
 

1 

 



 

2 

 

By  
Ryan Hodson 

 

Foreword by Daniel Jebaraj 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 

Copyright © 2012 by Syncfusion Inc. 

2501 Aerial Center Parkway 

Suite 200 

Morrisville, NC 27560 

USA 

All rights reserved. 

 

mportant licensing information. Please read. 

This book is available for free download from www.syncfusion.com on completion of a 

registration form. 

If you obtained this book from any other source, please register and download a free copy from 

www.syncfusion.com. 

This book is licensed for reading only if obtained from www.syncfusion.com. 

This book is licensed strictly for personal, educational use. 

Redistribution in any form is prohibited. 

The authors and copyright holders provide absolutely no warranty for any information provided. 

The authors and copyright holders shall not be liable for any claim, damages, or any other 

liability arising from, out of, or in connection with the information in this book. 

Please do not use this book if the listed terms are unacceptable. 

Use shall constitute acceptance of the terms listed. 

 

dited by 

This publication was edited by Daniel Jebaraj, vice president, Syncfusion, Inc. 

I 

E 

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/


 

4 

Table of Contents 

The Story behind the Succinctly Series  of Books ..................................................... 8 

About the Book ........................................................................................................... 10 

Introduction ................................................................................................................. 11 

Other Features ........................................................................................................... 12 

Pure JavaScript ...................................................................................................... 12 

Extensible ............................................................................................................... 12 

Utility Functions ...................................................................................................... 13 

What Knockout.js is Not ............................................................................................. 13 

Chapter 1  Conceptual Overview ................................................................................ 14 

Observables ............................................................................................................... 14 

Bindings ..................................................................................................................... 15 

Summary ................................................................................................................... 15 

Chapter 2  Hello, Knockout.js ..................................................................................... 16 

Download Knockout.js ................................................................................................ 16 

The HTML .................................................................................................................. 16 

Defining the ViewModel ............................................................................................. 17 

Binding an HTML Element ......................................................................................... 18 

Observable Properties ............................................................................................... 18 

Accessing Observables .......................................................................................... 19 

Using Custom Objects ............................................................................................... 19 

Interactive Bindings .................................................................................................... 20 

Summary ................................................................................................................... 21 

Chapter 3  Observables .............................................................................................. 22 

Computed Observables ............................................................................................. 23 



 

5 

Observable Arrays ..................................................................................................... 24 

Adding Items ........................................................................................................... 25 

Deleting Items ......................................................................................................... 26 

Destroying Items ..................................................................................................... 27 

Other Array Methods............................................................................................... 28 

Summary ................................................................................................................... 29 

Chapter 4  Control-Flow Bindings .............................................................................. 30 

The foreach Binding ................................................................................................... 30 

Working with Binding Contexts ................................................................................... 30 

The $root Property .................................................................................................. 31 

The $data Property ................................................................................................. 31 

The $index Property ............................................................................................... 32 

The $parent Property .............................................................................................. 32 

Discounted Products .................................................................................................. 32 

The if and ifnot Bindings ............................................................................................. 33 

The with Binding ........................................................................................................ 34 

Summary ................................................................................................................... 35 

Chapter 5  Appearance Bindings ............................................................................... 36 

The text Binding ......................................................................................................... 36 

The html Binding ........................................................................................................ 37 

The visible Binding ..................................................................................................... 38 

The css Binding ......................................................................................................... 38 

The style Binding ....................................................................................................... 39 

The attr Binding .......................................................................................................... 40 

Summary ................................................................................................................... 40 

Chapter 6  Interactive Bindings .................................................................................. 41 



 

6 

An HTML Form .......................................................................................................... 42 

The click Binding ........................................................................................................ 42 

The value Binding ...................................................................................................... 43 

The event Binding ...................................................................................................... 44 

Event Handlers with Custom Parameters ................................................................ 46 

The enable/disable Bindings ...................................................................................... 47 

The checked Binding .................................................................................................. 48 

Simple Check Boxes ............................................................................................... 48 

Check-box Arrays ................................................................................................... 49 

Radio Buttons ......................................................................................................... 50 

The options Binding ................................................................................................... 51 

Using Objects as Options ....................................................................................... 52 

The selectedOptions Binding ..................................................................................... 53 

The hasfocus Binding ................................................................................................. 53 

Summary ................................................................................................................... 54 

Chapter 7  Accessing External Data .......................................................................... 55 

A New HTML Form .................................................................................................... 55 

Loading Data.............................................................................................................. 56 

Saving Data ............................................................................................................... 57 

Mapping Data to ViewModels ..................................................................................... 58 

Summary ................................................................................................................... 60 

Chapter 8  Animating Knockout.js ............................................................................. 61 

Return of the Shopping Cart ....................................................................................... 61 

List Callbacks ............................................................................................................. 62 

Custom Bindings ........................................................................................................ 63 

Summary ................................................................................................................... 65 



 

7 

Chapter 9  Conclusion ................................................................................................ 66 

Appendix A .................................................................................................................. 67 

 

 



 

8 

The Story behind the Succinctly Series 
 of Books 

Daniel Jebaraj, Vice President 
Syncfusion, Inc. 

taying on the cutting edge 

As many of you may know, Syncfusion is a provider of software components 
for the Microsoft platform. This puts us in the exciting but challenging 
position of always being on the cutting edge. 

