

1

2

By

Peter Shaw

Foreword by Daniel Jebaraj

3

Copyright © 2013 by Syncfusion Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal, educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability

arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

dited by

This publication was edited by Jay Natarajan, senior product manager, Syncfusion, Inc.

I

E

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

4

Table of Contents

The Story behind the Succinctly Series of Books .. 7

About the Author .. 9

Introduction ... 10

Chapter 1 So, what exactly is a GIS? .. 11

A Breakdown of the Components .. 12

External Data Collection ... 12

Static Data Production ... 12

Historical Data ... 12

Manual Data Loading ... 13

Regular SQL Queries ... 13

Location-Aware Inputs ... 13

Graphical Outputs .. 13

Statistical Outputs .. 14

Manual Processing Software.. 14

Automatic Processing Software ... 14

Transformation Tasks .. 15

Combinational Processing ... 15

Pre-Output ... 15

The Database .. 15

OGC What? ... 16

The Metadata Tables ... 17

What's Actually in the Metadata Tables? .. 18

Database Geometry Types .. 18

What Types Should I Use for My Data? ... 20

Metadata Tables, Part 2 ... 20

Coordinate and Spatial Location Systems ... 22

Degrees, Minutes, and GPS... 22

Chapter 2 The Software ... 26

Database Software .. 26

Postgres and PostGIS.. 26

MySQL ... 27

SQL Server .. 27

5

SQLite and SpatiaLite .. 28

Oracle Spatial .. 29

What about the rest? .. 29

GIS Desktop Software ... 30

ESRI ArcGIS .. 30

Pitney Bowes MapInfo ... 30

OpenJUMP .. 31

Quantum GIS ... 32

MapWindow ... 33

GeoKettle ... 34

The Remaining Packages .. 35

Development Kits .. 36

MapWinGis .. 36

DotSpatial .. 36

SharpMap .. 36

BruTile ... 37

And There's More... .. 37

The Demos .. 37

Chapter 3 Loading Data into your Database .. 39

Creating a Spatial Database .. 39

A Side Note about Postgres Users ... 43

Revisiting the Metadata Tables .. 45

Loading Points Using QGIS ... 46

Loading Boundary Polygons Using GeoKettle ... 50

Transformations and Jobs .. 51

Adding Transformation Steps ... 51

Configuring the Steps .. 54

Previewing the Data .. 61

Chapter 4 Spatial SQL ... 65

Creating and Retrieving Geometry .. 65

Output Functions .. 68

Testing the Output Functions ... 71

What Else Can We Do with Spatial SQL? .. 72

Chapter 5 Creating a GIS application in .NET .. 82

Downloading SharpMap .. 82

6

Creating Our Own SharpMap Solution... 83

Adding the Code .. 89

One Small Problem... ... 91

Back to the Code... .. 93

Initializing the map ... 94

Fixing the Status Label... 98

Wiring up the Tool Buttons ... 99

Adding Our County Info Query Code .. 100

Conclusion ... 104

Acronyms and Abbreviations .. 108

7

The Story behind the Succinctly Series
of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for

the Microsoft platform. This puts us in the exciting but challenging position of

always being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be

about every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are

being published, even on topics that are relatively new, one aspect that continues to inhibit

us is the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for

relevant blog posts and other articles. Just as everyone else who has a job to do and

customers to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books

that would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics

can be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything

wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The

book you now hold in your hands, and the others available in this series, are a result of the

authors’ tireless work. You will find original content that is guaranteed to get you up and

running in about the time it takes to drink a few cups of coffee.

Free forever

Syncfusion will be working to produce books on several topics. The books will always be

free. Any updates we publish will also be free.

S

8

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader

frameworks than anyone else on the market. Developer education greatly helps us market

and sell against competing vendors who promise to “enable AJAX support with one click,” or

“turn the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us

at succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the

topic of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/syncfusion
https://www.facebook.com/Syncfusion

9

About the Author

As an early adopter of IT in the late 1970s and early 1980s, I started out with a humble little

1-KB Sinclair ZX81 home computer.

Within a very short amount of time, this small, 1-KB machine led to a 16-KB Tandy TRS-80,

followed by an Acorn Electron, and eventually, after going through many different machines,

a 4-MB ARM-powered Acorn A5000.

After leaving school and getting involved with DOS-based PCs, I went on to train in many

different disciplines in the computer networking and communications industry.

After returning to university in the mid-1990s and receiving a BSc in computing for industry, I

now run my own consulting business in the northeast of England called Digital Solutions

Computer Software Ltd., where I advise clients on both hardware and software in many IT

disciplines, covering a wide range of domain-specific knowledge from mobile

communications and networks, to geographic information systems, to banking and finance.

With more than 30 years of experience in the IT industry across varied platforms and

operating systems, I have a lot of knowledge to share.

You can often find me hanging around the LIDNUG .NET users group on LinkedIn that I help

run, and you can easily find me in the usual places such as Stack Overflow (and its GIS-

specific board), and on Twitter as @shawty_ds.

I hope you enjoy the book, and learn something from it.

Please remember to thank Syncfusion (@Syncfusion on Twitter) for making this book and

others in the series possible, allowing people like me to share our knowledge with the .NET

community at large. The Succinctly series is a brilliant idea for busy programmers.

https://twitter.com/shawty_ds
http://twitter.com/Syncfusion

10

Introduction

Geographic information systems (GIS) are all around us in this day and age, but most

people, even developers, are not aware of the internals. Many of us use GIS through web-

based systems such as Google Maps or Bing Maps; as GPS data that drives maps and

address searches; and even when tracking where your latest parcel from Amazon is.

The world of GIS uses a complex mix of cartography, statistical analysis, and database

technology to power the internals that drive all the popular external applications we all use

and enjoy. In this guide I'll be showing you the internals of this world and also how it applies

to .NET developers who may be interested in using some GIS features in their latest

application.

11

Chapter 1 So, what exactly is a GIS?

To most people, what they see as a GIS is in fact just the front-end output layer, such as the

maps produced in Google Maps, or the screen on a TomTom navigation device. The reality

of it all extends far beyond that; the output layer is very often the end result of many

interconnecting programs along with massive amounts of data.

A typical GIS will include desktop applications used to visualize, edit, and manage the data,

several different types of backend databases to store the data, and in many cases a huge

amount of custom written software tools. In fact, GIS is one of the top industries where a

programmer can expect to write a very large amount of custom tooling not available from

other companies.

We'll explore some of the applications in detail soon, but for now we'll continue with the 100-

foot view. A typical GIS processing setup will look something like the following:

Figure 1: Typical GIS processing setup

As you can see in the diagram, the central part is very often the database itself with a huge

number of inputs and processing steps. Finally, the output layers (shown in red) are what

people usually associate with being a GIS.

Based on this, we can see that the database is the center of the universe when it comes to

GIS.

12

A Breakdown of the Components

Looking at the diagram in Figure 1, we can see that there are a number of parts that have

specific meanings. We have our inputs (blue), outputs (red), in-place processing (green),

and end processing (purple). At this point you might be asking yourself, "How is this different

from any other data-centric system I deal with?" and you'd be right to do so. The main

difference here is that in a typical GIS, you have to design everything in each component

from the very beginning. With a regular data-centric system, many of the components are

often optional or are combined into multifunctional components.

For a typical GIS, none of what you see in Figure 1 is optional, except for possibly your

inputs. Even then, the components you'll most likely see omitted are manual and historical

data.

So what do these separate entities entail, and why are they often not optional?

External Data Collection

As the name suggests, this is the process of gathering external data specific to the system

being designed. Typically this will come from custom devices running custom software (often

embedded or small scale) designed to create input data in a very specific form for the

system it is being used in. The lack of any in-place processing generally means the data

produced is in a format that is already acceptable in the setup.

This component is typically satisfied by many diverse pieces of technology, and in most

cases requires some training to use correctly. You'll often see things like digital surveying

equipment or specialized GPS devices fitted to vehicles, which in many cases will often feed

data back in real time using some kind of radio connection.

Static Data Production

Like external data, this process normally gathers data in a specific format for the system it is

being used in. Unlike external data however, you will generally find that static data is

produced in-house by scanning existing paper maps or digitizing features from existing

building plans, for instance.

Like external inputs, static data is often produced using custom software and processes

specific to the business.

Historical Data

Because of the size and amount of data produced in a typical GIS setup, there is often a

need to back up data into a separate archival system while still maintaining the ability to

work with it if needed. Often, data of this nature is created by planning authorities showing

things like land use over time or recording where specific points of interest are. This is

treated as a separate input because the data is usually read only, and similarly to external

and static data, was at one time produced specifically for the system.

13

Manual Data Loading

While the name of this type of input may suggest the same as external data, the actual data

obtained in this step is usually very different. Data coming into the system via this input will

often be in the form of pre-provided data from a GIS data provider. In the United Kingdom,

this will often mean data provided by companies like Ordnance Survey. In the United States,

this might mean data provided by institutions such as the U.S. Geological Survey or TIGER

data from the U.S. Census Bureau.

At this step, wherever data is obtained from, it's almost guaranteed that it will need to be

transformed into a format that is useable in the GIS it's destined for. More often than not, it

will need to go through some kind of in-place process before it's useable in any way.

Regular SQL Queries

Since most GIS have a large database at the center of them, SQL still plays an important

role and probably always will. However, in GIS terms, these queries not only involve the

normal SQL that you're used to seeing in a database management system, but also

geospatial SQL. We'll cover GIS-specific SQL a little later on; for now, inputs here are

usually generated from things like search queries.

As an example, when you type the name of a place or a ZIP code into Google, Bing, or

Yahoo Maps, the web application you're looking at will most likely turn your search into a

query that uses geospatial SQL to examine data in the core database. This, in turn, will be

combined with other processes to produce an output, which in this case will usually be a

map displaying the location you searched for. Another example might be an operator in an

emergency services control room entering the location of an incident, and combining that

with the known locations of nearby emergency vehicles to aid in making a decision as to

which vehicle to send to the incident.

Location-Aware Inputs

The last input type is probably the one that is familiar to most people. Location-aware data

most often comes from the GPS input on a mobile phone or other GPS-enabled device. It is

generally common latitude and longitude information. We'll cover this more when discussing

NMEA data.

Graphical Outputs

Now we move to the output layers, the first of which is the graphical one and what most

people are familiar with. Output data here is very often in the form of a raster-based map

with all operations performed to produce a single output tile in the form of a standard bitmap

(such as a .jpeg). However, far more is involved than simple map tiles. Graphical outputs

can, and very often are, produced in various vector formats, or as things like AutoCAD

drawings for loading into a CAD or modeling package. In fact, even in web environments

where people are used to seeing bitmap tiles, it's common for graphical output to take the

14

form of SVG or KML data combined with a custom Google Maps object. Raster tiles are just

the tip of the iceberg.

Statistical Outputs

Outputs in this group are the complete opposite of graphical outputs. Data is often the by-

product of several GIS–SQL operations based on the input data and processes going on

within the system. Just like general database data, from this output you'll get facts and

figures that can be used to report statistics to management or marketing teams. The reason

we treat this separately, however, is because of the nature of the information.

While you might be tempted to just say, "It's only numbers," in some cases it's numbers that

have no meaning unless there is some GIS input involved. As an example, let's say we have

a number of geographic areas representing plots of land, and with each of those areas we

have a monetary value for that plot.

We can easily say, "Give me the values of each plot in descending order," enabling you to

see which is the most expensive piece of land overall. This is where the difference stops,

however. Let's say we now know that all land in a district has a 1% tax for every square

meter a plot consumes. We know by looking at a graphical output of the map that the

visually bigger areas are going to be more expensive, but you can't convey that to a

computer.

You can, however, ask using GIS–SQL for a statistical analysis based on a percentage of

the land's plot value multiplied by however many square meters are in the defined area

boundary.

Manual Processing Software

Anything in the system that requires an operator and some software to make changes falls

under the category of manual processing software. Typically, this is both an input and an

output because in most cases this involves changes being made to the underlying data

manually.

This is usually the area where you'll see large GIS packages such as ESRI, DigitalGlobe,

and MapInfo used. We'll cover some of these later. An example of what might be performed

at this stage is boundary editing. Let's say that you added some town boundaries as area

definitions several years ago, and since they were first added the towns have increased in

size. You would then find a GIS expert who, with his or her chosen software and some

satellite imagery, would edit your boundary data so that its definition better fits the newly

expanded imagery.

Automatic Processing Software

Operations running at this stage are generally not much different than those being run

manually. The reason we see a clear separation is because some processes simply cannot

be automated and need a human eye to pick out details. Going back to our previous

15

example of the town boundaries, it's not beyond imagination that a process can be defined

to analyze an aerial image and determine if boundaries need to be removed.

Most often, however, automatic editing is used to perform tasks such as drift correction or

height and contour changes due to earth movement.

Transformation Tasks

As mentioned in the discussion of manual data input, when obtaining data for incorporation

into a GIS, the data will rarely be in a format suitable for inclusion in the system.

Making the data usable may involve something as simple as a coordinate transform, or

something as complex as combining multiple datasets based on common attributes and

more. Transformation processes can and often do seriously affect the overall data quality,

and many systems can end up with a lot of deeply rooted problems caused by mistakes

when transforming data.

In the U.K., these processes are almost always seen when working with latitude and

longitude coordinates, as nearly all the data supplied by U.K. authorities will be in meters

from the origin, rather than degrees around the center.

Combinational Processing

Combinational processing is generally in-place processing that is the result of various input

operations. It's not too different from using a join in a regular database operation. The result

is a combination of processes and input data steps that ultimately work in real time to

produce a defined input data set.

Pre-Output

Last but not least is the pre-output step. As the name suggests, this is the final processing

required before the output is useable. A pre-output process may include transforming an

internal coordinate system to a more global one; for example, U.K. meters back to a global

scale, or converting a batch of statistics to a different range of values. Location-aware inputs

are often included in this step, typically in a navigation system. For example, a location's

graphical representation could be combined with current mapping to produce a visual output

for a tracking map.

The Database

So just what makes a GIS database so different from a normal database? Honestly, not

much. A GIS database is simply specialized for a particular task.

A better way to illustrate what makes a GIS database unique is to look at the growing world

of big data. These days, it's hard not to notice how much noise is being made by NoSQL and

document-centric database providers. These new-breed databases fundamentally do the

16

same things as a normal database, but use specialized processes that perform particular

operations in better, more efficient ways.

Looking at a GIS database through the lens of a non-GIS connection, the geometric data is

nothing more than a custom binary field, or blob, that the software and processes working

with the system know how to interpret. In fact, it's possible to take a normal database engine

and write your own routines, either in the database or in external code, to perform all of the

usual operations you would expect but with GIS data.

In general, when a database is spatially enabled, it will have much more than just the ability

to understand the binary data added to it. There will be extensions to the SQL language for

performing specialized GIS data operations, new types of indexes to help accelerate

lookups, and various new tables used to manage metadata pertaining to the various types of

GIS data you may need to store.

I'm not going to list every available operation in this book, only the most important things you

need to know to get started. At last count, however, there are more than 300 different

functions in the last published OGC standards.

OGC What?

