses for its root volume so we must do this by setting the delete_snapshot parameter of deregister to True.
Warning
A snapshot can be shared with other organizations by modifying its
 permissions to include another account’s ID in the AWS console. Make
 sure you avoid making public any snapshots containing private data,
 even for short intervals. Hackers can use the AWS API to trivially
 discover and instantly clone any such snapshots in their quest for
 valuable data and credentials.
Security researchers have demonstrated
 exfiltration of SSH login keys, AWS credentials, API access
 keys, confidential genome sequences, and even the full payroll of a
 Fortune 100 company from snapshots that were lazily configured with
 public access permissions.

Pets versus Cattle
Microsoft’s Bill Baker is credited with originating the metaphor popularized by
 OpenStack’s Randy
 Bias that so vividly illustrates two radically opposite approaches to
 managing servers. In this tale, pets are lovingly cared for, taken to the
 vet when they get sick, and tenderly nursed back to health—cattle, on the
 other hand, are replaced without a second thought, even slaughtered. This
 distinction is humorously used to illustrate the more formal distinction
 delineated by Gartner in IT operations: traditional Mode
 1 IT servers are highly managed assets that scale up
 to bigger, more costly hardware and are carefully restored to health
 should anything go amiss. Mode 2 IT, on the other hand,
 espouses a radically different operational philosophy: servers are highly
 disposable entities that are instantiated through automation, eliminated
 at the drop of a hat when no longer needed, and “scale out” in herds.
 Replacing a server with an expensive many-socket system and more complex
 memory architecture is decidedly Mode 1, while adding as many equally
 sized web servers behind a load balancer as required by today’s service
 load is the Mode 2 way.
Mode 1 IT is the mainstay of traditional datacenter operations,
 whereas Mode 2 has emerged as the prim and proper way to design and
 operate applications in a public cloud environment. AWS gives you plenty
 of choices in how you achieve your goals, and we have been introducing all
 the technical details you need in order to scale services either up or
 out, but as we proceed to design a realistic application in the coming
 chapters, we will decidedly lean the way a cloud architect would, and
 adopt a Mode 2 mindset in our design exclusively. You should do the same;
 pets do not belong in your cloud architecture.

Chapter 3. Access Management and Security Groups
In all of the previous examples, we have been using access keys that have root-level
 access to our AWS accounts. This means they can perform any action—including
 actions that potentially cost thousands of dollars in resource fees—through
 a few simple API calls. The thought of your AWS keys leaking should be a
 scary one indeed, so now is a good time to look at some of the tools Amazon
 provides to securely deploy and manage your applications.1
The AWS Security Model
AWS infrastructure services rely on a shared
 responsibility model for security. Unlike in the traditional
 datacenter, where the full responsibility for the environment’s security
 falls squarely on the IT team, EC2 customers share this burden with the AWS team in
 significant ways (Figure 3-1).
In this shared responsibility model, the user owns the operating
 system’s login credentials but AWS bootstraps initial access to that same
 operating system. The end user may or may not have administrative control
 of the provisioning process and a separate administrator may be in charge
 of configuring and operating the identity management system that provides
 access to the user layer of the virtualization stack. The separation
 between AWS’s sphere of security oversight and the customer’s is clearly
 defined, but it is entirely up to the customer to delineate the level of
 access end users and administrators are granted, and whether there is any
 distinction between the two.
Figure 3-1. The shared responsibility model for IAAS services as described
 in AWS
 Security Best Practices

Amazon manages the security of facilities and is obviously
 responsible for the physical security of all hardware assets and network
 infrastructure. Beyond its global infrastructure, AWS is responsible for
 the software foundation underlying its services. In EC2’s case, this
 includes virtual provisioning infrastructure as well as the issuing of any
 credentials required to access it. The customer’s security area of responsibility includes the
 following:
	Amazon Machine Images (AMIs)

	Operating system(s)

	Applications

	Data in transit

	Data at rest

	Data stores

	Credentials

	Policies and configuration

The attack surface exposed varies conspicuously: leaving an
 operating system image unpatched may expose a number of instances to
 attack, while an error handling access credentials could lead to the loss
 of all infrastructure hosted by the account—or the total loss of data
 confidentiality.
Securing EC2 images is no different than securing a machine in a
 traditional datacenter: OS images and running instances need to be
 patched, applications need to be updated, and AWS provides technology to
 protect data at rest and in transit. What changes, in implementation if
 not in spirit, is the way to define processes and levels of access for
 different classes of users. IAM is the mechanism AWS uses to provide
 access control and privilege separation, and we will examine it in detail
 in the next section—right after we tighten the security of your AWS
 account.
Account Security Checklist
Let’s enumerate some generally accepted security best practices to operate
 safely in public cloud environments:
	Do not use root credentials.
	Production use of root credentials breaks auditing in the shared responsibility model:
 were anything untoward to happen, you may not be able to reliably
 track down the real user responsible. You should secure the
 account with MFA and read “Throwing Away the Root Password” for the most aggressive
 approach to securing the root account.

	Do use IAM users, user groups, and roles.
	This chapter will teach you how to minimize the attack surface of compromised
 credentials by assigning separate keys to users and compute tasks.
 Credentials can further be limited in what actions they allow on
 which resources. Roles are used to eliminate the need to bake
 credentials into AMIs, eliminating a major leak vector for
 credentials.

	Leverage password policy.
	You can set a password policy to define complexity requirements for user
 passwords. More importantly, you should use this feature to define
 password expiration windows while also implementing a matching key
 rotation policy.

	Enable AWS CloudTrail.
	CloudTrail logs each AWS API call executed by the entire account,
 including what credentials were used to authenticate it. These
 records permit monitoring user behavior, and enable auditing after
 a security incident has occurred.

Multi-Factor Authentication
Multi-factor authentication (MFA) adds
 a layer of security to your AWS account. When signing in
 to AWS, you will need to enter an authentication code in addition to
 your username and password. This authentication code can be generated by
 a physical device or by an application running on your computer or
 smartphone.
Adding a second factor to the authentication process (your
 password being the first one) gives you a lot of protection against
 unauthorized account access. It is no magic bullet, but it certainly
 prevents a lot of common attacks that rely on a single password giving
 access to your account.
To the cheers of sysadmins everywhere, Amazon decided to base its
 multi-factor implementation (known as AWS MFA) on
 an open standard. The Time-Based One-Time Password Algorithm (TOTP—RFC 6238) is a method of generating passwords based on a shared secret.
 These passwords are valid for only a short period of time, and are
 typically regenerated every 30 seconds or so.
Google has made multi-factor authentication an option for logging
 in to its services, and as a result, published Google Authenticator.
 This is a smartphone application—available for Android, iOS,
 and BlackBerry—that acts as a virtual multi-factor authentication
 device. Because it is also based on the TOTP algorithm, it works
 perfectly with AWS MFA, giving you a quick way to increase your AWS
 account security without any monetary cost.
There is, of course, a small-time cost, as you will need to look
 up your access code whenever your AWS session expires. From a security
 perspective, it seems like a cost worth paying.
Note
If you have purchased a hardware multi-factor authentication
 device or downloaded a virtual device for your smartphone, see the
 AWS Multi-Factor Authentication
 page to tie it into AWS.

Identity and Access Management
Identity and Access Management (IAM) is the
 name given to the suite of features that lets you manage who
 and what can access AWS APIs using your account. This permissions-based
 system can be somewhat overwhelming at first, but resist the temptation to
 give in and grant all permissions to all users. Having a well-planned
 policy based on IAM is an important part of AWS security, and fits in well
 with the defense in depth strategy.
IAM makes a distinction between authentication
 (“who is this person?”) and authorization (“are they
 allowed to perform this action?”). Authentication is handled by users
 and groups, whereas authorization is handled by IAM policies.
Tip
Amazon’s CloudTrail
 service keeps track of the API calls made by users in your
 account. You can use this to review the full history of AWS API calls
 that have been made by your account, whether they came from the
 Management Console, CLI tools, or services like CloudFormation. This
 service is the preferred method to audit user actions, and is invaluable
 when it comes to diagnosing permissions problems.

Amazon Resource Names
You may already know that S3 bucket names must be unique across the whole of S3. Have you ever wondered how that can be the case,
 considering there are surely many IAM users named mike or admin?
The answer lies with ARNs and how they are formatted.
To identify IAM users and other resource types, AWS uses an
 Amazon Resource Name (ARN). An ARN is a globally
 unique identifier that references AWS objects. Most AWS resource types
 have ARNs, including S3 buckets and IAM users. ARNs take the following
 format:
arn:aws:serviceregionaccount_IDrelative_ID
For example, here is the ARN for Mike’s IAM account (with the
 12-digit account ID replaced by Xs):
arn:aws:iam::XXXXXXXXXXXX:user/mike
Notice that the region is not specified in the user’s ARN. This
 means that this ARN is a global resource, not tied to any specific
 region.
Some resources, such as S3 buckets, also omit the account ID in
 the ARN. S3 buckets use this ARN format:
arn:aws:s3:::bucket_name
For example:
arn:aws:s3:::mike-image-resize
Notice that the only variable is the bucket name. Because S3 ARNs
 do not include the account number, creating two S3 buckets with the same
 name would result in a duplicate ARN, so this is not allowed.

IAM Policies
The idea behind IAM is to separate users and groups from the actions they need to
 perform. You do this by creating an IAM policy,
 which is a JSON-formatted document describing which actions a user can
 perform. This policy is then applied to users or groups, giving them
 access only to the services you specifically allowed.
The best way to show the flexibility of IAM policies is with an
 example. Let’s say you use a tagging strategy described in the previous chapter, and have given all of
 your images a state tag that
 represents its current status, such as production or retired. As a good sysadmin who dislikes
 repetitive tasks, you have decided to automate the process of deleting
 retired images—AMIs that have been replaced by newer versions and are no
 longer required.
Example 2-2 shows a simple
 Boto script that deletes any AMIs that are in the retired state (according to our “Tagging Strategy”).
This script calls a number of Boto functions, which, in turn, call
 AWS APIs to perform the requested actions. If you were to run this
 script, it would connect to the API using the access key and secret that
 are stored in your AWS_ACCESS_KEY_ID
 and AWS_SECRET_ACCESS_KEY environment
 variables. While convenient, those access keys have far more permissions
 than are strictly required to run this script. Using them to authorize
 this script is overkill, and comes with a potential security risk: the
 more places in which your keys are stored, the more likely they are to
 be accidentally exposed to someone who does not need them.
There is another downside of reusing the same keys for multiple
 roles: it becomes very difficult to change them. Good security practices
 dictate that security credentials should be regularly rotated. If your
 AWS access credentials are reused in multiple scripts, keeping track of where
 each access key is being used becomes problematic. Replacing a key
 involves making the old one inactive so it can no longer be used to
 access APIs. If you accidentally deactivate the credentials that are
 used for making your database backups, you have a rather serious
 problem. If you do not segregate your IAM roles, you will end up being
 scared to deactivate old access keys because some vital component of
 your infrastructure will stop working.
A better solution would be to create a set of access credentials
 that are authorized to perform only the specific actions required by the
 script. Then you have a set of access credentials specific to each
 identifiable role—for example, AMI-cleaner, database-backups, and so on.
Let’s create an AMI policy with enough permissions to run the
 script that cleans old images and snapshots. Looking at the code, we see
 four Boto function calls. In most cases, Boto’s functions map quite well
 to AWS action types. Here are the four function calls and the action invoked by each one:
	Function call	Action invoked
	connect_to_region
	ec2:DescribeRegions

	get_all_images
	ec2:DescribeImages

	delete_snapshot
	ec2:DeleteSnapshot

	delete_image
	ec2:DeregisterImage

A permission is a combination of two
 items: an action and one or
 more resources. AWS will check to
 see whether the authenticated user is allowed to perform the requested
 action on a specific resource—for example, is the user allowed to create
 a file (the action) in an S3 bucket (the resource)?
Actions are namespaced strings that take the form
 service_name:Permission.
 All EC2-related permissions are prefixed with ec2:, such as ec2:DeleteSnapshot.
Because policies can reference highly granular, dynamic
 permissions across all AWS services, they can be time-consuming to
 write. When you create a policy, Amazon’s web interface gives you a list
 of permissions from which you can pick to save some time, but
 unfortunately no tool can magically remove the time it takes to plan out
 exactly which permissions each of your users or groups will
 require.
Using the Management Console is a great way of becoming familiar with the available permissions. Even if
 you are a hardcore command-line user, we suggest taking a few clicks
 around the interface to discover which actions are available. Because we
 already know which permissions to use for this script, we can use the
 command-line tools to create a user and attach a new policy to it,
 using the aws iam
 create-user and iam
 create-access-key commands.
First, we create a new user for this role, named ami-cleaner:
$ aws iam create-user --user-name ami-cleaner
{
 "User": {
 "UserName": "ami-cleaner",
 "Path": "/",
 "CreateDate": "2016-06-01T03:18:35.032Z",
 "UserId": "AIDAILRZI2G4XH3QC6J4W",
 "Arn": "arn:aws:iam::740376006796:user/ami-cleaner"
 }
}
$ aws iam create-access-key --user-name ami-cleaner
{
 "AccessKey": {
 "UserName": "ami-cleaner",
 "Status": "Active",
 "CreateDate": "2016-06-01T03:19:02.919Z",
 "SecretAccessKey": "wSelXh56SYP0f5ZxPkpSNL+kThTqU0nc3JeBNsC2",
 "AccessKeyId": "AKIAJBYS5AQKKUN7MZJQ"
 }
}
The iam create-access-key
 command generates an access key ID and secret access key for our new user. Store these somewhere
 safe, as we will need them later.
Next, we create an AMI policy and embed it directly in the user:
$ aws iam put-user-policy --user-name ami-cleaner --policy-name ami-cleaner \
--policy-document '{"Version":"2008-10-17","Statement":[{"Effect":"Allow", \
"Action":["ec2:DescribeImages","ec2:DeleteSnapshot", \
"ec2:DeregisterImage"],"Resource":["*"]}]}'
Warning
If you succeed in creating a malformed policy despite IAM’s
 validation safeguards, it will be waiting for your corrections in the
 claws of the policy
 validator, in the IAM section of the console.

In this case, the user and policy names are both ami-cleaner. We chose to inline the policy
 directly in our user for simplicity, but a standalone policy object is
 more practical for production use as it can be associated with multiple
 users or even multiple groups of users. Using inlined JSON syntax, we
 are creating an Allow policy that
 applies to all resources. We specified a short list of actions that will
 be allowed, but you can specify as many permissions as you need.
Now we have an IAM user with a policy matching its role, so we can
 update the script to use the new keys. There are a few ways to do this,
 depending on your approach to managing your access keys. If no
 credentials are specified when opening a new connection to an AWS API,
 Boto will check whether the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables
 are set, before falling back to the contents of the
 ~/.aws/credentials file. Run the script by
 executing the following commands in a terminal:
export AWS_ACCESS_KEY_ID='AKIAJBYS5AQKKUN7MZJQ'
export AWS_SECRET_ACCESS_KEY='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'

python delete-retired-amis.py
The script is now being run with the most restrictive set of
 permissions that will still allow it to function.
By running aws iam
 put-user-policy, we created a new IAM policy and added it to
 the user. But what does this policy actually look like? Through the IAM
 section in the Management Console, you can view the JSON-formatted
 version of our new AMI. First, find the image-cleaner user and then look in the
 Permissions tab (Figure 3-2).
Figure 3-2. The newly created policy is found in the user’s
 permissions

You can also view the body of this embedded policy with the aws iam
 get-user-policy command:
$ aws iam get-user-policy --user-name ami-cleaner --policy-name ami-cleaner
{
 "UserName": "ami-cleaner",
 "PolicyName": "ami-cleaner",
 "PolicyDocument": {
 "Version": "2008-10-17",
 "Statement": [
 {
 "Action": [
 "ec2:DescribeImages",
 "ec2:DeleteSnapshot",
 "ec2:DeregisterImage"
],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 }
]
 }
}
Readers familiar with JSON formatting will recognize that the Statement
 attribute is actually a list. Although our example includes only one
 statement, a single policy can contain multiple statements. Notice that
 a statement can have only a single Effect. So to create a policy that allows some
 actions but denies others, we must combine multiple statements with
 different Effect
 attributes.
Warning
Determining what set of actions to allow a given policy is not
 simple, and even more complex is the task of mapping the interactions
 of multiple sets of permissions on a single user. Amazon provides the IAM Policy Simulator to
 help you evaluate how multiple policies interact to allow (or deny) a
 given action. The policy we just created is shown in the simulator
 undergoing testing in Figure 3-3.

Figure 3-3. Evaluating our first policy in the simulator

Referencing resources in IAM policies
The Resource attribute
 of an IAM policy lets you control exactly which
 resources an action can be performed on. In the previous example, the
 policy granted the user permissions to delete any EBS snapshot owned
 by this account. What if you want a more granular policy that applies
 only to a subset of resources?
As discussed previously, ARNs are used to globally identify AWS resources. Used
 in IAM policies, they let you control exactly which resources are
 included when granting or denying permissions.
Suppose you use S3 buckets across your organization. Although
 most buckets contain data that could be easily replaced if lost (such
 as resized versions of images), you have one bucket that contains your
 database backups—something you certainly don’t want to lose. Your
 users are creating and deleting buckets via the Management Console,
 and you would like to make sure nobody accidentally deletes your
 backup bucket.
The cleanest solution to this problem is to create an IAM policy
 that allows users to perform any action on S3 buckets, with the
 exception of the one containing your backups. We do this by creating a
 policy containing two statements. The first grants the user all S3-related permissions, allowing them to be
 performed on any resource. The second statement denies all S3-related
 permissions, but only on the protected bucket.
When conflicting permissions are encountered, Deny
 takes precedence over Allow. So, users
 will be able to do anything they want on any bucket, except the one
 containing your backups.
The policy document describing these permissions looks like
 this:
{
 "Statement": [
 { "Action": [
 "s3:*"
],
 "Effect": "Allow",
 "Resource": [
 "*"
]
 },
 { "Action": [
 "s3:*"
],
 "Effect": "Deny",
 "Resource": [
 "arn:aws:s3:::db-backups"
]
 }
]
}
Warning
These examples use the s3:*
 action to grant all S3-related permissions. In practice, this
 is nearly always a bad idea.
When creating an IAM policy to suit a particular role, grant
 the role as few permissions as possible. It might take a while (and
 a bit of trial and error!) to find the fewest permissions you need
 to fulfill a particular task, but it’s worth spending the time to do
 so.
Resist the temptation to assign *:* permissions!

To implement this policy, first find the ARN of your critical
 bucket. Assuming that your bucket is named db-backups, the ARN will be as
 follows:
arn:aws:s3:::db-backups
Note
When creating a policy, remember to replace the ARNs used in
 our examples.

Next, create the policy using the command-line tools or Management
 Console.
If using the Management Console, you can create the policy as follows:
	Navigate to the IAM service.

	Select the Policies tab.

	Click Create Policy.

	Select Create Your Own Policy.

	Paste the text into the Policy Document box.

Using aws iam put-user-policy
 to attach a policy defined with inline JSON is not the most
 satisfying of user experiences. If you want to create a policy from
 the command line, you will have a much easier time writing it to a
 temporary file and uploading it. Assuming you have saved the policy to
 a file named s3-policy.json, you
 can create the policy with this command:
aws iam put-user-policy --user-name mike --policy-name s3_policy \
--policy-document file://./s3-policy.json
Because denying rights to a particular activity is quite a
 common requirement, Amazon has provided an additional element in its
 resource policy language to handle this use case. Using NotResource as
 a shorthand, the preceding policy could be rewritten as
 follows:
{
 "Statement": [
 { "Action": [
 "s3:*"
],
 "Effect": "Allow",
 "NotResource": [
 "arn:aws:s3:::db-backups"
]
 }
]
}
This is almost (but not entirely—see “How Permissions Are Evaluated”) the same as the longer
 policy we defined previously. NotResource refers to all objects other than
 the db-backups bucket, so this
 policy is effectively saying “grant all S3 permissions on all buckets
 except db-backups.”
The Action element of a
 policy document also has a negated counterpart, NotAction. Thus, to allow a user to perform
 all S3 actions except DeleteBucket,
 you could include this in your policy document:
"NotAction": "s3:DeleteBucket"
How Permissions Are Evaluated
Whenever you make a request to AWS, Amazon must evaluate the request and
 decide whether it should be allowed. The logic behind this process
 means there is a subtle but important difference between the two IAM
 policies in the previous section.
A request typically includes three bits of information: the
 user making the request, the action that is to be performed, and the
 target of the action. For example, Alice wants to terminate an EC2
 instance. When receiving the request, AWS will use this information
 to decide whether it should be allowed by performing the following
 steps:
	All policies pertaining to the user making the request are
 combined, including those applied by way of group
 membership.

	If a permission is denied by one of the policies (an explicit deny),
 the request can be immediately denied.

	If a permission is explicitly granted by one of the
 policies (an allow), the request is
 allowed.

	Finally, if the permission was not explicitly granted, it
 is denied (a default
 deny).

Given this logic, consider the differences between the
 policies that used Resource and
 NotResource as two ways to deny
 access to a bucket.
The first example includes an explicit
 deny that ensures no users have permissions to modify the
 db-backups S3 bucket. The second
 example, however, merely grants permissions to all S3 buckets except
 db-backups. There is no explicit
 deny on the db-backups bucket in
 the latter case; it is handled by the default
 deny.
Consequently, if the user were assigned a further policy that
 granted permissions to all S3 buckets, that user would have
 permissions to delete the db-backups bucket and all of its
 contents.
Creating IAM policies is another area where being explicit is
 definitely better than being implicit.
For more details on how AWS evaluates permissions, see the
 AWS
 Identity and Access Management page describing its
 evaluation logic.

Dynamic policies
Conditions can be used to create
 dynamic IAM policies that behave differently, depending
 on one or more factors. The attributes of the request (such as the ARN
 of the requesting user or the source IP address) can be used in
 Boolean expressions to control whether a request should be allowed or
 denied.
Some of the available attributes on which you can base your
 conditions are as follows:
	Time of day

	Source IP address

	Whether the request is being made using HTTP or HTTPS

Of particular use is the SecureTransport
 attribute, which lets us check whether Secure Sockets Layer (SSL) is
 being used to make the request. Many of the AWS APIs can
 be accessed in both secure (HTTPS) and insecure (HTTP) modes. IAM
 policies provide the only way to force your users to use the secure
 versions of these APIs.
Let’s say you have an S3 bucket that is used for storing backups
 of confidential customer information. For regulatory reasons (or
 perhaps merely because of a healthy level of sysadmin paranoia), you
 must maintain a remote backup of this data, and the files must be
 transferred over an SSL connection.
This policy document would ensure that users could not perform
 any actions against the db-backups
 bucket if they are connected via plain old HTTP:
{
 "Statement":[{
 "Effect":"Allow",
 "Action":"s3:*",
 "Resource":"arn:aws:s3:::db-backups",
 "Condition":{
 "Bool":{
 "aws:SecureTransport":"true"
 }
 }
 }
]
}
Using conditions, you could further enhance this policy to
 indicate the following:
	All connections must be secured by SSL.

	Files can be written to the bucket by only the database
 server (say, IP address 192.168.10.10).

	Files can be read by only the off-site backup server (say,
 IP address 192.168.20.20).

Of course, you could simply remember to enable the “use SSL”
 option of the client you use for transferring files from S3, but
 unless security features are enforced at a technical policy level,
 they will eventually be accidentally forgotten.
Note
For a more thorough look at the elements of an IAM policy,
 have a look at Amazon’s Access
 Policy Language documentation.

Limitations of IAM policies
Although powerful, IAM policies do have some drawbacks that can take some
 effort to work around. Chief among these is that some AWS services do
 not yet provide support for ARNs in all actions, and can therefore not
 be fully managed by IAM policies drawing a distinction between
 different resource instances.
EC2 instances are a good example. Resource-level permissions
 have been introduced in EC2 since July 2013, but not all ec2: actions support their use yet. Actions
 without resource-level permissions have no way to reference a specific
 EC2 instance from an IAM policy. Whenever you allow such an EC2 action
 in a policy, the resource will be *, which means it will apply to every
 instance owned by your AWS account. AWS maintains a continuously
 updated list of Supported
 resource-level permissions for Amazon EC2 API actions. A
 number of other things are simply not yet possible with IAM.
To work around this limitation, some people have taken to
 operating multiple AWS accounts—one for each department. IAM roles,
 covered later in this chapter, give you a way to securely share
 resources between accounts, making this a viable option in the
 remaining cases where resource-level permissions are not yet available.
Operating with multiple accounts is a valid advanced security strategy
 in its own right. Table 3-1 lists a few
 sensible strategies for your consideration. To be clear, we are not
 taking the position that multiple accounts are a recommended default
 strategy for every user; we believe a supporting rationale needs to be
 identified to justify the cost in time and effort of the additional
 complexity. Whether it is hosted in a single AWS account or multiple
 ones, we recommend you consider the impact of your security structure
 on the team’s velocity. The insight found in Conway’s
 Law is critical to designing effective security boundaries for
 any team: “any organization [..] will inevitably produce a [product]
 design whose structure is a copy of the organization’s communication
 structure.”
Table 3-1. Security strategies	Account strategy	Consequences
	Single AWS account
	Centralized management with minimum overhead.
 Secure with tailored users limited in access to actions and
 resources.

	Separate production, development, and testing AWS
 accounts
	Supplement single account capabilities with
 separation between multiple AWS accounts. Additional effort
 required for staging resources between
 accounts.

	Multiple AWS accounts, one per
 department
	Access to actions and resources can follow
 radically different procedures for each organization.
 Cooperation on private shared resources marginally more
 complex.

	Multiple AWS accounts, one per
 function
	Functionally centralized management with
 different accounts for DNS, DBMS, CDN, CMS, or any other
 services.

IAM Users and Groups
Because users and groups need to deal only with authentication, they are relatively
 simple compared to other AWS facilities. If you are familiar with how
 Unix or Windows handles user and group permissions, you already know the
 core principles behind IAM users and groups.
A user can be a human who logs in to the
 Management Console with a username and password, or a program that uses
 a set of access credentials to interact with AWS APIs. The user can be
 assigned one or more IAM policies, which specify the actions the user is
 allowed to perform.
To ease administration, users can be placed in
 groups. When an IAM policy is assigned to a group,
 all members of that group inherit the permissions designated by the IAM
 policy. It is not possible to nest groups; a group cannot contain other
 groups.
IAM is a global AWS service, meaning it is
 not tied to any particular region. An IAM user will be able to access
 APIs in any region, if allowed by its assigned IAM policies.
You should create a separate user for each person who will access your
 account, rather than sharing the master password for your AWS account.
 As people leave and join the organization, it will be a lot easier to
 revoke old security keys and assign permissions to new accounts.
Assigning permissions to specific users has its purposes, but it
 is often a sign that tasks and knowledge are not being shared across the
 team. If Alice is the only person with CreateSnapshot permissions, how is Bob going
 to handle backups while she is on vacation?
Aim to map AWS groups to specific roles within your organization,
 and apply the policy to the group instead. Managing updates to
 permissions is also a lot easier, as they will need to be made in only
 one place.
Throwing Away the Root Password
Throwing away the root password for your AWS account is an increasingly popular
 security best practice: you cannot lose control of credentials you do
 not know and have no access to. If for any reason you ever needed it,
 you could always regain access to your root account identity as long
 as you have access to the email address the account is bound to. Eric
 Hammond of Alestic shared this security best practice:
	Create an IAM user with full administrative privileges,
 including access to account billing information. This grants the
 user ability to update payment methods and most account
 information.

	Change the AWS root account password to a long, locally
 generated random string which you will retain no copies of. On
 Ubuntu, you can use pwgen -s 24
 1 to generate such a password.

Although an intruder who manages to gain rogue access to the AIM
 user with full administrative privileges could still do a lot of
 damage—running up costs, destroying resources and data, etc.—at least
 they could not lock you out and change the associated email address to
 prevent your team from recovering access. When you detect the
 intrusion, you can re-create the root password and lock out the
 intruder.
Eric has identified the following seven exceptions as the only
 AWS functionality you may ever need your root account for:
	Changing the email and password of the AWS root
 account

	Transferring a Route 53 Domain registration

	Canceling AWS services, like support

	Closing the account

	Submitting a penetration testing inquiry form

	Setting up consolidated billing

	Activating (or deactivating) IAM user access to billing
 information

Organizing users and groups with paths
If you are coming from a Lightweight Directory Access Protocol (LDAP) or Active
 Directory background, you might be used to a little more flexibility
 in user and group layout. In particular, the inability to nest groups
 within groups can feel like a big limitation when moving from one of
 these systems to IAM.
Paths are an optional feature of IAM
 users that can be used to implement more complicated user and group
 scenarios. In combination with IAM policies, they can be used to
 create a hierarchical structure for your users and groups.
Suppose you have several departments in your organization, and
 you would like each department to manage its own users. No one likes
 resetting passwords or setting up new accounts, so delegating this to
 a group of trusted users within that department will save time and
 headaches on all sides.
Start by creating two new groups: one to hold the users of the
 group and one for the group admins. Let’s use a development team as an example and create groups named dev_admins and dev_users:
$ aws iam create-group --group-name dev_admins --path "/dev/"
{
 "Group": {
 "Path": "/dev/",
 "CreateDate": "2016-06-05T14:03:57.681Z",
 "GroupId": "AGPAIHLR2VSAFC2VNVXCQ",
 "Arn": "arn:aws:iam::740376006796:group/dev/dev_admins",
 "GroupName": "dev_admins"
 }
}
$ aws iam create-group --group-name dev_users --path "/dev/"
{
 "Group": {
 "Path": "/dev/",
 "CreateDate": "2016-06-05T14:05:45.019Z",
 "GroupId": "AGPAI7PNSRYTT573CEYH6",
 "Arn": "arn:aws:iam::740376006796:group/dev/dev_users",
 "GroupName": "dev_users"
 }
}
Next, create two users. Alice is the most responsible member of
 the dev team, so she will be in the dev_admins and dev_users groups. Bob, being slightly less
 responsible (or at least feigning irresponsibility to avoid being
 assigned additional tasks), is only in the dev_users group:
$ aws iam create-user --user-name alice --path "/dev/"
{
 "User": {
 "UserName": "alice",
 "Path": "/dev/",
 "CreateDate": "2016-06-05T22:48:26.833Z",
 "UserId": "AIDAJKWL3DGB6E4OHBTYK",
 "Arn": "arn:aws:iam::740376006796:user/dev/alice"
 }
}
$ aws iam add-user-to-group --user-name alice --group-name dev_admins
$ aws iam add-user-to-group --user-name alice --group-name dev_users
$ aws iam create-user --user-name bob --path "/dev/"
{
 "User": {
 "UserName": "bob",
 "Path": "/dev/",
 "CreateDate": "2016-06-05T23:27:59.704Z",
 "UserId": "AIDAIVVPCRZA4V26N4J52",
 "Arn": "arn:aws:iam::740376006796:user/dev/bob"
 }
}
$ aws iam add-user-to-group --user-name bob --group-name dev_users
We can verify that the users and groups have been created with
 the correct paths by issuing the aws iam
 list-users and aws iam
 list-groups commands:
$ aws iam list-users --output text
USERS	arn:aws:iam::740376006796:user/dev/alice	2016-06-05T22:48:26Z	/dev/	AIDAJKWL3DGB6E4OHBTYK	alice
USERS	arn:aws:iam::740376006796:user/dev/bob	2016-06-05T23:27:59Z	/dev/	AIDAIVVPCRZA4V26N4J52	bob
[...]
$ aws iam list-groups --output text
GROUPS	arn:aws:iam::740376006796:group/dev/dev_admins	2016-06-05T14:03:57Z	AGPAIHLR2VSAFC2VNVXCQ	dev_admins	/dev/
GROUPS	arn:aws:iam::740376006796:group/dev/dev_users	2016-06-05T14:05:45Z	AGPAI7PNSRYTT573CEYH6	dev_users	/dev/
Now that the users and groups are set up, we need to create an
 IAM policy next.
Notice that the ARNs for our new users and groups include
 /dev as part of the identifier.
 This is the magic that makes it all work. Because we can use
 wildcards when specifying resources in IAM policies, we
 can simply grant the user permission to execute IAM actions on
 resources that exist under the /dev
 hierarchy. As before, the asterisk indicates “all resources”:
{
 "Statement": {
 "Effect": "Allow",
 "Action": "iam:*",
 "Resource": [
 "arn:aws:iam::740376006796:group/dev/*",
 "arn:aws:iam::740376006796:user/dev/*"
]
 }
}
Save the preceding policy document in a text file and apply it
 to Alice’s group with the aws iam
 put-group-policy command, taking care to replace the ARN with your own
 account’s:
$ aws iam put-group-policy --group-name dev_admins --policy-name dev_admin \
--policy-document file://./dev_admin.json
Once this policy is applied, Alice will be able to reset Bob’s
 password or create a new user in the /dev hierarchy, but she will not be able to
 create a new user in the /support hierarchy.

Auditing and rotating access keys
Security best practices include the removal of keys no longer in use,
 as well as regularly changing keys, a practice known as key rotation. IAM assists the
 administrator in this tedious task by providing ready access to all
 the information that is needed to promptly identify accounts or keys
 no longer in use. The IAM console reports when access keys were last used, in what region, and for what
 AWS service. Details concerning a user’s password last use complement
 this data to form a complete picture of when an account was last
 active.
The Credential Report is found in the IAM console (Figure 3-4) and can be generated from the CLI as
 follows:
$ aws iam generate-credential-report
{
 "State": "STARTED",
 "Description": "No report exists. Starting a new report generation task"
}
$ aws iam get-credential-report | jq -r '.Content' | base64 -d > report.csv
$ more report.csv
user,arn,user_creation_time,password_enabled,password_last_used [...]
alice,arn:aws:iam::740376006796:user/dev/alice,2016-06-05T22:48:26+00:00 [...]
[output truncated]
Figure 3-4. The credential report is only one click away in the IAM
 console

The report is returned in base64 encoding wrapped in a JSON
 envelope, requiring the use of jq and base64 to save the comma-separated CSV
 file’s contents.
Once your audit has identified any idle accounts to be
 deactivated, the task turns to rotating the old keys of the remaining
 accounts to newly generated ones. This is a well-defined process
 requiring a number of well-planned steps. Let’s say our audit
 identified that Bob’s key is due for rotation: our first step would be
 adding a second access key to the account (up to two active access
 keys are allowed for each user):
$ aws iam list-access-keys --user-name Bob
{
 "AccessKeyMetadata": [
 {
 "UserName": "bob",
 "Status": "Active",
 "CreateDate": "2015-06-05T00:41:52Z",
 "AccessKeyId": "AKIAI33YRI5D4IIJOANA"
 }
]
}
$ aws iam create-access-key --user-name Bob
{
 "AccessKey": {
 "UserName": "bob",
 "Status": "Active",
 "CreateDate": "2016-06-21T04:27:41.291Z",
 "SecretAccessKey": "CFgIptAtrqUKhfe/p3v1OBHciK5sY/n8EBX8JyO/",
 "AccessKeyId": "AKIAIL5TWIUC2M76F3PQ"
 }
}
$ aws iam list-access-keys --user-name Bob
{
 "AccessKeyMetadata": [
 {
 "UserName": "bob",
 "Status": "Active",
 "CreateDate": "2016-06-21T04:27:41Z",
 "AccessKeyId": "AKIAIL5TWIUC2M76F3PQ"
 },
 {
 "UserName": "bob",
 "Status": "Active",
 "CreateDate": "2015-06-05T00:41:52Z",
 "AccessKeyId": "AKIAI33YRI5D4IIJOANA"
 }
]
}
The new secret access key needs to be forwarded to Bob securely,
 preferably in some automated fashion. Key IDs (AKIDs) will help you track a key through its lifecycle; once
 you are satisfied the new key has replaced the old one in all uses and
 everything is still functioning as expected, you can retire the old key as inactive:
$ aws iam update-access-key --access-key-id AKIAI33YRI5D4IIJOANA \
--status Inactive --user-name Bob
$ aws iam list-access-keys --user-name Bob
{
 "AccessKeyMetadata": [
 {
 "UserName": "bob",
 "Status": "Active",
 "CreateDate": "2016-06-21T04:27:41Z",
 "AccessKeyId": "AKIAIL5TWIUC2M76F3PQ"
 },
 {
 "UserName": "bob",
 "Status": "Inactive",
 "CreateDate": "2015-06-05T00:41:52Z",
 "AccessKeyId": "AKIAI33YRI5D4IIJOANA"
 }
]
}
Functionally equivalent to being deleted, an inactive key has
 the salient property of being ready to return to service immediately
 upon a single command being issued. This makes turning a key inactive
 the safest way to retire it from production, with the comfort of an
 immediate “undo” option should anything go wrong. The final step of
 actually deleting the key is performed by passing the AKID and
 username to aws iam
 delete-access-key. There is no urgency to taking this action, but it will be
 required before the next key rotation is performed as AWS limits users
 to two access keys.

Password policy
A password policy enables you to define length and complexity requirements for
 user passwords account-wide. Equally important and perhaps more
 interesting, it permits setting an expiration window for user passwords matching
 your key rotation policy. For example:
$ aws iam update-account-password-policy --allow-users-to-change-password \
--max-password-age 90 --minimum-password-length 14
This will require that users change their passwords every 90
 days, while simultaneously granting them permission to actually change
 their passwords. Federico typically requires 14-character minimum
 length passwords (AWS defaults to 6), without forcing their character
 composition. The intent is to nudge users toward the use of safe and
 more easily recalled passphrases—see XKCD’s common-sense summary of password security in
 Figure 3-5. You will need to weigh the
 inconvenience to your users against your organization’s threat profile
 as you alter these settings. Note that the aws iam update-account-password-policy
 command does not support partial updates: no parameters are required,
 but those not supplied will silently return to their default
 values—this can be both convenient when resetting defaults, and
 confusing if you are not aware of this command’s behavior.
Figure 3-5. XKCD’s uniquely elegant
 explanation of password strength, courtesy of Randall
 Munroe

CloudTrail
CloudTrail can log all activity occurring in the account by creating a record
 of every API call in a specified region or globally, irrespective of
 the tool originating the call—CLI, console, and even other AWS
 services. These records greatly enhance your ability to determine what
 user performed what action at a given time, and is essential to
 reconstruct what has really happened in the event of a security
 incident.
Warning
CloudTrail will include in its logs all API calls generated by
 any AWS service on the user’s behalf. You will be startled when you
 notice this for the first time, and may wonder if another, possibly
 rogue, user is carrying out some kind of unauthorized activity. To
 determine if an API call was generated automatically by another
 service, examine the invokedBy field of the
 CloudTrail record in question.

CloudTrail generates log files recording all activity occurring
 in the account (or in a specific AWS region), storing them in an
 S3 bucket. Trails can be created using the aws cloudtrail create-trail command. This
 command requires a preexisting S3 bucket to store logs
 to—remember that as the namespace of the s3 service is flat, you will
 need to find a unique name for your trail’s bucket:
$ aws s3 mb s3://global-trail
make_bucket: s3://global-trail/
$ aws s3api put-bucket-policy --bucket global-trail --policy file://cbp.json
The second command sets a bucket policy that grants CloudTrail all the
 permissions it requires to perform its logging. The file defines the
 same policy the AWS console would set automatically if you choose to
 initialize your trail in the UI instead:
{
 "Version": "2012-10-17",
 "Statement": [
		{
	 "Sid": "AWSCloudTrailAclCheck20150319",
		 "Effect": "Allow",
		 "Principal": {
				"Service": "cloudtrail.amazonaws.com"
			},
		 "Action": "s3:GetBucketAcl",
		 "Resource": "arn:aws:s3:::global-trail"
		},
		{
		 "Sid": "AWSCloudTrailWrite20150319",
		 "Effect": "Allow",
		 "Principal": {
				"Service": "cloudtrail.amazonaws.com"
			},
		 "Action": "s3:PutObject",
		 "Resource": "arn:aws:s3:::global-trail/AWSLogs/740376006796/*",
		 "Condition": {
		 "StringEquals": {
				"s3:x-amz-acl": "bucket-owner-full-control"
				}
			}
		}
]
}
Next, we create a trail logging the account’s activity in all
 AWS regions:
$ aws cloudtrail create-trail --name global-trail --s3-bucket-name global-trail\
--is-multi-region-trail
{
 "IncludeGlobalServiceEvents": true,
 "Name": "global-trail",
 "TrailARN": "arn:aws:cloudtrail:us-east-1:740376006796:trail/global-trail",
 "LogFileValidationEnabled": false,
 "IsMultiRegionTrail": true,
 "S3BucketName": "global-trail"
}
$ aws cloudtrail start-logging --name global-trail
Examining a trail’s contents requires sifting through the S3
 bucket configured earlier, and retrieving the log file for the region
 and day of interest (see Figure 3-6). This is
 most easily accomplished in the AWS console, in particular if your
 browser is equipped with an extension like Chrome’s JSONview,
 which makes cursory examination of JSON files that much more efficient
 (Figure 3-7).
Figure 3-6. Navigating to a log file in the trail’s S3 bucket

Figure 3-7. A CloudTrail login record examined inline in Chrome with
 JSONview—someone logged in as root, contrary
 to our policy!

Navigating to CloudTrail S3 bucket in the AWS console (Figure 3-6) also provides download access to the
 trail’s files for offline analysis in your tool of choice. The
 granularity of single files may hinder your analysis when examining
 sequences of events spanning longer than a single day or more than one
 AWS region, which is the reason why the AWS console provides
 the API
 Activity view. Consolidating events for the last seven days,
 this interface selectively visualizes create,
 delete, and modify events.
 The interface provides convenient direct access to the API call
 metadata as well as limited search functionality (Figure 3-8).
Figure 3-8. The API Activity History interface to CloudTrail,
 visualizing the same login record we reviewed earlier

Resource Limits
Denial of service is one of the most common security attack vectors: what if a
 user logged in to AWS and launched the public cloud equivalent of a
 fork bomb? Launching thousands upon thousands
 of instances would quickly exhaust the region’s capacity and disrupt
 provisioning for other users. For this reason, AWS accounts have
 default service
 limits enforced on a regional basis (Figure 3-9). You can request these resource
 ceilings be raised at any time by opening a support request on the
 very same page—some of Federico’s teams have access to accounts with
 spot limits exceeding thousands of instances for large-scale
 benchmarking, AWS can be very accommodating to customers’ needs if
 you make a good case, so don’t be shy about your goals.
Figure 3-9. Some of the default account limits listed in the AWS
 console of a new account

Trusted Advisor
True to its name, the AWS Trusted Advisor is a part of AWS’s support package
 offering automated advice in the areas of cost reduction, performance,
 security, and fault tolerance. Full access to Trusted Advisor is only
 available with an enterprise support package, but some functionality
 is generally available to all users. The freebies include very useful
 basic security advice as well as analysis of usage
 thresholds meant to prevent outages caused by exceeding account
 resource limits.
The Trusted Advisor dashboard (Figure 3-10) provides access to useful information
 even to those not subscribing to AWS’s support services, making it a
 useful resource to monitor the health of your account with minimum
 effort. In particular, the security scan includes a summary of open
 ports that is hard to beat for convenience—Figure 3-11 illustrates the point with a section of the
 spreadsheet produced by auditing an account running this chapter’s
 examples. The AWS team regularly adds new checks to Trusted Advisor,
 which are usually announced by Jeff Barr in AWS’s official blog.
Figure 3-10. The Trusted Advisor dashboard gives access to the automated
 analysis tooling as well as a summary of their most recent
 findings

Naturally, Trusted Advisor reports can be retrieved
 programmatically and integrated in your automation—a security
 dashboard could retrieve the open port numbers on your account, for
 example. A premium support subscription is required for API access,
 and the lowest-cost option (developer support) is excluded as of this
 writing. We start by retrieving the identifier of the Trusted Advisor
 check in question, then forcing a refresh for this particular report:
$ aws support describe-trusted-advisor-checks --language en | jq \
'.checks[] | select(contains({name:"Ports Unrestricted"})).id'
"HCP4007jGY"
$ aws support refresh-trusted-advisor-check --check-id HCP4007jGY
{
 "status": {
 "checkId": "HCP4007jGY",
 "status": "enqueued",
 "millisUntilNextRefreshable": 3599988
 }
}
$ aws support refresh-trusted-advisor-check --check-id HCP4007jGY
{
 "status": {
 "checkId": "HCP4007jGY",
 "status": "success",
 "millisUntilNextRefreshable": 270266
 }
}
We can now retrieve the results and parse them for local use to
 our heart’s content (or our CIO’s):
$ aws support describe-trusted-advisor-check-result --check-id HCP4007jGY
{
 "result": {
 "checkId": "HCP4007jGY",
 "status": "warning",
 "flaggedResources": [
 {
 "status": "warning",
 "resourceId": "4lPCS_Zw5DRIqfc6yKAu4Vc2r2F96s_YmiVOpKmqoRA",
 "region": "us-east-1",
 "isSuppressed": false,
 "metadata": [
 "us-east-1",
 "image-resizing-ImageResizingSecurityGroup-SYAMMMJ89PVX",
 "sg-c38beab8 (vpc-934935f7)",
 "tcp",
 "Yellow",
 "22"
[output truncated]
Figure 3-11. Trusted Advisor’s audit: open ports found in the authors’
 security groups

Tip
Users who do not have access to a support subscription will
 not be able to leverage Trusted Advisor’s most advanced features,
 but a handy third-party alternative is also available: Security
 Monkey. Hailing from one of the earliest teams to adopt public cloud
 as the computing platform of choice in a large enterprise, Security
 Monkey populates a database tracking configuration changes in your
 accounts’ critical infrastructure and then runs rule-based checks
 every time a change occurs. Some noteworthy differences arise due to
 the different nature of the two tools—one a SaaS solution, the other
 an Open Source software package: Security Monkey empowers end users
 with the capability to define custom security checks, which Trusted
 Advisor does not.

IAM Roles
Consider the following scenario: you regularly need to resize images stored in an
 S3 bucket. Knowing a bit about Boto, you write a script that will look in
 the incoming directory of your S3
 bucket for new images, perform the resize operations, and save the
 resulting images in the processed
 directory.
You want to launch an EC2 instance that will run this script after
 it has finished booting. For the script to work, it needs to use a set of
 AWS credentials with permissions to read the source files and write the
 output files to the S3 bucket.
In the previous section, we have already created the IAM user,
 applied the appropriate policy to it, and downloaded the access key and
 secret. But how will you provide these keys to the instance so they can be
 used by the log-processing script?
Until June 2012, the process of distributing AWS keys to your EC2
 instances was somewhat painful. There were essentially two main options:
 bake the keys into the AMI so they were available when an instance booted,
 or provide them to the instance at runtime, perhaps with user data.
Both had their own downsides. If keys were baked into the AMI,
 replacing keys meant building a new AMI. If you went for the user data
 option, your unencrypted AWS keys were easily visible in the Management
 Console and other places. The Amazon team recognized that both options
 lacked security and simplicity, so they introduced IAM roles in
 response.
IAM roles almost entirely remove the problems surrounding this
 issue. Like users and groups, IAM roles can have one or more policies
 applied to them. When you launch an instance, you assign it
 a role that you have previously created. AWS will automatically generate
 access credentials and make them available to the instance. These
 credentials can then be used to access AWS services, with the permissions
 specified by the role’s policies.
Best of all, Amazon will regularly rotate the keys during the lifetime of the instance, without
 requiring any action on your part. This can be a big relief if you are
 working with long-running instances, as it seriously reduces the time in
 which compromised keys are usable.
Given these advantages, we can’t recommend using IAM roles highly
 enough. If all of your AWS scripts use roles, you will never need to worry
 about rotating these access credentials, even when people leave your
 organization. Furthermore, you will no longer run the risk of accidentally
 revoking keys that are still in use in some little-visited corner of your
 infrastructure (although you could still delete an IAM policy that you
 need).
Warning
If not properly configured, IAM roles can be used for privilege escalation. Imagine a nefarious user who has
 permissions to launch instances with IAM roles, but does not have
 permissions to delete Route 53 DNS records. By launching an instance
 with a role that does have these permissions, the user could easily SSH
 into the instance and retrieve the credentials.
IAM policies can be used to control which roles can be assigned by
 a user when they launch an instance, by explicitly referencing the
 ARN of the role when granting the user the iam:PassRole permission.

To see IAM roles in action, let’s implement the example just given.
 To start, we will need an S3 bucket containing an example image. Although
 we will use aws s3 in the following
 example, you could, of course, create the S3 bucket and upload an example
 file via the Management Console.
Tip
s3cmd is a popular
 command-line tool for interacting with S3, which Mike has
 found very useful when creating S3-based backup systems and Federico’s
 team uses to test compatibility with the S3 interface. It is readily
 available in the default package repositories of many Linux
 systems.
If you are using Ubuntu, you can install this alternative command-line tool
 with sudo apt install s3cmd. Before
 using s3cmd, you will need to run
 s3cmd --configure. This will write a
 file in your home directory containing your AWS credentials, along with
 some other settings.

First, create a new S3 bucket. Because S3 bucket names must be unique, you will need to choose your
 own name for it:
$ aws s3 mb s3://mike-image-resize
make_bucket: s3://mike-image-resize/
Download an example image file and copy it to the S3 bucket. We will
 use the O’Reilly logo for this example:
$ wget -q http://cdn.oreillystatic.com/images/sitewide-headers/ml-header-home-blinking.gif
$ aws s3 cp ml-header-home-blinking.gif s3://mike-image-resize/incoming/
upload: ./ml-header-home-blinking.gif to s3://mike-image-resize/incoming/ml-header-home-blinking.gif
$ aws s3 ls --recursive s3://mike-image-resize
2016-06-05 23:21:43 9067 incoming/ml-header-home-blinking.gif
$
Now that we have a bucket, we can create a policy that will allow
 the script to create and delete the contents of the bucket. As with most
 tasks involving IAM, the first step is to think about which permissions
 the script will require. Thankfully, our example script is quite
 simple—the tasks it performs map to the following actions:
	List the contents of the bucket: s3:ListBucket.

	Get the original file: s3:GetObject.

	Store the resized images in the bucket: s3:PutObject.

	Delete the processed files: s3:DeleteObject.

To make our application as secure as possible, this role will have
 access only to the bucket we created earlier, so malicious users who
 managed to access these credentials would not be able to affect other
 parts of your application. To do this, we need to know the ARN of the
 bucket.
As we saw near the beginning of this chapter, the ARN for an
 S3 bucket takes the format arn:aws:s3:::name-of-bucket.
 The consecutive colons are not merely decoration: other resource types use
 these fields to store additional attributes that are not used by S3
 ARNs.
Because permissions can apply to either the contents of the bucket
 or the bucket itself, we actually need to specify two ARNs:
	arn:aws:s3:::name-of-bucket

	arn:aws:s3:::name-of-bucket/*

Warning
You might consider saving some typing and simply specifying the
 ARN as arn:aws:s3:::my-bucket*.
 But if you have a bucket named, say, my-bucket-secure, you will be granting this
 role permissions on this bucket too. To quote the Zen of Python,
 “explicit is better than implicit”—even if it does sometimes involve
 more typing.

The first ARN references the bucket itself, and the second
 references any keys stored within that bucket. If we wanted to, we could
 assign an even more stringent set of permissions that allows the
 application to read and delete files in the incoming directory, but only write to the
 processed directory.
We now have all the information we need to create a role and assign
 a policy to it. We do this with the aws iam
 create-role command, creating a role named image-resizing:
$ aws iam create-role --role-name image-resizing --assume-role-policy-document \
file://./ec2-assume-role.json
{
 "Role": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 }
 }
 },
 "RoleId": "AROAIJSFDM5WJNR2M5ZVI",
 "CreateDate": "2016-06-07T05:22:34.145Z",
 "RoleName": "image-resizing",
 "Path": "/",
 "Arn": "arn:aws:iam::740376006796:role/image-resizing"
 }
}
The last line of the output is the ARN of the newly created role; we
 will use this later. The trust policy document controls which services may
 assume this role—at the time of writing, EC2, AWS Data Pipeline, Amazon
 Elastic Transcoder, or AWS OpsWorks are the only services that can assume
 roles.
We used the following trust policy document to create the image-resizing role:
{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"Service": "ec2.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
}
Once the role has been created, we can create a policy and embed it
 into the role:
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1465279863000",
 "Effect": "Allow",
 "Action": [
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::mike-image-resize/*",
 "arn:aws:s3:::mike-image-resize"
]
 }
]
}
$ aws iam put-role-policy --role-name image-resizing \
--policy-name image-resizing --policy-document file://image-resizing.json
The role and policy are both named image-resizing. If you wish to distinguish
 between them (or you just like Hungarian notation), you might want to call
 the latter policy-image-resizing, but
 making consistent naming choices will help you maintain your sanity as you
 navigate AWS. If this command completed without any errors, the policy has
 been created and applied to the role.
Finally, we need to create an IAM instance profile, which will let us launch an
 EC2 instance using the role:
$ aws iam create-instance-profile --instance-profile-name image-resizing \
--output text
INSTANCEPROFILE	arn:aws:iam::740376006796:instance-profile/image-resizing	2016-06-07T06:33:09.622Z	AIPAIAUTOO3GIHBKVG67G	image-resizing	/
$ aws iam add-role-to-instance-profile --instance-profile-name image-resizing \
--role-name image-resizing
Tip
As an automation-loving sysadmin, your attachment to the command-line
 interface should not deter you from exploring the IAM facilities found
 in the console. A good example of this is the policy generator
 wizard found in the permissions section of the users,
 groups, or roles tab in the IAM console (Figure 3-12).
The JSON policies we are using in this book were seldom
 hand-written, and even in such cases IAM wizards conveniently assisted
 with validation. We invite you to follow our example.

Figure 3-12. Defining a JSON policy using the IAM wizard

To see it in action, we can now launch a new EC2 instance that
 assumes this role. We do this by passing the name of the profile when
 running ec2-run-instances
 (or by selecting from the list of IAM roles in the Launch Instance Wizard). Note that IAM roles can only be
 assigned to new instances and that it is not possible to assign a
 different role to a running instance.
To launch an instance using this role, execute the following
 command—remembering to update the security group and the name of your
 SSH key pair. Note the last argument, which specifies the
 name of the instance profile we just created:
$ aws ec2 run-instances --image-id ami-43a15f3e --region us-east-1 --key mike \
--security-groups ssh --instance-type t2.micro \
--iam-instance-profile Name="image-resizing"

{
 "OwnerId": "740376006796",
 "ReservationId": "r-6e6b93cc",
 "Groups": [],
 "Instances": [
 [...]
 "IamInstanceProfile": {
 "Id": "AIPAIAUTOO3GIHBKVG67G",
 "Arn": "arn:aws:iam::740376006796:instance-profile/image-resizing"
 },
 [...]
Once the instance has booted, open an SSH session to it. In the
 previous section, we used the ec2metadata tool to
 display the instance’s metadata. At the time of writing,
 ec2metadata does not have support for IAM roles, so we
 must use the common Unix curl command to
 display the credentials. The limited-access URL to access the credentials
 with curl is always
 http://169.254.169.254/latest/meta-data/iam/security-credentials/<instance-profile-name>:
$ curl http://169.254.169.254/latest/meta-data/iam/security-credentials/image-resizing
{
 "Code" : "Success",
 "LastUpdated" : "2016-06-11T03:44:36Z",
 "Type" : "AWS-HMAC",
 "AccessKeyId" : "ASIAJ5HOGZLCDMXIMARA",
 "SecretAccessKey" : "hPaw27itOOxc2Sq2fZxKKgzM9pbctYg5GjnAsUbI",
 "Token" : "FQoDYXdzECUaDAPhEgucj01B4VLx6SKZA/WqJVcs9JDkV83vL62J9dypgAqLIMu2zGajKfJg/xCc57yOh+yBgWx85XLzpQoQNc5oof5Kd1mxW4mkIGeW9uktKrVI+oD1FdgEg4ve9U2irMurcYZxlFA9wiZcb2ohrUWDnRMOvIHJEOV3cK1fG0WLVTsetkFAASmOw8jobQViy2eocMnFd3bksriq+oy/khsHpm+7SoAcd2cDfpZmhH+ibIl8+fHWD2iLr5pfvqQ2bYsHKW2o6ROY0H+18vRXcDaBU9qnHSKTWlw7P7Vv0zE3Vde1y7AH0XPwYp7sbfeQJiKFWBUhNCUTIsHaYoXpJARjJPRLo1Z+gaWipkLc4NSTNgu3m9mSLtS4JjCEJvfLbJ5sF1XxqYJepeGDspTu4YX4DWvpPQuDkvCDswjgASNDR1cdR+jebYuCPiIIQCiUBZeD+EKtp3SxKa13mX5EcrH5OSkcOoOq8m9nKNa9HfljVox8TNcwYIvFLNUvWRUWABPt0MyN2YXvGpAA/JqFMHzni25+av7noGL2+UJxAgBC8h3BicZyrN4ouZLuugU=",
 "Expiration" : "2016-06-11T09:55:33Z"
}
Fortunately, the authors of the AWS SDKs have decided to make things
 easy for us when using the client libraries. Boto, for example, has built-in support for IAM roles. If
 you connect to an AWS service without specifying any credentials, Boto
 will check to see whether it is running on an EC2 instance and whether
 this instance has an IAM role. If so, Boto will use the credentials
 supplied by IAM to authorize your API requests.
Example 3-1 shows a simple Boto script that
 looks in the S3 bucket’s incoming directory and
 resizes all the files it finds. Processed files will be stored in the
 bucket’s processed directory.
Example 3-1. Script accessing S3 buckets
#!/usr/bin/python

import tempfile
from PIL import Image
import shutil
import sys
from boto.s3.connection import S3Connection
from boto.s3.key import Key

IMAGE_SIZES = [
 (250, 250),
 (125, 125)
]

bucket_name = sys.argv[1]
Create a temporary directory to store local files
tmpdir = tempfile.mkdtemp()
conn = S3Connection()
bucket = conn.get_bucket(bucket_name)
for key in bucket.list(prefix='incoming/'):
 filename = key.key.strip('incoming/')
 print 'Resizing %s' % filename
 # Copy the file to a local temp file
 tmpfile = '%s/%s' % (tmpdir, filename)
 key.get_contents_to_filename(tmpfile)
 # Resize the image with PIL
 orig_image = Image.open(tmpfile)
 # Find the file extension and remove it from filename
 file_ext = filename.split('.')[-1]
 for resolution in IMAGE_SIZES:
 resized_name = '%s%sx%s.%s' % (filename.rstrip(file_ext), resolution[0],
 resolution[1], file_ext)
 print 'Creating %s' % resized_name
 resized_tmpfile = '%s/%s' % (tmpdir, resized_name)
 resized_image = orig_image.resize(resolution)
 resized_image.save(resized_tmpfile)
 # Copy the resized image to the S3 bucket
 resized_key = Key(bucket)
 resized_key.key = 'processed/%s' % resized_name
 resized_key.set_contents_from_filename(resized_tmpfile)
 # Delete the original file from the bucket
 key.delete()

Delete the temp dir
shutil.rmtree(tmpdir)

This script has a few dependencies, which can be installed on Ubuntu
 systems as follows:
sudo apt install gcc python-dev python-pip
sudo pip install --upgrade boto
sudo apt install libtiff5-dev libjpeg8-dev zlib1g-dev libfreetype6-dev \
liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python-tk
sudo pip install pillow
Tip
Make sure you are using a recent version of Boto that has support
 for IAM roles.

Notice that the script contains no mention of access credentials.
 Boto will fall back to using those provided by the IAM metadata.
Save the program to a file on the instance and execute it, passing
 the name of your S3 bucket as a command-line argument. If everything goes
 according to plan, you should see something similar to the
 following:
$ python image-resizing.py your-bucket-name
Resizing l-header-home-blinking.gif
Creating l-header-home-blinking.250x250.gif
Creating l-header-home-blinking.125x125.gif
$
On your computer (not the instance we just launched), you can now
 use s3cmd to show the contents of the bucket and verify that the resized
 images were indeed created:
$ aws s3 ls --recursive s3://your-bucket-name
2016-06-11 22:32:01 8001 processed/l-header-home-blinking.125x125.gif
2016-06-11 22:32:01 26902 processed/l-header-home-blinking.250x250.gif
$
Once you have finished with the example script and your own
 experiments, remember to terminate the instance.
Tip
There are a number of problems with the previous example that
 would prevent you from using it in a high-traffic application, primarily
 because it would be impossible to scale out by
 launching multiple instances to process the files. Because multiple
 instances would be processing the bucket simultaneously, race conditions
 could emerge when two instances try to process the same image.
If you are building something like this for production use,
 Simple Queue Service (SQS) would be a better bet.

By using IAM roles, we removed the need to manually distribute and
 manage AWS credentials. Although there was a human behind the keyboard
 executing the image-resizing script, it is easy to see how IAM roles can
 save a lot of administration overhead, particularly when building
 applications based on Auto Scaling or CloudFormation.
Using IAM Roles from Other AWS Accounts
In “Limitations of IAM policies”, we mentioned that it is not always possible to define an IAM
 policy that—for example—allows users from the Development department to
 perform an action on certain instances, while preventing them from
 performing the same action on instances launched by the Marketing team.
 For most situations, this limitation is not a huge problem; an instance
 might be accidentally clobbered on occasion, but that is not the end of
 the world.
However, in some situations you might want to have a strict border
 between your AWS resources. You might need to guarantee for regulatory
 purposes that only members of the Support team are allowed to perform
 any action at all on production instances. The
 solution in those cases where resource permissions currently fall short
 is to create separate AWS accounts.
A side effect of maintaining separate AWS accounts is that you
 will receive a separate bill for each one, separating costs
 automatically—with a single account, the same can be accomplished
 through a careful tagging strategy. AWS Consolidated Billing lets you
 combine the bills from multiple AWS accounts, while still seeing exactly
 which account is responsible for each line item. This can save a lot of
 time in budget meetings, as arguments over who launched those m4.10xlarge instances for testing and forgot
 to terminate them become a thing of the past.
In November 2012, Amazon released a feature called cross-account
 API access to help customers who have gone down this route. As the
 name suggests, cross-account API access provides a framework for
 securely sharing resources between AWS accounts. Today,
 roles are the mechanism used to grant cross-account
 access. This feature is described more fully in IAM’s common
 scenarios documentation.

Using IAM in CloudFormation Stacks
IAM policies are a powerful tool on their own, but they become even more useful when combined
 with CloudFormation. Creating IAM policies and users from CloudFormation
 templates means that your CloudFormation stack contains everything
 required to run your application. The more self-contained your application
 is, the easier it will be to deploy and manage.
Building on the previous steps that introduced IAM roles, we will
 now create a CloudFormation stack that runs the image-resizing
 application. Everything—the S3 bucket, the IAM policy and role, and the
 EC2 instance that does the work—is contained within the stack
 template.
As always, a little planning is required before we start writing the
 CloudFormation stack template. First, consider the resources we need to
 create:
	IAM role

	IAM policy

	S3 bucket

	EC2 instance

These resources need to reference each other—for example, the stack
 will create a new S3 bucket and an IAM policy that references the bucket.
 When CloudFormation creates resources, they are given automatically
 generated names, which are not human-friendly and cannot be predicted in
 advance. Because of this, we must use the Ref function whenever we want to reference
 another resource in the stack.
Ref is an intrinsic function of CloudFormation templates. Passing it the
 logical name of a CloudFormation resource (the name you specify for the
 resource in the stack template) will return a value that can be used to
 reference that resource in other parts of the same template. It can be
 thought of as similar to variables in programming terms: the logical name
 of the resource will be replaced with the actual value at runtime.
Note
The CloudFormation template language supports built-in functions
 that can add a bit of flexibility to your stack templates. You can find
 the full list of available functions on the AWS Intrinsic
 Functions page.
This example uses the Join and
 Ref functions to refer to other resources in the stack. Although not quite
 as flexible as the domain-specific language included in tools like Chef
 or Puppet, this small set of functions can be combined to add some
 interesting features to your stack templates.

With that in mind, let’s begin creating the stack template. Create a
 file named image-resizing.json and
 add the preliminary boilerplate common to all templates:
{
 "AWSTemplateFormatVersion" : "2010-09-09",
 "Description" : "Image resizing stack",
 "Resources" : {
The first resource we will define is the S3 bucket, which is the
 simplest:
 "ImageResizingBucket": {
 "Type": "AWS::S3::Bucket"
 },
This creates a simple S3 bucket with a logical name of ImageResizingBucket.
Next, we create the IAM role, profile, and policy:
 "ImageResizingRole" : {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": ["ec2.amazonaws.com"]
 },
 "Action": ["sts:AssumeRole"]
 }]
 },
 "Path": "/"
 }
 },
 "ImageResizingPolicies": {
 "Type": "AWS::IAM::Policy",
 "Properties": {
 "PolicyName": "root",
 "PolicyDocument": {
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket", "s3:GetObject",
 "s3:PutObject", "s3:DeleteObject"
],
 "Resource": [
 {"Fn::Join": ["", ["arn:aws:s3:::", {"Ref": "ImageResizingBucket"}]] },
 {"Fn::Join": ["", ["arn:aws:s3:::", {"Ref": "ImageResizingBucket"}, "/*"]] }
]
 }]
 },
 "Roles": [{
 "Ref": "ImageResizingRole"
 }]
 }
 },
 "ImageResizingProfile": {
 "Type": "AWS::IAM::InstanceProfile",
 "Properties": {
 "Path": "/",
 "Roles": [{
 "Ref": "ImageResizingRole"
 }]
 }
 },
The ImageResizingRole is an IAM
 role that will be assigned to our instance.
ImageResizingPolicies contains
 IAM policies (or, as in this case, a single policy) defining which actions
 the user is allowed to perform. Note the use of the Fn::Join and Ref intrinsic functions. Ref lets us assign ImageResizingBucket, a logical name for the S3
 bucket, to an actual bucket name, such as simage-resizing-imageresizingbucket-86q5y1qzusge.
 This is necessary as the actual bucket name will become available only at
 runtime.
This value is, in turn, passed to the Fn::Join function. Join combines a list of strings into a single
 string, separated by the given delimiter character. In this case, we use
 an empty delimiter ("") and join two
 strings to create a valid ARN for the new S3 bucket.
The second use of Fn::Join also
 appends /* to the bucket’s ARN, which
 is used to declare actions that reference the bucket’s contents, rather
 than the bucket itself.
By combining Ref and Fn::Join, we can dynamically create the ARN
 string used in IAM policies.
The ImageResizingProfile simply
 acts as a container, allowing us to assign the role to an instance.
The next step is to declare an EC2 instance and a security group
 that will let us SSH into this instance:
"ImageResizingInstance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 "InstanceType": "t2.micro",
 "ImageId": "ami-43a15f3e",
 "KeyName": "your-ssh-key-name",
 "SecurityGroups" : [
 {"Ref": "ImageResizingSecurityGroup"}
],
 "IamInstanceProfile": {
 "Ref": "ImageResizingProfile"
 },
 "Tags" : [
 {"Key" : "role", "Value": "image-resizing"}
],
 "UserData" : {
 "Fn::Base64": {"Ref": "ImageResizingBucket"}
 }
 }
 },
 "ImageResizingSecurityGroup" : {
 "Type" : "AWS::EC2::SecurityGroup",
 "Properties" : {
 "GroupDescription" : "Allow SSH from anywhere",
 "SecurityGroupIngress" : [{
 "IpProtocol" : "tcp",
 "FromPort" : "22",
 "ToPort" : "22",
 "CidrIp" : "0.0.0.0/0"
 }
]
 }
 }
This section creates a micro instance and assigns to it the newly
 created IAM instance profile. It also populates the user data with the
 name of the S3 bucket.
The ImageResizingSecurityGroup is
 a simple security group that allows SSH access from any IP address—not the
 most secure of firewalls, but it will serve for this example.
Remember to update the ImageID
 and KeyName attributes to refer to a
 valid AMI and SSH key pair name.
The final step is to add an Outputs section:
},
 "Outputs" : {
 "BucketName" : {
 "Description" : "The name of the S3 bucket",
 "Value" : { "Ref" : "ImageResizingBucket" }
 },
 "InstanceIP" : {
 "Description" : "Public IP address of the newly created EC2 instance",
 "Value" : { "Fn::GetAtt" : ["ImageResizingInstance", "PublicIp"] }
 }
 }
}
While not strictly required, outputs can be useful, especially when
 debugging new stacks. Outputs are visible in the Management Console, and
 can also be accessed from the command line with aws cloudformation describe-stacks. We define
 two outputs so we can easily see the IP address of the instance and the
 name of the S3 bucket.
Save all of these combined sections to image-resizing.json and create the
 stack:
$ aws cloudformation create-stack --stack-name image-resizing \
--template-body file://image-resizing.json --capabilities CAPABILITY_IAM
{
 "StackId": "arn:aws:cloudformation:us-east-1:740376006796:stack/image-resizing/4dc95850-3375-11e6-8a60-50d5cd148236"
}
You can watch the progress of the stack creation in the Management
 Console.
Note
If this command fails, make sure you have set up your command-line
 tools correctly. Also, check that the IAM credentials you are using have
 permissions to launch new instances with IAM roles and create all of the
 resources referenced in the stack template.

Now that the instance is running, you can connect to it and run the
 image-resizing script. Copy the script in Example 3-1 to a file named image-resize.py and install the requirements
 listed in “IAM Roles”.
The last time we ran the script, we had to pass the bucket name as
 an argument. This time, we parse the bucket name from the output of the
 ec2metadata command. Alternatively, you could update
 the script to read the value directly from user data instead of a
 command-line argument.
As before, place an example image in the incoming/ directory of your S3 bucket and then
 run the following commands to resize your test image:
$ BUCKET=$(ec2metadata --user-data)
$ python image-resizing.py $BUCKET
Resizing l-header-home-blinking.gif
Creating l-header-home-blinking.250x250.gif
Creating l-header-home-blinking.125x125.gif
Although we had to log in to the instance to run the script
 manually, it is clear that combining all of the resources required for a
 particular business task into a single CloudFormation stack has benefits.
 Later, we will look at methods of running tasks automatically when an
 instance boots.

Security Groups
Given the dynamic nature of EC2, which launches and terminates instances in
 response to changes in demand, it would be difficult to easily manage
 firewall rules with a traditional firewall, such as iptables or pf.
 Defining rules when you know neither the hostname nor the IP address in
 advance could be tricky.
AWS provides security groups as an alternative
 (or sometimes, a supplement) to standard firewall software. Security
 groups consist of a series of access rules. When launching an instance,
 one or more security groups are assigned to it. Their combined rulesets
 define which traffic is allowed to reach the instance.
VPC security groups operate on inbound and outbound network traffic, and don’t provide all the features you
 might be used to. If you want quality of service or deep packet
 inspection, or if you use your firewall logs for bandwidth reporting, you
 will need to combine security groups with your own firewall software.
 Security groups do, however, have some bells and whistles of their own,
 which we will look at in this chapter.
Warning
When you first launch an instance from the AWS console, a security
 group named launch-wizard-1 will be
 created automatically. The wizard will apply this security group
 to the instance being launched and, amidst prominent warnings, instruct
 AWS to provide unimpeded two-way ssh
 connectivity to them.
It can be tempting to add your custom rules to this default group
 and use it for all of your instances. This leads to a maintenance and
 security nightmare, where the most disparate services rely on the same
 security group’s policy, and making changes to the group itself
 effectively means running the risk of breaking potentially unknown
 services in production.
Having a well-planned security group strategy from the beginning
 of a project can save a lot of headaches later.