Whenever platforms or tools are shipping out of Microsoft, which seems to 
be about every other week these days, we have to educate ourselves, quickly. 

Information is plentiful but harder to digest 

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.  

While more information is becoming available on the Internet and more and more books 
are being published, even on topics that are relatively new, one aspect that continues to 
inhibit us is the inability to find concise technology overview books.  

We are usually faced with two options: read several 500+ page books or scour the web 
for relevant blog posts and other articles. Just as everyone else who has a job to do and 
customers to serve, we find this quite frustrating. 

The Succinctly series 

This frustration translated into a deep desire to produce a series of concise technical 
books that would be targeted at developers working on the Microsoft platform.  

We firmly believe, given the background knowledge such developers have, that most 
topics can be translated into books that are between 50 and 100 pages.  

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t 
everything wonderful born out of a deep desire to change things for the better? 

The best authors, the best content 

Each author was carefully chosen from a pool of talented experts who shared our vision. 
The book you now hold in your hands, and the others available in this series, are a result 
of the authors’ tireless work. You will find original content that is guaranteed to get you 
up and running in about the time it takes to drink a few cups of coffee. 

Free forever  

Syncfusion will be working to produce books on several topics. The books will always be 
free. Any updates we publish will also be free.  

S 



 

9 

Free? What is the catch? 

There is no catch here. Syncfusion has a vested interest in this effort.  

As a component vendor, our unique claim has always been that we offer deeper and 
broader frameworks than anyone else on the market. Developer education greatly helps 
us market and sell against competing vendors who promise to “enable AJAX support 
with one click,” or “turn the moon to cheese!” 

Let us know what you think 

If you have any topics of interest, thoughts, or feedback, please feel free to send them to 
us at succinctly-series@syncfusion.com.  

We sincerely hope you enjoy reading this book and that it helps you better understand 
the topic of study. Thank you for reading. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Please follow us on Twitter and “Like” us on Facebook to help us spread the  
word about the Succinctly series! 

                      

mailto:succinctly-series@syncfusion.com
http://twitter.com/#!/Syncfusion
https://www.facebook.com/Syncfusion


 

10 

About the Book 

This book is intended for professional web developers who need to build dynamic, 
scalable user interfaces with minimal markup. Basic knowledge of HTML, CSS, and 
JavaScript is assumed. Experience with any particular JavaScript framework (e.g., 
jQuery, Prototype, MooTools, etc.) is not strictly required, though it wouldn’t hurt. 

The first two chapters provide a brief overview of the Knockout.js library. Chapter 3 
discusses the data-oriented aspects of Knockout.js, and then Chapters 4 through 6 show 
you how to connect this data to HTML elements. The last two chapters of this book use 
jQuery’s AJAX functionality to demonstrate how Knockout.js interacts with server-side 
applications and jQuery’s animation features to add some flare to our data-driven 
interfaces. If you’ve never used jQuery before, don’t worry—the examples are easily 
adapted to other frameworks. 



 

11 

Introduction 

Creating data-driven user interfaces is one of the most complex jobs of a web developer. 
It requires careful management between the interface and its underlying data. For 
example, consider a simple shopping-cart interface for an e-commerce website. When 
the user deletes an item from the shopping cart, you have to remove the item from the 
underlying data set, remove the associated element from the shopping cart’s HTML 
page, and update the total price. For all but the most trivial of applications, figuring out 
which HTML elements rely on a particular piece of data is an error-prone endeavor. 

 

Figure 1: Manually tracking dependencies between HTML elements and their underlying 
data 

The Knockout.js JavaScript library provides a cleaner way to manage these kinds of 
complex, data-driven interfaces. Instead of manually tracking which sections of the 
HTML page rely on the affected data, Knockout.js lets you create a direct connection 
between the underlying data and its presentation. After linking an HTML element with a 
particular data object, any changes to that object are automatically reflected in the DOM. 

 

Figure 2: Automatically tracking dependencies using Knockout.js 

http://knockoutjs.com/


 

12 

This allows you to focus on the data behind your application. After you set up your HTML 
templates, you can work exclusively with JavaScript data objects. With Knockout.js, all 
you have to do to remove an item from the shopping cart is remove it from the 
JavaScript array that represents the user’s shopping cart items. The corresponding 
HTML elements will automatically be removed from the page, and the total price 
recalculated. 

Put another way, Knockout.js lets you design a self-updating display for your JavaScript 
objects. 