The OGC standards are the recommendations set by the Open Geospatial Consortium.

They define a common API, a minimum set of GIS–SQL extensions, and other related

objects that any GIS-enabled database must implement to be classified as OGC compliant.

Because of the diversity of GIS and their data, these standards are rigorously enforced. This

enables nearly every bit of GIS-enabled software on the planet to talk to any GIS-enabled

database and vice versa using a common language.

Note that when selecting a database to use, there are many that claim to be spatially aware

but are not OGC compliant. Prime examples are MS SQL and MySQL.

In general, MS SQL features the OGC-ratified minimum GIS–SQL and functional

implementation, but its calling pattern varies significantly from most GIS software. MS SQL

also features changes to column names in some of the metadata tables, which means most

standard GIS software cannot talk to a MS SQL server. Note also that MS SQL didn't add

any kind of GIS extensibility until 2008, and even in the newer 2008 R2 and 2012 versions,

the GIS side of things is still not completely OGC compliant.

MySQL has similar restrictions, but also treats a number of core data types very differently,

often leading to rounding errors and other anomalies when performing coordinate

conversions. You can find the full list of OGC standards documents on the OCG website at

http://www.opengeospatial.org/standards/is.

A good place to look for information comparing various databases is on the BostonGIS

website at

http://www.bostongis.com/?content_name=sqlserver2008r2_oracle11gr2_postgis15_compar

e#221.

There are also a number of other good starter articles on the site. The downside is that the

site is cluttered and sometimes very hard to read.

http://www.opengeospatial.org/standards/is
http://www.bostongis.com/?content_name=sqlserver2008r2_oracle11gr2_postgis15_compare#221
http://www.bostongis.com/?content_name=sqlserver2008r2_oracle11gr2_postgis15_compare#221

17

The Metadata Tables

All OGC-compliant GIS databases must support two core metadata tables called

geometry_columns and spatial_ref_sys. Most GIS-enabled software will use the existence

of these tables to determine if it is talking to a genuine GIS database system. If these tables

don't exist, the software will often exit.

A good example of this was with early versions of MySQL where the table names were

reserved by the database engine, but did not physically exist as tables. This would cause the

MapInfo application to attempt to create the missing tables, but it would receive an error on

trying doing so, thus preventing the database from being used correctly by the software.

The geometry_columns table is used to record which table columns in your database

contain geospatial data along with their data type, coordinate system, dimensions, and a few

other items of related information.

The spatial_ref_sys table holds a list of known spatial reference systems, or coordinate

systems as they may be better known. These coordinate systems are what define

geographic locations in any GIS database; they are the glue that allows all the functionality

to work together flawlessly, even with data that may have come from different sources or

been recorded using different geographic coordinate systems.

The entries in the spatial_ref_sys table are indexed by a number known as the EPSG ID.

The EPSG, or European Petroleum Survey Group, is a working group of energy suppliers

from the oil and gas industry who confronted a common problem that arose when surveying

the world's oceans for oil reserves: positioning on a global scale. Some companies used one

scale, others used a different scale; some used a global coordinate system, while others

used a local one.

The group's solution was to record the differences between each scale and the information

required to convert from one scale to another reliably without any loss of precision.

Today, every GIS database that claims to be OGC compliant includes a copy of this table to

ensure that data conversions from one system to another are performed with as much

accuracy as possible.

We'll cover the actual coordinate systems a little later in the book. For now, all you really

need to be aware of is that if the spatial_ref_sys table does not exist or has no data in it,

you will be unable to accurately map or make real-world translations of any data you

possess.

Also note that it is possible to save space by removing unnecessary entries from this table. If

your data only ever uses two or three different coordinate systems, it's perfectly acceptable

to remove the rest of the entries to reduce the size of the table. This can be especially useful

when working with mobile devices.

If you only work with data in your own range of values, arguably there can be no data in the

spatial_ref_sys table at all. I would, however, caution you against removing the table

entirely. As previously mentioned, most GIS software will look for the presence of this and

the geometry_columns table to signify the existence of a GIS-enabled database.

18

What's Actually in the Metadata Tables?

The geometry_columns table holds data pertaining to your data and has the following

fields:

f_table_catalog The database name the table is defined in.

f_table_schema The schema space the table is defined in.

f_table_name The name of the table holding the data.

f_geometry_column The name of the column holding the actual data.

coord_dimension The coordinate dimension.

srid The spatial reference ID of the coordinate system in use.

type The type of geometry data stored in this table.

The catalog, schema, and name fields are used in different ways by different databases.

Oracle Spatial, for example, has a single geometry_columns table used for the entire

server, so the catalog field is used to name the actual database. Postgres, however, stores

one geometry_columns table per database, so the catalog field will usually be empty. On

the other hand, the schema field is used in both Postgres and MS SQL. In Postgres, the

field is usually set to public, whereas in MS SQL it's normally set to dbo for the publicly

accessible table set.

The table name and column name are pretty self-explanatory. The coordinate dimension in

most cases will be 2, meaning that the coordinate system has only x-coordinates and y-

coordinates. Postgres and Oracle Spatial do have 3-D capabilities, but I've yet to see them

used very much outside of very specific circumstances, and I've never seen a

coord_dimension field set to anything other than 2.

We'll cover the srid field in just a moment. The type, however, needs further explanation.

Database Geometry Types

Any OGC-compliant database has to be able to store three different types of primitives. They

are:

 point

 line

 polygon

The names themselves are fairly explanatory. A point is a single x, y location. A line is a

single segment connected by two x, y end points. A polygon is an enclosed area where a

number of x, y points form a closed perimeter.

19

However, the three base types are not the only geometry types you'll work with. There are

variations such as:

 linestring

 multilinestring

 multipolygon

Plus a few others that are rarely used.

A linestring can be thought of as a collection of line objects where each point, except for the

start and end points, is the same as the start or end point of the adjacent line. For example:

1,2 2,3 3,4

would be a linestring that starts at 1,2, goes through two segments, and ends at 3,4.

A multilinestring can be thought of as a collection of linestrings. For example:

(1,2 2,3 3,4) (6,7 7,8 8,9)

would be two linestrings running from 1,2 to 3,4, and from 6,7 to 8,9, each consisting of two

segments. The two linestrings would have a gap between them.

A multipolygon, as the name suggests, is a collection of polygons, but with a twist. Polygon

definitions cannot overlap if they are in the same graphical object. This is illustrated in

Figures 3 and 4.

Figure 2: Valid Multipolygon Figure 3: Invalid Multipolygon

A multipolygon must contain at least one polygon that encloses all other polygons in the set.

This is known as the outer ring. Within this boundary, the other polygons often form holes in

the outer ring. This is used for building plans with courtyards, road layouts with roundabouts,

anything where an enclosed section needs to be removed from the internal area of the

defined shape.

Many spatial databases, however, will define even single polygons as multipolygons. This is

done so that it's easy to insert cutouts if needed at a later time.

20

What Types Should I Use for My Data?

The data types you use depend what your data is representing. If you have a series of

locations representing shops, you'll most likely just want to define those as points. If, on the

other hand, your data represents roads between those points, a multilinestring is probably a

better choice. If you want to mark the building outlines of each shop, you'll want to use a

polygon or multipolygon depending on the complexity of the structure.

There are no hard and fast rules for data types. You only have to keep in mind that if you

don't use a data type appropriate for the operations you expect to perform, you're almost

certain to end up with errors in any calculations you do.

Think back to our shops. If you're searching for the largest one, you need to test for area,

and you can't test for area using a single point. On the other hand, if all you want to do is

provide a searchable map for a customer to find his or her closest shop, you don't need to

store more data than you need, so a simple point will do.

Enough of data layout for now. We'll come back to it in a while. Let's continue with the

metadata tables.

Metadata Tables, Part 2

As mentioned previously, the spatial_ref_sys metadata table holds conversion data to allow

conversions from one coordinate system to another.

Each entry in this table contains specific information such as units of measurement, where

the origin is located, and even the starting offset of a measurement.

Most of us are familiar with seeing a coordinate pair such as this:

54.852726, -1.832299

If you have a GPS built into your mobile phone, fire it up and watch the display. You'll see

something similar to this coordinate pair. Note that on some devices and apps, the

coordinates may be swapped.

This coordinate pair is known as latitude and longitude. The first number, latitude, is the

degrees north or south from the equator with north being positive and south being negative.

The second number, longitude, is the degrees east or west of the Prime Meridian with west

being negative and east being positive. The correct geospatial name for this coordinate

system is WGS84. Its SRID number is 4326 in the spatial_ref_sys table.

We'll come back to the different coordinate systems and why they exist in just a moment. For

now, let's continue with the description of the spatial reference table. The spatial_ref_sys

table has the following fields:

srid The spatial reference number as defined by the OGC standards.

auth_name The authenticating body for this SRID, usually the EPSG.

21

auth_srid
The SRID as defined by the authenticating body, which is normally the same as
the SRID defined by OGC standards.

srtext The definition text used to map the spatial difference in projcs format.

proj4text The definition text used to map the spatial difference in proj4 format.

Everything in the spatial reference table is straightforward types for integers and strings. The

srtext and proj4text have different meanings depending on what software is reading them.

The srtext field holds information for the projection, ellipsoid, spheroid, and other essential

information that allows any software to be able to translate from one coordinate set to

another. We'll cover this a little more later, but a complete description of everything you will

find in this field is well beyond the scope of this small book. In fact, the smallest book I've

seen describing the basics was over 500 pages!

The proj4text field serves a similar purpose but is used by applications using the open

source Proj.4 library.

Proj.4 and Geos were two of the first open source libraries to be used by many different

spatial databases and GIS applications. These two libraries are now used in close to 100%

of all commercial and open source software used for any kind of spatial or GIS work. Both

libraries are still actively maintained and are available for every platform you would expect to

work with. We'll meet them again later when we take a brief look at some of the GIS

software available for the .NET developer.

For now, all you need to be aware of is that in order to support different spatial coordinate

systems, you must have entries in the spatial_ref_sys table.

As previously mentioned, you don't need every entry in the table; you can get by using only

the SRIDs that your geometry, database, and software use. Since I live in the U.K., I typically

use:

OSGB36, SRID: 27700—Ordnance Survey, meters with false offset at origin.

and

WGS84, SRID: 4326—Worldwide latitude/longitude, degrees with

minute/hour/seconds offset, origin at 0 degrees latitude (the equator) and 0 degrees

longitude (the Prime Meridian).

For other territories, you can import the entire table and see which works best, or you can

look up your territory on the EPSG site at http://www.epsg-registry.org/ and grab only the

definitions you need. If you are using Postgres or PostGIS as your spatial database, the

spatial_ref_sys table is populated in a database template with all the known SRIDs

available when you install the database. Creating your own databases is simply a matter of

using this template to have a fully populated table from the start.

http://www.epsg-registry.org/

22

One note of caution before we move on: some databases, while they do support the

geometry_columns and spatial_sys_ref metadata tables, don't create them by default. MS

SQL 2008 is noted for this; it uses its own methods for storing spatial metadata. You may

find that in some cases you will be required to create some of these tables manually before

you can use your database. Additionally, you may also find that some databases create the

tables but use a slightly different naming convention, especially for the geometry_columns

table. For this reason, it's always better to use the official OGC-compliant spatial SQL

command set (which can be downloaded from http://www.opengeospatial.org/standards/sfs)

to manipulate the data in these tables, rather than trying to manipulate the entries directly.

Coordinate and Spatial Location Systems

Before we can get onto the technical fun stuff and start to play, we have to cover a little more

theory. You must understand why all these different SRIDs and coordinate systems exist.

I'd like to send you merrily on your way into your first GIS adventure right now and say this

stuff really doesn't matter; however, the truth is I can't and it does matter. In fact, it matters a

great deal.

If you don't comprehend this coordinate stuff correctly, it's possible to map an automobile's

track as being in the middle of the Atlantic Ocean. While this may not matter for the

application you're working on—you may be looking at a general overview of customer

dispersal, for example—you should still try to make sure your application is as accurate as it

can possibly be.

So the answer to the million-dollar question, "Why do we have to deal with all this coordinate

stuff?" boils down to one thing, and one thing only:

The Earth is not flat.

There, I said it. And all naysayers out there who still believe it is need to build themselves a

top-notch GIS and check it out.

Jokes aside though, it's the fact that our planet is a sphere that causes all these coordinate

system headaches. To make matters even worse, our humble home is not even a perfectly

round sphere. It's slightly elongated around its axis, a little like a rugby ball, but not quite as

pronounced. This causes further complications because the math we need to use as we look

at positions closer to the poles must compensate for the differences in the Earth's curvature.

Degrees, Minutes, and GPS

Okay, so how exactly do we deal with this curvature? There MUST be one measurement

that makes sense throughout the whole globe, right? If not, then how on Earth do airplanes

and ships navigate from country to country without getting lost or having to keep track all of

these different SRIDs?

You'll be pleased to know there is, but it's not as straightforward as just mapping an x

position and a y position at a certain place on the globe.

http://www.opengeospatial.org/standards/sfs

23

If you look at any geography textbook or world map, you'll see the Earth is divided into

rectangles. These rectangles are formed from the lines of latitude and longitude that make

up our planet's wireframe model. It looks something like the following:

Figure 4: Earth's wireframe model

Each horizontal and vertical line represents one or more whole degrees depending on the

scale factor being used. Minutes are then used to offset the position within that grid square.

When we express a latitude of 50° 25' 32" N, what we are actually saying is 50 degrees

latitude, plus 25 minutes and 32 seconds north into that square, in simple terms. There's a

little more complexity to it if truth be told, but unless you're navigating the high seas or

piloting a commercial airliner, you're probably not going to need to go into that much detail.

The same works for longitude. Everything is expressed as a positive number, so west of the

Prime Meridian is suffixed with a W, and everything to the east is suffixed with an E.

Combining these with the north and south longitude designations divide the planet into four

quadrants of 180 degrees each.

How is this of any relevance to the GIS developer?

If you're looking to retrieve the data from any commercial-grade GPS, particularly those built

into mobile phones, you'll almost always come face to face with the National Marine

Electronics Association and its standards for electronic navigation devices to communicate,

known as the NMEA 0183 standard. Opening the GPS port on just about any device will

produce a constant stream of data that looks very similar to the following:

$GPGGA,092750.000,5321.5802,N,00630.3372,W,1,8,1.03,61.7,M,55.2,M,,*76

$GPGSA,A,3,10,07,05,02,29,04,08,13,,,,,1.72,1.03,1.38*0A

$GPGSV,3,1,11,10,63,137,17,07,61,098,15,05,59,290,20,08,54,157,30*70

$GPGSV,3,2,11,02,39,223,19,13,28,070,17,26,23,252,,04,14,186,14*79

This data stream is the navigation data emitted by the GPS circuitry in the device in

response to what it's able to receive from the GPS network orbiting the Earth. We'll come

back to this in more detail in a later chapter. For now, I'd like to draw your attention to the

first line of this data, specifically the following entries:

5321.5802,N and 00630.3372,W

24

These are the GPS' current location expressed as degrees and minutes. Deciphering them

is not hard once you get used to it, but it can be a little strange at first.