The rules that make up a security group combine a source, a
 destination port, and a protocol. As in a traditional firewall, the source
 can be a single IP address (192.168.1.10) or a network block in Classless
 Inter-Domain Routing (CIDR) notation (192.168.0.0/24). Using this, you can define
 rules that allow your office IP address access to SSH on your EC2
 instances, for example. A default rule allows all outbound traffic, but
 this can be deleted and replaced with more granular controls.
The source can also be the name of another security group, which is
 where they really begin to shine. Suppose you have a PostgreSQL server running on port 5432, which should be
 accessible only to a particular subset of your EC2 instances. Because
 instances are launched dynamically, you do not know their IP addresses in
 advance, so you cannot create rules using that method. To solve this
 problem, you can create security groups and dynamically assign instances
 to groups as the instances are created.
Also of note is the stateful nature of security
 groups, which permits replies to allowed traffic to flow without
 impediment in either direction—see the section on connection
 tracking in the official AWS documentation for the
 complete details.
For this example, first create a security group. We give it a custom
 name, db_clients:
aws ec2 create-security-group --group-name db_clients --description "Database client security group"
Next, create a security group named db_servers:
aws ec2 create-security-group --group-name db_servers --description "Database server security group"
Finally, create a rule in the db_servers group that allows members of the
 db_clients group access on TCP port
 5432:
aws ec2 authorize-security-group-ingress --group-name db_servers --protocol tcp --port 5432 --source-group db_clients
When launching new instances, you will need to assign the newly
 created security groups as appropriate—for example, PostgreSQL servers in
 the db_servers group. With this setup,
 you can easily ensure that all of your database clients can access
 PostgreSQL, while locking it down to protect it from external
 access.
Note
This method also works across AWS accounts—that is, you can
 reference security groups belonging to other AWS accounts within your
 own group rules, provided the two VPCs are first peered.

Security groups can also reference themselves—that is, allow members
 of a security group to access other members of that group. To see this in
 action, update the db_servers security group to allow itself access
 on TCP port 5432:
aws ec2 authorize-security-group-ingress --group-name db_servers --protocol tcp --port 5432 --source-group db_servers
Now, if you have two instances in the db_servers group, they will each be able to
 access the other’s PostgreSQL instance—perfect for streaming
 replication.
This design pattern of role-based security group pairs is a good way
 of controlling access to your instances. It is likely that many types of
 instances will need to access your database server, such as web servers,
 monitoring systems, and reporting tools. Placing all of the
 database-access rules in a single db_servers group gives you only one thing to
 change if you, for example, change the port your database is running
 on.
Note
At the time of this writing, AWS allows users to create 500
 security groups per VPC, each spanning up to 50 rules. Up to five
 security groups can be assigned to each network interface, providing
 plenty of flexibility for the design of your security posture.

One capability that has received little notice in the transition
 from EC2 Classic to VPC networking is that the new model
 allows changing at runtime what security groups are assigned to a running
 instance. Security group changes are no longer limited to boot time. This
 has interesting applications, particularly in security incidents. Admins
 can now quarantine a running instance and remove it from production during
 forensic analysis without having to connect to it to modify its internal
 state in any way. This permits immediate recovery of production to proceed
 with new instances while incident analysis is still being
 conducted.
Mark Nunnikhoven has demonstrated an automated workflow that responds to
 security events (e.g., the detection of malware) by changing the security
 group of the affected instance to isolate it for analysis, then forcing
 the health check of an Auto Scaling group to fail to automatically replace
 the compromised instance with a new one. This process cannot resolve the
 underlying cause of the vulnerability, which requires human intervention,
 but the automated process frees the operations team to perform the
 analysis, knowing that automation is taking care of restoring production.
 Mark’s presentation
 is Federico’s AWS re:Invent all-time favorite, and food for thought when
 designing the infosec process of your production workloads. While a
 persistent attacker may continue to breach vulnerable instances until a
 fix is manually introduced, the prompt removal of the compromised instance
 poses a formidable obstacle to any attacker trying to expand their
 foothold deeper in your infrastructure.
Tip
As your operations grow more sophisticated, the sheer number of
 security groups in your account can become a challenge. While creating
 different security groups on a per-application basis will limit the
 number of rules one needs to track in a single task, security oversight
 becomes increasingly complex.
Anay Nayak has developed aws-security-viz
 as a way to manage this difficulty. Anay’s tool visualizes
 the rules defining a collection of security groups, enabling you to
 examine an entire account’s ruleset (or a select subset), and the
 relationships existing between your security groups.
aws-security-viz requires Ruby
 2.0, and works equally well on macOS and Ubuntu hosts. Setup is quite
 simple:
apt install graphviz
gem install aws_security_viz
Once installed aws-security-viz
 can inspect an account’s current security groups directly by invoking
 the AWS CLI, or import a previously saved JSON dump. Visualize an entire
 account’s setup with the following:
aws_security_viz -a AWS access key -s aws secret key -f viz.svg --color=true
Output takes the form of an SVG image (Figure 3-13) or a small website. Consider integrating and
 automatically refreshing this view in your dashboards.

Figure 3-13. View of security groups in the authors’ account generated with
 aws_security_viz

Protecting Instances with SSH Whitelists
Defense in depth is one of the key principles of successful IT security. SSH has an amazing
 track record when it comes to security, but there is no reason to let the
 whole world look for insecurities in your SSH setup. Security groups can
 be used to limit which IP address can access SSH on your instances,
 creating a whitelist of trusted addresses.
Depending on your organization, this whitelist might not change
 frequently, and might be small enough for you to recognize each IP
 address. In larger teams, maintaining the whitelist can become a chore,
 and it becomes difficult to know which address belongs to whom.
Implementing your SSH whitelist as a CloudFormation-managed
 security group can alleviate this headache and provide other
 benefits in the process. First, consider the alternative—manually adding
 and removing addresses via the Management Console. This is undesirable for
 a number of reasons, chiefly that there is no audit trail. If someone
 accidentally deletes a rule, there is no way of tracking down who did this
 and reverting the change.
Maintain Strong Security Policies When Moving to the
 Cloud
Securely setting up your infrastructure takes time and effort. It
 will sometimes be an inconvenience. The trade-off between security and
 convenience is well understood in the IT industry. You will need to
 choose the right position on this spectrum for your company’s specific
 situation.
One common mistake is to add a rule to your default security group
 that allows SSH traffic from anywhere (0.0.0.0/0). This makes it convenient to access
 your servers remotely, but will also result in your SSH port being
 probed 24 hours a day. Given how easy it is to manage SSH whitelists
 with security groups, there is no excuse for not taking the time to set
 it up.
We have seen people who should know better take some horribly
 insecure shortcuts on AWS, including the one just mentioned. These are
 things that they would never consider doing on physical hardware. Just
 because we are on the cloud does not mean we should forget security best
 practices.
AWS provides a lot of tools to securely operate your
 infrastructure, but it does not enforce their use—that’s up to your
 organizational policies.

The text-based nature of CloudFormation templates means we have an
 easy way of tracking changes to the whitelist—committing them to a
 version control system such as Git when updating the list. This immediately
 gives us an audit trail, a change log, and an easy way to revert unwanted
 changes.
There is, however, one downside to managing whitelists in this way:
 the CloudFormation template syntax. Here is the section required to allow
 ingress from a single IP address:
"InstanceSecurityGroup" : {
 "Type" : "AWS::EC2::SecurityGroup",
 "Properties" : {
 "GroupDescription" : "A test IP address",
 "SecurityGroupIngress" : [{
 "IpProtocol" : "tcp",
 "FromPort" : "22",
 "ToPort" : "22",
 "CidrIp" : "192.168.1.10/32"
 }]
 }
 }
Most of this template must be repeated for every IP address you want
 to whitelist. Typing this stanza over and over again will quickly get
 repetitive, so some people like to automate this. One common method is to
 have a CSV file containing IP addresses, which is used to generate the
 CloudFormation stack template file.
A security group created as part of a CloudFormation stack will have a name like
 xxx-ssh-whitelist. Resources created by
 CloudFormation have automatically generated names, which can make them a
 little difficult to reuse in other stacks. You will need to remember this
 name and reference it in your other CloudFormation stacks to assign
 instances to this security group. Also, if you replace this stack (i.e.,
 delete it and re-create it), the security group will have a new name. This
 limitation can be worked around by using a two-stage approach to creating
 security groups.
Our current stack template performs two actions: creating the security group and
 populating it with addresses. Breaking this into two stages makes it much
 easier to manage security group whitelists with CloudFormation.
There are two ways to define which security group an
 ingress rule (as inbound security group rules are
 known) belongs to. In the previous example, we specified a list of ingress
 rules as an attribute on the AWS::EC2::SecurityGroup resource type. Thus, the rules are children of
 the security group, so CloudFormation implicitly knows that they belong to
 the parent.
The other method involves creating AWS::EC2::IngressRule resources and explicitly
 listing which security groups they belong to. So we can create the
 security group outside of CloudFormation (i.e., with the Management
 Console or command-line tools) and then use CloudFormation to populate the
 list of IP addresses.
Either way, two-stage definitions give the best of both worlds. We
 can control which name is assigned to our security group and still store
 the stack template in Git.
Now, you might be already jumping ahead and planning an even better
 security group layout. What about having an ssh_whitelist group that contains further
 security groups such as devs_whitelist,
 support_whitelist, and so on?
 Unfortunately, this is not supported: security groups cannot be nested, so
 this will not work as expected.

Virtual Private Networks and Security Groups
What if a whitelist is not enough? The overhead of adding and removing IP addresses from the list is not
 particularly grueling, but there is an overhead. If you are frantically
 trying to SSH into an instance to diagnose a problem that is causing
 production downtime, the last thing you want is to waste time updating
 CloudFormation stacks before you can get to work fixing things.
Or perhaps you would like an additional layer of security in front
 of SSH, such as a VPN server that requires client-side certificates before
 allowing connections.
In these scenarios, a solution based solely on security groups won’t
 quite cut it; we need a dedicated VPN server running within EC2. The VPN
 server acts as a bastion host: the secure entry
 point to your other instances.
This means your public servers do not need to accept SSH connections
 from the public internet. Instead, their security groups can be configured
 to allow only those SSH connections that originate from the VPN instance.
 You no longer need to worry about script kiddies probing your ports, and
 there is no SSH whitelist to manage.
Because the instances will not need to receive any inbound
 connections from the public internet, we can use Amazon’s
 Virtual Private Cloud service in this
 example.
Amazon Virtual Private Cloud
Amazon Virtual Private Cloud (VPC) is the current iteration of EC2’s networking feature set,
 designed to improve the security of your EC2 instances. When EC2 was
 launched, the default network model (now referred to as “EC2 Classic”
 and no longer available to new accounts) automatically assigned a public
 IP address to each instance. Although instances were still protected by
 a security group, they were routable from the public internet by
 default.
In 2009, Amazon introduced VPC. The VPC model allows users to
 create logically isolated sections in their network architectures,
 rather than having a single section containing all of their EC2
 instances.
VPC makes it possible to create a variety of network topologies
 within AWS. This has benefits for people using AWS as an extension of
 their own datacenter, or those with specific network security
 requirements that cannot be satisfied by security groups alone.
VPC introduced components to EC2 that emulate features found when
 running your own network outside AWS. These include subnets and routing
 tables, network access control lists (ACLs), and the ability to specify
 IP address ranges for your EC2 instances and other AWS resources.
In 2013, VPC became the default for new AWS accounts. Upon using
 an EC2 region for the first time, a default VPC
 is automatically created, including a default subnet, routing table, and
 other required components of a VPC. This process is essentially
 invisible to the user: new EC2 instances will be launched in the default
 VPC automatically, as we have seen in Chapter 2.

Our example will include a VPC consisting of two subnets. The first
 subnet will be accessible via the public internet, and will be home to our
 bastion host. The second subnet will be private: it will not be routable
 from the internet, and will be accessible only to the bastion host after
 we implement the required routing and access control rules.
As a demonstration, we will use the free OpenVPN as our VPN server, although the same general
 procedure will apply to other VPN servers as well. Luckily, the makers of
 OpenVPN have published an AMI that contains everything you need to run an
 OpenVPN server. To cut down on the installation time, we will use this
 ready-to-go AMI instead of installing it from scratch ourselves.
In “Security Groups”, we looked at some strategies
 for defining security groups for client/server applications such as
 PostgreSQL. In this section, we will be creating two security
 groups:
	openvpn
	This will be assigned to OpenVPN instances, and will allow the
 public internet to access the OpenVPN server.

	protected_ssh
	This will be assigned to all other instances, and will allow
 SSH access only from the OpenVPN instance(s).

These security groups will be created as part of the CloudFormation
 stacks.
The instance could be launched in any number of ways. We are going
 to use CloudFormation so we can have one stack that contains the VPN
 instance and security group, and another that contains a
 protected EC2 instance and its own security
 group.
You can find the ID of the OpenVPN AMI by searching for it in the
 Launch Instance Wizard in the Management Console.
 Alternatively, OpenVPN maintains a list of AMIs for each EC2 region in the
 EC2
 Appliance (AMI) Quick Start Guide.
At the time of writing, the ID for the OpenVPN AMI in us-east-1 is ami-7ab25917. You will need to replace this if
 you are using a different region, or if a new OpenVPN AMI has since been
 created.
The OpenVPN AMI has two configuration phases. First, the OpenVPN
 installation process requires some configuration data such as the
 instance’s hostname and the admin user’s password. This takes place when
 the instance is booting. This configuration data can be provided as user
 data or entered using the OpenVPN installer on the command line.
The second configuration phase takes place after OpenVPN is
 installed and running, and is done through the OpenVPN web interface. It
 is at this point that you can create additional users who will be allowed
 to access the VPN.
In this example, we will perform the first configuration stage
 manually using the OpenVPN installer. Although using user data is more
 convenient, it will leave the OpenVPN administrative account password
 visible in both the CloudFormation and EC2 web consoles, which is not
 desirable.
Example 3-2 shows the CloudFormation
 stack we will use to create the OpenVPN instance and associated
 resources.
Example 3-2. OpenVPN CloudFormation stack
{
 "AWSTemplateFormatVersion" : "2010-09-09",
 "Description" : "OpenVPN EC2 Instance and Security Group",

 "Parameters" : {
 "KeyName": {
 "Description" : "EC2 KeyPair name",
 "Type": "String",
 "MinLength": "1",
 "MaxLength": "255",
 "AllowedPattern" : "[\\x20-\\x7E]*",
 "ConstraintDescription" : "can contain only ASCII characters."
 },
 "AllowedIPRange" : {
 "Description" : "IP Range allowed to access OpenVPN via SSH and HTTP(S)",
 "Type": "String",
 "MinLength": "9",
 "MaxLength": "18",
 "Default": "0.0.0.0/0",
 "AllowedPattern": "(\\d{1,3})\\.(\\d{1,3})\\.(\\d{1,3})\\.(\\d{1,3})/(\\d{1,2})",
 "ConstraintDescription": "Must be a valid IP CIDR range of the form x.x.x.x/x."
 },
 "AMI" : {
 "Description" : "OpenVPN AMI ID",
 "Type": "String"
 }
 },

 "Resources" : {
 "OpenVPNInstance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 	"InstanceType" : "t2.micro",
 "SecurityGroups" : [{ "Ref" : "OpenVPNSecurityGroup" }],
 "KeyName" : { "Ref" : "KeyName" },
 "ImageId" : { "Ref" : "AMI"},
 "SourceDestCheck" : "false"
 }
 },

 "OpenVPNSecurityGroup" : {
 "Type" : "AWS::EC2::SecurityGroup",
 "Properties" : {
 "GroupDescription" : "Allow SSH, HTTPS and OpenVPN access",
 "SecurityGroupIngress" : [
	 {
	 "IpProtocol" : "tcp",
	 "FromPort" : "22",
	 "ToPort" : "22",
	 "CidrIp" : { "Ref" : "AllowedIPRange"}
	 },
	 {
	 "IpProtocol" : "tcp",
	 "FromPort" : "443",
	 "ToPort" : "443",
	 "CidrIp" : { "Ref" : "AllowedIPRange"}
	 },
	 {
	 "IpProtocol" : "tcp",
	 "FromPort" : "943",
	 "ToPort" : "943",
	 "CidrIp" : { "Ref" : "AllowedIPRange"}
	 },
	 {
	 "IpProtocol" : "udp",
	 "FromPort" : "1194",
	 "ToPort" : "1194",
	 "CidrIp" : { "Ref" : "AllowedIPRange"}
	 }
]
 }
 }
 },

 "Outputs" : {
 "InstanceId" : {
 "Description" : "InstanceId of the OpenVPN EC2 instance",
 "Value" : { "Ref" : "OpenVPNInstance" }
 },
 "OpenVPNSecurityGroup" : {
 "Description" : "ID of the OpenVPN Security Group",
 "Value" : { "Fn::GetAtt" : ["OpenVPNSecurityGroup", "GroupId"] }

 },
 "PublicIP" : {
 "Description" : "Public IP address of the newly created EC2 instance",
 "Value" : { "Fn::GetAtt" : ["OpenVPNInstance", "PublicIp"] }
 }
 }
}

Save this stack template to a file named openvpn.json and create the stack with the
 CloudFormation command-line tools:
aws cloudformation create-stack --stack-name openvpn-server \
 --template-body file://./openvpn.json --region=us-east-1 \
 --parameters ParameterKey=KeyName,ParameterValue=your-key-name \
 ParameterKey=AllowedIPRange,ParameterValue=0.0.0.0/0 \
 ParameterKey=AMI,ParameterValue=ami-7ab25917
This stack template introduces a new feature of CloudFormation:
 parameters. Parameters can be thought of as variables
 within your stack template. They can be given a default value that can be
 overridden when creating the stack. They are not quite as flexible as
 variables, as they can be set only once (when launching or updating the
 stack), but they do allow for a certain amount of reusability within your
 stack templates.
The parameters required by this stack are specified on the command
 line with the syntax ParameterKey=KeyName,ParameterValue=value.
 You will need to replace the SSH key name and IP range with your own
 values.
If you are not launching the stack in the us-east-1 region, you will also need to change
 the AMI parameter to match the OpenVPN AMI ID for your region. You can
 find the ID on the OpenVPN AWS
 AMI Marketplace page.
After the stack has been created, we can find the IP address of the instance by querying its
 outputs:
aws cloudformation describe-stacks --stack-name openvpn-server
This will output a full description of the stack, including
 the outputs and their values. Instead of searching through this
 information manually, you could use the jq tool to filter the JSON and
 print only the required values. We use the following filter:
aws cloudformation describe-stacks --stack-name openvpn-server | \
 jq '.Stacks[0].Outputs[] | select(.OutputKey=="OpenVPNSecurityGroup" or .OutputKey=="PublicIP").OutputValue'
This will parse the JSON and print the OutputValue for the OpenVPNSecurityGroup and PublicIP outputs. For example:
"54.164.47.241"
"sg-feccae85"
Now that the instance is running, it must be configured. Begin by
 connecting to the instance via SSH as the openvpnas user. After logging in to the
 connection, an OpenVPN configuration process will be automatically
 started. The default choices presented by the application are suitable for
 our uses, so press the Enter key on each line to accept them.
Once this process exits, you will need to set the password for the
 openvpn user, used to configure OpenVPN
 through its web interface. Generate a password and set it by executing the
 following:
sudo passwd openvpn

 You can now open the configuration page in your web browser. The address
 will be displayed after the OpenVPN configuration process completes, and
 will be something like https://54.77.153.76:943/admin.
When you open this address in your web browser, you should see the
 OpenVPN welcome page. Using the OpenVPN
 Quick Start Guide, you can now configure the OpenVPN server
 according to your requirements.
Note
It is possible to create DNS records from CloudFormation templates, so we could, in
 fact, set up a CNAME so we can access this instance by visiting, for
 example, vpn.example.com.

After the VPN server has been configured, you should now be able to
 connect to the VPN, using the OpenVPN documentation for your platform of
 choice.
Note
This OpenVPN server is a single point of failure, which is not
 desirable when it is the only way you can SSH into your other instances.
 Before using a solution like this in production, you should explore
 methods of making this system more robust. For example, you could run an
 Auto Scaling group with one or more instances of OpenVPN so that failed
 instances are automatically replaced.

Now that the VPN server is up and running, we can verify that it is
 working as expected when it comes to protecting our instances. We will do
 this by launching a new instance and assigning it to the protected_ssh
 security group. Example 3-3 shows
 a simple CloudFormation stack template that declares a single instance
 using this security group.
Example 3-3. Launching a protected instance with CloudFormation
{
 "AWSTemplateFormatVersion" : "2010-09-09",
 "Description" : "Example EC2 instance behind an OpenVPN server",

 "Parameters" : {
 "KeyName": {
 "Description" : "EC2 KeyPair name",
 "Type": "String",
 "MinLength": "1",
 "MaxLength": "255",
 "AllowedPattern" : "[\\x20-\\x7E]*",
 "ConstraintDescription" : "can contain only ASCII characters."
 },
 "AMI" : {
 "Description" : "AMI ID",
 "Type": "String"
 },
 "OpenVPNSecurityGroup" : {
 "Description" : "OpenVPN Security Group ID",
 "Type": "String"
 }
 },

 "Resources" : {
 "Ec2Instance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 "InstanceType" : "t2.micro",
 "SecurityGroups" : [{ "Ref" : "InstanceSecurityGroup" }],
 "KeyName" : { "Ref" : "KeyName" },
 "ImageId" : { "Ref" : "AMI"}
 }
 },

 "InstanceSecurityGroup" : {
 "Type" : "AWS::EC2::SecurityGroup",
 "Properties" : {
 "GroupDescription" : "Allows SSH access from the OpenVPN instance",
 "SecurityGroupIngress" : [
	 {
	 "IpProtocol" : "tcp",
	 "FromPort" : "22",
	 "ToPort" : "22",
	 "SourceSecurityGroupId" : { "Ref" : "OpenVPNSecurityGroup"}
	 }
]
 }
 }
 },

 "Outputs" : {
 "PrivateIP" : {
 "Description" : "Private IP address of the EC2 instance",
 "Value" : { "Fn::GetAtt" : ["Ec2Instance", "PrivateIp"] }
 },
 "PublicIP" : {
 "Description" : "Public IP address of the EC2 instance",
 "Value" : { "Fn::GetAtt" : ["Ec2Instance", "PublicIp"] }
 }
 }
}

Save this file as protected_instance_cloudformation.json and
 execute the following command to create the stack:
aws cloudformation create-stack --stack-name openvpn-test-instance \
 --template-body file://protected_instance_cloudformation.json \
 --region=us-east-1 --parameters ParameterKey=KeyName,ParameterValue=federico \
 ParameterKey=AMI,ParameterValue=ami-43a15f3e
 ParameterKey=OpenVPNSecurityGroup,ParameterValue=sg-feccae85
As before, you will need to adjust some of the parameters to match
 your environment. The value for the OpenVPNSecurityGroup should be the value
 retrieved from the describe-stacks
 command executed earlier.
Find out the public and private IPs of the instance by running the following:
aws cloudformation describe-stacks --stack-name openvpn-test-instance |\
jq '.Stacks[0].Outputs[]'
 Once the stack has been created,
 make sure your VPN is disconnected and try to SSH to the public IP of the
 instance. This should time out, because your public IP address is not
 allowed to access instances in this security group.
Connect to the VPN and then try to SSH to the instance’s private IP
 address. This time you should be presented with the familiar Ubuntu
 prompt, confirming that your security groups are doing their job and
 traffic is being routed over the VPN.
Setting up the OpenVPN server and performing ongoing maintenance
 adds overhead that is not present when working with security groups on
 their own. However, for some companies, the additional layer of security
 is a must. Managing this stack with CloudFormation will keep the
 maintenance to a minimum.
This is just an introduction to running OpenVPN with CloudFormation.
 TurnKey Linux has published an example CloudFormation template that
 includes a VPN and separate subnets for the OpenVPN server and protected
 instances. Available on their GitHub
 page, this is a great starting point for building highly available
 and secure VPNs in Amazon’s cloud.

A Security State of Mind
Security is a job that by its very nature is never complete, and subject to some of the
 strongest trade-offs in IT. Too little security may be as bad as too much
 security—the former leading to catastrophic incidents, the latter
 preventing your team from being effective. We have laid a solid foundation
 for your security thinking in a public cloud environment, and we offer a
 few key takeaways:
	Most of the security concepts you already know have direct
 parallels in AWS.

	Manually maintaining security groups and whitelists is
 time-consuming and error prone—don’t do it. Automate these processes
 using CloudFormation or your own custom scripts.

	It is a lot easier to build a secure infrastructure from the
 beginning than it is to improve security on a running
 infrastructure.

	Time spent defining a sensible IAM policy at the beginning of a
 project will pay off in reduced headaches later in the project.

	The cloud is not a magic place where security rules do not
 apply. Just as your datacenter managers would not prevent you from
 deploying a physical server with a misconfigured firewall, AWS will
 not prevent you from building an insecure infrastructure.

	Public cloud security may be stronger than a private
 datacenter’s when properly architected around a clear understanding of
 the shared responsibility model, particularly for smaller IT teams
 that are invariably resource-constrained.

	A VPN-based bastion host can add a security and auditing layer,
 at the cost of increased maintenance.

	Allowing SSH from 0.0.0.0/0
 is nearly always a bad idea.

1 A sad cautionary tale about AWS security is that of Code Spaces.

Chapter 4. Configuration Management
Why Use Configuration Management?
Mike originally became enamored (obsessed might be a better
 word) with the idea of automatically configuring and deploying
 infrastructures after reading the classic “Bootstrapping
 an Infrastructure” paper from the LISA ’98 system administration
 conference.
The paper described the experiences of system administrators and
 architects responsible for building and maintaining large Unix
 environments for financial trading floors, and outlined some philosophies
 they adopted as a result. While somewhat dated in terms of the software
 used, the underlying principles are still highly relevant to managing
 today’s cloud infrastructures:
We recognize that there really is no “standard” way to assemble or
 manage large infrastructures of UNIX machines. While the components that
 make up a typical infrastructure are generally well-known, professional
 infrastructure architects tend to use those components in radically
 different ways to accomplish the same ends. In the process, we usually
 write a great deal of code to glue those components together,
 duplicating each others’ work in incompatible ways. Because
 infrastructures are usually ad hoc, setting up a new infrastructure or
 attempting to harness an existing unruly infrastructure can be
 bewildering for new sysadmins. The sequence of steps needed to develop a
 comprehensive infrastructure is relatively straightforward, but the
 discovery of that sequence can be time-consuming and fraught with error.
 Moreover, mistakes made in the early stages of setup or migration can be
 difficult to remove for the lifetime of the infrastructure.

The authors of this paper recognized that automation is the key to
 effective system administration, and that a huge amount of time was being
 wasted by duplicating efforts to automate common tasks like installing
 software packages. By describing some battle-tested experiences, they
 hoped to reduce the amount of redundant work performed by their
 peers.
Configuration management software evolved out of a wider need to
 address this problem. Puppet, Chef, and Ansible are just a few examples of
 configuration management packages. They provide a framework for describing
 your application/server configuration in a text-based format. Instead of
 manually installing Apache on each of your web servers, you can write a
 configuration file that says, “All web servers must have Apache
 installed.”
As well as reducing manual labor, storing your configurations as
 text files means you can store them in a version control system with your
 application code so that changes can be audited and reverted.
Your infrastructure effectively becomes
 self-documenting, as your server and application
 configurations can be reviewed at any time by browsing your version control
 system. Of course, the bits only answer how something
 is done, therefore authors must take care to document the
 why in their commit message.
Finally, the entire unit is a self-contained unit and can be
 deployed with minimal human interaction. Once the first server hosting the
 configuration management application is running, the rest of the
 infrastructure can be brought into service without having to manually
 configure operating systems or applications.
This is especially important when a small team is responsible for a
 large infrastructure, or in the case of consulting companies, a number of
 disparate infrastructures. Manually installing software does not scale up
 very well—if it takes you one hour to configure a server manually, it will
 take you two hours to configure two servers, to the extent that you are
 not parallel.
However, if it takes one hour to configure a server with
 configuration management software, that configuration can be reused for as
 many servers as you need.
Adopting the configuration management philosophy does involve an
 initial time investment if you have not used it before, but it will soon
 pay off by reducing the amount of time you spend configuring servers and
 deploying changes.
OpsWorks
Amazon recognizes how important configuration management tools are, and is
 doing its bit to make these tools more effective when working within
 AWS. In February 2013, it announced the OpsWorks service, bringing joy
 to the hearts of sysadmins everywhere.
OpsWorks made configuration management a core part of AWS,
 bringing support for Chef directly into the Management Console. It works by letting the users define the
 layers that make up their application—for example,
 clusters of web and database servers would be two separate layers. These
 layers consist of EC2 instances (or other AWS resources) that have been
 configured using Chef recipes. Once your layers have been defined, AWS
 will take care of provisioning all the required resources.
Your running application—and all of its layers—are visible in the
 Management Console, making it easy to see the overall health of your
 application.
This makes it a lot easier for people who are familiar with Chef
 to use it to manage their AWS infrastructure. More importantly, it makes
 configuration management tools a lot more discoverable for companies
 that do not have dedicated system administrators. A lot of people avoid
 implementing configuration management because the return on investment
 is not always clear in advance. OpsWorks will hopefully lead to a lot
 more people using professional system administration practices when
 setting up AWS applications.
Another advantage of OpsWorks is that it further commoditizes many
 parts of designing and deploying an application infrastructure. It is
 possible to find shared Chef recipes for installing common software
 packages such as PostgreSQL or HA-Proxy. Instead of manually designing
 your own database setup and writing custom Chef recipes, you can just
 take a working example and tweak it if necessary.
Over time, AWS may build on this platform to offer entire
 “off-the-shelf” application stacks—for example, a “social media stack”
 that contains all the elements required to run a typical social media
 website, such as web servers, a database cluster, and caching
 servers.
Amazon maintains a choice of multiple overlapping services for
 template-based application provisioning. OpsWorks is best suited to
 users who have already adopted Chef as their configuration management
 tool of choice and therefore do not feel limited by this choice. Outside
 of this group, OpsWorks is best thought of as a service abstracting the
 creation of web application stacks to a lesser degree than the
 easy-to-use AWS Elastic Beanstalk. OpsWorks provides more customization of
 application instances at the cost of potentially higher complexity,
 thanks to the integration of Chef. The authors prefer a third
 application template option for most automation tasks: AWS
 CloudFormation. CloudFormation is a lower-level foundation service that
 delivers complete control of the application template to the
 administrator, allowing us to tailor every detail. The effort caused by
 the additional complexity is offset by the need to operate only one
 tool, and our use of it through API automation, which makes this a
 setup-time cost only.
For more information about OpsWorks, see Amazon’s OpsWorks
 page.

Choosing a Configuration Management Package
A plethora of tools are available in the configuration management software space.
 We believe the number of options is a result of the fact that many of
 their users are system administrators who can code. When a tool does not
 quite meet users’ needs, they begin working on their own version to
 scratch their individual itch, as eloquently illustrated by the XKCD
 comic shown in Figure 4-1.
The top-tier tools all have their own approaches and architecture
 decisions, but share a common fundamental set of features. For example,
 they all provide the capability to install software packages and ensure
 services are running, or to create files on client hosts (such as Apache configuration files).
Figure 4-1. XKCD on standards,
 courtesy of Randall Munroe

There are a few things to keep in mind when choosing a
 package.
Nearly all of the available configuration management tools have
 the concept of reusable pieces of code that can be shared to save even
 more time. Instead of doing all of the work yourself, you can take some
 prewritten modules and customize them to fit your needs. In Puppet,
 these are known as modules,
 Chef calls them recipes, and Ansible
 calls them playbooks.
Puppet, Inc., operates the Puppet Forge, a site where users from the community can share Puppet
 modules written for common tasks.
The availability of external modules should factor into your
 decision; building on the work of others will usually be easier than
 building from scratch.
The language used to build the tool might also come into play, if
 you anticipate needing to extend it in some way (such as creating your
 own managed resource types). Chef and Puppet are both written in Ruby,
 whereas Ansible is a Python tool.
Most of the mature tools come from the pre-cloud days, and have
 evolved to support the needs of a more dynamic infrastructure. Chef and
 Puppet in particular have very good integration with AWS.
Given the relative similarity of features, choosing the right tool
 is often merely a case of finding the one that you feel most comfortable
 using. Amazon’s choice of Chef as the backend to OpsWorks will add to
 Chef’s popularity in the future, but that does not necessarily mean it
 is the right tool for everyone.
Our recommendation, especially if you are new to configuration
 management, is to try out a few packages and see which suits your
 team’s workflow.

Puppet on AWS
Instead of dedicating half of the book to configuration management
 tools, we use Puppet to demonstrate the key concepts in the rest of this
 chapter. It has a good amount of overlap with other tools in terms of the
 available features, so all of the core principles can be applied with any
 of the available configuration management packages.
A Quick Introduction to Puppet
Initially launched by Luke Kanies in 2005, Puppet is perhaps the most popular
 open source configuration management tool. It uses a declarative
 language to let users describe the configuration and state of Unix or
 Windows hosts in text files known as Puppet
 manifests. These manifests describe the desired state of the
 system—this package should be installed, and
 this service should be running.
Typically, these manifests are stored on a central server known as
 the Puppet master. Client hosts
 periodically connect to the master server and describe their current
 system state. The Puppet master calculates the changes required to move
 from the current state to the desired state, as described in the
 manifests for that host, and lets the client know which changes it needs
 to make. Finally, the Puppet client performs these actions.
Because clients connect to the master server at regular intervals,
 configuration changes can be made on the master server and they
 propagate throughout your network as each client connects and picks up
 the new configuration.
The /etc/puppet/manifests/sites.pp file is
 used to map server hostnames to configuration manifests, which are known
 as node definitions. The best way to
 illustrate this is with an example, which contains two node
 definitions:
demo sites.pp with two nodes

node "www.example.com" {
 package { "nginx":
 ensure => installed
 }
}

node "db.example.com" {
 package { "postgresql":
 ensure => installed
 }
}
When a client named www.example.com connects
 to the Puppet master, the Nginx package will be installed. When
 db.example.com requests its configuration from the
 Puppet master, the PostgreSQL package will be installed.
In addition to matching explicit hostnames, regular expressions
 can be used in node definitions: www-\d+\.example\.com would match
 www-01.example.com and
 www-999.example.com.
Puppet supports a module-based system for creating reusable Puppet
 manifests. Consider the common example of needing to ensure that user
 accounts are automatically managed by Puppet across all of your servers.
 Rather than explicitly listing all of your users over and over again,
 they can be listed once in a users
 module that is reused in multiple node definitions.
Modules are Puppet manifests that exist in a particular directory, usually
 /etc/puppet/modules. A simple
 users module, stored in /etc/puppet/modules/users/manifests/init.pp,
 might look like this:
user { 'mike':
 ensure => present
 }

user { 'federico':
 ensure => present
 }
This is applied to nodes by including it in their node definition.
 For example:
node 'www.example.com' {
 include users
 package { 'nginx':
 ensure => installed
 }
}
node 'db.example.com' {
 include users
 package { 'postgresql':
 ensure => installed
 }
}
This would ensure that users named mike and federico are created on both
 www.example.com and
 db.example.com.
Tip
Puppet offers multiple ways to test a module locally during
 development, without having to wait for the server (known as the
 master in Puppet lingo). One of the simplest is
 to manually apply a manifest matching the current node locally:
puppet apply manifest.pp
The client’s parser can also validate syntax without actually
 executing any configuration changes:
puppet parser validate module.pp
Additionally, a very convenient validation tool called puppet-lint is
 available. puppet-lint will go
 beyond reporting errors and will also deliver style warnings and flag
 potential inconsistencies. Found in Ubuntu’s universe repository, it
 is installed thus:
sudo apt install puppet-lint
One last option is to cause the client to immediately contact
 the server and apply any outstanding action. Although this is a more
 involved and time-consuming strategy, this “all up” test should
 provide final validation to your manifests:
sudo puppet agent --test

Another way of achieving this is to use the default node
 definition, which applies to every client that connects to the Puppet
 master. This configuration in the default node is applied to clients
 that do not have a node definition explicitly assigned to them.
To see Puppet in action, we will launch two EC2 instances—one to
 act as the master, the other as a client. The initial Puppet manifest
 will simply install the Nginx web server package and make sure it is
 running—something akin to a “Hello, World” for Puppet.
Example 4-1 shows a
 CloudFormation stack that will create the two EC2 instances, as well as two
 security groups. These are required to access both instances with SSH,
 and to allow the Puppet client to contact the master on TCP port 8140.
Example 4-1. Puppet master and client CloudFormation stack
{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "Example Puppet master and client stack (manual install)",

 "Parameters" : {
 "KeyName": {
 "Description" : "EC2 KeyPair name",
 "Type": "String",
 "MinLength": "1",
 "MaxLength": "255",
 "AllowedPattern" : "[\\x20-\\x7E]*",
 "ConstraintDescription" : "can contain only ASCII characters."
 },
 "AMI" : {
 "Description" : "AMI ID",
 "Type": "String"
 }
 },

 "Resources": {
 "PuppetClientGroup": {
 "Type": "AWS::EC2::SecurityGroup",
 "Properties": {
 "SecurityGroupIngress": [
 {
 "ToPort": "22",
 "IpProtocol": "tcp",
 "CidrIp": "0.0.0.0/0",
 "FromPort": "22"
 }
],
 "GroupDescription": "Group for Puppet clients"
 }
 },
 "PuppetMasterGroup": {
 "Type": "AWS::EC2::SecurityGroup",
 "Properties": {
 "SecurityGroupIngress": [
 {
 "ToPort": "8140",
 "IpProtocol": "tcp",
 "SourceSecurityGroupName" : { "Ref" : "PuppetClientGroup" },
 "FromPort": "8140"
 },
 {
 "ToPort": "22",
 "IpProtocol": "tcp",
 "CidrIp": "0.0.0.0/0",
 "FromPort": "22"
 }
],
 "GroupDescription": "Group for Puppet master"
 }
 },
 "PuppetMasterInstance": {
 "Type": "AWS::EC2::Instance",
 "Properties": {
 "ImageId" : { "Ref" : "AMI"},
 "KeyName" : { "Ref" : "KeyName" },
 "SecurityGroups": [
 {
 "Ref": "PuppetMasterGroup"
 }
],
 "InstanceType": "t2.micro"
 }
 },
 "PuppetClientInstance": {
 "Type": "AWS::EC2::Instance",
 "Properties": {
 "ImageId" : { "Ref" : "AMI"},
 "KeyName" : { "Ref" : "KeyName" },
 "SecurityGroups": [
 {
 "Ref": "PuppetClientGroup"
 }
],
 "InstanceType": "t2.micro",
 "UserData": {
 "Fn::Base64": {
 "Fn::GetAtt": ["PuppetMasterInstance", "PrivateDnsName"]
 }
 }
 }
 }
 },
 "Outputs" : {
 "PuppetMasterIP" : {
 "Description" : "Public IP of the Puppet master instance",
 "Value" : { "Fn::GetAtt" : ["PuppetMasterInstance", "PublicIp"] }
 },
 "PuppetClientIP" : {
 "Description" : "Public IP of the Puppet client instance",
 "Value" : { "Fn::GetAtt" : ["PuppetClientInstance", "PublicIp"] }
 },
 "PuppetMasterPrivateDNS" : {
 "Description" : "Private DNS of the Puppet master instance",
 "Value" : { "Fn::GetAtt" : ["PuppetMasterInstance", "PrivateDnsName"] }
 },
 "PuppetClientPrivateDNS" : {
 "Description" : "Private DNS of the Puppet client instance",
 "Value" : { "Fn::GetAtt" : ["PuppetMasterInstance", "PrivateDnsName"] }
 }
 }
}

Save this stack template to a file named puppet_stack.json. Next, create the stack
 with the AWS command-line tools, remembering to replace the KeyName
 parameter to match your own key’s:
$ aws cloudformation create-stack --region us-east-1 --stack-name puppet_stack \
 --template-body file://puppet_stack.json \
 --parameters ParameterKey=AMI,ParameterValue=ami-43a15f3e \
 ParameterKey=KeyName,ParameterValue=federico
{
 "StackId": "arn:aws:cloudformation:us-east-1:740376006796:stack/puppet_stack/fdd3bed0-6838-11e8-aaa5-500c21792a35"
}
We used Ubuntu 16.04 “Xenial” in this example, but we will
 showcase this kind of stack with different OS choices throughout the
 chapter. Once the stack has been created, list the stack resources to
 find out the IP address and DNS names of the two instances:
$ aws cloudformation describe-stacks --stack-name puppet_stack | jq \
'.Stacks[0].Outputs[]'
{
 "OutputValue": "54.166.216.73",
 "OutputKey": "PuppetMasterIP",
 "Description": "Public IP of the Puppet master instance"
}
{
 "OutputValue": "54.175.109.196",
 "OutputKey": "PuppetClientIP",
 "Description": "Public IP of the Puppet client instance"
}
{
 "OutputValue": "ip-172-31-50-245.ec2.internal",
 "OutputKey": "PuppetClientPrivateDNS",
 "Description": "Private DNS of the Puppet client instance"
}
{
 "OutputValue": "ip-172-31-62-113.ec2.internal",
 "OutputKey": "PuppetMasterPrivateDNS",
 "Description": "Private DNS of the Puppet master instance"
}
Now we need to install the Puppet master and create the manifests
 that will install Nginx on the client and make sure it is running.
Log in to the Puppet master host with SSH and install the Puppet
 master package—this will also install the Puppet client package:
sudo apt update
sudo apt install --yes puppetmaster
sudo systemctl status puppetmaster
With the Puppet master installed, we can begin configuration. The
 following is a simple example of a site.pp file,
 which should be saved to /etc/puppet/manifests/site.pp:
node default {
 package { 'nginx':
 ensure => installed
 }
 service { 'nginx':
 ensure => running,
 require=> Package['nginx']
 }
 file { '/tmp/hello_world':
 ensure => present,
 content=> 'Hello, World!'
 }
}
This site.pp file uses the
 default node definition, so it will be applied to any client that
 connects to the server. It will install Nginx and create a text
 file.
Now we can move on to the client. Connect to the client instance
 with SSH and install the Puppet client package:
sudo apt update
sudo apt install --yes puppet
Once installed, Puppet will run every 30 minutes by default.
 Unfortunately, this will not work immediately—usually your Puppet master
 will have a more friendly DNS name such as
 puppet.example.com. Because we have not yet set up
 DNS for the Puppet master, we must use its AWS-supplied DNS name. We
 further restrict access to the Puppet master by limiting client access
 exclusively to its private DNS and corresponding IP address. Security
 concerns dictate this policy, which we implement through dedicated
 security groups.
Puppet uses a key-based system for security. This provides two
 levels of protection: it ensures that communications between the master
 and clients are encrypted, and it also makes sure that only authorized
 clients can connect to the Puppet master and retrieve the
 configuration.
When a Puppet client first connects to the master, it will create
 a key signing request on the Puppet master. An
 administrator must authorize this request by running puppet sign
 <hostname>, which
 signs the key and confirms that the client is allowed to connect and
 retrieve its manifests file.
On the client, we configure the Puppet client by editing the file
 /etc/puppet/puppet.conf to point to
 the master. Append the following line to the [main] section:
server = internal DNS name of master

 Now initialize the client by executing the following command:
$ sudo puppet agent --waitforcert 120 --test
Info: Creating a new SSL key for ip-172-31-50-245.ec2.internal
Info: Caching certificate for ca
Info: csr_attributes file loading from /home/ubuntu/.puppet/csr_attributes.yaml
Info: Creating a new SSL certificate request for ip-172-31-50-245.ec2.internal
Info: Certificate Request fingerprint (SHA256): 85:50:1D:FB:94:0F:50:0B:8B:3B:5E:20:70:B9:7C:62:87:D9:89:76:85:90:70:79:AA:42:99:A1:CA:E9:19:77
Info: Caching certificate for ca
This command tells Puppet that it should wait up to 120 seconds
 for the key to be signed on the master.
On the master, immediately list the waiting requests with this
 command:
$ sudo puppet cert list
 "ip-172-31-50-245.ec2.internal" (SHA256) 85:50:1D:FB:94:0F:50:0B:8B:3B:5E:20:70:B9:7C:62:87:D9:89:76:85:90:70:79:AA:42:99:A1:CA:E9:19:77
Sign the request, taking care to update the client’s hostname to
 match that listed:
$ sudo puppet cert sign ip-172-31-50-245.ec2.internal
Notice: Signed certificate request for ip-172-31-50-245.ec2.internal
Notice: Removing file Puppet::SSL::CertificateRequest ip-172-31-50-245.ec2.internal at '/var/lib/puppet/ssl/ca/requests/ip-172-31-50-245.ec2.internal.pem'
Once you sign the request on the master, Puppet is nearly ready to
 do its job. Enable the client and make it spring into action and begin
 applying the configuration:
$ sudo puppet agent --enable
$ sudo puppet agent --test
Info: Caching certificate_revocation_list for ca
Info: Retrieving plugin
Info: Caching catalog for ip-172-31-50-245.ec2.internal
Info: Applying configuration version '1471818168'
Notice: /Stage[main]/Main/Node[default]/Package[nginx]/ensure: ensure changed 'purged' to 'present'
Notice: /Stage[main]/Main/Node[default]/File[/tmp/hello_world]/ensure: created
Info: Creating state file /var/lib/puppet/state/state.yaml
Notice: Finished catalog run in 6.77 seconds
Once Puppet finishes, the client instance will have installed and
 started Nginx, which can be verified by checking that the Nginx service
 is running:
sudo systemctl status nginx
The text file will also have been created:
cat /tmp/hello_world
Auto Scaling and Autosign: Disabling Certificate
 Security
Puppet’s key-signing system is great when clients have a certain
 level of permanence, but when you are constantly creating and
 destroying hosts, it can become an impediment. Manually signing key
 requests is clearly not an option when combined with AWS Auto Scaling, which automatically launches instances in
 response to changes in required capacity.
Aware that this method of signing keys might not be suitable for
 all situations, Puppet makes it easy to disable it with a feature
 known as autosigning. This is done by populating
 the /etc/puppet/autosign.conf
 file with a list of hostnames for which autosigning is enabled—when these hosts connect to the
 Puppet master, key checking will be bypassed. Autosign can be enabled
 globally by using a wildcard (*) as the
 hostname.
Disabling security measures always involves a trade-off. It is
 our view that, as long as your Puppet master is sufficiently protected
 by security groups or firewalls, enabling autosigning is an acceptable
 risk. This is the only practical way of using Puppet in conjunction
 with Auto Scaling, and to a lesser extent EC2 as a whole.

This example uses only two types of Puppet resources: a service
 and a file. The Puppet Documentation site maintains a list of all
 available resource types on its Type
 Reference page.
Puppet is a very broad subject, covered in full detail in the
 recent Learning
 Puppet 4 by Jo Rhett (O’Reilly). Jo’s book is the most up-to-date tome
 covering Puppet, and the first to cover version 4 in depth.

Puppet and CloudFormation
The previous example shows how Puppet can make it easy to manage the
 configuration of EC2 instances. Previous chapters have shown how
 CloudFormation provides a similar function for provisioning EC2
 resources. What about the combination of the two?
Amazon has built some aspects of configuration directly into
 CloudFormation. In addition to creating EC2 instances, it can
 automatically install packages and run services on those instances after
 they have launched. This means there is quite a lot of overlap between
 Puppet and CloudFormation, which can sometimes lead to questions over
 which should be responsible for particular tasks. If CloudFormation can
 handle many of the tasks usually handled by Puppet, do you even need to
 use Puppet?
CloudFormation’s configuration management system works by
 embedding configuration data into the stack template, via the AWS::CloudFormation::Init
 metadata attribute, which can be specified when declaring EC2
 resources in stack templates. For example, this snippet would install the puppet-server package, using the Yum package
 manager:
"Resources": {
 "MyInstance": {
 "Type": "AWS::EC2::Instance",
 "Metadata" : {
 "AWS::CloudFormation::Init" : {
 "config" : {
 "packages" : {
 "yum": {
 "puppet-server": []
 }
 },
[truncated]
When the instance is launched, this metadata is parsed, and the
 required packages are installed. The metadata is parsed by the cfn-init
 script, which also performs the actual package installation.
 This script, developed by Amazon, is preinstalled on all Amazon Linux
 AMIs and is also available for installation on other operating
 systems.
Note
The cfn-init script is
 preinstalled on Amazon Linux AMIs, but can also be
 installed manually on most Linux operating systems. Amazon provides
 RPM packages (for RedHat-based systems, and source code for
 others).
cfn-init is short for
 CloudFormation initialization, which is a hint as
 to its purpose. It is executed during the instance’s boot process, at
 a similar point in time to when /etc/rc.local-like scripts are executed, by
 passing a shell script as user data to the instance.
The script is responsible for performing post-boot configuration
 of the instance. It queries the EC2 API to find out information about
 the CloudFormation stack it is part of—for example, it looks at
 the Metadata attribute for the
 instance, to see which software packages should be installed.
Remember that accessing the EC2 API requires the use of IAM
 credentials with permissions to query the API interface. Data such as
 tags and CloudFormation metadata is not directly available to the
 instance in the same way that user data is.

Because configuration information is contained within
 CloudFormation stack templates, it must be valid JSON. This means
 certain characters must be escaped, and strings can consist of only a
 single line (multiline strings can be created with the Fn::Join
 function).
Stack templates have a maximum size of 450 KB (50 KB when not
 using S3 to pass the template), which acts as a hard limit to how much
 configuration can be contained in a single stack. Nested
 stacks, though often less than convenient, may be a way to work
 around this limit.
Working around these limitations may make a dedicated
 configuration management tool like Puppet easier to work with, but that
 does not mean CloudFormation’s tools are redundant.
Note
Amazon maintains and supports its own Linux distribution, Amazon
 Linux, a derivative of Red Hat Enterprise Linux. Amazon Linux AMIs
 come preinstalled with a number of AWS tools, such as the latest
 versions of all command-line tools, and the cfn-init
 package.
More information is available on the Linux AMI
 page.

Combining CloudFormation and Puppet accomplishes the majority of
 the aims set out in the “Bootstrapping an Infrastructure” paper.
 CloudFormation can create the AWS resources that make up your
 infrastructure, and Puppet can configure the operating system and
 application.
Because both use text-based template files, everything can be
 stored in a version control system. By checking out a copy of your
 repository, you have absolutely everything you need to bootstrap your
 infrastructure to a running state.
To demonstrate a few of the CloudFormation configuration
 management features and see how they interact with Puppet, we will
 create an example stack that automatically installs and configures a
 Puppet master.
This can provide the base of an entirely bootstrapped
 infrastructure. Information describing both resources (EC2 instances)
 and application-level configuration is contained within a single stack
 template.
In this example we will be using the Amazon Linux AMI, which does
 not have Puppet baked in—that is, Puppet has not
 previously been installed when the instance launches. Instead, it will
 be installed by cfn-init when the
 instance has finished booting.
Example 4-2 shows a
 CloudFormation stack template that declares an EC2 instance resource and
 uses its metadata to install, configure, and run the Puppet master
 service. The template also includes some supplementary resources—the
 security groups required to access the SSH and Puppet services running
 on the instance.
The PuppetMasterGroup is a
 security group that will contain the Puppet master instance. It
 allows Puppet clients to access the master, and also allows SSH from
 anywhere so we can administer the instance.
Example 4-2. Puppet master CloudFormation stack
{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "Example Puppet master stack",
 "Parameters" : {
 "KeyName": {
 "Description" : "EC2 KeyPair name",
 "Type": "String",
 "MinLength": "1",
 "MaxLength": "255",
 "AllowedPattern" : "[\\x20-\\x7E]*",
 "ConstraintDescription" : "can contain only ASCII characters."
 },
 "AMI" : {
 "Description" : "AMI ID",
 "Type": "String"
 }
 },
 "Resources": {
 "CFNKeys": {[image: 1]
 "Type": "AWS::IAM::AccessKey",
 "Properties": {
 "UserName": {
 "Ref": "CFNInitUser"
 }
 }
 },
 "CFNInitUser": {
 "Type": "AWS::IAM::User",
 "Properties": {
 "Policies": [
 {
 "PolicyName": "AccessForCFNInit",
 "PolicyDocument": {
 "Statement": [
 {
 "Action": "cloudformation:DescribeStackResource",
 "Resource": "*",
 "Effect": "Allow"
 }
]
 }
 }
]
 }
 },
 "PuppetClientSecurityGroup": {[image: 2]
 "Type": "AWS::EC2::SecurityGroup",
 "Properties": {
 "SecurityGroupIngress": [
 {
 "ToPort": "22",
 "IpProtocol": "tcp",
 "CidrIp": "0.0.0.0/0",
 "FromPort": "22"
 }
],
 "GroupDescription": "Group for SSH access to Puppet clients"
 }
 },
 "PuppetMasterSecurityGroup": {[image: 3]
 "Type": "AWS::EC2::SecurityGroup",
 "Properties": {
 "SecurityGroupIngress": [
 {
 "ToPort": "8140",
 "IpProtocol": "tcp",
 "SourceSecurityGroupName": { "Ref": "PuppetClientSecurityGroup"},
 "FromPort": "8140"
 },
 {
 "ToPort": "22",
 "IpProtocol": "tcp",
 "CidrIp": "0.0.0.0/0",
 "FromPort": "22"
 }
],
 "GroupDescription": "Group for Puppet client to master communication"
 }
 },
 "PuppetMasterInstance": {
 "Type": "AWS::EC2::Instance",
 "Properties": {
 "UserData": {[image: 4]
 "Fn::Base64": {
 "Fn::Join": [
 "",
 [
 "#!/bin/bash\n",
 "/opt/aws/bin/cfn-init --region ", { "Ref": "AWS::Region" }, " -s ",
 { "Ref": "AWS::StackName" }, " -r PuppetMasterInstance ",
 " --access-key ", { "Ref": "CFNKeys" },
 " --secret-key ", { "Fn::GetAtt": ["CFNKeys", "SecretAccessKey"] }, "\n"
]
]
 }
 },
 "KeyName": { "Ref" : "KeyName" },
 "SecurityGroups": [
 {
 "Ref": "PuppetMasterSecurityGroup"
 }
],
 "InstanceType": "t2.micro",
 "ImageId": { "Ref" : "AMI" }[image: 5]
 },
 "Metadata": {
 "AWS::CloudFormation::Init": {
 "config": {
 "files": {[image: 6]
 "/etc/puppet/autosign.conf": {
 "content": "*.internal\n",
 "owner": "root",
 "group": "wheel",
 "mode": "100644"
 },
 "/etc/puppet/manifests/site.pp": {
 "content": "import \"nodes\"\n",
 "owner": "root",
 "group": "wheel",
 "mode": "100644"
 },
 "/etc/puppet/manifests/nodes.pp": {
 "content": {
 "Fn::Join": [
 "",
 [
 "node basenode {\n",
 " include cfn\n",
 " package { 'nginx':\n",
 " ensure => installed\n",
 " }\n",
 " service { 'nginx':\n",
 " ensure => running,\n",
 " require=> Package['nginx']\n",
 " }\n",
 "}\n",
 "node /^.*internal$/ inherits basenode {\n",
 "}\n"
]
]
 },
 "owner": "root",
 "group": "wheel",
 "mode": "100644"
 },
 "/etc/puppet/modules/cfn/lib/facter/cfn.rb": {
 "owner": "root",
 "source": "https://s3.amazonaws.com/cloudformation-examples/cfn-facter-plugin.rb",
 "group": "wheel",
 "mode": "100644"
 },
 "/etc/yum.repos.d/epel.repo": {
 "owner": "root",
 "source": "https://s3.amazonaws.com/cloudformation-examples/enable-epel-on-amazon-linux-ami",
 "group": "root",
 "mode": "000644"
 },
 "/etc/puppet/fileserver.conf": {
 "content": "[modules]\n allow *.internal\n",
 "owner": "root",
 "group": "wheel",
 "mode": "100644"
 },
 "/etc/puppet/puppet.conf": {
 "content": {[image: 7] [image: 8]
 "Fn::Join": [
 "",
 [
 "[main]\n",
 " logdir=/var/log/puppet\n",
 " rundir=/var/run/puppet\n",
 " ssldir=$vardir/ssl\n",
 " pluginsync=true\n",
 "[agent]\n",
 " classfile=$vardir/classes.txt\n",
 " localconfig=$vardir/localconfig\n"
]
]
 },
 "owner": "root",
 "group": "root",
 "mode": "000644"
 },
 "/etc/puppet/modules/cfn/manifests/init.pp": {
 "content": "class cfn {}",
 "owner": "root",
 "group": "wheel",
 "mode": "100644"
 }
 },
 "packages": {[image: 9]
 "rubygems": {
 "json": []
 },
 "yum": {
 "gcc": [],
 "rubygems": [],
 "ruby-devel": [],
 "make": [],
 "puppet-server": [],
 "puppet": []
 }
 },
 "services": {[image: 10]
 "sysvinit": {
 "puppetmaster": {
 "ensureRunning": "true",
 "enabled": "true"
 }
 }
 }
 }
 }
 }
 }
 },
 "Outputs": {[image: 11]
 "PuppetMasterPrivateDNS": {
 "Description": "Private DNS Name of PuppetMaster",
 "Value": {
 "Fn::GetAtt": ["PuppetMasterInstance", "PrivateDnsName"]
 }
 },
 "PuppetMasterPublicDNS": {
 "Description": "Public DNS Name of PuppetMaster",
 "Value": {
 "Fn::GetAtt": ["PuppetMasterInstance", "PublicDnsName"]
 }
 },
 "PuppetClientSecurityGroup": {
 "Description": "Name of the Puppet client Security Group",
 "Value": { "Ref" : "PuppetClientSecurityGroup" }
 }
 }
}

	[image: 1]
	Remember that cfn-init
 requires an IAM user with access to the EC2 API. The CFNKeys and CFNInitUser resources declare an IAM user
 with permissions to describe all CloudFormation stack resources, and
 also an IAM access key and secret. These credentials are passed to
 the Puppet master instance via user data. The same result could be
 achieved by using IAM roles.

	[image: 2]
	The PuppetClientGroup is a
 security group that will be populated with Puppet client instances.
 Any members of this group will be allowed to contact the Puppet
 master on TCP port 8140 (the default Puppet master port).

	[image: 3]
	The PuppetMasterGroup is a
 security group that will contain the Puppet master instance. It
 allows Puppet clients to access the master, and also allows SSH from
 anywhere so we can administer the instance.

	[image: 4]
	The User Data attribute for
 the instance is a Base64-encoded shell script. This script runs the
 cfn-init program, passing it some
 information about the stack that it is part of. This includes the
 EC2 region, the stack name, and the IAM access key and secret that
 will be used to query the EC2 API.
Because JSON does not support multiline strings, the Fn::Join function is used to create a
 multiline shell script.

	[image: 5]
	Find the latest ID for the Amazon Linux
 AMI—ami-6869aa05, built with Amazon Linux 2016.03, is a good
 choice at the time of writing. This value is passed as a parameter
 when creating the stack.

	[image: 6]
	Here is where the interesting part begins. Remember that the
 cfn-init script will retrieve
 this metadata after the instance has launched. The file’s Metadata attribute lists a number of files
 that will be created on the instance, along with information about
 the file’s user and group permissions.

	[image: 7]
	Files can be retrieved from remote sources such as web servers
 or S3. They will be downloaded when the instance launches. Basic
 HTTP authorization is supported.

	[image: 8]
	Alternatively, the content can be explicitly set, using the
 Fn::Join function to create
 multiline files.

	[image: 9]
	Software packages can be installed from multiple sources—this
 example shows some Ruby gems being installed, along with some
 packages from the Yum package manager.

	[image: 10]
	Finally, we specify that the Puppet master service should be
 enabled (i.e., it should start automatically when the instance
 boots) and running.

	[image: 11]
	The Outputs section makes
 it easier to retrieve information about the resources in your stack.
 Here, we are specifying that we want to access the private DNS name
 of the Puppet master instance and the name of the Puppet client
 security group.

Note
This example is based on Amazon’s
 documentation, which you can access for further information
 and additional examples of what can be done with Puppet and
 CloudFormation.

Create the stack with the command-line tools:
aws cloudformation create-stack --stack-name puppet-master --template-body \
 file://puppet_master_cloudformation.json \
 --region us-east-1 --capabilities CAPABILITY_IAM \
 --parameters ParameterKey=AMI,ParameterValue=ami-6869aa05 \
 ParameterKey=KeyName,ParameterValue=federico
Because this stack will create an IAM user, we need to add the
 --capabilities
 CAPABILITY_IAM option to the command. Without this
 setting, CloudFormation would refuse to create the IAM user.
 Capabilities are used to prevent some forms of privilege escalation,
 such as a malicious user creating an IAM policy granting access to
 resources that the user would not otherwise have access to.
Once the stack has been created, we can find out the Puppet
 master’s DNS name and the security group by querying the stack’s
 outputs:
aws cloudformation describe-stacks --stack-name puppet-master | jq \
'.Stacks[0].Outputs[]'
To verify that everything is working as expected, log in to the
 instance with SSH and check whether the puppetmaster service is running.
Warning
cfn-init halts client-side
 execution upon encountering the first error, but the default behavior
 of a stack is to rollback a failed initialization, decommissioning all
 stack resources. In order to more easily troubleshoot a problem, set
 DisableRollback in your create-stack calls (in the console, this is
 called Rollback on failure). This makes debugging
 a very linear process, but also a straightforward one. All support
 binaries are found under /opt/aws/bin/, and
 initialization is logged at /var/log/cfn-init.log
 and /var/log/cfn-init-cmd.log.

Now that we know the Puppet master is up and running, we can bring
 up a client to demonstrate it in action.
Example 4-3 shows a
 CloudFormation stack that declares a Puppet client instance. This
 instance, when launched, will connect to our Puppet master and retrieve
 its configuration—in this case, it will install Nginx on the
 client.
We will use two parameters—one for the Puppet master’s DNS name
 and one for the Puppet client security group. The parameters to this
 stack are the output of the previous stack.
Example 4-3. Puppet client CloudFormation stack
{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "Example Puppet client stack",
 "Parameters" : {[image: 1]
 "KeyName": {
 "Description" : "EC2 KeyPair name",
 "Type": "String",
 "MinLength": "1",
 "MaxLength": "255",
 "AllowedPattern" : "[\\x20-\\x7E]*",
 "ConstraintDescription" : "can contain only ASCII characters."
 },
 "AMI" : {
 "Description" : "AMI ID",
 "Type": "String"
 },
 "PuppetMasterDNS" : {
 "Description" : "Private DNS name of the Puppet master instance",
 "Type": "String"
 },
 "PuppetClientSecurityGroup" : {
 "Description" : "Name of the Puppet client Security Group",
 "Type": "String"
 }
 },

 "Resources": {
 "CFNKeys": {
 "Type": "AWS::IAM::AccessKey",
 "Properties": {
 "UserName": {
 "Ref": "CFNInitUser"
 }
 }
 },
 "CFNInitUser": {
 "Type": "AWS::IAM::User",
 "Properties": {
 "Policies": [
 {
 "PolicyName": "AccessForCFNInit",
 "PolicyDocument": {
 "Statement": [
 {
 "Action": "cloudformation:DescribeStackResource",
 "Resource": "*",
 "Effect": "Allow"
 }
]
 }
 }
]
 }
 },
 "PuppetClientInstance": {
 "Type": "AWS::EC2::Instance",
 "Properties": {
 "UserData": {[image: 2]
 "Fn::Base64": {
 "Fn::Join": [
 "",
 [
"#!/bin/bash\n",
"/opt/aws/bin/cfn-init --region ", { "Ref": "AWS::Region" }, " -s ",
{ "Ref": "AWS::StackName" }, " -r PuppetClientInstance ",
" --access-key ", { "Ref": "CFNKeys" },
" --secret-key ", { "Fn::GetAtt": ["CFNKeys", "SecretAccessKey"] }
]
]
 }
 },
 "KeyName": { "Ref" : "KeyName" },
 "SecurityGroups": [
 {
 "Ref": "PuppetClientSecurityGroup"
 }
],
 "InstanceType": "t2.micro",
 "ImageId": { "Ref" : "AMI" }
 },
 "Metadata": {
 "AWS::CloudFormation::Init": {
 "config": {
 "files": {
 "/etc/puppet/puppet.conf": {
 "content": {
 "Fn::Join": [
 "",
 [
 "[main]\n",
 " server=", { "Ref": "PuppetMasterDNS" }, "\n",
 " logdir=/var/log/puppet\n",
 " rundir=/var/run/puppet\n",
 " ssldir=$vardir/ssl\n",
 " pluginsync=true\n",
 "[agent]\n",
 " classfile=$vardir/classes.txt\n",
 " localconfig=$vardir/localconfig\n"
]
]
 },
 "owner": "root",
 "group": "root",
 "mode": "000644"
 }
 },
 "packages": {[image: 3]
 "rubygems": {
 "json": []
 },
 "yum": {
 "gcc": [],
 "rubygems": [],
 "ruby-devel": [],
 "make": [],
 "puppet": []
 }
 },
 "services": {[image: 4]
 "sysvinit": {
 "puppet": {
 "ensureRunning": "true",
 "enabled": "true"
 }
 }
 }
 }
 }
 }
 }
 },
 "Outputs" : {
 "PuppetClientIP" : {
 "Description" : "Public IP of the Puppet client instance",
 "Value" : { "Fn::GetAtt" : ["PuppetClientInstance", "PublicIp"] }
 },
 "PuppetClientPrivateDNS" : {
 "Description" : "Private DNS of the Puppet client instance",
 "Value" : { "Fn::GetAtt" : ["PuppetMasterInstance", "PrivateDnsName"] }
 }
 }
}

	[image: 1]
	The parameters define values that can be specified by the user
 when the stack is launched. If a value is not specified, the default
 is used. If no default is set, attempting to create the stack
 without specifying a value will result in an error message.

	[image: 2]
	The user data for this instance is the same as in the previous
 example: run cfn-init, and let it
 configure the instance according to the Metadata attributes.

	[image: 3]
	We need to install only the Puppet package, as Puppet master
 is not required on clients.

	[image: 4]
	Finally, we start the Puppet agent, which will periodically
 connect to the master and retrieve its configuration.

Because this stack uses parameters, creating it requires a
 slightly different invocation of the command-line tools. We need to pass
 the output of the previous stack as parameters, like
 so:
aws cloudformation create-stack --stack-name puppet-client --template-body \
 file://puppet_client_cloudformation.json \
 --region us-east-1 --capabilities CAPABILITY_IAM \
 --parameters ParameterKey=AMI,ParameterValue=ami-6869aa05 \
 ParameterKey=KeyName,ParameterValue=federico \
 ParameterKey=PuppetMasterDNS,ParameterValue=ip-172-31-48-10.ec2.internal \
 ParameterKey=PuppetClientSecurityGroup,ParameterValue=puppet-master-PuppetClientSecurityGroup-YI5PIW673C1N
Once the stack has been created, we can log in to the client
 instance and check its status. Remember, it takes a few minutes for
 Puppet to run, so if you log in to the instance immediately after it
 finishes booting, the Puppet run might still be in progress. Puppet will
 write its logs to /var/log/puppet/,
 so check this location first if you need to troubleshoot.
Consider what this example achieves, in the context of the
 “Bootstrapping an Infrastructure” paper. We have deployed a fully
 automated Puppet master, which did not require any manual configuration
 whatsoever. Once that was running, we used it to bootstrap the rest of
 the environment—again, without any manual configuration.
If your CloudFormation stacks are stored in (for example) GitHub,
 your disaster recovery plan can be summarized in four steps:
	Check out your GitHub repository.

	Install the AWS command-line tools.

	Launch the Puppet master stack.

	Launch the Puppet client stack.

This is incredibly easy to document, and the steps can be followed
 without requiring expertise in Puppet (or indeed, Nginx).
There are a few deficiencies in this workflow that make it
 somewhat inconvenient to use in production. For example, if your Puppet
 master’s DNS name changes—which will happen if the instance is stopped
 and restarted, or terminated and replaced with a new instance—you will
 need to delete and re-create your Puppet client stack to pick up the new
 changes. This is clearly suboptimal—as we improve on this stack through
 the rest of the book, we will look at ways to make this easier to use in
 production. To solve the “changing DNS name” problem, we will use Route
 53 to automatically assign DNS names to our instances, so our Puppet
 master will always be reachable at
 puppet.example.com.
Another potential improvement is in how files are created on the
 instance. The Puppet master stack demonstrates two methods: pulling
 files from HTTP sites and explicitly defining the content in the stack
 template. There are other options available, such as retrieving files
 from an S3 bucket.
It is worth noting that there is nothing specific to Puppet in
 this example. The same concept could be used to bootstrap any
 configuration management software, such as Chef or Ansible, or indeed
 any software package that can be installed with Apt, Yum, Ruby gems, pip,
 or any other package manager supported by CloudFormation.
There is a lot of overlap between CloudFormation and configuration
 management tools. While it would technically be possible to replace most
 of Puppet’s core features with CloudFormation, it would be a lot less
 convenient than using a dedicated configuration management tool. If your
 instance configuration is very simple, CloudFormation might suffice on
 its own—we find it simpler to put configuration management in place from
 the beginning.

User Data and Tags
AWS provides two built-in mechanisms to provide data to your EC2 instances:
 user data and tags. User data is supplied to the instance at launch time
 and cannot be changed without restarting the instance. Tags are more
 flexible—these key/value pairs can be changed at any point during the
 instance’s lifecycle.
Both of these methods can be used to provide data to your EC2
 instances, which can then be used by your scripts and applications.
 These building blocks enable several useful features. For example, you
 can create an AMI that can perform two roles (e.g., running a web server
 or a database, but not both). When launching an instance from this AMI,
 you could set a role=web or role=dbms tag. The launch scripts on the AMI
 would read this tag and know whether it should start Nginx or
 PostgreSQL.
Before the introduction of tags, it was necessary to build your
 own inventory storage system if you wanted to keep track of particular
 details about your instances. With tags, EC2 is itself its own inventory
 system. While user data is available only within an individual EC2
 instance, tags can be queried externally by any party with authorized
 API access.
Tags and user data—and the differences between them—are described
 in more detail in “Mapping Instances to Roles”. For
 now, it is worth knowing that we can use tags both within EC2 instances
 and from applications running outside AWS, a kind of inventory
 management system that stores metadata for each instance.
CloudFormation also uses tags. For example, when an EC2 instance is created as part
 of a CloudFormation stack, it is automatically tagged with the name and
 ID of the CloudFormation stack to which it belongs.
In relation to configuration management tools, tags and user data
 are both extremely useful features. Through the use of Facter
 plug-ins (which gather additional information about your systems),
 Puppet is able to access user data and tags and use them as standard
 variables in its configuration manifests.
Note
CloudFormation is most commonly used as a boot-time
 configuration tool—something reflected in its general design. However,
 the availability of the cfn-hup helper daemon overturns this assumption: cfn-hup monitors resource metadata for
 changes, and applies any new client-side configuration when necessary.
 The stack template of a running stack can be updated with the update-stack
 CLI command.