Other Features 

But, that’s not all Knockout can do. In addition to automatic dependency tracking, it 
boasts several supporting features for the rapid development of responsive user 
interfaces… 

Pure JavaScript 

Knockout.js is a client-side library written entirely in JavaScript. This makes it compatible 
with virtually any server-side software, from ASP.NET to PHP, Django, Ruby on Rails, 
and even custom-built web frameworks. 

When it comes to the front-end, Knockout.js connects the underlying data model to 
HTML elements by adding a single HTML attribute. This means it can be integrated into 
an existing project with minimal changes to your HTML, CSS, and other JavaScript 
libraries. 

Extensible 

While Knockout.js ships with almost two dozen bindings for defining how data is 
displayed, you may still find yourself in need of an application-specific behavior (e.g., a 
star-rating widget for user-submitted movie reviews). Fortunately, Knockout.js makes it 
easy to add your own bindings, giving you complete control over how your data is 
transformed into HTML. And, since these custom bindings are integrated into the core 
templating language, it’s trivial to reuse widgets in other parts of your application. 

 

Figure 3: Reusing a custom binding in several user interface components 



 

13 

Utility Functions 

Knockout.js comes with several utility functions, including array filters, JSON parsing, 
and even a generic way to map data from the server to an HTML view. These utilities 
make it possible to turn large amounts of data into a dynamic user interface with just a 
few lines of code. 

What Knockout.js is Not 

Knockout.js is not meant to be a replacement for jQuery, Prototype, or MooTools. It 
doesn’t attempt to provide animation, generic event handling, or AJAX functionality 
(however, Knockout.js can parse the data received from an AJAX call). Knockout.js is 
focused solely on designing scalable, data-driven user interfaces—how that underlying 
data is obtained is completely up to you. 

 

Figure 4: Knockout.js supplementing a full web application stack 

This high level of specialization makes Knockout.js compatible with any other client-side 
and server-side technology, but it also means Knockout.js often requires the cooperation 
of a more full-featured JavaScript framework. In this sense, Knockout.js is more of a 
supplement to a traditional web application stack, rather than an integral part of it. 



 

14 

Chapter 1  Conceptual Overview 

Knockout.js uses a Model-View-ViewModel (MVVM) design pattern, which is a variant of 
the classic Model-View-Controller (MVC) pattern. As in the MVC pattern, the model is 
your stored data, and the view is the visual representation of that data. But, instead of a 
controller, Knockout.js uses a ViewModel as the intermediary between the model and 
the view.  

The ViewModel is a JavaScript representation of the model data, along with associated 
functions for manipulating the data. Knockout.js creates a direct connection between the 
ViewModel and the view, which is how it can detect changes to the underlying data and 
automatically update the relevant aspects of the user interface. 

 

Figure 5: The Model-View-ViewModel design pattern 

The MVVM components of our shopping cart example are listed as follows: 

 Model: The contents of a user’s shopping cart stored in a database, cookie, or 
some other persistent storage. Knockout.js doesn’t care how your data is 
stored—it’s up to you to communicate between your model storage and 
Knockout.js. Typically, you’ll save and load your model data via an AJAX call. 

 View: The HTML/CSS shopping cart page displayed to the user. After 
connecting the view to the ViewModel, it will automatically display new, deleted, 
and updated items when the ViewModel changes. 

 ViewModel: A pure-JavaScript object representing the shopping cart, including a 
list of items and save/load methods for interacting with the model. After 
connecting your HTML view with the ViewModel, your application only needs to 
worry about manipulating this object (Knockout.js will take care of the view). 

Observables 

Knockout.js uses observables to track a ViewModel’s properties. Conceptually, 
observables act just like normal JavaScript variables, but they let Knockout.js observe 
their changes and automatically update the relevant parts of the view. 



 

15 

 

Figure 6: Using observables to expose ViewModel properties 

Bindings 

Observables only expose a ViewModel’s properties. To connect a user interface 
component in the view to a particular observable, you have to bind an HTML element to 
it. After binding an element to an observable, Knockout.js is ready to display changes to 
the ViewModel automatically. 

 

Figure 7: Binding a user interface component to an observable property 

Knockout.js includes several built-in bindings that determine how the observable 
appears in the user interface. The most common type of binding is to simply display the 
value of the observed property, but it’s also possible to change its appearance under 
certain conditions, or to call a method of the ViewModel when the user clicks the 
element. All of these use cases will be covered over the next few chapters. 

Summary 

The Model-View-ViewModel design pattern, observables, and bindings provide the 
foundation for the Knockout.js library. Once you understand these concepts, learning 
Knockout.js is simply a matter of figuring out how to access observables and manipulate 
them via the various built-in bindings. In the next chapter, we’ll take our first concrete 
look at these concepts by building a simple “Hello, World!” application. 



 

16 

Chapter 2  Hello, Knockout.js 

This chapter is designed to be a high-level survey of Knockout.js’ main components. By 
implementing a concrete sample application, we’ll see how Knockout’s ViewModel, view, 
observables, and bindings interact to create a dynamic user interface. 

First, we’ll create a simple HTML page to hold all of our code, then we’ll define a 
ViewModel object, expose some properties, and even add an interactive binding so that 
we can react to user clicks. 