The format of the string is DDMM.mmmm for the latitude (vertical) direction and

DDDMM.mmmm for the longitude (horizontal) direction.

Starting with the north (latitude) measurement in the string, the first two digits are the

number of degrees, and the remaining numbers are the minutes. The numbers after the

decimal point are fractions of a minute. This gives us:

53 degrees, 21.5802 minutes north

For the longitude measurement, the first three digits are the number of degrees, and the

remaining digits are the minutes. All the numbers after the decimal are fractions of a minute.

This gives us:

6 Degrees, 30.3372 minutes west

Because this data is string data, it's essentially an exercise in cutting the string at specific

points to derive the values you want. Once you have them, the math to convert them to the

more familiar latitude and longitude (if you remember that was WGS84) format is very

simple.

First, you need to separate the first two digits from the latitude string and the first three from

the longitude. This gives us the following:

53 and 21.5802 for the north direction

006 and 30.3372 for west

Because there are 60 minutes in a degree, we must divide the minutes digits by sixty to find

what fraction of a degree they are, and then combine them with our whole degrees. So, for

our latitude:

53 + (21.5812/60) will give you 53.359686 degrees.

And for our longitude:

6 + (30.3372/60) will give you 6.505620 degrees.

You get simple positions from the numbers. To finish the conversion, you need to apply the

north and west directions as positive or negative numbers. The easiest way to manage

which directions are positive or negative is to change any west or south measurements to

negative. So with our numbers, the final coordinates in WGS84 latitude and longitude are:

53.359686, -6.505620

WGS84 is a global coordinate system standard, and while it is widely used, using it for

everything can cause some problems. Because WGS84 is designed to cover the globe, it's

designed also to be very lenient with the curvature of the planet. Think back to the wireframe

globe in Figure 4. Notice the shape of the rectangles as they near the top of the globe.

25

You can see in the diagram that the rectangles become longer and narrower. This stretching

also has to be accounted for in the coordinate system. Over long distances, it can cause

rounding and deviations to occur in your data.

If you're dealing with a territory where you only have a defined area of operation, using a

coordinate system more suited to that area is the preferred way of working. As I mentioned

previously, for me here in the U.K. it's often better for me to convert these WGS84

coordinates to OSGB36 before storing them in my database. As we'll see later when we start

looking at spatial SQL, your GIS database can do this on the fly when set up correctly.

That's pretty much all you need to know as a developer. There's much deeper stuff you can

dig into such as spheroid and airy calculations, geodetic measurements, and a lot of that

trigonometry stuff from school. The fact is that your GIS database and many of the tools

you'll use will actually do the vast majority of the heavy lifting for you. So while having a good

knowledge of the actual formulas used by the systems and the Proj.4 strings may be

interesting, I assure you of one thing: it will end up giving you a brain ache.

In the next chapter, we start to move onto more interesting things, starting with the software

we'll be using.

26

Chapter 2 The Software

Having a well-designed GIS database is great, but what software do you need aside from

that?

Unless you're doing everything from scratch, you'll need some kind of editing application,

some way to load your data, and most likely some kind of real-time data too.

The major problem is expense. You will quickly find that GIS software is probably one of the

most expensive software markets on the planet. Dollar for dollar, the overall cost for most of

these applications vastly outweighs your typical yearly operating system site license costs

for a small office—often for just one user in one app for 6 months.

Fortunately for us, there is also a huge open source and free software movement around

GIS mostly operated and managed by the Open Source Geospatial Foundation (OSGeo).

The OSGeo website at www.osgeo.org is the main hub for finding links to all the open

source and spatial tools available in the market today, as well as many links to tutorials,

news, and paid-for providers. They are a sponsor funded organization, and rely on groups

using the software to improve it and feed it back into system.

For those companies that don't like open source and require service and support contracts,

many of the open source offerings available do have such packages available for a small

cost.

Let's look at some of the choices available.

Database Software

Postgres and PostGIS

This combination is to the open-source GIS scene what the godfather is to the mafia. It's the

granddaddy of all GIS databases. It's fully OGC compliant, absolutely rock solid, time tested,

and is supported by every bit of GIS software on the planet.

Those who know their databases will know that Postgres has been around for a very long

time. It was originally a University of California, Berkley product started in 1986 by a

computer science professor named Michael Stonebraker. In 1995, two of Stonebraker's

students extended Postgres to SQL, and in 1996 their innovation left the classroom for the

world of open source.

Refractions Research realized that Postgres had enormous potential, and in 2001 set about

making an open source add-on for servers to give them full geographic and spatial

capabilities, ultimately producing PostGIS. From there, it's grown into a top-class database

system for enterprise and shows no signs of slowing down.

http://www.osgeo.org/

27

MySQL

Originally developed as a simple-to-use open source database from the beginning, MySQL

has included basic geometry types since at least v3.23. They may have been present earlier,

but there is no documentation for them prior to 3.23, and no mention of them in the history of

the database.

Version 3.23 documentation clearly states that the database is not fully OGC compliant. In

particular, the geometry_columns metadata table is not supported, and many of the

standard functions are renamed to be prefixed with a G—GLength, for example, so as not to

cause issues with the standard Length function. The level of support for GIS across different

versions of MySQL is questionable.

In more recent versions—I'm reading the version 5.6 documentation as I type this—the core

engine does seem to be more OGC compliant, and I certainly know of people who use it as

the central component in some complex GIS. Given that this is one of the few systems that

ships with support for GIS operations, there's no need to install third-party components to

spatially enable it.

MySQL is a very capable and fast system. It's also incredibly easy to administrate and has

enormous support in the community despite having been recently acquired by Oracle as part

of its buyout of Sun Microsystems. Its future is still a little uncertain, but one thing is sure: it

will remain at the center of most LAMP and WAMP open source web stack installations for

some time to come. You can learn more about MySQL at www.mysql.com.

SQL Server

Since this book is intended for .NET and Microsoft developers, I'm not going to delve into

SQL Server too much as most readers will know a lot of the capabilities of the system

already.

GIS functionality in the core product is a relatively new thing that was not fully introduced

until SQL Server 2008. Prior to this, there were a few unofficial third party add-ons that

spatially enabled SQL Server 2003 and SQL Server 2005, but these never really delivered. I

remember trying an add-on for SQL Server 2005 that repeatedly crashed the server only

when certain functions were called!

Even though SQL Server 2008 has GIS functionality baked in, it is probably the most non-

OGC compliant OGC compliancy I've seen in any product.

Let me explain: SQL Server 2008 implements all the functionality required in the OGC

specifications, functions such as ST_GeomFromText or ST_Polygonize and so on. But

because SQL Server is a CLR-based assembly, it doesn't allow functions to be accessed in

the same way. I'll discuss the SQL more in-depth later; for now, consider the following:

Standard OGC-compliant SQL

SELECT id,name,ST_AsText(geometry) FROM myspatialtable

http://www.mysql.com/

28

SQL Server 2008 OGC-compliant SQL

This minor difference causes all sorts of issues. In particular, it means that any software

using SQL Server 2008 as its backend needs specialized data adapters (usually based

around ODBC) to translate calls to the server in an OGC-compliant way. In fact, most GIS

software has only just recently started to provide built-in support via ODBC.

One positive aspect for .NET developers using SQL Server is direct support in .NET via the

Entity Framework and its Geometry and Spatial classes. If you’re working solely on the

.NET platform, there is a strong argument for not needing to use anything other than SQL

Server. If, however, you need access to GIS in general and the underlying SQL to

manipulate it, SQL Server is not the best choice.

The official SQL Server website is www.microsoft.com/sqlserver/en/us/default.aspx.

SQLite and SpatiaLite

SQLite is not strictly a database server, but one of the new generation single-file database

engines designed to be embedded directly into your application. SQLite has amazing

support on a massive number of platforms, and is possibly one of the most cross-platform

kits I've had the pleasure to use.

Compared to the big three already mentioned, SQLite is a relative newcomer to the scene,

but it runs remarkably well and is incredibly efficient, especially on mobile platforms. In fact,

it's so good on mobile platforms that it's been chosen as the database engine of choice on

Android devices and Apple's iOS, as well as featuring full support on Windows Phone

through the use of a fully managed .NET interface.

SpatiaLite, the spatial extension for the SQLite engine, is not so lucky. Its sources are

available, but built binaries are only provided for the Windows platform. For any other

platform you'll need to download the source and then port it to your platform of choice. While

this is not difficult, the sources are all in standard ANSI C and can be a little tricky to get

working, especially if you have very little native C or C++ experience.

There are binary builds available for platforms other than Windows, but these are very

fragmented and often out of date. Bear in mind also that SpatiaLite, like much of the open

source GIS-based software available, depends on Proj.4, GEOS, and other libraries to

provide many of its advanced features. If you have to custom build SpatiaLite for your

platform, you'll likely have to custom build the dependent libraries as well.

Does this put SQLite and SpatiaLite out of the picture? Not really. I have yet to find anything

else that works on so many different mobile platforms with such a consistent API. While

there is some work involved, building for your platform is quite simple in most cases, and

SELECT id,name,geometry.astext() FROM myspatialtable

http://www.microsoft.com/sqlserver/en/us/default.aspx

29

certainly no more complex than the work that needs to be performed when installing

Postgres/PostGIS, MySQL, or SQL Server. However, unless you need spatial capabilities

that are universally mobile, SQLite and SpatiaLite are probably not worth the effort.

The SQLite website is sqlite.org. Its .NET interface is available at

http://system.data.sqlite.org/index.html/doc/trunk/www/index.wiki.

The SpatiaLite website can be found at www.gaia-gis.it/gaia-sins/index.html.

Oracle Spatial

Unless you're a multimillion dollar enterprise, it's very unlikely you are going to have access

to Oracle Spatial. Oracle Spatial is to the commercial world what Postgres is to the open

source world.

It's big, it's hungry, it costs an arm and a leg to license, and the learning curve is probably

steeper than climbing Mount Everest.

Many government agencies in the U.K. use it for their mapping and planning work, and

larger companies such as oil and gas giants deploy multibillion-dollar infrastructures based

around it to support their survey work. If you're in a position where you are using this, then

you most likely won't be talking to the system directly; you'll already have software set up for

you that manages everything the database can do. Systems built around Oracle are

generally designed specifically by Oracle's consultants for a specific purpose, and have an

entire toolkit built around them at the same time. Most of the software I mention in this book

does not—to the best of my knowledge—have the ability to connect to Oracle Spatial; or if it

does, the setup and operation of doing so is tremendously complex.

The official Oracle Spatial website can be found at

www.oracle.com/us/products/database/options/spatial/overview/index.html.

What about the rest?

There are many more database packages available out there. Some support GIS out of the

box, and some don't. Some of them need third-party add-ons or involve a complicated setup.

The reason for leaving others out is because there is simply not enough room in this book. If

you decide to explore additional databases, you may want to check out the following:

 MongoDB at www.mongodb.org

 SpaceBase at paralleluniverse.co

 CouchDB at couchdb.apache.org

 CartoDB at cartodb.com

SpaceBase in particular looks like it could be a lot of fun. Its primary goal is to track and

store online MMO-based game characters and assets in a near real-time 3-D world for

multiplayer games.

http://sqlite.org/
http://system.data.sqlite.org/index.html/doc/trunk/www/index.wiki
http://www.gaia-gis.it/gaia-sins/index.html
http://www.oracle.com/us/products/database/options/spatial/overview/index.html
http://www.mongodb.org/
http://paralleluniverse.co/
http://couchdb.apache.org/
http://cartodb.com/

30

GIS Desktop Software

In order to manipulate your GIS assets you need a good desktop application—preferably

one that not only allows you to view and manipulate your data, but also allows you to import

and export data with relative ease.

The latter point is also important because the sole purpose of some applications is to move

data into and out of your system, and other applications are made only for viewing data.

Applications for moving data are commonly known as ETL (Extract, Transform, and Load)

packages. ETL packages are available for many database engines in general, not just for

those designed to manipulate geospatial data.

Fortunately, most software allows you to do both. Starting with these packages, here are

some of the more well-known ones:

ESRI ArcGIS

One of the big players in the market, ESRI, has been providing GIS and mapping software

now for over 20 years. The software is like many GIS packages: quite expensive, and

certainly outside the price range for most hobbyists and small and medium enterprises. ESRI

does, however, offer a free product called ArcGIS Explorer Desktop that can be used to

make basic maps and produce your own mapping data.

One thing to note about ArcGIS Explorer Desktop is that it can be used to look at imagery

from Bing's and Google's mapping services. As you can see in the following screenshot, I've

marked some features in the City Centre of Newcastle-upon-Tyne, England:

Figure 5: A Modified Existing Map in ArcGIS Explorer Desktop

You can find out more about ArcGIS Desktop Explorer and other ESRI software at

www.esri.com/software/arcgis/explorer.

Pitney Bowes MapInfo

MapInfo, like the ESRI suite, is a large commercial package designed with the enterprise in

mind. I know from my own experience that it's used by a lot of utilities companies such as

http://www.esri.com/software/arcgis/explorer

31

mobile phone operators for managing their network map assets. Like Oracle Spatial, you'll

rarely come across this package unless you have a very specialized management system

for your geospatial data.

While it can load and work with all the common map formats and services like Bing, Google,

and others, MapInfo's primary design is to handle non-standard data in large, heavily

customized GIS databases. Its strength lies in its ability to be extended using its own

programming language called MapBasic that is often deployed in many custom

configurations. For instance, it may be deployed in a wireless service's operator consoles for

showing where network faults are located, or at a delivery service for keeping track of its

vehicles.

You can find more info about Pitney Bowes MapInfo at

www.pbsoftware.eu/uk/products/location-intelligence/.

OpenJUMP

Now we come to the first of the open source desktop offerings, OpenJUMP. Designed from

the start to be open source, it's built using the Java platform, and as expected can talk to

most of the GIS databases in use today.

It allows you to load and view your own spatial data, handle shapefiles and GML files, and

export maps as SVG for display on the web.

Its primary purpose is to edit mapping data in preparation for creating vector maps for web

use. I've personally never used OpenJUMP, but it seems like a very capable package for

creating web maps from scratch.

Figure 6: Using OpenJUMP

You can find more out about OpenJUMP at www.openjump.org.

http://www.pbsoftware.eu/uk/products/location-intelligence/
http://www.openjump.org/index.html

32

Quantum GIS

There's nothing I can say that does Quantum GIS (QGIS) justice. This package can do just

about anything. It's on par with applications such as ESRI and MapInfo, fully open source,

and officially supported by the OSGeo Foundation.

The main application is written using Python, and as a result will run on Linux, Mac OS,

Windows, and anything else that supports Python in a desktop environment.

Now on version 1.8.0, the development of Quantum GIS has built strength upon strength in

the relatively short time it's been available. The extension API exposed by the system is

simply amazing, and can be customized at every level—from re-engineering the main UI, to

plug-ins that expose things like live GPS tracking, to the creation of brand new vector layers

by applying algorithms to different layers in a package.

It comes standard in OSGeo4W, a collection of open-source geospatial software for

Windows, along with Grass, MSYS, OpenEV, and many others. Backed by tools such as

GDAL, pg2mysql, and many others, the only limit I've found to this package is your

imagination.