Typically, Puppet uses the hostname of the instance to decide
 which configuration should be applied. Because EC2 instances have
 autogenerated hostnames, this is not immediately useful. One way to work
 around this problem is to use user data to control which configuration
 should be applied. We will do this by providing JSON-formatted user data
 that can be read by Puppet.
To begin, launch a new Ubuntu instance—we will use 14.04 “Trusty”
 this time, with the following user data:
{"role": "web"}

 This is a JSON-formatted string simply containing a role=web key/value pair:
$ aws ec2 run-instances --image-id ami-c80b0aa2 --region us-east-1 \
 --key federico --security-groups ssh --instance-type t2.micro \
 --user-data '{"role": "web"}' --output text
740376006796	r-453484fb
INSTANCES	0	x86_64		False	xen	ami-c80b0aa2	i-4f5f827e	t2.micro	federico	2016-08-29T11:37:54.000Z	ip-172-31-54-180.ec2.internal	172.31.54.180		/dev/sda1	ebs	True		subnet-2a45b400	hvm	vpc-934935f7
[output truncated]
Once the instance has launched, you can verify the user data has
 reached the instance by logging in and running the ec2metadata
 command:
$ ec2metadata
ami-id: ami-c80b0aa2
ami-launch-index: 0
ami-manifest-path: (unknown)
ancestor-ami-ids: unavailable
availability-zone: us-east-1a
block-device-mapping: ami
ephemeral0
ephemeral1
root
instance-action: none
instance-id: i-4f5f827e
instance-type: t2.micro
local-hostname: ip-172-31-54-180.ec2.internal
local-ipv4: 172.31.54.180
kernel-id: unavailable
mac: unavailable
profile: default-hvm
product-codes: unavailable
public-hostname: ec2-54-208-246-122.compute-1.amazonaws.com
public-ipv4: 54.208.246.122
public-keys: ['ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEA83H2O96JIchWxmFMITAfQ4mgfgP4CgF2mZteBdwHnWVgiMlzwnL/zfAoAUeKCgFZ+H5L2qxv3aERoipnFwUVI1Y0Ym7IjWs+CgadDMsfJr1MsitFdLhRTu8D8kYg4E32FeKn4ZNJN/QxANj15bNDZ2XYTE1v/0QWSorao0NQv7bK/anN7IuPtfPjbhXwTLVVbHSG5SErIMSqVbksj0r1pzjnBxAmmeXdHHmQV889oMsHEpvWFroGIRsTopYmVe7H8d2+P6lZgkz3WrDCOdoGwTWvbnfNHonYvE0wSQro/nEa1b7OB3i23tLzque7Z0PdUPKvg48JaLSEBiL6ydLCyw== federico']
ramdisk-id: unavailable
reserveration-id: unavailable
security-groups: ssh
user-data: {"role": "web"}
We install Puppet and its stdlib library from the upstream Puppet repositories,
 as we need a newer version of Facter than what is included in Ubuntu
 14.04 for our code to work correctly. Using Trusty in this run enables
 us to illustrate how to work with packages not part of the default
 repositories—these steps are not required if you use Xenial or Bionic
 instead, which carry newer versions of Facter in their repositories (see
 Example 4-4).
Example 4-4. Installing Puppet’s upstream release
wget --quiet http://apt.puppet.com/puppetlabs-release-trusty.deb
sudo dpkg -i puppetlabs-release-trusty.deb
sudo apt update
Should not be installed, but just in case we caught you using an old instance...
sudo apt remove --yes puppet puppet-common
Install latest version of puppet from PuppetLabs repo
sudo apt install --yes puppet facter -t trusty
#install the stdlib module
sudo puppet module install puppetlabs-stdlib
rm puppetlabs-release-trusty.deb

Now create a new file /etc/puppet/manifests/site.pp with the
 contents shown in Example 4-5.
Example 4-5. Puppet and user data
require stdlib

node default {

 $userdata = parsejson($ec2_userdata)

 $role = $userdata['role']

 case $role {
 "web": {
 require my_web_module
 }
 "db": {
 require my_database_module
 }
 default: { fail("Unrecognised role: $role") }
 }

}

 This file is responsible for changing the behavior of
 Puppet so that it ignores the hostname of the instance and instead looks
 at the user data. node default
 indicates that the following configuration should be applied to all
 nodes, regardless of their hostname. We then use the parsejson function
 to read the EC2 user data string into a Puppet variable. Finally, we
 include a different module depending on the value of the $role variable.
You could proceed with running this example by executing puppet apply /etc/puppet/manifests/site.pp.
 Because we have not yet created a my_web_module, Puppet will fail. However, it
 will fail with an error that my_web_module could not be found,
 demonstrating that our underlying theory is indeed working as
 planned:
$ facter --version
2.4.6
$ puppet apply /etc/puppet/manifests/site.pp
Error: Could not find class my_web_module for ip-172-31-54-180.ec2.internal on node ip-172-31-54-180.ec2.internal
Error: Could not find class my_web_module for ip-172-31-54-180.ec2.internal on node ip-172-31-54-180.ec2.internal
In the following section, we will use tags to look up instances
 based on the role they are tagged with and then execute shell scripts on
 the returned instances.

Executing Tasks with Fabric
The standard way to run Puppet is to allow the clients to contact the master
 according to a regular schedule, either using Puppet’s internal
 scheduling (when running as a daemon) or a tool such as cron. This lets
 you make changes on the central Puppet server, knowing that they will
 eventually propagate out to your instances.
Sometimes, it can be useful to take more control over the process
 and run Puppet only when you know there are changes you would like to
 apply. To take a common example, let’s say you have a cluster of Nginx
 web servers behind an Elastic Load Balancer, and you would like to
 deploy a configuration change that will cause Nginx to restart. Allowing
 Puppet to run on all instances at the same time would restart all of
 your Nginx servers at the same time, leaving you with zero functional
 web servers for a brief period.
In this case, it would be better to run Puppet on a few instances
 at a time, so that there are always enough running Nginx instances to
 service incoming requests.
In some cases, it is necessary to do additional work either before
 or after a Puppet run. Continuing with the example of web servers behind
 an Elastic Load Balancer—if you just need to restart Nginx, it is
 sufficient to leave the machine in service (active)
 while Puppet runs, as Nginx will not take a long time to restart. But
 what if you need to perform an operation that might take a few minutes?
 In this rolling-update scenario, you will need to remove the instance
 from the ELB, update it, and then return it to service—not something
 easily achieved with Puppet alone.
Several tools are dedicated to simplifying the task of running
 commands on groups of servers. Fabric is particularly flexible when it
 comes to working with EC2 instances and traditional hardware alike, and
 we will use it for the following examples.
Fabric is a Python tool used to automate
 system administration tasks. It provides a basic set of operations (such
 as executing commands and transferring files) that can be combined with
 some custom logic to build powerful and flexible deployment systems, or
 simply make it easier to perform routine tasks on groups of servers or
 EC2 instances. Because Boto is also Python-based, we can use it to
 quickly integrate with AWS services.
Tasks are defined by writing Python functions, which are usually
 stored in a file named fabfile.py.
 These functions use Fabric’s Python API to perform actions on remote
 hosts. Here is a simple example of a Fabric file supplied by
 fabfile.org:
from fabric.api import run

def host_type():
 run('uname -s')
The host_type task can be
 executed on numerous servers. For example:
$ fab -H localhost,linuxbox host_type
[localhost] run: uname -s
[localhost] out: Darwin
[linuxbox] run: uname -s
[linuxbox] out: Linux

Done.
Disconnecting from localhost... done.
Disconnecting from linuxbox... done.
Fabric understands the concept of roles—collections of servers,
 grouped by the role they perform (or some other factor). Using roles, we
 can easily do things like running Task A on all web servers, followed by
 Task B on all database servers.
Roles are typically defined in your Fabric file as a static
 collection of roles and the hostnames of their members. However, they
 can also be created dynamically by executing Python functions, which
 means roles can be populated by querying the AWS API with Boto. This
 means we can execute Task A on all EC2 instances tagged with role=webserver, without needing to keep track
 of a list of instances.
To demonstrate this, we will launch an instance and then use
 Fabric to execute commands on that host.
Mike has written a small Python package containing a helper
 function that makes it easy to look up EC2 instances using tags. It is
 used in the following example and can be downloaded from GitHub.
Begin by installing Fabric and the helper library as
 follows:
pip install fabric
sudo apt install git --yes
pip install git+git://github.com/mikery/fabric-ec2.git
 Using
 the Management Console or command-line tools, launch a t2.micro EC2 instance and provide it with some
 EC2 tags. For this example, we will use two
 tags—staging:true and
 role:web:
aws ec2 create-tags --resources i-3b20870a --tags Key=role,Value=web \
 Key=staging,Value=true
While the instance is launching, create a file named fabfile.py, which will store our Fabric tasks
 and configuration. You could also give it another name, but you will
 need to pass this as an option when executing Fabric—for example,
 fab --fabfile=/some/file.py. The file
 should contain the following contents:
from fabric.api import run, sudo, env
from fabric_ec2 import EC2TagManager

def configure_roles():
 """ Set up the Fabric env.roledefs, using the correct roles for the given environment
 """
 tags = EC2TagManager(common_tags={'staging': 'true'})

 roles = {}
 for role in ['web', 'db']:
 roles[role] = tags.get_instances(role=role)

 return roles

env.roledefs = configure_roles()

def hostname():
 run('hostname')
 Once the instance has launched, the
 Fabric task can be executed thus:
$ fab -u ubuntu hostname --roles web
[ec2-54-161-199-160.compute-1.amazonaws.com] Executing task 'hostname'
[ec2-54-161-199-160.compute-1.amazonaws.com] run: hostname
[ec2-54-161-199-160.compute-1.amazonaws.com] out: ip-172-31-62-71
[ec2-54-161-199-160.compute-1.amazonaws.com] out:

Done.
Disconnecting from ec2-54-161-199-160.compute-1.amazonaws.com... done.

 Fabric will use the EC2 API to find the hostname of any instances that
 match the tag query and then perform the requested task on each of them.
 In our example case, it will have found only our single test
 instance.
With this in place, you have a simple way of running
 tasks—including applying Puppet manifests—selectively across your
 infrastructure. Fabric provides an excellent base for automating your
 deployment and orchestration processes.
Because tasks are just Python functions, they can be used to do
 helpful things. Before deploying to a web server instance, Fabric can
 first remove it from an ELB and wait for live traffic to stop hitting
 the instance before it is updated.

Masterless Puppet
So far, we have been working with Puppet in the typical master/client topology.
 This is the most common way to run Puppet, especially when working with
 physical hardware, outside of a cloud environment.
Puppet has another mode of operation, which does not require a
 master server: in local mode, where the client is
 responsible for applying its own configuration rather than relying on a
 master server.
There are two key reasons that make this useful when working with
 AWS.
The first is availability. When Puppet runs during the instance
 boot process, it becomes a core part of your infrastructure. If the
 Puppet master is unavailable, Auto Scaling will not work properly, and
 your application might become unavailable. Although you can deploy a
 cluster of Puppet masters to increase resilience to failures and load,
 it can be simply easier to remove it from the equation.
The second reason relates to Auto Scaling. Given that AWS can
 launch new instances in response to changing factors such as traffic
 levels, we cannot predict when new instances will be launched. In
 environments where large numbers of instances are launched
 simultaneously, it is possible to overwhelm the Puppet master, leading
 to delays in auto scaling or even instances that fail to launch properly
 as Puppet is never able to complete its configuration run.
When operating in local mode, an instance is more self-contained:
 it does not rely on an operational Puppet master in order to become
 operational itself. As a result, you have one less single point of
 failure within your infrastructure.
As always, there is a trade-off to be considered—there’s no such
 thing as a free lunch, after all. A number of useful features rely on a
 master/client setup, so moving to a masterless topology means these
 features are no longer available. These include things like Puppet
 Dashboard, which provides an automatically populated inventory
 based on data supplied by clients, and exported
 resources.
In practical terms, applying a configuration without a Puppet
 master is simply a case of executing the following:
puppet apply /etc/puppet/manifests/site.pp
This will trigger the usual Puppet logic, where the node’s
 hostname is used to control which configuration will be applied. It is
 also possible to apply a specific manifest:
puppet apply /etc/puppet/modules/mymodule/manifests/site.pp
This does mean that the Puppet manifests must be stored on every
 instance, which can be achieved in various ways. They can be baked into
 the AMI if they do not change frequently, or deployed alongside your
 application code if they do.
We can use a modified version of Example 4-3 to create a CloudFormation
 stack with embedded Puppet manifests. Example 4-6 shows the
 updated stack template.
Example 4-6. Masterless Puppet CloudFormation stack
{
 "AWSTemplateFormatVersion" : "2010-09-09",
 "Description": "Example Puppet masterless stack",
 "Parameters" : {
 "KeyName": {
 "Description" : "EC2 KeyPair name",
 "Type": "String",
 "MinLength": "1",
 "MaxLength": "255",
 "AllowedPattern" : "[\\x20-\\x7E]*",
 "ConstraintDescription" : "can contain only ASCII characters."
 },
 "AMI" : {
 "Description" : "AMI ID",
 "Type": "String"
 }
 },
 "Resources" : {
 "CFNKeys": {
 "Type": "AWS::IAM::AccessKey",
 "Properties": {
 "UserName": {
 "Ref": "CFNInitUser"
 }
 }
 },
 "CFNInitUser": {
 "Type": "AWS::IAM::User",
 "Properties": {
 "Policies": [
 {
 "PolicyName": "AccessForCFNInit",
 "PolicyDocument": {
 "Statement": [
 {
 "Action": "cloudformation:DescribeStackResource",
 "Resource": "*",
 "Effect": "Allow"
 }
]
 }
 }
]
 }
 },
 "NginxInstance" : {
 "Type" : "AWS::EC2::Instance",
 "Metadata" : {
 "AWS::CloudFormation::Init" : {
 "config" : {
 "packages" : {
 "yum" : {
 "puppet" : [],
 "ruby-devel" : [],
 "gcc" : [],
 "make" : [],
 "rubygems" : []
 },
 "rubygems" : {
 "json" : []
 }
 },
 "files" : {
 "/etc/yum.repos.d/epel.repo" : {
 "source" : "https://s3.amazonaws.com/cloudformation-examples/enable-epel-on-amazon-linux-ami",
 "mode" : "000644",
 "owner" : "root",
 "group" : "root"
 },
 "/etc/puppet/autosign.conf" : {
 "content" : "*.internal\n",
 "mode" : "100644",
 "owner" : "root",
 "group" : "wheel"
 },
 "/etc/puppet/puppet.conf" : {
 "content" : { "Fn::Join" : ["", [
 "[main]\n",
 " logdir=/var/log/puppet\n",
 " rundir=/var/run/puppet\n",
 " ssldir=$vardir/ssl\n",
 " pluginsync=true\n",
 "[agent]\n",
 " classfile=$vardir/classes.txt\n",
 " localconfig=$vardir/localconfig\n"]] },
 "mode" : "000644",
 "owner" : "root",
 "group" : "root"
 },
 "/etc/puppet/manifests/site.pp" : {
 "content" : { "Fn::Join" : ["", [
 "node basenode {\n",
 " package { 'nginx':\n",
 " ensure => present\n",
 " }\n\n",
 " service { 'nginx':\n",
 " ensure => running,\n",
 " require=> Package['nginx']\n",
 " }\n",
 "}\n",
 "node /^.*internal$/ inherits basenode {\n",
 "}\n"
]]
 }
 },
 "mode" : "100644",
 "owner" : "root",
 "group" : "wheel"
 }
 }
 }
 },
 "Properties" : {
 "InstanceType" : "t2.micro",
 "SecurityGroups" : [{ "Ref" : "NginxGroup" }],
 "KeyName": { "Ref" : "KeyName" },
 "ImageId": { "Ref" : "AMI" },
 "UserData" : { "Fn::Base64" : { "Fn::Join" : ["", [
"#!/bin/bash\n",
"/opt/aws/bin/cfn-init --region ", { "Ref" : "AWS::Region" },
" -s ", { "Ref" : "AWS::StackName" }, " -r NginxInstance ",
" --access-key ", { "Ref" : "CFNKeys" },
" --secret-key ", { "Fn::GetAtt" : ["CFNKeys", "SecretAccessKey"]}, "\n",
"/usr/bin/puppet apply /etc/puppet/manifests/site.pp", "\n"]]}}
 }
 },
 "NginxGroup" : {
 "Type" : "AWS::EC2::SecurityGroup",
 "Properties" : {
 "SecurityGroupIngress": [
 {
 "ToPort": "22",
 "IpProtocol": "tcp",
 "CidrIp": "0.0.0.0/0",
 "FromPort": "22"
 }
],
 "GroupDescription" : "Security Group for managed Nginx"
 }
 }
 },
 "Outputs" : {
 "NginxDNSName" : {
 "Value" : { "Fn::GetAtt" : ["NginxInstance", "PublicDnsName"] },
 "Description" : "DNS Name of Nginx managed instance"
 }
 }
}

The CloudFormation metadata on the NginxInstance resource ensures that the Puppet
 client package is installed, but that the Puppet agent service is not
 running. If it were, it would be regularly trying to connect to a
 nonexistent Puppet master.
The metadata also declares the Puppet configuration files that
 will be created on the instance. In this example, /etc/puppet/manifests/sites.pp contains a
 basic manifest that installs the Nginx web server package and ensures it
 is running.
One of the properties, UserData, contains a
 script that runs puppet apply when the instance
 launches, applying the configuration manifest stored in
 site.pp.
Creating this stack will launch an EC2 instance that automatically
 installs and runs Nginx, without any reliance on a Puppet master.
 Although the Puppet manifests used in the example were basic, they can
 be expanded upon to build a more complicated infrastructure.
For more information about running Puppet in standalone mode, and
 other ways of scaling Puppet, see Puppet’s
 documentation.

Building AMIs with Packer
AMI creation is a tedious process that should be automated as soon as
 possible. Making AMIs manually is slow and error prone, and installing the
 same packages over and over will soon get tiresome, making some type of
 configuration management tool a necessity.
This section presents some ways to automate the process of
 developing and building AMIs.
When starting out with AWS, a lot of people use a simple workflow
 for creating AMIs: launch an instance, manually install packages and edit
 configuration files, and then create an AMI (version 1).
To change the AMI, the same process is followed: launch the current
 version of the AMI, make some configuration changes, and then create a new
 AMI (version 2).
This is all well and good for getting up and running quickly, but by
 the time you reach version 10, you have a problem on your hands. Unless
 you have been meticulously documenting the changes you have made,
 repeating this process will be difficult. You will have no changelog
 describing what was changed when, why, and by whom.
This trap should be avoided as soon as possible. You should always
 use a configuration management tool to help create AMIs so that the
 process can be easily automated. Automating this process means you can
 release changes faster, without wasting time manually creating
 AMIs.
HashiCorp’s Packer is a tool
 for automating the process of creating machine images. It can use various
 configuration management tools—including Chef, Puppet, and Salt—to create
 images for several platforms, including AWS. Where AMIs are concerned, we
 already discussed SUSE studio as the interactive tool
 of choice, while Packer is by far the most widely preferred automation
 option.
Packer automates the following processes:
	Launching a new EC2 instance

	Applying a configuration

	Creating an AMI

	Adding tags to the AMI

	Terminating the instance

 Once configured, these processes can be performed with a
 single command. Integrating Packer with continuous integration tools such
 as Jenkins means you can completely automate the process of creating new
 AMIs and perhaps release newly created AMIs into your staging environment
 automatically.
We will use Packer to build an AMI with Nginx installed. Nginx will
 be installed by Puppet, demonstrating how to use configuration management
 tools in combination with Packer.
Begin by installing Packer according to its installation
 instructions. Packer 0.10.1 ships as a single compressed binary on
 its developer’s site:
wget https://releases.hashicorp.com/packer/0.10.1/packer_0.10.1_linux_amd64.zip
unzip packer_0.10.1_linux_amd64.zip
Once Packer has been installed in your path, create a new directory
 to work in, containing the subdirectories required for the Puppet manifest
 files:
mkdir packer_example
cd packer_example
mkdir -p puppet/{manifests,modules/nginx/manifests}
Create a file named puppet/manifests/site.pp with the following
 contents:
node default {
 require nginx
}
 This will instruct Puppet to apply the Nginx class to any
 node using this configuration. Next, create a file named puppet/modules/nginx/manifests/init.pp with the
 following contents:
class nginx {
 package { 'nginx':
 ensure => present
 }

 service { 'nginx':
 ensure => running
 }
}
 This is a riff on the theme of our previous manifests,
 accomplishing the same outcome but using Puppet classes for variety. There
 are no virtual hosts configured, so Nginx will just display the default
 welcome page as configured on your operating system.
In this example, we will be using Ubuntu 14.04. We already
 demonstrated the use of newer builds than those available in Trusty’s
 repositories in the Ubuntu Archive to sidestep some bugs in Facter’s EC2
 user data parsing, and we want to maintain this capability. We will use a
 shell script to add Puppet Lab’s apt repository and
 install the most recent version of Puppet.
Create a file named install_puppet.sh in our example’s directory,
 containing the same code used in Example 4-4.
We can now move on to the Packer configuration.
It is important to understand two Packer concepts for this
 section:
	Provisioners
	These control which tools will be used to configure the image—for example, Puppet or
 Chef. Multiple provisioners can be specified in the Packer
 configuration, and they will each be run sequentially.

	Builders
	These are the outputs of Packer. In our case, we are building an
 AMI. You could also build images for VMware, OpenStack, VirtualBox,
 and other platforms. By using multiple builders with the same
 provisioner configuration, it is possible to create identical
 virtual machines across multiple cloud environments.

Example 4-7 shows the configuration file we
 will use to build our example AMI.
Example 4-7. Packer example
{
 "variables": {
 "aws_access_key": "",
 "aws_secret_key": ""
 },
 "provisioners": [
 {
 "type": "shell",
 "script": "install_puppet.sh"
 },
 { "type": "puppet-masterless",
 "manifest_file": "puppet/manifests/site.pp",
 "module_paths": ["puppet/modules"]
 }
],
 "builders": [{
 "type": "amazon-ebs",
 "access_key": "",
 "secret_key": "",
 "region": "us-east-1",
 "source_ami": "ami-c80b0aa2",
 "instance_type": "t2.small",
 "ssh_username": "ubuntu",
 "ami_name": "my-packer-example-",
 "associate_public_ip_address": true
 }]
}

 In the provisioners
 section, we have our two provisioners: first Packer will run the shell
 script to install Puppet, and then it will use the puppet-masterless provisioner to apply the
 Puppet manifests.
Next, we have the builders
 section, which contains a single builder object. This contains the
 information Packer needs to launch an EC2 instance and begin configuring
 it using the provisioners.
Applying the Puppet configuration to a vanilla installation of the
 operating system ensures that the instance can be re-created from scratch
 if necessary. It also ensures that everything required to configure the
 instance is contained within Puppet’s configuration, as any manual changes
 will be removed the next time the image is made.
The variables section provides
 your AWS credentials to Packer. If these are not hardcoded in the
 configuration file, Packer will attempt to retrieve the credentials from
 the AWS_ACCESS_KEY_ID and
 AWS_SECRET_ACCESS_KEY environment
 variables or the local ~/.aws/credentials
 file.
Save the Packer configuration file to packer_image.json, after changing the region and source_ami parameters if desired.
First, we check and validate the configuration file, as Packer runs
 are too time consuming to be needlessly used as a debugging tool:
$ packer validate packer_image.json
Template validated successfully.
To create the AMI, execute Packer:
$ packer build packer_image.json
amazon-ebs output will be in this color.

==> amazon-ebs: Prevalidating AMI Name...
==> amazon-ebs: Inspecting the source AMI...
==> amazon-ebs: Creating temporary keypair: packer 57cb368f-1381-3d49-e634-764b35662582
==> amazon-ebs: Creating temporary security group for this instance...
==> amazon-ebs: Authorizing access to port 22 the temporary security group...
==> amazon-ebs: Launching a source AWS instance...
 amazon-ebs: Instance ID: i-a6844bbe
==> amazon-ebs: Waiting for instance (i-a6844bbe) to become ready...
==> amazon-ebs: Waiting for SSH to become available...
==> amazon-ebs: Connected to SSH!
==> amazon-ebs: Provisioning with shell script: install_puppet.sh
...
[output truncated]
...
 amazon-ebs: Notice: Finished catalog run in 8.91 seconds
==> amazon-ebs: Stopping the source instance...
==> amazon-ebs: Waiting for the instance to stop...
==> amazon-ebs: Creating the AMI: my-packer-example-1472935567
 amazon-ebs: AMI: ami-6a5d367d
==> amazon-ebs: Waiting for AMI to become ready...
==> amazon-ebs: Terminating the source AWS instance...
==> amazon-ebs: Cleaning up any extra volumes...
==> amazon-ebs: No volumes to clean up, skipping
==> amazon-ebs: Deleting temporary security group...
==> amazon-ebs: Deleting temporary keypair...
Build 'amazon-ebs' finished.

==> Builds finished. The artifacts of successful builds are:
--> amazon-ebs: AMIs were created:

us-east-1: ami-6a5d367d
Packer is quite verbose in its output, so you can follow through as
 it launches the EC2 instance, runs the shell script, runs Puppet, and
 finally creates the AMI. In a successful run, the ID of the newly minted
 AMI will be the closing result of Packer’s output.
Once Packer has finished, you can use the AWS Management Console to
 verify the existence of your new AMI. If you launch an instance of this
 image and connect to its public DNS name in your web browser, you will be
 greeted with the default Nginx welcome page.
This simple example demonstrates how Packer can be used to build
 AMIs. Packer can significantly reduce the amount of time you spend
 involved in the AMI building process, and just like our other automation
 examples, it enables you to entirely rebuild from scratch another key
 infrastructure component by using just a few files checked out of your
 trusted version controlsystem.

Automate All the Things
The Chef team successfully co-opted the “all the things” internet
 meme to summarize the philosophy of automation we subscribe to. Even if
 you are not already using configuration management tools, it takes little
 time to implement an automation strategy that readily pays for itself in
 saved time and mistakes avoided, to say nothing of cloud-native tasks that
 are simply ill-suited to manual, step-by-step execution. The AWS console
 is there to make us comfortable with the cloud environment and help us
 discover functionality, but it is really not the way AWS was meant to be
 used.

Chapter 5. An Example Application Stack
Because this book covers how to run a production application in AWS,
 it is useful to have an example application stack that can demonstrate the
 various principles and strategies introduced in later chapters. Therefore,
 this chapter describes how to plan an application deployment and gradually
 builds up a working application using AWS components. As the chapter
 progresses, we will create Puppet manifests and a CloudFormation stack
 template that, when combined, can be used to deploy the entire application
 as a single self-contained stack.
By the end of this chapter, you will have a web-based application
 running in AWS, provisioned using CloudFormation and Puppet. This
 application consists of multiple services: a web application, a background
 task-processing service, a database, and a caching service.
This stack is something Mike has deployed many times, and is similar
 to those used by popular websites like Pinterest. You can, of course,
 replace the components we describe with your own application’s components.
 This chapter is concerned with general processes you must go through when
 planning a new application, rather than the specific technologies used in
 this stack.
Overview of Application Components
This example deploys a content management system (CMS). A CMS provides a GUI-based
 interface for bloggers, journalists, and others to create and update web
 pages without requiring knowledge of HTML or other markup
 languages.
The infrastructure required to operate a CMS (or indeed, most
 web-based applications) consists of these components:
	Component	Role
	Application layer
	Handle incoming HTTP requests

	Task-processing layer
	Perform scheduled and ad hoc application
 tasks

	Database layer
	Provide persistent storage

	Caching layer
	Provide temporary quick-access storage

We’ll build the infrastructure in this chapter using a combination
 of AWS services. The application and task-processing layers will be
 handled by EC2 instances. The database layer will use AWS RDS (a hosted
 database service), and the caching layer will use AWS ElastiCache.
The Web Application
We will use the open source Mezzanine
 CMS, which is based on Django, a Python web
 development framework. We chose Mezzanine because it provides a good
 compromise between ease of installation and customization: we get a
 working CMS out of the box, without having to spend too much time
 installing it.
The Mezzanine application will be served by the Nginx web server
 because it offers better performance than Mezzanine’s built-in HTTP
 server.

Database and Caching
This application requires database and caching servers, which usually means installing software
 such as MySQL or Memcache. Amazon provides services that act as
 replacements for these software packages. Instead of running your own
 MySQL database, you can use Amazon’s Relational Database Service (RDS).
Memcache can be replaced with ElastiCache, which is a
 protocol-compatible replacement: that is, any valid Memcache client will
 work with ElastiCache without any modification.
The point of this chapter is to get an application up and running,
 not to spend time installing and configuring software. Therefore, the
 example application stack will use RDS and ElastiCache instead of
 installing the corresponding standalone software packages.

Background Task Processing
Many applications require some form of background task processing. We want
 our websites to be as fast as possible from the user’s perspective, so
 waiting around for slow tasks to complete is not an option. Today’s web
 applications rarely live in isolation, and it is common for one website
 to interact with many others through the use of external API
 requests.
For example, your website might give users the opportunity to
 invite their friends from social networks such as Facebook or Twitter.
 This requires API requests to query these services for a list of the
 users’ friends, and to send out the invitations.
These API requests can take some time to complete, and making the
 user wait around until they do so does not make a good user experience.
 The best practice in this case is to move long-running tasks out of the
 HTTP request/response cycle and into a dedicated background processing
 application. This way, the tasks can be processed asynchronously. From
 the user’s perspective, the action is completed immediately, but, in
 fact, all the work happens in another process.
For blogs that accept comments from users, there is another
 popular use case for asynchronous task processing: anti-spam checks. We
 want to keep our blog’s comments spam-free, which means every new
 comment must be checked by an anti-spam service.
Our example blog will use background task processing to check
 posted comments for spam. For this application, we will use Celery, a distributed task
 queue application written in Python. Celery works extremely well
 with Django, and is the de facto standard task processing
 application for many Django and Python developers.
Celery works by sending messages between your application and the
 processes that are actually executing your task. It requires a message broker to store these
 messages. One of the most common (and most efficient) Celery message
 brokers is RabbitMQ, which operates using the Advanced Message Queuing Protocol (AMQP).
Celery can also work with Amazon’s Simple Queuing Service (SQS), which is a highly scalable
 message-queuing service. SQS can act as a replacement to tools like
 RabbitMQ. By using SQS as our Celery message broker, we do not need to
 install or maintain a RabbitMQ cluster.
In this architecture, we have to install and maintain only a
 single EC2 instance, which runs both the web application and the Celery
 task-processing application. The rest of the services are provided by
 AWS.

Installing the Web Application
The first step is to launch and configure the EC2 instance that will run the web and
 task-processing applications. Once it is configured and working properly,
 create an Amazon Machine Image so it can be used as part of a
 CloudFormation stack.
First, we will install the software manually, and then “translate”
 these manual steps into Puppet manifests.
Start by creating a new security group named web. This security group should allow inbound
 TCP traffic from 0.0.0.0/0 on ports 8000 and 80:

$ aws ec2 create-security-group --group-name web --description "global web \
 server access"
{
 "GroupId": "sg-b7d15acd"
}
$ aws ec2 authorize-security-group-ingress--group-name web --protocol tcp \
 --port 80 --cidr 0.0.0.0/0
$ aws ec2 authorize-security-group-ingress --group-name web --protocol tcp \
--port 8000 --cidr 0.0.0.0/0
$ aws ec2 describe-security-groups --group-names web
SECURITYGROUPS	global webserver access	sg-b7d15acd	web	740376006796	vpc-934935f7
IPPERMISSIONS	80	tcp	80
IPRANGES	0.0.0.0/0
IPPERMISSIONS	8000	tcp	8000
IPRANGES	0.0.0.0/0
IPPERMISSIONSEGRESS	-1
IPRANGES	0.0.0.0/0

Next, launch an EC2 instance using the Ubuntu 16.04 AMI, making sure
 that this instance is a member of the web and
 ssh security groups. Once the instance has launched,
 log in with SSH:

$ aws ec2 run-instances --image-id ami-43a15f3e --region us-east-1 \
--key federico --security-groups ssh web --instance-type t2.micro
[output truncated]
SECURITYGROUPS	sg-4ebd8b36	ssh
SECURITYGROUPS	sg-b7d15acd	web
STATE	0	pending
STATEREASON	pending	pending

Mezzanine is a Python package available from PyPI, Python’s package
 management system. Python packages can be installed with the
 pip command. First, we need to install pip itself in
 our new instance, along with the Python development libraries:

sudo apt install python-pip python-dev
sudo apt install libtiff5-dev libjpeg8-dev zlib1g-dev libfreetype6-dev

Once this is done, Mezzanine itself can be installed with
 pip. This will also install Django, as well as any
 other package dependencies required to run Mezzanine:

sudo pip install Mezzanine==4.2.3

We are forcing a specific version of Mezzanine in order to ensure
 the examples in this chapter are not affected by development changes
 occurring after its publication: pip defaults to
 installing the latest version of any package its upstream developers have
 released to the world. pip does this irrespective of the
 incompatible changes inevitably taking place between some versions, always
 providing access to the latest and greatest software. Without the second
 layer of consistency that the independent versioning of a Linux
 distribution implicitly provides, some additional management by the
 operator has to take place. We discuss in “Package Management” how to strictly manage
 pip package versioning.
We need to create a directory to store the files that make up the
 Mezzanine project. For security purposes, we will create a new user to own
 this directory:

sudo useradd mezzanine
sudo mkdir /srv/mezzanine
sudo chown mezzanine /srv/mezzanine
sudo -u mezzanine mezzanine-project myblog /srv/mezzanine

Unless otherwise configured, Mezzanine will use SQLite as
 its database. SQLite is a self-contained database engine: unlike MySQL or
 PostgreSQL, it does not require a dedicated database server. Instead, the
 entire database is contained in a C library file, which can be embedded
 into a compiled program.
Because database access is not mediated by a server program,
 concurrent writes are not SQLite’s forte. This makes it unsuitable for
 many production applications, but SQLite remains a great choice for
 development, as there is no need to spend time setting up a database
 server when beginning the project. So we will use SQLite to make sure
 Mezzanine is working, before moving to an RDS-based database.
Mezzanine provides a createdb command that initializes the
 database and populates it with some example pages. The command will also
 prompt you to create a superuser account, which is required to access the
 admin interface of the site and begin making changes. Make sure to have
 the public DNS name of the instance, then execute the following, binding
 to the public DNS and port 8000 when prompted:

$ cd /srv/mezzanine
$ sudo -u mezzanine python manage.py createdb
[output truncated]
A site record is required.
Please enter the domain and optional port in the format 'domain:port'.
For example 'localhost:8000' or 'www.example.com'.
Hit enter to use the default (127.0.0.1:8000): ec2-54-172-21-112.compute-1.amazonaws.com:8000

Creating default site record: ec2-54-172-21-112.compute-1.amazonaws.com:8000 ...

Creating default account ...

Username (leave blank to use 'mezzanine'):
Email address: federico@ubuntu.com
Password: ••••••
Password (again): ••••••
Superuser created successfully.
Installed 2 object(s) from 1 fixture(s)

Would you like to install some initial demo pages?
Eg: About us, Contact form, Gallery. (yes/no): yes

Creating demo pages: About us, Contact form, Gallery ...

Installed 16 object(s) from 3 fixture(s)

Once this command is complete, Mezzanine is ready to run.
Warning
If you have to interrupt Mezzanine’s createdb
 command because of an error entering configuration settings, you will
 need to remove the file /srv/mezzanine/dev.db first
 before running the command again. Mezzanine has built-in safeguards
 designed to prevent accidental database overwrites, something you will
 come to appreciate in highly automated environments.

To ease development, Django has a built-in HTTP server that can be used to
 quickly test pages, without having to set up Apache or Nginx. While in the
 /srv/mezzanine/ directory, the server can be started
 as follows:

sudo -u mezzanine python manage.py runserver 0.0.0.0:8000

Open your browser and visit the public IP address of your EC2
 instance on port 8000 (for example,
 http://ec2-54-172-21-112.compute-1.amazonaws.com:8000/);
 do not use SSL, as the built-in server does not support it. You should now
 see the Mezzanine welcome page, ushering you into the newly created
 website. You could validate the CMS system’s functionality by logging in
 the administrative interface and publishing a short test blog.
The Django development server is not fast enough for production use,
 but saves plenty of time in the development phase. In production,
 a Web Server Gateway Interface (WSGI) server such as
 Gunicorn is used to serve the Python application, and traffic is proxied
 by a web server such as Nginx or Apache. These servers are much better at
 dealing with higher numbers of concurrent users, while still providing
 fast responses to user requests.
To make this example more closely match a production environment, we
 will set up Nginx and configure it to serve the Mezzanine blog application
 instead of using Django’s development server. In this configuration, Nginx
 acts as a proxy to the actual application. The user’s request is received
 by Nginx, which then forwards the request to the application server before
 returning the result to the client.
Nginx can communicate with the application in a few ways, two of the
 most popular being HTTP and Unix sockets. Unix sockets can offer improved
 performance over HTTP, but they require Nginx and the application to run
 on the same physical server (or virtual server instance, in the case of
 AWS). Using HTTP to communicate with the proxy involves a little more
 overhead—network sockets must be created, for example—but allows Nginx and
 the application to run on separate servers, increasing resilience and
 scalability.
Install Nginx with the following:

sudo apt install nginx

Tip
If any apt sofware install ends unsuccessfully,
 your first check should be for stale metadata. Run the following and try
 the install command once more:
sudo apt update

Remove the link to the placeholder configuration file found in
 /etc/nginx/sites-available/default—as
 indicated in its comments, one may keep it as a reference:

sudo unlink /etc/nginx/sites-enabled/default

Example 5-1 shows a simple Nginx virtual host
 definition. This configures Nginx to act as a proxy server and relay
 traffic to an upstream application server, running on port 8000 on the
 same host.
Example 5-1. Nginx configuration

upstream myblog_app {

 server localhost:8000;

}

server {
 listen *:80 default;

 server_name blog.example.com;
 access_log /var/log/nginx/blog.example.com.access.log;
 location / {
 proxy_pass http://myblog_app;
 proxy_read_timeout 90;
 proxy_set_header Host $http_host;
 }
}

Save this configuration to /etc/nginx/sites-available/myblog.conf.
 Soft-link that file from /etc/nginx/sites-enabled/myblog.conf and
 restart Nginx:

sudo ln -s /etc/nginx/sites-available/myblog.conf /etc/nginx/sites-enabled/\
myblog.conf
sudo systemctl restart nginx

Make sure the Django development server is not already running and
 then start it:

cd /srv/mezzanine
sudo -u mezzanine python manage.py runserver

Without parameters, Mezzanine will bind to localhost only, port
 8000. Now visit the public hostname of the EC2 instance in your browser
 again, this time on the default port 80. You should again see the
 Mezzanine welcome page, but this time it is being served by Nginx instead
 of Django’s development server.
Of course, running the Django development server manually is
 inconvenient. We don’t want to have to start it manually every time the
 server starts, nor do we want to have to restart it if it crashes.
 Therefore, stop the server and turn to our next step, which is a
 superserver that starts and monitors other processes.
Supervisor is a
 process-control system that can help solve this problem. It will
 automatically start processes when the instance is launched, and will
 restart them if they crash unexpectedly. Supervisor is just one example of
 many tools that perform a similar function. It can be installed as
 follows:

sudo apt install supervisor

Example 5-2 shows the Supervisor
 configuration file required to start our Django development server. This
 file provides all the information Supervisor needs to run the server. The
 process will be started automatically when the instance boots, and it will
 be automatically restarted if it crashes unexpectedly.
Example 5-2. Supervisor configuration file

[program:myblog_app]
command=/usr/bin/python /srv/mezzanine/manage.py runserver
autostart=true
autorestart=unexpected
stopwaitsecs=10
stopasgroup=true
killasgroup=true
user=mezzanine

Save this file to /etc/supervisor/conf.d/myblog_web.conf and
 issue the sudo supervisorctl update command,
 instructing Supervisor to read and process the new configuration file.
 Make sure you stop the manually launched development server before doing
 this. Otherwise, the Supervisor-launched process will not start correctly
 because it will be unable to bind to port 8000 which is already in
 use:

$ sudo supervisorctl update
myblog_app: added process group
$ sudo supervisorctl status
myblog_app STARTING
$ sudo supervisorctl status
myblog_app RUNNING pid 13012, uptime 0:00:10

Confirm that everything is working by reloading the welcome page in
 your web browser. Once more, the page should be displayed—only this time,
 the Django development server process is being managed by Supervisor. When
 the instance starts, the development server will be started. If the server
 process crashes for some reason, it will be automatically restarted.

Preparing Puppet and CloudFormation
Now that the server is configured correctly, we can retrace our
 steps and convert this manual process into a Puppet manifest. We will also
 begin creating the CloudFormation stack that describes all the EC2
 resources required to provision the application.
Puppet Files
Let’s first recap the steps we have taken:
	Install some packages from Apt and pip repositories.

	Create a directory to store the application, and a user to own
 the application files.

	Initialize the application and database.

	Create configuration files for Nginx and Supervisor.

To make this a repeatable process across any number of AWS
 instances, we will use a Puppet module that performs all of these
 configuration steps. We will call this module myblog.
 The Puppet Style Guide recommends that modules consist of multiple
 classes, each responsible for a subset of the module’s functionality.
 Therefore, the logic to complete the preceding tasks will be spread
 across multiple classes:
	The myblog::requirements
 class will handle installing the Apt and pip requirements.

	The logic specific to the web application server will be
 contained in myblog::web.

	Later, when we add the Celery server to the stack, its
 Puppet configuration will be handled by the myblog::celery class.

 Because both the web and Celery servers have the same
 basic set of requirements, both of these classes can include the
 myblog::requirements class instead of
 duplicating the requirements list.
To save time, we will use modules from the Puppet Forge where
 possible; this saves us from having to reinvent the wheel. Puppet
 modules are available for Nginx and Supervisor, and the rest of the
 configuration can be handled with Puppet’s built-in capabilities.
Begin by creating a new repository in your version control system and setting up the initial
 directory structure for Puppet’s configuration files. We will be using
 Git for these examples:

sudo apt install git
git config --global user.name "Federico Lucifredi"
git config --global user.email federico@ubuntu.com
git init ~/myblog
cd ~/myblog
mkdir -p puppet/{manifests,modules}
mkdir puppet/modules/myblog

Note
The Puppet
 Forge is a repository of reusable Puppet modules that you can use
 in your Puppet manifests. Many of these are incredibly high quality,
 and will give you a lot of control over how the underlying software or
 service is configured. You will find modules for a huge range of open
 source and proprietary software, as well as physical devices such as
 Juniper network switches.
Starting in Puppet version 2.7.14, modules can be installed with the puppet module
 command. For example:

puppet module install puppetlabs/stdlib

In previous versions, module files were manually placed in the
 /etc/puppet/modules/
 directory.

Example 5-3 contains the basic site.pp file used by Puppet to control which
 configurations are applied to each node.
Example 5-3. Puppet role assignment with EC2 user data

require stdlib

node default {

 $userdata = parsejson($ec2_userdata)

 # Set variables from userdata
 $role = $userdata['role']

 case $role {
 "web": { $role_class = "myblog::web" }
 default: { fail("Unrecognized role: $role") }
 }

 # Main myblog class
 class { "myblog":
 }
 # Role-specific class, e.g. myblog::web
 class { $role_class:
 }

}

This file uses EC2 user data, which you first learned about in
 “EC2 Instance Details and User Data”, to determine which
 configuration should be applied to a node. This method was described in
 further detail in “User Data and Tags”. Here, we
 are setting the $role variable from
 user data. $role is then used in the
 case statement to set the $role_data variable to the name of the class
 that should be used for this node.
Finally, the main myblog class
 is declared, along with the role-specific class (myblog::web).
Save this file to puppet/manifests/site.pp and commit your
 changes to the repository:

git add puppet/site.pp
git commit -m 'Added site.pp'

Next, we can add the Nginx and
 Supervisor
 Puppet modules to our repository. We will do this using the git
 subtree command, which pulls the content of these external Git
 repositories into our own repository. Execute the following commands:

git subtree add --prefix puppet/modules/supervisor \
https://github.com/plathrop/puppet-module-supervisor.git master --squash
git subtree add --prefix puppet/modules/nginx \
https://github.com/jfryman/puppet-nginx.git master --squash

Note
As we have previously installed Puppet modules using the
 convenient puppet module install command, questions
 naturally arise around our changed strategy. puppet module
 install name will
 deliver the latest version of a module, which can lead to unexpected
 code changes not acceptable in our automatically provisioned
 infrastructure. git subtree imports a copy of the
 module into our version control system instead, ensuring such updates
 only occur at a time of our choosing.

Provisioning Puppet Runtime and Modules
Deploying a consistent Puppet environment complete with one’s choice of modules is a
 broad topic that cannot be exhausted here. A number of alternatives
 exist; we introduce here the most popular options and leave a deeper
 exploration of the trade-offs to our readers.
r10k
 is currently Puppet’s default choice for environment and
 module deployment. It provides no dependency resolution, meaning that
 modules used within other modules must be declared explicitly. This
 creates more work, but the net positive result is that all module
 versions, including the dependencies, can be strictly
 controlled.
puppet
 module install is the simplest and fastest approach
 to installing a set of Puppet modules. It performs automatic
 dependency resolution, so while the modules installed explicitly can
 be pinned to specific versions, automatically resolved dependencies
 will default to the newest version available.
git subtree imports the code of the module
 into an application’s own Git repository, ensuring no version change
 occurs unless a developer initiates it first. The (very reasonable)
 trade-off is the need to master the appropriate Git
 merge strategy.
librarian-puppet
 provides dependency resolution as well a version pinning through a
 puppetfile.lock file. While some cosider
 librarian-puppet slow and would see it replaced
 with r10k, it remains the tool of choice in masterless Puppet
 environments.

The Nginx module uses Puppet’s stdlib (standard library) module, which provides useful functions such as variable
 validation. This can be installed with the following:

git subtree add --prefix puppet/modules/stdlib \
https://github.com/puppetlabs/puppetlabs-stdlib.git master --squash

Now we can begin writing our custom module, myblog, which will use the Nginx and
 Supervisor modules, as well as performing the rest of the configuration
 required to run the application.
The Puppet Style
 Guide suggests that, when modules contain multiple Puppet
 classes, each class should be saved to its own file. This is best
 illustrated with an example.
Example 5-4 shows the top-level myblog class, which is the class we referenced
 in site.pp.
Example 5-4. Initial MyBlog Puppet manifest

class myblog {

 $app_path = "/srv/mezzanine"

 class {"supervisor": }

 require myblog::requirements

}

This class references a subclass, myblog::requirements. It also sets the
 $app_path variable, which is used in
 the other classes. If we wanted to change the location of the Mezzanine
 project files, we would need to update only this variable instead of
 making changes in multiple files. Save this file to puppet/modules/myblog/manifests/init.pp.
Example 5-5 contains the myblog::requirements class. This class
 installs all of the software packages required to run Mezzanine. It also
 creates the mezzanine user, and creates a directory
 to store the project files.
Example 5-5. MyBlog requirements Puppet manifest

class myblog::requirements {

 $packages = ["python-dev", "python-pip", "libtiff5-dev", "libjpeg8-dev", "zlib1g-dev", "libfreetype6-dev"]

 package { $packages:
 ensure => installed
 }

 $pip_packages = ["Mezzanine"]

 package { $pip_packages:
 ensure => installed,
 provider => pip,
 require => Package[$packages]
 }

 user { "mezzanine":
 ensure => present
 }

 file { "$myblog::app_path":
 ensure => "directory",
 owner => "mezzanine",
 group => "mezzanine"
 }

}

Save this file to puppet/modules/myblog/manifests/requirements.pp.
The next subclass actually launches some servers. It is shown in
 Example 5-6.
Example 5-6. MyBlog initialization Puppet manifests

class myblog::create_project {

 # Create the Mezzanine project
 exec { "init-mezzanine-project":
 command => "/usr/local/bin/mezzanine-project myblog $myblog::app_path",
 user => "mezzanine",
 creates => "$myblog::app_path/__init__.py",
 notify => Exec["init-mezzanine-db"]
 }

 # Create the development SQLite database
 exec { "init-mezzanine-db":
 command => "/usr/bin/python manage.py createdb --noinput",
 user => "mezzanine",
 cwd => "$myblog::app_path",
 refreshonly => true
 }

}

This class uses Puppet’s Exec resource
 type to execute two commands. The
 mezzanine-project command creates the initial
 Mezzanine project, which will set up a simple website with example
 pages. The createdb command creates the SQLite
 database used in development.
Warning
Be careful when creating database resources from tools like
 Puppet. An incorrect configuration could result in a database being
 unintentionally dropped and replaced with a freshly created
 database.
For this reason, it can be desirable to create the database
 outside the configuration management tool.

The Exec resource type accepts parameters that
 determine when it should be executed. The init-mezzanine-project Exec
 uses the creates parameter, which
 informs Puppet that executing this command will create a
 particular file and prevents the Exec from executing
 if that file already exists.
Thus, this command will execute only if /srv/mezzanine/__init__.py does not exist.
 Because we know that mezzanine-project will always create this
 file, it is a reliable method of ensuring we do not overwrite an
 existing project.
The init-mezzanine-db
 Exec uses another of Puppet’s control methods. It
 sets the refreshonly parameter to
 true, which means it will be executed
 only if explicitly requested by another resource. In this example, the
 init-mezzanine-project
 Exec notifies init-mezzanine-db, causing the latter to execute when init-mezzanine-project is executed. Save this file to puppet/modules/myblog/manifests/create_project.pp.
Example 5-7 shows the myblog::nginx class.
Example 5-7. Nginx Puppet module

class myblog::mynginx {

 class { "nginx": }

 nginx::resource::upstream { "myblog_app":
 ensure => present,
 members => [
 'localhost:8000',
]
 }

 nginx::resource::vhost { "blog.example.com":
 ensure => enable,
 listen_options => "default",
 proxy => "http://myblog_app"
 }

}

Similar to the myblog::supervisor class, this class installs
 the Nginx package and writes the configuration file describing our
 desired Nginx setup. In this case, a single Nginx virtual host is
 created. This virtual host will proxy all traffic to the
 myblog_app proxy, which is running on port
 8000.
Because we already have a class named nginx in the Nginx module, we can’t call our
 class myblog::nginx. Instead, we call
 it myblog::mynginx to prevent a
 naming collision.
Example 5-7 should be saved to puppet/modules/myblog/manifests/mynginx.pp.
The final piece of the puzzle is the
 myblog::web class, shown in Example 5-8.
Example 5-8. myblog::web class

class myblog::web {
 Class["myblog::web"] -> Class["myblog"]

 require myblog::mynginx

 supervisor::service { "myblog_app":
 ensure => present,
 enable => true,
 command => "/usr/bin/python ${myblog::app_path}/manage.py runserver",
 stopasgroup => true,
 killasgroup => true,
 user => "mezzanine",
 group => "mezzanine"
 }

}

This class contains everything specifically related to running an
 application server. It imports the myblog::nginx class to configure the web
 server. It also declares a supervisor::service resource, which
 will create a configuration file at /etc/supervisor/myblog_web.ini, causing
 Supervisor to start the Mezzanine application when the instance
 launches.
Save this file to puppet/modules/myblog/manifests/web.pp.
Now the first step of the Puppet configuration is complete. The
 myblog module will take a fresh
 Ubuntu 16.04 instance and turn it into a working Mezzanine blog, served
 by Nginx.

CloudFormation Files
Now we set up CloudFormation to provision the EC2 instance and security
 group. Example 5-9 shows the first version of the CloudFormation stack.
Example 5-9. Initial CloudFormation stack

{
 "AWSTemplateFormatVersion" : "2010-09-09",
 "Description" : "Mezzanine-powered blog, served with Nginx.",
 "Parameters" : {
 "KeyName" : {
 "Description" : "Name of an existing EC2 KeyPair to enable SSH access",
 "Type" : "String"
 }
 },
 "Resources" : {
 "WebInstance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 "SecurityGroups" : [{ "Ref" : "WebSecurityGroup" }],
 "KeyName" : "federico",
 "ImageId" : "ami-43a15f3e",
 "UserData": {
 "Fn::Base64": {
 "{\"role\" : \"web\"}"
 }
 }
 },
 "WebSecurityGroup" : {
 "Type" : "AWS::EC2::SecurityGroup",
 "Properties" : {
 "GroupDescription" : "Allow SSH and HTTP from anywhere",
 "SecurityGroupIngress" : [
 {
 "IpProtocol" : "tcp",
 "FromPort" : "22",
 "ToPort" : "22",
 "CidrIp" : "0.0.0.0/0"
 },
 {
 "IpProtocol" : "tcp",
 "FromPort" : "80",
 "ToPort" : "80",
 "CidrIp" : "0.0.0.0/0"
 }
]
 }
 }
 }
}

This stack does not deploy the Puppet manifests to the instance
 when it launches—we’ll add that later. Save this version of the stack
 template to myblog/cloudformation/myblog.json.
Another point to note is the use of the UserData parameter on the WebInstance resource. This provides the
 instance with a JSON string describing the role for the instance, which
 will be used in Puppet’s manifest/site.pp file to decide which classes
 to apply to the node during configuration. Because the CloudFormation
 manifest is itself written in JSON, we must escape quotation marks in
 the user data with a backslash to ensure they are not treated as part of
 the manifest.
Finally, add the Puppet modules and CloudFormation stack to the
 Git repository:

cd ~/myblog
git add -A
git commit -m 'added Puppet modules and CloudFormation stack'

Creating an RDS Database
The Mezzanine createdb command used in the previous step created a SQLite database. Now
 that the application is working, we can replace SQLite with Amazon’s
 Relational Database Service (RDS).
This involves two steps: creating the RDS database, and
 reconfiguring the Mezzanine application to use the new database instead of
 SQLite. First, we will perform these steps manually for testing purposes,
 before updating the Puppet manifests and CloudFormation stacks to reflect
 the updated application.
Before we can create the RDS database, we need to create a
 security group. This procedure can protect your database
 instances just as it protects EC2 instances. The two security groups
 perform exactly the same function: limiting access to resources, based on
 the source of the request.
For our purposes, we need a security group that permits access from
 our web server instances. We will do this with the AWS console for
 variety, but the task can be equally accomplished from the CLI as we have
 previously demonstrated.
Create this group by visiting the EC2
 Security Groups page and clicking Create Security Group. Name the
 new group db and set the description to
 “Myblog DB access.”
After the group has been created, add an ingress rule that permits
 access for the web security group by
 referencing the groupid in a custom rule, as shown in
 Figure 5-1. This will allow any member of the
 web security group to access the
 database.
Figure 5-1. Creating the DB security group

Now we can create a new RDS database through the Management Console or command line. We will continue to use the Management Console
 here and later create the same database using CloudFormation. On the
 RDS Console Dashboard
 page, click Launch a DB Instance, which will open a wizard that
 guides you through the process of creating a database.
The first screen presents you with a list of database engines—such
 as PostgreSQL, MySQL, Microsoft SQL Server, and Oracle—that can be used
 with RDS. Select the MySQL icon, and click Next.
Multi-AZ Deployment allows you to deploy a master/slave database
 pair that spans multiple availability zones. This increases resilience to
 failure, but also increases cost, and it is not required for this test
 database. Select the MySQL “Dev/Test” option when prompted, ignoring the
 Multi-AZ and Amazon Aurora alternatives for now.
Figure 5-2 shows the third screen in the
 process, where the initial MySQL options are set.
Figure 5-2. DB instance details

The DB Instance Identifier, Master Username, and Master Password
 options can be set to any values you want—but keep track of them, as they
 will be needed in the next step. Then click Next Step to move on to the
 Configure Advanced Settings screen, shown in Figure 5-3.
Figure 5-3. Additional configuration

Enter a name for your database (e.g., myblog).
 This database will be created automatically when the DB instance
 launches.
In the DB Security Groups box, select the db security group and click Next Step.
This screen lets you also configure the automatic backup settings.
 For the purposes of this test, we will disable automatic backups by
 defining a backup retention period of zero days. While we do not wish to
 incur additional data charges for our development instance, the automatic
 backup, tagging, minor version upgrade, and monitoring functionality
 offered by AWS just in this screen make a clear case of why public cloud
 environments are not just convenient, but also effective: in a classic
 datacenter, you would be in charge of performing (or automating away) each
 of those tasks. You should absolutely make use of these facilities in
 production, particularly the automated backup option.
After reviewing your chosen settings, click Launch DB
 Instance.
Once the database instance has been created, its record in the
 console will be updated to include an endpoint. This is the hostname you
 will use to configure your MySQL clients—for example,
 myblog.cvqj2dqsvoab.us-east-1.rds.amazonaws.com.
Now that you have a database instance running, you can reconfigure
 Mezzanine to use this database instead of the local SQLite
 database.
Mezzanine settings are controlled by a Python file located at /srv/mezzanine/myblog/settings.py. Because it
 is quite common for different environments to require different settings
 (for example, a local database is used during development, and a remote
 database is used during production), Django and Mezzanine make it easy to
 override individual settings.
If a file named local_settings.py exists, any settings it
 contains will override those set in the main settings.py file. The settings that are
 consistent across all environments can be stored in settings.py, and any custom settings in
 local_settings.py.
Note
There are many ways to set different configuration options,
 depending on the environment in which the instance is running. The
 Twelve-Factor App describes one such alternative method that
 uses a system-level environment variable to control which settings file
 is used.

Example 5-10 shows a local_settings.py file that specifies the use
 of an RDS database. Modify this file to reflect your database endpoint, as
 well as the username and password settings. The latter two should be set
 to the values you chose for Master Username and Master Password,
 respectively.
Example 5-10. Mezzanine database configuration

ALLOWED_HOSTS = "*"

DEBUG = True

DATABASES = {
 "default": {
 "ENGINE": "django.db.backends.mysql",
 "NAME": "myblog",
 "USER": "awsuser",
 "PASSWORD": "foobarbaz",
 "HOST": "myblog.cvqj2dqsvoab.us-east-1.rds.amazonaws.com",
 "PORT": "3306"
 }
}

Warning
Do not use the master user in your production applications; create
 for each a separate user with limited access. Doing so will limit the
 impact of a security breach.

Warning
Setting ALLOWED_HOSTS to *
 will make our example application work regardless of the domain
 name in use. This is convenient in our example, but for production
 deployments you will want to limit the IP addresses and domain names
 that your project is allowed to serve. ALLOWED_HOSTS
 is a security feature meant to counteract HTTP
 host header attacks.

After making the required changes, save this file to /srv/mezzanine/myblog/local_settings.new with
 appropriate user and group ownership, then execute the following to
 preserve the hash salt variable generated at project creation:

sudo su mezzanine
cd /srv/mezzanine/myblog
mv local_settings.py local_settings.old
cat local_settings.old | grep 'SECRET_KEY =\|NEVERCACHE_KEY =' > local_settings.py
cat local_settings.new >> local_settings.py
exit

We no longer need the SQLite database file, so proceed to delete
 it:

sudo rm /srv/mezzanine/dev.db

Because we will now be using MySQL instead of SQLite, we must ensure
 that the Python client libraries for MySQL are installed:

sudo apt install python-mysqldb mysql-client-5.6 libmysqlclient-dev

Before we can use the new database, we must create the initial table
 structure and example setup by running createdb
 again:

sudo -u mezzanine python /srv/mezzanine/manage.py createdb --noinput

As we have just replaced the existing database with a fresh one, do
 not expect to see any of your test blog entries. Further, you will need to
 re-initialize access with the following—make sure to use the same password
 for the default user:

cd /srv/mezzanine
sudo -u mezzanine python manage.py createsuperuser

The Mezzanine application must be restarted to pick up the changed settings file. This is
 done with Supervisor’s supervisorctl command:

sudo supervisorctl restart myblog_app

Once the process has been restarted, use your web browser to verify
 once again that the Mezzanine site is still working.
You may notice that the web page feels a bit slower than it did
 previously. This is because the database is no longer on the same machine
 as the web application, which introduces some delay. After updating the
 Puppet and CloudFormation files with the changes we have just made, we
 will add a caching server to alleviate some of this delay.
RDS: Updating Puppet and CloudFormation
Now that we have completed and tested our changes manually, it is
 time to update the Puppet manifests to reflect them.
As part of the manual process, we created a database with the
 Management Console and hardcoded its endpoint into the settings file,
 along with the username and password. Our end goal is to have a stack
 that can be deployed without any manual configuration, which means that
 the RDS database will need to be created by CloudFormation. Hardcoding
 the connection details will not be an option for a dynamically created
 database.
How do we solve the problem of dynamically changing configuration
 files based on other resources in the CloudFormation stack? “User Data and Tags” demonstrated one way of solving
 this problem.
CloudFormation’s Fn::GetAtt
 function can access the attributes of resources in the stack
 template. So we can use this function to send the database’s endpoint as
 user data to the instance. Puppet can then access that user data and use
 it when writing the configuration files.
Example 5-11 shows an updated version of
 the myblog.json stack
 template.
Example 5-11. MyBlog CloudFormation stack with RDS database

{
 "AWSTemplateFormatVersion" : "2010-09-09",
 "Description" : "Mezzanine-powered blog with RDS, served with Nginx.",
 "Parameters" : {
 "KeyName" : {
 "Description" : "Name of an existing EC2 KeyPair to enable SSH access",
 "Type" : "String"
 },
 "WebAMI": {
 "Type": "String"
 },
 "KeyPair": {
 "Type": "String"
 },
 "DBUser": {
 "Type": "String"
 },
 "DBPassword": {
 "Type": "String",
 "NoEcho": "TRUE"
 }
 },
 "Resources" : {
 "BlogDB" : { [image: 1]
 "Type" : "AWS::RDS::DBInstance",
 "Properties" : {
 "DBSecurityGroups" : [{"Ref" : "DBSecurityGroup"}],
 "DBName" : "myblog",
 "AllocatedStorage" : 5,
 "DBInstanceClass" : "t2.micro",
 "Engine" : "MySQL",
 "EngineVersion" : "5.5",
 "MasterUsername" : { "Ref" : "DBUser" }, [image: 2]
 "MasterUserPassword" : { "Ref" : "DBPassword" }
 },
 "DeletionPolicy" : "Snapshot" [image: 3]
 },
 "DBSecurityGroup" : { [image: 4]
 "Type" : "AWS::EC2::SecurityGroup",
 "Properties" : {
 "GroupDescription" : "Allow inbound MySQL access from web instances",
 "SecurityGroupIngress" : [
 {
 "IpProtocol" : "tcp",
 "FromPort" : "3306",
 "ToPort" : "3306",
 "SourceSecurityGroupName" : { "Ref" : "WebSecurityGroup" }
 }
]
 }
 },
 "WebInstance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 "SecurityGroups" : [{ "Ref" : "WebSecurityGroup" }],
 "KeyName" : { "Ref" : "KeyPair" },
 "ImageId" : { "Ref" : "WebAMI" },
 "UserData" : { [image: 5]
 "Fn::Base64" : {
 "Fn::Join" : ["", [
 "{\"db_endpoint\": \"",
 { "Fn::GetAtt": ["BlogDB", "Endpoint.Address"] }, "\",",
 " \"db_user\": \"", { "Ref": "DBUser" }, "\",",
 " \"db_password\": \"", { "Ref": "DBPassword" }, "\" }"
]]
 }
 }
 }
 },
 "WebSecurityGroup" : {
 "Type" : "AWS::EC2::SecurityGroup",
 "Properties" : {
 "GroupDescription" : "Allow SSH and HTTP from anywhere",
 "SecurityGroupIngress" : [
 {
 "IpProtocol" : "tcp",
 "FromPort" : "22",
 "ToPort" : "22",
 "CidrIp" : "0.0.0.0/0"
 },
 {
 "IpProtocol" : "tcp",
 "FromPort" : "80",
 "ToPort" : "80",
 "CidrIp" : "0.0.0.0/0"
 }
]
 }
 }
 }
}

The key items in the stack are as follows:
	[image: 1]
	The BlogDB resource is the
 RDS database instance, using the same settings as the database we
 created using the Management Console.

	[image: 2]
	The MasterUsername database
 parameter is used in two places. First, it is used when creating the
 RDS instance, and it is also passed to the WebInstance resource as part of its user
 data, making it accessible to scripts running on that
 instance.

	[image: 3]
	The DeletionPolicy database
 parameter ensures that when the stack is deleted, your data is not
 lost. Before CloudFormation terminates the database, it will perform
 a final snapshot.

	[image: 4]
	The DBSecurityGroup allows
 members of the WebSecurityGroup
 to access the database instance.

	[image: 5]
	The user data of the WebInstance contains the database
 hostname, username, and password.

Update ~/myblog/cloudformation/myblog.json to
 reflect these changes. The WebSecurityGroup is
 unchanged, so you won’t have to update that part of the file.
Now that the database name will be sent as user data, we need to
 update the Puppet manifests so that the local_settings.py file contains the correct
 endpoint, username, and password settings.
Note
The user data is JSON-formatted to make it easy to read in Puppet. Because
 CloudFormation stacks are themselves JSON-formatted, it means the user
 data must be escaped in order to be valid JSON. This, admittedly, can
 lead to rather ugly syntax in stack templates.
Here is an example of the user data produced by this
 statement:

{ "db_endpoint": "myblog.cvqj2dqsvoab.us-east-1.rds.amazonaws.com",
 "db_user": "awsuser",
 "db_password": "foobarbaz"
}

Currently, this is the process for setting up a new Mezzanine
 project with Puppet:
	Initialize the project with
 mezzanine-project.

	Create the database with createdb.

We need to insert an additional step in the middle:
	Create a local_settings.py file based on the given
 user data.

This must be done before running createdb;
 otherwise, the default Mezzanine settings will be used, and a SQLite
 database will be created.
Create the new file by adding a File resource in the Puppet manifest and using
 a template to populate the contents of this file. The template uses
 variables that are set in the Puppet manifests by querying the user data
 for the instance.
Although this is a small change, implementing it cleanly requires
 changing a few of the Puppet manifest files. We could access the user
 data variable directly from the myblog::create_project class, but this goes
 against Puppet’s best practice guidelines.
Instead, we will convert the top-level myblog class to a parameterized
 class, which takes the DB endpoint, username, and password
 as parameters. Placing variables in a class is the recommended way to
 introduce variation into Puppet templates, as it helps make modules a
 lot more reusable by avoiding variable scoping issues.
Example 5-12 shows an updated version of the
 myblog class that accepts the
 required parameters.
Example 5-12. MyBlog Puppet manifest with parameters

class myblog ($db_endpoint, $db_user, $db_password) {

 $app_path = "/srv/mezzanine"

 class {"supervisor": }

 require myblog::requirements

}

Update puppet/modules/myblog/manifests/init.pp with
 the contents of this example. The first line is changed to include a
 list of parameters that must be set when declaring an instance of the
 myblog class.
The next step is to modify site.pp so that it retrieves the new
 parameters from user data and passes them to the myblog class, as shown in Example 5-13. The file reads these parameters from the
 $userdata variable, which is a JSON
 object created by reading the $ec2_userdata string variable. parsejson is a function provided by Puppet’s stdlib.
Example 5-13. Puppet site.pp file for MyBlog

require stdlib

node default {

 $userdata = parsejson($ec2_userdata)

 # Set variables from userdata
 $role = $userdata['role']

 $db_endpoint = $userdata['db_endpoint']
 $db_user = $userdata['db_user']
 $db_password = $userdata['db_password']

 case $role {
 "web": { $role_class = "myblog::web" }
 default: { fail("Unrecognized role: $role") }
 }

 # Main myblog class, takes all params
 class { "myblog":

 db_endpoint => $db_endpoint,
 db_user => $db_user,
 db_password => $db_password

 }
 # Role-specific class, e.g. myblog::web
 class { $role_class: }

}

Update puppet/manifests/site.pp with the contents of
 this example.
Next, we need to update the myblog::create_project class so that it
 creates the local_settings.py file.
 This is shown in Example 5-14.
Example 5-14. Updated MyBlog initialization Puppet manifest

class myblog::create_project {

 # Create the Mezzanine project
 exec { "init-mezzanine-project":
 command => "/usr/local/bin/mezzanine-project $myblog::app_path",
 user => "mezzanine",
 creates => "$myblog::app_path/__init__.py"
 }

 # Create the local_settings.py file
 file { "$myblog::app_path/myblog/local_settings.py":
 ensure => present,
 content => template("myblog/local_settings.py.erb"),
 owner => "mezzanine",
 group => "mezzanine",
 require => Exec["init-mezzanine-project"],
 notify => Exec["init-mezzanine-db"]
 }

 # Create the database
 exec { "init-mezzanine-db":
 command => "/usr/bin/python manage.py createdb --noinput",
 user => "mezzanine",
 cwd => "$myblog::app_path",
 refreshonly => true
 }

This file should replace puppet/modules/myblog/manifests/create_project.pp.
 The main change is to add the File
 resource that creates local_settings.py. Its contents will be based
 on the template file named local_settings.py.erb.
Although we specify the template name as myblog/local_settings.py.erb, Puppet will
 look for the file in puppet/modules/myblog/templates/local_settings.py.erb.
As before, the require and
 notify parameters control the
 ordering of Puppet resources—note the repositioning of the
 notify line in the updated file. The local_settings.py file must be created before
 createdb is executed.
Finally, we need to create the template file that will be used to
 populate the local_settings.py
 file. This is shown in Example 5-15.
Example 5-15. Updated MyBlog database manifest

ALLOWED_HOSTS = "*"

DEBUG = True

DATABASES = {
 "default": {
 "ENGINE": "django.db.backends.mysql",
 "NAME": "mydb",
 "USER": "<%= @db_user %>",
 "PASSWORD": "<%= @db_password %>",
 "HOST": "<%= @db_endpoint %>",
 "PORT": "3306"
 }
}

Save this file to puppet/modules/myblog/templates/local_settings.py.erb.
 The content is almost exactly the same as the local_settings.py file we created manually,
 except that Puppet will replace the variables with information taken
 from user data.
Note
For more information on Puppet templates, see the documentation
 on Using
 Puppet Templates.

Example 5-16 contains the updated
 myblog::requirements class, now
 including the MySQL support packages.
Example 5-16. Updated MyBlog requirements Puppet manifest

class myblog::requirements {

 $packages = ["python-dev", "python-pip", "libtiff5-dev", "libjpeg8-dev",
 "zlib1g-dev", "libfreetype6-dev", "python-mysqldb", "mysql-client-5.6",
 "libmysqlclient-dev"]

 package { $packages:
 ensure => installed
 }

Commit the updated files to the Git repository:

git add -A
git commit -am 'added RDS database to stack'

With that step complete, we can move on to the caching server.
Note
Mezzanine’s built-in web server has the capability to selectively
 deliver only dynamically generated content, while delegating the
 application’s static content delivery to a more efficient external web
 server. The DEBUG flag controls
 this behavior: once it is set to false, Django will no longer answer
 requests for any static content and the images, CSS, and JavaScript
 components of the application templates need to be delivered through
 another mechanism.
Running the manage.py
 collectstatic command will copy all files from the static
 directory of each Django application to the location defined
 in STATIC_ROOT. We leave as an
 exercise for the reader to map the URL defined by
 STATIC_URL to serve files from that directory. There is something to be
 learned by correctly sequencing the dependencies required to set up
 this configuration automatically. The authors chose to focus here on
 scale-out caching for the application as a whole as illustrated in the
 next section, making this detail less important as the caching layer
 can be relied on to serve static files even more effectively.