Download Knockout.js 

Before we start writing any code, download the latest copy of Knockout.js from the 
downloads page at GitHub.com. As of this writing, the most recent version is 2.1.0. After 
that, we’re ready to add the library to an HTML page. 

Samples 

The samples in this book are available at 
https://bitbucket.org/syncfusion/knockoutjs_succinctly. 

The HTML 

Let’s start with a standard HTML page. In the same folder as your Knockout.js library, 
create a new file called index.html, and add the following. Make sure to change 

knockout-2.1.0.js to the file name of the Knockout.js library you downloaded. 

Sample code: item1.htm 

<html lang='en'> 
<head> 
  <title>Hello, Knockout.js</title> 
  <meta charset='utf-8' /> 
  <link rel='stylesheet' href='style.css' /> 
</head> 
<body> 
  <h1>Hello, Knockout.js</h1> 
  <p>Bill's Shopping Cart</p> 
 
  <script type='text/javascript' src='knockout-2.1.0.js'></script> 
</body> 
</html> 

This is a basic HTML 5 webpage that includes the Knockout.js library at the bottom of 
<body>; although, like any external script, you can include it anywhere you want (inside 

<head> is the other common option). The style.css style sheet isn’t actually necessary 

https://github.com/SteveSanderson/knockout/downloads
https://bitbucket.org/syncfusion/knockoutjs_succinctly


 

17 

for any of the examples in this book, but it will make them much easier on the eyes. It 
can be found in Appendix A, or downloaded from 
https://bitbucket.org/syncfusion/knockoutjs_succinctly. If you open the page in a web 
browser, you should see the following: 

 

Figure 8: Basic webpage 

Defining the ViewModel 

Since we’re not working with any persistent data yet, we don’t have a model to work 
with. Instead we’ll skip right to the ViewModel. Until Chapter 7, we’re really just using a 
View-ViewModel pattern. 

 

Figure 9: Focusing on the view and ViewModel for the time being 

Remember, a ViewModel is a pure JavaScript representation of your model data. To 
start out, we’ll just use a native JavaScript object as our ViewModel. Underneath the 
<script> tag that includes Knockout.js, add the following: 

Sample code: item2.htm 

  <script type='text/javascript'> 
    var personViewModel = { 
      firstName: "John", 
      lastName: "Smith" 
    }; 
    ko.applyBindings(personViewModel); 
  </script> 

https://bitbucket.org/syncfusion/knockoutjs_succinctly


 

18 

</body> 

This creates a “person” named John Smith, and the ko.applyBindings() method tells 

Knockout.js to use the object as the ViewModel for the page. 

Of course, if you reload the page, it will still display “Bill’s Shopping Cart.” For 
Knockout.js to update the view based on the ViewModel, we need to bind an HTML 
element to the personViewModel object. 

Binding an HTML Element 

Knockout.js uses a special data-bind attribute to bind HTML elements to the 

ViewModel. Replace Bill in the <p> tag with an empty <span> element, as follows: 

Sample code: item2.htm 

  <p><span data-bind='text: firstName'></span>'s Shopping Cart</p> 

The value of the data-bind attribute tells Knockout.js what to display in the element. In 

this case, the text binding tells Knockout.js to display the firstName property of the 

ViewModel. Now, when you reload the page, Knockout.js will replace the contents of the 
<span> with personViewModel.firstName. As a result, you should see “John’s 

Shopping Cart” in your browser: 

 

Figure 10: Screenshot of our first bound view component 

Similarly, if you change the data-bind attribute to text: lastName, it will display 

“Smith’s Shopping Cart.” As you can see, binding an element is really just defining an 
HTML template for your ViewModel. 

Observable Properties 

So, we have a ViewModel that can be displayed in an HTML element, but watch what 
happens when we try to change the property. After calling ko.applyBindings(), assign 

a new value to personViewModel.firstName: 

    ko.applyBindings(personViewModel); 
    personViewModel.firstName = "Ryan"; 



 

19 

Knockout.js won’t automatically update the view, and the page will still read “John’s 
Shopping Cart.” This is because we haven’t exposed the firstName property to 

Knockout.js. Any properties that you want Knockout.js to track must be observable. We 
can make our ViewModel’s properties observable by changing personViewModel to the 

following: 

Sample code: item3.htm 

    var personViewModel = { 
      firstName: ko.observable("John"), 
      lastName: ko.observable("Smith") 
    }; 

Instead of directly assigning values to firstName and lastName, we use 

ko.observable() to add the properties to Knockout.js’ automatic dependency tracker. 