Quantum is my desktop tool of choice when dealing with all the different types of data

available. It can handle Postgres and all other major databases with the same ease that it

imports and exports just about every known GIS file format on the planet.

It's also one of the few packages that can import and export Google Earth (KML) files for

direct use with projects that make use of Google's mapping API. The current version now

also includes a handy geospatial file explorer, which means you can browse and view your

local file system resources without needing to fire up the full-blown GUI.

In the following screenshot, you can see QGIS loaded with a multilayer vector map (an

Ordnance Survey Strategi map of the U.K.) zoomed in on Newcastle upon Tyne City Centre:

33

Figure 7: Multilayer Vector Map in QGIS

In this figure you can clearly see the path of the river Tyne, the local road and rail links, and

even utilities such as power cables. The loaded map set, even though zoomed in, includes

this data for the entire United Kingdom.

I could write an entire book about QGIS alone, but for now if you want to find out more you

can do so at the official QGIS website at www.qgis.org.

MapWindow

MapWindow is designed very much to be used in a similar way to QGIS. Its main purpose is

to do everything a desktop GIS application can do, with a variety of functionality.

It's also the only one written specifically for the Windows platform, designed to encompass

the Windows developer community with its rich developer API and toolsets.

MapWindow is available in two versions: MapWindow 4 and MapWindow 6. MapWindow 4 is

the original, first-generation C++ version, and MapWindow 6 is the latest, state-of-the-art

rewrite, written entirely using C# and the standard .NET runtime.

Currently, both releases are updated and released in tandem, according to the Codeplex

page for the application. This is because MapWindow 6 has yet to reach the same level of

functionality as MapWindow 4. As you can see in the following screenshot, it's very similar to

QGIS:

http://www.qgis.org/

34

Figure 8: MapWindow GIS Interface

To find out more, visit the project home page at mapwindow4.codeplex.com or

mapwindow6.codeplex.com.

GeoKettle

One more application that deserves mention is GeoKettle. While this is not a desktop GIS

application in the same sense as the others, it's just as important.

GeoKettle is an ETL tool. Its primary purpose is to transform and then load data between

many formats and many types of database. Originating from a package called Pentaho data

suite, GeoKettle was enhanced to support industry-standard shapefiles, KML files, and the

spatial characteristics of all the previously mentioned databases.

A shining example of how well done a simple-to-use open source application can be is my

experience seeing many people replace highly priced applications such as Safe FME with

solutions based on GeoKettle.

Written in Java, it has a plug-in architecture that is very easy to extend, making it easy to

work with future file formats and databases. It can handle normal data in databases and files

too, not just geospatial data. If you've ever used Microsoft Business Intelligence

Development Studio, you'll feel right at home using GeoKettle as you'll notice in the following

screenshot:

http://mapwindow4.codeplex.com/
http://mapwindow6.codeplex.com/

35

Figure 9: GeoKettle Interface

If you want to find out more, you can visit the GeoKettle website at

www.spatialytics.org/projects/geokettle.

The Remaining Packages

As with database engines, there are simply too many GIS desktop packages for me to list

them all. Wikipedia has a good list of geospatial and GIS software, ranging from pricey to

free, at en.wikipedia.org/wiki/List_of_GIS_software, including those that I've covered here.

My two personal favorites are QGIS and GeoKettle, but I encourage you to try all that you

are able to. Over the years, I've used many desktop GIS packages; some have very steep

learning curves, and some you can pick up in less than five minutes. As with anything, you

should pick the tool that does the job you need to perform in the best and easiest way

possible.

Please also note that the applications I've listed are used predominantly in the U.K. and

Europe. The popularity of applications varies all over the world. For instance, I believe that

IDRISI is a popular package used in Canada. The applications listed in this section are the

ones I use in my day-to-day GIS work.

As I've already mentioned, you have a ton of other stuff to take care of besides your choice

of software.

http://www.spatialytics.org/projects/geokettle
http://en.wikipedia.org/wiki/List_of_GIS_software

36

Development Kits

Since this book is aimed at the .NET developer, it's only right that we include a section on

the kits available for using geospatial data in your own .NET applications.

We'll cover a few practical examples later on, but for now I'll list the kits I've used or seen in

use. Please note, however, that this is not an exhaustive list. The toolkits I describe are all

designed for use under .NET on the Windows platform. As I've mentioned, applications like

QGIS can be vastly extended, and there are many toolkits available under Linux and Mac

systems that I've not yet and likely won't cover. If you're starting a project where you know

you're going to be writing custom user interfaces, do your research beforehand. Instead of

writing them from scratch, there's every chance you can modify an existing application to suit

your needs.

MapWinGis

MapWinGis is the central GUI component behind MapWindow 4 and MapWindow 6. It's an

OCX control written in C++ that can be used in any language that supports OCX on the

Windows platform.

In the past, I used the original version of this component. It's been some time now since I've

done any development using it. As with many of these components, it has a permanent

home on Codeplex at mapwingis.codeplex.com.

It is designed to do most of the heavy lifting for you, leaving you free to concentrate on the

GUI aspects of your application. Please note that it's designed for use in desktop

applications, not web-based applications, and as far as I'm aware cannot be used in WPF or

Silverlight.

DotSpatial

DotSpatial is a sister project of the MapWindow stable, and actually forms most of the core

of the new MapWindow 6 .NET rewrite. DotSpatial also incorporates a few other Codeplex

projects under its hood too, most notably GPS.Net and GeoFramework. Both are still

available separately.

One thing that's worth noting about DotSpatial is that like QGIS, this toolkit has the backing

of the OSGeo Foundation. As part of its kit, it also has the entire open source GIS developer

library (including GEOS, Proj.4, GDAL, and many more) packaged as ready-to-use Windows

DLLs for direct inclusion in your projects.

The project home page can be found on Codeplex at dotspatial.codeplex.com/.

SharpMap

SharpMap is one of the older toolkits for .NET. It has been around a little longer than

DotSpatial.

http://mapwingis.codeplex.com/
http://dotspatial.codeplex.com/

37

It can handle most types of vector and raster data, including the NASA Blue Marble tile set

for the entire globe.

According to its documentation, the SharpMap library supports both desktop and web-based

projects (the later via the use of the AJAX Map control). It can also create custom thematic

map styles by combining many different types of overlay.

The project home page can be found at sharpmap.codeplex.com.

BruTile

While not a full GIS library in the same sense as others, BruTile does one thing, and does it

very well: it serves raster tiles cut up and reorganized on the fly to allow smooth scrolling and

zooming of any input that the library handles.

BruTile is actually used by both SharpMap and DotSpatial to provide output support on their

raster tile components. It's also used to display open street map data running inside a

Silverlight map at brutiledemo.appspot.com.

BruTile can be used in any type of project, from web and Silverlight, to high-end desktop

apps. It also has an adapter that allows it to be used in custom ArcGIS deployments.

The project home page is located at brutile.codeplex.com.

And There's More...

As with the other bits of software mentioned previously, there are simply many, many more

available. What I've not even begun to cover here is the fact that all the major players such

as ESRI and Pitney Bowes offer their own SDKs as well. In fact, a large chunk of ESRI's

profit comes from the provision of GUI toolkits that are used in much the same way as

MapWindow. Unfortunately, as much as I would like to, there are simply too many to cover in

this short book.

The Demos

So now we get to that all-important question: what will I be using for the demos in this book?

I already have a setup of PostgreSQL with PostGIS, and most of my spatial SQL examples

will be done using this. Any database management tool you have that can connect to

Postgres will work. However, I will be using the one that comes provided with the server:

pgAdmin.

In addition to this, I'll be using Quantum GIS to manage and display data along with a

demonstration of using GeoKettle to load some data.

For the programming examples, I'll be using SharpMap in Visual Studio 2010 Professional in

the C# language. The samples can be downloaded from bitbucket.org/syncfusion/gis-

succinctly.

http://sharpmap.codeplex.com/
http://brutiledemo.appspot.com/
http://brutile.codeplex.com/
https://bitbucket.org/syncfusion/gis-succinctly
https://bitbucket.org/syncfusion/gis-succinctly

38

Please note that I won't be covering how to install and initially set up any of these

applications. This is a fairly simple operation in most cases, and one that I'm going assume

the reader of the book is familiar with. If you have any issues with installing the software, all

the applications mentioned in this book have very active communities and help forums.

For those of you who are familiar with Stack Overflow, its GIS-specific site can be found at

gis.stackexchange.com.

Many of the regulars there are expert GIS users who have a very deep understanding. Some

parts of this book wouldn't have been possible without the help provided and replies to the

questions I've asked there. I strongly recommend that anyone playing with GIS in .NET add

a bookmark to the site right alongside a bookmark to the main Stack Overflow page.

http://gis.stackexchange.com/

39

Chapter 3 Loading Data into your
Database

The first thing we need to do before we can begin to explore what a GIS can do is load some

data in.

In this chapter, I'm going to load three ESRI shapefiles into Postgres to use with the demos

later on. The first two of these will be point-based files showing the location of cities and

towns in the U.K. The third file will be a polygon file showing the outlines of all the county

and borough boundaries that make up the U.K.

For those of you who are not familiar with U.K. geography, the county boundaries logically

divide the country into administrative regions, similar to the U.S. states or Chinese

provinces.

Creating a Spatial Database

Before we can start to add any data into our system, we first need to create a database for

storing the data. For the samples in this book, I'm going to create a simple three-table

database rather than an entire GIS model as described earlier.

If you are working on a large enterprise application, I can't stress enough how important

planning and design is in GIS database solutions. In many ways the planning part of this is

substantially more important than the same steps in a normal database. Failures and

alterations further down the line tend to be more pricey and more complex to fix for GIS

solutions than for an average enterprise data solution.

To create the database, we'll be using the database admin tool provided with Postgres,

pgAdmin. To start pgAdmin, click on the pgAdmin III icon on your desktop. If you don't see

the icon, make sure that you installed the management tools when you installed the server.

Once you've installed the app and created an initial connection to your database server, you

can start to create a database in that server connection as shown in the figures that follow.

Please note that for security reasons, I've removed server and table names from many of the

figures showing pgAdmin in this book, leaving only those that are necessary for your

understanding. In your use of pgAdmin, you'll see a lot more information when going through

the steps I present here.

40

Figure 10: Creating a New Database

Right-click on the Databases item in your server tree and select New Database. This will

launch the New Database dialog.

Figure 11: Naming the New Database

It's quite easy to see what needs to go where. All we need to do is give the database a name

and an owner. You can fill in the Comment field if you wish; the rest you can generally leave

with the default settings. Once you have the fields filled in, your dialog should look

something like the following:

41

Figure 12: Completed New Database Dialog

Most Postgres installers create a template to aid in the creation of spatial database tables

when using this or similar dialogs. Before we click OK, we need to navigate to the Definition

tab and select the template to use as shown in the following figure:

42

Figure 13: Choosing a Template from the Definition Tab

All the other options in this tab can be left as they are. Once you click OK, pgAdmin will

return to the main display where you'll see your new database appear in the server tree.

Figure 14: New Database Added to Server Tree

It's also possible to create the database by hand using standard SQL commands such as

Create Database and Create Table; however, using these can be a lengthy process.

There are scripts in the Postgres Contrib directory (located where you chose to install

Postgres) that you can load and run to create all the spatial functions and metadata tables

required. Since every installation of Postgres I've done has included pgAdmin, I've found it

43

much easier and quicker to use the GUI. Please also note that even if you are installing your

database on a platform such as Ubuntu, the pgAdmin tool can be downloaded separately

from the Postgres website and installed on a standard Windows machine for managing your

server.

Once the database has been created, you can expand the objects in the server tree to show

the different tables and objects in your new spatial database.

Figure 15: Exploring the New Database

A Side Note about Postgres Users

Many of you reading this will likely be accustomed to using MS SQL Server for your data

tasks. Postgres, like SQL Server, supports multiple user accounts. However, you need to be

careful with using the root admin account.

In MS SQL, the super user account (usually sa) has ultimate control over the entire

database. Under Postgres, the equivalent super user account is called Postgres, but unlike

MS SQL, the Postgres user can be prevented from interacting with other tables.

If you create all your tables using the Postgres account you won't have an issue, but if you

create databases and then assign ownership of these databases to other user names you

have created in your server, you might find that the Postgres user account is unable to work

with them.

44

This problem will most likely arise when opening database layers in QGIS. If you create a

database connection using a given set of credentials, and create the database in pgAdmin

using the Postgres user account, you'll find that the spatial metadata tables will have

Postgres as their owner. When this happens, QGIS will be unable to open the metadata

tables and will show no layers available for you to use in the application.

The solution to this is very simple. Using pgAdmin, right-click on one of the metadata tables

and select the Properties option as shown in the following figure:

Figure 16: Editing Metadata Table Properties

The table's Properties dialog will appear.

45

Figure 17: Editing the geometry_columns Table Properties

The Owner field provides a drop-down list of users defined in the server. Select the owner

that you are using in your app connection.

Revisiting the Metadata Tables

If you remember from our discussion earlier in the book, we discussed the spatial metadata

tables and the importance they have in the grand scheme of things.

If you've created your spatial database correctly, you should see two tables in your server

tree: geometry_columns and spatial_sys_ref. Right-clicking on them and selecting View

Data will allow you to examine what's in them as shown in the following figures.

46

Figure 18: spatial_sys_ref Table

Figure 19: geometry_columns Table

As you can see, the geometry_columns table is initially empty. This will start to fill up as we

load data into our database.

Loading Points Using QGIS

Quantum GIS has a great little tool built-in called SPIT (Shapefile to PostGIS Import Tool)

whose sole purpose is to insert ESRI shapefiles into Postgres.

47

In practice, I have found that it gets upset easily if there's even the slightest bit of corruption

or non-standard data in the shapefile you are trying to import. Despite its fragility, it remains

the most used tool by QGIS users to import data into their database.

You activate SPIT by clicking the small blue elephant icon on your QGIS toolbar as shown in

the following picture:

Figure 20: Activating SPIT

Once SPIT loads and displays its main interface, you should see the following:

Figure 21: SPIT Interface

The interface is fairly self-explanatory. The PostgreSQL connections area is where you'll

find any connections to your SQL databases listed. The Import options are for specifying

things like the SRID of your data, and other options for the data import.

Your PostgreSQL connections list is shared between here and the main app. If you've

already created a connection in QGIS, you'll be able to reuse it here by just selecting it from

the drop-down and clicking Connect.

48

For the purposes of this exercise, however, we'll be creating a new connection to hold our

data. To start, click New under PostgreSQL connections. The Create a New PostGIS

connection dialog will appear.

Figure 22: Creating a New PostGIS Connection

Complete the fields as shown in Figure 22, remembering to substitute your server name,

database name, user name, and password as required for your own Postgres installation.

You don't have to save the password and user name, but it makes connecting easier if you

don't have to type the credentials in every time.

The four deselected options are not required. They are used to control the following:

 Only look in the geometry_columns table: This option means exactly what it says.

By default, QGIS will look at all tables in the database to see if any of them contain

spatial geometry. Selecting this check box prevents this.

 Only look in public schema: If you use different schemas to logically divide your

database, selecting this option will make QGIS only look in the public schema

(equivalent to DBO in MS SQL).