Creating an ElastiCache Node
Caching is a required part of any high-traffic web application, so it makes sense
 to include some caching in the example stack. We will use Amazon’s
 ElastiCache service instead of running our own Memcache cluster.
 ElastiCache is a drop-in replacement for Memcache, which means minimal
 work is required on the client side.
If a cache server is specified in Mezzanine’s settings file,
 unauthenticated page views will be automatically cached—i.e., anonymous
 users will see cached copies of the Mezzanine home page. To enable
 caching—and start using it—we simply need to let Mezzanine know there is a
 caching server available, which means modifying the local_settings.py file again.
Just as we did earlier in the chapter, we begin by manually setting
 up an ElastiCache node and then automating this configuration with Puppet
 and CloudFormation files.
First, visit the EC2 Security Groups page and create a new security
 group named cache. Grant access to
 members of the web EC2 security group, as shown in
 Figure 5-4.
Figure 5-4. Setting Cache Security Group permissions

After creating the cache security
 group and setting its permissions, go to the ElastiCache
 page and click Create to open the Launch Cluster
 Wizard, which will first prompt you to choose between Memcached
 and Redis—select Memcached and scroll down the page. The second section of
 the wizard is shown in Figure 5-5.
Figure 5-5. Launch Cluster Wizard

The key settings here are the name of the cluster and the number of
 nodes. We are choosing to launch a cache cluster containing a single node,
 which is not ideal for reliability or resilience, but is perfect to
 minimize costs for testing.
After selecting the options shown in the screenshot, open the
 Advanced Memcached setting to access the next group of settings. This is
 shown in Figure 5-6.
This screen has only one setting that is important for our purposes:
 the Security Group. Select the security group you created (cache) in addition to your preselected default
 subnet, and click Create.
Once the ElastiCache cluster has launched, you will see it in the
 Cache Clusters list. Click the name of the cache cluster to go to the
 description page. Here you will see a list of information describing the
 cache cluster, including its configuration
 endpoint.
Figure 5-6. Setting the security group

ElastiCache Auto Discovery
The number of nodes in an ElastiCache cluster can change at any time, due to either
 planned events such as launching new nodes to increase the size of the
 cluster, or unplanned events such as a reduction in capacity caused by a
 crashed node. This can lead to problems when client applications try to
 connect to nodes that no longer exist, or never connect to new nodes
 because the client is not aware of the node’s existence.
To help users build more resilient applications, Amazon has
 extended ElastiCache with a feature known as Auto
 Discovery. This allows clients to connect to a single
 address—the configuration endpoint—and retrieve information about all
 nodes in the cluster.
Using Auto Discovery requires a compatible client, because this
 feature is not part of the vanilla Memcache specification. Amazon has
 released compatible clients for PHP and Java, and plans to add clients
 for other languages in the future.
At a technical level, a configuration endpoint address is simply a
 CNAME DNS record. Resolving this address will return the
 hostname for one of the nodes in the ElastiCache cluster.
Amazon ensures that all nodes in the cluster contain up-to-date
 information about their sibling nodes. Auto Discovery−compatible clients
 use the endpoint address to connect to one of the target nodes, from
 which they can retrieve a list of other nodes in the cluster.
If you are not using Java or PHP, you can still use Auto
 Discovery, albeit with a bit more effort. You will need to periodically
 connect to the configuration endpoint to retrieve information about
 members of the cluster and update your local Memcache client
 configuration.
In some cases, the configuration endpoint is all you need. If you
 maintain an ElastiCache cluster
 containing a single node, you can add the configuration endpoint
 directly to your client configuration. Because you have only one node,
 the configuration endpoint CNAME will always resolve to the same node
 address.
When running clusters with two or more nodes, using the
 configuration endpoint directly from an incompatible client has two
 drawbacks. Depending on how your client caches DNS records, traffic
 might become unevenly distributed between your nodes, leading to
 underutilized cache nodes. You will also have no control over which node
 your data resides on, leading to an unnecessarily high cache miss
 rate.

Because our cache cluster contains only a single node, we can use
 the configuration endpoint to configure our Memcache client.
Configuring Mezzanine to use caching is simple: if a cache host is
 defined in the settings file, Mezzanine will use it to cache
 unauthenticated page views. We first need to install the appropriate
 Python library so Mezzanine can communicate with ElastiCache—we will use the python-memcached library.
 Install it as follows:
sudo pip install python-memcached
The next step is to add the cache configuration information to
 Mezzanine’s settings. Append the following code to /srv/mezzanine/myblog/local_settings.py,
 replacing the hostname with your ElastiCache cluster’s configuration
 endpoint:

CACHES = {
 "default": {
 "BACKEND": "django.core.cache.backends.memcached.MemcachedCache",
 "LOCATION": "myblog.gdkr4r.cfg.use1.cache.amazonaws.com:11211"
 }
}

With the configuration file updated, restart the Mezzanine
 process:
sudo supervisorctl restart myblog_app
Visit the Mezzanine page in your web browser. Everything should look
 exactly the same. However, if you refresh the page, you may notice it
 feels faster on subsequent requests. Of course, it feels
 faster is not the most scientific of tests, so we should verify
 that data is, in fact, being written to the Memcache node. We can do this
 by connecting to the node with Telnet and checking that it contains a
 record of the cached page content.
Open a connection to the node:

telnet myblog.gdkr4r.cfg.use1.cache.amazonaws.com 11211

Memcache does not contain a built-in command to list all stored
 keys, so we must take a slightly roundabout approach here. Within
 Memcache, data is stored in a series of slabs. We can
 list the slabs with the stats slabs command:

$ stats slabs
STAT 20:chunk_size 7104
STAT 20:chunks_per_page 147
STAT 20:total_pages 1
STAT 20:total_chunks 147
STAT 20:used_chunks 1
STAT 20:free_chunks 146
STAT 20:free_chunks_end 0
[output truncated]

The number in the first column after STAT is the
 slab ID; in this example, it’s 20. We can then dump the keys that belong
 to that slab with the stats cachedump command. This
 accepts two arguments: the slab ID and the maximum number of keys to dump.
 Execute this command within your Telnet session:

$ stats cachedump 20 100
ITEM :1:e67b2514a4f5d0b3253baa637db8ba01 [6811 b; 1475464297 s]
END

A single key is dumped, verifying that our visit to the web page
 cached its data. You can delete this key:

$ delete :1:e67b2514a4f5d0b3253baa637db8ba01

After deleting the key, refresh the Mezzanine page and use the
 cachedump command to verify that a new key has been
 written.
Tip
You can exit this telnet session by entering
 Ctrl-] and using the telnet client’s
 quit command, like so:

$ ^]
telnet> quit
Connection closed.

Now that ElastiCache has been tested, we can make the relevant
 changes to the Puppet and CloudFormation files.

ElastiCache: Updating Puppet and CloudFormation
Because we laid much of the groundwork when setting up RDS, updating Puppet and
 CloudFormation to use Puppet will be a lot simpler than the previous
 section.
We will begin by ensuring that the
 python-memcached library is installed when the instance
 is provisioned. The puppet/modules/myblog/manifests/requirements.pp
 file contains the following line:

$pip_packages = ["Mezzanine"]

Replace it with the following:

$pip_packages = ["Mezzanine", "python-memcached"]

Next, we need to add a new parameter to the myblog Puppet module, which will be used to
 store the configuration endpoint of the cache cluster. Update puppet/modules/myblog/manifests/init.pp,
 changing the class signature to this:

class myblog ($db_endpoint, $db_user, $db_password, $cache_endpoint) {

The puppet/manifests/site.pp
 file must also be updated so that this parameter is passed when the
 myblog class is declared. Update this
 file with the following content:

require stdlib

node default {

 $userdata = parsejson($ec2_userdata)

 # Set variables from userdata
 $role = $userdata['role']
 $db_endpoint = $userdata['db_endpoint']
 $db_user = $userdata['db_user']
 $db_password = $userdata['db_password']
 $cache_endpoint = $userdata['cache_endpoint']

 case $role {
 "web": { $role_class = "myblog::web" }
 default: { fail("Unrecognized role: $role") }
 }

 class { "myblog":
 db_endpoint => $db_endpoint,
 db_user => $db_user,
 db_password => $db_password,
 cache_endpoint => $cache_endpoint
 }
 # Role-specific class, e.g. myblog::web
 class { $role_class: }

}

Finally, update puppet/modules/myblog/templates/local_settings.py.erb
 and append the cache configuration:

CACHES = {
 "default": {
 "BACKEND": "django.core.cache.backends.memcached.MemcachedCache",
 "LOCATION": "<%= @cache_endpoint %>:11211"
 }
}

Those are the changes required for the Puppet side of the equation.
 Updating the CloudFormation stack is equally straightforward. Rather than
 replicating the entire stack template again, we will just include those
 sections that need to be updated.
Example 5-17 shows the
 CloudFormation stack template section that declares the resources we need
 to use ElastiCache: the cache cluster itself, an ElastiCache security
 group, and a security group ingress rule that grants our web server
 instance access to the cache cluster nodes as a member of the WebSecurityGroup security group. Insert the code
 into the stack template, located at cloudformation/myblog.json, before the existing
 BlogDB resource.
Example 5-17. ElastiCache CloudFormation stack

"Resources" : {

 "CacheCluster": {
 "Type" : "AWS::ElastiCache::CacheCluster",
 "Properties" : {
 "CacheNodeType" : "cache.r3.large",
 "CacheSecurityGroupNames" : ["CacheSecurityGroup"],
 "Engine" : "memcached",
 "NumCacheNodes" : "1"
 }
 },
 "CacheSecurityGroup": {
 "Type": "AWS::ElastiCache::SecurityGroup",
 "Properties": {
 "Description" : "Allow access from Web instances"
 }
 },
 "CacheSecurityGroupIngress": {
 "Type": "AWS::ElastiCache::SecurityGroupIngress",
 "Properties": {
 "CacheSecurityGroupName" : { "Ref" : "CacheSecurityGroup" },
 "EC2SecurityGroupName" : { "Ref" : "WebSecurityGroup" }
 }
 },

"BlogDB" : {

Because the cache cluster configuration endpoint address is passed
 to the web server instances as user data, we also need to modify the EC2
 instance resource. We will again use the Fn::GetAtt
 function, this time to retrieve the configuration endpoint address.
Example 5-18 shows the updated user
 data—note the addition of the cache_endpoint attribute.
 Replace the UserData attribute of the
 WebInstance resource with the code
 shown in this example.
Example 5-18. User data with ElastiCache and database parameters

"UserData" : {
 "Fn::Base64" : {
 "Fn::Join" : ["", [
 "{\"db_endpoint\": \"", { "Fn::GetAtt": ["BlogDB", "Endpoint.Address"] }, "\",",
 " \"db_user\": \"", { "Ref": "DBUser" }, "\",",
 " \"db_password\": \"", { "Ref": "DBPassword" }, "\",",

 " \"cache_endpoint\": \"",
 { "Fn::GetAtt": ["CacheCluster", "ConfigurationEndpoint.Address"] }, "\"}"

]]
 }
}

Now, when the stack is created, the configuration endpoint will be
 passed to the instance as user data and used to populate the local_settings.py file.
As always, finish by committing the changes to the Git repository:

git add -A
git commit -am 'added ElastiCache cluster'

Installing Celery with Simple Queuing Service
The final component in the example application stack is the background
 task-processing service, which will be implemented using Celery. Celery is an asynchronous task
 queue based on distributed message passing. The execution units, called
 tasks, can be executed concurrently by one or more worker servers.
Mezzanine does not, by default, use Celery, so we will briefly
 digress into the realm of Python programming and build a simple task that
 will give Celery something useful to do as part of the demonstration. In
 this case, something useful means checking
 user-submitted comments for spam content.
Whenever a new comment is posted on the site, Mezzanine will send a
 signal to notify other components in the application, letting them take
 action on the new comment. Signals
 are a feature of Django, and are an implementation of the
 Observer software design pattern.
We will write some code that listens for this signal. When a new
 comment is posted, it will be checked by our extremely simple spam filter
 function.
When we launch the final stack containing this infrastructure,
 Celery and Mezzanine will be running on separate EC2 instances. However,
 it is a waste of time (and money) to launch another development machine to
 configure Celery when we could instead use the web application instance we
 have used in the previous steps. So, for testing purposes, perform the
 steps in this section on the web application instance.
Celery works by passing messages between your application processes
 and the background worker processes. These messages describe the task that
 should be executed, along with any parameters required by the task. Celery
 needs somewhere to store these messages, so it uses a message broker for
 this purpose. In keeping with the strategy of using Amazon services for as
 many tasks as possible in this example stack, we will use SQS, Amazon’s
 own message queuing service, as the message broker. Because Celery has
 built-in support for SQS, it is really simple to use.
We will start by creating an SQS queue to learn how the service
 works. In the Management Console, go to the SQS page and click
 Create New Queue. Enter test_queue as the queue
 name, select the standard queue type, and click Configure Queue. This will
 expose another part of the page. Scroll downward and click Create
 Queue—the remaining settings are default values at the time of
 writing.
Figure 5-7 shows the Create Queue
 screen.
Figure 5-7. Creating a new SQS queue

Once the queue has been created, you will be returned to the Queues
 page, where you can see the details of the new queue. Now we need to
 configure the queue’s access permissions so we can read from and write to
 it.
Select the Permissions tab and click Add a Permission, as shown in
 Figure 5-8 (alternatively you may use the
 Queue Actions pull-down menu).
Figure 5-8. Queue permissions

On the next screen, select the options shown in Figure 5-9, replacing 740376006796 with your
 12-digit AWS account ID, and click Add Permission. Now anyone in your AWS
 account has full permissions on this SQS queue. As we have demonstrated in
 Chapter 3, it is necessary for a
 production setup to define a more restrictive security policy using
 IAM.
Figure 5-9. Adding a queue permission

You will not need to perform these steps for the production queue.
 Celery initializes an SQS queue for its own use automatically, named
 celery by default, as long as AWS credentials with
 adequate permissions are supplied in its configuration.
Now that we are a little more comfortable with SQS, let’s build some
 familiarity with Celery itself to understand how all the parts fit
 together. Install the celery package by executing the following on a fresh Ubuntu
 instance:

sudo apt update
sudo apt install python-pip
sudo pip install celery
sudo pip install boto3

Boto version 3 is a dependency of Celery’s SQS
 transport, which is not installed by default, as users can choose between
 a variety of different message broker options.
Warning
The django-celery convenience package has been deprecated with Celery version 4 and
 above, and its use is no longer recommended.

Celery tasks are simply Python functions. By convention, these are
 stored in a file named tasks.py.
In this kind of queuing implementation, tasks are asynchronously
 distributed via message-passing to worker threads that idle until any such
 tasks become available. The system is scaled by adding more workers, while
 the message queue can buffer any work exceeding the capacity of the
 current workers. Because the system operates asynchronously, no process
 needs to wait for another process to complete—in our case, a comment can
 be submitted and the next web page can render without waiting for the spam
 check to complete.
The canonical example of a Celery task is asynchronously adding two
 numbers. Pairs of numbers are stored in the queue and retrieved by a
 worker thread for processing. In our version of this classic, we store
 tasks on Amazon SQS; see Example 5-19.
Example 5-19. The simplest Celery task

from celery import Celery

import os
import urllib

AWS_KEY = os.getenv('AWS_ACCESS_KEY_ID')
AWS_SECRET = os.getenv('AWS_SECRET_ACCESS_KEY')

if not (AWS_KEY and AWS_SECRET):
 print "AWS environment variables are not set\n"
 exit(1)

app = Celery('tasks', broker = 'sqs://{0}:{1}@'.format(urllib.quote(AWS_KEY, \
 safe=''), urllib.quote(AWS_SECRET, safe='')))

@app.task
def add(x, y):
 return x + y

Launch a Celery worker from the scratch working directory containing
 your copy of tasks.py with this
 command:

$ celery -A tasks worker -E --loglevel=info

 -------------- celery@ip-172-31-8-239 v4.0.2 (latentcall)
---- **** -----
--- * *** * -- Linux-4.4.0-1052-aws-x86_64-with-Ubuntu-16.04-xenial 2018-06-19 09:44:15
-- * - **** ---
- ** ---------- [config]
- ** ---------- .> app: tasks:0x7f95ebf6aed0
- ** ---------- .> transport: sqs://AKIAIKVKZ3IG6VXNRSIA:**@localhost//
- ** ---------- .> results: disabled://
- *** --- * --- .> concurrency: 1 (prefork)
-- ******* ---- .> task events: ON
--- ***** -----
 -------------- [queues]
 .> celery exchange=celery(direct) key=celery

[tasks]
 . tasks.add

[2017-12-17 03:42:17,966: INFO/MainProcess] Connected to sqs://AKIAIKVKZ3IG6VXNRSIA:**@localhost//
[2017-12-17 03:42:18,013: INFO/MainProcess] celery@ip-172-31-8-239 ready.

Individual tasks are stored in an SQS queue, waiting for
 asynchronous retrieval and processing by a worker. You can manually inject
 tasks directly from Python to test our example code—try the following in
 another terminal session:

$ python
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from tasks import add
>>> add.delay(4, 4)
<AsyncResult: 31a46a63-576a-4fef-a299-40831cd53c8b>
>>>

If you now turn your attention back to the terminal running the
 Celery worker, you will spot the results of the worker task’s processing
 of the input we just provided:

[2017-12-17 03:44:56,805: INFO/MainProcess] Received task: tasks.add[31a46a63-576a-4fef-a299-40831cd53c8b]
[2017-12-17 03:44:56,807: INFO/ForkPoolWorker-1] Task tasks.add[31a46a63-576a-4fef-a299-40831cd53c8b] succeeded in 0.000394316390157s: 8

Adding two numbers is clearly not a very impressive feat, but the
 queuing and asynchronous processing we just demonstrated allows an
 application to decouple the scaling of its components. This is an
 essential pattern found in microservice
 architectures.
Note
We have already shown in “IAM Roles”
 how the need to make credentials available in a running instance can be
 eliminated using IAM roles. A custom role could grant the instance
 access to SQS without the need for credentials, thus limiting the
 footprint of a breach where the instance itself is compromised—here, we
 tried to keep our example as simple as possible.

Now that we are familiar with Celery’s design and operation, we can
 resume integrating the last component of our example application. We do
 not need to initialize an SQS queue ourselves, as Celery will create a
 queue named celery automatically if given adequate
 permissions. Begin by installing the Celery package—as we did for
 Mezzanine, we are going to select a version that is known to work well
 with the rest of the stack:

sudo pip install celery==4.1.1
sudo pip install boto3
sudo apt install python-pycurl

Example 5-20 shows the code that is the backbone of
 our Celery application. Save it in a file named /srv/mezzanine/myblog/celery.py, making sure it
 is owned by user mezzanine.
Example 5-20. Integrating Celery with Mezzanine

from __future__ import absolute_import, unicode_literals
import os
import urllib
from celery import Celery

AWS_KEY = os.getenv('AWS_ACCESS_KEY_ID')
AWS_SECRET = os.getenv('AWS_SECRET_ACCESS_KEY')
if not (AWS_KEY and AWS_SECRET):
 print "AWS environment variables are not set\n"
 exit(1)

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'myblog.settings')

app = Celery('myblog', broker = 'sqs://{0}:{1}@'.format(urllib.quote(AWS_KEY, \
safe=''), urllib.quote(AWS_SECRET, safe='')))

app.config_from_object('django.conf:settings', namespace='CELERY')

app.autodiscover_tasks()

This code initializes the myblog> Celery app
 itself, setting the default Django settings for the Celery app
 myblog. We then initialize a namespace for all
 Celery-related configuration keys. As our tasks.py file lives in the web application
 directory, we do not need to import it explicitly. Celery can autodiscover
 task modules that are stored within Django applications—we use this
 capability to load task modules from all registered Django apps.
Example 5-21 shows the configuration required to
 have our Celery app loaded early in the Mezzanine startup process. The
 import statement makes sure that the app is imported
 when Django starts up, so that shared_task can use it.
 Save it to /srv/mezzanine/myblog/__init__.py taking care
 not to alter file ownership.
Example 5-21. Loading the Celery app into Mezzanine

from __future__ import absolute_import, unicode_literals

default_app_config = 'myblog.apps.MyBlogConfig'

This will make sure the app is always imported when
Django starts so that shared_task will use this app.
from .celery import app as celery_app

__all__ = ('celery_app')

Example 5-22 shows the Python code that handles
 the signal received when a new comment is posted.
Example 5-22. The simple asynchronous spam check

from celery import Celery
import os
import urllib
from django.dispatch import receiver
from django.db.models.signals import post_save
from mezzanine.generic.models import ThreadedComment

AWS_KEY = os.getenv('AWS_ACCESS_KEY_ID')
AWS_SECRET = os.getenv('AWS_SECRET_ACCESS_KEY')
if not (AWS_KEY and AWS_SECRET):
 print "AWS environment variables are not set\n"
 exit(1)

app = Celery('tasks', broker = 'sqs://{0}:{1}@'.format(urllib.quote(AWS_KEY, \
safe=''), urllib.quote(AWS_SECRET, safe='')))

def is_comment_spam(comment):
 # This check is just an example!
 if "spam" in comment.comment:
 return True

@app.task
def process_comment_async(comment_id):
 print "Processing comment"
 comment = ThreadedComment.objects.get(pk=comment_id)
 if is_comment_spam(comment):
 # The comment is spam, so hide it
 ThreadedComment.objects.filter(id=comment_id).update(is_public=False)

@receiver(post_save, sender=ThreadedComment)
def process_comment(sender, instance, **kwargs):
 process_comment_async.delay(instance.id)

By convention, Celery tasks are contained within a Python module
 named tasks. Django
 applications can contain their own tasks module that implements tasks
 relevant to the application’s purpose. For example, a Django application
 that integrates with Twitter might provide tasks to asynchronously post
 new tweets or scrape profile information. In this case the code
 initializes our tasks module instructing it to use an
 SQS queue with appropriate credentials.
Save this code to /srv/mezzanine/myblog/tasks.py, making sure it
 is owned by the user mezzanine like all others in
 this directory. Before moving on with the configuration, let’s look at
 what this code is doing. This requires a brief description of a useful
 Django feature: signals.
Signals can be thought of as hooks for your custom code to connect to. For
 example, every time a database object is saved, a post_save signal is sent out by Django. The
 @receiver function decorator informs
 Django that whenever a ThreadedComment object sends the
 post_save signal (i.e., a new comment is posted to the
 blog), the process_comment function is
 called.
The process_comment function
 calls process_Comment_async.delay. This
 does not execute the code immediately—instead, it posts a message to the
 Celery queue. This message is picked up by a Celery worker, and the code
 in process_comment_async is executed by
 the worker.
This means that whenever a comment is posted to the blog, it will be
 initially displayed (Figure 5-10). After a worker picks up the job from the queue, the
 message will be hidden if it contains spammy content, as defined by the
 is_comment_spam function. In this
 trivial case, we simply check whether the string spam exists in the comment text. Alas, real
 spammers are not so easy to catch. You might want to update this function
 to perform a more reliable spam check, such as submitting the comment
 to Akismet’s spam-checking
 service.
Figure 5-10. Comment spam hidden by our Celery task

Login credentials can be provided using the environment variables
 AWS_ACCESS_KEY_ID and
 AWS_SECRET_ACCESS_KEY, in which case the broker’s URL
 may be simply set to sqs://. This is really convenient
 during development, while leaving account credentials in the shell
 environment would be quite ill advised in production.
Warning
Note the @ at the end of the
 broker parameter URL (this is required), and that the
 AWS access secret may contain unsafe characters that require
 URL-encoding. We take care of this step in our code, but should you ever
 need to hardcode credentials for testing, this can be easily
 accomplished with the ever-handy jq:

$ echo -n 'hCJ/Fn3nE378Hb7WjGpSYHa9TRCsia/4UcAd+MG7' | jq -R -r @uri
hCJ%2fFn3nE378Hb7WjGpSYHa9TRCsia%2f4UcAd%2bMG7

Because we created our queue in the default
 us-east-1 region, we do not need to add the BROKER_TRANSPORT_OPTIONS setting. If you choose
 to create your queue in another region, you will need to use this setting
 as detailed in the Django project’s documentation.
With that done, you can launch the Celery worker process, which will
 wait for new tasks to be written to the SQS queue. Launch the
 process:

sudo -u mezzanine python manage.py runserver 0.0.0.0:8000
sudo -u mezzanine celery -A myblog worker -l info

If everything is configured correctly, you will see output similar
 to the following:

$ sudo -u mezzanine celery -A myblog worker -l info
 -------------- celery@ip-172-31-49-100 v4.1.1 (latentcall)
---- **** -----
--- * *** * -- Linux-4.4.0-1052-aws-x86_64-with-Ubuntu-16.04-xenial 2018-06-20 16:38:36
-- * - **** ---
- ** ---------- [config]
- ** ---------- .> app: myblog:0x7f7dd6a30310
- ** ---------- .> transport: sqs://AKIAIKVKZ3IG6VXNRSIA:**@localhost//
- ** ---------- .> results: disabled://
- *** --- * --- .> concurrency: 1 (prefork)
-- ******* ---- .> task events: OFF (enable -E to monitor tasks in this worker)
--- ***** -----
 -------------- [queues]
 .> celery exchange=celery(direct) key=celery

[tasks]
 . myblog.tasks.process_comment_async

[2018-06-24 14:11:33,206: INFO/MainProcess] Starting new HTTPS connection (1): queue.amazonaws.com
[2018-06-24 14:11:33,243: INFO/MainProcess] Connected to sqs://AKIAIKVKZ6IG3VXNRSDA:**@localhost//
[2018-06-24 14:11:33,280: INFO/MainProcess] Starting new HTTPS connection (1): queue.amazonaws.com
[2018-06-24 14:11:33,328: INFO/MainProcess] celery@ip-172-31-9-164 ready.

The final line of this output shows that your tasks.py module has been loaded
 successfully.
With Celery running, create a new blog post in your Mezzanine site
 by visiting a URL of the form
 http://example.com/admin/blog/blogpost/add/
 (substitute the URL of your instance here). After creating the blog post,
 browse to the post’s page on the main site. If your blog post title was
 test, for example, this will be
 http://example.com/blog/test/.
Post a comment on the blog page by filling in the comment form.
 After clicking the Comment button, you will see some activity in the
 Celery console, as the task is received and executed:

[2018-06-24 15:04:31,424: INFO/MainProcess] celery@ip-172-31-9-164 ready.
[2018-06-24 15:07:59,531: INFO/MainProcess] Received task: myblog.tasks.process_comment_async[a4f18b4a-ecc5-42d9-8f91-4dcee35f0456]
[2018-06-24 15:07:59,533: WARNING/ForkPoolWorker-1] Processing comment
[2018-06-24 15:07:59,551: INFO/ForkPoolWorker-1] Task myblog.tasks.process_comment_async[a4f18b4a-ecc5-42d9-8f91-4dcee35f0456] succeeded in 0.0183701957576s: None

Assuming your example comment was not particularly spammy and did
 not contain the string spam, it will
 remain on the site after the Celery task has completed. Otherwise, it will
 be hidden shortly after being posted. The Mezzanine console will just
 read:

[24/Jun/2018 15:07:59] "POST /comment/ HTTP/1.1" 302 0

In this example application, we are choosing to display comments by
 default and hide them if they prove to be spam. Another option would be to
 hide comments by default and display them only if they are not spam.

Celery: Updating Puppet and CloudFormation
With Celery working, we can update the Puppet and CloudFormation configurations.
 This will differ slightly from the changes required to add ElastiCache and
 RDS, because Celery and the web application will be running on separate
 instances. Therefore, we need to define a new role in our Puppet manifests
 so that the correct processes will be started on each instance.
Begin by updating the puppet/manifests/site.pp file, adding celery as one of the available role
 types:

case $role {
 "web": { $role_class = "myblog::web" }
 "celery": { $role_class = "myblog::celery" }
 default: { fail("Unrecognised role: $role") }
}

The CloudFormation stack itself will need adjustment to include a
 new CeleryAMI parameter:

 "WebAMI": {
 "Type": "String"
 },
 “CeleryAMI": {
 "Type": "String"
 },
 "KeyPair": {
 "Type": "String"
 },

Remember to update the $role_class to dynamically include Puppet
 modules based on the instance’s user data, so instances with a $role of celery will use the myblog::celery module. Example 5-23 shows the myblog::celery module.
Example 5-23. Celery Puppet module

class myblog::celery {
 Class["myblog::celery"] -> Class["myblog"]

 supervisor::service { "myblog_celery":
 ensure => present,
 enable => true,
 command => "/usr/bin/python ${myblog::app_path}/manage.py celery -A myblog worker",
 user => "mezzanine",
 group => "mezzanine"
 }

}

Save this module to puppet/modules/myblog/manifests/celery.py. This
 simple module ensures that Supervisor starts the Celery process. All of
 the heavy lifting is done in other parts of the myblog module—one of the many reasons for
 separating Puppet modules into separate manifest files.
When installing Celery, we introduced code in three files. These changes must also be made in the templates used for these files, with one modification. Append the code from Example 5-20 to puppet/modules/myblog/templates/celery.py.erb, the code from Example 5-21 to puppet/modules/myblog/templates/__init__.py.erb, and the code from Example 5-22 to puppet/modules/myblog/templates/tasks.py.erb, respectively. Then replace the broker parameter with the following setting:
broker = 'sqs://@'
This removes the AWS credentials from the broker
 URL, telling Celery to use the keys provided by the IAM role assigned to
 the EC2 instance.
Now we can add Celery to the CloudFormation stack. We want to make
 the following changes to the stack:
	Create an SQS queue to store Celery messages.

	Create an IAM policy that allows web and Celery instances to
 write to the SQS queue.

	Create an EC2 instance to run Celery.

	Update the ElastiCache and RDS security groups to permit Celery
 access.

	Update the Web EC2 instance so it can use the SQS queue name as
 a dynamic setting.

This requires changes to cloudformation/myblog.json. For the sake of
 clarity, we will gradually update this file in a series of small
 steps.
Begin by adding the SQS queue:

"CeleryQueue": {
 "Type": "AWS::SQS::Queue"
},

Add this snippet to the Resources
 section of myblog.json, at the same
 level as WebInstance.
Next, we will create the IAM policy and role that will set up the
 AWS access credentials that Celery and web instances use to access the SQS
 queue:

 "MyBlogRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": ["ec2.amazonaws.com"]
 },
 "Action": ["sts:AssumeRole"]
 }]
 },
 "Path": "/"
 }
 },
 "MyBlogRolePolicies": {
 "Type": "AWS::IAM::Policy",
 "Properties": {
 "PolicyName": "MyBlogRole",
 "PolicyDocument": {
 "Statement" : [{
 "Effect" : "Allow",
 "Action" : ["sqs:*"],
 "Resource" : { "Ref" : "CeleryQueue" }
 }]
 },
 "Roles": [{ "Ref": "MyBlogRole" }]
 }
 },
 "MyBlogInstanceProfile": {
 "Type": "AWS::IAM::InstanceProfile",
 "Properties": {
 "Path": "/",
 "Roles": [{ "Ref": "MyBlogRole" }]
 }
 },
Again, insert this code into myblog.json at the same level as WebInstance.
The final new resources are the Celery EC2 instance and associated
 security group:

"CeleryInstance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 "SecurityGroups" : [{ "Ref" : "CelerySecurityGroup" }],
 "KeyName" : "my-ssh-keypair",
 "ImageId" : { "Ref" : "CeleryAMI" },
 "IamInstanceProfile": {
 "Ref": "MyBlogInstanceProfile"
 },
 "UserData" : {
 "Fn::Base64" : {
 "Fn::Join" : ["", [
 "{\"role\": \"celery\",",
 " \"db_endpoint\": \"", { "Fn::GetAtt": ["BlogDB", "Endpoint.Address"] }, "\",",
 " \"db_user\": \"", { "Ref": "DBUser" }, "\",",
 " \"db_password\": \"", { "Ref": "DBPassword" }, "\",",
 " \"cache_endpoint\": \"", { "Fn::GetAtt": ["CacheCluster", "ConfigurationEndpoint.Address"] }, "\"}"
]]
 }
 }
 }
},
"CelerySecurityGroup" : {
 "Type" : "AWS::EC2::SecurityGroup",
 "Properties" : {
 "GroupDescription" : "Allow SSH from anywhere",
 "SecurityGroupIngress" : [
 {
 "IpProtocol" : "tcp",
 "FromPort" : "22",
 "ToPort" : "22",
 "CidrIp" : "0.0.0.0/0"
 }
]
 }
},
"CelerySecurityGroupIngress": {
 "Type": "AWS::ElastiCache::SecurityGroupIngress",
 "Properties": {
 "CacheSecurityGroupName" : { "Ref" : "CacheSecurityGroup" },
 "EC2SecurityGroupName" : { "Ref" : "CelerySecurityGroup" }
 }
},
Insert this code into the Resources section of myblog.json, at the same level as the WebInstance resource. The CeleryInstance resource also uses a reference to
 the AMI input, meaning it will use the same AMI as the WebInstance.
That’s it for the new resources. We need to make a few other changes
 to this file before it is complete.
The CelerySecurityGroupIngress
 resource gives the CeleryInstance
 access to the ElastiCache cluster. We also need to allow Celery to access
 the RDS database instance, which requires another modification to
 myblog.json:

 "DBSecurityGroup" : {
 "Type" : "AWS::EC2::SecurityGroup",
 "Properties" : {
 "GroupDescription" : "Allow inbound MySQL access from web instances",
 "SecurityGroupIngress" : [
 {
 "IpProtocol" : "tcp",
 "FromPort" : "3306",
 "ToPort" : "3306",
 "SourceSecurityGroupName" : { "Ref" : "WebSecurityGroup" }
 },
 {
 "IpProtocol" : "tcp",
 "FromPort" : "3306",
 "ToPort" : "3306",
 "SourceSecurityGroupName" : { "Ref" : "CelerySecurityGroup" }
 }
]
 },

Update the DBSecurityGroup
 resource definition as shown here, so that the CelerySecurityGroup is listed in the DBSecurityGroupIngress attribute.
The WebInstance resource also
 requires some changes:

"WebInstance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 "SecurityGroups" : [{ "Ref" : "WebSecurityGroup" }],
 "KeyName" : "my-ssh-keypair",
 "ImageId" : { "Ref" : "WebAMI" },
 "IamInstanceProfile": {
 "Ref": "MyBlogInstanceProfile"
 },
 "UserData" : {
 "Fn::Base64" : {
 "Fn::Join" : ["", [
 "{\"role\": \"web\",",
 " \"db_endpoint\": \"", { "Fn::GetAtt": ["BlogDB", "Endpoint.Address"] }, "\",",
 " \"db_user\": \"", { "Ref": "DBUser" }, "\",",
 " \"db_password\": \"", { "Ref": "DBPassword" }, "\",",
 " \"cache_endpoint\": \"", { "Fn::GetAtt": ["CacheCluster", "ConfigurationEndpoint.Address"] }, "\"}"
]]
 }
 }
 }
},

This code shows the updated version of the WebInstance resource. Note the addition of the
 IamInstanceProfile property, which
 makes the EC2 instance inherit the permissions described in the IAM
 policy.
With that change complete, myblog.json now contains a full description of
 our stack resources.
Warning
Avoid committing security keys to a code repository as any data
 entering a version control system will reside there
 forever. This is clearly dangerous working with public code repositories
 like GitHub, which are routinely targeted by hackers scanning for AWS
 keys accidentally leaked. Perhaps less obviously, it is equally
 inappropriate to store security credentials in a corporate code
 repository with more than a single user.
Michael Dowling of the Amazon AWS team has released the git-secrets utility
 to validate that your code commits do not contain anything they
 shouldn’t. git-secrets works equally well on macOS and Ubuntu hosts, and setup is
 straightforward:

make install

Macintosh users should instead use brew install
 git-secrets.
The most basic git-secrets configuration
 requires setting up git hooks in each monitored
 repository, as well as defining the forbidden patterns. To prevent
 accidental committing of AWS credentials, run the following in your
 repository’s working copy:

git secrets --install
git secrets --register-aws

This will stop any commit containing strings found in
 ~/.aws/credentials. This simple bit of automation
 can help ensure the passwords found on your development machine are not
 accidentally recorded for posterity along with your code.

Building the AMIs
With the Puppet configuration complete, the next step is to create the AMI
 we will use for the EC2 instances. We will do this using the method
 described in “Building AMIs with Packer”, in the previous
 chapter.
For demonstration purposes, we will use Packer to build two AMIs: a web AMI and a Celery AMI.
 Because these images are similar, you could reduce the AMI management
 overhead by using a single AMI for each role.
Begin by creating a directory to store the Packer configuration
 files. This should be at the same level as the Puppet directory:

mkdir ~myblog/packer

Copy Example 4-4 to packer/install_puppet.sh, as described in “Building AMIs with Packer”.
First, we will create the configuration for the web AMI, which is
 shown in Example 5-24. Save this file to packer/web.json.
Example 5-24. Packer configuration: Web

{
 "variables": {
 "aws_access_key": "",
 "aws_secret_key": ""
 },
 "provisioners": [
 {
 "type": "shell",
 "script": "install_puppet.sh"
 },
 { "type": "puppet-masterless",
 "manifest_file": "puppet/manifests/site.pp",
 "module_paths": ["puppet/modules"]
 }
],
 "builders": [{
 "type": "amazon-ebs",
 "access_key": "",
 "secret_key": "",
 "region": "us-east-1",
 "source_ami": "ami-43a15f3e",
 "instance_type": "t1.micro",
 "ssh_username": "ubuntu",
 "associate_public_ip_address": true,
 "ami_name": "myblog-web-",
 "user_data": "{\"role\": \"web\"}"
 }]
}

This amazon-ebs object contains a
 user_data parameter. This is passed to
 the instance that Packer uses to create the AMI. Puppet will use this user
 data to control which configuration classes are applied to the instance
 during the provisioning step. In this case, we want to build an image for
 the web role, so we provide a JSON string setting the role to web.
Tip
User data can also be stored in a separate file, rather than
 cluttering up your Packer configuration file. This is especially useful
 when your user data contains large JSON strings. To do this, set
 user_data_file to the path of the
 file containing your user data.

Now we can create the Packer configuration file for the Celery role.
 The only difference is the role value
 specified as part of the user_data.
 Copy packer/web.json to packer/celery.json, changing the user_data and ami_name to read as follows:

 "ami_name": "myblog-celery-",
 "user_data": "{\"role\": \"celery\"}"

With the configuration files for each role created, we can now build
 the AMIs, starting with the web role:

packer build web.json

Once Packer finishes creating the AMI, it will output the AMI ID.
 Make note of this, as we will need it for the next section.
Now we can create an AMI for the Celery instance:

packer build celery.json

Again, make a note of the AMI ID output by Packer.
With the AMIs created, we can proceed with bringing up the
 CloudFormation stack.

Creating the Stack with CloudFormation
Now that we have created the AMIs containing our application, we can launch the
 CloudFormation stack. We will do this using the aws command-line tool.
The stack accepts parameters that we can specify on the command line. Execute the following command
 to begin creating the stack, replacing the parameter values where
 necessary:

aws cloudformation create-stack --region us-east-1 --stack-name myblog-stack \
 --template-body file://myblog.json \
 --parameters ParameterKey=CeleryAMI,ParameterValue=ami-43a15f3e \
 ParameterKey=WebAMI,ParameterValue=ami-43a15f3e \
 ParameterKey=DBUser,ParameterValue=myblog_user \
 ParameterKey=DBPassword,ParameterValue=s3cr4t \
 ParameterKey=KeyName,ParameterValue=federico

Tip
If there are any syntax errors in the stack template, they will be
 highlighted here. Common errors include unbalanced parentheses and
 brackets, and misplaced commas.

Use the describe-stack-status command to
 check on the status of the stack:

aws cloudformation describe-stacks --stack-name myblog-stack | jq '.Stacks[0].StackStatus'

While the resources are being created, the stack’s status will be
 CREATE_IN_PROGRESS. Once the resources
 have been successfully created, this will change to CREATED. Any other status means an error has
 occurred, and more information will be available in the Events tab of the
 Management Console, or by running the describe-stack-events command:

aws cloudformation describe-stack-events --stack-name myblog-stack
Once the stack has been created, find the public DNS name of the web
 instance by querying the outputs of the stack with the
 describe-stacks command:

aws cloudformation describe-stacks --stack-name myblog-stack | jq '.Stacks[0].Outputs[]'

Open this address in your web browser, and you should be greeted
 with the Mezzanine welcome page.
Adding a more friendly DNS name with Route 53 is left as an exercise
 for the reader.
Tip
It is easy to get confused and mix up what AWS instance is
 connected to a particular terminal session—especially if you have many
 running concurrently. One solution for this problem that Federico is
 particularly fond of is Byobu.
 Created by Google’s Dustin Kirkland during his time with the Ubuntu team, this versatile
 terminal multiplexer introduces a status bar at the bottom of the
 session providing customizable system status information, including—most
 critically in the EC2 case—the hostname and IP address.

Application Factory
There is a lesson to be found in the prominence of integration over
 component-building in modern application development. It is easy to find
 blocks to build with (indeed, one could say there is an embarrassment of
 choices to be made); the hard work is in integrating them with one
 another, and particularly in maintaining this integration over time as the
 original components continue to rapidly evolve. Moving from components
 supplied by the Linux distribution to the freshest version available in
 pip, the burden of integration shifts from the
 distribution maintainers to the application developer. The distribution
 components may be more dated but are usually validated to inter-operate at
 least in some degree, while the “latest and greatest” new release carries
 with its shine some validation task for you to perform.
Although Mezzanine was used an example, the core concepts in this
 chapter are pertinent to nearly any application. Imagine you are a web
 design agency using Mezzanine as your CMS. Using the information in this
 chapter, you could set up a test environment for new clients in a few
 minutes, just by creating a new stack for each client.
If you follow the process shown in this chapter, incrementally
 building an application by first making manual changes before committing
 those to Puppet and CloudFormation, you may save lots of debugging
 time.

Chapter 6. Auto Scaling and Elastic Load Balancing
Most applications have peaks and troughs of user activity. Consumer web applications are a
 good example. A website that is popular only in the United Kingdom is likely
 to experience very low levels of user activity at three o’clock in the
 morning, London time. Business applications also exhibit the same behavior:
 a company’s internal HR system will see high usage during business hours,
 and often very little traffic outside these times.
Capacity planning is the process of calculating which resources will be required to ensure that
 application performance remains at acceptable levels. A traditional
 datacenter environment needs enough capacity to satisfy peak demand, leading
 to wasted resources during lulls in activity. If your application requires
 ten servers to satisfy peak demand and only one server during quiet times,
 up to nine of those servers are regularly going to waste.
Because of the amount of time it takes to bring physical hardware
 online, traditional capacity planning must take future growth into
 consideration; otherwise, services would be subject to outages just as they
 become popular, and system administrators would spend more time ordering new
 hardware than configuring it. Getting these growth predictions wrong
 presents two risks: first, if your application fails to grow as much as
 expected, you have wasted a lot of money on hardware. Conversely, if you
 fail to anticipate explosive growth, you may find the continuation of that
 growth restrained by the speed in which you can bring new servers
 online.
In a public cloud environment, Auto Scaling allows the number of
 provisioned instances to more closely match the demands of your application,
 reducing wasted resources and therefore better managing costs. Auto Scaling
 also eliminates the procurement aspect of capacity planning, as the lead
 time required to commission a new server shrinks from multiple weeks to
 merely a few seconds.
An Auto Scaling group is a collection
 of one or more EC2 instances. As the level of activity
 increases, the system will scale up by launching new
 instances into this group. A subsequent decline in activity will cause the
 Auto Scaling system to scale down and terminate
 instances.
The way in which the level of activity is measured centers on the
 application. In combination with the CloudWatch monitoring service, Auto
 Scaling can use metrics such as CPU utilization to control scaling
 activities.
It is possible to submit custom metrics to CloudWatch and use these to trigger Auto Scaling events (i.e.,
 scaling up or down). In the case of a batch processing system, you might
 wish to launch instances based on the number of items in the queue to be
 processed. Once the queue is empty, the number of running instances can be
 reduced to zero.
This is the elastic in Elastic Compute
 Cloud.
EC2 was not always so elastic. At the time it was launched, Amazon did not yet provide the Auto
 Scaling service as it exists today. Although EC2 instances could be launched
 and terminated on demand, performing these tasks was the responsibility of
 the user. As such, the pioneers who made heavy use of AWS in the early days
 built their own systems for managing the automatic creation and deletion of
 instances by interacting with the EC2 APIs.
As AWS continued to grow, Amazon built this logic into the EC2 service
 under the name of Auto Scaling. Initially requiring the use of command-line
 tools, the Auto Scaling API, or CloudFormation, Auto Scaling can now be
 managed entirely from the AWS Management Console.
If you do not use Auto Scaling, you will need to manually recover any
 failed instances on AWS. Even if you have only a single instance in the
 group, using Auto Scaling can save a lot of headaches. When an important
 instance crashes, would you rather scramble to launch a new one manually, or
 simply read the email from Amazon letting you know that a new instance is
 being launched?
The benefits of Auto Scaling are not limited to changes in
 capacity—using Auto Scaling enhances the resilience of your application, and
 is a required component of any production-grade AWS infrastructure. Remember
 that availability zones are physically separate datacenters in which EC2
 instances can be launched. Auto Scaling will distribute your instances
 equally between AZs. In the event of a failure in one AZ, Auto Scaling will
 increase capacity in the remaining AZs, ensuring that your application
 suffers minimal disruption.
The ability to automatically scale your instances comes with its own
 set of potential drawbacks. For example, consider how your application will
 handle distributed denial-of-service (DDoS) attacks. With a limited number of
 physical servers, a concentrated attack would eventually cause your site to
 crash. With Auto Scaling, your instances might scale up to meet the demand
 of the DDoS, which can become expensive very quickly. For this reason, you
 should always impose an upper limit on the number of instances that an Auto
 Scaling group can spawn, unless you are very sure that a DDoS cannot break
 the bank, as well as your application.
This chapter introduces the core Auto Scaling concepts (Figure 6-1) and puts them into practice by updating the
 example application from the previous chapter, adding resilience and scaling
 capabilities to the infrastructure.
Figure 6-1. The AWS console was enhanced to support Auto Scaling in December
 2013

Static Auto Scaling Groups
Although Auto Scaling at its core revolves around the idea of dynamically increasing or
 reducing the number of running instances, you can also create a group with
 a specific number of instances that does not change dynamically. We refer
 to this as a static Auto Scaling group.
EC2 instances can be terminated without warning for various reasons
 outside of your control; this is one of the accepted downsides of
 operating in a public cloud. A manually launched instance—that is, an
 instance launched outside of an Auto Scaling group—would need to be
 replaced manually once its failure is noticed. Even if you are using
 CloudFormation to manage the instance, some manual interaction may still
 be required to bring the application back up. We already examined in Chapter 3 the use of Auto Scaling groups to
 maintain the number of instances required by an application while under
 security attack.
With Auto Scaling, a failed instance is automatically replaced as
 soon as the failure is detected by AWS. For this reason, we always use
 Auto Scaling for every production instance—even if there will always be
 only a single instance in the group. The small amount of extra work
 involved in configuring Auto Scaling is well worth the knowledge that if
 an entire AZ fails, the instance will be replaced immediately and without
 any effort on our part.
We will begin by modifying the CloudFormation stack from the previous example so that the web and Celery
 instances are contained within their own static Auto Scaling group. Example 6-1 shows a CloudFormation stack
 template fragment describing the resources required to launch a working
 Auto Scaling group.
Example 6-1. Auto Scaling groups in CloudFormation
"MyLaunchConfig" : {
 "Type" : "AWS::AutoScaling::LaunchConfiguration",
 "Properties" : {
 "ImageId" : "ami-XXXXXXXX",
 "SecurityGroups" : [{ "Ref" : "MySecurityGroup" }],
 "InstanceType" : "t2.micro"
 }
},
"MyASGroup" : {
 "Type" : "AWS::AutoScaling::AutoScalingGroup",
 "Properties" : {
 "AvailabilityZones" : ["us-east-1a", "us-east-1b", "us-east-1c", "us-east-1d", "us-east-1e"],
 "LaunchConfigurationName" : { "Ref" : "MyLaunchConfig" },
 "MinSize" : "1",
 "MaxSize" : "1",
 "DesiredCapacity" : "1"
 }
}

There are two components to Auto Scaling: the Auto Scaling group and
 a launch configuration. A launch
 configuration controls which parameters are used when an instance is
 launched, including the instance type and user data.
Note
A full description of valid properties for an Auto Scaling
 group resource can be found in the CloudFormation section of the
 AWS documentation.

The size of an Auto Scaling group is controlled by MinSize and MaxSize, which set lower and upper bounds on the
 size of the group. The DesiredCapacity
 parameter specifies the ideal number of instances in the group.
 CloudFormation will consider the Auto Scaling group to have been created
 successfully only when this number of instances is running.
An Auto Scaling group must use at least one availability zone. The AvailabilityZones parameter lets you control
 which AZs are used for the group—ideally, as many as possible if
 availability is a concern. Entire availability zones can—and have—become
 unavailable for extended periods of time. While Amazon AWS has been
 enjoying the highest
 availability among public cloud vendors, it has fallen short of
 achieving five nines of availability across all its
 regions. Any application that fails to make use of multiple availability
 zones in its architecture faces a high likelihood of a number of hours of
 outage every year. If this is not acceptable to your users, you need to
 design accordingly. Amazon gives you the tools to build highly available
 systems, but it is up to you to use them.
The parameters given to the launch configuration are similar to the
 ones used with an EC2 instance resource. Group-level attributes—such as
 the number of instances in the group—are assigned to the Auto Scaling
 group resource.
To update our example stack to use Auto Scaling groups, we need to
 perform two steps, repeated for both instance types:
	Create a launch configuration to replace the EC2 resource, using
 the same user data and instance type.

	Create an Auto Scaling group resource using this launch
 configuration.

Example 6-2 shows the Auto Scaling groups and launch configurations for the web
 and Celery instances. Update the stack template (located at cloudformation/myblog.json) by removing the
 WebInstance and CeleryInstance resources, and adding the code
 shown here to the Resources
 section.
Example 6-2. Auto Scaling web and Celery instances
"CeleryLaunchConfig" : {
 "Type" : "AWS::AutoScaling::LaunchConfiguration",
 "Properties" : {
 "ImageId" : { "Ref" : "CeleryAMI" },
 "SecurityGroups" : [{ "Ref" : "CelerySecurityGroup" }]
 }
},
"CeleryGroup" : {
 "Type" : "AWS::AutoScaling::AutoScalingGroup",
 "Properties" : {
 "AvailabilityZones" : { "Fn::GetAZs" : ""},
 "LaunchConfigurationName" : { "Ref" : "CeleryLaunchConfig" },
 "MinSize" : "1",
 "MaxSize" : "2",
 "DesiredCapacity" : "1"
 }
},

"WebLaunchConfig" : {
 "Type" : "AWS::AutoScaling::LaunchConfiguration",
 "Properties" : {
 "ImageId" : { "Ref" : "WebAMI" },
 "SecurityGroups" : [{ "Ref" : "WebSecurityGroup" }]
 }
},
"WebGroup" : {
 "Type" : "AWS::AutoScaling::AutoScalingGroup",
 "Properties" : {
 "AvailabilityZones" : { "Fn::GetAZs" : ""},
 "LaunchConfigurationName" : { "Ref" : "WebLaunchConfig" },
 "MinSize" : "1",
 "MaxSize" : "2",
 "DesiredCapacity" : "1"
 }
},

The instance-specific parameters have been moved from the WebInstance resource to the WebLaunchConfig resource. The new Auto Scaling
 group resource will launch one of each instance type, as set by the
 DesiredCapacity parameter.
The next step is to update the running CloudFormation stack with the
 new template. Do this using the Management Console or command-line tools,
 and wait for the stack to reach the UPDATE_COMPLETE
 state.
Because the WebInstance and
 CeleryInstance resources are no longer
 in the stack template, these two instances will be terminated by
 CloudFormation. Once the launch config and Auto Scaling group resources
 have been created, two new instances will be launched to replace
 them.
It is worth noting that instances launched as part of an Auto
 Scaling group are not included in the Resources panel in the Management
 Console. Instead, you will need to use the AWS CLI tool or the Management
 Console to list the members of an Auto Scaling group. Instances will also
 be automatically tagged with the name and ID of the CloudFormation stack
 to which their parent Auto Scaling group belongs, as well as any optional
 user-defined tags.
Note
The fact that EC2 instances are not, technically speaking, part of
 the CloudFormation stack has some interesting implications when updating
 running stacks.
Say you want to change the parameters of a launch configuration
 that is in use by some running instances. When you update the running
 stack, CloudFormation will create a new launch configuration, update the
 Auto Scaling group to reference the new launch configuration, and
 finally delete the old launch configuration.
By default, it will make no changes to the instances that are
 running at the time the stack is updated. The new launch configuration
 will apply only to newly launched instances, meaning that currently
 running instances will still be using the old launch configuration. In
 some cases, it is acceptable to let the new launch configuration
 gradually propagate as new instances are launched. In others, it is
 necessary to immediately replace the instances so they pick up the new
 configuration.
An update policy can be used to automatically replace instances when their
 underlying launch configuration is changed. Instances will be terminated
 in batches and replaced with new instances by the Auto Scaling
 service.

Now that the web and Celery instances are part of Auto Scaling
 groups, we can test the resilience of our application by terminating the
 Celery instance via the Management Console. If you browse the Mezzanine
 site while the Celery instance is terminated, everything will continue to
 function as usual; the web application does not rely on a functioning
 Celery instance in order to work because of the decoupled nature of the
 application. As tasks are received, they are placed in the SQS queue,
 where they will wait until there is a working Celery instance to process
 them.
When Amazon’s periodic instance health checks notice that the Celery
 Auto Scaling group no longer contains a working instance, a replacement
 will be launched. After a few minutes, the instance will become functional
 and process any tasks that are waiting in the SQS queue.
With any application, it is important to understand the failure
 characteristics of each component. How will your application cope when one
 or more of its components fail is perhaps the most important question to
 ask when designing an application for hosting in a public cloud
 environment.
In the case of Celery, the failure characteristics are very good:
 the application continues working almost entirely without hiccups from the
 user’s perspective. Comments posted on the blog will be delayed for a
 while, which many users may not even notice.
A failed WebInstance, on the
 other hand, would cause the application to become entirely unavailable,
 because there is only one web instance in the group. Later in this chapter
 we will look at using load balancers to distribute traffic between
 instances.
Note
The authors feel strongly that CloudFormation will be a defining
 skill for system administrators in the coming decade. We accordingly
 expose the reader to copious amounts of its syntax as one of the most
 complex and valuable aspects of AWS worth mastering—yet there is a
 simpler way to draft CloudFormation templates.
In the fall of 2015, Amazon introduced CloudFormation
 Designer, a UI offering drag-and-drop manipulation of resources
 in templates. Federico likes to use it as a convenient, always
 up-to-date CloudFormation editor with built-in syntax validation: even
 when handcrafting your templates, reducing trivial errors helps to save
 time (Figure 6-2).

Figure 6-2. A template from Chapter 5 validated in CloudFormation
 Designer

Notifications of Scaling Activities
Another element of AWS is the Simple Notification Service (SNS). This is a
 push-based notification system through which an application can publish
 messages to topics. Other applications can
 subscribe to these topics and receive real-time notifications when new
 messages are available. This can be used to implement the
 publish/subscribe design pattern in your application.
In addition to notifying other applications when messages are
 published, SNS can also send notifications to email and SMS recipients, or
 post the message to an external HTTP web server. Auto Scaling groups can
 be optionally configured to publish SNS notifications when scaling
 activities take place, letting you receive an email each time new
 instances are launched or terminated.
Example 6-3 shows an updated
 version of our Celery scaling group with SNS notifications enabled. The
 example shows the four possible types of notifications that Auto Scaling
 will send. You can choose to subscribe to any combination of these types,
 but electing to choose all four can result in a lot of email traffic if
 your application regularly performs scaling activities.
Example 6-3. Auto Scaling with notifications
"ScalingSNSTopic" : {
 "Type" : "AWS::SNS::Topic",
 "Properties" : {
 "Subscription" : [{
 "Endpoint" : "notifications@example.com",
 "Protocol" : "email"
 }]
 }
}

"CeleryGroup" : {
 "Type" : "AWS::AutoScaling::AutoScalingGroup",
 "Properties" : {
 "AvailabilityZones" : { "Fn::GetAZs" : ""},
 "LaunchConfigurationName" : { "Ref" : "CeleryLaunchConfig" },
 "MinSize" : "1",
 "MaxSize" : "2",
 "DesiredCapacity" : "1",
 "NotificationConfiguration" : {
 "TopicARN" : { "Ref" : "ScalingSNSTopic" },
 "NotificationTypes" : [
 "autoscaling:EC2_INSTANCE_LAUNCH",
 "autoscaling:EC2_INSTANCE_LAUNCH_ERROR",
 "autoscaling:EC2_INSTANCE_TERMINATE",
 "autoscaling:EC2_INSTANCE_TERMINATE_ERROR"
]
 }
 }
},

The Importance of Error Notifications
We strongly recommend subscribing to the INSTANCE_LAUNCH_ERROR notification type for
 any important Auto Scaling groups. This will alert you to issues with
 Auto Scaling groups before they turn into real emergencies.
Mike once accidentally deleted an AMI that was still referenced in
 a production launch configuration, resulting in an Auto Scaling group no
 longer able to launch new instances.
This particular application—a social media website—had external
 monitoring that measured the performance of page-load times. Performance
 started to decrease as the running instances became increasingly
 overloaded. At the same time, Mike’s inbox began filling up with emails
 from AWS, letting him know that there was a problem with the scaling
 group. He quickly realized this was due to deleting the wrong AMI and
 set about building a new AMI to replace it. Subscribing to these
 notifications saved valuable time that would otherwise have been spent
 investigating the problem.
Operator error is not the only time in which these messages can
 prove useful. For example, if AWS is experiencing problems and cannot
 provide an instance to satisfy an Auto Scaling request, you will be
 informed.

Update cloudformation/myblog.json, replacing the
 CeleryScalingGroup resource with the
 new one. Remember to replace the example email address with your own. You
 could also add the NotificationConfiguration section to the
 WebScalingGroup resource if you would
 like to enable notifications for both scaling groups. After saving the
 file, update the running stack with the new template.
If you would like to see the notifications in action, terminate the
 Celery instance and wait for Auto Scaling to replace it. You should start
 receiving emails for both the termination and launch events, each letting
 you know which instance is being terminated and the reason for the
 change.

Scaling Policies
Static Auto Scaling groups have their uses, but a primary reason to use AWS is its
 ability to scale compute capacity up and down on demand, shortcutting the
 need to purchase servers in advance.
There are two ways to configure Auto Scaling to automatically change
 the number of instances in a group: either at fixed time intervals, or
 on-demand based on measurements gathered by a monitoring system.
Scaling based on time is useful only when your usage patterns are
 highly predictable. The implementation process for this is described in
 detail on Amazon’s Scaling
 Based on a Schedule page.
Dynamic scaling is the more interesting and widely used approach. It relies on
 gathering metrics—such as CPU utilization or requests per second—and using
 this information to decide when your application needs more or less
 capacity. This is done by creating scaling policies
 that describe the conditions under which instances should be launched or
 terminated. Scaling policies must be triggered in order to perform any
 action.
A policy that controls when new instances are launched is known
 as a scale-up policy, and one that
 controls when instances are terminated is a scale-down policy. Scaling policies
 can adjust the size of the Auto Scaling group in three ways:
	As an exact capacity. When the policy is triggered, the number
 of instances will be set to a specific number defined in the
 policy.

	As a percentage of current capacity.

	As an absolute value. When triggered, n new
 instances will be launched, where n is defined by
 the policy.

Scaling policies are triggered as a result of changes in measured
 metrics, which we will look at in the next section.
Scaling on CloudWatch Metrics
CloudWatch is a monitoring system provided by Amazon, tightly integrated with most
 AWS services. It can be used to quickly set up a custom Auto Scaling
 configuration specific to your application’s needs. Basic metrics
 gathered at five-minute intervals are available free of charge for
 services including compute (EC2), block storage (EBS), RDS database, and
 ELB load balancing. The same metrics can be gathered at one-minute
 intervals but in most cases you will incur an additional cost at this
 higher sampling rate.
Custom metrics from third-party or self-hosted monitoring systems
 can be published to CloudWatch, allowing you to see this data alongside
 AWS-provided metrics.
CloudWatch’s Alarms feature can be used to send alerts when these metrics fall outside
 the levels that you configure. For example, you could receive an email
 notification when the average CPU load of an instance has been above 80%
 for at least 10 minutes.
By connecting alarms to scaling policies, CloudFormation metrics
 can be used to control the size of an Auto Scaling group. Instead of
 informing you by email that your CPU load is too high, Amazon can launch
 a new instance automatically.
CloudWatch can aggregate metrics for all instances in an Auto
 Scaling group and use the aggregated metrics to control scaling actions.
 If you have an Auto Scaling group consisting of a cluster of instances
 that are all processing an equal amount of work, the average CPU
 utilization across the entire group will probably be a good indicator as
 to how busy the cluster is.
Because there are so many metrics available in CloudWatch, it is
 worth taking some time to evaluate different scaling strategies to see
 which is best for your application’s workload. The right choice will
 depend on which resources are most heavily used by your application.
 Sometimes, it is not possible to identify a single metric that best
 identifies when capacity changes are required.
Take our Celery instance as an example. The task that checks a
 comment for spam merely contacts an external API and returns the result
 to the Celery broker. This is not a particularly intensive strain on the
 instance’s CPU because most of the task execution time will be spent
 waiting for responses to network requests. We could increase the
 parallelization of Celery by running more processes and making more
 efficient use of the CPU, but the instance likely will run out of RAM
 before saturating the CPU.
Unfortunately, it is not possible to measure RAM usage in
 CloudWatch directly; writing a client-side script to submit this data to
 the CloudWatch API is required.
Monitoring RAM Utilization in EC2 Instances
Monitoring memory use requires the instance itself to publish the relevant
 data to CloudWatch. Amazon Web Services maintains (but does not
 support) a set of sample Perl scripts reporting memory
 and disk usage to CloudWatch. The scripts were recently
 updated to work out of the box on Ubuntu 14.04 and 16.04, as well as a
 number of older RPM-based distributions.
Standard CloudWatch pricing for
 custom metrics applies to this approach. Unfortunately, the design of
 these scripts requires storing a set of AWS credentials on the
 instance itself, hardly what we would consider a security best
 practice.
Fortunately, Shahar Evron has devised an alternative
 approach that makes use of IAM roles. You will remember that
 roles can be used to assign capabilities to AWS instances, in this
 case granting monitored instances the ability to report metrics to
 CloudWatch. Shahar’s solution uses a small boto
 script to accomplish just this, and can equally support the
 use of roles or AWS credentials stored in the
 ~/.boto and
 ~/.aws/credentials configuration files. No
 modules are required; boto is the
 sole dependency.
Following the process we outlined in Chapter 3, you will need to create a role
 that EC2 instances can assume, and embed a policy granting access to
 the cloudwatch:PutMetricData action on the
 CloudWatch resource. Once this is done, create an IAM instance profile
 as we have shown and use it to launch a new instance. Log in, and
 execute the following configuration steps:
sudo apt install python-pip
sudo pip install boto
curl https://gist.githubusercontent.com/shevron/6204349/raw/cw-monitor-memusage.py | sudo tee /usr/local/bin/cw-monitor-memusage.py
sudo chmod +x /usr/local/bin/cw-monitor-memusage.py
echo "* * * * * nobody /usr/local/bin/cw-monitor-memusage.py" | sudo tee /etc/cron.d/cw-monitor-memusage
This will set up Cron to
 report the memory usage of this instance to CloudWatch every
 minute—you will see an EC2/memory
 namespace populated by the MemUsage
 metric appear in your CloudWatch dashboard. This configuration can
 easily be automated as part of your default instance setup, and you
 can see how this all comes together in Figure 6-3.
Figure 6-3. Adding RAM metrics to our CloudWatch dashboard

Because we are using the SQS service as a Celery broker, we have another option:
 scaling based on the number of messages in the queue, rather than on
 instance metrics. This is interesting because we can use one AWS service
 (SQS) to control another (Auto Scaling groups), even though they are not
 directly connected to one another.
We will use the number of messages waiting in the SQS queue to
 control the size of the Celery Auto Scaling group, ensuring there are
 enough instances in the group to process tasks in a timely manner at all
 times.
We know that our tasks are usually processed very quickly and the
 SQS queue is usually empty, so an increase in the queue length indicates
 either a legitimate increase in tasks or a problem with the Celery
 instances. Regardless, launching new instances will solve any problems
 caused by load and force the size of the queue to decrease.
The same metric can be used to terminate instances after the queue
 has been reduced to an acceptable length. Running too many instances is
 a waste of money, so we want to keep the Auto Scaling group as small as
 possible.
Starting Services on an As-Needed Basis
Scaling policies respect the minimum and maximum size of your
 Auto Scaling groups. Because the minimum size of our Celery group is
 1, CloudFormation will never
 terminate the last remaining instance.
By setting the minimum size of the group to 0, you could build a system where instances
 are launched only when messages are published to the queue. To
 understand the value of such a policy, imagine using Celery to send
 out batches of emails at regular intervals. Most of the time the queue
 will be empty. When you begin publishing messages to the queue,
 instances will be launched to process the tasks. Once the queue is
 empty, all instances will be terminated. This is an incredibly
 cost-effective way to run a task-processing infrastructure.

To implement these changes, we need to make further additions to
 the stack template, as shown in Example 6-4.
Example 6-4. Auto Scaling with CloudWatch alarms
"CeleryScaleUpPolicy" : {
 "Type" : "AWS::AutoScaling::ScalingPolicy",
 "Properties" : {
 "AdjustmentType" : "ChangeInCapacity",
 "AutoScalingGroupName" : { "Ref" : "CeleryGroup" },
 "Cooldown" : "1",
 "ScalingAdjustment" : "1"
 }
},

"CeleryScaleDownPolicy" : {
 "Type" : "AWS::AutoScaling::ScalingPolicy",
 "Properties" : {
 "AdjustmentType" : "ChangeInCapacity",
 "AutoScalingGroupName" : { "Ref" : "CeleryGroup" },
 "Cooldown" : "1",
 "ScalingAdjustment" : "-1"
 }
},

"CelerySQSAlarmHigh": {
 "Type": "AWS::CloudWatch::Alarm",
 "Properties": {
 "EvaluationPeriods": "1",
 "Statistic": "Sum",
 "Threshold": "100",
 "AlarmDescription": "Triggered when SQS queue length >100",
 "Period": "60",
 "AlarmActions": [{ "Ref": "CeleryScaleUpPolicy" }],
 "Namespace": "AWS/SQS",
 "Dimensions": [{
 "Name": "QueueName",
 "Value": { "GetAtt": ["CeleryQueue", "QueueName"] }
 }],
 "ComparisonOperator": "GreaterThanThreshold",
 "MetricName": "ApproximateNumberOfMessagesVisible"
 }
},

"CelerySQSAlarmLow": {
 "Type": "AWS::CloudWatch::Alarm",
 "Properties": {
 "EvaluationPeriods": "1",
 "Statistic": "Sum",
 "Threshold": "20",
 "AlarmDescription": "Triggered when SQS queue length <20",
 "Period": "60",
 "AlarmActions": [{ "Ref": "CeleryScaleDownPolicy" }],
 "Namespace": "AWS/SQS",
 "Dimensions": [{
 "Name": "QueueName",
 "Value": { "GetAtt": ["CeleryQueue", "QueueName"] }
 }],
 "ComparisonOperator": "LessThanThreshold",
 "MetricName": "ApproximateNumberOfMessagesVisible"
 }
},

Insert this template excerpt into the Resources section of the cloudformation/myblog.json file.
Notice that we do not need to change any aspect of the Celery Auto
 Scaling group resource in order to enable dynamic scaling. Our scaling
 policy configuration is entirely separate from the Auto Scaling group to
 which it applies. The scaling policy could even be in a separate
 CloudFormation stack.
We have separate policies for scaling up and down, and both of
 these policies use the ChangeInCapacity adjustment type to launch or
 terminate a set number of instances.
The CeleryScaleUpPolicy, when
 triggered, will launch two new Celery instances. The CeleryScaleDownPolicy will terminate one
 instance at a time. Why the difference? Launching two new instances at a
 time lets us quickly respond to changes in demand, springing into action
 as the work requirements increase. As the queue drops, we want to
 gradually reduce the number of instances to avoid a yo-yo effect. If we
 reduce the capacity of the task-processing infrastructure too quickly,
 it can cause the queue to begin rising again, which might trigger the
 scale-up policy. At times, the Elastic Compute Cloud can be a little too
 elastic and introducing some hysteresis through our scale planning is
 necessary.
The Cooldown property gives us
 a further means of controlling the elasticity of our Auto Scaling
 policy. This value, specified in seconds, imposes a delay between
 scaling activities to make sure the size of the group is not adjusted
 too frequently.
CelerySQSAlarmHigh is a
 CloudWatch Alarm resource that monitors the length of the SQS queue used for Celery
 tasks. When there are more than 100 messages in the queue, this alarm is
 activated, triggering the CeleryScaleUpPolicy. Conversely, CelerySQSAlarmLow
 triggers the CeleryScaleDownPolicy
 when the queue length drops below 20. In practice, it is unlikely
 that the queue length thresholds will be so low. However, these values
 make it much easier to test and demonstrate that Auto Scaling is working
 as planned.
After saving the updated file, update the running stack with the
 new template. Because the DesiredCapacity of the group is still set to
 1 and none of the relevant CloudWatch
 alarms have been triggered, nothing will actually happen yet.
To demonstrate that Auto Scaling is working, stop the Celery
 process on the running instance and post some test comments, causing the
 number of queued messages to increase until Celery is scaled up.
Using the Management Console or command-line tools, find the
 public DNS name of the instance in the Celery group. Remember that it
 will be tagged with the name of the CloudFormation stack and role=celery. Log in to the instance and
 stop Celery with the following command:
supervisorctl celery stop
Visit the Mezzanine page in your web browser and post example
 comments. In another tab, open the CloudWatch Alarms page and watch the
 status of the CelerySQSHighAlarm.
 Once enough messages have been published to the queue, it will enter the
 ALARM state and trigger the CeleryScaleUpPolicy, launching two new Celery
 instances.
Because we configured notifications for this scaling group, you
 will receive a few email messages as the Auto Scaling activities are
 performed. After a brief period, you should see there are now three
 running Celery instances.
Notice that they are probably all running in different
 availability zones within your region. Amazon will attempt to evenly
 distribute an Auto Scaling group across an EC2 region to enhance
 resilience.
The two new instances will quickly process the tasks in the queue
 and take the queue length below the scale-down threshold. Once the
 CelerySQSLowAlarm is triggered, two
 of the instances will be terminated.
Tip
When terminating instances, the default behavior is to terminate the
 instance that has the oldest launch configuration. If more than one
 instance is running the old configuration, or all instances are
 running the same configuration, AWS will terminate the instance that
 is closest to the next instance hour. This is the most cost-effective
 strategy, as it maximizes the useful lifetime of instances.
If instances were launched together—as is likely in an Auto
 Scaling group—more than one instance will be “closest” to a full
 instance hour. In this case, a random instance from this subset is
 terminated.
This logic can be further controlled by assigning a termination
 policy to the Auto Scaling group, as is described in Amazon’s Auto
 Scaling documentation.