When we change the firstName property, Knockout.js should update the HTML 

element to match: 

    ko.applyBindings(personViewModel); 
    personViewModel.firstName("Ryan"); 

Accessing Observables 

You’ve probably noticed that observables are actually functions—not variables. To get 
the value of an observable, you call it without any arguments, and to set the value, you 
pass the value as an argument. This behavior is summarized as follows: 

 Getting: Use obj.firstName() instead of obj.firstName 

 Setting: Use obj.firstName("Mary") instead of obj.firstName = "Mary" 

Adapting to these new accessors can be somewhat counterintuitive for beginners to 
Knockout.js. Be very careful not to accidentally assign a value to an observable property 
with the = operator. This will overwrite the observable, causing Knockout.js to stop 

automatically updating the view. 

Using Custom Objects 

Our generic personViewModel object and its observable properties work just fine for this 

simple example, but remember that ViewModels can also define methods for interacting 
with their data. For this reason, ViewModels are often defined as custom classes instead 
of generic JavaScript objects. Let’s go ahead and replace personViewModel with a 

user-defined object: 

Sample code: item4.htm 

    function PersonViewModel() { 
      this.firstName = ko.observable("John"); 



 

20 

      this.lastName = ko.observable("Smith"); 
    }; 
    ko.applyBindings(new PersonViewModel()); 

This is the canonical way to define a ViewModel and activate Knockout.js. Now, we can 
add a custom method, like so: 

    function PersonViewModel() { 
      this.firstName = ko.observable("John"); 
      this.lastName = ko.observable("Smith"); 
      this.checkout = function() { 
        alert("Trying to check out!"); 
      }; 
    }; 

Combining data and methods in a single object is one of the defining features of the 
MVVM pattern. It provides an intuitive way to interact with data. For example, when 
you’re ready to check out simply call the checkout() method on the ViewModel. 

Knockout.js even provides bindings to do this directly from the view. 

Interactive Bindings 

Our last step in this chapter will be to add a checkout button to call the checkout() 

method we just defined. This is a very brief introduction to Knockout.js’s interactive 
bindings, but it provides some useful functionality that we’ll need in the next chapter. 
Underneath the <p> tag, add the following button:  

  <button data-bind='click: checkout'>Checkout</button> 

Instead of a text binding that displays the value of a property, the click binding calls a 

method when the user clicks the element. In our case, it calls the checkout() method of 

our ViewModel, and you should see an alert message pop up. 

 

Figure 11: Alert message created after clicking the Checkout button 

Knockout.js’ full suite of interactive bindings will be covered in Chapter 6. 



 

21 

 

Summary 

This chapter walked through the core aspects of Knockout.js. As we’ve seen, there are 
three steps to setting up a Knockout.js-based web application: 

1. Creating a ViewModel object and registering it with Knockout.js. 
2. Binding an HTML element to one of the ViewModel’s properties. 
3. Using observables to expose properties to Knockout.js 

You can think of binding view elements to observable properties as building an HTML 
template for a JavaScript object. After the template is set up, you can completely forget 
about the HTML and focus solely on the ViewModel data behind the application. This is 
the whole point of Knockout.js. 

In the next chapter, we’ll explore the real power behind Knockout.js’ automatic 
dependency tracker by creating observables that rely on other properties, as well as 
observable arrays to hold lists of data. 



 

22 

Chapter 3  Observables 

We’ve seen how observable properties let Knockout.js automatically update HTML 
elements when underlying data changes, but this is only the beginning of their utility. 
Knockout.js also comes with two more ways of exposing ViewModel properties: 
computed observables and observable arrays. Together, these open up a whole new 
world of possibilities for data-driven user interfaces. 

Computed observables let you create properties that are dynamically generated. This 
means you can combine several normal observables into a single property, and 
Knockout.js will still keep the view up-to-date whenever any of the underlying values 
change.  

 

Figure 12: A computed observable dependent on two normal observables 

Observable arrays combine the power of Knockout.js’ observables with native 
JavaScript arrays. Like native arrays, they contain lists of items that you can manipulate. 
But since they’re observable, Knockout.js automatically updates any associated HTML 
elements whenever items are added or removed. 

 

Figure 13: An observable array containing other ViewModels 



 

23 

The ability to combine observables, along with the ability to work with lists of items, 
provides all the data structures you’ll need in a ViewModel. This chapter introduces both 
topics with a simple shopping cart interface. 

Computed Observables 

First, we’ll start with a simple computed observable. Underneath the firstName and 

lastName observables in PersonViewModel, create the fullName computed 

observable: 

Sample code: item5.htm 

      this.fullName = ko.computed(function() { 
        return this.firstName() + " " + this.lastName(); 
      }, this); 

This defines an anonymous function that returns the person’s full name whenever 
PersonViewModel.fullName is accessed. Dynamically generating the full name from 

the existing components (firstName and lastName) prevents us from storing redundant 

data, but that’s only half the battle. We need to pass this function to ko.computed() to 

create a computed observable. This tells Knockout.js that it needs to update any HTML 
elements bound to the fullName property whenever either firstName or lastName 

change. 