49

 Also list tables with no geometry: Selecting this option will make QGIS list tables

with no geographic data in the Add Layer dialog.

 Use estimated table metadata: If you have a table that is not registered in the

geometry_columns table, selecting this option will make QGIS guess the data type,

rather than examine the data in the table to determine the geometry type.

Once the fields are completed, click the Test Connect button. The test should be

successful.

Click OK to save the connection and register it in the SPIT tool.

Once you return to the SPIT dialog, click Connect, and then use the Add button to browse

and load the shapefiles for U.K. towns and cities.

You can download sample shapefiles from bitbucket.org/syncfusion/gis-succinctly.

Once you've set the other options such as the SRID—all files provided for these demos are

in UK-OSGB36, SRID 27700—and the Geometry column name, your SPIT dialog should

look similar to the following figure:

Figure 23: Completed SPIT Dialog

https://bitbucket.org/syncfusion/gis-succinctly

50

Click OK to add your data into your Postgres database and create any tables and other

objects needed. If you go back to pgAdmin after adding your data and look at the

geometry_columns table, you'll see that there are now two entries in it.

Once SPIT has finished, you should be able to go back to the main QGIS window and

display a Postgres vector layer. We'll wait to do this for the moment though; next we're going

to load the county boundary polygons using GeoKettle.

Loading Boundary Polygons Using GeoKettle

Sometimes you need a little bit more control over your data loading process. For instance,

you may need to combine two files and make some transformations to your data before

importing it into your database.

When you need to go beyond simple loading using SPIT, you need to use an ETL (Extract,

Transform, and Load) tool such as GeoKettle. As mentioned previously, GeoKettle is a

specialized ETL package that understands geospatial data and all its special metadata.

As with Postgres and QGIS, I'm not going to cover the installation process. It's fairly

straightforward if you download the Java installer version. Since it requires Java to run,

make sure you have an up-to-date Java VM installed on your computer.

After installing GeoKettle, open the program. You should be presented with something that

looks like the following screenshot:

Figure 24: GeoKettle Home Screen

51

The concepts behind using GeoKettle are slightly different than the normal point-and-click

methodology you may be familiar with, but once you get used to them working with

GeoKettle is very easy.

Transformations and Jobs

If you click on the File menu and select New, you'll see that you have two options:

Transformation and Job. The idea here is that many transformations make up a job,

allowing you to break your task down into smaller chunks and then reassemble them using a

sequence.

If you've ever done any workflow programming in .NET, you'll be familiar with the idea of

separate work units and sequencing those pieces to perform a whole task. Using GeoKettle

is the same idea. For what we are going to achieve here, we only need a simple

transformation, so select the Transformation item under New.

Figure 25: GeoKettle File Menu

Adding Transformation Steps

Once you have a new GeoKettle work surface, you'll notice the designer palette in the left of

your screen.

To construct a transformation, drag the necessary steps from this palette to your work

surface, and then connect them together by holding Shift and dragging between them.

Data then flows from step to step in the direction of your connections, performing the

required step as it passes through.

In order to add a shapefile to a database, we need three transformation steps:

1. A shapefile input.

2. A set SRID transform.

3. A table output.

52

Let's start by adding our input step. Select the Input folder in the design palette, and then

drag a Shapefile File Input onto the work surface as shown in the following screenshot:

Figure 26: Adding a Shapefile Input Step to the Transformation

Open the Output folder in the designer palette and add Table output to the transformation.

53

Figure 27: Adding a Table Output Step to the Transformation

Open the Transform folder in the designer palette and add the Set SRS step.

Figure 28: Adding a Set SRS Step to the Transformation

54

Note the black arrow in Figure 28 pointing at SRS Transformation—be careful not to use

this one as it is an actual data transformation. You may find that you need this if you're

transforming your data from one spatial system to another; for example, if you have a GPS

course recorded from a GPS device, it may be in WGS84 coordinate space, but you may

need to change it to a local UTM system that matches your area of the globe.

Set SRS does NOT transform the actual coordinate values; it simply sets the SRID of the

data you're adding. You must ensure that this SRID is the correct value; otherwise, when

you try to demonstrate or project your data, your geometry will appear in a completely

different place than where you expect it.

Once you've added the necessary steps to the workspace, you need to connect them. To do

this, click on one of your steps to select it, hold Shift, and then click and drag to the step you

wish to connect. One thing that may be confusing is that GeoKettle does not draw a line as

you drag the pointer from one step to the next. Just keep moving the pointer to your next

transformation step and release the mouse button when you reach it.

For our example, connect the Shapefile File Input to Set SRS, and then connect Set SRS

to Table output. If all goes as expected, you should see something like the following:

Figure 29: Connected Transformation Steps

Configuring the Steps

Once you have everything connected, you should be ready to configure everything. We'll

start by configuring the shapefile input. Double-click the Shapefile File Input step to gain

access to its properties.

55

Figure 30: Configuring the Shapefile Input

The only thing we need to change is the file name. Click the Browse button, browse to the

location of the sample shapefile for the U.K. county boundaries you downloaded, and click

OK.

You can use the Preview button to take a quick peek at your file before you click OK. After

clicking Preview, you'll be prompted for how many rows you want to preview.

Figure 31: Previewing the Shapefile Input

Entering 0 will show all the rows in the input file. Click OK to display the preview. GeoKettle

will open the file and show you a spreadsheet-like view of the data and any attributes within

the file.

56

Figure 32: Shapefile Data Preview—Standard View

You can click the Geographic view tab at the top to see the following:

Figure 33: Shapefile Data Preview—Geographic View

When you're finished previewing the data, click Close. Click OK in the Shapefile File Input

dialog to complete the shapefile input setup.

The next thing we need to do is set our SRS options. In our case, as you may have noticed

when previewing the data, our county boundaries shapefile is actually in WGS84 (SRID

4326) coordinate space. As mentioned previously, we are not going to actually transform the

coordinates for this sample data, but in a production system it's highly recommended that

you match all your data in the same coordinate space. If I was doing this for a production

system, I'd use the SRS Transformation step and actually change the coordinates to

OSGB36 (SRID 27700). For this example, I'm keeping things as simple as possible.

57

If you want to try transforming your data, note that you'll need two Set SRS steps, one on

each side of the SRS Transform step, to ensure you have the correct spatial ID going into

and coming out of the transformation.

Moving on in our example, let's set the singular SRID we need for this data. Double-click the

Set SRS step to open its dialog; you should see the following:

Figure 34: Configuring the Set SRS Step

For the Set SRS on field drop-down, select the correct field to set the geometry on. Usually

it is called the_geom in a shapefile. In the EPSG Code field, select the correct spatial ID for

the data. In our case, it will be SRID 4326 (WGS84). You can look through the drop-down list

to get an idea of how many SRID coordinate spaces there are. Rather than looking through

the entire drop-down list, you can simply type 4326.

Once you've set the SRID, click OK to confirm the SRS settings.

The final step is to set our Table output and associated database connection. Double-click

the Table output step to open its configuration dialog as shown in the figure that follows.

Note that I've already filled in the connection and target table details.

58

Figure 35: Table Output Configuration

The first thing you'll want to do is create a new database connection. Click the New button

next to the Connection field. The Database Connection dialog will appear.

Figure 36: Adding a New Database Connection

59

Again for Figure 36, I've already filled in my details, but you should easily be able to see that

GeoKettle supports a wide variety of database types.

Under Connection Type, select PostgreSQL. Under Access, select Native JDBC and fill

in the appropriate details to connect to the same database you connected to when adding

the point data using QGIS.

Once you’re done, give the connection a name and click the Test button. You should be

shown a small dialog stating that the connection to the database is OK, as shown in the

previous figure. Click OK to close the dialog, and click OK in the Database Connection

window to go back to the Table Output options.

Next, you must set a target table name so the transformation step knows where to insert the

data. You may also want to select the Truncate table check box to ensure the table is void

of data before starting. The other table output settings can usually be left as they are.

If you’re creating the data for the first time, you'll need to click the SQL button at the bottom

of the window to automatically generate and run the SQL necessary to create the initial table

in your database. If you're using an existing table, this will give you the SQL needed to

ensure the table schema matches the data. It's fairly straightforward, and if you have any

knowledge of SQL you'll see immediately what's happening.

One thing I often do in the SQL dialog is add a primary key because GeoKettle does not

automatically add one. There are transformation steps for adding primary keys and such, but

I find it easier to add the extra field in the SQL editor when creating the table by manually

typing in the extra line. In the following figure, you can see I added a primary key with the

definition for GID in Postgres.

Figure 37: Adding a Primary Key

When you're done editing your SQL, click Execute to run it. Once you've run your SQL

successfully, you can click Close to exit the SQL editor and then click OK to navigate back

to the transformation workspace. You've completed setting up the required steps.

60

When you arrive at this point, go to File > Save to save your loading script. GeoKettle will

refuse to run the transformation unless your file is saved. When your script is saved and

you're ready to run the transformation, click the green play arrow in the toolbar.

Figure 38: Button to Run Transformation

The Execute a transformation window will appear.

Figure 39: Execute a Transformation Window

99 percent of the time you won't need to change anything in this window. Click the Launch

button and the lower pane in your workspace will display the transformation progress.

Figure 40: Viewing the Transformation Results

61

When all your Active column entries switch to Finished, you should have a database

loaded with the county polygons; you are now ready to start experimenting.

If any of the steps turn red and display Stopped, you have a problem. The details and stack

trace of the problem will be shown in the Logging and Execution History tabs.

Unfortunately, as much as I'd like to be able to list every possible issue you'll see here, I

simply can't. When GeoKettle fails, it only releases a stack trace and refuses to do anything

further. This probably isn't an issue for the average developer, but for a non-technical user it

can look very scary indeed.

My experience with transformation problems is that they're usually some kind of data format

issue; for instance, an incorrect setting in the transform step of the destination server spitting

out its default data because it doesn't like something about the SQL GeoKettle has just sent

to it.

Whenever I receive a stop condition, I copy and paste the output from the Logging pane

into a text editor so I can start examining SQL statements and diagnosing the stack trace in

an easier-to-read window.

Once all of the transformation steps finish successfully, you can close GeoKettle and return

to Quantum GIS. Using the connection you created when loading data with SPIT, you can

view the data you now have in your database.

Previewing the Data

If we open Quantum GIS and start a new project, the first thing we need to do is set the

project properties. We do this by navigating to Settings > Project Properties in the toolbar.

Figure 41: Opening Project Properties in Quantum GIS

62

Figure 42: Quantum GIS Project Properties

In Project Properties, select the Enable 'on the fly' CRS transformation check box since

we have both SRID 27700 and SRID 4326 coordinate systems in our database. As you can

see in Figure 42, I've selected OSGB36 (SRID 27700) for my project since I reside in the

U.K. You can choose WGS84 for your project if you want. As mentioned previously, it's a

good practice to select a coordinate system specific to your location.

Once you've selected your coordinate system, click OK to return to the main Quantum GIS

workspace.

Now we need to start adding vector layers from our database. Click the blue Add Database

Layer icon on your toolbar. You'll be presented with the Add layers dialog, and should

immediately recognize the Connections drop-down at the top of the dialog; it looks just like

the one you used in SPIT.

63

Figure 43: Add Database Layer Icon

Figure 44: Adding Database Layers

Select the connection you wish to use from the drop-down, or create a new one as you did in

SPIT, and click Connect. A list of vector layers present in your Postgres database should

appear as shown in the following figure:

64

Figure 45: Available Vector Layers

As you can see, the two point layers we imported earlier and the polygon layer we imported

using GeoKettle are available. Select all of them and click Add.

After a bit of processing, depending on your computer and database speed, QGIS should

display the layers, hopefully in three different styles.

Figure 46: Loaded Map with Three Layers

As shown in my example in Figure 46, county boundaries are in green, towns are dark blue,

and cities are pink.

If your display looks anything like mine, then congratulations, you've just created your very

first spatially enabled database. Now we get to play with this data.

65

Chapter 4 Spatial SQL

I've mentioned this breed of SQL many times in this book, and to some extent I've also

described it in a brief fashion.

Spatial SQL is not anything special; if you take "Spatial" out of the name, it's just regular

SQL. Either way you're dealing with binary large objects, or blobs.

Just like working with images embedded in the database, these blobs have a special

meaning when processed by code that understands what they contain. It's the addition of

this code along with the extra SQL functions needed to use it that makes a spatially enabled

database.

In the following section, I'm not going to cover every possible permutation and function call.

At last count there are more than 300 independent functions in the OGC specification,

covering just about every possible scenario from spatial distance relationships, to

constructions of complex geometries, to clipping rasters for predefined vector paths.

Instead, using the data we've placed in our database, I'll guide you through some simple but

common operations—the type that anyone writing a GIS-enabled application is likely to use.

Before we discuss these operations, let's take a quick look at the input and output stages

described in the first chapter.

Creating and Retrieving Geometry

Even though we've already imported some data into our database, anyone writing a GIS app

also needs to be able to create geometry in the database, especially if the application is

going to allow editing.

Most geometry creation is performed in one of three formats:

 Well-known text (WKT)

 Extended well-known text (EWKT)

 Well-known binary (WKB)

We'll be using WKT in the examples that follow, and we'll only be performing the operations

in SQL without inserting any data into our database. EWKT is slightly different, mostly due to

the fact that in the textual representation of the geometry, the SRID is separated from the

rest of the data by a semicolon.

I prefer to use the WKT standard and the spatial function ST_SetSrid to set the SRID for my

geometries.

If you are using MS SQL, you may have to use EWKT since it doesn't have a ST_SetSrid

function. There is, however, a writable SRID property on the Geometry SQL type.

66

So how do we create a geometry using WKT? Try the following SQL:

This creates a four-segment linestring that starts at 1,1, ends at 4,4, and passes through 2,2

and 3,3. The following is another example of creating geometry with SQL:

This creates a point at 5, 6 in the current coordinate system.

You can include an optional second parameter that specifies the SRID of the geometry. So if

we wanted to create our point in OSGB36 (SRID 27700) coordinates, we'd use the following:

If you try this using the SQL editor in pgAdmin, you'll find that the database doesn't complain

about the coordinates not being valid for the coordinate system being used. That's because

the second parameter only sets the field in the geometry blob to say what the geometry's

coordinate system is; it does not set anything in the metadata tables or anywhere else in the

system to mark that SRID.

Please also note that if you are trying to insert these geometries into a table you have

created, the triggers and constraints on those tables will have been set by the table creation

functions to allow only certain geometry types and SRIDs to be inserted. This can disrupt

many new GIS developers. If the second parameter is not specified, the database will set it

to the table default. It's all too easy to insert an invalid coordinate if you don't specify the

SRID.

If you do specify the SRID, but it doesn't match the SRID of the table you are inserting the

geometry into, then the insert will be rejected and not committed to the table. It is very

important to be sure when creating new geometries by hand that you have the correct SRID

for your data, and that it matches the constraints of any tables you may have created.

Any of the geometry types we discussed in Chapter 1 can be used in the GeomFromText

function, but beware as sometimes things are not quite as simple as you may expect,

especially when it comes to MULT geometries.