Now that you know Auto Scaling is working, you can resume the
 Celery process on the original instance, assuming it was not terminated
 when scaling down. Do this with the following:
supervisorctl celery start
The Celery part of the infrastructure will now grow and shrink
 dynamically, according to the number of tasks to be processed. Tasks
 will be processed as quickly as possible, while ensuring that we are not
 wasting money by running too many instances.

Elastic Load Balancing
Whether in the cloud or on your own hardware, system failures are an inevitable part of
 a system administrator’s life. If your application is hosted on a single
 server, the eventual system failure will render your application
 unavailable until a replacement server or virtual instance can be
 provisioned.
One way to improve the reliability of your application is to host it
 on multiple instances and distribute the traffic between them. When
 individual instances fail, your application will continue to run smoothly
 as long as the remaining instances have enough capacity to shoulder the
 burden of the additional requests they must now serve. This is known
 as load balancing, and the server that
 distributes traffic is a load balancer.
We have seen how Auto Scaling can be used to help solve this problem
 in AWS by automatically launching new instances to replace failed ones, or
 dynamically increasing capacity to respond to demand. So far, we have
 added dynamic Auto Scaling only to the Celery part of the
 infrastructure.
Converting the web application instance into an Auto Scaling group
 requires solving a problem not present with Celery: how do we distribute
 HTTP requests between multiple instances? For testing purposes, we have
 been using the public DNS name of each individual instance so far, and
 newly launched instances would launch with different names. Once the
 infrastructure is in production, users will visit it at
 http://blog.example.com. So how can we connect a
 single, public DNS name to a group of instances?
Elastic Load Balancing is Amazon’s solution to this problem.
 An Elastic Load Balancer (ELB) is a
 virtual device built specifically to provide dynamic load-balancing
 capabilities to applications hosted on AWS. An ELB effectively sits in
 front of a group of EC2 instances and distributes traffic between them. A
 round-robin approach is commonly used, but
 alternative, application-aware strategies such as least
 outstanding requests are also popular.
Instead of pointing the blog.example.com DNS
 record toward a specific EC2 instance, we will point it at the ELB using a
 CNAME DNS record. All requests will be sent by the ELB to the instances
 behind the ELB. You can use the Management Console and API to manually add and remove instances from the ELB.
 The ELB will regularly perform health checks on these instances, and any instances that are deemed
 unhealthy will be automatically removed from the ELB.
Note
Mastery of ELB service requires a solid understanding of the
 DNS system. DNS itself is the broadest of subjects,
 covered by books much heftier than ours. We recommend DNS and
 BIND by Cricket Liu and Paul Albitz (O’Reilly) as the ultimate source on this topic.
 Federico’s now dog-eared copy saw an impressive amount of use during his
 graduate student years!

Elastic Load Balancer and Auto Scaling Groups
ELBs are designed to work in conjunction with Auto Scaling groups. When you create a
 scaling group, you can specify the name of the associated ELB. New
 instances launched in this scaling group will be automatically placed
 behind the ELB, at which point they will begin receiving traffic and
 serving requests.
We will use this feature to convert the web application component of
 the example stack into an Auto Scaling group behind an ELB. Once finished,
 we will be able to access our example blog via the public DNS name of the
 ELB.
Example 6-5 shows the updated section
 of the application stack.
Example 6-5. Auto Scaling group with Elastic Load Balancer
"WebELB" : {
 "Type" : "AWS::ElasticLoadBalancing::LoadBalancer",
 "Properties" : {
 "AvailabilityZones" : { "Fn::GetAZs" : "" },
 "Listeners" : [{
 "LoadBalancerPort" : "80",
 "InstancePort" : "80",
 "Protocol" : "HTTP"
 }],
 "HealthCheck" : {
 "Target" : { "Fn::Join" : ["", ["HTTP:80/"]]},
 "HealthyThreshold" : "3",
 "UnhealthyThreshold" : "5",
 "Interval" : "30",
 "Timeout" : "5"
 }
 }
},
"WebGroup" : {
 "Type" : "AWS::AutoScaling::AutoScalingGroup",
 "Properties" : {
 "AvailabilityZones" : { "Fn::GetAZs" : ""},
 "LaunchConfigurationName" : { "Ref" : "WebLaunchConfig" },
 "MinSize" : "1",
 "MaxSize" : "2",
 "DesiredCapacity" : "2",
 "LoadBalancerNames" : [{ "Ref" : "WebELB" }]
 }
},

Update cloudformation/myblog.json to replace the
 WebInstance resource with the new code.
 These are almost exactly the same changes required to convert Celery into
 a scaling group, with two main exceptions: an Elastic Load Balancer
 resource has been added, and the Auto Scaling group has been updated to
 include the LoadBalancerNames
 parameter.
The DesiredCapacity for the
 WebGroup has been changed to 2, which means an additional instance will be
 launched when the CloudFormation stack is updated.
The ELB performs a health check that verifies that the application
 is responding to HTTP requests.

ELB Health Checks
An ELB can be configured with a custom health check that is
 performed on any instance in the group. This is done by making an HTTP
 request to the specified target at regular intervals. If the target server
 does not respond to this request with a 200 status code within the given
 time-out, the check fails. Once the number of failed checks reaches the
 UnhealthyThreshold value, the instance
 is considered unhealthy and removed from the ELB. As a result, an instance
 could be replaced if it becomes very slow or unreliable, even if it
 doesn’t completely fail.
The health check will still be performed on unhealthy instances.
 Should they recover and resume operating normally, they will be
 automatically returned to the ELB after enough successful checks have
 occurred, as specified in HealthyThreshold.
Another option for the custom health check is to initiate a TCP
 connection. If the TCP handshake can be completed, the check is considered
 successful.
HTTP-based health checks are useful for more than web applications.
 A really useful practice is to build a custom HTTP server that represents
 the health of your application. This can consist of a number of tests
 specific to your environment, which verify that every component of the
 instance is working as expected. If any of these tests fail, have the
 server return an HTTP error code in response to the health check, which
 results in the instance being removed from the ELB. Anything except HTTP
 200 is treated as failure and will result in the instance being considered
 unhealthy by the ELB.
In addition to the custom health check just described, Amazon
 performs an instance-level health check automatically. This checks for
 problems at the virtualization layer that might not be recognized by an
 application-level health check.
While health checks are useful, it is important to understand the
 implications of allowing health checks to terminate and launch new
 instances. A misconfigured health check will cause ELB to believe all of
 your instances are unhealthy, and unceremoniously remove them from the
 group. It is imperative that your health check return a 500 error only if
 the problem can be solved by removing the instance from the ELB. That is
 the only remedial action the ELB can take, so there is no point in
 alerting it about problems that require another solution, and doing so may
 be actually counter-productive.
Consider the example of a web application that requires a database
 to function properly. If the database fails, each web instance will begin
 returning 500 error codes for every request. Removing an individual
 instance of the web server from the ELB will do nothing to bring the
 database back to life.
If the health check page also returns 500 error codes because the
 database is not working, all of the instances will be removed from the
 ELB. At this point, visitors to your website would see the standard ELB
 error page, rather than the beautifully designed error page of your
 application.
Carefully monitor the number of unhealthy instances in each ELB by
 setting up a CloudWatch alarm to alert you if it remains above zero for a
 significant length of time.
Update the running CloudFormation stack with the modified template.
 The old web instance, which no longer exists in the template, will be
 deleted and replaced with an Auto Scaling group with a single
 member.
Once the stack has finished updating, use the CloudFormation
 Management Console or command-line tools to list the stack’s resources and
 find out the public DNS name of the ELB. Alternatively, you could look in
 the Elastic Load Balancers section of the Management Console.
Visit the ELB’s address in your web browser, and you should once
 more see the Mezzanine welcome page. This page has been served by one of
 the instances in the scaling group. Because they are identical, it does
 not matter which one actually served the request.
Tip
The number of requests received per second is one of the Elastic
 Load Balancing metrics in CloudWatch. As such, it can be used to scale
 the number of web instances in a manner directly related to current
 levels of traffic.

Terminate one of the running web application instances with the Management Console. You can find it by
 searching for one of the values contained in the instance’s tags, such as
 the scaling group name (WebInstanceScalingGroup).
After this instance terminates, refresh the Mezzanine page in your
 browser. The site will continue to function as usual even though one of
 the instances is no longer running.
Within a few minutes, AWS will notice the terminated instance and
 launch a replacement for it. Once this instance has finished the startup
 process, it will be marked as healthy by the ELB, and traffic will once
 again be split between the two instances.
With this step complete, the example application is now ready to
 scale at both the Celery and web levels. It is resilient to failures of
 individual instances and entire availability zones, and will run at the
 optimal capacity to ensure happy users and a low AWS bill for your
 organization.

Managing Outages
Amazon Web Services has come a long way from its early days, when it was routine
 for any medium-scale deployment to lose a few EC2 instances at least once
 every week. Instances no longer “disappear” as often, thanks to the
 dedication of the AWS team to increasing reliability for their customers,
 but this remains a distinctive feature of spot priced
 instances, purchased by users bidding for spare excess capacity. Any
 application running on EC2 must be designed to account for the possibility
 of an instance being terminated without any prior warning. Production
 datacenters present similar risks, including the loss of a hypervisor node
 or a network failure, but in the AWS model that opaque risk cannot be
 managed by the administrator in even the smallest degree, as she is
 unaware of Amazon’s daily operational plans and needs—or the presence of
 any backhoes near their fiber-optic lines.
Tip
The spot
 instance market allows AWS customers to bid for spare excess capacity by specifying
 what maximum instance-hour price they are willing to pay. EC2 launches
 (or terminates) instances as the spot price fluctuates based on the
 supply and demand of unused EC2 capacity. Operating in this model can
 result in massive savings over on-demand instance pricing and is very
 suitable to applications that can be safely interrupted.
The spot market is becoming increasingly sophisticated over time,
 introducing new choices for the user. Spot priced instances now receive
 a two-minute notification of impending termination once the price
 exceeds the user-specified limit, and partially used hours are not
 charged. It is now also possible to define a minimum duration
 requirement, in which case a running instance will not be terminated
 even if the spot price exceeds the specified constraint.
Spot instance termination notices are provided through the
 termination-time item in the instance’s metadata.
 If a spot instance is marked for termination, the item will be defined,
 its value specifying at which time the instance will receive the ACPI
 shutdown event. Amazon recommends polling this field at five-second
 intervals, which is easily accomplished as follows:
if curl -s http://169.254.169.254/latest/meta-data/spot/termination-time | grep -q .*T.*Z
then
 echo terminated;
fi

A properly executed Mode 2
 IT transition requires architectural design effort: we should not fall
 prey to the classic mistake of trying to make a new technology perform
 exactly like the old did. We should instead use the valuable opportunity
 created by the infrastructure renewal cycle to modernize applications and
 reduce technical debt as part of the transition. Doing so comfortably uses
 existing legacy systems to continue to take care of what they do best:
 running our applications as originally intended, while we design their
 next implementation making the best use of new AWS infrastructure. There
 is no reason to migrate everything to new infrastructure once: we can
 deliberately choose our timeline and application migration strategy to
 accomplish these goals, while remining mindful of our budget constraints.
 Start by migrating those applications best suited to run in the cloud,
 while you make your way through the redesign of ill-fitting
 workloads.
Netflix’s Chaos
 Monkey is the tool of choice for validating an application’s response to EC2
 instance outages. Chaos Monkey is a service that may be configured to
 randomly select and terminate instances in your AWS deployment, thereby
 testing the resiliency of your design and the automated responses set up
 to handle such contingencies. Failures happen, and unleashing Chaos Monkey
 on your infrastructure ensures that the flaws in its design are found
 during business hours and at the best time to investigate their cause,
 instead of being discovered at the worst possible moment in
 production.
AWS infrastructure outages remain rare, but are by no means unheard
 of. We live through the experience of a significant AWS outage every other
 year, and can observe its impact ripple through the most disparate
 services of the global internet. Failures cascade as increasingly more
 websites are built around core infrastructure supplied by Amazon Web
 Services—an AWS outage can disrupt Twitter, which uses S3 to host files,
 which in turn can disrupt another service relying on Twitter to deliver
 its user notifications. And so on.
Some of AWS’s most notorious service events to
 date have included a storage component. On October 22, 2012, an
 unlikely combination of minor bugs in a monitoring system for the Elastic
 Block Storage service initiated a massive concurrent failover of volumes
 hosted in the us-east-1 region. Operations in the
 region ground to a halt for many users, who also encountered difficulty in
 controlling their resources through the management API. Similarly, on
 February 28,
 2017, an operator on the AWS team fat-fingered a routine command
 intended to remove a small number of servers supporting the S3 billing
 process. The additional servers removed supported the metadata and
 placement subsystems for a whole S3 region. While these systems were being
 restarted, S3 was unable to service requests. Services that rely on its
 API, like EC2 and EBS, were severely affected. Both of these events were
 less than a day in duration yet they were front-page news in the technical
 press because of the scale of their impact—the 2017 outage severly
 affected major sites like Twitter, Slack, and GitHub and was reported on
 CNN.
We discuss these incidents here to illustrate the complexity of an
 AWS outage—they typically arise from a low-probability event that becomes
 possible (or even eventually inevitable) with AWS’s massive scale. It can
 be difficult for any administrator to determine if the unlikely
 circumstance of an AWS outage is underway at a given moment, which is why
 Amazon provides users with the AWS
 Service Health Dashboard (Figure 6-4),
 publishing the most up-to-date status information available for every AWS
 service. A status history covering all services for the last 365 days is
 also provided, as well as an RSS feed to subscribe to the health status of
 each service.
Figure 6-4. A small section of the many pages of the AWS Service Health
 Dashboard

While it is standard practice to rely on multiple availability zones
 to guarantee services are highly availabile, some of the worst outages
 have affected multiple AZs within the same region. Even in the direst of
 circumstances, no AWS outage has ever brought down an AWS service across
 multiple regions concurrently. If your organization cannot afford a few
 hours of downtime annually as the worst-case scenario, you should analyze
 the cost and complexity required to operate your service from multiple AWS
 regions concurrently, as opposed to merely multiple availability
 zones.

Mastering Scale
Auto Scaling policies are tricky to get right the first time, and it is likely that you will
 need to tweak these as your application workload changes. Err on the side
 of caution—in most cases, it is best to run with a little extra capacity,
 rather than having too little capacity and offering users a poor
 experience.
Auto Scaling enables some creative thinking. Do you have an internal
 HR system that is used only during office hours? Use scheduled Auto
 Scaling to automatically launch and terminate the instance so it is
 running only when needed.
What about building stacks that automatically launch when needed and
 self-destruct once their work is complete? The minimum size of an Auto
 Scaling group is zero. The Celery stack could be configured to launch
 instances when there are more than 50 messages in the queue.
Now you’re thinking with Auto Scaling groups.

Chapter 7. Deployment Strategies
This chapter covers methods that should be used to deploy changes
 safely and reliably in a live environment, and demonstrates two of the
 common approaches to updating EC2 instances:
	Instance-based deployment
	Each instance is updated individually at deployment time.

	AMI-based deployment
	A new AMI is created every time a production version is
 released.

The remainder of this chapter investigates the pros and cons of each
 approach.
In the context of this chapter, deploying does
 not just refer to updating your application’s code or executable files. It’s
 a complete, end-to-end process that makes sure your running production
 environment is consistent and correct. It covers various other changes you
 need to manage, such as updating versions of software installed on EC2
 instances and making changes to CloudFormation stack templates.
The focus here is on how to orchestrate a fleet of EC2 instances and
 reliably manage them. We won’t cover the actions taken by the deployment
 script (such as restarting services), because each application has its own
 unique requirements.
Instance-Based Deployments
Before we look at the AWS-specific requirements of a deployment
 system, let’s first examine the components common to nearly all such
 systems. Consider the deployment workflow of a typical user application.
 We will look at this from the perspective of a developer making a change
 to some application code, but the same rules apply to a designer changing
 a CSS file or a sysadmin changing a parameter in a configuration
 file:
	A developer writes code to implement a new feature.

	The changed files are incorporated into a version control system
 such as Git or Subversion.

	Depending on the programming language being used, it might be
 necessary to build or compile the source files to produce an
 executable binary.

	The changed source files (or compiled executables) are made
 available to the running instances. Instances might pull the files
 directly from the version control system, or perhaps use a locally
 hosted repository system such as Apt or Yum.

	Once the changed files are on the instances, running services
 are restarted to pick up the new code or configuration files.

This is, of course, a high-level overview, and some applications
 might require additional steps.
Some parts of the process are not affected by the choice of hosting
 environment. Whether you are hosting your application on your own hardware
 in a shared datacenter or on AWS, you will need to perform these
 steps.
The elasticity of the cloud does force some changes onto the
 traditional datacenter deployment flow. With Auto Scaling, you can never
 be sure how many instances will be running when you initiate the
 deployment process.
Consider this example: you have 10 instances running version 1.0 of
 your application, and you wish to deploy an update (let’s call it 1.1).
 You run your deployment script and update these 10 instances to v1.1. As
 word spreads about the amazing new features contained in this release,
 users flock to the site to join. The increased traffic is noticed by
 CloudWatch, which responds by launching two new instances to handle the
 load. Because these instances had not yet been launched when the
 deployment was originally executed, they will now be launched with
 whichever version of the application was baked into the AMI—in this case,
 v1.0. As a result, you end up running two versions of your application
 simultaneously.
To solve this problem, each instance must be able to update itself
 to the latest released version at launch time, and finish updating itself
 before it is added to the pool of instances behind an Elastic Load
 Balancer.
This approach is referred to as an instance-based
 deployment, and is very similar to the release management
 processes found in traditional, noncloud environments. Two additional
 features are required to make it AWS-compatible: finding out the hostnames
 of instances that should be updated, and making sure instances can update
 themselves on boot.
Executing Code on Running Instances with Fabric
The first problem when deploying code to running instances is a simple one: how can we
 reliably execute code on running EC2 instances when we don’t know their
 hostnames in advance? Part of the answer to that question is Fabric, which is a Python tool
 used to automate system administration tasks. It provides a basic set of
 operations (such as executing commands and transferring files) that can
 be combined with custom logic to build powerful and flexible deployment
 systems, or simply make it easier to perform routine tasks on groups of
 servers or EC2 instances. Think of Fabric as an agentless system that
 lets you execute arbitrary Python functions via the command line, with a
 library of support subroutines meant to make executing shell commands
 over SSH easy and pythonic.
Because Fabric is Python-based, we can use Boto to quickly
 integrate it with AWS services. Tasks are defined by writing Python
 functions, which are usually stored in a file named fabfile.py. These functions use Fabric’s
 interface to perform actions on remote hosts. Here is a simple example
 mirroring what we learned about Fabric in Chapter 4:
from fabric.api import run

def get_uptime():
 run('uptime')
When executed, this task will run the uptime command on each host and display the
 resulting output. It can be executed in various ways; for
 example:
fab -H localhost,www.example.com get_uptime
With this invocation, Fabric would execute the get_uptime task—and therefore the uptime command—on both
 localhost and www.example.com.
 The -H flag defines the list of hosts
 on which the task will be executed. You may need to specify which SSH
 key to use (-i flag) or what user ID
 to log in as (-u flag) when you try
 this example:
$ fab -H localhost get_uptime
[localhost] Executing task 'get_uptime'
[localhost] run: uptime
[localhost] out: 23:04:26 up 260 days, 14:29, 3 users, load average: 0.00, 0.01, 0.05
[localhost] out:

Done.
Disconnecting from localhost... done.
Grouping instances through roles
Fabric includes a feature known as roles,
 which are user-defined groups of hosts. The Roles
 Documentation shows a simple example:
from fabric.api import env

env.roledefs = {
 'web': ['www1', 'www2', 'www3'],
 'dns': ['ns1', 'ns2']
}
A role is simply a list of hostnames (or, technically speaking,
 a list of host strings, that may or may not be
 fully qualified domain names). As the previous code shows, the role
 definition list—env.roledefs—is
 implemented as a Python dictionary, where a key such as 'web' is associated to an array of host
 strings (www1, www2, and www3). We make it available to other parts
 of the Python script through the global env variable.
When you combine the code just shown with the previous example,
 our own get_uptime task could be
 executed on the three web servers by executing this command:
fab -R web get_uptime
This command would execute get_uptime on the three web servers listed
 under env.roledefs as 'web' and display the output, making it
 functionally equivalent to specifying the three web server hostnames
 with the -H or --hosts flag.
The previous example relies on a statically defined group of
 hostnames, which is obviously not suitable for the dynamic nature of
 EC2. Having to manually create a list of web instances in the
 production environment before each deployment would quickly become
 tiresome. Fortunately, role definitions can be set dynamically: before
 each task is executed, it checks the role definitions to get a list of
 hostnames. This means one task can update the role definitions, and
 the updated definitions will be used for all subsequent tasks.
We can use this feature to create different role definitions for
 staging and production environments. Suppose we are running an
 infrastructure using hostnames that reference the server’s role and
 environment. For example, a web server in the production environment
 is named www1-prod. Example 7-1 shows how dynamic role
 definitions can be used to control which hosts the tasks are executed
 on.
Example 7-1. Dynamic Fabric role definitions
from fabric.api import env

def production():
 env.roledefs = {
 'web': ['www1-prod', 'www2-prod', 'www3-prod'],
 'db': ['db1-prod', 'db2-prod']
 }

def staging():
 env.roledefs = {
 'web': ['www1-staging', 'www2-staging'],
 'db': ['db1-staging']
 }

def deploy():
 run('deploy.py')

Remember that Fabric tasks are simply Python functions; they do
 not necessarily need to execute any code on remote servers. We could
 then update the staging servers with the following command:
fab staging deploy
This command makes Fabric execute the staging task to set the role definitions and
 then run the deploy.py script on
 the remote instances. This example runs a nonexistent deploy.py script, which acts as a
 placeholder for your own deploy script.
That works well when we know all of our hostnames in advance,
 but how about dynamic fleets of EC2 instances, where we don’t even
 know how many instances there are, let alone their hostnames?
In combination with the EC2 API, we can take advantage of this
 feature to selectively execute tasks on our EC2 instances without
 needing to know the hostnames in advance. This relies on the tagging
 strategy introduced in the preceding chapters, in which each instance
 is tagged with a role and an environment. Instead of setting env.roledefs to a list of predefined
 hostnames, we will query the EC2 API to find a list of instances that
 matches our target role and environment.

Dynamically finding instances
Mike has released an open source package
 encapsulating the logic required to query the EC2 API and use tags to
 build up a list of EC2 instance hostnames. This Python module can be
 used to quickly convert the previous example—which showed how to
 deploy software to different environments—into a script that can be
 used to deploy code to all running instances known to EC2.
Example 7-2 uses the EC2 tags
 feature. It assumes that each instance was created with a web or db
 tag and puts the hostnames into the associated key of an associative
 array called roles. For each
 environment we need (production, staging, and deploy), we read the
 associative array according to our environment.
Example 7-2. Fabric role definitions and EC2 tags
from fabric.api import run, roles, sudo, env
from fabric_ec2 import EC2TagManager

def configure_roles(environment, region):
 """ Set up the Fabric env.roledefs, using the correct roles for the given environment
 """
 tags = EC2TagManager(common_tags={'environment': environment}, regions=[region])

 roles = {}
 for role in ['web', 'db']:
 roles[role] = tags.get_instances(role=role)

 return roles

select staging or production environment to filter roles accordingly,
env.roledefs = configure_roles(env.environment, env.region)

@roles('web')
def restart_web():
 sudo('/etc/init.d/nginx restart')

@roles('db')
def restart_db():
 sudo('/etc/init.d/postgresql restart')

def hostname():
 run('hostname')

This can be executed in our us-east-1 staging environment with the
 following:
$ fab -u ubuntu restart_web --set region='us-east-1',environment='staging'
[ec2-54-157-1-63.compute-1.amazonaws.com] Executing task 'restart_web'
[ec2-54-157-1-63.compute-1.amazonaws.com] sudo: /etc/init.d/nginx restart
[ec2-54-157-1-63.compute-1.amazonaws.com] out: * Restarting nginx nginx
[ec2-54-157-1-63.compute-1.amazonaws.com] out: ...done.
[ec2-54-157-1-63.compute-1.amazonaws.com] out:

[ec2-54-145-97-18.compute-1.amazonaws.com] Executing task 'restart_web'
[ec2-54-145-97-18.compute-1.amazonaws.com] sudo: /etc/init.d/nginx restart
[ec2-54-145-97-18.compute-1.amazonaws.com] out: * Restarting nginx nginx
[ec2-54-145-97-18.compute-1.amazonaws.com] out: ...done.
[ec2-54-145-97-18.compute-1.amazonaws.com] out:

Done.
Disconnecting from ec2-54-157-1-63.compute-1.amazonaws.com... done.
Disconnecting from ec2-54-145-97-18.compute-1.amazonaws.com... done.
Assuming you have some running instances bearing the relevant
 tags—a role tag with a value of
 web or db, and an environment tag with the value
 production—the deployment task will
 be executed on each of the matching EC2 hosts.
If you wanted to run a generic task only on the db instances you
 could execute the following example to list their instance
 hostnames:
fab -u ubuntu hostname -R db --set region='us-east-1',environment='staging'
The tags given are just examples. Any key/value pairs can be
 used with EC2 tags and queried from Fabric, making this a flexible
 method of orchestrating your EC2 fleet with both generic (the hostname example) and service-specific (like
 restart_db) tasks.

Dynamically keying on instance attributes
Omri Bahumi brought the dynamic binding concept to new heights, with a
 project
 taking AWS metadata integration with Fabric even further. Omri’s
 extension allows task decorators to key on any AWS EC2 instance
 attribute, including not only tags but also instance type, instance
 ID, and even Auto Scaling groups.
Begin by installing fabric-aws as follows. A
 configured instance of Boto is also required:
pip install fabric-aws
After setup is complete, it becomes trivial to select instances
 based on any metadata attribute exposed by the describe-instances
 CLI command and corresponding API—more than 83 distinct properties are
 accessible as of the time of writing. Example 7-3 shows two minimalistic Fabric tasks
 targeting instances based on their instance ID and instance types,
 respectively.
Example 7-3. Fabric decorators selecting by instance ID or type
from fabric.api import *
from fabric_aws import *

@ec2('us-east-1', instance_ids=['i-02f7acf3eafb0b4af','i-06eab5b7e64f5af4c','i-06eab5b7e64f5af4c'])
@task
def uptime_instance_ids():
 run('uptime')

@ec2('us-east-1', filters={'instance_type':'t2.micro'})
@task
def hostname_instance_type():
 run('hostname')

Service Discovery
In a highly dynamic cloud environment, the list of endpoints available to service a request
 may vary rather frequently. Configuration management can keep track
 of which servers are available and rewrite configuration files
 accordingly, but a Puppet run is a heavyweight process that is
 usually executed with hourly granularity at best. DNS can be
 similarly used to direct clients to the correct instance, but there
 is no intelligence in DNS records, so a static pool is served up for
 a predefined period of time, even after endpoints may have been
 terminated.
A service discovery tool is essentially a registry where endpoints can check
 in, advertising that they are available to service requests. Clients
 then rely on the list of servers marked as available by the service
 discovery tool to adjust their own configuration. The service
 discovery software typically monitors the health of its pool of
 endpoints, but endpoints are also generally expected to deregister
 themselves when shutting down or otherwise discontinuing service.
 Popular choices in this category include HashiCorp
 Consul and Apache
 Zookeeper, but there are many other alternatives.

Updating Instances at Launch Time
The second part of the problem is to update newly launched instances. If an AMI
 has a particular version of an application baked into it, that is the
 version that will be running when the instance is launched. If a new
 version has been released since the AMI was created, the instances will
 be running an outdated version.
Our instances therefore need to be able to check for the latest
 version as part of the boot process and perform an update themselves if
 necessary. All operating systems provide some mechanism for running
 user-defined scripts at boot time. On Linux systems, the update can be
 triggered by placing the following in the /etc/rc.local file:
#!/bin/bash

/usr/local/bin/deploy.py
In this example, the deploy script would check a central location
 to find the latest version of the application and compare it with the
 currently installed version. The script could then update the instance
 to the correct version if a change is required. It is essential that a
 distinction between the tip of development and production releases be in
 place for such a process to produce consistent results.
Package Management
Many programming languages and operating systems offer their own
 solutions for distributing code and configuration files, such as PyPI
 for Python, Yum for RPM-based systems, and Apt for Debian-based
 systems. Using these systems wherever possible can make for a very
 easy upgrade path, because you can rely on the distribution’s
 ecosystem to reduce the amount of work you need to do yourself.
For example, Python’s packaging system provides a requirements
 text file that lists all the Python modules required by your
 application. The requirements file—commonly named requirements.txt—also tracks the installed
 version of the package. Moving from Boto version 1.1 to 1.5 requires a
 single change in requirements.txt (from boto==1.1 to boto==1.5).
If you package your Python code as a module and publish it to an
 internal PyPI repository, you can then deploy your application by
 changing the requirements file used by your running instances. While
 we encourage you to make code public and participate in the global
 Open Source community whenever possible, we suggest you at least
 consider an Inner
 Source approach to common resources in your organization when
 setting up private repositories.
Another option is to build operating system packages (e.g., RPM
 packages for Red Hat systems) for your custom application so that they
 can be installed with the OS’s own package management system, and host
 these on your own private repository. EC2 instances can simply check
 this repository for any updated packages when they are launched,
 ensuring that they are always running the correct version of each
 software package.
Building such systems is not within the scope of this book, but
 they can be useful for managing AWS-hosted applications, and may be
 well worth the time required to implement. Do not underestimate the
 learning curve and exacting sophistication required by Linux
 packaging: making custom packages for Ubuntu or AWS Linux is simple
 enough, but making packages that upgrade correctly and work well with
 their host OS requires quite some mastery. If you decide to take this
 path, our advice is to recruit talent with published work from the
 appropriate Open Source community.

AMI-Based Deployments
AMIs are the building blocks of EC2. Deploying AMIs instead of individual code or
 configuration changes means you can offload the work of replacing
 instances to Amazon with varying degrees of automation.
Deploying AMIs with CloudFormation
The most automatic method involves using CloudFormation to replace running
 instances by changing the AMI ID referenced in the stack template. When
 CloudFormation receives an update request with a new AMI, it will launch
 some instances running the new AMI and then terminate the old instances.
 The number of instances launched will match the number of currently
 running instances to avoid a sudden reduction in capacity.
Using this method requires a high degree of confidence in the new
 AMI. You should first test it thoroughly in a staging environment,
 ideally using an automated suite of test cases. Once CloudFormation
 starts processing an update, there is no alternative to waiting for it
 to finish. If you discover early on in the update process that the
 application is not working as expected, you will need to wait for
 CloudFormation to finish applying the broken update before issuing a
 command to perform another update to revert to the previous AMI.
Tip
The Netflix OSS team has released Spinnaker as their new take on
 a web-based cloud management and deployment tool building on their
 initial experience with Asgard.
Spinnaker can be used to automate deployments and changes to
 your infrastructure and control the process from a web interface, and
 provides a CI workflow alongside rollback capability. It acts as a
 supplement to the AWS Management Console and enforces local site
 conventions as required by Netflix’s deployment process, integrating
 with their cloud toolset.

Deploying AMIs with the EC2 API
An alternative approach is to automate the replacement process yourself using the
 EC2 API. Instead of allowing CloudFormation to update the running
 instances, you use the API (via Boto) or script the AWS CLI to perform
 the same process. This gives you the opportunity to insert checkpoints
 and handle the rollback or reversion process with more
 granularity.
Using the EC2 API opens up some opportunities that were not
 available in traditional environments. Consider an application that has
 two web server instances running behind an Elastic Load Balancer,
 running version 1 of the AMI. The update process could then perform
 these steps:
	Launch two instances running version 2 of the AMI.

	Wait for these instances to be ready.

	Query the health check page until the instance is serving
 requests correctly.

	Add the new instances to the ELB and wait for them to begin
 receiving traffic.

	Remove the old instances from the ELB.

At this point, the old instances are still running but not
 actually serving any traffic. If version 2 of the AMI turns out to be
 broken, you will see an increase in failed requests as measured by the
 ELB. You can quickly revert to version 1 of the AMI by reversing the
 update process—adding the old instances to the ELB and removing the
 newer ones.
Once you are sure the new version of the AMI is working properly,
 the old instances can be terminated.
With more control comes greater responsibility, as you will need
 to develop and maintain the custom lifecycle automation required to
 manage version transitions via the EC2 API. Examine what third-party
 tooling is available when you implement this process to avoid
 re-inventing the wheel—you may choose to join an existing open source
 project and share the maintenance burden with others instead of starting
 your own codebase. Nonetheless, you will need to put plans in place able
 to meet the recovery time you are targeting for a broken deployment of
 this particular application.

Webscale Thinking
Webscale computing defines a fundamentally different architecture
 when compared to smaller, traditional datacenter practices. The thinking
 that variety generates complexity is sharply reflected in the Pets versus
 Cattle metaphor we discussed in Chapter 2. The idea that hardware resources can be
 treated like a bag of nails, with any potentially taking the place of any
 other, is a central tenet of a recent paper now among Federico’s
 favorites. In “Too
 Big NOT to Fail”, the authors base on the law of large numbers their conclusion
 that while individual failures cannot be predicted, the aggregated
 expected failure rate is entirely predictable—particularly in a large
 system. The reliability of individual components is not important, as long
 as their failure rate can be predicted and a ready supply of replacements
 made available.
The mandate to steer clear of bespoke hardware espoused in the
 webscale mindset extends to its software architecture philosophy. When
 remedying an anomaly, one does not repair a server’s configuration, but
 instead replaces it with a new, identical instance configured entirely
 anew through automation. Troubleshooting is accomplished through
 re-paving rather than recovery. In this light, it is
 important to understand and embrace the Immutable
 Server pattern.
Application Immutability
The reality of configuration drift over the lifetime of a server highlights the
 consistency that frequent server tear-down and rebuild brings to any
 deployment: all of a server’s configuration is set to a known state when
 a new instance is launched. The logical corollary is that once a server
 is deployed, it is never to be modified or maintained, but only
 replaced. This is known as the Immutable
 Server design pattern.
Application immutability is achieved by automating the operations
 performed on instances, and by limiting their variety to provisioning,
 replacement, and de-provisioning exclusively. If this design can be
 fully achieved, the application can then be predictably deployed, it can
 be just as easily rolled back, and its full state, including its
 security posture, is clearly understood and can be easily and exactly
 reproduced at any point of an instance’s lifecycle.

Takeaways
The best choice for your environment will depend on how frequently
 you deploy code changes, and how much work is required to create an AMI.
 Updating running instances is tempting when you are frequently deploying
 small changes, and you need new code to be live as soon as
 possible.
Building new AMIs provides a cleaner way of deploying updates. The
 new AMI can be thoroughly tested in a staging environment before it is
 deployed, and the approach is more consistent with the Immutable Server
 pattern.
Updating running instances will showcase the very drawbacks
 illustrated by the “Pets versus Cattle” described in
 metaphors of traditional datacenter environments, while maintaining AMIs
 more closely resembles a “golden image” process in its trade-offs,
 although ameliorated by the consistency of the image management process
 built into the EC2 APIs and its inherent versioning. If you choose to
 update instances, you should limit such activity to an instance’s first
 (and only) boot time. If you choose to operate with AMIs, you should
 instead invest time in making the creation of a new AMI a seamless and
 low-effort process.
The process of deploying an update can be reduced to simply changing
 the AMI ID used in a CloudFormation stack, and the task of replacing
 running instances is handled by Amazon’s internal systems. This approach
 opens up some interesting methods that really take advantage of the cloud
 and the temporary nature of EC2 instances. The following are some basic
 principles to take away from this chapter:
	Automate the process of building new AMIs as early as possible
 in your infrastructure design, to minimize deployment
 friction. The easier it is to deploy changes, the faster you will be
 able to iterate.

	Do not wait until you have deployed a broken application update
 to start thinking about how to revert.

	EC2 has many advantages over physical hardware, key among them
 the ability to launch new instances instead of updating code on
 running instances.

	The system provides support for deployment, load-balanced server
 swapping, and rollback. In the cloud, we replace malfunctioning
 servers instead of fixing them. Design your workflow
 accordingly.

Using the EC2 APIs creatively can save both time and headaches when
 maintaining custom tooling is required to deliver your application’s
 deployment workflow—and, ultimately, its uptime objective.

Chapter 8. Building Reusable Components
It is the goal of any time-pressed system administrator to avoid
 duplication of work where possible. There is no need to spend time building
 ten servers when you can build one and clone it, or implement a
 configuration management system that can configure ten servers as easily as
 one.
Within the context of AWS, there are many ways to work smarter instead
 of harder. Remember that AWS gives you the building blocks you need to build
 your infrastructure. Some of these blocks can be reused in interesting ways
 to remove tedious steps from your workflow.
As an example, consider an application that runs in three
 environments: development, staging, and production. Although the
 environments differ in some important ways, there will definitely be a lot
 of overlap in terms of the AWS resources required and the application’s
 configuration. Considering the reuse of resources will save a lot of time as
 your infrastructure grows, and will let you take advantage of the
 flexibility that makes cloud hosting so useful.
This chapter looks at some of the ways in which AWS components can be
 designed for optimal reusability in order to reduce development time and
 minimize time spent on operations and maintenance.
The Importance of Being Reusable
Kief Morris highlights the importance of the reusability of configuration definitions in his recent Infrastructure
 as Code (O’Reilly). Kief’s work defines and catalogs
 the patterns of server management automation in a modern computing
 environment. In the process, he illustrates how the reuse of configuration
 is essential to consistent infrastructure and repeatable processes. A key
 pattern of configuration reusability is parameterization.
Imagine maintaining three separate configuration definitions for
 testing, staging, and production environments. Most changes to one
 configuration would have to be manually reflected in the others—this runs
 counter to the aim of consistently automating infrastructure processes,
 and would eventually result in a human operator accidentally failing to
 maintain alignment between the replicated copies of the same logic. Any
 reasonably designed infrastructure configuration must therefore avail
 itself of parameters to avoid unnecessary replication.

Role-Based AMIs
It’s common in both AWS infrastructures and traditional datacenters to assign each
 instance or server a role that describes the functions it will perform. A
 web application can be divided into serveral servers, each handling a
 separate role such as serving web requests, processing asynchronous tasks,
 providing a database, and so on.
The most popular configuration management tools provide some method
 of implementing a role-based architecture. In fact, it might be said that
 the raison d'être of configuration management tools
 is to provide a way to assign a role to a server or virtual instance.
 Applying a set of Puppet modules (or Chef recipes, or Ansible playbooks)
 to an instance prepares it to perform its role.
The speed with which cloud computing allows you to bring new
 instances online makes it even more feasible to adopt this approach fully
 and design your infrastructure so that each instance performs one role,
 and one role only. When it took days or weeks to bring a new server
 online, it was much more tempting to add “just one more” role to an
 already overburdened server.
This raises the question of how AMIs can be used to facilitate this
 approach. If an instance performs only a single role, do you need one AMI
 per role? Not necessarily. It is possible to create an AMI that can
 perform multiple roles, as we saw in Chapter 5.
When the instance is launched, the configuration management tool
 will be run. This launch-time configuration
 transitions the instance from the launch state to
 the configured state, at which point it should be
 ready to begin performing its role.
Using a single AMI for all roles means that each instance launched
 from this AMI will need to perform a lot of role-specific configuration at
 launch time. An AMI should always contain just the bare minimum number of
 installed software packages that are required by its instances. In this
 architecture, the AMI would need the packages required by each and every
 role. This leads to a lengthy launch-time configuration process, which
 will increase the amount of time it takes for an instance to be ready to
 perform its regular duties.
At the other end of the spectrum, creating an individual AMI for
 each role results in a much shorter launch-time configuration process,
 although at the cost of an increase in time spent creating and managing
 AMIs.
Making and testing AMIs is not difficult, but it is time-consuming.
 If you are using an automated AMI creation process, this cost becomes a
 lot easier to bear.
A third option uses a different approach to building a base AMI that
 can be reused for all roles. With this method, the base AMI contains all
 software packages required to perform any of the roles in your
 infrastructure. For example, it might include packages for a database
 server, web server, and in-memory caching server. However, none of the
 services are configured to start when the AMI is launched. Instead, the
 configuration management tool takes responsibility for starting services.
 This reduces the amount of time taken to perform the launch-time
 configuration, because software packages do not need to be downloaded and
 installed, only configured and started.
One downside of this third approach is that the base AMI might need
 to be rebuilt more frequently than role-specific AMIs. If your base AMI
 includes both PostgreSQL and Nginx, the release of an urgent update to
 either package will necessitate rebuilding the AMI and replacing any
 instances that are running the old version. Failing to do so would result
 in running insecure versions of core software, or result in running two
 versions of the base AMI, which will quickly become inconvenient to
 manage.
Package Upgrades and Service Restarts
A minor difference between the Debian APT package manager and the Red Hat RPM
 package manager renders RPM-based Linux distributions a better choice
 for the third option, where you include multiple roles in an instance
 but start only one role.
In Debian-inspired Linux systems like Ubuntu, policy requires that
 packages operate correctly once the postinit script has executed
 successfully. As a consequence of this design, a package update
 typically results in automatic service restarts, even for services that were not
 previously running. This is a sensible design as it eliminates the
 possibility of a stale process accidentally surviving the update of
 on-disk binaries, but it also precludes straightforward use of a single
 AMI for all roles.
Choosing to employ one AMI to fulfill all roles is not the most
 popular choice, but you should take note that the use of an RPM-based
 distribution like Amazon Linux is preferable in such a design. RPM
 distributions in the mold of Red Hat Enterprise Linux and CentOS do not
 automatically restart services after a package update, leaving that task
 to the administrator instead. This design will not result in idle
 services being inadvertently started by an update.

No matter which method you choose, you will need some way of mapping
 a running instance to a particular role, which is the topic of the next
 section.
Mapping Instances to Roles
Once you know that each instance will perform a given role, how do you apply
 that role to the instance? The answer to this question comes in two
 parts: assigning roles in AWS, and making this information available to
 your configuration management system. The second task is covered in the
 next section.
EC2 offers two ways to assign roles to instances or, looking at
 the problem from a higher level, to pass arbitrary information to your
 instances: user data and tags. Of course, it is also possible to store such
 information in a database such as RDS, SimpleDB, or your own
 database instance.
User data is usually the easiest method for a number of reasons.
 Instances can access user data without needing any IAM access
 credentials. User data can be retrieved from a static URL, which makes
 it usable from almost any programming language.
The most direct approach to using user data to control role
 assignation would be to use the entire user data field to specify the
 role. This value would then be available to scripts running on the
 instance from the magic address
 reserved by AWS to deliver metadata to instances:
#!/bin/bash

ROLE=$(curl -s http://169.254.169.254/latest/user-data)
echo My role is $ROLE
In practice, you might already be using user data for other
 applications and not want to reserve the entire field to define an
 instance’s role. In this case, you should move to a more suitable data
 structure, such as JSON or key/value pairs. In the user data world,
 flexible use of metadata is enabled by the Cloud-init component of the
 operating system.
Cloud-init and User Data
Cloud-init is the most widespread mechanism to parse user data and configure a
 system at boot time. Originally designed by hacker extraordinaire Scott Moser of the Ubuntu
 Server team in 2010, over
 the past decade Cloud-init has been adopted by as diverse a group of
 implementers as Red Hat’s RHEL team and the OpenStack community as the
 way to deliver an instance’s bootstrapping configuration. Puppet,
 Chef, Salt, Landscape, Rightscale, and Marionette Collective all
 support initialization of their management agents with short user data
 messages and the corresponding Cloud-init module.
The key to understanding the user data mechanism is that the
 cloud fabric does not enforce a format on what is delivered to the
 instance—it could literally be anything, and it is up to the operating
 system (or further up the stack in user space) to interpret the
 payload. Because of its large collection of modules,
 serving varied purposes for a multitude of vendors, the default
 inclusion of Cloud-init by the OS is as close as we get to a standard.
 When used in combination with the Immutable Server pattern (see “Application Immutability”), Cloud-init can be a most
 powerful yet lightweight mechanism to configure instances,
 side-stepping the need for a configuration management system in most
 basic cases.
Visiting the homepage of the Cloud-init
 project remains perhaps the best way to learn about what is
 possible in the much under-documented space of user data.
Amazon Linux uses the less-featureful CloudFormation
 Initialization script cfn-init to fulfill the same goals. When using Amazon Linux, refer
 to our earlier discussion of cfn-init in Chapter 4.

Using tags is slightly more complicated because they can be
 retrieved only from the AWS command-line tools or APIs, the latter
 requiring the use of a programming language with a suitable AWS client
 library. An IAM account must be used to access the APIs, which means
 that any use of tags requires access to a set of IAM access
 credentials.
The simplest way to provide these credentials is to use IAM roles
 so that credentials do not need to be hardcoded into scripts or
 retrieved from user data. Instead they can be automatically detected by
 the underlying client library used by your scripts (such as Boto,
 introduced in “Launching from Your Own Programs and Scripts”).
Tags have four advantages over user data. First, they are key/value
 pairs by design. This fits in neatly with the idea of
 mapping a role to an instance: we simply need to create a tag named
 role and give it a value such as
 web or db.
The second advantage of tags is that they can be queried from outside the instance far more easily
 than user data. Tags make it possible to perform an API query to
 retrieve a list of instances tagged with a role like web. Performing the same query through user
 data would involve listing all your instances, parsing their user data,
 and compiling a list of matching instances. Let’s just say it would not
 be fun.
Another difference between passing data with tags or through user
 data is that while tags can be updated at any time, an instance’s user
 data is only initialized at first boot. While you aren’t likely to
 change the role an instance plays once it has been deployed, this could
 affect your environment if you decide to change the name of a role while
 refactoring your code.
The final advantage of tags is more of a business reason than a
 technical one. Tags can be used by Amazon’s billing system to produce an
 itemized list of instances divided into groups based on the arbitrary
 tags you have defined in your Cost Allocation Report. The same source of
 data can then inform both technical and business decisions.
Example 8-1 shows an example of
 retrieving tags from a Python script.
Example 8-1. Using EC2 tags
from boto.utils import get_instance_metadata
from boto.ec2 import connect_to_region

metadata = get_instance_metadata()
my_instance_id = metadata['instance-id']

conn = connect_to_region('us-east-1')
for reservations in conn.get_all_instances(filters={'instance-id': my_instance_id}):
There will be only one instance in the results
 for instance in reservations.instances:
 for tag in instance.tags:
 # Iterate through the tags, printing the keys and values
 print "Key \'%s\' has value \'%s\'" % (tag, instance.tags[tag])

This script does not embed any IAM credentials. It assumes that
 the instance it is running on has been assigned an IAM role. Boto will
 automatically transition to use IAM role credentials if they are
 available, just as it would use environment or file credentials in your
 development environment.
Executing the Boto script on an EC2 instance produces the
 following output:
$ python tags.py
Key 'role' has value 'web'
Key 'environment' has value 'dev'
This script of course requires Python and Pip (sudo apt install python python-pip) as well as
 Boto (pip install boto) to operate
 correctly, as we have seen in previous chapters.

Patterns for Configuration Management Tools
As mentioned earlier, reusability is a core goal for many configuration management tools,
 the entire purpose of which is to reduce duplication of effort by
 automating common tasks such as creating files or installing software
 packages. This section shows how this role-based design pattern can be
 used within Puppet, building on the information in the previous section.
 Note that, apart from the syntax used, there is nothing specific to
 Puppet about this pattern. It can be implemented in all the
 configuration management tools of which we are aware.
The usual modus operandi of Puppet
 is to use the hostname of an instance to control which configurations
 are applied to that instance. This is practically useless within AWS,
 because hostnames are automatically generated based on the IP address of
 the instance. It is possible to work around this by setting the hostname
 to a “useful” value before running Puppet—a valid tactic that is used by
 companies such as Pinterest, and something that can be easily achieved
 with a Cloud-init user data setting. In our case, however, we want to
 bypass hostnames completely and use the role attribute that we assigned
 by way of user data or EC2 tags.
To find out information about the environment in which it is
 running, Puppet depends on a tool named Facter.
 Facter is responsible for providing Puppet with “facts” about the
 system it is running on. These facts can then be used within your Puppet
 modules. For example, the instance’s hostname is a fact that Puppet
 modules make available via the $HOSTNAME
 variable.
Facter has built-in support for EC2, which means that it will
 automatically provide certain EC2-specific data to Puppet. Facter will
 query all the available meta and user data variables and provide them as
 facts to Puppet. For example, the AMI ID is available at a URL with a
 structure like
 http://169.254.169.254/latest/meta-data/ami-id.
 Facter will automatically set the $ec2_ami_id fact to this value. Note that the
 variable name is prefixed with ec2_,
 and any dashes are replaced with underscores.
Let’s assume that we are using JSON-formatted user data to pass
 role information to the configuration management tool. We want to pass
 the following configuration over the user data channel, without
 precluding ourselves the possibility to later use the user data
 mechanism to deliver configuration data for other puposes:
{ "role": "web",
 "environment": "dev" }
Our JSON object declares two attributes: a role and an
 environment. To maintain compatibility with other uses of metadata, we
 wrap the definition of the role as a Cloud-init write_files stanza:
#cloud-config
vim: syntax=yaml
write_files:
- content: |
 { "role": "web",
 "environment": "dev" }

 path: /tmp/role.json
Encapsulating our configuration in Cloud-init’s syntax ensures
 that this single purpose does not exclusively take ownership of the user
 data channel. The functionality supplied by the write_files module supports the
 creation of files with text, binary or compressed payloads expanded upon
 delivery, as well as the setting of user ownership and permission
 attributes.
Including user data in an instance’s configuration is one of the
 Advanced Details options exposed in the AWS console’s Launch Instance
 Wizard, as shown in Figure 8-1.
Figure 8-1. Defining an instance’s user data in the AWS console

Facter populates the $ec2_user_data variable to make user data
 information available to Puppet. However, we choose instead to
 selectively place the role configuration in a
 role.json file to simplify the parsing task by
 limiting it to the JSON blob carrying role data and excluding any other
 user data that $ec2_user_data may
 include.
Puppet’s stdlib module
 provides the loadjson
 function required to extract the keys and values you need from a JSON
 input source. The function converts a given file into a JSON object and
 returns the result as a hash. Once the data is in the hash, you can
 access the role and environment attributes and use them in conditional
 statements within Puppet modules, as shown in Example 8-2.
Tip
Facter can parse structured
 data fact files in YAML, JSON, or INI format stored in the one
 of the external facts directories and set facts according to their
 contents. For example, instructing Cloud-init to place a JSON file
 like the one found earlier in our example directly in
 /etc/facter/facts.d/ (the default external facts
 directory of a Linux system) would result in Facter automagically
 generating the role and environment facts for us. This is a powerful
 shortcut for occasions when writing an executable plug-in to create
 facts is overkill.

Example 8-2. User data roles and Puppet
node default {

 require stdlib

 $userdata = loadjson('/tmp/role.json')
 $role = $userdata['role']

 case $role {
 'web': {
 include role::www::dev

 }
 'db': {
 include role::db::dev
 }
 default: { fail("Unrecognized role: ${role}") }
 }

}

For the sake of brevity, we have not included the www and db Puppet modules. These are simply Puppet
 modules that perform tasks such as installing Nginx or
 PostgreSQL.
This example shows how the $role attribute can be used to control which
 modules are applied to each instance. The $userdata['environment'] variable could be
 used to provide a further level of abstraction, with the live
 environment using the role::www::live
 module, and the development environment using role::www::dev instead.
Note
The module layout—in this case, role::www::dev and role::db::dev—is based on Craig Dunn’s blog post “Design Puppet → Roles and
 Profiles”. This is a great way to separate business logic
 (“What should this instance be doing?”) from technical details (“How
 should this instance be configured?”), and is particularly useful when
 adopting this pattern in AWS.

User data is only one way of providing information to AWS
 instances so that it can be made available to Puppet. The other option
 is to create tags on the instance and make these available to
 Puppet.
Unfortunately, tags support is not built into Facter as easily as
 user data. This is a minor hurdle to bypass, though—Facter makes it easy
 to add facts by way of a plug-in architecture. Plug-ins are simply Ruby
 scripts placed in a particular directory, where the name of the script
 is also the name of the fact that will be returned. Facter executes all
 the plug-ins while gathering facts about the system.
Example 8-3 shows an example Facter
 plug-in that retrieves all the tags for the instance and makes them
 available to Puppet.
Example 8-3. EC2 tag facts
require 'facter'
require 'json'

if Facter.value("ec2_instance_id") != nil
 instance_id = Facter.value("ec2_instance_id")
 region = Facter.value("ec2_placement_availability_zone")[0..-2]

 cmd = <<eos
 aws ec2 describe-tags
 --filters \"name=resource-id,values=#{instance_id}\"
 --region #{region}
 | jq '[.Tags[] | {key: .Key, value: .Value}]'
 eos
 tags = Facter::Util::Resolution.exec(cmd)

 parsed_tags = JSON.parse(tags)
 parsed_tags.each do |tag|
 fact = "ec2_tag_#{tag["key"]}"
 Facter.add(fact) { setcode { tag["value"] } }
 end
end

For more information about adding custom facts to Facter, and to
 find out where on your system this plug-in should be located, see the
 Custom
 Facts documentation page.
With this plug-in in place, we can launch an instance and assign
 role and environment tags to it, instead of passing this information as
 user data. The code shown earlier in Example 8-2 has to be modified so
 that, instead of parsing JSON from the Cloud-init-generated
 /tmp/role.json file, it obtains the same
 information by using the $ec2_tag_role and $ec2_tag_environment variables, as we show in
 the following snippet:
node default {

 case $ec2_tag_role {
 'web': {
 require role::www::dev
...
Although this section has focused on Puppet, the same result can
 be achieved with most other configuration management tools. The general
 principle of providing information to the instance at launch time, and
 then using this information later to control the instance configuration,
 can be used from configuration management tools or your own scripts.

Modular CloudFormation Stacks
CloudFormation stacks can also be designed to make them more suitable for reuse in
 different parts of your application. This section presents one of the most
 popular methods of reaching this goal.
This method uses the AWS::CloudFormation::Stack resource, which lets
 you embed one CloudFormation template within another. That is, a
 parent CloudFormation stack can create a number of
 child stacks. The parent stack can provide input
 values to the child stack and access its output values. This means that
 the parent stack can create multiple child stacks and use the outputs of
 one stack as the parameters of another stack. In this design pattern, each
 child stack can be self-contained and highly focused on a particular task,
 such as creating EC2 instances or an RDS database.
Note
To use embedded templates, you need to provide a TemplateURL parameter, which tells
 CloudFormation where to download the stack template file. This file must
 be in an S3 bucket configured to serve its contents over HTTP. For more
 information, see the AWS
 Stack Properties documentation.

The parent stack is responsible for tying all these components
 together and providing the foundation your application needs to run. This
 is illustrated in Figure 8-2.
The architecture in the figure consists of three CloudFormation
 stacks: the parent stack, the DB stack, and the web stack. The DB stack is responsible for creating an RDS
 instance and placing it in a security group. The web stack creates an EC2
 instance, also in a security group.
When the RDS instance is created, it is assigned a unique hostname
 generated by Amazon, which cannot be predicted in advance. How then can
 you let the instance know the hostname of the database instance so that it
 knows where to send data requests? The answer comes in the form of
 parameters and outputs. These can be used to provide data when launching a
 stack and to retrieve dynamic stack attributes after it has been
 created.
In this case, the DB stack outputs the hostname of the RDS instance.
 The parent stack uses this value as an input when creating the web stack.
 In turn, the web stack passes this value to the instance as user data or a
 tag, so it can be used in your configuration management software. More
 information on using parameters and outputs with embedded stacks can be
 found on Amazon’s Stack
 Resource Snippets page.
Figure 8-2. Embedded CloudFormation stacks

CloudFormation attempts to automatically determine the order in
 which the resources should be created, so that parameters and outputs can
 be passed around successfully. In this example, CloudFormation would
 detect that the output from the DB stack is used as an input to the web
 stack, and would therefore create the DB stack first.
Tip
If you need more control over the order in which CloudFormation
 resources are created, you can use the DependsOn
 attribute to override CloudFormation’s automatic
 ordering.

Note that neither the web nor DB stacks create any security group
 rules. Instead, these are created in the parent stack through the use of
 the resource type AWS::EC2::SecurityGroupIngress.
This resource allows you to create security group ingress rules and
 assign them to existing security groups. Why are these created in the
 parent stack? This is a personal preference more than a technical
 requirement. It would be possible, for example, to pass the DB security
 group ID as an input to the web stack and allow the web stack to create
 the necessary ingress rules, permitting the instance to access the
 database.
But the opposite is not possible: to pass the web security group as
 an input to the DB stack, you would need to create the web stack before
 the DB stack. That would make it impossible to provide the DB hostname as
 an input to the web stack, meaning the instance would not know the address
 of the database server.
By creating the ingress rules in the parent container, you are
 simplifying the DB and web stacks. They should not be concerned with
 creating security group rules, as it can be argued that ingress rules are
 not specifically tied to the function of the stack.
Moving some of the resource creation—such as ingress rules—to the
 parent stack increases the reusability of the child stacks. Consider the
 familiar example of development and production environments. Both will
 need web and DB stacks, but the development instance should be accessible
 only from a specific list of IP addresses, whereas the production
 environment will be accessible from the public internet.
To enforce this distinction, you could create a separate
 CloudFormation stack for each environment, each of which embeds the web
 and DB stacks as children. The development and production stacks would be
 almost identical, except when it comes to creating the security group
 ingress rules. When you want to make changes to the DB stack, you have
 only a single template to update.
This provides a clean way of breaking your infrastructure into
 logical components that can be reused to create flexible environments
 without duplication of effort.
Tip
CloudFormation will automatically tag your resources with some
 information about the stack itself. If you configure Cost Allocation Reports to track these tags, you can get a
 high-level overview of where your money is going.

Other tricks can be used in CloudFormation templates to allow easy
 recycling of stacks. Let’s suppose that we need each developer on the team
 to have his own development environment, which should be accessible via
 SSH at a given hostname such as
 mryan.dev.example.com.
The development stack template could accept an EnvironmentName input parameter, which is used
 to create a Route 53 resource record mapping the desired hostname to the
 instance’s public DNS name. Each developer can create his own copy of the
 stack, using the same template, entering his username when the stack is
 launched.
Although the CloudFormation template language is not as flexible as
 a full programming or scripting language, it can be useful to think of
 your CloudFormation stacks in the same way that you think of your scripts,
 programs, or even Puppet modules. Each of these presents various methods
 that can be used to dramatically reduce the time it takes to add new
 features or deploy new resources.

Chapter 9. Log Management
Despite the best efforts of system administrators everywhere, logging in the cloud can quickly
 become more complicated (and more expensive) than logging in a physical
 hardware environment. Because EC2 instances come and go dynamically, the
 number of instances producing log files can grow and shrink at any time.
 Your logging system must therefore be designed with this in mind, to ensure
 that it keeps up with peaks in demand when processing log files.
Another area that requires some advance planning is log storage.
 Running a large number of instances will produce large log files, which need
 to be stored somewhere. Without some advance planning, the storage
 requirements can grow rapidly, leading to an increase in costs.
This chapter presents some popular logging tools that can be useful in
 AWS environments and introduces some strategies for managing log files
 without breaking the bank. Logstash is used to demonstrate the concepts in
 this chapter, but the principles also apply to most other logging
 software.
Central Logging
A common solution to the problem of viewing logs from multiple machines is to set up a central
 logging server to which all servers in your infrastructure send their
 logs. The central logging server is responsible for parsing and processing
 log files and managing the policies for log retention.
This pattern works well within AWS, with a few caveats. It is
 critical to ensure that your logging system does not struggle to keep up
 when many instances are sending their log files back to the central server
 and become a bottleneck in the process.
Another potential issue is related to hostnames within EC2. Remember
 that, by default, most instances will set their hostname to match their
 internal IP address. This is not particularly useful when it comes to
 viewing log files. For this reason, many log-viewing tools provide a
 method of adding key/value pairs to log data. These can be used in
 conjunction with EC2 tags to make it easier to keep track of the source of a
 particular log entry.
Overriding Default Hostnames
The default address-derived hostname of AWS EC2 instances can be easily overridden
 using the Cloud-init mechanism. To name an instance after our cover
 animal, use the following user data when booting a new instance:
#cloud-config
hostname: peccary
Note that configuring the Linux hostname will not set the name
 attribute in the AWS console instance listing. To assign a name to an
 instance in that user interface, one needs to define a tag with the case
 sensitive key Name as in this
 example:
aws ec2 create-tags --resources i-0c53dee6aa8708287 --tags Key=Name,Value=peccary
Another option is to click the name field in the AWS console
 itself, and then fill-in the desired name interactively, which is
 convenient when remedying an inconsistency in a pinch or during
 development.

Building a central logging system requires three main components. Log shippers and
 log receivers such as syslog, rsylog, and syslog-ng
 are responsible for sending and receiving log files. The third component is log viewers, such as
 Kibana and Graylog2, which handle the task of displaying this gathered
 data through a web interface. To further complicate things, most log
 shippers can also act as log receivers, and some packages provide all
 three components.
A comparison of the many tools that can be used to build such a
 system is beyond the scope of this book, because the issues surrounding
 them are not really specific to AWS. However, one tool deserves special
 mention, because it has several AWS-specific features.
Logstash is an open source log management tool that provides a framework for
 receiving, processing, and storing logs. It also includes a web interface
 for browsing logged data.
Like many log-receiving tools, it can accept data in the standard
 syslog format (RFC 3164). It also has a plug-in architecture that
 allows it to consume log data from a variety of additional sources. Most
 interestingly, it can read and write logs stored in S3 buckets, read logs
 from SQS queues, and write output messages to SNS topics. This integration
 with AWS services makes Logstash an ideal candidate for building a logging
 system within AWS.
Logstash itself consists of multiple components, collectively known
 as the ELK Stack. It includes the core
 functionality for consuming and producing log files, as well as a web
 interface, known as Kibana. It also uses an instance of Elasticsearch, which is a powerful distributed search server
 based on Apache Lucene. Elasticsearch provides search capabilities,
 allowing you to quickly and easily find the log entries you are searching
 for.
All of these components can be run on a single machine for
 development and testing purposes. Once Logstash is dealing with a large
 amount of log data, these components can be moved to separate instances,
 so they can be scaled independently.
Many third-party logging services can entirely obviate the need to
 build your own logging system. Some of these services provide convenient
 features, such as automatically retrieving EC2 tags and assigning them to
 log data, so that EC2 tags can be used to quickly drill down through log
 files. As you define your logging strategy, make sure to examine the
 hosted log management offerings currently leading the market, and weigh
 the functionality and cost of maintaining your own infrastructure against
 what third-party vendors can offer to do for you in exchange for a monthly
 service fee.
Logstash Configuration
To demonstrate Logstash in action, we will set up a simple centralized logging infrastructure
 suitable for use in EC2 (see Figure 9-1). Before going
 ahead and setting up the instances, we need to first prepare the
 security groups that will be used in the demonstration.
Note
To keep this demonstration simple, we will manually install and
 configure Logstash on the client and server instances. Of course, when
 it comes to moving this into production, the configuration should be
 handled by a DevOps automation tool like Puppet. The Logstash
 documentation site contains links to Logstash Puppet
 modules that can be used to automate installing and
 configuring the Logstash components.

Figure 9-1. Relationship of the components in the ELK stack as integrated
 in our centralized logging infrastructure

Using the AWS Management Console or command-line tools, create two
 security groups, named log_client and log_receiver. The rules for log_client could be left empty, but we include
 SSH access for convenience.
The log_receiver security group
 will be used for the Logstash server. It must be able to accept syslog
 traffic from logging clients and allow administrators to access the
 Kibana web interface and Elasticsearch API.
Create five rules in the log_receiver group:
	Rule	Description
	Inbound TCP 5601 from your network
	Kibana web interface

	Inbound TCP 9300 from your network
	Elasticsearch API

	Inbound TCP 5000 from
 log_client security group
	Logstash (Syslog)

	Inbound TCP 5044 from
 log_client security group
	Logstash (Filebeats)

	Inbound TCP 22 from your network
	SSH

Create a single rule in the log_client group:
	Rule	Description
	Inbound TCP 22 from your network
	SSH

 Once you save these changes, the security group
 configuration is complete.
Creating and configuring a Logstash server
After creating the security groups, you can launch and configure the Logstash server
 instance. Launch a new EC2 i3.large
 instance using the most recent Ubuntu 16.04 AMI, assigning it to the
 log_receiver security group.
 Optionally, you could use Route 53 to set up a DNS record for this instance, so that a URL
 like logging.example.com points to the public DNS
 name of the new instance, as described in Chapter 10.
When the instance is ready, connect to it via SSH and configure
 Elastic’s private repository:
$ wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | \
sudo apt-key add -
OK
$ echo "deb https://artifacts.elastic.co/packages/6.x/apt stable main" | \
sudo tee -a /etc/apt/sources.list.d/elastic-6.x.list
This slightly unusual process is required to install Logstash
 due to its absence from the Ubuntu Archive—none of Elastic’s projects
 have been packaged for the Archive as of the time of writing, so it is
 either using the custom repository or performing a direct download and
 execution.
Ensure that you have a recent version of Java—Java is the key
 dependency and Logstash install will fail in post-install if it is not
 available. Currently Logstash requires Java 8 and does not support
 Java 9:
sudo apt install openjdk-8-jre-headless
Finally, after retrieving metadata for the new repository,
 download and install Logstash and the rest of the ELK stack:
sudo apt update
sudo apt install -y logstash elasticsearch kibana
Logstash, Elasticsearch, and Kibana are not automatically
 started upon installing their respective packages. Let’s start with
 Elasticsearch, which will serve as the storage and
 search backend for all of our logging data. Configure the system and
 start the Elasticsearch service first with the following
 commands:
sudo systemctl enable elasticsearch logstash kibana
sudo systemctl start elasticsearch
Verify that the service has started correctly by checking if
 there are new servers listening. Elasticsearch runs by default on
 ports 9200 and 9300—we will be using port 9200 to enter and query data
 via the API interface, while the port range starting at 9300 is used
 for cluster communication, which does not take place in our single-node setup:
$ netstat -ntl
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN
tcp6 0 0 127.0.0.1:9200 :::* LISTEN
tcp6 0 0 ::1:9200 :::* LISTEN
tcp6 0 0 127.0.0.1:9300 :::* LISTEN
tcp6 0 0 ::1:9300 :::* LISTEN
tcp6 0 0 :::22 :::* LISTEN
Logstash is configured by way of files located by default in
 /etc/logstash/conf.d/. Create a file named
 logstash.conf with the following
 contents:
input {
 tcp {
 port => 5000
 type => syslog
 }
 udp {
 port => 5000
 type => syslog
 }
 beats {
 port => "5044"
 }
}

output {
 elasticsearch { hosts => ["localhost:9200"] }
 stdout { codec => rubydebug }
}
Logstash pipeline configuration files consist of three sections,
 two of which are shown here. The input section specifies the sources of
 logging data that Logstash will consume. We default to Logstash’s
 lightweight Filebeat client as a
 convenient option for all cases where we can run an agent in the
 monitored instance (or device), while also offering an endpoint for
 syslog traffic to provide the
 broadest compatibility. The output
 section controls what Logstash does with this data after it has been
 filtered. The final section (filter) is not used in this simple setup.
 Filters are used to control the flow of messages and to add
 supplementary data to log entries. An extensive library
 of filters is available to manipulate log data.
Our pipeline configuration instructs Logstash to listen on port
 5000 on all available interfaces, including localhost, the instance’s
 local IP address, as well as any public IP address. This seems like a
 reasonable approach, as it may be difficult to predict upfront on what
 networks all the devices forwarding logs may happen to be located. We
 configure Logstash in the most generic configuration, and limit access
 to it at the network level through the log_client security group. Changing the
 inbound rules of a security group can be done in a single CLI call,
 without reconfiguring (and potentially, redeploying) the server. This
 approach presents us with an advantage when operating under the Immutable Server pattern
 (see “Application Immutability”), but is not always
 the right choice, as we will see later in this chapter.
Tracking Temporary Configuration
You may have noticed that twice already in this chapter we
 told you to take actions that will need to be undone at some point
 in the future (the other occasion was when we added SSH to a
 security group as a convenience in the previous page).
The authors do not have perfect recall, and so we similarly presume you
 may fail to go back and correct all of your temporary decisions.
 This is one of the most common sources of security breaches
 occurring in AWS infrastructure; see, for example, published reports
 of S3 bucket configurations left unintentionally open by the
 Department of Defense’s Central Command,1 by an independent agency processing security clearance
 applications,2 by Federal Express,3 and security researcher Kevin Beaumont’s very recent report of the ubiquity of
 JavaScript website logic found in world-writable S3
 buckets.4 These incidents have one thing in common: they are not
 originated by lax AWS defaults (bucket permissions default to
 private at creation); they were most likely originated by settings
 that were convenient during development, then forgotten in place and
 persisted into production.
Temporary implementation choices are a necessity during
 development, but our recommendation is to put in place good hygiene
 and track these future work items as technical debt that needs to be
 cleared before production. A lightweight process can be easily put
 in place by adding notes to a file dedicated exclusively for this
 purpose in your version control system. If your version control
 system itself is for any reason unavailable, start with a private
 instance of Etherpad
 instead.
Do not rely on your memory: not only it is not perfect, it is
 also not a shared medium accessible by your teammates.

Note
For more information on using filters to parse and modify
 syslog data, see the Logstash
 documentation.