Let’s make sure our computed observable works by binding the “John’s Shopping Cart” 
line to fullName instead of firstName: 

  <p><span data-bind='text: fullName'></span>'s Shopping Cart</p> 

Now your page should read “John Smith’s Shopping Cart.” Next, let’s make sure that 
Knockout.js keeps this HTML element in sync when we change one of the underlying 
properties. After binding an instance of PersonViewModel, try changing its firstName 

property: 

    var vm = new PersonViewModel(); 
    ko.applyBindings(vm); 
    vm.firstName("Mary"); 

This should change the line to “Mary Smith’s Shopping Cart.” Again, remember that 
reading or setting observables should be done with function calls, not the assignment (=) 

operator. 

Computed observables provide many of the same benefits as Knockout.js’ automatic 
synchronization of the view. Instead of having to keep track of which properties rely on 



 

24 

other parts of the ViewModel, computed observables let you build your application 
around atomic properties and delegate dependency tracking to Knockout.js. 

Observable Arrays 

Observable arrays let Knockout.js track lists of items. We’ll explore this by creating a 
shopping cart display page for our user. First, we need to create a custom object for 
representing products. At the top of our script, before defining PersonViewModel, add 

the following object definition: 

Sample code: item6.htm 

    function Product(name, price) { 
      this.name = ko.observable(name); 
      this.price = ko.observable(price); 
    } 

This is just a simple data object to store a few properties. Note that it’s possible to give 
multiple objects observable properties, and Knockout.js will manage all of the 
interdependencies on its own. In other words, it’s possible to create relationships 
between multiple ViewModels in a single application.  

Next, we’re going to create a few instances of our new Product class and add them to 

the user’s virtual shopping cart. Inside of PersonViewModel, define a new observable 

property called shoppingCart: 

    this.shoppingCart = ko.observableArray([ 
      new Product("Beer", 10.99), 
      new Product("Brats", 7.99), 
      new Product("Buns", 1.49) 
    ]); 

This is a native JavaScript array containing three products wrapped in an observable 
array so Knockout.js can track when items are added and removed. But, before we start 
manipulating the objects, let’s update our view so we can see the contents of the 
shoppingCart property. Underneath the <p> tag, add the following: 

Sample code: item6.htm 

  <table> 
    <thead><tr> 
      <th>Product</th> 
      <th>Price</th> 
    </tr></thead> 
    <tbody data-bind='foreach: shoppingCart'> 
      <tr> 



 

25 

        <td data-bind='text: name'></td> 
        <td data-bind='text: price'></td> 
      </tr> 
    </tbody> 
  </table> 

This is a typical HTML 5 table containing a column for product names and another for 
product prices. This example also introduces a new binding called foreach. When 

Knockout.js encounters foreach: shoppingCart, it loops through each item in the 

ViewModel’s shoppingCart property. Any markup inside of the loop is evaluated in the 

context of each item, so text: name actually refers to shoppingCart[i].name. The 

result is a table of items alongside their prices: 

 

Figure 14: Screenshot of the rendered product listing 

The details of the foreach binding are outside the scope of this chapter. The next 

chapter provides an in-depth discussion of foreach, and it also introduces Knockout.js’ 

other control-flow bindings. For now, let’s get back to observable arrays. 

Adding Items 

The whole point of using observable arrays is to let Knockout.js synchronize the view 
whenever we add or remove items. For example, we can define a method on our 
ViewModel that adds a new item, like so: 

Sample code: item7.htm 

      this.addProduct = function() { 
         this.shoppingCart.push(new Product("More Beer", 10.99)); 
      };  



 

26 

Then, we can create a button to call the method so we can add items at run time and 
see Knockout.js keep the list up-to-date. Next to the checkout button in the view code, 
add the following: 

  <button data-bind='click: addProduct'>Add Beer</button> 

When you click this button, the ViewModel’s addProduct() method is executed. And, 

since shoppingCart is an observable array, Knockout.js inserts another <tr> element 

to display the new item. Letting Knockout.js keep track of list items like this is much less 
error-prone than trying to manually update the <table> whenever we change the 

underlying array. 

It’s also worth pointing out that Knockout.js always makes the minimal amount of 
changes necessary to synchronize the user interface. Instead of regenerating the entire 
list every time an item is added or removed, Knockout.js tracks which parts of the DOM 
are affected and updates only those elements. This built-in optimization makes it 
possible to scale up your application to hundreds or even thousands of items without 
sacrificing responsiveness. 

Deleting Items 

Similarly, Knockout.js can also delete items from an observable array via the remove() 

method. Inside of the PersonViewModel definition, add another method for removing 

items: 

Sample code: item8.htm 

      this.removeProduct = function(product) { 
        this.shoppingCart.remove(product); 
      }; 

Then, add a delete button for each item in the <tbody> loop: 

        <tr> 
          <td data-bind='text: name'></td> 
          <td data-bind='text: price'></td> 
          <td><button data-bind='click: 
$root.removeProduct'>Remove</button></td> 
        </tr> 

Because we’re in the foreach context, we had to use the $root reference to access our 

ViewModel instead of the current item in the loop. If we tried to call removeProduct() 

without this reference, Knockout.js would have attempted to call the method on the 
Product class, which doesn’t exist. All of the available binding contexts for foreach are 

covered in the next chapter. 