The following is a simple point type.

SELECT ST_GeomFromText('LINESTRING(1 1,2 2,3 3,4 4)')

SELECT ST_GeomFromText('POINT(5 6)')

SELECT ST_GeomFromText('POINT(5 6)',27700)

SELECT ST_GeomFromText('POINT(5 6)')

67

Multipoints, on the other hand, look like this:

As you can see, simple parenthesis nesting can quickly become a nightmare. Some of the

most bizarre bugs I've had to track down in GIS were a direct result of a missing

parenthesis.

The same format is used for all other geometry types too.

The exception to the rule is polygons. Because polygons can include inner rings, a standard

polygon actually looks like a single multipolygon from the start. This means that

multipolygons have three sets of parentheses surrounding them.

This is not very nice to debug. Using a library like DotSpatial or SharpMap helps

tremendously because it has functionality built in that allows you to use a familiar C# or VB

object and have this text, or even a direct WKB representation, generated on the fly for you

so you won't have to construct these geometries by hand.

There are other input functions besides GeomFromText. Most of them mirror the equivalent

output functions listed in the next section. For your reference, I've listed some of the input

functions available in the latest version of Postgres:

Other geometry functions available in the latest version of Postgres include:

SELECT ST_GeomFromText('POINT((5 6)(6 7))')

SELECT ST_GeomFromText('MULTILINE((1 1,2 2)(1 2,2 1))')

SELECT ST_GeomFromText('MULTILINESTRING((1 1,2 2,3 3,4 4)(5 5,6 6,7 7,8 8))')

SELECT ST_GeomFromText('POLYGON((x y,x y,x y,x y..)(x y,x y,x y,x y..))

SELECT ST_GeomFromText('MULTIPOLYGON(((x y,x y,x y,x y..) (x y,x y,x y,x y..))((x
y,x y,x y,x y..) (x y,x y,x y,x y..)))')

ST_GeomFromEWKB()

ST_GeomFromEWKT()

ST_GeomFromGML()

ST_GeomFromKML()

68

All of which are detailed in the Geometry Constructors section of the online PostGIS manual

at http://postgis.refractions.net/docs/reference.html#Geometry_Constructors. Most of the

geometry constructors are also defined in the OGC specifications.

Output Functions

Now that we've seen how to generate geometry objects, it would be great to be able to get

our data back out of the database.

If you want just the binary blob representation, a simple Select will do the job. In the

creation samples in the previous section, because we weren't inserting the data, the output

was the actual binary blob that represented the geometry.

One thing you must be cautious of: when dumping the blob directly, it might not be a WKB

formatted object. Some database services store the data in an internal format which allows

them to manage it quicker and easier than if it were WKB. If you want to ensure you always

receive a WKB output, be sure to use the correct output function as shown in the following

code:

Quite a few textual output functions are available as well, such as:

This will output your geometry in the WKT format.

If you want your geometry output in the EWKT format, use the following:

If you’re displaying your geometry in an HTML 5 page using SVG, then you'll use the

following:

ST_Point()

ST_LineFromMultiPoint()

ST_Polygon()

SELECT ST_AsBinary(geometry)

SELECT ST_AsText(geometry)

SELECT ST_AsEWKT(geometry)

SELECT ST_AsSVG(geometry)

http://postgis.refractions.net/docs/reference.html#Geometry_Constructors

69

This returns an SVG tag ready to be inserted directly into your output or an SVG file.

If you're creating output for use in Google Earth or any other app that supports Keyhole

Markup Language, use the following function:

If you're outputting industry-standard Geography Markup Language (GML) or GeoJSON (A

special format of JSON designed especially for geographic data),

and

will be your functions.

Some servers also provide other output functions on top of that, such as the following

Postgres function:

This outputs coordinates in NMEA seconds, minutes, and degrees format, but the use of this

is considered non-standard and may make it hard to port your application between database

platforms.

Let's have a quick look at one or two of these functions using the cities point data we added

to our database. To do this, we'll use the SQL editor in pgAdmin. To open the SQL editor,

select the database you wish to work in— in our case the GISBook one if you've been

following along—and click on the SQL magnifying glass icon on the toolbar.

Figure 47: SQL Editor Icon

SELECT ST_AsKML(geometry)

SELECT ST_AsGML(geometry)

SELECT ST_AsGeoJSON(geometry)

SELECT ST_AsLatLonText(geometry)

70

This will open the SQL Editor pane.

Figure 48: SQL Editor

Type your SQL statements in the top pane, and press F5 or click the green arrow to run your

SQL. The results and messages will appear in the lower pane.

A side note on using SQL in Postgres

Using SQL in Postgres is likely to cause some users problems: Postgres is case sensitive by

default. If you create a table or other object with a name with specific casing, it will create

exactly that name. However, when trying to access the object, Postgres will look for the

object name using all lowercase letters unless the name is enclosed in quotation marks.

As an example, if I CREATE TABLE Shawty, then the table will be named Shawty with a

capital S. But if I then run SELECT * FROM Shawty, Postgres will fail to find the table.

Instead, I need to type SELECT * FROM "Shawty" to make Postgres pay attention to the

casing of the name.

This also extends to the Postgres data adapter for .NET. If you are unable to access a table

in the Postgres data adapter, try putting the table name in quotation marks and you'll most

likely find it resolves the issue.

Please note that regular strings are enclosed with single quotes, not double quotes. If you

enclose your literal string in double quotes, Postgres will interpret your text as an object

name and not as data.

The best practice for creating objects in Postgres is to give them all lowercase names. I've

done exactly this for the database I'll be using to demonstrate the SQL functions, and I've

changed all the names of tables and columns to lowercase after importing the data as shown

previously. I've also removed columns from the dataset that are unused either in the

examples, or in general.

If you receive errors while trying the samples, make sure that you're making the same

changes I am, using single and double quotes properly, and correctly casing names as

needed.

71

Testing the Output Functions

Let's try the following:

You should receive something like the following output:

Figure 49: Data Output with Binary Geometry

As you can see, the geometry column is displayed in its binary form, which may or may not

be in WKB format.

Now let's try this:

You should receive the following:

Figure 50: Data Output with Text Geometry

As shown in the previous figure, the output is in WKT format with the coordinates in meters

since we're using OSGB36 as the SRID.

Let’s swap AsText for AsEWKT. We should get the following:

SELECT * FROM ukcitys LIMIT 5

SELECT gid,number,name,admin_name,AsText(geometry) FROM ukcitys LIMIT 5

72

Figure 51: Data Output with EWKT Geometry

You may have noticed that in these examples I've been calling the functions without the ST_

in front. ST_ is a legacy tag from when systems were called Spatial and Temporal systems.

In most modern GIS databases, you can freely switch between using the prefix and leaving it

out since most systems define the function both with and without the 'ST_' prefix. One or two

functions are defined only with the ST_ prefix, so if something seems to be missing in your

data, try both spellings before you give up.

As you can see, the main difference between AsText and AsEWKT is the addition of the SRID

in the output.

Let's try one more, this time with the data output in GeoJSON format:

Figure 52: Data Output with GeoJSON Geometry

What Else Can We Do with Spatial SQL?

We can do tons of things with spatial SQL. A better question is what can't we do? However,

as a developer, you're most likely only interested in simple tasks, so we'll continue by looking

at a few real-world scenarios and what our database can do to help us.

Scenario 1: Largest land mass

Let's suppose you have a number of land plots for sale, and you have them all in a nice

mapping system that potential buyers can browse via a map-enabled website. One thing you

may want to know is which plot has the largest area so you can price them appropriately.

This is achieved very simply by using the area functions provided by the database.

SELECT gid,number,name,admin_name,ST_AsGeoJSON(geometry) FROM ukcitys LIMIT 5

SELECT name2,ST_Area(the_geom) FROM ukcountys LIMIT 5

73

Figure 53: Calculated Land Areas

You'll notice that all our results are in square degrees or fractions thereof. This is because

our geometry was added to the database in WGS84 (SRID 4326) coordinates. Most of the

calculation functions will return their answers in the same units that the source geometry

uses. Converting our area results to meters is not difficult.

SRID 27700, if you recall, is measured in meters so all we need to do is transform our

geometry from SRID 4326 to SRID 27700. We can do this using ST_Transform.

The transform function takes the geometry to be transformed as the first parameter, and the

SRID to transform it to as the second. Using the function on our data gives us the following

SQL:

Figure 54: Geometry Converted from Square Degrees to Meters

Once you have the data converted from square degrees to meters, you can then use normal

SQL order by clauses and other aggregate functions to arrange the areas from largest to

smallest, or add a price column. For example, the following code outputs the five largest

counties in the U.K. and their areas in square meters.

SELECT name2,ST_Area(ST_Transform(the_geom,27700)) FROM ukcountys LIMIT 5

SELECT name2,ST_Area(ST_Transform(the_geom,27700)) FROM ukcountys order by
ST_Area(ST_Transform(the_geom,27700)) desc LIMIT 5

74

Figure 55: Five Largest Counties in the U.K in Descending Order

Another thing that might be useful to know is how long the perimeter of the land mass is.

Finding this is just as easy, as shown in the following code sample and data output:

Figure 56: Perimeter of U.K. Counties

Scenario 2: How many of what are where?

Another typical use of GIS is for gathering information on how one object's location is related

to another object's location. For example, given three U.K. counties—Durham, Tyne and

Wear, and Cumbria—we can easily find out how many principal towns are in each.

This code gives us the following:

SELECT name2,ST_Perimeter(ST_Transform(the_geom,27700)) FROM ukcountys LIMIT 5

SELECT ukcountys.name2,count(uktowns.*)

FROM ukcountys,uktowns

WHERE ST_Within(uktowns.geometry,ST_Transform(ukcountys.the_geom,27700)) AND
ukcountys.name2 IN ('Durham','Tyne and Wear','Cumbria')

GROUP BY ukcountys.name2

75

Figure 57: Number of Towns in Cumbria, Durham, and Tyne and Wear Counties

The SQL for this introduces the spatial function ST_Within, which tests to see if one

geometry is fully within another.

There are two important concepts to remember from this example:

 For one object to be within another, the inner object must be fully inside the outer

object's bounding line. In the county example, if your geometry is smaller than the

thickness of any of the county boundary lines and lies directly on one, ST_Within

would not have picked it up. Instead, it would have been identified as intersecting

with the geometry rather than being within it.

 The order of parameters on some spatial SQL functions is important. In the county

example, if you switch the order of the county and town parameters, you'll find that

you receive no results because a point cannot fully contain a polygon that is much

larger than itself.

Because spatial SQL accounts for boundary polygons when performing relationship-based

measurements, there are a number of different functions that perform very similar tasks with

slight differences.

In the case of ST_Within, we have the following similar functions:

 ST_Contains

 ST_Covers

 ST_CoveredBy

 ST_Intersects

The Postgres and OGC specifications document the differences in fine detail way better than

I can describe here, but essentially one only works on the interior of the polygon, and the

others work on combinations of the interior enclosing ring and various levels of intersection.

As a developer, you'll most likely never use anything other than ST_Within, and in rare

cases ST_Contains, for most of the GIS work you'll do.

In our counties example, you can also see that we've had to use ST_Transform to transform

our counties into the correct SRID again. If you keep all your geometry in the same SRID

when loading your database, you begin to see how much simpler your SQL can be.

Scenario 3: How close is this to that?

Knowing how far away something is always has a place in GIS. Whether you need to know

how close the nearest McDonald's is, or how close a friend's house is, this is one of the most

76

common operations used in GIS since mobile phones started pumping locations out of a

built-in GPS unit.

Not only can we get a measurement of the distance something is from the user, but a GIS

database can also select objects based on distances from the user within bounding boxes

and radii.

Let's try an example. Start by finding the distances of all the towns in County Durham from

the principal city of Durham.

This code gives us the following:

Figure 58: Distances of Towns from Durham in County Durham

The SQL we used is quite simple once you break it down. We performed a natural join on

the towns and cities—both have exactly the same columns—on the admin name, using the

admin name in the principal city as the master one. We filtered the cities so that only

Durham is selected, and then we used ST_Distance(a,b) to get the straight line distance

from geometry a to geometry b.

We then divided this distance by 1609.344 (the number of meters in a mile), cast the result

back to a numeric (Output from ST functions are distance specific, e.g., meters, degrees,

etc.), and rounded it to one decimal place, before ordering the towns from furthest to closest.

SELECT t.name,round((ST_Distance(c.geometry,t.geometry) / 1609.344)::numeric,1) as
distanceinmiles FROM ukcitys as c

JOIN uktowns t ON c.admin_name = t.admin_name

WHERE c.name = 'DURHAM'

ORDER BY ST_Distance(c.geometry,t.geometry) desc

77

Brandon is the closest to Durham; Barnard Castle is the farthest away.

Now let's take a look at capturing items in a given radius. Again, we'll use Durham city as our

center point, and cast a radius of 10 miles around this point. Then we will list any town that

falls in that radius, irrespective of its county.

Figure 59: Towns within 10 Miles of Durham

There are 14 towns within 10 miles of Durham city, and as you can see not all of them are in

County Durham.

You can also rewrite the SQL with the ST_Dwithin(a,b,distance) function as follows:

SELECT t.name,t.admin_name,round((ST_Distance(c.geometry,t.geometry) /
1609.344)::numeric, 1) as distanceinmiles

FROM ukcitys AS c, uktowns as t

WHERE c.name = 'DURHAM' AND ST_Distance(c.geometry,t.geometry) <= 16093.44

SELECT t.name,t.admin_name,round((ST_Distance(c.geometry,t.geometry) /
1609.344)::numeric, 1) as distanceinmiles

FROM ukcitys AS c, uktowns as t

WHERE c.name = 'DURHAM' AND ST_Dwithin(c.geometry,t.geometry, 16093.44)

78

The only thing different is the <= clause in the last part of the WHERE statement, so what

changes? Not much, really. However, if you're using bounding boxes and buffers, you'll often

get better results using ST_Distance with a <= operator.

Again, we used the cast operator to make sure our data output a normal numeric type and

rounded it to one decimal place, divided it by 1609.344 to convert it to miles, and finally

filtered things so that only towns around Durham were included.

It's easy enough to exchange the Durham city geometry for a GPS point from a GPS device,

for example, and list the towns around that point.

Or if your GPS is WGS84 (SRID 4326), you'll need to transform it to meters and OSGB36

(SRID 27700).

Scenario 4: What is my geometry made of?

In some cases you may need to take your geometry apart and reassemble it in a different

way, or make a new geometry based on the original one.

First off, let's find out how many points make up the border around County Durham.

Figure 60: Number of Border Points

SELECT t.name,t.admin_name,round((ST_Distance(ST_Point(428110 542709),t.geometry)
/ 1609.344)::numeric, 1) as distanceinmiles

FROM ukcitys AS c, uktowns as t

WHERE c.name = 'DURHAM' AND ST_Dwithin(ST_Point(428110 542709),t.geometry,
16093.44)

SELECT t.name,t.admin_name,round((ST_Distance(ST_Transform(ST_Point(-1.56450
54.77851),27700),t.geometry) / 1609.344)::numeric, 1) as distanceinmiles

FROM ukcitys AS c, uktowns as t

WHERE c.name = 'DURHAM' AND ST_Dwithin(ST_Transform(ST_Point(-1.56450
54.77851),27700),t.geometry, 16093.44)

SELECT name2,ST_NPoints(the_geom) FROM ukcountys WHERE name2 = 'Durham'

79

Or we can find the geographic center point of the county in the same coordinates as the

actual geometry.