In this case, all data is output to an instance of
 Elasticsearch, as well as stdout.
 We output to stdout so we can
 easily see logged messages on the console. The use of the console is
 for development purposes only and should be removed when moving into
 production.
With the configuration file saved, restart Logstash to force
 loading of the new pipeline configuration:
sudo systemctl restart logstash
Launching Logstash might take a few seconds, as is the case with
 any other large Java executable. Once Logstash has launched, you
 should see something similar to the following:
$ sudo systemctl status logstash
● logstash.service - logstash
 Loaded: loaded (/etc/systemd/system/logstash.service; enabled; vendor preset: enabled)
 Active: active (running) since Wed 2018-04-25 02:11:19 UTC; 13s ago
 Main PID: 29378 (java)
 Tasks: 15
 Memory: 363.0M
 CPU: 25.533s
 CGroup: /system.slice/logstash.service
 └─29378 /usr/bin/java -Xms256m -Xmx1g -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=75 -XX:+UseCMSInitiatingOccupancy

Apr 25 02:11:19 ip-172-31-11-202 systemd[1]: Started logstash.
lines 1-11/11 (END)
In another SSH session, verify that Logstash is listening for
 incoming syslog data on TCP port 5000 by using the lsof command:
$ sudo lsof -i :5000,5044
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
java 29378 logstash 106u IPv6 109277 0t0 TCP *:5000 (LISTEN)
java 29378 logstash 119u IPv4 109288 0t0 UDP *:5000
java 29480 logstash 123u IPv6 110120 0t0 TCP *:5044 (LISTEN)
Finally, use the netcat
 command to send a test message to Logstash. This message will
 be echoed to Logstash’s stdout by
 the pipeline we previously defined, and as such will also be
 conveniently displayed in the systemd status view:
echo "testing logging" | nc localhost 5000
Once this command is executed, you should see some output
 printed to the Logstash console. This is a JSON representation of the
 logged message:
$ sudo systemctl status logstash
[...] Started logstash.
[...]Sending Logstash's logs to /var/log/logstash which is now configured via log4j2.properties
[...]{
[...] "port" => 54780,
[...] "@timestamp" => 2018-04-25T02:24:53.034Z,
[...] "host" => "localhost",
[...] "type" => "syslog",
[...] "message" => "testing logging",
[...] "@version" => "1"
[...] }
Setting up a minimal Kibana configuration is slightly more complex, but it
 affords us the opportunity to showcase an important automation
 technique which will come in handy regardless of your choice of
 Puppet, Ansible, or Chef as your automation framework. Our design
 calls for Kibana’s web interface to be available exclusively on the
 local network, not on the internet at large. This requires the Kibana
 configuration file (found in
 /etc/kibana/kibana.yml) to incorporate
 information available to the instance only after boot if dynamic IP
 addressing is in use. This gives us the perfect reason to pull off a
 little bit of shell scripting magic:
$ ec2metadata | grep local-ipv4 | cut -f 2 -d' '
172.31.11.202
As we previously discussed (see “Querying information about the instance”),
 the ec2metadata command provides any instance with convenient access to some key
 configuration values, including its network interfaces. A little bit
 of standard shell string manipulation does the rest. To bind with the
 local interface, we need to set Kibana’s server.host configuration variable to the
 address of the desired interface. Splitting on two lines to improve
 readability, we have the following:
ADDRESS=$(ec2metadata | grep local-ipv4 | cut -f 2 -d' ')
sudo sed -i "s/\#server.host: \"localhost\"/server.host: \"$ADDRESS\"/" /etc/kibana/kibana.yml
The first expression extracts the IP address from the output of
 ec2metadata—something that you can
 easily reuse for every value it makes available—while the second uses
 sed to match and edit in-place the
 configuration line we needed to change. Using the same approach, we
 also uncomment two lines that are required for proper
 operation:
sudo sed -i 's_\#elasticsearch.url: "http://localhost:9200"_elasticsearch.url: "http://localhost:9200"_' /etc/kibana/kibana.yml
sudo sed -i 's/\#kibana.index: ".kibana"/\kibana.index: ".kibana"/' /etc/kibana/kibana.yml
With the configuration file updated, start Kibana:
sudo systemctl start kibana
Navigate to the Kibana web interface with your web browser. If
 you set up a Route 53 record pointing to
 logging.example.com to your instance, you can
 visit the interface at
 http://logging.example.com:5601/. Otherwise, use
 the public DNS name of your instance, making sure to specify port 5601
 such as in the following:
 ec2-35-172-226-10.compute-1.amazonaws.com:5601/.
Warning
The first time you start Kibana, you will have to navigate to
 the Management tab, and create an index pattern. The system will
 guide you through the steps required.

Using Kibana’s search function, search for the string
 testing logging. Do this by entering the Lucene
 query syntax message:"testing
 logging" in the search box of the Discover tab. The results
 window will show the test message you logged with netcat, as shown in Figure 9-2.
Figure 9-2. Test messages received by Logstash and archived in
 Elasticsearch, visualized in a Kibana search query

Kibana and Elasticsearch are extremely powerful tools, and we
 haven’t even begun scratching the surface of their functionality. One
 could easily pen an entire book just on this subject. We shall focus
 on completing the design of a working logging infrastructure, and
 leave the pleasure of completing the exploration of these tools to our
 readers.

Configuring the Logstash clients
With the logging server listening, we can move on to configuring the logging client that
 will represent the other servers in your infrastructure.
Launch a second EC2 instance (a t2.micro will suffice) and make it a member
 of the log_client security group.
 Once the instance is ready to accept SSH connections, you can log in
 to set up Elastic’s private repository:
$ wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | \
sudo apt-key add -
OK
$ echo "deb https://artifacts.elastic.co/packages/6.x/apt stable main" | \
sudo tee -a /etc/apt/sources.list.d/elastic-6.x.list
Now install and enable the Filebeat log forwarding agent:
sudo apt install filebeat
sudo apt systemctl enable filebeat
While a local Logstash instance is sometimes used to forward
 logs to our central server, Logstash is a hefty Java executable
 including code that supports sophisticated format conversion
 functionality. The ELK stack also provides a lightweight solution for the
 log forwarding of individual nodes that is easier to configure and
 more nimble in its resource consumption: Filebeat. Instead of sending the log files
 directly to Elasticsearch, we instead send them to the central
 Logstash instance using the beats protocol.
Create a client configuration file named
 filebeat.yml in
 /etc/filebeat/ with the following
 contents:
filebeat.prospectors:
- type: log
 paths:
 - /var/log/*.log
 - /var/log/syslog
output.logstash:
 hosts: ["logging.example.com"]
This configuration file defines what inputs (known as prospectors) the
 filebeat agent will forward to the Logstash server.
 The input source in this example is a list of file paths, assigned to
 the log prospector, but alternative
 prospectors exist for as varied sources as Docker, Redis, stdin, and others. The path attribute can
 accept a list of paths, which can either be glob paths (including an
 asterisk or other wildcard) or paths to single files, as
 in the case of /var/log/syslog.
If you did not set up a Route 53 DNS record for your central log
 server, you will need to replace the instance’s public DNS name in the
 client configuration file, instead of
 logging.example.com.
This configuration file will cause filebeat
 to monitor the specified files and send their input via TCP to the
 logging.example.com host, where Logstash is
 listening on port 5044. We are not yet using any filters to modify or
 parse the logged data.
You can check the validity of your configuration by running the
 self-tests conveniently built into filebeat itself. The first test validates
 the syntax of the configuration file, while the second helpfully
 attempts to connect to the designated Logstash output and checks the
 health of the connection:
$ sudo filebeat test config
Config OK
$ sudo filebeat test output
logstash: logging.example.com:5044...
 connection...
 parse host... OK
 dns lookup... OK
 addresses: 172.31.11.202
 dial up... OK
 TLS... WARN secure connection disabled
 talk to server... OK
We are now ready to start the filebeat agent on the client
 instance:
sudo apt systemctl start filebeat
Use the logger command to
 write some example text to the local syslog system:
logger "testing client logging"
If everything is configured correctly, you should see the test
 message repeated in syslog. In
 addition, this message will be passed to Elasticsearch, so it can also
 be viewed by searching for message:"testing
 client logging" in the Kibana web interface.
With these steps complete, your central logging system is up and
 running. Any log messages produced on the client system and written to
 one of the monitored files will be passed to the central Logstash server.
Warning
In the interest of brevity and readability, we made a
 determined effort to keep the setup steps of our example
 configuration to a minimum. In doing so, we did not configure
 password security for any of the ELK services. While we have limited
 the network access to localhost
 in several cases, you will need to evaluate Kibana and Elasticsearch
 access controls in the context of your own architectural
 layout.

Logging to S3
Like any critical component, the logging system should be loosely coupled to the other core
 services in your infrastructure. That is, a failure in the logging
 system should not propagate and cause other services to fail.
In the previous section, we set up a central Logstash server that
 will accept log messages from clients via TCP. What happens if the
 central Logstash instance crashes or otherwise becomes unavailable? In
 that case, clients will be unable to send log messages. Any attempt to
 do so would result in broken pipe error messages,
 because the client is unable to open a TCP connection to the central
 server. Fortunately, the Filebeat client will recognize this type of
 failure and track the log messages locally. Once the central Logstash
 server is back in action, these messages will be resent once
 again.
Note
If we were using the UDP transport, transmission would fail
 silently, and messages would be lost instead of being stored at the
 senders. The same may apply to instances that are forwarding Syslog
 instead of running a local Filebeat or Logstash client. This may or
 may not be acceptable, depending on your log retention
 policies.

The process of storing the messages locally until they can be sent
 to a server is known as store and forward, and is
 conceptually similar to the way in which systems like email work. If the
 Logstash server is only temporarily unavailable, briefly retaining the
 messages on the client will not cause any problems. However, prolonged
 outages might cause an excessive amount of spooled data to pile up on
 the client instance. This can cause problems if the temporary files grow
 so large that they interfere with the proper running of the client
 instance. This is not an unlikely situation in cases where Logstash is
 used as a logging client instead of filebeat, perhaps providing intermediate
 aggregation for multiple services.
In this case, it can be helpful to have an intermediary storage
 location for your log files, to further decouple the client/master
 Logstash instances. One method of doing this is to use S3 as temporary
 storage for your log files: instead of sending its log files directly to
 the Logstash server, the client writes all log files to an agreed-upon
 S3 bucket. A central Logstash agent is then responsible for regularly
 downloading these log files from S3 and processing them as usual.
The use of S3 as an intermediary has several benefits, the primary
 one being decoupling. Even if the Logstash server is unavailable for an
 extended period of time, you can be safe in the knowledge that your log
 files will be queued up on S3 and processed after the log server is back
 in action.
A secondary benefit relates to scaling your logging system.
 Consider what would happen if the number of instances sending their log
 files to a central Logstash instance were to grow rapidly. Because log
 messages are sent to Logstash as soon as they are generated, logs are
 effectively processed in real time. Sending too many logs could cause
 the central instance to become overloaded.
By temporarily storing the files in S3, you can remove the
 instantaneous nature of the processing. Instead, the central server has
 more control over when log files are pulled from S3 for processing.
 While the amount of work remains the same, the peaks and troughs are
 evened out by storing the data on S3 and allowing the central server to
 pull it at a steady rate.
Because Logstash has built-in support for some Amazon services, including S3,
 modifying our existing system to support the new setup is very
 straightforward. We need to make two changes to the system. First,
 instead of clients sending files directly to the Logstash server, they
 should be written to an S3 bucket. On the server side of things, we need
 to tell Logstash to read incoming log files from the S3 bucket, in
 addition to listening for TCP connections.
To start with, we need to create a new S3 bucket to store our log
 files. Using the Management Console or command-line tools, create a new
 bucket with a name like logs-example-com. Remember that S3 bucket
 names must be unique, so you will not be able to use this exact
 example.
Once the bucket is set up, create a new IAM user named logging. This will be used on both the client
 and central Logstash instances to read and write to the bucket.
Assign an IAM policy to the new user, granting it permissions to
 read from and write to the logging bucket with the following IAM
 policy:
{
 "Statement": [
 {
 "Action": "s3:*",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::my-s3-bucket",
 "arn:aws:s3:::my-s3-bucket/*"
]
 }
]
}
Note that this policy explicitly references the S3 bucket. You
 will need to change the example to match the name of your S3
 bucket.
Once the policy has been assigned to the IAM user, the AWS side of
 the configuration is complete, and you can return to the EC2 instances
 running your Logstash client and server.
Begin by configuring a Logstash client so that it writes log
 entries to the S3 bucket. Begin by installing Java and Logstash as
 previously detailed in this chapter. Create a configuration file named
 logstash-client-s3.conf in /etc/logstash/conf.d/ with the following
 content:
input {
 file {
 type => "syslog"
 path => ["/var/log/*.log", "/var/log/syslog"]
 }
}

output {
 s3 {
 access_key_id => "my-aws-access-key-id"
 secret_access_key => "my-aws-secret-access-key"
 region => "us-east-1"
 bucket => "logging-example-com"
 }
}
You will, of course, need to update this example to reflect the
 name of your S3 bucket and the AWS access credentials we created for the
 new logging user. It is also
 necessary to grant the logstash user permission to
 read the local log files:
sudo usermod -G adm logstash
On the Logstash server instance, create a configuration file named
 logstash-central-s3.conf with the
 following contents:
input {
 s3 {
 access_key_id => "my-aws-access-key-id"
 secret_access_key => "my-aws-secret-access-key"
 bucket => "logging-example-com"
 region => "us-east-1"
 delete => true
 }
}

output {
 stdout { codec => rubydebug }
 elasticsearch { hosts => ["localhost:9200"] }
}
The Logstash S3 plug-in downloads data from the bucket using the
 credentials you configure here. So the server’s input section is totally new in this example,
 but the output section remains the
 same as the one in our original example. Again, you will need to replace
 the S3 bucket name and IAM access credentials with your own data. Note
 the delete attribute, instructing
 Logstash to remove files from the S3 bucket once they have been
 transferred to our central log archive.
Note
Note the different configuration file options required for the
 S3 input and S3 output. Logstash has not yet settled on conventions
 for naming attributes in plug-ins, so each plug-in author chooses his
 own variable naming scheme. The documentation for plug-ins also varies
 dramatically in terms of detail and finish. Hopefully, both of these
 will improve as Logstash continues to grow in popularity.

With these changes in place, you will need to stop and restart the
 Logstash agents on both the client and central servers. Start the
 Logstash process on the client first:
sudo systemctl enable logstash
sudo systemctl start logstash
The central Logstash instance should be restarted as
 follows:
sudo systemctl restart logstash
Once both processes are running, create some log file entries on
 the client Logstash instance with a logger command:
echo "testing s3 logger" | logger
After a few minutes, this log message should be printed in the
 central Logstash agent log. This will take a little longer than the
 preceding examples, because you will need to wait for the Logstash
 client to write this message to the S3 bucket, and then wait again for
 the central Logstash agent to retrieve the updated file and process its
 contents.
This method of using S3 as a temporary storage location greatly
 increases the reliability of your logging infrastructure, as it is no
 longer dependent on having a central server running. Of course, without
 the Logstash instance running, log files will still not be processed or
 visible in the Kibana web interface. However, a failure in the central
 agent will have no ill effect on logging client instances, which will
 happily continue shipping their log files to the temporary S3 bucket for
 later processing.

AWS Service Logs
So far, we have been looking at application and operating system logs, but
 another class of logs must also be considered. Many of the AWS services
 produce log files that might need to be stored and reviewed. For example,
 a CloudFront distribution will produce log files providing
 details about requests it receives, such as the URL that was requested or
 the resulting HTTP response code.
All of Amazon’s services use the same basic logging methodology:
 logs are written to a specified S3 bucket at regular intervals. This makes
 retrieving and processing the log files very simple. You just need to
 regularly download and process the files. The kind of decoupling described
 in the previous section is already built into this system: if you do not
 process the log files, they will pile up in the S3 bucket, but CloudFront
 will continue to function as usual.
Given that we already have a system for processing log files that
 have been written to an S3 bucket, we can reuse the example from the
 previous section to read CloudFront logs, as well as our application and
 operating system logs. Logstash is already configured to process logs from
 an S3 bucket, so we can easily add another section to our central Logstash
 agent’s configuration file to make it process CloudFront log files.
The first step is to create a CloudFront distribution to serve some
 static or dynamic files and configure that distribution to store its
 access logs in an S3 bucket. This is described in Amazon’s CloudFront
 documentation. During this process, you will have the option to
 create a new S3 bucket in which to store the logs, or enter the name of an
 existing bucket. Either way, keep track of the bucket name you choose,
 because this will be required in the following steps. For this example, we
 have used a bucket named cloudfront-logs-example-com.
Once these steps in the Amazon documentation have been completed,
 you will have a CloudFront distribution that writes its access logs to an
 S3 bucket periodically. Next, you can configure Logstash to consume these
 logs, feeding them into the same system that processes your application
 and operating system logs.
On the Logstash instance, stop the logstash process if it is still running from the
 previous example. Update the logstash-central-s3.conf file so that it
 matches the following:
input {
 s3 {
 bucket => "logging-example-com"
 credentials => ["my-aws-access-key-id", "my-aws-secret-access-key"]
 region => "us-east-1"
 }
 s3 {
 bucket => "cloudfront-logs-example-com"
 credentials => ["my-aws-access-key-id", "my-aws-secret-access-key"]
 region => "us-east-1"
 type => "cloudfront"
 }
}

output {
 stdout { codec => rubydebug }
 elasticsearch { hosts => ["localhost:9200"] }
}
The newly inserted s3 section
 configures Logstash so that it will read log files from the CloudFront log
 bucket, as well as the original logging-example-com bucket.
All logs retrieved from the cloudfront-logs-example-com bucket will have
 their type attribute set to cloudfront. You can refer to this to keep track
 of the source of log data, and the type will be visible when these logs
 are viewed in the Kibana web interface.
After saving the file, start Logstash again:
sudo systemctl restart logstash
To see this in action, you will need to wait for CloudFront to write
 the first log file, which it will do after receiving a certain number of
 HTTP requests. For testing, it can be helpful to use curl or wget to quickly make a large number of requests
 to your CloudFront distribution, which will cause the access log to be
 written to. Once this file reaches a certain size, it will be written to
 S3, at which point Logstash will notice the new file and process the logs
 contained therein.
Other Amazon services, such as Elastic Beanstalk and S3 itself, use the same mechanism for
 storing access logs, so this technique can also be easily reused for
 those services.

S3 Lifecycle Management
Managing ever-growing log files is an old problem for system administrators. Working
 in the AWS cloud introduces some additional challenges, but the same
 principles can be used to solve the problem. On an individual system,
 logrotate is used to ensure that log
 files are regularly rotated and deleted. Without logrotate, log files might grow to the point
 where they exhaust all available space on the system, causing problems for
 running applications.
Storing logs on S3 creates a different problem: instead of worrying
 about shrinking available capacity, you need to worry about an increasing
 AWS bill. Constantly throwing log files into S3 buckets and ignoring them
 indefinitely will lead to an unnecessarily high bill at the end of the
 month.
S3 lifecycles can be used to manage this problem, by allowing you to
 create rules that control when your data is automatically archived to AWS
 Glacier or permanently deleted. Glacier is an offline storage service that
 optimizes storage costs for data that your users do not require regular or
 rapid access to. If you are logging to S3, you should ensure that your
 lifecycle rules are configured to automatically delete objects when they
 are no longer needed. We show how to accomplish this in Chapter 12.
Lifecycle rules can also be used to potentially increase the
 security of your log files after they have been moved to storage. In most
 use cases, log files should be considered read-only after they have been
 written. In the strictest cases, this is enforced by using WORM (write once, read many) devices, which provide
 hardware-level protection to prevent modification of files after they have
 been written. This type of requirement is usually driven by an industry or
 government regulator.
While lifecycle rules cannot provide this level of protection, they
 can be used to separate the credentials used for reading operations from
 those used for writing operations. As an example, envision writing your
 log files to an S3 bucket for storage in /backups/logs/. Your
 logging application uses a set of IAM credentials that give it permission
 to write to this location in the bucket.
To ensure that once log files have been written it would be
 difficult for a malicious user or application to overwrite them, we put in
 place a regularly executing process to relocate the log files. A really
 simple way to accomplish this is configuring lifecycle rules that archive
 the objects after a certain time has elapsed. After this interval, the log
 files would be moved to the Glacier S3 storage class, where they would
 become inaccessible to the IAM credentials that were used to create the
 files originally. You will learn how to manipulate S3 buckets via
 lifecycle rules in Chapter 12.

1 Terabytes of scraped social media data leaked
 by CENTCOM.
2 Thousands of files containing the personal information of
 US citizens with classified security clearance have been exposed
 by an unsecured
 Amazon server.
3 Fedex stored customer passports, driver licenses, and more
 in public
 Amazon bucket.
4 Lots of websites sites found to have world-writable
 JavaScript files embedded.

Chapter 10. DNS with Route 53
The venerable Domain Name System remains a critical component in the
 knowledge toolbox of a system administrator. Amazon’s Route 53 service can provide a tighter integration
 between DNS and other AWS systems such as Elastic Load Balancers and the
 Elastic Compute Cloud. Although DNS is incredibly simple at its core, a
 broken or misconfigured DNS server can result in some very interesting
 problems. Kris Buytaert, one of the original proponents of the DevOps movement,
 highlights this with the title of his blog: Everything Is a Freaking DNS
 Problem.
This book assumes that our readers are already familiar with the
 general concepts surrounding DNS. This chapter therefore focuses on the
 AWS-specific implementation provided by Route 53, and demonstrates a few
 techniques that can be used to configure a cloud-aware DNS service.
Creating DNS records to identify the server entry points of an
 application enables a smoother user experience for your internal users or
 developers, even when it is not downright required by external public
 access. It also enables you as the operator to easily replace published
 entry points with more powerful resources, without having to explicitly
 inform users of a change taking place. By redirecting a service-specific
 domain name record to a more powerful instance (or even a load-balancer), an
 administrator can perform but with a sleight of hand the magic trick of
 having all users march in a different direction from the one they used a few
 seconds ago. That is the operational value delivered by identifying key
 points in your application such as images.example.com or db.example.com with their own distinct name
 records.
Why Use Route 53?
Many AWS services are similar to their noncloud counterparts, and
 Route 53 is no exception. It is possible to use Route 53 as a replacement
 for a traditional web-based DNS service, and indeed many people are using
 Route 53 in exactly this way. However, some features specific to Route 53
 make it the ideal method of managing DNS when operating or managing an AWS
 infrastructure.
The main reason for this is its tight integration with services like
 the Elastic Load Balancer (ELB). Using an external DNS service in
 combination with AWS can require a significant custom development effort
 to glue these two otherwise independent services together, including
 writing and maintaining scripts to query the status and hostname of an
 Elastic Load Balancer and continuously updating your DNS records to
 reflect changes to the ELB.
Route 53 provides this feature through the ALIAS resource record type. This is
 an Amazon-specific record type and should not be confused with the CNAME record type, which can also be used to alias one
 hostname to another. In Amazon AWS terms, an ALIAS
 resource record type allows a hostname to be linked to a specific AWS
 service endpoint, such as the hostname of an ELB or a website hosted in an
 S3 bucket (see Chapter 12).
Other Amazon-specific features include Latency-Based Routing, whereby the result of a DNS query can
 change depending on the location of the end user and other factors such as
 network link speed. The idea is to route a user’s request to the service
 that can provide the best experience. For example, one might be serving a
 web application from two AWS regions, such as Sydney and London. Using
 Latency-Based Routing, you can ensure that requests from London-based
 users are routed to the web application servers in Ireland, which will
 deliver much faster service than Sydney-based servers in this particular
 case. However good Amazon’s service is, the speed of light remains a hard
 limit to the rate at which one can serve up web applications to a
 geographically diverse user base.
From an operational perspective, Route 53 is just another
 AWS service, meaning it can be managed from the Management
 Console, command-line tools, or even CloudFormation. One common complaint
 about DNS services that provide only a web interface is that they allow no
 way to back up and restore your resource records. Many sysadmins prefer a
 command-line option for managing their DNS records, or at least an API.
 Route 53 can provide all of these options, making it a good choice for DNS
 management even if you are not yet using many other AWS systems.

Failure Is an Option: Service Failover with Route 53
The first scenario we will look at is using DNS to manage service failure. As much as
 we might wish otherwise, services will break from time to time, and we
 need to ensure that the interruption is as brief as possible from the
 user’s perspective.
Consider a PostgreSQL database cluster that consists of a master (which can handle both
 read and write traffic) and a slave (which can handle only read traffic).
 In this common scenario, either a high level of uptime is required or the
 single master is not capable of handling all of the application load on
 its own. Using tools such as repmgr, you
 can easily configure a PostgreSQL cluster consisting of a single master
 and multiple slaves. Furthermore, repmgr can be used to periodically check
 the health of the master server and automatically promote one of the
 slaves in the event of a failure.
Many applications can be configured to send read traffic to one
 address, while read/write traffic is sent to another address. This makes
 scaling up the application traffic much easier, because you can offload
 read-only traffic from the master to the slave. For example, all read-only
 traffic would be sent to slave.example.com, while
 read/write traffic is sent to
 master.example.com.
The slave.example.com DNS record can be
 configured to return multiple addresses in response to client queries, in
 an arrangement known as round-robin DNS. In this
 configuration, your application can send all traffic to a single hostname
 without being actually aware of how many PostgreSQL slaves are currently
 in service.
Consider how the dynamic nature of Route 53 can be used in
 combination with PostgreSQL, or indeed the failover of many other
 services.
In the initial state where everything is working correctly, the
 master.example.com record points to the working
 master. Repmgr exposes hooks allowing users to run custom scripts when a
 failover or promotion event occurs. Using these hooks, it is possible to
 automatically update the master.example.com DNS
 record to point to the newly promoted master server, which was previously
 in operation as a slave. It is also necessary to remove the corresponding
 entry from the slave.example.com record pool.
It is important to consider DNS caching and how it will affect failover time when using this
 method. The DNS record’s time-to-live (TTL) setting indicates how long the result should be cached by clients,
 but not all DNS clients honor this setting. Some (arguably broken)
 applications may cache the results of a DNS query permanently, and will
 recognize updated DNS records only after being restarted.
Depending on your infrastructure and the services you are running,
 this method can be implemented in various ways. To make this example more
 concrete, we will implement the features just described using a PostgreSQL
 cluster with streaming replication and failover.
Configuring a PostgreSQL cluster is beyond the scope of this book,
 and is superbly documented in the official PostgreSQL documentation. Using
 this in combination with repmgr
 failover documentation, begin by configuring a PostgreSQL cluster
 with a master and at least one slave. The master and slave(s) should of
 course be running on separate EC2 instances.
For the sake of this demonstration, it is suitable to launch
 individual instances for each role. In production, the instances likely
 would be running in an Auto Scaling group so that instances are
 automatically replaced by additional slaves if they fail.
Prepare the runtime environment with the following steps:
sudo apt install python python-pip
pip install boto
Head to the Route
 53 section of the AWS console and create a new zone, as shown in
 Figure 10-1. AWS Route53 will create for you
 the initial NS (namespace) and SOA (Statement of Authority) records in
 what those readers conversant with DNS will recognize to be a zone file. You will need to use a
 valid domain name instead of the customary example.com placeholder.
Figure 10-1. Initialize the DNS zone to be used in our round-robin failover
 design

Warning
If the root nameservers are not pointing to AWS Route 53 for the
 domain you select, even entering a domain under your control will not
 result in the internet at large (which includes your browser) becoming
 aware of these changes. This should not stop you from experimenting, but
 if you are new to the subject of DNS, you may want to ask a colleague to
 give you a quick primer to help you ramp up faster.

As each PostgreSQL instance is launched, it must register itself
 with Route 53 by creating a CNAME record pointing to its hostname. This is done by
 running a script at launch time that creates the relevant DNS record. An
 example of such a script is shown in Example 10-1.
Example 10-1. PostgreSQL launch script
#!/usr/bin/python

import argparse
import boto.route53
from boto.utils import get_instance_metadata

def do_startup():
	""" This function is executed when the instance launches. The instance's
		IP address will be added to the master or slave DNS record. If the
		record does not exist it will be created.
	"""
	# Check if the master resource record exists
	if zone.get_cname(master_hostname) is None:
		print 'Creating master record: %s' % master_hostname
		status = zone.add_cname(master_hostname, instance_ip, ttl)
		return
	print "Master record exists. Assuming slave role"
 # Check if the slave resource record exists - if more than one result is
 # found by get_cname, an exception is raised. This means that more than
 # one record exists so we can ignore it.
	try:
		slave_rr_exists = (zone.get_cname(slave_hostname) != None)
	except boto.exception.TooManyRecordsException:
		slave_rr_exists = True

	if slave_rr_exists:
		print 'Slave record exists. Adding instance to pool: %s' \
		 % slave_hostname
	else:
		print 'Creating slave record: %s' % slave_hostname
	# Create or update the slave Weighted Resource Record Set
	status = zone.add_cname(slave_hostname, instance_ip, ttl, slave_identifier)

def do_promote():
	master_rr = zone.get_cname(master_hostname)
	print 'Updating master record: %s %s' % (master_hostname, instance_ip)
	zone.update_cname(master_hostname, instance_ip)
	# Remove this instance from the slave CNAME pool by deleting its WRRS
	print 'Removing slave CNAME: %s %s' % (slave_hostname, slave_identifier)
	zone.delete_cname(slave_hostname, slave_identifier)

parser = argparse.ArgumentParser(description='Update Route 53 master/slave DNS records')
parser.add_argument('action', choices=['startup', 'promote'])
#parser.add_argument('--hosted-zone-id', required=True)
parser.add_argument('--domain', required=True)
parser.add_argument('--cluster-name', required=True)
parser.add_argument('--test')

args = parser.parse_args()

metadata = get_instance_metadata()

instance_ip = metadata['local-ipv4']
instance_id = metadata['instance-id']

ttl = 60 # seconds

master_hostname = 'master-%s.%s' % (args.cluster_name, args.domain)
slave_hostname = 'slave-%s.%s' % (args.cluster_name, args.domain)
Identifier used for slave Weighted Resource Record Set
slave_identifier = ('slave-%s' % instance_id, 10)

conn = boto.route53.connect_to_region('us-east-1')
zone = conn.get_zone(args.domain)

if args.action == 'startup':
	do_startup()
elif args.action == 'promote':
	do_promote()

Execute this script manually on each of the instances, making sure
 to run it on the master first. You will also need to provide the hosted
 zone ID of your Route 53 zone and set AWS credentials in either the
 environment, the ~/.aws/credentials file, or better
 yet by using an IAM role for the instance:
python update_route53.py --domain example.com --cluster-name db startup
After executing the script on both instances, you should see two new
 records in the Route 53 web console. Figure 10-2
 shows the updated record set for the example.com zone after the master’s mapping has
 been created.
Figure 10-2. The DNS record for the DB master instance has successfully been
 created

Note
This script is very simple and will require a few tweaks to make
 it robust enough for production. For example, what happens if the master
 DNS record already exists, but the PostgreSQL service has failed? Should
 the script forcefully “take” the hostname and point it to the instance
 on which it is running? Automatic database failover requires plenty of
 careful thought before implementation.

Each node in the cluster will have its own repmgr.conf file, usually located at /etc/repmgr/repmgr.conf. This contains a
 PROMOTE_COMMAND parameter that
 specifies the path to a script that will be executed when a failover event
 occurs. This is the hook we will use to update the DNS records when a
 slave is promoted to the master role.
The script in Example 10-2 will be
 executed on the slave that is being promoted. Note that this script is
 also responsible for initiating the repmgr failover process.
Example 10-2. repmgr promote script
#/bin/bash

Use repmgr to initiate the failover process
repmgr promote

Run the script to update the DNS records
python update_route53.py --domain example.com --cluster-name db promote

Save the script on both the master and slave instances, perhaps in
 /etc/repmgr/promote_script.py, and
 make it executable. Update the repmgr.conf file so that the PROMOTE_COMMAND parameter points to the path of
 the script.
With the DNS records created and the promote script in place, you
 can test the failover process. You might want to refer to the repmgr
 documentation again at this point for additional detail.
Stop the PostgreSQL service on the master instance and watch the
 repmgr log file. Once the repmgr daemon notices that the master has
 failed, the slave will be promoted by calling the script.
Once the process has completed, check the Route 53 Management
 Console. You will see that the master.example.com
 record now points to the instance that was previously a slave, and the
 corresponding slave.example.com record has been
 deleted.
When the PostgreSQL service was stopped on the master, any client
 attempting to connect to it would have begun generating error messages. As
 the DNS change propagates to the clients, they will begin connecting to
 the new master and begin functioning correctly.

Ramping Up Traffic
In the process described in the preceding section, traffic was abruptly shunted from one
 instance to another by changing the hostname. The new instance is thrown
 in at the deep end and must immediately handle all traffic destined for
 its hostname, which could overload some instances, as they have not had
 time to warm up their caches. Sometimes, it is desirable to send traffic
 to an instance in a more controlled and gradual fashion. This is often
 true in the case of database services.
Let’s continue with our PostgreSQL example. A highly efficient PostgreSQL server relies on data being stored in
 memory and not read from spinning disks. Immediately sending a large
 number of queries to a recently started PostgreSQL instance will result in
 much of the data being read from disks, resulting in poor performance
 until PostgreSQL has had a chance to warm up the cache by storing recently
 used data and indices in memory.
To work around this, we can begin by sending a small amount of
 traffic to a new PostgreSQL instance and gradually increasing this amount
 over time. For example, we could start by sending 10% of traffic to the
 instance and increasing this by 5% every five minutes. This can be done
 using
 weighted resource record sets (WRRS), which are used to return
 multiple records in response to a query for a single DNS hostname.
Note
Remember that DNS caching affects how quickly your application
 responds to changes in the resource record set. You can control this
 with an individual record’s and zone-wide TTL default values.

When creating an entry (a member of the pool) in a WRRS, a weight
 value must be provided. This is used to calculate how frequently this
 record will be returned in response to client queries. For example, the
 slave.example.com hostname used for our slave
 database in the previous example could be configured to return multiple
 records, allowing traffic to be distributed across multiple slaves. If the
 records all have the same weight, traffic will be distributed in a
 round-robin fashion.
This method can also be used to perform a phased rollout of software
 updates. For example, a small percentage of web application traffic can be
 sent to instances running a new version of the software, while the
 majority of traffic is sent to instances running the existing stable
 version.
Once the new version is confirmed to be working as expected, the
 rest of the traffic can be shifted over to the new instances in the proper
 cloud-native approach, or alternatively the already existing instances
 could be updated in place using a traditional datacenter strategy.

Surviving ELB and Application Outages with Route 53
Elastic Load Balancers are reliable, but just as is the case for any other component, accounting for
 the possibility of their failure must be part of your design. A robust
 infrastructure will take this into consideration and include a way to work
 around temporarily unavailable ELBs. The default failure condition of a
 nonresponsive ELB does not make for a good user experience: users will see
 a blank, unstyled error page.
Outside AWS, one common method of working around failures is to have
 a separate web server that is responsible for serving your error page, or
 a message informing the user that the site is currently down for
 maintenance (scheduled or otherwise).
Within AWS, this process can be automated so that Route 53 will
 begin returning the IP address of your maintenance server instead of the
 IP address of your ELB. Furthermore, AWS can be used to serve your error
 pages from S3 buckets, removing the requirement of running an additional
 server solely for the purpose of serving error pages.
This is achieved using failover record sets. These work in the same
 way as weighted resource record sets with one important change: Route 53
 will periodically perform health checks against your ELB (or other
 specified health check endpoint). Route 53 will respond to queries based
 on the results of this health check. For example, when your ELB is working
 normally, Route 53 will provide the ELB’s IP addresses in response to DNS
 queries. If the ELB (or the application behind it) fails these health
 checks, Route 53 will provide a different result to DNS queries.
In this example, we will use this feature to set up an S3 bucket
 capable of serving error pages, which will be used as a failover in case
 the ELB or application fails. Without any action on our part, Route 53
 will automatically route users to this error page in the event of an ELB
 or application failure.
The first step is to create a bucket that will serve our error page.
 Using the S3 panel of the AWS Management Console, create a new bucket and
 assign it a name like my-error-page.
 Follow the instructions in Amazon’s Configure
 a Bucket for Website Hosting documentation to configure this
 bucket to serve web pages. When configuring the bucket to serve web pages,
 you will need to provide the name of the index document and error
 document. Set both of these to index.html to ensure that any requests that
 reach this bucket will result in your error page being served.
Next, create a file named index.html containing the error message you wish to display to your users when the
 main application is down for maintenance or otherwise not available. This
 page should reference only media that is guaranteed to be available, no
 matter the state of your application. For example, if you reference a CSS
 file that is served by your application, your error page will not work
 correctly, and your users will see an unstyled error page.
Warning
Amazon AWS itself made the mistake of relying on a service to
 provide its own outage page in 2017, when a large-scale AWS S3
 outage concurrently made the AWS operations team unable to
 update the AWS Service Health Dashboard to update users.

With those steps complete, we can move on to the ELB-related steps.
 The various methods of setting up an ELB are described in earlier chapters
 and will not be duplicated here. Refer to Chapter 6 for more information on setting up
 an Elastic Load Balancer.
For the sake of this example, we will assume you have created an ELB
 named my-elb, which has a single EC2
 instance behind it running your custom application.
The next step is creating a failover resource record set that
 includes a health check. This will periodically check the status of your
 ELB and application.
First, we must create the primary record set that will be used when
 the ELB is working as expected. Open the Route 53 Management Console,
 navigate to your Hosted Zones, click Go To Record Sets, and then click
 Create Record Set. The corresponding setup is shown in Figure 10-3.
Figure 10-3. Create the primary failover record set

Some of the values you enter in this screen—such as the Name—will
 differ from the example configuration. Select the Yes radio button next to
 Alias, which will cause a new input box to appear. Type the name of your
 ELB in this new Alias Target input box.
In this particular case, records of the special class
 ALIAS were created in the hosted DNS zone. Route 53
 uses these records to define what it serves as resource mappings to client
 DNS resolvers, and under what conditions. Details are hidden from us, and
 the system is pleasantly simple to operate despite its sophisticated
 logic. Whenever a failover strategy involves standard DNS resource records
 explicitly defined by our zone, the underlying TTL values will affect the client’s ability to fail over
 independently of any changes made to the server’s configuration. This is
 the case with the hostname mapping and aliasing provided by the
 standard A and CNAME
 records. If your failover strategy involves traditional DNS records, it is
 important to choose a low TTL so that failover can occur quickly. If this
 value is set too high, clients will cache the old value for a longer
 period of time, resulting in more requests hitting your failed ELB or
 application.
In the Routing Policy drop-down, select Failover and select Primary
 as the Failover Record Type. Enter a Set ID, such as Primary, to help you remember which record set
 is which.
Finally, select the Yes radio button next to Evaluate Target Health.
 Because this record set is an alias to an ELB, Route 53 already has the
 information it needs to perform the health check against the ELB.
Click Create Record Set to save this information and close the
 window.
Next, we need to repeat these steps for the secondary resource
 record set that will be used when the ELB fails its health check. Repeat the previous steps for the secondary
 resource record set, as shown in Figure 10-4.
This record set should be configured like the primary record set,
 with a few changes. The name should be the same as in the primary. This
 record set should also be an alias, but instead of pointing to an ELB,
 type the name of your S3 bucket in the Alias Target input. Select Failover
 as the Routing Policy and Secondary as the Failover Record Type. The Set
 ID should be Secondary, or some other easy-to-remember name.
Click Create Record Set to save the secondary record set.
With those steps completed, the setup is ready for testing. Visit
 the domain name you chose for the record sets, replacing our unadventurous
 placeholder www.example.com, in your web browser. You
 should see a page served by your EC2 instance running behind the ELB. If
 not, go back and recheck the steps to confirm everything is set up as
 described in the instructions.
If you see your application’s web page, you are ready to test the
 failover scenario. Terminate the EC2 instance or stop the application
 process running on it so that the ELB’s health check fails. It can take a
 few minutes for the failure to be recognized, depending on how you
 configured the ELB. Remember that you can also examine the current status
 of the health check in CloudWatch.
Once the health check eventually fails, visit the web page again.
 You should now see the error page you uploaded to your S3 bucket. Retrace
 your steps to ensure that everything is configured as described in this
 section if this does not occur.
Figure 10-4. Create secondary resource record set

Finally, we need to make sure that failover takes place correctly in
 reverse when your application returns to a healthy state. If you
 terminated the instance behind the ELB, launch a new one and place this
 new instance behind the ELB. If you stopped the application process
 instead, restart it.
After a few minutes, the health check should recognize that the
 application has returned to a healthy status. When you refresh the web
 page, you should once again see a page served by your application.
One potential downside of this approach is that DNS records might be
 cached by your user’s DNS client or by a caching DNS server that exists on
 the path between your users and Route 53. Some DNS caching servers do not
 honor the TTL either you or Route 53 chose when serving your record set.
 Unfortunately, there is no way to work around these misconfigured DNS
 servers. This can result in the failover appearing to take longer to
 succeed than it really does, which means that some users might see your
 error page for longer than they should.
Regardless of this, DNS failover provides a useful way of
 automatically displaying an error or maintenance page when circumstances
 beyond your immediate control take down your web application. Furthermore,
 the complete automation of the process means you do not need to worry
 about putting your error page in place when your application is
 experiencing problems—instead, you can get on with the more useful task of
 diagnosing and fixing the problem.
Tip
In the likely event that your DNS records are not all hosted by
 Route 53, a tool capable of managing domain configuration across
 multiple providers like GitHub’s octoDNS is a handy way
 to coordinate automatic zone updates across multiple providers. octoDNS
 currently supports Cloudflare, Dyn, and AWS Route 53 among several
 others.

Takeaways
Summing up what we learned in this chapter:
	Route 53 is not just a web interface for a BIND-like service. It
 is a configurable and programmable service, just like the other
 components of AWS.

	Use Route 53 DNS names as the public face of your application
 and to route traffic to your internal services.

	Be careful when updating DNS records for high-traffic services.
 A sudden massive increase in traffic could overload your servers.
 Instead, gradually ramp up traffic by using weighted resource record
 sets.

	Remember to keep your TTLs low when using Route 53 for high
 availability between servers. Higher TTL values will result in clients
 using old cached DNS records longer than necessary, and not failing
 over as quickly.

Chapter 11. Monitoring
Monitoring dynamic instances can be a challenge. The classic monitoring tools expect your systems to
 be around for a long time, and can have difficulty recognizing the
 difference between an instance that has failed and an instance that has been
 terminated as part of an Auto Scaling event or other planned termination in
 response to changes in capacity requirements.
AWS provides its own CloudWatch monitoring service, designed from the ground up to
 work in such an environment. Additionally, with some planning and custom
 scripting, most traditional monitoring tools can be used to monitor dynamic
 instances without spamming operators with false alarms when instances are
 terminated. This chapter showcases some of these methods as well as how to
 best use Amazon’s CloudWatch service, and how the two can be
 integrated.
Note
A cottage industry of cloud-based monitoring tools has sprung up
 around AWS and other cloud providers. There are far too many tools to
 mention in this book, and each has its own strengths and
 weaknesses.
The tighter these tools integrate with AWS, the more useful they
 are. Most advanced tools automatically query the EC2 tags associated with
 instances and use them to aggregate metrics. This allows the same tool to
 generate a high-level overview of your application across all EC2 regions,
 or drill down to view the performances of instances in a particular
 availability zone.

Why Are You Monitoring?
There are many reasons for setting up a monitoring system for your
 application and infrastructure. The most obvious reason is that when
 things break, operators should be alerted by automated systems, rather
 than phone calls from upset customers or C-level executives.
Another good reason is to allow system administrators to identify
 trends in application usage so they can make informed decisions about
 capacity requirements. Knowing how your application performed last month
 is critical when it comes to planning your requirements for the next
 month.
Yet another reason is to allow administrators and developers to
 accurately measure the effects of infrastructure changes and new
 application features. It is difficult to improve what you do not measure.
 If your application is running slowly, a well-planned monitoring system
 will allow you to quickly identify and remove bottlenecks. You need
 metrics demonstrating that your changes are having a positive effect in
 order to make continual, incremental improvements, to keep the
 aforementioned C-level executives happy. The opposite is also true—it is
 easy to accidentally reduce the performance of your application when
 deploying new code on a frequent basis. In this case, it is imperative to
 recognize which changes are negatively affecting performance so that they
 can be reverted or fixed.

CloudWatch
Amazon’s own CloudWatch service is the starting point for many administrators when it comes
 to monitoring AWS services. In fact, many AWS services, such as Auto
 Scaling, rely on CloudWatch to perform scaling operations, making it an
 essential part of the infrastructure. CloudWatch is responsible for
 monitoring metrics such as the CPU load of EC2 instances. When these
 metrics cross certain thresholds, the Auto Scaling system is alerted so
 that it can take the relevant action of spawning or terminating instances
 according to an Auto Scaling policy.
CloudWatch is also an integral part of Amazon’s Health Check feature, used by Elastic Load Balancers to
 identify instances that have failed or are otherwise “unhealthy.”
In addition to tracking built-in metrics, such as disk usage and CPU
 load, CloudWatch can monitor custom
 metrics provided by external sources. If the built-in metrics do not provide
 the detail required to inform your Auto Scaling requirements, these custom
 metrics can provide more granular control when scaling Auto Scaling groups up or down. The sky’s the limit when
 using custom metrics. Typically, administrators monitor values such as
 requests per second, although more outlandish metrics, ranging from solar
 flare activity to the phase of the moon, could be used if it makes sense
 in your application. CloudWatch retains data for a fifteen-month period,
 allowing you to track the latest values as well as comparing them against
 the historical baseline.
Although powerful, CloudWatch is not perfect and has some drawbacks.
 The largest is its web-based interface. When monitoring a large number of
 metrics, the interface can become slow and cumbersome, taking some time to
 display the results you are looking for. This is because the graphs are
 generated on demand each time they are viewed. If you have many metrics,
 or are viewing data across a large time range, generating these graphs can
 take time and become quite frustrating. Fortunately, CloudWatch supports
 the creation of as many dashboards as your monitoring needs require, which
 also makes it rather easy to avoid overloading the web interface with too
 much data—you could say that there is an actual time saving to neatly
 categorizing your data in this case.
Another consideration is the cost associated with submitting custom
 metrics to CloudWatch. The cost is based on the number of metrics
 submitted, and the number of API requests required to submit these
 requests. At the time of writing, in the us-east-1 region the cost is $0.30 per metric
 per month for the first 10,000 samples, plus $0.01 per 1,000 API requests.
 In most cases, each metric submission will require one API PUT request. Assuming you are submitting your
 custom metric every minute, this will result in a cost of around $0.83 per
 month. While not overly expensive, these costs can quickly add up given
 the high usefulness of custom metrics, and must be taken into
 consideration when designing your monitoring system. The cost factor is
 particularly evident when tracking metrics with a per-minute granularity.
 Of course, building any custom monitoring system will also have many other
 capital costs: the time taken to implement it, licensing costs for a
 third-party monitoring service, and so on.
CloudWatch Basics
Native monitoring in AWS is a multifaceted system revolving around
 CloudWatch (Figure 11-1) but extending beyond a
 single service’s limits and integrating with a fast increasing set of
 other AWS services. Collectively, AWS monitoring facilities enable
 administrators to track data, generate notifications, visualize the
 status of services or resources, and even respond automatically to
 changes in the conditions of your environment.
Four key abstractions define the core mechanisms provided by
 CloudWatch. Events are the asynchronous notification system provided by
 CloudWatch (and other services supporting CloudWatch) to alert the
 administrator that something has occurred. Events have a very
 wide-ranging scope, including as diverse circumstances as the reboot of
 an instance due to cloud maintenance (one of a number of possible
 triggers for an AWS Health Event) to the account’s root user logging
 into the AWS Management Console (causing a CloudTrail event to be
 published, as we have previously shown in “CloudTrail”).
Events are optionally filtered and fed by simple rules through
 Amazon’s Simple Notification Service (SNS). In circumstances where
 the operator chooses to be alerted, SNS can be used to deliver updates
 to mobile devices in the form of text messages or even generate
 platform-specific push notifications to iOS and macOS (Apple Push
 Notification Service), Android (Google Cloud Messaging for Android), and
 even Windows and Baidu Cloud. An alternative approach is to filter the
 appropriate events into an SQS queue or a dedicated AWS Lambda function
 for automated processing, without requiring administrator intervention
 by generating an immediate notification event. A real-world deployment
 will make use of both strategies to address different circumstances as
 represented by event types or sample values.
Figure 11-1. CloudWatch basic monitoring dashboard, found in the Monitoring
 tab of an EC2’s instance details in the AWS console

Metrics are the bread and butter of CloudWatch monitoring, measuring both
 the operational status and present utilization condition of your AWS
 resources. As previously discussed, metrics are at the core of the
 CloudWatch pricing model, with the sampling frequency of the metrics and
 the total number of samples constituting the key cost dimensions. In
 what every datacenter administrator should immediately recognize as a
 remarkable demonstration of the power of integrated public cloud
 architecture, AWS had been providing monitoring of EC2 instances out of
 the box to all its users at five-minute sampling frequency, as early as
 2010. Up to 10 metrics are automatically defined at boot time as the
 “basic monitoring” dashboard CloudWatch populates at no additional cost for each EC2 instance.
 Such metrics can be viewed in the Monitoring tab preloaded on each EC2
 instance in the AWS console (see Figure 11-1 for an
 example), and include inbound and outbound network traffic (measured in
 either packets or bytes), disk reads and writes (measured in both IOPS
 and bytes), as well as CPU load. Note that additional metrics are often
 presented here: for example, EC2 will automatically include graphs of
 CPU credit use and balance for burstable instance types like t2. Finally, alarms can
 be defined on metrics to cause an automated system or a human
 administrator to respond to circumstances predefined as requiring a
 response.

Auto Scaling and Custom Metrics
One of the most useful features of CloudWatch is its integration with Auto Scaling. This is
 commonly used to increase or decrease capacity in an Auto Scaling group
 according to metrics such as CPU utilization. When your instances are
 becoming too busy to cope with demand, more instances are launched. As
 demand decreases, the surplus instances are gradually terminated.
Auto Scaling is not limited to metrics that are built into
 CloudWatch: it is also possible to scale up or down based on the values
 of custom metrics that you provide to CloudWatch. As an example,
 consider a task-processing application in which tasks are queued in a
 messaging system and processed by EC2 instances. When running such an
 application, you might want the number of EC2 instances to scale
 dynamically according to the number of tasks waiting in the queue. If
 your message processing system is based on Amazon’s Simple Queue Service, you are able to use CloudWatch’s
 built-in metrics (such as the ApproximateNumberOfMessagesVisible SQS metric,
 which shows the number of messages available for retrieval
 in the queue) to control the size of your Auto Scaling group.
If you are using something other than SQS to store your queued
 messages for your task-processing application, you will need to provide
 CloudWatch with the data yourself so that Auto Scaling can make
 decisions based on these metrics.
Custom metrics do not need to be predefined: simply send the
 metric to CloudWatch, and it will begin storing and graphing it for you.
 This can be done in a number of ways. The Amazon API can be used from
 language-specific libraries (such as Boto for Python or Fog for Ruby),
 or by sending requests using the AWS REST API. The most straightforward
 method is to use the AWS CLI.
In the following example, we create a WaitingTasks custom metric, which performs the
 same function as the ApproximateNumberOfMessagesVisible metric for
 SQS-based systems. Once CloudFormation has some data on your custom
 metric, it can be used in the same way as built-in metrics to control
 Auto Scaling processes.
Begin sending your new custom metric to CloudWatch with the following
 command:
aws cloudwatch put-metric-data --namespace "MyAppMetrics" --metric-name WaitingTasks --value 20 --unit Count
This example creates a WaitingTasks metric and provides an initial
 value of 20. We introduce a dedicated
 namespace to prevent the accidental aggregation of similarly named
 metrics that belong to different applications. The CLI command itself
 runs silently and generates no output, but after a few moments the new
 metric will become visible in the CloudWatch Management Console, as
 shown in Figure 11-2.
Figure 11-2. The first WaitingTasks value appears in our CloudWatch
 dashboard

Instead of providing sample values on the command line, you can
 achieve the same result by sending a JSON file containing the metric data. For example, you could create a file named
 metric_data.json with the following
 contents to define the same metric—and load the same initial
 value:
[
 {
 "MetricName": "WaitingTasks",
 "Value": 20,
 "Unit": "Count"
 }
]
Upload the file with this command:
aws cloudwatch put-metric-data --namespace "MyAppMetrics" \
--metric-data file://metric_data.json
This command is equivalent to the first example in this section
 and is most useful when providing more complex or detailed metrics, or
 to perform bulk upload of multiple samples. It similarly runs silently
 with no default terminal output.
Chapter 6 explained how to
 create and manage Auto Scaling groups. In this section, we create a
 CloudFormation stack that describes an Auto Scaling group that
 dynamically shrinks and grows based on the value of our WaitingTasks metric. An example of such a
 stack is shown in Example 11-1.
Example 11-1. Auto Scaling group driven by a custom CloudWatch metric
{
 "AWSTemplateFormatVersion" : "2010-09-09",
 "Description" : "Auto Scaling on Custom Metrics",
 "Resources" : {
 "CustomMetricLaunchConfig" : {
 "Type" : "AWS::AutoScaling::LaunchConfiguration",
 "Properties" : {
 "ImageId" : "ami-43a15f3e",
 "InstanceType" : "m3.medium"
 }
 },
 "CustomMetricScalingGroup" : {
 "Type" : "AWS::AutoScaling::AutoScalingGroup",
 "Properties" : {
 "AvailabilityZones" : ["us-east-1a"],
 "Cooldown" : "300",
 "DesiredCapacity" : "1",
 "LaunchConfigurationName" : { "Ref" : "CustomMetricLaunchConfig" },
 "MaxSize" : "10",
 "MinSize" : "1"
 }
 },
 "ScaleUpPolicy" : {
 "Type" : "AWS::AutoScaling::ScalingPolicy",
 "Properties" : {
 "AdjustmentType" : "ChangeInCapacity",
 "AutoScalingGroupName" : { "Ref" : "CustomMetricScalingGroup" },
 "ScalingAdjustment" : "1"
 }
 },
 "ScaleDownPolicy" : {
 "Type" : "AWS::AutoScaling::ScalingPolicy",
 "Properties" : {
 "AdjustmentType" : "ChangeInCapacity",
 "AutoScalingGroupName" : { "Ref" : "CustomMetricScalingGroup" },
 "ScalingAdjustment" : "-1"
 }
 },
 "WaitingTasksAlarm" : {
 "Type" : "AWS::CloudWatch::Alarm",
 "Properties" : {
 "AlarmActions" : [{ "Ref" : "ScaleUpPolicy" }],
 "ComparisonOperator" : "GreaterThanThreshold",
 "EvaluationPeriods" : "1",
 "MetricName" : "WaitingTasks",
 "Namespace" : "MyAppMetrics",
 "OKActions" : [{ "Ref" : "ScaleDownPolicy" }],
 "Period": "60",
 "Statistic" : "Maximum",
 "Threshold" : "10",
 "Unit" : "Count"
 }
 }
 }
}

This stack consists of several components that are all required to
 make everything work correctly.
CustomMetricLaunchConfig and
 CustomMetricScalingGroup should be a
 familiar sight from Chapter 6. These
 are a required part of any Auto Scaling group.
Next, we define ScaleUpPolicy
 and ScaleDownPolicy. These scaling
 policy resources control how the capacity of an
 Auto Scaling group should be changed. The scale-up policy has a ScalingAdjustment parameter of 1, which means
 a single additional EC2 instance should be launched into the Auto
 Scaling group every time this policy is triggered. Similarly, the
 scale-down policy’s ScalingAdjustment
 parameter is −1, meaning that a
 single instance will be removed from the group if this is
 triggered.
The ScalingAdjustment parameter
 controls what changes will be made to the size of the Auto Scaling group
 when this policy is triggered. The AutoScalingGroupName parameter associates the
 scaling policy with a particular Auto Scaling group.
The final component is WaitingTasksAlarm, which ties everything
 together and controls when the capacity should be
 changed. The important parts of this resource are the AlarmActions and OKActions parameters, which state what should
 happen when the stack enters and leaves the Alarm state. The stack enters the Alarm state when the specified metric—in this
 case, the WaitingTasks metric in the
 MyAppMetrics namespace—is over the
 threshold of 10 for a single evaluation period. That is, as soon as
 CloudWatch notices this value is above 10, it will enter into the
 Alarm state, triggering the ScaleUpPolicy.
This will cause an additional instance to be launched into the
 Auto Scaling group. Once this instance begins processing tasks, the
 WaitingTasks value will drop below
 10, which puts the WaitingTasksAlarm
 in the OK state. This causes ScaleDownPolicy to be triggered, resulting in
 a single instance in the scaling group being terminated.
The CustomMetricScalingGroup
 has its Cooldown parameter set to
 300. This value, measured in seconds,
 controls how frequently Auto Scaling events occur for this group. By
 setting it to five minutes (300 seconds), we ensure that there is a gap
 between instances being created and deleted. Setting Period to 60 seconds similarly defines what
 time interval CloudFormation should use to evaluate samples of our
 custom metric. This value is required to match multiples of a
 minute.
To see all this in action, create the CloudFormation stack using the template just
 shown:
$ aws cloudformation create-stack --template-body file://scaling_metric.json \
 --stack-name autoscaled-metric
{
 "StackId": "arn:aws:cloudformation:us-east-1:740376006796:stack/autoscaled-metric/ba4f1030-ff36-11e7-8395-5044334e0ab3"
}
You can follow along in the AWS console as the resources defined
 in the template are being created (see Figure 11-3
 for an example).
Figure 11-3. Progress creating the resources of our stack as shown in the
 AWS
 console

After a minute, verify that the stack was successfully created with the following command:
$ aws cloudformation list-stacks --stack-status-filter CREATE_COMPLETE
{
 "StackSummaries": [
 {
 "StackId": "arn:aws:cloudformation:us-east-1:740376006796:stack/autoscaled-metric/ba4f1030-ff36-11e7-8395-5044334e0ab3",
 "StackName": "autoscaled-metric",
 "CreationTime": "2018-01-22T05:40:17.723Z",
 "StackStatus": "CREATE_COMPLETE",
 "TemplateDescription": "Auto Scaling on Custom Metrics"
 }
]
}
Listing a stack’s resources is accomplished through the describe-stack-resources CLI command. With a
 little magic and the --query option
 we can generate a format that will fit on the printed page:
$ aws cloudformation describe-stack-resources --stack-name autoscaled-metric \
--query 'StackResources[*].[StackName,ResourceType,LogicalResourceId]'\
--output text

autoscaled-metric AWS::AutoScaling::LaunchConfiguration CustomMetricLaunchConfig
autoscaled-metric AWS::AutoScaling::AutoScalingGroup CustomMetricScalingGroup
autoscaled-metric AWS::AutoScaling::ScalingPolicy ScaleDownPolicy
autoscaled-metric AWS::AutoScaling::ScalingPolicy ScaleUpPolicy
autoscaled-metric AWS::CloudWatch::Alarm WaitingTasksAlarm
The resources listed do not include the EC2 instances created by
 the stack’s auto scaling actions. To find the relevant instances we
 exploit the fact that any instances associated with the stack are
 automatically tagged with several metadata attributes, including its name, which is found in
 the aws:cloudformation:stack-name
 tag:
$ aws ec2 describe-tags --output text \
--filters Name=tag-key,Values="aws:cloudformation:stack-name" \
Name=tag-value,Values="autoscaled-metric"
TAGS	aws:cloudformation:stack-name	i-01d1f65898f90977b	instance	autoscaled-metric
TAGS	aws:cloudformation:stack-name	i-03cc8125c8e3c7c02	instance	autoscaled-metric
Because we previously set the value of the WaitingTasks metric to 20, a new instance will be launched if the
 data point arrived in the interval specified by Period—the last minute in the case of our
 metric (re-issue the put-metric-data
 command if a longer time has elapsed). The WaitingTasksAlarm alarm in the scaled metric
 will switch to the alarm state within a minute, with results similar to
 those shown in Figure 11-4.
Figure 11-4. Triggering of the Auto Scaling group’s alarm resource, as shown
 in the AWS
 console

Wait for the two instances to finish launching and then issue the following
 command:
aws cloudwatch put-metric-data --namespace "MyAppMetrics" --metric-name WaitingTasks --value 5 --unit Count
This makes CloudWatch think there are only five messages remaining
 in the queue, putting the WaitingTasksAlarm in OK status, which in turn will trigger the
 ScaleDownPolicy action. After a few
 moments, one of the instances in the scaling group will be terminated.
 The system will continue to adjust between the minimum and maximum sizes
 defined by the scaling group according to the custom metric’s sampling
 in the specified period and cooldown intervals.
If no data is available for the requested metric, Auto Scaling
 will, by default, take no action. This defines a third possible state
 for CloudWatch alarms alongside alarm
 and ok, called insufficient. This behavior can be controlled
 by adding an InsufficientDataActions
 parameter to the WaitingTasksAlarm
 resource. For more information on how to control this behavior, see the
 documentation for the AWS::CloudWatch::Alarm
 resource type.
In the real world, we would be periodically executing a command
 that checks the size of the waiting tasks queue and submits the value to
 CloudWatch, making this an entirely automated process. If you have
 experimented with the example we provided, you should now have a good
 understanding of what is involved in designing a custom metric and using
 it to control an Auto Scaling group. Attention is required to tune the
 availability of data, as well as what behavior is expected in those
 situations when the data source fails: the system needs to maintain its
 availability while avoiding failure modes that allocate a lot of costly
 resources when they are not actually required by the service.

Old Tools, New Tricks
Many common monitoring tools predate AWS significantly. Nagios, a popular open source
 monitoring tool, has been around since 1999, seven years before the
 introduction of EC2. One of the advantages of mature monitoring tools like
 Nagios is the ecosystem surrounding them, providing features such as
 graphing, reporting, and integration with third-party services. Using such
 tools, one can build a replacement for CloudWatch that leverages existing
 datacenter monitoring infrastructure, helping to consolidate the number of
 technology choices that are in use at any one time as your operations
 migrate to the public cloud.
Tip
The Nagios
 Exchange contains plug-ins that can be used to integrate Nagios
 and AWS. In addition to plug-ins that directly monitor the status of
 your EC2 instances, there are plug-ins that query CloudWatch and other
 AWS components, allowing you to monitor your AWS infrastructure in a
 variety of ways. Remember that any tools that pull data from CloudWatch
 will do so by querying the CloudWatch API. Pulling these metrics too
 frequently will result in a higher AWS bill.

As Robert Heinlein pointed out in The Moon Is a Harsh Mistress
 (G.P. Putnam’s Sons, 1966), there’s no such thing as a free lunch. The
 time taken to implement a custom monitoring solution is time taken away
 from building your core application infrastructure, so this undertaking
 should be carefully considered against off-the-shelf tools, or indeed
 simply using CloudWatch and learning to love its limitations.
At a high level, there are two main ways of dynamically configuring
 tools like Nagios within an AWS infrastructure.
The first is to use a configuration management tool such as Puppet. Puppet provides a feature known as
 exported
 resources, which allows the configuration of one node to influence
 the configuration of another node. For example, when Puppet runs on one of
 your web application instances, it can use the data collected on this node
 to dynamically configure your monitoring instances. If Puppet recognizes
 that Nginx is running on the web application node, the Nagios instance can
 be automatically configured to run Nginx-specific checks against the web
 application node, such as making sure HTTP requests to port 80 respond
 with an HTTP 200 status code.
This feature relies on PuppetDB,
 which means it will work only when Puppet is running in the traditional
 master/client mode.
Implementing this system requires two entries in your Puppet
 manifest files. The first is the declaration stage, where
 you declare the virtual resource type. This stanza is placed in the Puppet
 manifest for the host to be monitored. For example, to monitor Nginx as
 just described, the following virtual resource declaration can be
 used:
@@nagios_service { "check_http${hostname}":
 use => 'http-service',
 host_name => "$fqdn",
 check_command => 'check_http',
 service_description => "check_http${hostname}",
 target => '/etc/nagios/conf.d/dynamic_${fqdn}.cfg',
 notify => Service[$nagios::params::nagios_service],
}
Notice that the resource type (in this case,
 nagios_service) is prefixed with @@. This lets Puppet know that this is a
 virtual resource that will be realized on another node.
 Declaring this virtual resource will not cause any changes to be made on
 the monitored instance itself. Rather, it causes the relevant data to be
 stored in PuppetDB for later use by another node.
This declaration configures Nagios to perform a simple HTTP service
 check, using the check_http command. The target
 parameter writes this configuration to a file whose name contains the
 fully qualified domain name (FQDN) of the monitored instance. If your monitored instance has
 an FQDN of web01.example.com, this configuration
 segment would be written to a file named /etc/nagios/conf.d/dynamic_web01.example.com.cfg
 on the Nagios host. By default, Nagios will include all .cfg files contained within the /etc/nagios/conf.d directory when the
 configuration is read. The notify parameter causes Nagios to
 be restarted whenever this file changes, so that the new monitoring
 configuration is picked up automatically.
The second component is the collection stage, which affects the
 Nagios instance. The following line should be added to the node definition
 for the Nagios instance in your Puppet manifest file:
Nagios_service <<| |>>
When Puppet is run on the Nagios instance, any previously declared
 virtual resources describing Nagios resources will be realized on the
 Nagios instance. This is the point at which the /etc/nagios/conf.d/dynamic_web01.example.com.cfg
 file is created, and the Nagios service restarted.
Although support for Nagios is explicitly built into Puppet’s
 exported resources feature, there is nothing to stop Puppet from being
 used for other packages. In fact, it can be used to configure any service
 that relies on text-based configuration files, making it a flexible tool
 for dynamic configuration.
The alternative approach to achieving this goal is to use a custom
 script to query the AWS API and write Nagios configuration files based on
 the retrieved data. This is a good option if you do not have an existing
 Puppet master/client infrastructure in place. Implementing Puppet merely
 to take advantage of exported resources could be considered overkill,
 making the custom script route a more attractive option.
One potential downside of this system relates to instances that get
 terminated as part of expected Auto Scaling operations. Nagios must be
 informed that the instance no longer exists and shouldn’t be monitored. We
 recommend addressing this by using a separate configuration file in the
 Nagios configuration directory for each instance, hence the use of
 dynamic_${fqdn).cfg in the example.
Auto Scaling can be configured to send a notification to Amazon’s
 Simple Notification Service when instances are launched or terminated.
 Subscribing to these notifications makes it simple to delete all the
 Nagios configuration files for a particular host after it is terminated.
 After Nagios is restarted, the host will no longer be monitored, and will
 not cause any false alarms after Nagios notices that the instance is no
 longer accessible to its checks.
Cleverly scripted integration enables us to adapt a monitoring
 system designed for the immutability of the datacenter to the public
 cloud, but this exercise can stretch any traditional tool only so far.
 There is a minimum time granularity to Puppet runs, and Nagios restarts at
 any reasonable scale are not rapid events. There are inherent limitations
 to what a static monitoring tool like Nagios can accomplish when paired to
 a highly dynamic system like AWS. Looking at our example again, the
 practical limits of this system are defined by how often Puppet runs,
 combined with the time interval between Auto Scaling events. This kind of
 approach is most suitable as a temporary stopgap, extending existing
 infrastructure monitoring while a more permanent cloud native solution is
 investigated.
Other Custom Monitoring Options
The preceding section described how to use Nagios to monitor EC2
 instances. Of course, Nagios is only one of the wide range of tools that
 can be used for system monitoring, and we chose it because it enjoys a
 surprisingly high level of popularity among system administrators. This
 is due to the number of plug-ins available for Nagios, allowing almost
 any service or application to be monitored.
Many other highly regarded monitoring tools can be used to monitor
 your services. One example is Icinga, which is a fork of the open source version of Nagios. Icinga aims to
 provide compatibility with all existing Nagios plug-ins while making
 enhancements to the web interface and core software.
Another package in this space is Sensu.
 Sensu has features that make it an excellent choice for monitoring
 cloud-based infrastructure. Chief among these is the architecture of
 Sensu itself. Rather than operating in a client/server mode (as do
 Nagios and Icinga), it uses RabbitMQ, an AMQP-based messaging system. This makes it inherently more scalable
 than software that relies on a single central master server.
When a service is checked, the Sensu client writes the check
 result to a RabbitMQ queue, where it is read by the Sensu server
 process. Decoupling the submission of a check from the reading process
 in this way enables a much higher throughput than an architecture in
 which clients submit their check results directly to the master. Because
 RabbitMQ can operate in a highly available cluster, it is also more
 resilient to failure. As long as both the master and client processes
 know the address of the RabbitMQ server, check results can be submitted.
 If the master server is briefly unavailable, messages will wait in the
 queue until the master is available again.
When combined with Auto Scaling groups, this configuration of
 Sensu makes the entire monitoring system more reliable. Should the EC2
 instance running the master server be terminated due to failure, a new
 one can be brought into service, and it will begin processing all of the
 waiting check results automatically.

Note
The rise of Software-as-a-Service solutions did not turn a blind
 eye to the monitoring field. Vendors like Datadog and Loggly provide system monitoring
 and log management as a service for a monthly fee. SaaS creates
 a middle ground between using Amazon AWS services and the
 “build your own” approach. Whenever the services provided by AWS do not
 meet your needs, we advise that you research third-party service-based
 options before going all out and rolling your own: at the very least,
 you will learn how others have approached the problem—or possibly why
 they chose not to.

Chapter 12. Backups
If one relies solely on marketing materials provided by cloud hosts and resellers, one might be
 forgiven for thinking that the cloud is a magical place where nothing breaks
 and everything Just Works. Unfortunately, this is not the case. Cloud-based
 infrastructure requires just as much backup planning as a traditional
 self-hosted architecture—sometimes more, because of the dynamic nature of
 the cloud. Fortunately there is a silver lining: along with new challenges,
 the cloud provides new features to make backups simpler and reduce
 implementation time. For example, ticking a checkbox is figuratively all
 that it takes to set up scheduled backups for the RDS service, as shown in Figure 12-1.
Figure 12-1. Built-in cloud backup facility in the AWS Relational Database
 Service

Although business types can think of the cloud as a single logical entity, we
 must look beyond that high-level presentation to view our cloud as a series
 of datacenters spread across multiple regions, and plan our backups
 accordingly. To run a highly available service, you would not put all of
 your servers in a single datacenter. You should plan backups with the same
 consideration in mind.
Furthermore, it is also important to think about off-site backups. When working with AWS, this can mean one of
 two things: storing backups outside your primary region, or going a step
 further and storing them entirely outside AWS.
You are trying to protect yourself against two separate risks. If a
 single AWS region goes down, it would be relatively simple to deploy your
 operations to another region. For example, if you host your application in
 us-east-1 and store your backups in
 eu-west-1, you can redeploy your
 application to us-east-2, and restore
 servers from the backups in eu-west-1 to
 get your application up and running again.
However, if the AWS API is unavailable, it can become impossible to
 retrieve these backups, no matter which region they are hosted in, rendering
 them useless in protecting against this particular failure mode.
Backups are a means to an end, not an end in themselves. What we are
 trying to achieve is a way to restore operations in the event of failure, no
 matter the cause or severity of this failure. Unless your backups put you in
 a position where you can restore after failures, they are of no use
 whatsoever.
An untested backup procedure is useless. In fact, an untested backup
 procedure can be worse than no backups at all, as it provides a false sense
 of security. Perform regularly scheduled restore tests to make sure that
 your documented backup procedure works as planned.
This chapter presents some of the ways traditional tools and
 AWS-specific features can be used to implement reliable backup
 procedures.
RDS Database Snapshot
If you are using Amazon’s RDS service to host your database, you can
 use the RDS Database Snapshot feature. This process can be automated
 so that Amazon automatically backs up your database according to your
 specified schedule, or you can manually create backup snapshots before
 performing potentially destructive operations.
When you use RDS, automated snapshots are automatically enabled and will be carried out during the
 maintenance window specified when creating the database instance. The
 process of enabling and disabling automated backups is described in Amazon’s Working
 with Automated Backups documentation. You can find a more general
 explanation of how automated backups work in DB
 Instance Backups. The Related Topics section of the latter page
 provides more detail on working with automated backups.
If you rely on RDS snapshots, it is important to keep track of the
 most recent snapshot ID when backing up the other files required for
 your application to ensure that the database schema referenced in your
 code matches the data contained in the snapshot. This can be done by
 regularly querying the ID of the most recent snapshot and storing it in a
 text file alongside the other application files and making sure it is
 included in the backup. When restoring from backups, this file will let
 you know which corresponding DB snapshot should be restored.
Finally, even if you are using RDS, you might wish to follow the
 other steps in this chapter to regularly take a full dump of the database.
 This will ensure that you can restore the backup to a non-RDS database.
 RDS snapshots can be used only to restore to RDS databases, and do not
 provide any facility to make off-site backups.
At the time of writing, RDS supports MySQL, MariaDB, Oracle,
 Microsoft’s SQL Server, and PostgreSQL in addition to Amazon’s own
 Aurora—all of which can be generate cloud-automated backups. Later in this
 chapter, we will look at ways to manually back up databases that are not
 part of RDS.