 

27 

The fact that we’re in a foreach loop also messes up the this reference in 

removeProduct(), so clicking a Remove button will actually throw a TypeError. We 

can use a common JavaScript trick to resolve these kinds of scope issues. At the top of 
the PersonViewModel definition, assign this to a new variable called self: 

    function PersonViewModel() { 
      var self = this; 
      ... 

Then, use self instead of this in the removeProduct() method: 

      this.removeProduct = function(product) { 
        self.shoppingCart.remove(product); 
      }; 

You should now be able to manipulate our observable array with the Add Beer and 
Remove buttons. Also note that Knockout.js automatically adds the current item in the 
loop as the first parameter to removeProduct().  

Destroying Items 

The remove() method is useful for real-time manipulation of lists, but it can prove 

troublesome once you start trying to send data from the ViewModel to a server-side 
script. 

For example, consider the task of saving the shopping cart to a database every time the 
user added or deleted an item. With remove(), the item is removed immediately, so all 

you can do is send your server the new list in its entirety—it’s impossible to determine 
which items where added or removed. You either have to save the entire list, or 
manually figure out the difference between the previous version stored in the database 
and the new one passed in from the AJAX request. 

Neither of these options is particularly efficient, especially considering Knockout.js 
knows precisely which items were removed. To remedy this situation, observable arrays 
include a destroy() method. Try changing PersonViewModel.removeProduct() to 

the following: 

Sample code: item9.htm 

      this.removeProduct = function(product) { 
        self.shoppingCart.destroy(product); 
        alert(self.shoppingCart().length); 
      }; 

Now when you click the Remove button, Knockout.js won’t remove the item from the 
underlying array. This is shown in the alert message, which should not decrease when 



 

28 

you click “Remove.” Instead of altering the list, the destroy() method adds a _destroy 

property to the product and sets it to true. You can display this property by adding 

another alert message: 

        alert(product._destroy); 

The _destroy property makes it possible to sort through an observable list and pull out 

only items that have been deleted. Then, you can send only those items to a server-side 
script to be deleted. This is a much more efficient way to manage lists when working with 
AJAX requests.  

Note that the foreach loop is aware of this convention, and still removes the associated 

<tr> element from the view, even though the item remains in the underlying array. 

Other Array Methods 

Internally, observable arrays are just like normal observable properties, except they are 
backed by a native JavaScript array instead of a string, number, or object. Like normal 
observables, you can access the underlying value by calling the observable array 
without any properties: 

Sample code: item10.htm 

      this.debugItems = function() { 
        var message = ""; 
        var nativeArray = this.shoppingCart(); 
        for (var i=0; i<nativeArray.length; i++) { 
          message += nativeArray[i].name + "\n"; 
        } 
        alert(message); 
      }; 

Calling this method will loop through the native list’s items, and it also provides access to 
the native JavaScript array methods like push(), pop(), shift(), sort(), etc. 

However, Knockout.js defines its own versions of these methods on the observable 
array object. For example, earlier in this chapter, we used shoppingCart.push() to add 

an item instead of shoppingCart().push(). The former calls Knockout.js’ version, and 

the latter calls push() on the native JavaScript array. 

It’s usually a much better idea to use Knockout.js’ array methods instead of accessing 
the underlying array directly because it allows Knockout.js to automatically update any 
dependent view components. The complete list of observable array methods provided by 
Knockout.js follows. Most of these act exactly like their native JavaScript counterparts. 

 push() 

 pop() 



 

29 

 unshift() 

 shift() 

 slice() 

 remove() 

 removeAll() 

 destroy() 

 destroyAll() 

 sort() 

 reversed() 

 indexOf() 

Summary 

In this chapter, we saw how computed observables can be used to combine normal 
observables into compound properties that Knockout.js can track. We also worked with 
observable arrays, which are a way for Knockout.js to synchronize lists of data in the 
ViewModel with HTML components. 

Together, atomic, computed, and array observables provide all the underlying data types 
you’ll ever need for a typical user interface. Computed observables and observable 
arrays make Knockout.js a great option for rapid prototyping. They let you put all of your 
complex functionality one place, and then let Knockout.js take care of the rest. 

For example, it would be trivial to create a computed observable that calculates the total 
price of each item in the shoppingCart list and displays it at the bottom of the page. 

Once you create that functionality, you can reuse it anywhere you need the total price 
(e.g., an AJAX request) just by accessing a ViewModel property. 

The next chapter introduces control-flow bindings. The foreach binding that we used in 

this chapter is probably the most common control-flow tool, but Knockout.js also includes 
a few more bindings for fine-grained control over our HTML view components. 



 

30 

Chapter 4  Control-Flow Bindings 

As we’ve seen in previous chapters, designing a view for a ViewModel is like creating an 
HTML template for a JavaScript object. An integral part of any templating system is the 
ability to control the flow of template execution. The ability to loop through lists of data 
and include or exclude visual elements based on certain conditions makes it possible to 
minimize markup and gives you complete control over how your data is displayed. 