Figure 61: Geographic Center of County Durham

Or we can output a summary of what the object is.

Figure 62: Summary of County Durham Object

We can also break down the underlying geometry. There are functions to dump entire sets of

points that make up a boundary.

Figure 63: County Durham Boundary Points

SELECT name2,AsText(ST_Centroid(the_geom)) FROM ukcountys WHERE name2 = 'Durham'

SELECT name2,ST_Summary(the_geom) FROM ukcountys WHERE name2 = 'Durham'

SELECT name2,ST_DumpPoints(the_geom) FROM ukcountys WHERE name2 = 'Durham' LIMIT 5

80

Or we can get a specific point if the input is a LINESTRING or MULTILINESTRING.

Figure 64: Finding a Specific Point

The point output shown in the previous figure is the second point in our linestring.

If you need to know the bounding box of an object, you can easily get the x, y pairs of the

maximum and minimum extents by using the following code:

Figure 65: Maximum and Minimum Extents

Or if we need to perform measurements and other functions on our extents, we can get them

as an actual geometric rectangle.

Figure 66: Extents Output as Geometric Rectangle

Lastly, let's imagine we have a segment of a path, represented by the following line:

SELECT AsText(ST_PointN(GeomFromText('LINESTRING(1 1,2 2,3 3,4 4)'),2))

SELECT
name2,ST_Xmax(the_geom),ST_Ymax(the_geom),ST_Xmin(the_geom),ST_Ymin(the_geom) FROM
ukcountys WHERE name2 = 'Durham'

SELECT name2,AsText(GeomFromText(box2d(the_geom)::geometry)) FROM ukcountys WHERE
name2 = 'Durham'

LINE(1 1,10 10)

81

Now let's try to make a new polygon based on a border around that line that is 5 units away.

This code gives us the following result:

Figure 67: New Polygon Based on Line Segment Border

The output is a polygon with its center line exactly following our line, but 5 units away on all

sides.

It's impossible to give examples of every possible scenario and combination in which you

can use these spatial functions. The main PostGIS reference can be found at

http://postgis.org/docs/reference.html. I encourage you to spend time exploring them and

trying the many examples given in the documentation, all of which should be possible using

nothing more than pgAdmin's SQL editor.

SELECT AsText(ST_Buffer(GeomFromText('LINESTRING(1 1,10 10)'),5))

http://postgis.org/docs/reference.html

82

Chapter 5 Creating a GIS application in
.NET

So finally we come to the part most of you have been waiting for: the creation of a small GIS-

enabled desktop application in .NET.

In this chapter I use Visual Studio 2010 Ultimate for any screenshots, and my code is in C#.

For anyone who has used any of the Microsoft .NET languages and editors, it shouldn't be

much of a problem for you to adapt what I show here to the environment you are working in.

Downloading SharpMap

Before we do anything, we need to download SharpMap; it is the GIS framework we'll be

using. Since SharpMap is currently undergoing a lot of changes and general refactoring, it's

better to download the source files from SVN and compile your own version than it is to use

the pre-compiled downloads.

In your browser, navigate to http://sharpmap.codeplex.com/ and click the Source Code tab.

Click Download to get the latest changeset as a zip file—it's approximately 180 MB. Or you

can click Connect to get the addresses to connect to either the TFS or SVN repositories

using regular clients.

Once you have the sources synced or unpacked onto your hard drive, start Visual Studio,

open the trunk folder, and open the SharpMap.sln solution.

Once everything is loaded, the Solution Explorer should appear as it does in the following

screenshot:

http://sharpmap.codeplex.com/

83

Figure 68: SharpMap Solution

If everything loaded OK, you should be able to click Build Solution to get the current

binaries. I generally build all the configurations, so I select Release then Build, Debug then

Build, and so on. What you choose to build is up to you though.

Once everything builds successfully, you're ready to close this project and start on your own.

Creating Our Own SharpMap Solution

Run an instance of Visual Studio or reuse the one you still have open, and create a new

Windows Forms app.

84

Figure 69: Starting a New Windows Forms App

Make sure you’re using .NET 4. The current version of SharpMap is targeted at .NET 4 and

above.

The first thing you need to do is double-click on Properties in the Solution Explorer and

change the selected Target framework from .NET Framework 4 Client Profile to the full

.NET Framework 4.

Figure 70: Changing the Target Framework

Now we need to add the SharpMap UI components to our toolbox. Double-click Form1.cs in

the Solution Explorer to load the toolbar palettes. Right-click in an open area below

General and select Add Tab. Give the tab a name. In my application, I called the tab

SharpMap.

Once the palette is created, expand it and right-click the Palette area. Select Choose Items

from the menu that appears. The Choose Toolbox Items dialog should appear.

85

Figure 71: Choosing Toolbox Items

Click the Browse button and navigate to the location where you unpacked the SharpMap

toolkit. Navigate to SharpMap.UI > bin > Debug, and then select SharpMap.UI.dll.

Figure 72: Adding SharpMap to the Toolbox

Click Open and then navigate back to the main Visual Studio screen. You should be greeted

with the following in your toolbox:

86

Figure 73: SharpMap and Tools in the Toolbox

You may also find that SharpMap and SharpMap.UI have been automatically added to your

project references. If you started a new project and already had the tools loaded into your

toolbox, then you'll need to add the references to your project manually. To do this, right-

click References in your project, and then browse to the same location where you added the

SharpMap.UI.dll. Add the SharpMap.dll and SharpMap.UI references. After adding these

DLLs, reload the References dialog.

We need to add some more DLLs which are located in other folders in the solution.

Browse to the SharpMap.Extensions project folder, and into Bin > Debug or Release as

needed. Select and add the following DLLs:

 BruTile.dll

 GeoAPI.dll

 Npgsql.dll

 SharpMap.Extensions.dll

Your project references should look something like the following screenshot:

87

Figure 74: Added References

Now we are ready to put our GUI together.

Set the size of your form to around 1000 x 800, change the StartPosition property to

CenterScreen, and change the title text to Sharp Map Example 1.

I generally rename my forms to something like formMainForm, but it's entirely up to you

what name to choose. If you name your forms something different, you'll need to adjust the

source accordingly when we start coding.

Now we need to drag five components onto our form in the designer. They are:

 MapBox from the SharpMap tools.

 Two Button controls and a ListBox from Common Controls.

 StatusStrip from Menus and Toolbars.

Rename the two buttons to btnZoomAndPan and btnQueryCounty. Change the display

text on them to Switch to Zoom & Pan Mode and Switch to County Query Mode,

respectively, and then place them in the upper left corner of your form. Resize them as

needed to fit the text.

88

Select your StatusStrip control and rename it StatusBar. Then click on the Items -

(collection) property to launch the Items Collection Editor. Click on the drop-down to the

left of the status bar and add a StatusLabel. Rename the new label as lblStatusText and

remove the text from the Text property.

Set the width of the ListBox control to be the same as the width of the button controls and

place it beneath them. Stretch its height to just above the status bar at the bottom. Set the

list box's name to lsbCountyResults, then click on its Anchor property and set it to Top,

Left, Bottom.

Finally, use the rest of the space on the form for your map box. Align the bottom of it with the

list box, and set its BackColor property to White. Change its name to mpbMapView, and

change the Anchor to Top, Bottom, Left, and Right.

Your finished UI should look similar to the following:

Figure 75: Completed SharpMap UI

89

Adding the Code

Now that we have a good-looking UI, it's time to start adding functionality to our app.

Using the MapBox control is very easy. The concept is simply to create layers, and then add

those layers to the control which will then render and display them.

Each layer can have a different spatial reference and coordinate system, and the map

control can re-project and convert coordinates on the fly. For this example though, we're

going to let Postgres do all the work for us.

Load and run pgAdmin, and log into your database containing the data we loaded earlier.

Expand the object tree until you can see all your tables and other objects.

Figure 76: Object Tree in pgAdmin

As you can see in the figure, beneath the Tables node is a small green icon named Views.

You may have used these before in other databases. The general idea is that they project

data from other tables into a different schema, but appear to client apps as though they were

an actual table.

A typical use is to take rows from different tables linked via foreign keys, and present a

simple flat view of the combined data in which all the present items form a single row rather

than a hierarchy.

For our demo, we are going to re-project our town and city points as WGS84 (SRID 4326) to

match the coordinates of the U.K. counties layer. We'll start by right-clicking on Views and

creating a new view.

90

Figure 77: Creating a New View

Give the view a name—I named mine ukcitys_wgs—and set the correct user for your

database login.

Switch to the Definition tab and enter the following SQL:

Figure 78: Setting the Database Login

SELECT ukcitys.gid, ukcitys.number, ukcitys.name, ukcitys.admin_name,
st_transform(ukcitys.geometry, 4326) AS geometry FROM ukcitys;

91

As you can see in our SQL and Figure 78, we are using ST_Transform to transform our

points from OSGB36 (SRID 27700) to WGS84 (SRID 4326). The result is that when a

SELECT from ukcitys_wgs is performed, the table layout will be identical to ukcitys, but the

geometry will be in the new coordinate system.

Views solve lots of problems like this in a GIS, and you'll tend to find that GIS databases

make very extensive use of them.

Repeat these steps and create uktowns_wgs using the following SQL:

One Small Problem...

For all that views do, they do have one small problem when it comes to using them in this

way: the spatial metadata.

If you recall the beginning of the book, we discussed the geometry_columns table and its

importance in the GIS database. When we create tables in the regular table space, we

generally use the spatial function AddGeometryColumn to add the column that will contain

the actual geometry object. You should have seen this happen when you used GeoKettle to

add the county data—the SQL that was generated to create the table should have contained

the AddGeometryColumn spatial function. This not only adds the column and modifies the

table as needed, but it also registers the field with the required metadata tables and sets up

some triggers to enforce the correct data types and SRIDs.

The problem is because a view is built from existing columns, there is no way of creating an

actual geometric column on a view. This means that we have to add it manually. Fortunately,

it's not a particularly difficult process; it only involves an insert.

Open up an SQL editor window and enter the following SQL:

If you examine the rows already in geometry_columns, you'll notice that the data being

inserted is identical to the row for uktowns; the only difference is the SRID.

To complete this task, perform the following to update for the city view:

SELECT uktowns.gid, uktowns.number, uktowns.name, uktowns.admin_name,
st_transform(uktowns.geometry, 4326) AS geometry FROM uktowns;

INSERT INTO
geometry_columns(f_table_catalog,f_table_schema,f_table_name,f_geometry_column,coo
rd_dimension,srid,type)
VALUES('','public','uktowns_wgs','geometry',2,4326,'MULTIPOINT')

92

Once you are done, you should have the following:

Figure 79: Adding New Views

INSERT INTO
geometry_columns(f_table_catalog,f_table_schema,f_table_name,f_geometry_column,coo
rd_dimension,srid,type)
VALUES('','public','ukcitys_wgs','geometry',2,4326,'MULTIPOINT')

93

Figure 80: Table with New Views

SharpMap, like any decent implementation of an OGC-compliant GIS database client, will

examine the geometry_columns table to find out the details of any layers we add. It will

cancel and produce an exception if we add a view that can't be found in the

geometry_columns table. Once we manually add the data, we can then load those views into

our application.

Back to the Code...

Now that we have our UI, our data, and some views to project our data, it's time to add some

C# to stitch it all together.

The first thing we need is a connection string for our Postgres database and a Boolean flag

for the map initialization. Add the following code just before the constructor for your first

form, and substitute the sever name, passwords, and user names as needed for your own

connection:

Note that I set the command timeout to five minutes. If you're going to be doing a lot of

server-based, long running geometry processing jobs, then this is a wise thing to do. The

default command timeout is 20 seconds. When you start doing bigger jobs with this stuff,

you'll end up with gigabytes of data and some lengthy run times.

private const string _connString = "Server=<server>;Port=5432;User
Id=<user>;Password=<password>;Database=gisbook;CommandTimeout=300";

private bool _mapInitializing;

94

Following our constructor, we need a function for initializing our map to be called from it.

Your code should look like this by now:

Initializing the map

The first thing we need to do in our map initialization function is set up and load our layers.

We'll start with the county layer. The data source for the vector layer requires the names of

the geometry column and the primary key—otherwise known as OID or GID in geospatial

terms—which you must have in your geometry table, and the name of the table containing

your layer.

The code to initialize and load the county layer, give it a green fill, and set a black border

style is as follows:

using System.Windows.Forms;

namespace SharpMapExample1

{

 public partial class formMainForm : Form

 {

 private const string _connString = "Server ;Port=5432;User Id= ;Password=
;Database=gisbook;CommandTimeout=300";

 private bool _mapInitializing;

 public formMainForm()

 {

 InitializeComponent();

 }

 public void InitializeMap()

 {

 }

 }

}

const string countyTableName = "ukcountys";

const string countyGeometryColumnName = "the_geom";

95

We repeat this pattern two more times to load the data for our towns and cities:

const string countyGidColumnName = "gid";

VectorStyle ukCountyStyle = new VectorStyle { Fill = Brushes.Green, Outline =

 Pens.Black, EnableOutline = true };

VectorLayer ukCountys = new VectorLayer("ukcountys")

{

 Style = ukCountyStyle,

 DataSource = new PostGIS(_connString, countyTableName,

 countyGeometryColumnName,countyGidColumnName),

 MaxVisible = 40000

};

const string cityTableName = "ukcitys_wgs";

const string cityGeometryColumnName = "geometry";

const string cityGidColumnName = "gid";

const string townTableName = "uktowns_wgs";

const string townGeometryColumnName = "geometry";

const string townGidColumnName = "gid";

VectorStyle ukCountyStyle = new VectorStyle { Fill = Brushes.Green, Outline =

 Pens.Black, EnableOutline = true };

VectorStyle ukCityStyle = new VectorStyle { PointColor = Brushes.OrangeRed };

VectorLayer ukCitys = new VectorLayer("ukcitys")

{

 Style = ukCityStyle,

 DataSource = new PostGIS(_connString, cityTableName, cityGeometryColumnName,

 cityGidColumnName),

 MaxVisible = 40000

};

VectorStyle ukTownStyle = new VectorStyle { PointColor = Brushes.DodgerBlue };

VectorLayer ukTowns = new VectorLayer("uktowns")

{

 Style = ukTownStyle,

96

The only difference here is that we set the point color rather than the fill and line colors as

we do for a polygon layer. We set the Style property of the layers to our VectorStyle

object to give the layers their visual appearance. Next, we set the DataSource property to a

connection to our Postgres server using the constants and connection string we previously

defined. MaxVisible is the maximum zoom level that objects will be visible at in our map

viewer. If we zoom beyond the value we specify, nothing will be drawn on the screen.

After we define the layers and their styles and connections, we then simply add these layers

to the map control on our form.

Then we set our default tool, zoom to the full extents of the map, and render it.