Backing Up Static Files from EC2 Instances to S3
One of the earliest and most popular uses for EC2 has been to host web applications, such
 as WordPress blogs. This section describes how an EC2-hosted WordPress
 blog can be backed up, with the backup archive being stored on S3 (Figure 12-2).
 Although the steps taken will differ if you are using a different
 application—or indeed, your own custom application—the general steps will
 be the same.
Figure 12-2. Over the years, the AWS console has developed into a full
 graphical user interface to manipulate S3 storage

Dynamic websites usually consist of two major components that need
 to be backed up: the database in which content and configuration options
 are stored, and static files such as images and HTML files. Furthermore,
 these websites might allow users to upload their own files, such as
 profile images for blog authors. All of these components need to be backed
 up to ensure that the entire site can be restored in the event of an EC2
 instance failing.
If you are backing up a custom application, we will assume that the
 code that powers your application is stored in an external version control
 system such as GitHub. Therefore, backing up these files is outside the
 scope of this section. If, for whatever reason, you are not using version
 control for your application, you could back up the code files as part of
 the file-based backup archive—we also strongly encourage you to revisit
 your decision not to use version control: choosing to operate in an
 anti-pattern is OK, but you ought to justify to your satisfaction why
 you are doing so.
The first step in the backup process is to create a snapshot of your
 database contents.
For the sake of simplicity, we will assume the WordPress blog is
 configured to use a MySQL instance running on the same host as WordPress.
 If your database is hosted on a separate instance, you will need to modify
 some of the example commands to connect to the correct host in order to
 dump the contents of the database.
We will begin by creating a database dump file containing the SQL
 statements required to re-create your database. MySQL helps you do this
 with the conveniently named mysqldump command.
 For example, if your WordPress database is named my_blog, the following command can be used to
 dump its contents to a file located at /var/backups/my_blog/database.sql:
mysqldump my_blog > /var/backups/my_blog/database.sql
After the database dump has completed, you can move on to backing up
 the application files. Let’s assume they are stored in /srv/vhosts/my_blog. First, copy all the files
 into the backups directory with the following command:
rsync -av /srv/vhosts/my_blog/ /var/backups/my_blog/
This command will copy all files. The -a option indicates that rsync should run in archive mode, which, among
 other things, ensures that file permissions and ownerships are
 copied.
To reduce the amount of data stored in S3, you can create a
 compressed tar archive before transferring it to S3. This is done with the
 following:
DATE=`date -u +"%Y%m%d%H%M"`
BACKUP_FILE="/var/backups/my_blog_${DATE}.tgz"
tar zcvf ${BACKUP_FILE} /var/backups/my_blog/
The first time, you will need to set up transfer tooling and an S3
 bucket as the remote endpoint:
sudo apt install s3cmd python-magic
s3cmd --configure
s3cmd mb s3://my-blog-backups --acl-private
Finally, you can transfer the resulting file to S3 with the s3cmd command:
$ s3cmd put "${BACKUP_FILE}" s3://my-blog-backups/ --acl-private
/var/backups/my_blog_201802081922.tgz -> s3://my-blog-backups/my_blog_201802081922.tgz [1 of 1]
 8986351 of 8986351 100% in 0s 14.40 MB/s done
To keep the WordPress instance clean, delete the temporary files
 used during the backup:
rm -rf /var/backups/my_blog/*
This last step is optional. Leaving these files in place would not
 negatively affect the speed of subsequent backups, because rsync would need to transfer only the files that
 have changed since the last backup. When choosing to leave backup files in
 place in a temporary location the key factor to consider is security, as
 backup archives often straddle permission schemes and may contain
 passwords or other sensitive information. Theft of backup files is a
 common vector for data confidentiality loss; take care to secure both any
 temporary locations as well as the final S3 endpoint.
Put these commands together to make a script that can be easily used to automatically back up the
 database and files required to recover your blog in the event of a
 disaster.
Restoring the resulting archive is simply a case of extracting the
 files to the correct location and importing the SQL statements file into
 the database. For example:
cd /srv/vhosts/myblog
tar xcvf my_blog_201206011200.tar.gz
mysql my_blog < myblog/database.sql
rm myblog/database.sql
 Later in this section, we will look at
 ways to move this data out of S3 and into off-site storage for additional
 reliability.

Rolling Backups with S3 and Glacier
When keeping backups on S3, it is important to keep track of how much
 data you are storing. Each additional byte will gradually increase your
 monthly Amazon bill, so there is no point in storing data that you will
 never need to use. Your backup strategy should reflect this. In many ways,
 the traditional approaches used with tape backups are still applicable:
 one tape per day of the week, one tape for each of the last four weeks,
 and finally one tape for each month. A total of 23 tapes would allow you
 to restore from any day of the previous week, any week of the previous
 month, and any month of the previous year.
A similar approach can also be used in S3 to keep your data storage
 requirements to a minimum. In this section, we will look at how this can
 be implemented using S3’s Object LifeCycle Management and Object Archival features. This method relies on S3 for the
 last month’s worth of backups, and older daily backups are automatically
 transitioned to the Glacier archival service on the assumption that they
 will be required less frequently than daily or monthly backups.
Launched in 2012, Glacier is AWS’s storage service for data backup and archival. Targeted at
 unfrequently accessed data, Glacier is best thought of as the least
 available AWS storage
 class. In the S3 service, storage classes enable operators to
 balance cost with the resiliency and availability of data. Data stored in
 Glacier needs to be asynchronously retrieved from the archive before it is
 made available, and is stored at the lowest prices offered by AWS (a
 rock-bottom $0.004 per GB/month at the time of writing).
Let’s assume that you are using one of the methods described in this
 chapter to store your backups in S3. We will configure S3 to automatically
 transition backup objects to Glacier after they reach a certain age and
 remove them from S3. This will keep your S3 backups bucket clean and
 ensure that you do not gradually build up a huge Amazon bill for storing
 unnecessary files.
For this example, we will assume that your daily backup archives are
 prefixed with backups/daily/ in your S3 bucket—for
 example, backups/daily/201802081601.tar.gz.
The rules that govern when S3 objects are transitioned to Glacier
 are stored as a lifecycle subresource on your S3
 bucket. A lifecycle configuration can contain up to 1,000 rules
 controlling when your files—or subsets thereof—are transitioned to
 Glacier. Lifecycle configurations can be created and modified using the
 AWS API, or via the AWS Management Console. In this example, we will use
 the Management Console to create our lifecycle configuration.
Begin by finding your
 S3 bucket in the AWS Management Console. Select the Management tab; then navigate
 to the lifecycle wizard shown in Figure 12-3 by clicking the button to add a
 lifecycle rule.
Figure 12-3. Adding a lifecycle rule in the Console

The first screen lets us name the rule and choose which objects the
 action that we are about to define will be applied to. In the Prefix box,
 enter backups/daily/, as we want this particular rule
 to apply only to the daily backup archives. Name the rule “Daily Backups”
 and click Next to proceed to the next screen shown in Figure 12-4. This screen lets us choose what action
 will be performed on the objects. A great feature of the Simple Storage
 Service is the ability to maintain a versioned history of all objects that
 were ever stored in a bucket—as our backup bucket is not versioned, the
 Current Version checkbox is all that we need to select for this rule
 definition. Click the “+ Add transition” link to see the options available
 to the rule we are creating.
Figure 12-4. Configuring the transition rule

Our desired rule consists of two actions: transitioning our backups
 to Glacier once a month has elapsed, and removing those objects altogether
 two months after their creation. Because this is such a common pattern,
 Amazon allows us to configure both of these actions at once, as you will
 see on the next screen.
Enter 31 in the Archive to the
 Glacier Storage Class input box, then click Next once again. Enter
 62 in the expiration input box as shown
 in Figure 12-5. It is generally considered a
 best practice to allow AWS to perform the available cleanup options on the
 bucket, so that we avoid having to eventually carry this task out manually. In
 this case, the incomplete multipart uploads cleanup
 is certainly applicable.
Figure 12-5. Configure Rule

Lifecycle rules can be set only in daily increments, so we set
 archiving to 31 to ensure that we do not transition objects too early in
 months with fewer than 31 days. The reader should define a similar policy
 for the monthly backup path—the authors recommend keeping monthly backups
 as long as possible if cost is the only concern: unlike the dailies, a
 decade will need to pass for their number to significantly accumulate.
 Publicly traded companies may be subject to a number of data-retention
 policies limiting not only the minimum but also, and somewhat unexpectedly
 from a pure IT perspective, the maximum time data should be retained. If
 such policies apply to you, they should guide your definition of the
 expiration rule for the monthly backup path.
Click Next to confirm the options you have selected on a final
 review screen. Finally, click Save to create and activate the rules. Your
 AWS Glacier vault also needs to be initialized, which is trivially easy to
 do and only requires selecting a few notification preferences as of the
 time of this writing. You will be prompted with a guided wizard during
 your first visit and only need to follow the steps presented by Glacier’s management
 console.
You can now store your daily backups in S3, and all objects will be
 moved to Glacier after they are older than 31 days. We do recommend you
 make liberal use of the Glacier storage class to limit the cost of storing
 rarely used objects like backups. When choosing the time window for moving
 data to Glacier, consider that objects archived in Glacier must be
 restored to S3 before they can be accessed.
The speed (and cost) of Glacier retrieval operations depends on the
 service class specified by the restore request: expedited requests will make the data available in under 5 minutes, whereas bulk requests could take up to 12 hours. Restore requests generate a
 temporary copy of the object that is automatically expunged from S3 after
 the number of days specified in the request itself. A side effect of this
 operationally convenient model is that for a few days, storage charges
 will apply to both the Glacier and S3 copies of the object.

PostgreSQL and Other Databases
Amazon offers hosted and managed PostgreSQL databases via its RDS service. For a long time,
 RDS supported only MySQL databases, so it was common for PostgreSQL users
 to run their own PostgreSQL instances on EC2 instances. This also meant
 that users were responsible for providing their own backup procedures
 instead of relying on the backup features provided by RDS. For this
 reason, this section goes into some detail about the manual process of
 backing up databases that are hosted on EC2 instances, as opposed to
 running on RDS. While this section uses PostgreSQL-specific commands, the
 general principles are applicable to most database engines including
 those, like MongoDB, that AWS RDS does not yet support.
Backing up dynamic databases is not as simple as copying the
 database files to a remote location. First, PostgreSQL must be informed
 that a database backup is about to execute. If you forget this step, the
 database files could be copied while they are effectively in an unusable
 state, making restoration procedures either very time-consuming or in some
 cases impossible. PostgreSQL must be informed that a database backup is
 about to be executed so that it can flush any in-memory data to disk and
 ensure that the files on disk are in a state that will allow them to be
 used to restore data.
There are two main methods of backing up a PostgreSQL database
 running on EC2: pg_dump and snapshots.
 The latter is more complicated, but better for large databases.
pg_dump
pg_dump and its companion
 commands are distributed with PostgreSQL. pg_dump dumps all the data from the specified
 database, without interfering with reads and writes. Any changes made to
 the database after you start pg_dump
 will not appear in the dump, but the dump will be consistent. Data can
 be dumped in a variety of formats, which can be restored with the pg_restore command.
 The default option is to create a file containing SQL statements, but it
 is also possible to dump data in a PostgreSQL-specific format or create
 a tar archive of the data.
This method is especially suited for smaller databases (less than
 5 GB) because the resulting dump file can be transferred directly to S3.
 For example, to dump the my_db
 database and store it in an S3 bucket named my-db-backups, you could use the following
 script:
#!/bin/bash -e

DB_NAME="my_db"
BUCKET_NAME="my-db-backups"
DATE=`date -u +"%Y%m%d%H%M"`
BACKUP_DIR="/var/backups"
BACKUP_FILE="${BACKUP_DIR}/${DB_NAME}_${DATE}.tar"
mkdir -p $BACKUP_DIR

Dump the database as a tar archive
pg_dump ${DB_NAME} --file="${BACKUP_FILE}" --format=tar

Copy the tar file to S3
s3cmd put "${BACKUP_FILE}" s3://${BUCKET_NAME}

Delete the local tar file
rm ${BACKUP_FILE}
This script first dumps the data from PostgreSQL using the
 pg_dump command. Once the backup file
 has been created, it is copied to an S3 bucket. Finally, the local copy
 of the tar file is deleted to ensure that you do not gradually use up
 all the space available on the device on which /var is mounted or inadvertently leak data
 meant to be secured in a known location. Bash’s -e option is used to ensure that the script
 fails immediately if any of the commands in the script fail.
To restore a database backed up using this script, simply copy the
 backup file from the S3 bucket onto the new PostgreSQL instance and use
 the pg_restore command to load the
 data into the new database. For example:
pg_restore --dbname=my_db /path/to/backup/file.tar
As your database grows, the time taken to run the pg_dump and pg_restore commands will increase, making this
 option less attractive. If you want to make backups once per hour, this
 process will become useless as soon as it takes longer than 60 minutes
 to complete, as you will never be able to complete a backup before a new
 one is started.

Snapshots and Continuous Archiving
Another option for backing up EC2-hosted PostgreSQL databases is to use the snapshotting
 capabilities of EBS volumes. This is slightly more complex, but provides
 a much quicker way of backing up larger databases. This method does not
 produce a single file that can be used with the pg_restore command. Instead, it uses
 PostgreSQL’s base
 backup feature to produce one or more EBS snapshots that can be used to
 provision new EBS volumes containing your backed-up data.
This method relies on PostgreSQL’s continuous archiving features.
 Configuring this is beyond the scope of this book. Refer to the
 PostgreSQL documentation on Continuous
 Archiving for information on how to configure and test this
 feature.
In a nutshell, continuous archiving will periodically store your
 data in an external location so that it can be used for a restore later.
 This is done by archiving the write-ahead log (WAL) files,
 which essentially play back all operations performed on your database.
 This allows you to restore the database to a time of your choosing
 (point-in-time recovery). However, playing back all the WAL files can
 take some time. To reduce restoration time, create a base
 backup that is used as a starting point for recovery. This
 allows you to restore a smaller number of WAL files in external storage
 and play back only WAL files that were created after a particular base
 backup was taken.
Tip
WAL-E is a
 program designed to help create and manage PostgreSQL WAL files
 and create base backups. Although it is still worth learning and
 understanding how the underlying concepts of WAL and base backups
 work, WAL-E can make the day-to-day usage of continuous archiving a
 lot simpler and more reliable.

For performance reasons, it is recommended that you put
 PostgreSQL’s data directory on its own EBS volume. The data directory
 location will vary depending on the version of PostgreSQL and the
 operating system in use. For example, a PostgreSQL 9.4 instance on
 Ubuntu will be stored in /var/lib/postgresql/9.3/main. Attaching an
 additional EBS volume to your instance and mounting the data directory
 on this volume will improve performance, because PostgreSQL will not be
 contending with the operating system for disk I/O operations.
A bit of generally applicable advice: EBS is AWS’s recommended
 storage option to run a database on Amazon EC2, with provisioned IOPS
 volumes offering a performant storage option to even the largest
 databases. It often makes sense to provision even a smaller database
 instance with a dedicated EBS volume for DBMS storage to guard against
 load growth over time.
Tip
PostgreSQL’s tablespace feature allows you to store each table
 in a separate on-disk location. This feature makes it possible to
 store each table on a different EBS volume, further improving performance. In conjunction with EBS
 Provisioned IOPS, which provide a higher level of performance than
 vanilla EBS volumes, this can dramatically improve the performance of
 disk-bound workloads.

Backing up
This section, and the following, assume that you have at least two EBS volumes
 attached to your PostgreSQL EC2 instance. The first volume is used to
 mount the root of the filesystem (the /
 directory). The second volume is used solely for PostgreSQL’s data
 directory and is mounted at /var/lib/postgresql/9.3/main. For example
 purposes, the data EBS volume will be created with the device name
 /dev/sda2, a typical name for a
 local Linux storage device defined by the SCSI interface. We will
 further assume that you have installed PostgreSQL and created a
 database for testing purposes according to PostgreSQL’s
 documentation.
Begin by connecting to the PostgreSQL instance as the superuser
 by running the psql command.
 Depending on how you configured your database, you might need to
 provide the superuser password at this point. Once connected to the
 database, issue the pg_start_backup
 command:
SELECT pg_start_backup('test_backup');
This command will create a backup label
 file in the data directory containing information about the backup,
 such as the start time and label string. It is important to retain
 this file with the backed-up files, because it is used during the
 restore process. It will also inform PostgreSQL that a backup is about
 to be performed so that a new checkpoint can be created and any
 pending data can be written to disk. This can take some time,
 depending on the configuration of the database.
Once the command completes, take a snapshot of the EBS volume on
 which the PostgreSQL database is stored.
Note
The filesystem type you are using might require a slightly
 different approach at this stage. This example assumes you are using
 XFS, which requires that the filesystem be frozen before a snapshot
 is made. This ensures that any attempts to modify files on this
 filesystem will be blocked until the snapshot is completed, ensuring
 the integrity of the files.

First, freeze the filesystem with the xfs_freeze
 command:
xfs_freeze -f /var/lib/postgresql/9.3/main
Once the filesystem has been frozen, it is safe to take a
 snapshot using the EBS snapshotting tools. This can be done from the
 AWS Management Console or from the command-line tools. Because the
 final goal is to use this process as part of an automated backup
 script on the database host itself, we will use the command-line
 approach.
There are a multitude of ways to find the ID of the instance
 running our database, including of course the AWS console and CLI, as
 well as our favorite approach of using tags to identify an instance’s
 logical function. One more way to accomplish this is to interrogate
 the EC2 metadata from the instance itself, something very suitable for
 scripting in that it requires no EC2 management privileges to
 access:
Find out the ID of the instance on which this command is executed
EC2_INSTANCE_ID=$(ec2metadata --instance-id)
The device name is used to filter the list of volumes attached to the instance
DEVICE="/dev/sda2"
Finding out the ID of the EBS volume on which the data is stored
 requires EC2 API access. This is another use case for IAM roles as
 described in “IAM Roles”: to maintain the
 highest security, you should not need to place AWS credentials on the
 instance. The following IAM policy grants the required access
 level:
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "1",
 "Effect": "Allow",
 "Action": [
 "ec2:CreateSnapshot",
 "ec2:DescribeVolumes",
 "ec2:DescribeInstances"
],
 "Resource": [
 "*"
]
 }
]
}
Find the ID of the EBS volume on which PostgreSQL data is stored
VOLUME_ID=$(aws ec2 describe-instance-attribute \
--instance-id i-0e369cdca165b562a --attribute blockDeviceMapping \
--query "BlockDeviceMappings[?DeviceName==\`$DEVICE\`].{Id:Ebs.VolumeId}" --output text)
Now we have everything we need to trigger the snapshot:
$ aws ec2 create-snapshot --volume-id ${VOLUME_ID}
{
 "Description": "",
 "Encrypted": false,
 "VolumeId": "vol-037501dc81d584227",
 "State": "pending",
 "VolumeSize": 8,
 "Progress": "",
 "StartTime": "2018-02-11T19:59:44.000Z",
 "SnapshotId": "snap-0daafbeb9409cb652",
 "OwnerId": "740376006796"
}
These commands will query the EC2 API to find out the ID of the
 EBS volume containing the PostgreSQL data before using the aws ec2 create-snapshot command to create a
 snapshot of this volume. Note the ID of the new snapshot printed as
 part of the output from ec2-create-snapshot.
Although the snapshot has not yet been fully created, it is safe
 to begin using the volume again. AWS will create a snapshot of the
 volume in the state it was in when the ec2-create-snapshot command was executed,
 even if data is subsequently changed.
As soon as the snapshotting command finishes, the XFS volume
 should be unfrozen:
xfs_freeze -u /var/lib/postgresql/9.3/main
Finally, you can inform PostgreSQL that the backup has been
 completed and that it should resume normal operations:
SELECT pg_stop_backup();
Note that the backup is not entirely complete until the WAL
 archives identified by the pg_stop_backup
 command have been archived (by way of the archive_command configuration directive in
 postgresql.conf).
Tip
Eric Hammond of Alestic fame has authored a tool to create consistent snapshots of
 databases, with dedicated support for MongoDB and MySQL in
 particular. Even when not using a database instance outside of RDS,
 Eric’s work on ec2-consistent-snapshot is
 valuable for its support of drives spanning multiple volumes.

Restoring
Restoring from a backup created with this method is much simpler, but more
 time-consuming. Whether your original PostgreSQL instance has suffered
 from some kind of catastrophic failure or you are restoring the data
 to a new machine (perhaps for development or testing purposes), the
 procedure is essentially the same.
First, you will need to launch a new instance using the same EBS
 configuration. That is, the new instance should use the same EBS
 volume layout as the original instance. There is one difference,
 however: the data volume (/dev/sda2) should use the most recent
 snapshot created using the method described in the previous section.
 When the instance is launched, the snapshot will be used to create the
 sda2 device, ensuring that the
 PostgreSQL data is already in place when the instance is
 launched.
The preferred approach when manually attaching a volume to a new
 instance is to create a volume from the appropriate backup snapshot,
 making sure it is located in the same availability zone you launched
 the new database instance in:
$ aws ec2 create-volume --availability-zone us-east-1b --snapshot-id snap-0daafbeb9409cb652 --output text
us-east-1b	2018-02-11T22:51:32.830Z	False	8	snap-0daafbeb9409cb652	creating	vol-06394e3cae23070b9	standard
$ aws ec2 attach-volume --volume-id vol-06394e3cae23070b9 --instance-id i-0e369cdca165b562a --device "/dev/sda2" --output text
2018-02-11T23:36:20.018Z	/dev/sda2	i-0e369cdca165b562a	attaching	vol-06394e3cae23070b9
A more direct approach can be taken when launching the new
 instance by using a block device mapping to add the volume at boot
 time. The following mappings.json
 file creates a new volume from the previous snapshot, and presents it
 to the system as /dev/sda2:
[
 {
 "DeviceName": "/dev/sda2",
 "Ebs": {
 "DeleteOnTermination": false,
 "SnapshotId": "snap-0daafbeb9409cb652"
 }
 }
]
In this approach, building a new server from our block device
 mapping only requires the system AMI and the data volume
 snapshot:
$ aws ec2 run-instances --image-id ami-43a15f3e --region us-east-1 --key federico --security-groups ssh --instance-type t2.micro --block-device-mappings file://mappings.json --output text
740376006796	r-0741b6189faec54c5
INSTANCES	0	x86_64		False	xen	ami-43a15f3e	i-06a4d321e51347397	t2.micro	federico	2018-02-11T23:52:45.000Z	ip-172-31-51-195.ec2.internal	172.31.51.195		/dev/sda1	ebs	True		subnet-2a45b400	hvm	vpc-934935f7
MONITORING	disabled
NETWORKINTERFACES		12:81:c8:7e:b0:4e	eni-2a546ae7	740376006796	ip-172-31-51-195.ec2.internal	172.31.51.195	True	in-use	subnet-2a45b400	vpc-934935f7
ATTACHMENT	2018-02-11T23:52:45.000Z	eni-attach-9d232850	True	0	attaching
GROUPS	sg-4ebd8b36	ssh
PRIVATEIPADDRESSES	True	ip-172-31-51-195.ec2.internal	172.31.51.195
PLACEMENT	us-east-1a		default
SECURITYGROUPS	sg-4ebd8b36	ssh
STATE	0	pending
STATEREASON	pending	pending
Once the instance is ready, you can log in and start PostgreSQL
 with this command:
/etc/init.d/postgresql-9.3 start
PostgreSQL must be configured using the same configuration files
 used for the original instance. The continuous archiving configuration
 directives will let PostgreSQL know how to restore the archived WAL
 files. This is controlled through the restore_command configuration
 directive.
During the startup process, PostgreSQL will recognize that the
 files in the data directory were created as part of a base backup and
 will automatically restore the required WAL files by executing the
 restore command. This can take some time depending on how much data
 was changed since the base backup was taken, and how quickly the
 archived WAL files can be restored from remote storage.
PostgreSQL will begin accepting connections as soon as it has
 finished restoring the WAL files and the database is up-to-date. At
 this point, the state of the data should match the state it was in
 just before the original database was terminated. If the original
 database was uncleanly terminated (for example, the actual EC2
 instance was terminated), some data might be missing if PostgreSQL did
 not have time to archive the final WAL file(s).
As mentioned, this approach is a tad more complex than simply
 dumping a file full of SQL statements representing your data. However,
 it does provide a lot more flexibility in restoring your data, and is
 the only valid option after your database grows to the point where
 dumping SQL statements is no longer viable.

Off-Site Backups
As we explained earlier, you may want to move some backups outside of the AWS ecosystem
 altogether for those rare times when AWS goes down and even
 the region’s AWS API endpoint becomes unavailable. You can use another
 cloud storage provider to host your off-site backups, or provision a new
 server entirely outside AWS to act as a backup host. Planning should be
 explicitly mindful of the difference between disaster recovery, defined
 here as possession of your business-critical data in a total datacenter
 loss, and service restoration. If your business requires services to be
 restored in a matter of hours, a strategy to provision alternative compute
 services and modify DNS records needs to be put in place along with off-site
 data backup—the most common approach in this case is to set up operations
 in multiple AWS regions independently.
Assuming that your data has been backed up to S3 using one of the
 other methods described in this chapter, you can use tools such as s3cmd or s3funnel to regularly pull this data from S3 and
 store it on another server.
Warning
Backups without a reliable and regularly tested restore procedure
 can be worse than useless, providing nothing but a false sense of
 security. End-to-end testing of your restore procedures needs to be a
 regularly scheduled occurrence. As the saying goes, if you haven’t
 tested restore, you do not have a backup.

A final consideration we want to offer is a reminder to focus on
 protecting configuration, in the form of automation that can be used to
 rapidly rebuild lost infrastructure, and to avoid diluting the
 cloud-native approach by protecting the servers themselves with backups.
 Backups are properly reserved to protecting the stateful data set of your
 application, which should be structured to permit data-only backups and
 rapid re-attach of that data to infrastructure rebuilt from
 scratch through automation.

Index
Symbols
	@@ prefix, Old Tools, New Tricks

A
	A DNS record, Surviving ELB and Application Outages with Route 53
	access credentials	about, Preparing Your Tools, Launching with Command-Line Tools
	auditing, Auditing and rotating access keys-Auditing and rotating access keys, Trusted Advisor
	generating, IAM Policies
	passing as arguments, Launching from Your Own Programs and Scripts
	tracking usage, IAM Policies

	access key IDs	about, Preparing Your Tools, Launching with Command-Line Tools
	generating, IAM Policies
	passing as arguments, Launching from Your Own Programs and Scripts

	access management (see IAM)
	accounts	activating, Getting Started
	auditing usage, Auditing and rotating access keys-Auditing and rotating access keys, Trusted Advisor
	CloudTrail service, Account Security Checklist, Identity and Access Management, CloudTrail-CloudTrail
	creating, Getting Started-Getting Started, IAM Users and Groups
	on-demand instance limits for, Introducing CloudFormation
	OwnerID attribute, Deregistering AMIs
	resetting to original state, Managing Your Costs
	security strategy for, Account Security Checklist, Limitations of IAM policies
	service limits for, CloudTrail

	actions	defined, IAM Policies
	Simple Storage Service, Referencing resources in IAM policies

	activate script (Python), Installing the AWS Command Line Interface
	administration tasks, automating, Which Method Should I Use?-Which Method Should I Use?
	Advanced Message Queuing Protocol (AMQP), Background Task Processing
	Advanced Vector Extensions instruction set, Processing Power
	AES encryption, Processing Power
	AKIDs (key IDs), Auditing and rotating access keys
	Akismet spam-checking service, Installing Celery with Simple Queuing Service
	Alarms feature (CloudWatch), Launching with Command-Line Tools, Scaling on CloudWatch Metrics-Scaling on CloudWatch Metrics, ELB Health Checks, CloudWatch Basics
	Albitz, Paul, Elastic Load Balancing
	Alestic blog, Legacy AWS Command-Line Tools-Legacy AWS Command-Line Tools, Key pairs
	ALIAS resource record type, Why Use Route 53?
	Allow permission, Referencing resources in IAM policies
	ALLOWED_HOSTS setting (Django), Creating an RDS Database
	Amazon Machine Images (see AMIs)
	Amazon Resource Names (see ARNs)
	Amazon Web Services (see AWS)
	AMI Locator tool, Launching with Command-Line Tools, Launching with Command-Line Tools
	AMI-based deployments	about, Deployment Strategies, AMI-Based Deployments
	CloudFormation and, Deploying AMIs with CloudFormation
	EC2 and, Deploying AMIs with the EC2 API

	AMIs (Amazon Machine Images)	about, What Is an Instance?, Launching a new instance of an AMI, Amazon Machine Images-Amazon Machine Images
	building, Building Your Own AMI-Building Your Own AMI, Building the AMIs-Building the AMIs
	building with Packer, Building AMIs with Packer-Building AMIs with Packer
	default user, Key pairs-Key pairs
	deployments based on, Deployment Strategies, AMI-Based Deployments-Deploying AMIs with the EC2 API
	deregistering, Deregistering AMIs-Deregistering AMIs
	finding using command-line tools, Launching with Command-Line Tools
	HVM virtualization, Processing Power, Launching with Command-Line Tools
	launching instances of, Launching a new instance of an AMI-Launching a new instance of an AMI, Launching from Your Own Programs and Scripts
	role-based, Role-Based AMIs-Patterns for Configuration Management Tools
	tagging strategy, Building Your Own AMI, IAM Policies

	AMQP (Advanced Message Queuing Protocol), Background Task Processing
	Ansible, Choosing a Configuration Management Package
	Apache Zookeeper, Dynamically keying on instance attributes
	API (application programming interface), Preparing Your Tools, CloudTrail, Using IAM Roles from Other AWS Accounts
	API Activity view, CloudTrail
	ApproximateNumberOfMessagesVisible SQS metric, Auto Scaling and Custom Metrics
	archiving, continuous, Snapshots and Continuous Archiving-Restoring
	ARNs (Amazon Resource Names)	about, Amazon Resource Names
	IAM policies and, Referencing resources in IAM policies-Referencing resources in IAM policies
	IAM roles and, IAM Roles-IAM Roles
	permission syntax, IAM Roles

	auditing access credentials, Auditing and rotating access keys-Auditing and rotating access keys, Trusted Advisor
	authentication	Boto library and, Launching from Your Own Programs and Scripts
	IAM users and groups, Preparing Your Tools, Identity and Access Management
	legacy tools handling, Legacy AWS Command-Line Tools
	multi-factor, Multi-Factor Authentication

	authorization, Identity and Access Management
	Auto Discovery feature, Creating an ElastiCache Node
	Auto Scaling feature	about, A Quick Introduction to Puppet, Auto Scaling and Elastic Load Balancing-Auto Scaling and Elastic Load Balancing, Mastering Scale
	CloudWatch and, Auto Scaling and Elastic Load Balancing, Scaling on CloudWatch Metrics-Scaling on CloudWatch Metrics, CloudWatch, Auto Scaling and Custom Metrics-Auto Scaling and Custom Metrics
	ELBs and, Elastic Load Balancer and Auto Scaling Groups
	notifications of activities, Notifications of Scaling Activities-Notifications of Scaling Activities
	scaling policies, Scaling Policies-Scaling on CloudWatch Metrics
	static groups, Static Auto Scaling Groups-Static Auto Scaling Groups

	Auto Scaling groups, Auto Scaling and Elastic Load Balancing-Static Auto Scaling Groups
	automated backups, Backups
	automated snapshot, Backups
	automating administration tasks, Which Method Should I Use?-Which Method Should I Use?
	autosigning feature, A Quick Introduction to Puppet
	availability zones (AZs), What Is an Instance?, Static Auto Scaling Groups
	available state (AMI), Building Your Own AMI
	AWS (Amazon Web Services)	getting started, Getting Started-Getting Started
	legacy tools, Legacy AWS Command-Line Tools-Legacy AWS Command-Line Tools
	managing costs, Managing Your Costs
	preparing tools, Preparing Your Tools-Installing the AWS Command Line Interface
	service logs, AWS Service Logs-AWS Service Logs

	aws autoscaling describe-launch-configurations
 command, Deregistering AMIs
	AWS CLI (AWS Command Line Interface)	about, Preparing Your Tools
	HVM virtualization, Processing Power
	installing, Installing the AWS Command Line Interface-Installing the AWS Command Line Interface
	verifying version, Installing the AWS Command Line Interface

	aws cloudformation create-stack command, Installing the AWS Command Line Interface, Creating the Stack, Using IAM in CloudFormation Stacks, Virtual Private Networks and Security Groups, Virtual Private Networks and Security Groups, A Quick Introduction to Puppet, Puppet and CloudFormation, Puppet and CloudFormation, Creating the Stack with CloudFormation, Auto Scaling and Custom Metrics
	aws cloudformation delete-stack command, Deleting the Stack
	aws cloudformation describe-stack-events command, Creating the Stack, Updating the Stack, Deleting the Stack, Creating the Stack with CloudFormation
	aws cloudformation describe-stack-resources
 command, Creating the Stack, Auto Scaling and Custom Metrics
	aws cloudformation describe-stacks command, Virtual Private Networks and Security Groups, Virtual Private Networks and Security Groups, A Quick Introduction to Puppet, Puppet and CloudFormation, Creating the Stack with CloudFormation
	aws cloudformation get-template command, Looking Before You Leap
	aws cloudformation list-stacks command, Auto Scaling and Custom Metrics
	aws cloudformation update-stack command, Updating the Stack-Updating the Stack
	aws cloudformation validate-template command, Creating the Stack
	aws cloudtrail create-trail command, CloudTrail
	aws cloudwatch put-metric-data command, Auto Scaling and Custom Metrics, Auto Scaling and Custom Metrics
	AWS Command Line Interface (see AWS CLI)
	aws configure command, Installing the AWS Command Line Interface
	aws ec2 authorize-security-group-ingress command, Building Your Own AMI, Security Groups
	aws ec2 create-image command, Building Your Own AMI
	aws ec2 create-security-group command, Building Your Own AMI
	aws ec2 create-snapshot command, Backing up
	aws ec2 create-tags command, Building Your Own AMI, Central Logging
	aws ec2 deregister-image command, Deregistering AMIs
	aws ec2 describe-images command, Launching with Command-Line Tools, Building Your Own AMI, Deregistering AMIs
	aws ec2 describe-instance-status command, Launching with Command-Line Tools
	aws ec2 describe-instances command, Legacy AWS Command-Line Tools, Querying information about the instance, Launching with Command-Line Tools, Amazon Machine Images-Deregistering AMIs
	aws ec2 describe-regions command, Legacy AWS Command-Line Tools
	aws ec2 describe-security-groups command, Building Your Own AMI
	aws ec2 describe-snapshots command, Deregistering AMIs
	aws ec2 describe-tags command, Updating the Stack, Auto Scaling and Custom Metrics
	aws ec2 modify-instance-attribute command, Amazon Machine Images
	aws ec2 run-instances command, Installing the AWS Command Line Interface, Launching with Command-Line Tools, Amazon Machine Images-Building Your Own AMI, IAM Roles
	aws ec2 start-instances command, Amazon Machine Images
	aws ec2 stop-instances command, Amazon Machine Images
	aws ec2 terminate-instance command, Launching with Command-Line Tools
	aws help command, Installing the AWS Command Line Interface
	aws iam add-role-to-instance-profile command, IAM Roles
	aws iam add-user-to-group command, Organizing users and groups with paths
	aws iam create-access-key command, IAM Policies
	aws iam create-group command, Organizing users and groups with paths
	aws iam create-instance-profile command, IAM Roles
	aws iam create-role command, IAM Roles
	aws iam create-user command, IAM Policies, Organizing users and groups with paths
	aws iam delete-access-key command, Auditing and rotating access keys
	aws iam get-user-policy command, IAM Policies
	aws iam list-access-keys command, Auditing and rotating access keys
	aws iam list-groups command, Organizing users and groups with paths
	aws iam list-users command, Organizing users and groups with paths
	aws iam put-group-policy command, Organizing users and groups with paths
	aws iam put-role-policy command, IAM Roles
	aws iam put-user-policy command, IAM Policies, Referencing resources in IAM policies
	aws iam update-access-key command, Auditing and rotating access keys
	aws iam update-account-password-policy command, Password policy
	aws route53 list-hosted-zones command, Parsing JSON Output with jq
	aws s3 cp command, IAM Roles
	aws s3 ls command, IAM Roles, IAM Roles
	aws s3 mb command, CloudTrail, IAM Roles
	aws s3 sync command, Installing the AWS Command Line Interface
	aws s3api put-bucket-policy command, CloudTrail
	aws support describe-trusted-advisor-check-result
 command, Trusted Advisor
	aws support describe-trusted-advisor-checks
 command, Trusted Advisor
	aws support refresh-trusted-advisor-check
 command, Trusted Advisor
	aws-security-viz tool, Security Groups
	AWS::CloudFormation::Init attribute, Puppet and CloudFormation
	AWS::CloudFormation::Stack type, Modular CloudFormation Stacks
	AWS::EC2::IngressRule type, Protecting Instances with SSH Whitelists
	AWS::EC2::SecurityGroup type, Protecting Instances with SSH Whitelists
	AWS::EC2::SecurityGroupIngress type, Modular CloudFormation Stacks
	aws:cloudformation namespace, Updating the Stack
	AWS_ACCESS_KEY environment variable, Launching with Command-Line Tools
	AWS_ACCESS_KEY_ID environment variable, Launching from Your Own Programs and Scripts, Deregistering AMIs, IAM Policies, IAM Policies, Building AMIs with Packer
	AWS_SECRET_ACCESS_KEY environment variable, Launching from Your Own Programs and Scripts, Deregistering AMIs, IAM Policies, IAM Policies, Building AMIs with Packer
	AWS_SECRET_KEY environment variable, Launching with Command-Line Tools
	AZs (availability zones), What Is an Instance?, Static Auto Scaling Groups

B
	background task processing, Background Task Processing
	backups	about, Backups, Backing up-Backing up
	automated, Backups
	backing up static files to S3, Backing Up Static Files from EC2 Instances to S3-Backing Up Static Files from EC2 Instances to S3
	continuous archiving and, Snapshots and Continuous Archiving-Restoring
	off-site, Backups, Off-Site Backups
	pg_dump command and, pg_dump
	PostgreSQL and, PostgreSQL and Other Databases-Restoring
	RDS Database Snapshot feature, Backups
	restoring from, Restoring-Restoring
	rolling, Rolling Backups with S3 and Glacier-Rolling Backups with S3 and Glacier

	Bahumi, Omri, Dynamically keying on instance attributes
	Baker, Bill, Pets versus Cattle
	Barr, Jeff, Processing Power, Trusted Advisor
	base backup feature (PostgreSQL), Snapshots and Continuous Archiving
	bastion hosts, Virtual Private Networks and Security Groups
	Beaumont, Kevin, Creating and configuring a Logstash server
	Bias, Randy, Pets versus Cattle
	billing alarms, Launching with Command-Line Tools
	Billing and Cost Management Dashboard, Managing Your Costs
	Block Device Mapping facility, Storage
	Boto library (Python), Launching from Your Own Programs and Scripts-Launching from Your Own Programs and Scripts, IAM Policies, IAM Roles, Scaling on CloudWatch Metrics
	broken pipe error messages, Logging to S3
	builders (Packer), Building AMIs with Packer
	bulk requests (Glacier), Rolling Backups with S3 and Glacier
	burstable performance instances, Processing Power
	Buytaert, Kris, DNS with Route 53

C
	C3 instance type, Processing Power
	C4 instance type, Processing Power
	caching	databases and, Database and Caching
	DNS, Failure Is an Option: Service Failover with Route 53
	ElastiCache and, Creating an ElastiCache Node-ElastiCache: Updating Puppet and CloudFormation

	capacity planning, Auto Scaling and Elastic Load Balancing
	Capistrano package (Ruby), Which Method Should I Use?
	celery package, Installing Celery with Simple Queuing Service
	Celery task queue application	Auto Scaling groups and, Static Auto Scaling Groups-Static Auto Scaling Groups
	Django and, Background Task Processing
	scaling policies and, Scaling on CloudWatch Metrics
	SQS and, Background Task Processing, Installing Celery with Simple Queuing Service-Installing Celery with Simple Queuing Service

	CelerySQSAlarmHigh resource, Scaling on CloudWatch Metrics
	CelerySQSAlarmLow resource, Scaling on CloudWatch Metrics
	central logging	about, Central Logging-Central Logging
	logging to S3, Logging to S3-Logging to S3
	Logstash configuration, Logstash Configuration-Configuring the Logstash clients

	.cfg file extension, Old Tools, New Tricks
	cfn-hup helper daemon, User Data and Tags
	cfn-init package, Puppet and CloudFormation, Puppet and CloudFormation, Mapping Instances to Roles
	Chaos Monkey tool, Managing Outages
	Chef, OpsWorks-Choosing a Configuration Management Package
	CIDR notation, Security Groups
	cloud	about, Setting Up AWS Tools, Backups
	managing infrastructures, Why Use Configuration Management?

	Cloud-init package, Storage, Mapping Instances to Roles, Central Logging
	CloudFormation	about, Introducing CloudFormation-Introducing CloudFormation
	administration tasks, Which Method Should I Use?
	Auto Scaling groups in, Static Auto Scaling Groups-Static Auto Scaling Groups
	Celery updating, Celery: Updating Puppet and CloudFormation-Celery: Updating Puppet and CloudFormation
	changing stack templates, Looking Before You Leap
	creating stacks, Introducing CloudFormation-Creating the Stack, Creating the Stack with CloudFormation, Auto Scaling and Custom Metrics
	deleting stacks, Deleting the Stack
	deploying AMIs with, Deploying AMIs with CloudFormation
	ElastiCache updating, ElastiCache: Updating Puppet and CloudFormation-ElastiCache: Updating Puppet and CloudFormation
	IAM policies and stacks, Using IAM in CloudFormation Stacks-Using IAM in CloudFormation Stacks
	modular stacks, Modular CloudFormation Stacks-Modular CloudFormation Stacks
	preparing for web applications, CloudFormation Files-CloudFormation Files
	Puppet and, A Quick Introduction to Puppet-A Quick Introduction to Puppet, Puppet and CloudFormation-Puppet and CloudFormation
	RDS updating, RDS: Updating Puppet and CloudFormation-RDS: Updating Puppet and CloudFormation
	SSH whitelists and, Protecting Instances with SSH Whitelists-Protecting Instances with SSH Whitelists
	tags and, User Data and Tags
	updating stacks, Updating the Stack-Updating the Stack

	CloudFormation Designer UI, Static Auto Scaling Groups
	CloudFront service, AWS Service Logs
	CloudTrail service, Account Security Checklist, Identity and Access Management, CloudTrail-CloudTrail
	CloudWatch Dashboard, CloudWatch Basics
	CloudWatch service	about, Monitoring-CloudWatch Basics
	Alarms feature, Launching with Command-Line Tools, Scaling on CloudWatch Metrics-Scaling on CloudWatch Metrics, ELB Health Checks, CloudWatch Basics
	Auto Scaling and, Auto Scaling and Elastic Load Balancing, Scaling on CloudWatch Metrics-Scaling on CloudWatch Metrics, CloudWatch, Auto Scaling and Custom Metrics-Auto Scaling and Custom Metrics
	custom metrics and, Scaling on CloudWatch Metrics-Scaling on CloudWatch Metrics, CloudWatch, CloudWatch Basics-Auto Scaling and Custom Metrics
	events and, CloudWatch Basics

	CMSs (content management systems), Overview of Application Components
	CNAME DNS record, Virtual Private Networks and Security Groups, Creating an ElastiCache Node, Elastic Load Balancing, Why Use Route 53?, Failure Is an Option: Service Failover with Route 53, Surviving ELB and Application Outages with Route 53
	command completion facility, Installing the AWS Command Line Interface
	command-line tools	creating RDS database, Creating an RDS Database
	launching instances with, Launching with Command-Line Tools-Launching with Command-Line Tools
	legacy tools, Legacy AWS Command-Line Tools-Legacy AWS Command-Line Tools

	compute units, Processing Power
	conditions, IAM policies and, Dynamic policies-Dynamic policies
	configuration management, Choosing a Configuration Management Package	(see also Puppet)
	about, Why Use Configuration Management?-Why Use Configuration Management?
	building AMIs with Packer, Building AMIs with Packer-Building AMIs with Packer
	choosing packages, Choosing a Configuration Management Package-Choosing a Configuration Management Package
	exported resources and, Old Tools, New Tricks
	OpsWorks service, OpsWorks
	patterns for tools, Patterns for Configuration Management Tools-Patterns for Configuration Management Tools
	reusability of configuration definitions, The Importance of Being Reusable
	security breaches and, Creating and configuring a Logstash server
	service discovery, Dynamically keying on instance attributes
	user data and, Launching a new instance of an AMI

	connect_to_region() function, IAM Policies
	Consul (HashiCorp), Dynamically keying on instance attributes
	content management systems (CMSs), Overview of Application Components
	continuous archiving, Snapshots and Continuous Archiving-Restoring
	Conway's Law, Limitations of IAM policies
	Cost Allocation Reports feature, Launching a new instance of an AMI, Modular CloudFormation Stacks
	CPU credits, Processing Power
	CPU metrics, Processing Power
	createdb command, Installing the Web Application
	Credential Report, Auditing and rotating access keys
	credentials files, Preparing Your Tools
	cross-account API access feature, Using IAM Roles from Other AWS Accounts
	curl command, IAM Roles, AWS Service Logs

D
	D2 instance type, Processing Power, Storage
	Daleks tool, Managing Your Costs
	db module (Puppet), Patterns for Configuration Management Tools
	DB stack (CloudFormation), Modular CloudFormation Stacks
	DDoS (distributed denial-of-service) attacks, Auto Scaling and Elastic Load Balancing
	deactivate script (Python), Installing the AWS Command Line Interface
	Dedicated Hosts facility, Processing Power
	default deny (IAM policy), Referencing resources in IAM policies
	default hostnames, overriding, Central Logging
	default user (AMI), Key pairs-Key pairs
	default VPC, Networking
	defense in depth strategy, Identity and Access Management, Protecting Instances with SSH Whitelists-Protecting Instances with SSH Whitelists
	delete_image() function, IAM Policies
	DELETE_IN_PROGRESS state (stack), Deleting the Stack
	delete_snapshot() function, Deregistering AMIs, IAM Policies
	DeletionPolicy attribute, Deleting the Stack
	denial of service attacks, CloudTrail
	Deny permission, Referencing resources in IAM policies
	deployment friction, Takeaways
	deployments	AMI-based, Deployment Strategies, AMI-Based Deployments-Deploying AMIs with the EC2 API
	instance-based, Deployment Strategies-Updating Instances at Launch Time

	diff command, Looking Before You Leap
	disk_setup module (Cloud-init), Storage
	distributed denial-of-service (DDoS) attacks, Auto Scaling and Elastic Load Balancing
	Django framework	about, Installing the Web Application
	ALLOWED_HOSTS setting, Creating an RDS Database
	Celery and, Background Task Processing
	Mezzanine CMS and, The Web Application
	Signals feature, Installing Celery with Simple Queuing Service, Installing Celery with Simple Queuing Service
	STATIC_ROOT setting, RDS: Updating Puppet and CloudFormation
	STATIC_URL setting, RDS: Updating Puppet and CloudFormation

	django-celery package, Installing Celery with Simple Queuing Service
	DNS caching, Failure Is an Option: Service Failover with Route 53
	DNS system	additional information, Elastic Load Balancing
	Route 53 service and, DNS with Route 53-Takeaways
	split-view, Networking

	DNS zone, Failure Is an Option: Service Failover with Route 53
	documentation	Management Console and, Launching with Command-Line Tools
	performing updates, Which Method Should I Use?

	Dowling, Michael, Celery: Updating Puppet and CloudFormation
	Dunn, Craig, Patterns for Configuration Management Tools
	dynamic scaling, Scaling Policies

E
	EBS (Elastic Block Store), Storage-Storage, Managing Outages, Snapshots and Continuous Archiving
	EBS-backed AMI, Amazon Machine Images
	EC2 (Elastic Compute Cloud)	about, First Steps with EC2 and CloudFormation-First Steps with EC2 and CloudFormation, Auto Scaling and Elastic Load Balancing
	AMIs and, What Is an Instance?, Amazon Machine Images-Deregistering AMIs, Deploying AMIs with the EC2 API
	backing up static files from, Backing Up Static Files from EC2 Instances to S3-Backing Up Static Files from EC2 Instances to S3
	instances and, What Is an Instance?-Networking
	launching instances, Launching Instances-Launching from Your Own Programs and Scripts
	log files and, Central Logging
	permission syntax, IAM Policies
	RunInstances method, Launching from Your Own Programs and Scripts
	security model for, The AWS Security Model-The AWS Security Model

	EC2 Compute Unit, Processing Power
	EC2-classic networking model, Networking, Security Groups
	EC2-VPC networking model, Networking, Security Groups
	ec2metadata tool, Querying information about the instance, IAM Roles, User Data and Tags, Creating and configuring a Logstash server
	EC2_REGION environment variable, Legacy AWS Command-Line Tools
	Elastic Beanstalk, OpsWorks, AWS Service Logs
	Elastic Block Store (EBS), Storage-Storage, Managing Outages, Snapshots and Continuous Archiving
	Elastic Compute Cloud (see EC2)
	Elastic Load Balancers (ELBs)	about, Elastic Load Balancing
	Auto Scaling groups and, Elastic Load Balancer and Auto Scaling Groups
	Health Check feature, Elastic Load Balancing-ELB Health Checks, Surviving ELB and Application Outages with Route 53, CloudWatch
	surviving outages with Route 53, Surviving ELB and Application Outages with Route 53-Surviving ELB and Application Outages with Route 53

	Elastic Load Balancing, Elastic Load Balancing
	ElastiCache service, Database and Caching, Creating an ElastiCache Node
	Elasticsearch search server, Central Logging, Creating and configuring a Logstash server
	ELBs (Elastic Load Balancers)	about, Elastic Load Balancing
	Auto Scaling groups and, Elastic Load Balancer and Auto Scaling Groups
	Health Check feature, Elastic Load Balancing-ELB Health Checks, Surviving ELB and Application Outages with Route 53, CloudWatch
	surviving outages with Route 53, Surviving ELB and Application Outages with Route 53-Surviving ELB and Application Outages with Route 53

	ELK stack, Central Logging, Configuring the Logstash clients
	environment tag, Launching a new instance of an AMI, Deregistering AMIs
	environment variables, setting up, Installing the AWS Command Line Interface, Legacy AWS Command-Line Tools-Legacy AWS Command-Line Tools
	ephemeral storage, Storage-Storage
	error messages	broken pipe, Logging to S3
	creating, Surviving ELB and Application Outages with Route 53

	events (CloudWatch), CloudWatch Basics
	Evron, Shahar, Scaling on CloudWatch Metrics
	Exec resource type (Puppet), Puppet Files
	expedited requests (Glacier), Rolling Backups with S3 and Glacier
	explicit deny (IAM policy), Referencing resources in IAM policies
	exported resources feature (Puppet), Old Tools, New Tricks

F
	Fabric package (Python)	about, Which Method Should I Use?, Executing Code on Running Instances with Fabric
	executing code on running instances, Executing Code on Running Instances with Fabric-Dynamically keying on instance attributes
	executing tasks with, Executing Tasks with Fabric-Executing Tasks with Fabric

	Facter tool, User Data and Tags, Patterns for Configuration Management Tools
	Faerman, Julio, Managing Your Costs
	failover, Route 53 and, Failure Is an Option: Service Failover with Route 53-Surviving ELB and Application Outages with Route 53
	Fn::GetAtt function, RDS: Updating Puppet and CloudFormation, ElastiCache: Updating Puppet and CloudFormation
	Fn::Join function, Using IAM in CloudFormation Stacks-Using IAM in CloudFormation Stacks, Puppet and CloudFormation
	FQDN (fully qualified domain name), Old Tools, New Tricks
	Free Tier offering (accounts), Getting Started
	Friedman, Nat, Building Your Own AMI
	fully qualified domain name (FQDN), Old Tools, New Tricks

G
	G2 instance type, Processing Power
	Garnaat, Mitch, Launching from Your Own Programs and Scripts
	get_all_images() function, Deregistering AMIs, IAM Policies
	get_all_instances() method, Launching from Your Own Programs and Scripts
	Git revision control system, Celery: Updating Puppet and CloudFormation
	Git version control system, Puppet Files-Puppet Files
	git-secrets utility, Celery: Updating Puppet and CloudFormation
	Glacier service, Rolling Backups with S3 and Glacier-Rolling Backups with S3 and Glacier
	Google Authenticator application, Multi-Factor Authentication
	Graylog2 log viewer, Central Logging
	groups (see IAM users and groups)

H
	Hammond, Eric, Key pairs, IAM Users and Groups, Backing up
	HashiCorp Consul, Dynamically keying on instance attributes
	head command, Looking Before You Leap
	Health Check feature (ELB), Elastic Load Balancing-ELB Health Checks, Surviving ELB and Application Outages with Route 53, CloudWatch
	Heinlein, Robert, Old Tools, New Tricks
	$HOSTNAME variable, Patterns for Configuration Management Tools
	hostnames, overriding default, Central Logging
	HVM virtualization, Processing Power, Launching with Command-Line Tools

I
	I2 instance type, Processing Power, Storage
	IAM (Identity and Access Management)	about, Preparing Your Tools, Identity and Access Management
	Amazon Resource Names, Amazon Resource Names, Referencing resources in IAM policies-Referencing resources in IAM policies, IAM Roles-IAM Roles
	CloudFormation stacks and, Using IAM in CloudFormation Stacks-Using IAM in CloudFormation Stacks
	IAM policies, IAM Policies-Limitations of IAM policies, IAM Roles, Using IAM in CloudFormation Stacks-Using IAM in CloudFormation Stacks
	IAM roles, Launching a new instance of an AMI, IAM Roles-Using IAM Roles from Other AWS Accounts
	IAM users and groups, Preparing Your Tools, Account Security Checklist-Amazon Resource Names, IAM Users and Groups-Trusted Advisor, Static Auto Scaling Groups-Static Auto Scaling Groups, Elastic Load Balancer and Auto Scaling Groups

	IAM policies	about, IAM Policies-IAM Policies
	CloudFormation stacks and, Using IAM in CloudFormation Stacks-Using IAM in CloudFormation Stacks
	creating, Referencing resources in IAM policies
	dynamic, Dynamic policies-Dynamic policies
	IAM roles and, IAM Roles
	limitations of, Limitations of IAM policies
	referencing resources, Referencing resources in IAM policies-Referencing resources in IAM policies
	validating, IAM Policies
	wildcards in, Organizing users and groups with paths

	IAM Policy Simulator, IAM Policies
	IAM roles	about, IAM Roles-Using IAM Roles from Other AWS Accounts
	IAM policies and, IAM Roles
	instances and, Launching a new instance of an AMI
	privilege escalation, IAM Roles
	security best practices, Account Security Checklist
	using from other AWS accounts, Using IAM Roles from Other AWS Accounts

	IAM users and groups	about, IAM Users and Groups
	auditing and rotating access keys, Auditing and rotating access keys-Auditing and rotating access keys
	authentication and, Preparing Your Tools, Identity and Access Management
	Auto Scaling and, Static Auto Scaling Groups-Static Auto Scaling Groups, Elastic Load Balancer and Auto Scaling Groups
	CloudTrail service, Account Security Checklist, Identity and Access Management, CloudTrail-CloudTrail
	creating separate accounts for, IAM Users and Groups
	organizing with paths, Organizing users and groups with paths-Organizing users and groups with paths
	password policy, Account Security Checklist, Password policy
	security best practices, Account Security Checklist
	Trusted Advisor support, Trusted Advisor-Trusted Advisor

	iam:PassRole permission, IAM Roles
	Icinga package, Old Tools, New Tricks
	id CPU metric, Processing Power
	Identity and Access Management (see IAM)
	identity validation (accounts), Getting Started
	Immutable Server design pattern, Application Immutability
	Immutable Server pattern, Mapping Instances to Roles, Creating and configuring a Logstash server
	init-mezzanine-db command, Puppet Files
	init-mezzanine-project command, Puppet Files
	instance storage, Storage-Storage
	instance store−backed AMI, Amazon Machine Images
	instance types, Instance Types-Processing Power, Launching a new instance of an AMI
	instance-based deployments	about, Deployment Strategies-Instance-Based Deployments
	executing code with Fabric, Executing Code on Running Instances with Fabric-Dynamically keying on instance attributes
	updating instances at launch time, Updating Instances at Launch Time

	instances	about, First Steps with EC2 and CloudFormation-What Is an Instance?
	backing up static files to S3, Backing Up Static Files from EC2 Instances to S3-Backing Up Static Files from EC2 Instances to S3
	deployments based on, Deployment Strategies-Updating Instances at Launch Time
	displaying metadata for, IAM Roles
	downloading metadata, Querying information about the instance
	dynamically keying on attributes, Dynamically keying on instance attributes
	finding dynamically, Dynamically finding instances
	grouping through roles, Grouping instances through roles-Grouping instances through roles
	IAM roles and, Launching a new instance of an AMI
	images of, What Is an Instance?
	instance types, Instance Types-Processing Power
	IP addresses and, Networking
	key pairs and, Key pairs-Key pairs
	launching from Management Console, Launching from the Management Console-Terminating the instance
	launching from programs and scripts, Launching from Your Own Programs and Scripts-Launching from Your Own Programs and Scripts
	launching with command-line tools, Launching with Command-Line Tools-Launching with Command-Line Tools
	mapping to roles, Mapping Instances to Roles-Mapping Instances to Roles
	networking and, Networking-Networking
	processing power, Processing Power-Processing Power
	protecting with SSH whitelists, Protecting Instances with SSH Whitelists-Protecting Instances with SSH Whitelists
	purchase options, Processing Power
	querying information about, Querying information about the instance
	storage options, Storage-Storage
	terminating, Storage, Terminating the instance, Launching with Command-Line Tools, Building Your Own AMI, Scaling on CloudWatch Metrics, ELB Health Checks
	upgrading hardware, Amazon Machine Images
	user data, Launching a new instance of an AMI
	waiting for, Waiting for the instance

	INSTANCE_LAUNCH_ERROR notification type, Notifications of Scaling Activities
	ip addr show command, Networking
	IP addresses, instances and, Networking

J
	JavaScript Object Notation (see JSON)
	JAVA_HOME environment variable, Legacy AWS Command-Line Tools
	jitter, EBS and, Storage
	jq tool, Parsing JSON Output with jq-Parsing JSON Output with jq, Auditing and rotating access keys, Virtual Private Networks and Security Groups
	JSON (JavaScript Object Notation)	CloudFormation and, Introducing CloudFormation
	creating stacks, Creating the Stack-Creating the Stack
	jq tool and, Parsing JSON Output with jq-Parsing JSON Output with jq
	JSONview Chrome extension, CloudTrail
	metric data and, Auto Scaling and Custom Metrics
	user data and, RDS: Updating Puppet and CloudFormation

	JSONview Chrome extension, CloudTrail

K
	Kanies, Luke, A Quick Introduction to Puppet
	key IDs (AKIDs), Auditing and rotating access keys
	key pairs	about, Preparing Your Tools, Launching with Command-Line Tools
	instances and, Key pairs-Key pairs
	SSH, Key pairs-Key pairs, Launching with Command-Line Tools, Launching from Your Own Programs and Scripts, IAM Roles
	tags as, Mapping Instances to Roles

	key rotation, Auditing and rotating access keys-Password policy, IAM Roles
	Kibana log viewer, Central Logging, Creating and configuring a Logstash server
	Kirkland, Dustin, Creating the Stack with CloudFormation

L
	latency, EBS and, Storage
	Latency-Based Routing feature, Why Use Route 53?
	Launch Cluster Wizard, Creating an ElastiCache Node
	launch configuration, Static Auto Scaling Groups
	Launch Instance Wizard, Launching from the Management Console-Terminating the instance, IAM Roles, Virtual Private Networks and Security Groups, Patterns for Configuration Management Tools
	launch-wizard-1 security group, Launching a new instance of an AMI, Security Groups
	LDAP (Lightweight Directory Access Protocol), Organizing users and groups with paths
	life cycle management (S3), S3 Lifecycle Management, Rolling Backups with S3 and Glacier
	Lifecycle Rules Wizard, Rolling Backups with S3 and Glacier
	Lightweight Directory Access Protocol (LDAP), Organizing users and groups with paths
	Limoncelli, Thomas A., Which Method Should I Use?
	Liu, Cricket, Elastic Load Balancing
	load balancers, Elastic Load Balancing-Elastic Load Balancer and Auto Scaling Groups
	load balancing, Elastic Load Balancing
	loadjson() function, Patterns for Configuration Management Tools
	log management	about, Log Management
	AWS service logs, AWS Service Logs-AWS Service Logs
	central logging, Central Logging-Logging to S3
	logging to S3, Logging to S3-Logging to S3
	Logstash configuration, Logstash Configuration-Configuring the Logstash clients
	S3 life cycle management, S3 Lifecycle Management

	log receivers, Central Logging
	log shippers, Central Logging
	log viewers, Central Logging
	logger command, Configuring the Logstash clients
	Logstash tool	about, Central Logging
	configuring, Logstash Configuration
	configuring clients, Configuring the Logstash clients
	creating and configuring servers, Creating and configuring a Logstash server-Creating and configuring a Logstash server

M
	M3 instance type, Processing Power
	M4 instance type, Processing Power, Storage
	magnetic disks, EBS and, Storage
	Management Console	about, Preparing Your Tools, First Steps with EC2 and CloudFormation
	adding lifecycle rule, Rolling Backups with S3 and Glacier
	administration tasks, Which Method Should I Use?
	Chef and, OpsWorks
	creating policies, Referencing resources in IAM policies
	creating RDS database, Creating an RDS Database
	inspecting access credentials, Launching with Command-Line Tools
	launching instances from, Launching from the Management Console-Terminating the instance
	managing ELBs from, Elastic Load Balancing
	mobile app interface, Terminating the instance
	permissions and, IAM Policies
	stack template and, Creating the Stack
	termination protection, Launching a new instance of an AMI

	manifests (Puppet), A Quick Introduction to Puppet-A Quick Introduction to Puppet, Old Tools, New Tricks
	mapping instances to roles, Mapping Instances to Roles-Mapping Instances to Roles
	masters (Puppet), A Quick Introduction to Puppet-A Quick Introduction to Puppet
	Memcache software, Database and Caching, Creating an ElastiCache Node-Creating an ElastiCache Node
	memory management	monitoring RAM utilization in EC2 instances, Scaling on CloudWatch Metrics
	processing power and, Processing Power

	MemUsage metric, Scaling on CloudWatch Metrics
	message brokers, Background Task Processing
	metadata	accessing attributes, Querying information about the instance
	configuration data, Puppet and CloudFormation
	displaying for instances, IAM Roles
	downloading for instances, Querying information about the instance

	Metadata attribute, Puppet and CloudFormation
	metrics	CloudWatch-supported, Scaling on CloudWatch Metrics-Scaling on CloudWatch Metrics, CloudWatch, CloudWatch Basics-Auto Scaling and Custom Metrics
	CPU shares, Processing Power

	Mezzanine CMS, The Web Application, Installing the Web Application, Creating an RDS Database, RDS: Updating Puppet and CloudFormation
	MFA (multi-factor authentication), Multi-Factor Authentication
	Micro instance class, Launching a new instance of an AMI
	mobile app interface, Terminating the instance
	Mode 1 IT, Pets versus Cattle
	Mode 2 IT, Pets versus Cattle, Managing Outages
	modular CloudFormation stacks, Modular CloudFormation Stacks-Modular CloudFormation Stacks
	modules (Puppet), Choosing a Configuration Management Package, A Quick Introduction to Puppet
	monitoring	about, Monitoring-Why Are You Monitoring?
	CloudWatch support, Scaling on CloudWatch Metrics-Scaling on CloudWatch Metrics, CloudWatch-Auto Scaling and Custom Metrics
	Nagios support, Old Tools, New Tricks-Old Tools, New Tricks
	RAM utilization in EC2 instances, Scaling on CloudWatch Metrics

	Morris, Kief, The Importance of Being Reusable
	Moser, Scott, Mapping Instances to Roles
	mounts module (Cloud-init), Storage
	multi-factor authentication (MFA), Multi-Factor Authentication
	Munroe, Randall, Which Method Should I Use?, CloudTrail, Choosing a Configuration Management Package
	mysqldump command, Backing Up Static Files from EC2 Instances to S3

N
	Nagios tool, Old Tools, New Tricks-Old Tools, New Tricks
	native at-rest encryption, Storage
	Nayak, Anay, Security Groups
	netcat command, Creating and configuring a Logstash server
	netstat command, Creating and configuring a Logstash server
	networking	about, Networking-Networking
	security groups and, Security Groups

	Nginx service, Building Your Own AMI-Building Your Own AMI, Installing the Web Application
	node definitions (Puppet), A Quick Introduction to Puppet-A Quick Introduction to Puppet
	noisy neighbor effect, Processing Power
	notifications of scaling activities, Notifications of Scaling Activities-Notifications of Scaling Activities
	NotResource keyword, Referencing resources in IAM policies
	Nunnikhoven, Mark, Security Groups

O
	Object Archival feature (S3), Rolling Backups with S3 and Glacier
	off-site backups, Backups, Off-Site Backups
	OpenVPN, Virtual Private Networks and Security Groups-Virtual Private Networks and Security Groups
	OpsWorks service, OpsWorks
	outages, managing, Managing Outages-Managing Outages
	--output option, aws
 command, Installing the AWS Command Line Interface
	OwnerID (accounts), Deregistering AMIs

P
	package management	about, Updating Instances at Launch Time
	package upgrades and service restarts, Role-Based AMIs

	Packer tool, Building AMIs with Packer-Building AMIs with Packer, Building the AMIs-Building the AMIs
	parameterization, reusability and, The Importance of Being Reusable
	paravirtualized virtualization, Processing Power, Launching with Command-Line Tools
	parent stack (CloudFormation), Modular CloudFormation Stacks
	parsejson() function, User Data and Tags, RDS: Updating Puppet and CloudFormation
	password policy, Account Security Checklist, Password policy
	PATH environment variable, Installing the AWS Command Line Interface, Legacy AWS Command-Line Tools
	paths	organizing users and groups with, Organizing users and groups with paths-Organizing users and groups with paths
	validating path location, Installing the AWS Command Line Interface

	patterns for configuration management tools, Application Immutability, Patterns for Configuration Management Tools-Patterns for Configuration Management Tools
	.pem file extension, Key pairs
	pending state (AMI), Building Your Own AMI
	pending state (instance), Waiting for the instance, Launching with Command-Line Tools, Launching from Your Own Programs and Scripts
	permissions	about, IAM Policies
	ARN syntax, IAM Roles
	conflicting, Referencing resources in IAM policies
	EC2 syntax, IAM Policies
	evaluating, Referencing resources in IAM policies
	Management Console and, IAM Policies
	resources and, IAM Policies, Limitations of IAM policies
	Simple Storage Service and, Referencing resources in IAM policies-Referencing resources in IAM policies

	Pets versus Cattle metaphor, Pets versus Cattle, Webscale Thinking
	pg_dump command, pg_dump
	pg_restore command, pg_dump
	pg_start_backup command, Backing up
	pg_stop_backup command, Backing up
	phone verification (accounts), Getting Started
	ping command, Launching with Command-Line Tools
	pip tool, Installing the AWS Command Line Interface, Launching from Your Own Programs and Scripts, Installing the Web Application
	playbooks (Ansible), Choosing a Configuration Management Package
	PostgreSQL	AMIs and, Role-Based AMIs
	backups and, PostgreSQL and Other Databases-Restoring
	master/slave scenario, Failure Is an Option: Service Failover with Route 53-Failure Is an Option: Service Failover with Route 53
	ramping up traffic and, Ramping Up Traffic
	security and, Security Groups

	private hostnames, Networking
	private IP addresses, Networking
	private keys, Key pairs
	privilege escalation, IAM roles and, IAM Roles
	programs, launching instances from, Launching from Your Own Programs and Scripts-Launching from Your Own Programs and Scripts
	prospectors, Configuring the Logstash clients
	provisioners (Packer), Building AMIs with Packer
	psql command, Backing up
	public hostnames, Networking
	public IP addresses, Networking
	Puppet	$HOSTNAME variable
 and, Patterns for Configuration Management Tools
	about, A Quick Introduction to Puppet-A Quick Introduction to Puppet
	Celery updating, Celery: Updating Puppet and CloudFormation-Celery: Updating Puppet and CloudFormation
	CloudFormation and, A Quick Introduction to Puppet-A Quick Introduction to Puppet, Puppet and CloudFormation-Puppet and CloudFormation
	ElastiCache updating, ElastiCache: Updating Puppet and CloudFormation-ElastiCache: Updating Puppet and CloudFormation
	executing tasks with Fabric, Executing Tasks with Fabric-Executing Tasks with Fabric
	exported resources feature, Old Tools, New Tricks
	installing, User Data and Tags
	Logstash support, Logstash Configuration
	master-less, Masterless Puppet-Masterless Puppet
	preparing for web applications, Puppet Files-Puppet Files
	provisioning runtime and modules, Puppet Files
	RDS updating, RDS: Updating Puppet and CloudFormation-RDS: Updating Puppet and CloudFormation
	tags and, User Data and Tags-User Data and Tags
	user data and, User Data and Tags-User Data and Tags

	puppet command, A Quick Introduction to Puppet, Puppet Files
	Puppet Forge site, Choosing a Configuration Management Package, Puppet Files
	puppet-lint tool, A Quick Introduction to Puppet
	puppet-server package, Puppet and CloudFormation
	PuTTY terminal program, Key pairs
	PyPl package management system, Installing the Web Application
	Python environments, creating isolated, Installing the AWS Command Line Interface
	python-memcached library, Creating an ElastiCache Node

Q
	--query option, aws
 command, Parsing JSON Output with jq, Deregistering AMIs, Auto Scaling and Custom Metrics
	querying	information about instances, Querying information about the instance
	snapshot ID, Backups
	tags, Mapping Instances to Roles

	queuing (see SQS)

R
	R3 instance type, Processing Power, Storage
	RabbitMQ message broker, Background Task Processing, Old Tools, New Tricks
	RDS (Relational Database Service), Deleting the Stack, Database and Caching, Creating an RDS Database-RDS: Updating Puppet and CloudFormation, Backups
	RDS Database Snapshot feature, Backups
	recipes (Chef), Choosing a Configuration Management Package
	Ref function, Using IAM in CloudFormation Stacks-Using IAM in CloudFormation Stacks
	--region option, aws command, Legacy AWS Command-Line Tools
	regions (AWS), What Is an Instance?
	regular expressions, A Quick Introduction to Puppet
	Relational Database Service (RDS), Deleting the Stack, Database and Caching, Creating an RDS Database-RDS: Updating Puppet and CloudFormation, Backups
	Repmgr tool, Failure Is an Option: Service Failover with Route 53
	requirements file, Updating Instances at Launch Time
	Resource attribute, Referencing resources in IAM policies-Referencing resources in IAM policies
	resources	permissions and, IAM Policies, Limitations of IAM policies
	service limits, CloudTrail
	Trusted Advisor support, Trusted Advisor-Trusted Advisor
	virtual, Old Tools, New Tricks

	restoring from backups, Restoring-Restoring
	Retain deletion policy, Deleting the Stack
	reusability	mapping instances to roles, Mapping Instances to Roles-Mapping Instances to Roles
	modular CloudFormation stacks, Modular CloudFormation Stacks-Modular CloudFormation Stacks
	parameterization and, The Importance of Being Reusable
	patterns for configuration management tools, Patterns for Configuration Management Tools-Patterns for Configuration Management Tools
	role-based AMIs and, Role-Based AMIs-Patterns for Configuration Management Tools

	revision control systems, Celery: Updating Puppet and CloudFormation
	RFC 3164, Central Logging
	RFC 6238, Multi-Factor Authentication
	Rhett, Jo, A Quick Introduction to Puppet
	role tag, Launching a new instance of an AMI
	role-based AMIs	about, Role-Based AMIs-Role-Based AMIs
	mapping instances to roles, Mapping Instances to Roles-Mapping Instances to Roles
	patterns for configuration management tools, Patterns for Configuration Management Tools-Patterns for Configuration Management Tools

	roles (IAM) (see IAM roles)
	roles feature (Fabric), Executing Tasks with Fabric, Grouping instances through roles-Grouping instances through roles
	rolling backups, Rolling Backups with S3 and Glacier-Rolling Backups with S3 and Glacier
	root credentials, security best practices, Preparing Your Tools, Account Security Checklist, IAM Users and Groups
	rootkey.csv credentials file, Preparing Your Tools
	Route 53 service	about, DNS with Route 53-Why Use Route 53?
	application outages and, Surviving ELB and Application Outages with Route 53-Surviving ELB and Application Outages with Route 53
	ELB outages and, Surviving ELB and Application Outages with Route 53-Surviving ELB and Application Outages with Route 53
	handling failover, Failure Is an Option: Service Failover with Route 53-Surviving ELB and Application Outages with Route 53
	ramping up traffic, Ramping Up Traffic
	setting up DNS records, Creating and configuring a Logstash server

	rsync command, Backing Up Static Files from EC2 Instances to S3
	RunInstances method (EC2 API), Launching from Your Own Programs and Scripts
	running state (instance), Waiting for the instance, Launching with Command-Line Tools, Launching from Your Own Programs and Scripts
	run_instances() function, Launching from Your Own Programs and Scripts

S
	S3 (Simple Storage Service)	AMIs storing images, Amazon Machine Images
	ARNs and, Amazon Resource Names
	backing up static files to, Backing Up Static Files from EC2 Instances to S3-Backing Up Static Files from EC2 Instances to S3
	CloudTrail log files and, CloudTrail-CloudTrail
	creating buckets, IAM Roles
	IAM roles and, IAM Roles
	life cycle management, S3 Lifecycle Management, Rolling Backups with S3 and Glacier
	lObject Archival feature, Rolling Backups with S3 and Glacier
	logging to, Logging to S3-Logging to S3
	Logstash support, Logging to S3
	permissions and, Referencing resources in IAM policies-Referencing resources in IAM policies
	rolling backups and, Rolling Backups with S3 and Glacier-Rolling Backups with S3 and Glacier
	service event example, Managing Outages
	storage options, Storage

	s3cmd tool, IAM Roles, Backing Up Static Files from EC2 Instances to S3, Off-Site Backups
	s3funnel tool, Off-Site Backups
	SaaS (Software-as-a-Service), Old Tools, New Tricks
	scale-down policies, Scaling Policies
	scale-up policies, Scaling Policies
	scaling policies, Scaling Policies-Scaling on CloudWatch Metrics
	schedules, scaling based on, Scaling Policies
	scripts	launching instances from, Launching from Your Own Programs and Scripts-Launching from Your Own Programs and Scripts
	wrapping commands in, Looking Before You Leap, Backing Up Static Files from EC2 Instances to S3

	secret access keys	about, Preparing Your Tools, Launching with Command-Line Tools
	generating, IAM Policies
	passing as arguments, Launching from Your Own Programs and Scripts

	Secure Sockets Layer (SSL), Dynamic policies
	SecureTransport attribute, Dynamic policies
	security and security model, Preparing Your Tools	(see also IAM)
	account security strategy, Account Security Checklist, Limitations of IAM policies
	auditing and rotating access keys, Auditing and rotating access keys-Auditing and rotating access keys
	IAM roles and privilege escalation, IAM Roles
	key suggestions, A Security State of Mind
	private keys and, Key pairs
	protecting instances with SSH whitelists, Protecting Instances with SSH Whitelists-Protecting Instances with SSH Whitelists
	root credentials and, Preparing Your Tools, Account Security Checklist, IAM Users and Groups
	service limit enforcement, CloudTrail
	shared responsibility model, The AWS Security Model-The AWS Security Model
	temporary configurations, Creating and configuring a Logstash server
	Trusted Advisor support, Trusted Advisor-Trusted Advisor
	VPNs and, Virtual Private Networks and Security Groups-Virtual Private Networks and Security Groups

	security groups	about, Security Groups-Security Groups
	automatically created, Launching a new instance of an AMI, Security Groups
	creating, Installing the Web Application, Creating an RDS Database, Logstash Configuration
	Puppet and, Puppet and CloudFormation
	SSH whitelists and, Protecting Instances with SSH Whitelists-Protecting Instances with SSH Whitelists
	VPCs and, Networking
	VPNs and, Virtual Private Networks and Security Groups-Virtual Private Networks and Security Groups

	Security Monkey tool, Trusted Advisor
	sed command, Looking Before You Leap
	Sensu package, Old Tools, New Tricks
	service discovery tools, Dynamically keying on instance attributes
	service events, Managing Outages-Managing Outages
	Service Health Dashboard, Managing Outages
	service limits for accounts, CloudTrail
	service logs (AWS), AWS Service Logs-AWS Service Logs
	service restarts, Role-Based AMIs
	shared responsibility model, The AWS Security Model-Account Security Checklist
	Signals feature (Django), Installing Celery with Simple Queuing Service, Installing Celery with Simple Queuing Service
	Simple Notification Service (SNS), Launching with Command-Line Tools, Notifications of Scaling Activities-Notifications of Scaling Activities, CloudWatch Basics
	Simple Queue Service (SQS)	about, IAM Roles
	Celery and, Background Task Processing, Installing Celery with Simple Queuing Service-Installing Celery with Simple Queuing Service
	CloudWatch metrics and, Auto Scaling and Custom Metrics
	scaling policies and, Scaling on CloudWatch Metrics

	Simple Storage Service (see S3)
	snapshots	about, Storage
	automated, Backups
	automating cleanup, Deregistering AMIs
	continuous archiving and, Snapshots and Continuous Archiving-Restoring
	creating from EBS, Storage
	deleting, Deregistering AMIs
	sharing, Deregistering AMIs
	tabulating, Deregistering AMIs

	SNS (Simple Notification Service), Launching with Command-Line Tools, Notifications of Scaling Activities-Notifications of Scaling Activities, CloudWatch Basics
	Software-as-a-Service (SaaS), Old Tools, New Tricks
	solid-state disks (SSDs), Storage-Storage
	Spinnaker tool, Deploying AMIs with CloudFormation
	spot instance market, Managing Outages
	SQLite database engine, Installing the Web Application
	SQS (Simple Queue Service)	about, IAM Roles
	Celery and, Background Task Processing, Installing Celery with Simple Queuing Service-Installing Celery with Simple Queuing Service
	CloudWatch metrics and, Auto Scaling and Custom Metrics
	scaling policies and, Scaling on CloudWatch Metrics

	SR-IOV specification, Processing Power
	SSDs (solid-state disks), Storage-Storage
	SSH key pairs, Key pairs-Key pairs, Launching with Command-Line Tools, Launching from Your Own Programs and Scripts, IAM Roles
	SSH whitelists, protecting instances with, Protecting Instances with SSH Whitelists-Protecting Instances with SSH Whitelists
	ssh-agent program, Key pairs
	ssh-import-id command, Launching with Command-Line Tools
	SSL (Secure Sockets Layer), Dynamic policies
	st CPU metric, Processing Power
	stack templates	controlling changes to, Looking Before You Leap
	creating, Introducing CloudFormation
	embedding configuration data into, Puppet and CloudFormation
	Management Console and, Creating the Stack
	SSH whitelists and, Protecting Instances with SSH Whitelists

	stacks	creating, Introducing CloudFormation-Creating the Stack, Creating the Stack with CloudFormation, Auto Scaling and Custom Metrics
	deleting, Deleting the Stack
	IAM policies and, Using IAM in CloudFormation Stacks-Using IAM in CloudFormation Stacks
	initial version displayed, CloudFormation Files-CloudFormation Files
	modular, Modular CloudFormation Stacks-Modular CloudFormation Stacks
	Puppet example, Puppet and CloudFormation-Puppet and CloudFormation, Masterless Puppet-Masterless Puppet
	security groups and, Protecting Instances with SSH Whitelists
	updating, Updating the Stack-Updating the Stack

	state tag, Building Your Own AMI
	state-changed tag, Building Your Own AMI
	Statement attribute, IAM Policies
	static Auto Scaling groups, Static Auto Scaling Groups-Static Auto Scaling Groups
	STATIC_ROOT setting (Django), RDS: Updating Puppet and CloudFormation
	STATIC_URL setting (Django), RDS: Updating Puppet and CloudFormation
	stats cachedump command, Creating an ElastiCache Node
	stats slab command, Creating an ElastiCache Node
	stdlib module (Puppet), Puppet Files, RDS: Updating Puppet and CloudFormation, Patterns for Configuration Management Tools
	stolen CPU time, Processing Power
	stopped state (instance), Updating the Stack
	storage options for instances, Storage-Storage
	store and forward process, Logging to S3
	Supervisor process-control system, Installing the Web Application, Creating an RDS Database, Scaling on CloudWatch Metrics
	support plans (accounts), Getting Started
	SUSE Studio, Building Your Own AMI
	sy CPU metric, Processing Power

T
	T2 instance type, Processing Power
	tags	about, Launching a new instance of an AMI
	AMI strategy, Building Your Own AMI, IAM Policies
	applying to resources, Updating the Stack
	CloudFormation and, User Data and Tags
	passing information to instances via, Mapping Instances to Roles
	Puppet and, User Data and Tags-User Data and Tags

	tasks module (Python), Installing Celery with Simple Queuing Service
	terminate() function, Launching from Your Own Programs and Scripts
	terminated state (instance), Launching from Your Own Programs and Scripts
	“Too Big NOT to Fail”
 paper, Webscale Thinking
	TOTP algorithm, Multi-Factor Authentication
	Trusted Advisor, Trusted Advisor-Trusted Advisor
	TTL value, failover and, Failure Is an Option: Service Failover with Route 53, Surviving ELB and Application Outages with Route 53
	The Twelve-Factor App, Creating an RDS Database

U
	Ubuntu images, Launching with Command-Line Tools, Launching with Command-Line Tools
	update policy, Static Auto Scaling Groups
	update() function, Launching from Your Own Programs and Scripts
	update-stack command, User Data and Tags
	UPDATE_COMPLETE state, Static Auto Scaling Groups
	us CPU metric, Processing Power
	user data	about, Launching a new instance of an AMI
	Cloud-init and, Mapping Instances to Roles
	JSON and, RDS: Updating Puppet and CloudFormation
	passing information to instances via, Mapping Instances to Roles
	Puppet and, User Data and Tags-User Data and Tags
	running instances and, Updating the Stack

	users and groups (see IAM users and groups)

V
	validating	IAM policies, IAM Policies
	path location, Installing the AWS Command Line Interface
	puppet-lint tool, A Quick Introduction to Puppet
	stack templates, Creating the Stack

	version control systems, Puppet Files-Puppet Files
	--version option,
 aws command, Installing the AWS Command Line Interface
	virtual appliances, Launching a new instance of an AMI, Amazon Machine Images
	Virtual Private Cloud (VPC), Networking-Networking, Virtual Private Networks and Security Groups
	virtual private networks (VPNs), Virtual Private Networks and Security Groups-Virtual Private Networks and Security Groups
	virtual resources, Old Tools, New Tricks
	virtual servers (see instances)
	Virtualenv tool, Installing the AWS Command Line Interface
	virtualization types, Processing Power, Launching with Command-Line Tools
	VPC (Virtual Private Cloud), Networking-Networking, Virtual Private Networks and Security Groups
	VPNs (virtual private networks), Virtual Private Networks and Security Groups-Virtual Private Networks and Security Groups

W
	wa CPU metric, Processing Power
	WAL (write-ahead log) files, Snapshots and Continuous Archiving
	WAL-E program, Snapshots and Continuous Archiving
	web applications	background task processing, Background Task Processing
	building AMIs, Building the AMIs-Building the AMIs
	caching, Database and Caching
	components and roles, Overview of Application Components
	creating ElastiCache nodes, Creating an ElastiCache Node-ElastiCache: Updating Puppet and CloudFormation
	creating stacks with CloudFormation, Creating the Stack with CloudFormation
	database considerations, Database and Caching, Creating an RDS Database-RDS: Updating Puppet and CloudFormation
	Immutable Server pattern, Application Immutability
	installing, Installing the Web Application-Installing the Web Application
	installing Celery with SQS, Installing Celery with Simple Queuing Service-Celery: Updating Puppet and CloudFormation
	preparing CloudFormation, CloudFormation Files-CloudFormation Files
	preparing Puppet, Puppet Files-Puppet Files
	surviving outages with Route 53, Surviving ELB and Application Outages with Route 53-Surviving ELB and Application Outages with Route 53

	web stack (CloudFormation), Modular CloudFormation Stacks
	webscale computing mindset, Webscale Thinking
	weighted resource record sets (WRRS), Ramping Up Traffic
	wget command, Launching with Command-Line Tools, IAM Roles, AWS Service Logs
	wildcards	enabling autosigning, A Quick Introduction to Puppet
	in IAM policies, Organizing users and groups with paths
	in path attributes, Configuring the Logstash clients

	WORM drives, S3 Lifecycle Management
	write-ahead log (WAL) files, Snapshots and Continuous Archiving
	WRRS (weighted resource record sets), Ramping Up Traffic
	WSGI servers, Installing the Web Application
	www module (Puppet), Patterns for Configuration Management Tools

X
	xfs_freeze command, Backing up
	XKCD comic, Which Method Should I Use?, Password policy, Choosing a Configuration Management Package

Y
	Yum package manager, Puppet and CloudFormation

Z
	Zookeeper (Apache), Dynamically keying on instance attributes

About the Authors

Mike Ryan runs a DevOps and blockchain consultancy based in Amsterdam, and is obsessed with automation and cloud services. He can be reached on Twitter, GitHub, and LinkedIn as @mikery.

Federico Lucifredi was the lead product manager for Ubuntu Server, Amazon Web Services’ most popular operating system. While at Canonical, Federico led the Certified Public Cloud program, ensuring the seamless integration of Ubuntu into AWS and other public clouds. He is currently the Ceph product management director at Red Hat, and can be reached on Twitter as @0xF2.

Colophon

The animal on the cover of AWS System Administration is a peccary (Tayassuidae). Sometimes called javelina, peccaries are medium-sized, hoofed mammals that live throughout Central and South America as well as the southwestern portion of North America. Peccaries grow to about 3–4.3 feet in length and adults weigh from 44–88 pounds.

Peccary bear a strong resemblance to pigs, with small eyes and a snout that ends in a disc made up of cartilage. However, its three-chambered, nonruminating stomach is more complex than that of pigs.

The peccary’s short, straight tusk is also markedly different from the long, curved tusk found on European pigs. The tusks serve a dual purpose: peccaries rub their tusks together to create a chattering noise as a warning against potential predators, but also utilize them for crushing hard seeds and slicing into plant roots. Peccaries are omnivores and prefer to feed on roots, grass, seeds, fruit, and cacti such as the prickly pear. They will also eat small animals.

Peccaries often travel in herds and are considered social animals. Using scent glands below each eye, peccaries mark their territory and other members of their herds with a pungent odor that can be detected by humans, hence the nickname “skunk pig.”

Many of the animals on O’Reilly covers are endangered; all of them are important to the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from loose plates, source unknown. The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

OEBPS/assets/awsa_0305.png
[alalalalajalallslolalnlalalals

WAS IT TROMBONE? NG,

‘—v—“f‘r‘— T—

i

FOUR RANDOM
COMMON WORDS

DIFRCOLTY To GUESS:

HARD

UNCOMHON ORER TROUBADOR. AND ONE OF
(oL GIBBRS) i || 7€ 0s whsa zero?
BASE RO N e e oERE s (P
2= 3 Davs AT 2345 Wm\zlﬂ -
Tr‘@u b4d or &3 1000 GUESSES /sec.
T T o (s e ot e
CAPS? COMMON NOVERAL | | b i e ot
o SN cuion || © WSWTM DIFFICULTY To REMEMBER:
oos IFFICOLTY T0 GUESS : IFFi :
(100 ¢ P00 1 0 ok 1 70 pu‘i“”“r'm ! EASY HARD
R
~ Ut BITS OF ENTROPY
correct horse battery stople

DIFFICULTY To REMEMBER:
YOUVE ALREADY

MEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

OEBPS/assets/awsa_0204.png
Select an existing key pair or create a new key pair

Akey pair consists of a public key that AWS stores, and a private key file that you store. Together,
they allow you to connect to your instance securely. For Windows AMIs, the private key file is required
to obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Note: The selected key pair will be added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI.

Select a key pair
federico B

()1 acknowledge that | have access to the selected private key file (federico.pem), and that
without this file, | won't be able to log into my instance.

e D

OEBPS/assets/awsa_0311.png
Status:
Summarv

Region
us-east-1

us-east-1
us-east-1
us-east-1

us-east-1

us-east-1

us-east-1

warnina

Total number of resources processed:
Number of resources flaaged: 7
Number of suopressed resources: 0

Security Group

image-resizing-
ImageResizingSecu
fityGroup-
SYAMMMJBIPVX
launch-wizard-1

launch-wizard-2

openvpn-server-
OpenVPNSecurityG
roup-14J41046XR9
ww
openvpn-server-
OpenVPNSecurityG
roup-14J41Q46XR9
ww
openvpn-server-
OpenVPNSecurityG
roup-14J41046XR9
ww

ssh

Security Group ID

sg-casbeabs
(Vpc-93493517)

Sg-bOf35c2.

sg-a53672de

sg ieccacts
(Vpc-93493517)

sg-feccaess
(Upc-93493517)

sg-feccacts
(Vpc-93493517)

sg-4ebdBb3s

Protocol
tep

top
tep
udp

tep

top

tep

10

Status.
Yellow

Yellow
Yellow
Yellow

Yellow

Yellow

Yellow

Ports
2

2
2
1194

2

043

2

OEBPS/assets/awsa_0601.png
Services v Resource Groups v Federico Lucfredi v N. Virginia + Support v

EC2 Dashboard Welcome to Auto Scaling Additional Information
]
Events You can use Auto Scaling to manage Amazon EC2 capacity automatically, maintain the right number of instances for ~ Getting Started Guide
Tags your application, operate a healthy group of instances, and scale it according to your needs. Documentation
Reports Learn more
All EC2 Resources
Limits, Create Auto Scaling group Forums
= P
INSTANGES Note: To create your Auto Scaling groups in a differnt region, select your feglon from the navigation bar. rene
Instances Contact Us
Spot Requests. Benefits of Auto Scaling

Reserved Instances

Reusable Instance Templates Adjustable Capacity
‘Scheduled Instances

Dedicated Hosts , ‘ I
= IMAGES

AMIs

Bundle Tasks

Provision instances based ona Keep your Auto Scaling group Maintain a fixed group size or
(=) ELASTIC BLOCK STORE reusable template you define, healthy and balanced, whether you ~ adjust dynamically based on
Volumes called a launch configuration. need one instance or 1,000. Amazon CloudWatch metrics.

Snapshots Learn more Learn more Learn more
=) NETWORK & SECURITY

Security Groups

Elastic IPs

Placement Groups

Key Pairs
Network Interfaces

=) LOAD BALANCING
Load Balancers

Target Groups

@ Feedback Q@ English Privacy Pollcy Terms of Use

OEBPS/assets/awsa_0313.png
) e e S

OEBPS/assets/awsa_1204.png
Lifecycle rule X
@ Nemoandscope () Transitions (3) Bxpiration (@) Review

Configure transition

Current version [l Previous versions

For current version of objects

Object creation Days after object creation

[IO

OEBPS/assets/awsa_1205.png
g
g

Lifecycle rule X
@ Nemoandscope (@) Transttions (@ Expiration (@) Review

Configure expiration

Current version [l Previous versions

Expire current version of object

e o :

Clean up expired object delete markers and incomplete multipart
uploads

I Clean up expired object delete markers

You cannot enable clean up expired object delete markers if you enable Expiration.

Clean up incomplete multipart uploads

e ot

3 -

OEBPS/assets/awsa_0203.png
1.Choose AMI 2. Choose InstanceType 3. Confiqure nstance 4. Add Storage 5. Tag Instance 6. Configure Security Group 7. Review

Step 7: Review Instance Launch

Please review your instance launch detalls. You can go back to edit changes for each section. Glick Launch to assign a key pair to your instance and complete the launch process.

A Improve your instances' security. Your security group, launch-wizard-1, is open to the world.
Your instances may be accessible from any IP address. We recommend that you update your sectrity group s to allow acoess from known IP addresses only.
You can aiso open additional ports in your security group to facltate access to the application or service you're running, .., HTTP () for web servers. Edit security groups

~ AMI Details Edit AMI

§# Amazon Linux AMI 2016.03.1 (HVM), SSD Volume Type - ami-f5{41398

sy The Amazon Linux AMI is an EBS-backed, AWS-supported image. The default image includes AWS command line tools, Python, Ruby, Per, and Java. The repositories include Docker, PHP, MySQL,
PP PostgresQL, and other packages.
oot Device Type:abs Vetualzaton type: hvn

~ Instance Type Edit instance type
Instance Type ECUs vCPUS Memory (GiB) Instance Storage (GB) EBS-Optimized Available Network Performance
2micro Variable 1 1 €8S only - Low to Moderate
~ Security Groups Edit security groups
Security group name. launch-wizard-1
Description launch-wizard-1 created 2016-05-24T12:16:25.988-04:00
Port Range (
2
» Instance Details Edit instance details

cancl | provious | ([EEEY

OEBPS/assets/awsa_0509.png
Add a Permission to test_queue X

Permissions enable you to control which operations a user can perform on a queue. Click here to learn more
‘about access control concepts.

Effect € ©Alow

Deny
Principal @ 740376006796) Everybody (*)

Use commas between mulipie values.

Actions @ | — No Specific Actions — v | Al SQS Actions (SQS:

Add Conditions (optional)

[V Add Permission

OEBPS/assets/cover.png
O'REILLY"

AWS Syst
Administration

BEST PRACTICES FOR SYSADMINS IN THE AMAZON CLOUD

Mike Ryan & Federico Lucifredi

Foreword by lan Colle

OEBPS/assets/awsa_0103.png
aws Services v Resource Groups ~

| Ec2Dashboard
Events
Tags
Reports
Limits

5 WsTANCES
Instances
Launch Templates
Spot Requests
Reserved Instances
Dedicated Hosts
Scheduled Instances

5 maces
AMis
Bundie Tasks

5 ELASTIC BLOCK STORE
Volumes:
Snapshots

5 NETWORK & SECURITY
Security Groups
Etastic IPs
Placement Groups
Key Pairs
Network Inerfaces

5 LOADBALANGING
Load Balancers
Target Groups

5 AUTOSCALING
Launch Configurations.

Resources

You are using the following Amazon EC2 resources in the US East (N. Virginia) region:

7 Running Instances 0 Elastic IPs
0 Dedicated Hosts 7 Snapshots

16 Volumes 0 Load Balancers
1 Key Pairs 10 Security Groups

0 Placement Groups

Create Instance

To start using Amazon EC2 you will want to launch a virtual server, known as an Amazon EC2 instance.

Note: Your instances wil launch i the S East (N. Virgina) reglon

Service Health ¢ Scheduled Events
Service Status: US East (N. Virginia):
No events

@ US East (N. Virginia):
“This servioe is operating normally

Availability Zone Status:

o us-east-ta:
‘Availabilty zone is operating normally

o us-east-1b:
‘Availabilty zone is operating normally

o us-east-fc:
Availabilty zone is operating normally

o us-east-1d:
Availabilty zone is operating normally

o us-east-te:
Availabilty zone is operating normally

o us-east-if:

Federico Lucifredi ~

I

inia ~ Support ~.

Account Attributes S

Supported Platforms
vPC

Default VPG
Vpo-934935(7

Resource ID length management
Console experiments

Additional Information

Getting Started Guide
Documentation

Al EC2 Resources
Forums.

Pricing

Gontact Us

AWS Marketplace

Find free software trial products in the AWS
Marketplace from the EC2 Launch Wizard. Or
try these popular AMis:

Barracuda CloudGen Firewall for AWS - PAYG

Provided by Barracuda Networks, Inc.
Rating % %%

Starting from $0.60/hr or from $4,599/yr (12%
savings) for software + AWS usage fees.

View all Infrastructure Software

Matilion ETL for Amazon Redshift

Provided by Matilion
Rating %% %%

Starting from $1.37/hr or from $9,950/yr (17%
savings) for software + AWS usage fees.

View all Business Software

‘® Feedback @ English (US)

Privacy Polloy Terms of Use

OEBPS/assets/awsa_0802.png
D> , A

r—>| Input: DB hostname

Instance
M
RDS DB Instance Web Instance
Web Security Group Web Security Group
Output: DB hostname —1 Output: Instance hostname

Output: DB Security Group 1 Output: Security Group Name

DB Stack Web Stack

(Security Group Ingress Rule)

| Output: Instance hostname I:

Parent Stack

OEBPS/assets/2.png

OEBPS/assets/awsa_0302.png
aws

Search 1AM

Dastboard
Groups

| vsors
Aoes
Poios
ity providers
Aocountsetngs

Credential report

Encryption keys

Services

Resource Groups ~

Users > ami-cleaner

Summary

User ARN
Path

Creation time

Permissions | Groups (0) | Security credentials

‘Add permissions

Policy name +

Attached directly

»

ami-cleaner

armiaws:iam:740376006796:user/ami-cleaner (7]

’

2016-05-31 23:18 EDT

Attached policies: 1

Access Advisor

Policy type +.

Iniine policy

i~ Global v Support ~

x

© Add inline policy

OEBPS/assets/awsa_1101.png
aws Services v Resource Groups -

—
.

Federico Lucfredi ~ N Virginla ~ Support ~

o ® 0
Q Fite by tags and attrbutes or search by keyword) 1105015
Name. - Instance ID | InstanceType - Availabilty Zone - Instance State - Status Checks - AlarmStatus PublicDNS (Pvé) - IPvAPubliclP ~ IPVEIPs .
® GitRepo Fdbbcate? 2.micro us-east1a @ ruming © 22checks .. None N ec25417221112c0.. 5417221112 -
Instance: | i-d6bc3ge7 (Git Repo) Public DNS: ec2-54-172-21-112.compute-1.amazonaws.com _}_]-=]
Description || Status Checks | Monitoring | Tags
» CloudWatch alarms: & No alarms configured Create Alarm

CloudWatoh metrics: Basic monioring. Enable Detaild Moritoring Showing data for: LastHour £ ©

Below are your CloudWatch metrics for the selected resources (a maximum of 10). Click on a graph to see an expanded view. Al fimes shown are in UTC. > View all CloudWatch metrics

CPU Utilization (Percent) Disk Reads (Bytes) Disk Read Operations (Operations) Disk Writes (Bytes)
0801 1 1 1
080l o~ 075 o075 075
o401 05 05 05
0201 025 025 025
o o 0 o
2 2 24 4 4 2 24 24
2300 2830 2300 2330 2300 2330 2300 2330
Disk Write Operations (Operations) Network In (Bytes) Network Out Bytes) Network Packets In (Count)
1 4000 10000 o
075 3,000 8000 0
8000
05 2,000 20
4000
025 1,000 2000 10
0 ——— 0 o o
4 2 o4 I 24 2 24 24
2300 2830 2300 2330 2300 2330 2300 2330

eedback @ English (US)

Privacy Polloy Terms of Use

OEBPS/assets/11.png

OEBPS/toc01.html
		Foreword

		Preface		Audience

		Conventions Used in This Book

		Using Code Examples

		O’Reilly Safari

		How to Contact Us

		Acknowledgments

		1. Setting Up AWS Tools		Getting Started

		Preparing Your Tools		Installing the AWS Command Line Interface

		Parsing JSON Output with jq

		Legacy AWS Command-Line Tools

		Managing Your Costs

		2. First Steps with EC2 and CloudFormation		What Is an Instance?		Instance Types

		Processing Power

		Storage

		Networking

		Launching Instances		Launching from the Management Console

		Launching with Command-Line Tools

		Launching from Your Own Programs and Scripts

		Introducing CloudFormation

		Working with CloudFormation Stacks		Creating the Stack

		Updating the Stack

		Looking Before You Leap

		Deleting the Stack

		Which Method Should I Use?

		Amazon Machine Images		Building Your Own AMI

		Deregistering AMIs

		Pets versus Cattle

		3. Access Management and Security Groups		The AWS Security Model		Account Security Checklist

		Multi-Factor Authentication

		Identity and Access Management		Amazon Resource Names

		IAM Policies

		IAM Users and Groups

		IAM Roles		Using IAM Roles from Other AWS Accounts

		Using IAM in CloudFormation Stacks

		Security Groups

		Protecting Instances with SSH Whitelists

		Virtual Private Networks and Security Groups

		A Security State of Mind

		4. Configuration Management		Why Use Configuration Management?		OpsWorks

		Choosing a Configuration Management Package

		Puppet on AWS		A Quick Introduction to Puppet

		Puppet and CloudFormation

		User Data and Tags

		Executing Tasks with Fabric

		Masterless Puppet

		Building AMIs with Packer

		Automate All the Things

		5. An Example Application Stack		Overview of Application Components		The Web Application

		Database and Caching

		Background Task Processing

		Installing the Web Application

		Preparing Puppet and CloudFormation		Puppet Files

		CloudFormation Files

		Creating an RDS Database		RDS: Updating Puppet and CloudFormation

		Creating an ElastiCache Node

		ElastiCache: Updating Puppet and CloudFormation

		Installing Celery with Simple Queuing Service

		Celery: Updating Puppet and CloudFormation

		Building the AMIs

		Creating the Stack with CloudFormation

		Application Factory

		6. Auto Scaling and Elastic Load Balancing		Static Auto Scaling Groups

		Notifications of Scaling Activities

		Scaling Policies		Scaling on CloudWatch Metrics

		Elastic Load Balancing

		Elastic Load Balancer and Auto Scaling Groups

		ELB Health Checks

		Managing Outages

		Mastering Scale

		7. Deployment Strategies		Instance-Based Deployments		Executing Code on Running Instances with Fabric

		Updating Instances at Launch Time

		AMI-Based Deployments		Deploying AMIs with CloudFormation

		Deploying AMIs with the EC2 API

		Webscale Thinking		Application Immutability

		Takeaways

		8. Building Reusable Components		The Importance of Being Reusable

		Role-Based AMIs		Mapping Instances to Roles

		Patterns for Configuration Management Tools

		Modular CloudFormation Stacks

		9. Log Management		Central Logging		Logstash Configuration

		Logging to S3

		AWS Service Logs

		S3 Lifecycle Management

		10. DNS with Route 53		Why Use Route 53?

		Failure Is an Option: Service Failover with Route 53

		Ramping Up Traffic

		Surviving ELB and Application Outages with Route 53

		Takeaways

		11. Monitoring		Why Are You Monitoring?

		CloudWatch		CloudWatch Basics

		Auto Scaling and Custom Metrics

		Old Tools, New Tricks

		12. Backups		Backing Up Static Files from EC2 Instances to S3

		Rolling Backups with S3 and Glacier

		PostgreSQL and Other Databases		pg_dump

		Snapshots and Continuous Archiving

		Off-Site Backups

		Index

OEBPS/assets/awsa_0306.png
aws Services v Resource Groups v %

[\ Federico Lucifredi v Global v Support

AmazonS3 > global-trail / AWSLogs / 740376006796 / CloudTrail / us-east-1 / 2016 / 07 / 25

Overview

Q Typea prefix and press Enter to search. Press ESC to clear.

2 upns [+ o |

[] Name 1=

[740376006796_CloudTrall_us-east-1_20160725T23152_YYg...

Last modified 1=

Jul 25, 2016 7:17:24 PM
GMT-0400

US East (N. Virginia) &

Viewing 102

Size

[[) [® 740376006796_CloudTrail_us-east-1_20160725T2315Z_x5h...

Jul 25, 2016 7:23:32 PM
GMT-0400

673.08 Standard

OEBPS/assets/awsa_0507.png
Create New Queue X

Region € US East (N. Virginia)
Queue Name € test_queue

Configure your new queue by setting queue attributes (optional).

Default Visibilty Timeout € | 30 seconds ~ | Value must be between 0 seconds and 12 hours,
Message Retention Period @ | 4 days = | Value mustbe betwoen 1 minute and 14 days
Maximum Message Size @ | 256 KB Value must be between 1 and 256 KB.
Delivery Delay € 0 seconds ~ | value must be between 0 seconds and 15 minutes.
Receive Message Wait Time € 0 ‘seconds Value must be between 0 and 20 seconds.
Dead Letter Queue Settings
Use Redrive Policy @ ()
Dead Letter Queue @ Value must be an existing queue name.
Maximum Receives €@ Value must be between 1 and 1000.

OEBPS/assets/awsa_1002.png
Back to Hosted Zones Create Record Set Import Zone File Delete Record Set Test Recor

Q Record Set Name X | AnyTypes Aliases Only Weighted Only

1< < Displaying 1103 cutof 3Record Sets > 3]

Name Type Value Evaluate Target Health
15-1930.awsdns-49.c0.uk.
s com s ns-770.awsdns-32.net. R
b 15-1067.awsdins-06.org.

ns-138.awsdns-17.com.

‘example.com. SOA ns-1930.awsdns-49.c0.uk awsdns-hostmaster.amai -

B masterdbexamplecom. CNAME 17231234, -

OEBPS/assets/awsa_0105.png
aws Services v Resource Groups ~

| bashbourd
s
Cost Explorer
Sudgts
Reports
Cost Alocation Tags
Payment atrods

Payment History
Consolidated

Preferences
Credis
Tax Settings
DevPay

i~ Global v Support ~

Billing & Cost Management Dashboard (2]
What's New in AWS Billing and Cost Management? Month-to-Date Spend by Service Bill Details
« Manage your spend with AWS Budgets The chart below shows the proporton of costs spent for each service you use.

« Visualize your costs and usage with the newly-optimized Cost Explorer
« Easily upload your Cost and Usage Reports into Redshift and QuickSight

Spend Summary Cost Explorer

Welcome to the AWS Account Billing console. Your last month, month-to-date, and month-
‘end forecasted costs appear below.

Current month-to-date balance for June 2018

$29.00 CRET— szs00

5600 Tax $0.00
Total $29.00
ss00 $467.72
42650
sa00
sw0
sa00-
s100
529
0 —
Last vontn Vonth t0Date Forocast
ey 2018) Gine 2018) (sins 2018)

» Important Information about these Costs

Alerts & Notifications.

© Your account s enabled for AWS Budgets. Set your fist budget to moritor when
actual or forecasted charges reach a threshold you define.

OEBPS/assets/8.png

OEBPS/assets/awsa_1203.png
Lifecycle rule X

|
i (D) Nameandscope (2) Transttions (3) Bxpiration (@) Review
|

Enter a rule name

Daily Backups

Add fifter to imit scope to prefixtags

prefix backups/dally/

Type to add prefix/tag fiter
-

OEBPS/assets/awsa_0604.png
Current Status - apr7, 2017 POT

Amazon Web Services publishes our most up-to-the-minute informtion on service availabilty in the table below. Check back here any time to get
current status informtion, or Subscribe to an RSS feed to be notified of nterruptions to each individual service. If you are experiencing a real-time,
operational issue with one of our services that s not described below, please inform us by clicking on the *Contact Us" ik to submit a service ssue
report. All dates and times are Pecifc Time (PST/PDT)

North America || South America | Europe | Asia Pacific Contact Us

Recent Events Detalls. RSS

@ Norecentevents.

Remaining Services Details
@ Amazon API Gateway (N. Calforia) Senvce s operating nomally
@ Amazon API Gateway (N. Virgiia) Senvce s operating nomnally
@ Amazon API Gateway (Ohio) Senvce s operating nomnally
@ Amazon API Gateway (Oregon) Senvce s operating nomnally
@ Amazon AgpStream (N. Virgnia) Senvce s operating nomnally
@ Amazon AgpStream 2.0 (N. Virginia) Senvce s operating nomnally
@ Amazon AppStream 2.0 Oregon) Senvce s operating nomnally
@ Amazon Athena (N. Vigiia) Senvce s operating nomnally
@ Amazon Athena (Ohio) Senvce s operating nomnally
@ Amazon Athena (Oregon) Senvce s operating nomnally

OEBPS/assets/awsa_0102.png
aws

Phone Verification

AWS will call you immediately using an automated system. When prompted, enter the
4-digit number from the AWS website on your phone keypad.

Provide a telephone number

Please enter your information below and click the
*Call Me Now" button.

Country/Region code

United States (+1)

Phone number Ext

I

Security Check

1ig3ed”

~
=

Call Me Now

2018 Amazon Web Servioss, Inc. or its affiates. Al ights reserve.

English

OEBPS/assets/10.png

OEBPS/assets/awsa_0501.png
Create Security Group

Security group name b

Description Myblog DB access

Vp-93483517 (172.31.0.0/16) *

* denotes defauit VPG
Security group rules:
Inbound | Outbound
Protocol (i) Port Range (i)
MYSaUAuora TCcP 3306
Add Rule

sg-b7d15acd

oo (D

OEBPS/assets/awsa_0104.png
aws Services v Resource Groups v [\ Federicolucfredi v Global v Support v

Search 1AM « Your Security Credentials

Use this page to manage the credentials for your AWS account. To manage credentials for AWS Identity and Access Management (IAM) users, use the 1AM Console..

Dashboard
To learn more about the types of AWS credentials and how they're used, see AWS Security Credentials in AWS General Reference.
Groups
+ Password
Users
Roles + Muttifactor authentication (MFA)
Policies

= Access keys (access key ID and secret access key)
Identity providers

You use access keys to sign programmatic requests to AWS services. To learn how to sign requests using your access keys, see the signing documentation. For

Account settings
Your protection, store your access keys securely and do not share them. In addition, AWS recommends that you rotate your access keys every 90 days.
Credential report Note: You can have a maximum of two access keys (active or inactive) at a time.
Created Deleted Access Key ID Last Used L”H' e et Status. Actions
Encryption keys legion Service

Create New Access Key

A Important Change - Managing Your AWS Secret Access Keys
As described in a previous announcement, you cannot retrieve the existing secret access keys for your AWS root account, though you can still
create a new root access key at any time. As a best practice, we recommend creating an IAM user that has access keys rather than relying on root
access keys.

+ CloudFront key pairs
+ X509 certificate

+ ‘Account identifiers

@ Feedback Q@ English (US) Privacy Policy Terms of Use

OEBPS/assets/awsa_0202.png
1.ChooseAMI 2, Choose Instance Type 3. Configure Instance 4. Add Storage 5. Tag Instance 6. Gonfigure Security Group

Step 2: Choose an Instance Type

7. Review

Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Instances are virtual servers that can run applications. They have varying combinations of GPU, memory,
storage, and networking capacity, and give you the flexibility to choose the appropriate mix of resources for your applications. Learn more about instance types and how they can meet your

computing needs.

Filter by: | Allinstance types v | Currentgeneration v Show/Hide Columns

Currently selected: t2.micro (Variable ECUs, 1 VGPUs, 2.5 GHz, Intel Xeon Family, 1 GIB memory, EBS only)

Family v Te - < Memory(GiB) ~ Instance Storage (GB)
1 05 E8S only
- 1 1 EBS only
1 2 E8S only
2 4 E8S only
2 8 E8S only
2 8 E8S only
4 16 E8S only
8 a2 E8S only

Cancel | Previous | [GEVEMELSTETT

Yes

Yes

~ Network Performance

Low to Moderate

Low to Moderate

Low to Moderate

Low to Moderate

Low to Moderate

Moderate

High

High

Next: Configure Instance Details

OEBPS/assets/awsa_0101.png
aws English ~

Create an AWS account

Email address

AWS Accounts Include
12 Months of Free Tier Access

Password

Including use of Amazon EC2, Amazon S3, and Amazon DynamoDB Confirm password

Visit aws.amazon.com/free for full offer terms

AWS account name €

Sign in to an existing AWS account

© 2018 Amazon Web Sarvces, Inc.or s afistas
Allrights resarve

Privacy Poicy | Terms of Use

OEBPS/assets/9.png

OEBPS/assets/awsa_0208.png
Choose a base template

openSUSE Leap 42.1

® @ Just enough OS (Je0s)
Ty, minmalisic applnces

openSUSE 13.2

° Just enough OS (Je0s)

Tiny, minimalitic appliances

KDE 4 desktop
opensUSE 132 KDE &

SUSE Linux Enterprise 12 SP1

° Just enough OS (Je0s)
Minimal SLES 12501

o er

Server
Atextonly base

Server
Atextonly base

Server
SLES 12591

Gallery

GNOME desktop
‘openSUSE Leap 42.1 GNOME

GNOME desktop
‘openSUSE 13.2 GNOME

GNOME desktop
SLED 12.5P1 GNOME

Sign out

OEBPS/assets/awsa_1004.png
Create Record Set

Name: ‘aws-book | example.com.

Type: | A-IPvé address

Alias: ®Yes O No.

Alias Target: | s3.websile.us-east-2.amazonaws.com

You can ako typa ho domain namo orthe rosource. Examplos:
- CloudFront istributon domain name: 111111 abodefd coudirontnet

- Elastc Beanstalk envionment CNAME: exampl.aasticbearstal com

- ELB load baancer DNS namo: examplo-1 us-0ast1 ol amazonaws.com
- 3 websto ondpoint: s3-websll.us-0ast.2 amazonaws.com

- Rosourca racord so in s hostod zone: ww examplo.com

Leam More

Routing Policy: | Failover

Route 53 esponds to queies using primary record ses if any are healtry.
or using socondary rocord sots oherwise. Loar Moro

Failover Record Type: O Primary ® Secondary

Set ID: | aws-book-Secondary

Evaluate Target Health: © Yes © No

Associate with Health Check:

OEBPS/assets/awsa_0506.png
~ Advanced Memcached settings

Advanced settings have common defaults set to give you the fastest way to get started. You can modify these now or after your cluster has been

created.

Subnet group | default (vpc-934935(7)

Preferred availability zone(s) ® No preference
Select zones

Security groups
Name

B cache (vpc-93493517)

db (vpo-93493517)

db_clients (vpc-934935(7)

Maintenance

Maintenance window @ No preference
Specify maintenance window

Topic for SNS notification Disable notifications

OEBPS/assets/awsa_1104.png
aws

Federico Lucifredi v

Services v Resource Groups v Virginia ~ Support ~

CloudWatch m Add to Dashboard | Actions v o ® e
Dashboards
Filter: Stateis ALARM Q Search Alarms X/ (JHide all AutoScaling alarms @ < < tototidams > >
| Alarms ‘€
ALARM o - Name - Threshold - ConfigStatus -
autoscaled-metric-WaitingTasksAlarm-T29GPAFT43AE WaitingTasks > 10 for 1 datapoints within 1 minute
Billing
Events
1 Alarm selected =m0
Rules
Event Buses Alarm:autoscaled-metric-WaitingTasksAlarm-T29GPAFT43AE
Logs | Details | History
Metrics
State Details: State changed to ALARM at 2018/01/22. Reason: Threshold Crossed: 1 datapoint [20.0 o e
Eavort (23/01/18 04:34:00) was greater than the threshold (10.0). o e e
avorites

Description:
Threshold: WaitingTasks > 10 for 1 datapoints within 1 minute
Actions: In ALARM: + For group autoscaled-metric-CustomMetricScalingGroup-
FP7JXSOBN70G use policy autoscaled-metric-ScaleUpPolicy-
'RACRBW2ZKANL (Add 1 instance)
+ For group autoscaled-metric-CustomMetricScalingGroup- o
In OK: FP7JXSOBN70G use policy autoscaled-metric-ScaleDownPolicy- 23
10FKOH1XZ07QG (Remove 1 instance) 0300

Namespace: MyAppMetrics
Metric Name: WaitingTasks.

©Add a dashboard

Dimensions:
Statistic: Maximum
Period: 1 minute

Treat missing data missing
as:

Percentiles with evaluate

@ Foedback @ English (US) Privacy Policy Terms of Use

OEBPS/assets/awsa_0307.png
eventVersion: "1.04",

- [userTdentity: {
type: "Root”,
principalld: "740376006796",
arn: "arn:aws:iam::740376006796:root"
account1d: "740376006796",
invokedBy: "signin.amazonaws .com"

be
eventTime: '2016-07-25133:12:462°,
eventSource: "sts.amazonaws.com’,
eventName: "GetSessionToken',
awsRegion: "us-east-1",
sourceIPAddress: "64.134.70.216",
userAgent: "signin.amazonaws.com’,
- requestParameter:
durationSecond:

b
- responseElements.
- credentials: {
accessKeyId: 'ASIAJGICLELGPDBI4REQ",
expiration: 'Jul 26, 2016 11:12:46 AM',
sessionToken:

"FQODYXdzEJ3//////////WEaDBag50MIna0uNEwH1 CKVANIMKOYBNX / LyQy ZSHQTdGEQbCOYZIL2 iNMSVIOpS JUTWSSAYTIHO /9035 1 61 IBF IMSSTut 1LSLYGFPULIGAZVIAF 49udktym!

1

}
b
roquestID: "4c54cBid-52bd-1le6-blda-21fcae5c7596",
oventID: "624a929e-1768-4daB-bEb6-£ca6d86991de” ,
oventType: "MushpiCall’,
recipientAccount1d: "740376006796"

OEBPS/assets/awsa_0310.png
| Dashboard

Trusted Advisor Dashboard cLO

Cost Optimization ‘

Performance Cost Optimization Performance Security Fault Tolerance

Security . n !
Fault Tolerance @ n ‘
Preferences ‘J

0& 0A 00 18 0A 00 1@ 2A 00 0& 0A 00
Recommended Actions

» A Security Groups - Specific Ports Unrestricted Refreshed: 16 hoursago | & | &>
Checks security groups for rules that allow unrestricted access (0.0.0.0/0) to specific ports.
7 of 10 security group rules allow unrestricted access to a specific port.

» A MFA on Root Account Refreshed: 16 hoursago | & | &>
Checks the root account and warns if multi-factor authentication (MFA) is not enabled.
MFA is not enabled on the root account.

» 1AM Use Refreshed: 16 hoursago | & | &3
Checks for your use of AWS Identity and Access Management (IAM).
At least one IAM user has been created for this account.

» Service Limits. Refreshed: 16 hoursago | & | &3

Checks for usage that is more than 80% of the service limit.
0 of 43 items have usage that is more than 80% of the service limit.

OEBPS/assets/awsa_0508.png
® Name - Messages Available~ Messages in Flight~ Created -

@ testquewe [[2016-10-04 05:00:44 GMT-04:00
15QS Queue selected mEEE
Details Permissions Redrive Policy Monitoring

Tl Edit Policy Document (Advanced) | What's an SQS Queue Access Policy?

OEBPS/assets/awsa_0602.png
Services v Resource Groups v Federico Lucfredi v

Virginia v Support v

| TR, & & Ciose X ez
| Resource types (Pl it

+ ApplicationAutoScaling <

+ ApiGateway +

+ AutoScaling I
+ CertificateManager

+ CloudFormation ‘ |
+ CloudFront I

Errors. mE0
3 "Mezzanine-powered blog, served with Nginx.",
2-
5 "KeyName"
6 "Description”: "Name of an existing EC2 KeyPair to enable SSH access to the instance”,
7 "Type": "String"
8
9
10~ "Resources”: {
11- "WebInstance":
12 "Type nstance”,
13- "Properties”
14~ "SecurityGroups”: [
15~
16 "Ref": "WebSecurityGroup"
17
18
19 KeyName": "federico”,
20 InageId": "ami-c80b0aa2” ,
1 Datats £

Components Template

@ Foedback @ English Privacy Pollcy Terms of Use

OEBPS/assets/awsa_0401.png
How STRNDRRDS PROUFERATE:
CHARACTER ENGODES,

NS MESSAGHG, E7C)

(s AlC CHPRGERS,
147! RIDICULOUS!
WE NEED To DEVELGP
. || oNE UNERsAL STANT
SITUATON: || v v || STUATON:
THERE ARE VSE CASES. iy THERE ARE
|4 COMPETING \ O) 15 COMPETING
STANDPRDS. STANDPRDS.

A

OEBPS/assets/awsa_0901.png
Filebeats agent

(5044)

input >

filters

output

Logstash

Elasticsearch

Central Log Server

:I Kibana |<—

OEBPS/assets/3.png

OEBPS/assets/awsa_0201.png
1.Choose AMI 2. ChooseInstance Type 3. Configure Instance 4. Add Storage 5. Tag Instance 6. Configure Security Group 7. Review.

Step 1: Choose an Amazon Machine Image (AMI) Gancel and Exit
An AMI is a template that contains the software configuration (operating system, application server, and applications) required to launch your instance. You can select an AMI provided by AWS, our
user community, or the AWS Marketplace; or you can select one of your own AMIs.

Quick Start 11022 of 22 AMIs
My AMIs Amazon Linux AMI 2016.03.1 (HVM), SSD Volume Type - ami-f5{41398 m
‘The Amazon Linux AMI is an EBS-backed, AWS-supported image. The default image includes AWS command line tools, Python,
AWS Marketplace . 64-bit
Ruby, Perl, and Java. The repositories include Docker, PHP MySQL, PostgreSQL, and other packages.
Community AMIs. Root dovice type: ébs Virtuaization type: hum

1 Free tier only (1) L) Red Hat Enterprise Linux 7.2 (HVM), SSD Volume Type - ami-2051294a

RedHat __ Red Hat Enterprise Linux version 7.2 (HVM), EBS General Purpose (SSD) Volume Type.

X oot

Poot device type: ebs Virtualizaton type: hvm

) SUSE Linux Enterprise Server 12 SP1 (HVM), SSD Volume Type - ami-b7bdfedd

SUSE Linux SUSE Linux Enterprise Server 12 Service Pack 1 (HVM), EBS General Purpose (SSD) Volume Type. Public Cloud, Advanced
IEEIZETZ systems Management, Web and Scripting, and Legacy modules enabled.

Poot device type: ebs Virtualizaton type: hvm

64-bit

® Ubuntu Server 14.04 LTS (HVM), SSD Volume Type - ami-fce3c696

Ubunty Ubuntu Server 14.04 LTS (HVM), EBS General Purpose (SSD) Volume Type. Support avaiable from Canonical sabit
IEEZETZ (vtip/fwww.ubuntu.com/cloud/services).

Poot device type: ebs Virtualizaton type: hvm

OEBPS/assets/awsa_0301.png
Customer Data
Platform & Application Management
e
Operating System, Network, & Firewall Configuration g
Elient-side encryption, s id . Network traffic g customer managed
data integrity, er(\gleers-sslr:me(r)lrc(rj)yr);)lon (encryption, integrity,
authentication) identity)
Optional: encrypted data (in transit or at rest)
\ <
()
Foundation)))
m Services
= AWS Global) \) AWS managed
Infrastructure

OEBPS/assets/awsa_1102.png
aws

Services v
Test Graph

210
200
120

oits 0130 otds
Allmetrics Graphed metrics (1)

Label Details

@ WaitingTasks

Resource Groups +

1h 3h 12h 1d 3d

02:00

Graph options.

MyAppMetrics * WaitingTasks

1w custom - | Line

0230 o245 0300
Statistic®
Average

Federico Lucifredi v N.Virginla v Support +

v | Actions v < -/ e

0116 08:55

ox1s oaan

2018-01-16 03:55 UTC
© WatngTasks 200

Period® Y Axis

a

Actions@
L@o

5 Minutes

OEBPS/assets/awsa_0801.png
aws Servi

s ~ Resource Groups v

inia ~ Support ~.

1.Choose AMI 2. Choose InstanceType 3. Configure Instance 4. AddStorage 5.AddTags 6. Configure Security Group 7. Review

Step 3: Configure Instance Details

Shutdown behavior (i Stop B
Enable termination protection (i Protect against accidental termination
Monitoring (i Enable CloudWatch detailed monitoring

‘Additional charges apply.

Tenancy () [Shared - Fun a shared hardware nstance
‘Additional charges will apply for dedicated tenancy.

T2 Unlimited (] Enable
‘Additional charges may apply

v Advanced Details

Userdata (] @ Astext © Asfile () Input s already base64 encoded

® Feedback @ English (US) Privacy Polloy Terms of Use

OEBPS/assets/awsa_0502.png
Instance Specifications

DB Engine mysql

License Model | general-pubic-icense
DB Engine Version | 5627
Review the Known Issues/Limitations to learn about potential
compatibilty issues with specific database versions.
DB Instance Class (G@imiors = 1vGPU, T GBFAM
Multi-AZ Deployment | No

Storage Type S
Allocated Storage* |5 GB

Provisioning less than 100 GB of General Purpose (SSD) storage for
high throughput workloads could result in higher latencies upon
‘exhaustion of the initial General Purpose (SSD) IO credit balance.
Click here for more details.

Settings
DB Instance Identifier* | mybiog
Master Username* awsuser

Master Password*

Confirm Password*

OEBPS/assets/awsa_0902.png
8 hits New Save Open Share

messageesing gz vsestoceneqery s [N
Add a filter 4

logstash-2018.04.22 _source

Selected Fields » message: testing logging etimestamp: April 22nd 2018, 16:20:43.845 type: syslog host: localhost port: 53,598

5 oo eversion: 1 _id: gQSE72IBXBUKGEXAEZSS _type: doc _index: logstash-2018.04.22 _score: 1.386

Timelion

This field is present in your » message: testing 10gging etimestamp: April 22nd 2018, 16:21:15.93¢ type: syslog host: localhost port: 53,604

Dev Tool lasticsearch mapping but
notin any documents i the eversion: 1 _id: WABE7ZIBXBUGeXAJpSG _type: doc _index: logstash-2018.04.22 _score: 0.713
e search results. You may sil
be able tovisuaize or search
o > message: testing logging etinestamps April 22nd 2018, 16:21:16.669 type: syslog host: localhost ports 53,606
@version: 1 _id: hQ8E72IBXBukGeXAkZSl _type: doc _index: logstash-2018.04.22 _score: 0.713
Avaiable Felds [#] B ho e - o -
timestam o
O » B3, nessage: testing logging etimestamp: April 22nd 2018, 16:21:17.921 type: syslog host: localhost pore: 53,610
t @version version: 1 _id: hwBE7ZIBXBukGeXALpSI _type: doc _index: logstash-2018.84.22 _score: 0.713
t _id
> message: testing logging eversion: 1 port: 53,594 type: syslog ‘tags: _grokparsefailure host: localhost
t _index April 22nd 2018, 16:00:09.465 _id: gA_x7nIBXBukGeXAOS6q _type: doc _index: logstash-2018.04.22
_score B ¢ 0.211
¢ e
4 » message: testing 10gging etimestamp: April 22nd 2018, 16:21:13.939 type: syslog host: localhost port: 53,600
t host version: 1 _id: ggBE7ZIBXBukGeXAhp68 _type: doc _index: logstash-2018.04.22 _score: 0.211
t message
> message: testing logging etimestamps April 22nd 2018, 16:21:15.117 types syslog host: localhost ports 53,602
& @version: 1 _id: gwBE7ZIBXBukGeXAiSSW _type: doc _index: logstash-2018.04.22 _score: 0.211
© s
> message: testing logging etimestamps April 22nd 2018, 16:21:17.265 types syslog host: localhost ports 53,608
© e

eversion: 1 _id: hgSE7ZIBBUKGEXAKSES _type: doc _index: logstash-2018.04.22 _score: 0.211

OEBPS/assets/awsa_0205.png
7:09 PM 7 @ 3} 100% -

EC2 Instances
US East (N. Virginia)

All v X

i-ba932720 Running
Instance: i-ag32720

i-fd6b8d61 Running
Instance: i-fd6b8d61

1-68947314 Shutting Down
Instance: i-689d73f4

OEBPS/assets/awsa_0207.png
“T SPEND A LOT OF TIME ON THIS TASK.
T SHOULD LIRITE A PROGRAM AUTOMATING IT!"

REFINKNG ____ NOTME FOR
- ORIGINAL TRSK.
AYVVIORE

TIME,

OEBPS/assets/awsa_0505.png
Memcached settings

Name myblog o

Engine version compatibility | 1.4.33 - e
Port | 11211 o

Parameter group | defaultmemcached1.4 - e

Node type | cache.r3.arge (13.5 GiB) - e
Number of nodes | 1 v e

~ Advanced Memcached settings

Advanced settings have common defaults set to give you the fastest way to get started. You can modify these now or after your
cluster has been created.

OEBPS/assets/awsa_0308.png
API activity history

‘The following list includes the last 7 days of API activity for supported services. The list only includes AP activity for create, modify, and delete API calls. For
read-only API activity, go to your Amazon S3 bucket or CloudWatch Logs.

You can filter the list using the available attributes, and you can choose an event to see more detail about the event. Lear more.

c e
Filter: | Select attribute + | Enter lookup value Time range: Select time range =]
Event time User name Event name Resource type Resource name
> 2016-07-26,10:53:35AM root Terminatelnstances EC2 Instance i-1d92f181 and 2 more
b 2016-07-26,10:5237 AM root ConsoleLogin
v 2016-07-25,07:1246PM root ConsoleLogin
AWS access key Event source signin.amazonaws.com
AWS region us-east-1 Event time 2016-07-25, 07:12:46 PM
Error code Request ID
EventID cc35ecf5-b0aa-dea0-a28e-c9552adde2d3 Source IP address 64.134.70.216
Event name ConsoleLogin User name root
Resources Referenced (0)

OEBPS/assets/6.png

OEBPS/assets/awsa_0504.png
Create Security Group

Security group name cache

Description ‘application caching tier

Vp-93483517 (172.31.0.0/16) *

* denotes default VPG
Security group rules:
Inbound | Outbound
Protocol (i) Port Range (i)
TCcP 11211

Source (i)

sg-b7d15acd

OEBPS/assets/awsa_1202.png
aws Services v Resource Groups v

Amazon$3 > my-blog-backups

e T

Ludfredi ~ Global v

Support v

Q Typea prefix and press Enter to search. Press ESC to clear.

(2 wim | + oo S

[Name

[J [my_blog_201802081601.tgz

[[my_blog_201802081922.tgz

Last modified

Feb 8, 2018 11:
0500

Feb 8, 2018 2:
0500

US East (N. Virginia)

Viewing 102

Storage class

Standard

Standard

Viewing 102

Q

OEBPS/assets/awsa_0309.png
EC2 Service Limits

Amazon EC2 provides different resources that you can use, such as instances and volumes. When you create your AWS account, AWS sets limits for these

resources on a per-region basis. This page lists your EC2 service limits in US East (N. Virginia).

Instance Limits

Running On-Demand EC2 instances (1)

Runhing On-Demand c1.medium instances
Running On-Demand c1.xlarge instances
Runhing On-Demand c3.2xlarge instances
Runhing On-Demand c3.4xlarge instances
Runhing On-Demand c3.8xlarge instances
Running On-Demand c3.large nstances
Runhing On-Demand c3.xlarge instances
Runhing On-Demand c4.2xlarge instances
Runhing On-Demand c4.4xlarge instances
Runhing On-Demand c4.8xlarge instances
Runhing On-Demand c4.large instances
Runhing On-Demand c4.xlarge instances

Running On-Demand cc1.4xlarge instances

Current Limit

20

20

20

20

20

20

20

20

20

20

20

20

20

20

Action
Request limit increase
Request limit increase
Request limit increase
Request limit increase
Request limit increase
Request limit increase
Request limit increase
Request limit increase
Request limit increase
Request limit increase
Request limit increase
Request limit increase
Request limit increase

Request limit increase

<

(2]

OEBPS/assets/awsa_1001.png
aws Services Resource Groups + [\ Federico Lucifredi ~ Global ~ Support ~

Back to Hosted Zones Creats Record Set Import Zone File Test Record Set LX)
Dashooard <
| Hosted zones QRecord Set Name X AyTyped| | AlassOnly | Weighted Orly it Record set
Name: example.com.
Health checks Displaying 1 to 2 out of 2 Record Sets
Type: SOA - Start of authority
Traffic flow Name Type | Value Evalusto Target Health | Health Chocl
Alias: Yes © No
Traffic policies ns-1930.awsdns-49.c0.uk.
770 awsdns- TTL (Seconds aco] | [am | [0 19
Policy records cxamplocom, g "T70avsdns2net . . «)
15-1067.awschs 05 g Volue:
st 051930 awsdns-49.co.uk. awsdns-
Domains hostmaster.amazon.com. 17200 900
Registered domains. B camplecom SOA ns1930awsdns-49.co.uk awsdns-hostmasterams: - - 1209600 86400
St of autrrty racord. Etr i tme
Pending requests alio o soconds
Fomat

{authoriy-domain] [domain-f-zone-adrin]
i {zone-seriaknumber] relfesh-ime]rety-time]
[oxpe-tme] (nogatvo caching TTL]
Exampie:
s oxampl.nol. hostmastor example.com. 1
7200 900 1209600 86400

Save Record Set

® Feedback @ English (US) yPolly Torms of Use

OEBPS/assets/awsa_050X.png
m FOO 1 week, 6 days ago
Foo Bar Baz!

& Link | # Reply
Current ratin

A Comment awaiting approval 1 week, 6 days ago

A Comment awaiting approval 22 hours, 38 minutes ago

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/assets/awsa_0312.png
Edit Permissions

The policy generator enables you to create policies that control access to Amazon Web Services (AWS) products and resources. For more information
about creating policies, see Overview of Policies in Using AWS Identity and Access Management.

Effect Allow © Deny'

AWS Service | AWS Application Discovery Ser ¢

Actions | -- Select Actions --

Amazon Resource Name .
(ARN)

Add Conditions (optional)

Add Statement

OEBPS/UbuntuMono-Italic.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

OEBPS/assets/awsa_0206.png
Amazon EC2 AMI Locator

s Ubuntu cloud images are uploaded and registered on the Amazon EC2 cloud, they are referred to as AMI (Amazon Machine Images). Each AMI s a machine template from which you can nstantiate new servers. Each AMI has ts own
unique . In order to aunch an nstance on the EC2 cloud, you first need to locate is 0. This page helps you quickly locate an AMI D, Here’s how to use it

‘Type a Few characters In the search box sgnifying what you're searching for. For example i you would like o find out the AMHD for the latest release of *Precise” Pangolin to run ona"64° bt “ebs" nstance in the “us-east” region, you
would search for “pre 64 us-east ebs’ or a subsek thereof. As 500n 35 you start typing nto the search bos, the lst 200ms-in o the entries that match your criteia.

You may search based on any of the column headers below.
Here's how to start an instance using the AMI ID you ust found

1- Locate the AMI-ID by searching the table below
2-Assuming your ec2 environment is setup, un an nstance by “ec2-run-instances ami-xxxcx -0 AWS_ACCESS_KEY -W AWS_SECRET_KEY"
‘OR click the ami ID, which will direct you to the AWS console.

NoteVersions ending i EOL are end-oFfe and are provided for reference only

Zone Name Version Arch Instance Type Release AMD AKHD

weastl trusy 1404175 amdss humiebs 20160312, amicaobozaz Tem.

useast trusy 1404175 amdes humebsiot 20160312 ami<s0b0223 hvm

wseast trusy 140417 amdss humebs-ssd 20160312 amidfos07bs. hvm.

useast trusy 1404175 amdes huminstance-store 20160312 ami-7d7d7c17 hvm

wseast trusy 140417 amdss ebs 20160312 ami-5d060707 aKi919dcafs

useast trusy 1404175 385 ebs 20160312 ami6d070607 aki-8f9dcacs.

wseast trusy 140417 amdss ebsiot 20160312 amia00805ca aKi919dcafs

useast trusy 1404175 385 ebsiot 20160312 ami<b0b0aat aki-8f9dcacs.

wseast trusy 140417 amdss ebsssd 20160312 ami62070600 aKi919dcafs

useast trusy 1404175 385 ebsssd 20160312 ami<10607ab aki-8f9dcacs.

wseast trusy 140417 amdss instance-store. 20160312 ami2c717046 aKi919dcafs

useast trusy 140417 3 instance-store 20160312 ami83626369 aki-8f9dcacs.
Ay B Ayt any i Ayt Ay i Ayt Ay i (A i

Showing 1t0 12 of 12 entries (ftered from 1,045 total entries)

OEBPS/assets/awsa_1103.png
~ Events

Filter by: Status ~
2018-01-23

> 01:00:15 UTC-050
0

> 01:00:13 UTC-050
0

> 01:00:13 UTC-050
0
01:00:13 UTC-050
0

> 01:00:11 UTC-050
0

> 01:00:10 UTC-050

Status

CREATE_COMPLETE

CREATE_COMPLETE

CREATE_IN_PROGRESS

CREATE_IN_PROGRESS

CREATE_COMPLETE

CREATE_COMPLETE

Type

AWS::CloudFormation::Stack

AWS::CloudWatch::Alarm

AWS::CloudWat

AWS::CloudWatch::Alarm

AWS::AutoScaling::ScalingPolicy

AWS::AutoScaling::ScalingPolicy

Logical ID

autoscaled-metric

WaltingTasksAlarm

WaltingTasksAlarm

WaltingTasksAlarm

‘ScaleDownPolicy

ScaleUpPolicy

Resource creation Initiated

OEBPS/assets/5.png

OEBPS/DejaVuSans-Bold.otf

OEBPS/DejaVuSerif.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/assets/awsa_0603.png
Services v Resource Groups v Federico Lucfredi v N. Virginia + Support v

CloudWatch
Dashboards
Alarms ‘

CPU vs Memory 1h 3h 12h 1d 3d 1w custom - Line - Actions ~ R o

100

Biling
Events
Rules

Logs nhs wm s mw zs | am ze | mw s om0 oo o
| Metrics N
® EC2/Memory MemUsage 8 AWS/EC2 CPUUtization

Allmetrics |~ Graphed metrics () | Graph options.

Label Namespace Dimensions Metric Na... Statistic @ Period@ YAxis Actions @

® = EC2/Memory Dimensions (1) ~ MemUsage Average smines [> AN -]
® A AWS/EG2 Dimensions (1) CPUUtlizatiol Average smintes [> AN -]

OEBPS/assets/7.png

OEBPS/assets/4.png

OEBPS/assets/awsa_1201.png
Backup

/A Please note that automated backups are currently supported for InnoDB storage engine only. If you
are using MyISAM, refer to detail here.

Backup retention period info
Select the number of days that Amazon RDS should retain automatic backups of this DB instance.

7days v

Backup window info
Select window

© Nopreference

OEBPS/assets/awsa_1003.png
Create Record Set

Name: ‘aws-book | example.com.

Type: | A-IPvé address
Alias: ®Yes O No.

Alias Target: | example-1.us-east-1.elb.amazonaws.c

Alias Hosted Zone ID: Z358XDOTRATXTK

You can akso typo ho domain namo for the rosource. Examplos:
- CloudFront istributon domain name: 111111 abodefd coudirontnet

- Elastc Beanstalk envionment CNAME: exampl.aasticbearstal com

- ELB load baancer DNS namo: examplo-1 us-0ast1 ol amazonaws.com
- 3 websto ondpoint: s3-websll.us-0ast.2 amazonaws.com

- Rosourca racord so in s hostod zone: ww examplo.com

| Leamtore

Routing Policy: | Failover ‘

Route 53 esponds to queies using primary record ses if any are healtry.
or using socondary rocord sots oherwise. Loar Moro

Failover Record Type: ® Primary O Secondary

Set ID: | aws-book-Primary

Evaluate Target Health: ® Yes © No

Associate with Health Check: © Yos

Create

OEBPS/assets/awsa_0303.png
§ |AM Policy Simulator Maode : Existing Policles - Federico Luoitredi ~ 8

Policies m Policy Simulator

Amazon EC2 v | 1Action(s)selec.. v | SelectAll | DeselectAll | ResetContexts | Clear Results (WGILETAENTY

Editing policy: ami-cleaner

; » Global Settings @

Jerslon 20062l Ol 2 Action Settings and Results [1 actions selected. 0 actions not simulated. 1 actions allowed. 0 actions denied.]

"Statement [
{ Service Action Resource Type Simulation Resource Permission
> Amazon EC2 DeleteSnapshot not required - allowed 1 matching statements.

*ge2:Describelmages®,
*ge2:DeleteSnapshot”,
*ge2:Deregisterimage’

1

"Resource" [

OEBPS/assets/awsa_0304.png
aws Services Resource Groups ~

Global ~ Support ~

Credential Report

Giick the button to download a report that lsts all your account's users and the status of their various credentials. After a report is created, it s stored for up to four
hours. For more information see the documentation.

Search 1AM

Dashboard
roups Download Report
Users

Roles

Polices

dentity providers

Account setings

| Credentia report

Encryption keys

® Feedback @ English (US) Privacy Polly Terms of Use

OEBPS/assets/1.png

OEBPS/assets/awsa_0503.png
Configure Advanced Settings

Network & Security

VPC*

Subnet Group
Publicly Accessible
Availability Zone

VPC Security Group(s)

Database Options

Database Name

Default VPC (vpc-93493517)
dofault
Yes

No Proference

Create new Securty Group
db (VPC)

db_clients (VPC)
db_servers (VPC)

myblog

Note: f no database name is specified then no initial MySQL database wil be created on the DB

Instance.

Database Port
DB Parameter Group
Option Group

Copy Tags To Snapshots
Enable Encryption

3308

defaut.mysqls.6

defauttmysql-5-6

No