We'll finish by inserting the following code as the first two lines of the function; this will add a

status message to our status bar while the map is initializing:

Your code should now look something like the following image:

 DataSource = new PostGIS(_connString, townTableName, townGeometryColumnName,

 townGidColumnName),

 MaxVisible = 40000

};

mpbMapView.Map.Layers.Add(ukCountys);

mpbMapView.Map.Layers.Add(ukCitys);

mpbMapView.Map.Layers.Add(ukTowns);

mpbMapView.ActiveTool = MapBox.Tools.Pan;

mpbMapView.Map.ZoomToExtents();

mpbMapView.Refresh();

_mapInitializing = true;

lblStatusText.Text = "MAP Initializing please wait";

97

Figure 81: Nearly Completed Code

Lastly, add a call to InitializeMap() to your form constructor just below the call to

InitializeComponent(), and that's all that's needed for the initialization function.

If you run your app at this point, and everything has been set up correctly, you should see

your map layers appear on screen. You should be able to pan them by dragging the pointer

around the map surface, and zoom using the mouse wheel.

It should look something like this:

98

Figure 82: Completed Map

Fixing the Status Label

You'll notice that the MAP Initializing message in the status bar never changes. We'll fix

that. When the map finishes rendering, it fires an event called MapRefreshed.

Figure 83: Map Events

99

We hook this event in our code and add some code to it to change the label. However, we

also need to use our Boolean variable to control it as we don't want it called every time our

map is refreshed (which will happen quite often).

Hook the event with the following code:

If you run it now, the status bar should update when the map has finished rendering.

Wiring up the Tool Buttons

Now we'll add the code for the two buttons that allow you to switch tools.

SharpMap has a number of different tool modes, from zooming and panning to drawing lines

and polygons over the top of your loaded map.

The two tools we'll use in this app are the zoom and pan tool, which is the default, and the

query tool.

Changing the tool is as simple as assigning a new value to the ActiveTool property of the

MapBox control on your form. The value to assign is any of the values from the

MapBox.Tools type enumeration.

Double-click on each button in turn and add the following code in each of their click handlers

as follows:

private void MapBox1MapRefreshed(object sender, EventArgs e)

{

 if(_mapInitializing)

 {

 _mapInitializing = false;

 lblStatusText.Text = "MAP Initialized";

 }

}

private void BtnZoomAndPanClick(object sender, System.EventArgs e)

{

 mpbMapView.ActiveTool = MapBox.Tools.Pan;

}

private void BtnQueryCountyClick(object sender, System.EventArgs e)

100

If you run the app now, you should be able to change modes using the two buttons in the top

left of the form. Zooming and panning are handled automatically. For queries, we have to

respond to the click event on the map box and add some code to get the results we need.

Adding Our County Info Query Code

The first thing we need to do is make sure we are using the Query tool and go no further if

we are not.

From the designer, find the Click event on the map control and add the following line to the

event handler in the code:

Why do it this way? That's a very good question, especially considering that the query tool

actually has its own event handler that is fired when the map is clicked.

While writing this book, I originally used the dedicated handler, but found it quite difficult to

narrow down its range and the items I was selecting. Instead of one polygon, I routinely

received what seemed like half of the database, and had a difficult time sifting through the

amount of data handed to the event handler.

After a bit of research, it appears that most of the examples and recommended ways of

avoiding this problem involve trapping either the MouseUp and MouseDown events, or the

Click event. I chose the Click event for simplicity.

Once we know that we're in the correct tool, we can see where we are on the map. The first

thing we must do is get the actual mouse position in pixels. Then, we use ImageToWorld

from the SharpMap toolkit to transform the mouse position's x and y values into a WGS84

latitude and longitude.

Next, we need to use that position to query our county layer and gather a FeatureDataSet

containing any polygons that are present in the location we clicked.

{

 mpbMapView.ActiveTool = MapBox.Tools.Query;

}

if (mapBox1.ActiveTool != MapBox.Tools.Query) return;

FeatureDataSet selectedGeometry = new FeatureDataSet();

VectorLayer theLayer =

 (VectorLayer)mapBox1.Map.FindLayer("ukcountys").FirstOrDefault();

if (theLayer != null)

101

This should result in our FeatureDataSet collection being filled with any geometry found at

that location, which in our case should be the county that we clicked on.

Next up, we need to check if we have any data in the FeatureDataSet. If we do, grab the

name of the county that was clicked on.

Each row in the FeatureDataSet is pretty much the same as a row in a normal data set, so

we can look for a column with the same name as a column in the underlying table in

Postgres. If no rows are found, it's better to return.

Once we have a county name from our U.K. counties layer, we then want to get a list of

cities and towns for our county. We do this with the following two methods:

Now that we have our data, we want to provide some visual feedback to the user. First, we'll

highlight the county we clicked on.

{

 if (!theLayer.DataSource.IsOpen)

 {

 theLayer.DataSource.Open();

 }

 Envelope boundingBox = new Envelope(wgs84Location.CoordinateValue);

 if (Math.Abs(boundingBox.Area - 0.0) < 0.01)

 {

 boundingBox.ExpandBy(0.01);

 }

 theLayer.DataSource.ExecuteIntersectionQuery(boundingBox, selectedGeometry);

 theLayer.DataSource.Close();

}

if (selectedGeometry.Tables[0].Count <= 0) return;

string countyName = selectedGeometry.Tables[0].Rows[0]["name2"].ToString();

List<string> cityList = GetCitysForCounty(countyName);

List<string> townList = GetTownsForCounty(countyName);

102

We do this by first checking to see if we already have a highlight layer on our map. If one is

not present, create a new one. One thing to note about setting the style on the highlight layer

is the way we set the color. We use the full ARGB color call so that we can specify a

transparency level to our layer—the first value in the function, 64—that allows us to see the

existing map elements underneath it.

Next we take the FeatureDataSet we obtained earlier and assign it as the data source for

our highlight layer so that the selected county polygon shows up with our defined semi-

transparent style. Note that this will highlight multiple polygons if you select more than one

on the map. Previously selected counties will be cleared.

Once we add the highlight layer and refresh the map, our selected county should be visible.

The last thing to do for our country query feature is add our county info to the list box on the

left of our UI, and add some code at the start and end of the method to show what's

happening in our status bar.

VectorLayer highlightLayer = (VectorLayer)

 mpbMapView.Map.FindLayer("highlight").FirstOrDefault();

if (highlightLayer == null)

{

 Color myColor = Color.FromArgb(64,144,238,144);

 Brush fillBrush = new SolidBrush(myColor);

 highlightLayer = new VectorLayer("highlight");

 VectorStyle highlightStyle = new VectorStyle

 {Fill = fillBrush, Outline = Pens.White, EnableOutline = true};

 highlightLayer.Style = highlightStyle;

}

highlightLayer.DataSource = new GeometryProvider(selectedGeometry.Tables[0]);

mpbMapView.Map.Layers.Add(highlightLayer);

mpbMapView.Refresh();

lsbCountyResults.Items.Clear();

lsbCountyResults.Items.Add("Selected county: " + countyName.ToUpper());

lsbCountyResults.Items.Add("");

103

Next, we add the status bar message just after the first if statement.

And we add the completed message just before the closing brace.

Before we go any further, some of you will say, "Wow, what a long method," and wonder

why I'm using Application.DoEvents to make sure the label is updated in an event

handler. Please remember that this is example code only; it's not supposed to be a perfect

example, or simply copy and pasted verbatim to make production-quality apps. Its purpose is

purely to show you how to use SharpMap to create a simple GIS application.

if (cityList.Count > 0)

{

 lsbCountyResults.Items.Add("Citys in this county");

 foreach (string city in cityList)

 {

 lsbCountyResults.Items.Add(city);

 }

 lsbCountyResults.Items.Add("");

}

if (townList.Count > 0)

{

 lsbCountyResults.Items.Add("Towns in this county");

 foreach (string town in townList)

 {

 lsbCountyResults.Items.Add(town);

 }

 lsbCountyResults.Items.Add("");

}

lblStatusText.Text = "Querying Map... please wait for results.";

Application.DoEvents();

lblStatusText.Text = "Query finished.";

104

Conclusion

The final thing we need to do is create the two methods to retrieve our city and town lists

from our GIS database.

SharpMap is perfectly capable of taking the polygon outline we found earlier and querying

the other layers in the map to tell us which points fall within which area. However, as this

book is primarily about using a GIS database, I'd like to conclude by letting Postgres do the

heavy lifting for us once more.

The two methods are fairly similar, so I've copied both of them out and just described them

as one.

private static List<string> GetTownsForCounty(string countyName)

{

 string sql =

 string.Format(

 "SELECT t.Name FROM ukcountys c, uktowns t WHERE name2 = :county AND

 ST_Within(t.geometry,ST_Transform(c.the_geom,27700))");

 List<string> results = new List<string>();

 using (NpgsqlConnection conn = new NpgsqlConnection(_connString))

 {

 conn.Open();

 using (NpgsqlCommand command = new NpgsqlCommand(sql, conn))

 {

 command.Parameters.Add(new NpgsqlParameter("county", NpgsqlDbType.Varchar));

 command.Parameters[0].Value = countyName;

 using (NpgsqlDataReader dr = command.ExecuteReader())

 {

 while (dr.Read())

 {

 results.Add(dr.GetString(0));

 }

 }

 }

 }

 return results;

105

Anyone who has done any raw ADO.NET programming should immediately recognize what

we are doing here, and may even quite reasonably ask why we're not using LINQ to SQL, or

Entity Framework, or…the list goes on.

In the first place, the raw Postgres data provider doesn't provide an Entity Framework or

LINQ-to-SQL data model provider. Secondly, since we're using spatial functions, it's far

better to do this in ADO.NET than in a model where the SQL-level syntax is deeply hidden

from view.

}

private static List<string> GetCitysForCounty(string countyName)

{

 string sql =

 string.Format(

 "SELECT t.Name FROM ukcountys c, ukcitys t WHERE name2 = :county AND

 ST_Within(t.geometry,ST_Transform(c.the_geom,27700))");

 List<string> results = new List<string>();

 using (NpgsqlConnection conn = new NpgsqlConnection(_connString))

 {

 conn.Open();

 using (NpgsqlCommand command = new NpgsqlCommand(sql, conn))

 {

 command.Parameters.Add(new NpgsqlParameter("county", NpgsqlDbType.Varchar));

 command.Parameters[0].Value = countyName;

 using (NpgsqlDataReader dr = command.ExecuteReader())

 {

 while (dr.Read())

 {

 results.Add(dr.GetString(0));

 }

 }

 }

 }

 return results;

}

106

The first thing we do is make a constant string of the SQL we wish to run in the database,

and I'd like you to pay particular attention to :county in the query string. This is one of the

places where the Postgres data provider differs from the regular ADO.NET way of providing

parameters to a query string.

In regular ADO.NET code, parameters are usually prefixed with @, e.g., @county. In

Postgres, parameters are prefixed with a :. In code, however, adding parameters is done in

the same way.

The rest is fairly self-explanatory. We open a connection using the connection string we

defined previously, open the database, add the parameter, and run our SQL before finally

getting a data reader object to read our results into a generic string list.

We're doing all of this in nested using statements, which means everything is IDisposable

and should be freed correctly once we're done, leaving us to simply return the string list of

results back to the calling method.

If everything goes according to plan, on clicking Run you should be greeted with an

application that can zoom and pan around the map defined in your database, as well as

switch to County Query Mode and retrieve a list of towns and cities in a selected county.

Your finished app should look something like the following:

Figure 84: Completed Map Application

107

And there we have it. Hopefully I've whetted your appetite and shown you just a few of the

many things GIS can help you with in daily life.

Remember that it's possible to buy mobile phones that have enough power to do this kind of

thing on a small scale, and there are database systems to support them such as SQL

Compact. SharpMap allows you to do everything from vector to raster maps and beyond.

Once you start looking further, you'll find that some systems have the built-in ability to read

GPS devices, enabling you to pull real-time location information into your apps. Go out there

and explore the world in both its real and digital forms. It's an adventure that's only just

started.

108

Acronyms and Abbreviations

I thought it would be pertinent to leave you with a list of some of the acronyms you've seen

throughout the book. Like any industry, there are many acronyms to be familiar with, and

even though I've tried to explain them where possible, a summary list never hurts.

EPSG
European Petroleum Survey Group

ESRI
Environmental Systems Research Institute

EWKT
Extended well-known text

GIS
Geographic information system

GML
Geography markup language

GPS
Geographic positioning system; geographic positioning satellite; global positioning system

KML
Keyhole markup language

NMEA
National Marine Electronics Association

OGC
Open Geospatial Consortium

OSGeo
Open Source Geospatial Foundation

SRID
Spatial reference identifier

WKB
Well-known binary, the binary format of data in a GIS database

WKT
Well-known text, the text format of data in a GIS database

	The Story behind the Succinctly Series of Books
	About the Author
	Introduction
	Chapter 1 So, what exactly is a GIS?
	A Breakdown of the Components
	External Data Collection
	Static Data Production
	Historical Data
	Manual Data Loading
	Regular SQL Queries
	Location-Aware Inputs
	Graphical Outputs
	Statistical Outputs
	Manual Processing Software
	Automatic Processing Software
	Transformation Tasks
	Combinational Processing
	Pre-Output

	The Database
	OGC What?
	The Metadata Tables
	What's Actually in the Metadata Tables?
	Database Geometry Types
	What Types Should I Use for My Data?
	Metadata Tables, Part 2

	Coordinate and Spatial Location Systems
	Degrees, Minutes, and GPS
	How is this of any relevance to the GIS developer?

	Chapter 2 The Software
	Database Software
	Postgres and PostGIS
	MySQL
	SQL Server
	SQLite and SpatiaLite
	Oracle Spatial
	What about the rest?

	GIS Desktop Software
	ESRI ArcGIS
	Pitney Bowes MapInfo
	OpenJUMP
	Quantum GIS
	MapWindow
	GeoKettle
	The Remaining Packages

	Development Kits
	MapWinGis
	DotSpatial
	SharpMap
	BruTile
	And There's More...
	The Demos

	Chapter 3 Loading Data into your Database
	Creating a Spatial Database
	A Side Note about Postgres Users
	Revisiting the Metadata Tables

	Loading Points Using QGIS
	Loading Boundary Polygons Using GeoKettle
	Transformations and Jobs
	Adding Transformation Steps
	Configuring the Steps

	Previewing the Data

	Chapter 4 Spatial SQL
	Creating and Retrieving Geometry
	Output Functions
	A side note on using SQL in Postgres

	Testing the Output Functions
	What Else Can We Do with Spatial SQL?
	Scenario 1: Largest land mass
	Scenario 2: How many of what are where?
	Scenario 3: How close is this to that?
	Scenario 4: What is my geometry made of?

	Chapter 5 Creating a GIS application in .NET
	Downloading SharpMap
	Creating Our Own SharpMap Solution
	Adding the Code
	One Small Problem...
	Back to the Code...
	Initializing the map
	Fixing the Status Label
	Wiring up the Tool Buttons
	Adding Our County Info Query Code
	Conclusion

	Acronyms and Abbreviations