We’ve already seen how the foreach binding can loop through an observable array, but 

Knockout.js also includes two logical bindings: if and ifnot. In addition, its with 

binding lets you manually alter the scope of template blocks. 

This chapter introduces Knockout.js’ control-flow bindings by extending the shopping 
cart example from the previous chapter. We’ll also explore some of the nuances of 
foreach that were glossed over in the last chapter. 

The foreach Binding 

Let’s start by taking a closer look at our existing foreach loop: 

Sample code: item010.htm 

    <tbody data-bind='foreach: shoppingCart'> 
      <tr> 
        <td data-bind='text: name'></td> 
        <td data-bind='text: price'></td> 
        <td><button data-bind='click: 
$root.removeProduct'>Remove</button></td> 
      </tr> 
    </tbody> 

When Knockout.js encounters foreach in the data-bind attribute, it iterates through the 

shoppingCart array and uses each item it finds for the binding context of the 

contained markup. This binding context is how Knockout.js manages the scope of loops. 
In this case, it’s why we can use the name and price properties without referring to an 

instance of Product. 

Working with Binding Contexts 

Using each item in an array as the new binding context is a convenient way to create 
loops, but this behavior also makes it impossible to refer to objects outside of the current 
item in the iteration. For this reason, Knockout.js makes several special properties 
available in each binding context. Note that all of these properties are only available in 
the view, not the ViewModel. 



 

31 

The $root Property 

The $root context always refers to the top-level ViewModel, regardless of loops or other 

changes in scope. As we saw in the previous chapter, this makes it possible to access 
top-level methods for manipulating the ViewModel. 

The $data Property 

The $data property in a binding context refers to the ViewModel object for the current 

context. It’s a lot like the this keyword in a JavaScript object. For example, inside of our 

foreach: shoppingCart loop, $data refers to the current list item. As a result, the 

following code works exactly as it would without using $data: 

        <td data-bind='text: $data.name'></td> 
        <td data-bind='text: $data.price'></td> 

This might seem like a trivial property, but it’s indispensable when you’re iterating 
through arrays that contain atomic values like strings or numbers. For example, we can 
store a list of strings representing tags for each product: 

Sample code: item011.htm 

    function Product(name, price, tags) { 
      this.name = ko.observable(name); 
      this.price = ko.observable(price); 
      tags = typeof(tags) !== 'undefined' ? tags : []; 
      this.tags = ko.observableArray(tags); 
    } 

Then, define some tags for one of the products in the shoppingCart array: 

        new Product("Buns", 1.49, ['Baked goods', 'Hot dogs']); 

Now, we can see the $data context in action. In the <table> containing our shopping 

cart items, add a <td> element containing a <ul> list iterating through the tags array: 

    <tbody data-bind='foreach: shoppingCart'> 
      <tr> 
        <td data-bind='text: name'></td> 
        <td data-bind='text: price'></td> 
        <td> <!-- Add a list of tags. --> 
          <ul data-bind='foreach: tags'> 
            <li data-bind='text: $data'></li> 
          </ul> 
        </td> 



 

32 

        <td><button data-bind='click: 
$root.removeProduct'>Remove</button></td> 
      </tr> 
    </tbody> 
  </table> 

Inside of the foreach: tags loop, Knockout.js uses the native strings “Baked goods” 

and “Hot dogs” as the binding context. But, since we want to access the actual strings 
instead of their properties, we need the $data object. 

The $index Property 

Inside of a foreach loop, the $index property contains the current item’s index in the 

array. Like most things in Knockout.js, the value of $index will update automatically 

whenever you add or delete an item from the associated observable array. This is a 
useful property if you need to display the index of each item, like so: 

Sample code: item012.htm 

        <td data-bind='text: $index'></td> 

The $parent Property 

The $parent property refers to the parent ViewModel object. Typically, you’ll only need 

this when you’re working with nested loops and you need to access properties in the 
outer loop. For example, if you need to access the Product instance from the inside of 

the foreach: tags loop, you could use the $parent property: 

Sample code: item013.htm 

                       <ul data-bind="foreach: tags"> 
                <li> 
                    <span data-bind="text: $parent.name"></span> - 
<span data-bind="text: $data"></span> 
                </li> 
 
            </ul> 

Between observable arrays, the foreach binding, and the binding context properties 

discussed previously, you should have all the tools you need to leverage arrays in your 
Knockout.js web applications. 

Discounted Products 

Before we move on to the conditional bindings, we’re going to add a discount property 

to our Product class: 

 



 

33 

Sample code: item014.htm 

    function Product(name, price, tags, discount) { 
      ... 
      discount = typeof(discount) !== 'undefined' ? discount : 0; 
      this.discount = ko.observable(discount); 
      this.formattedDiscount = ko.computed(function() { 
        return (this.discount() * 100) + "%"; 
      }, this); 
    } 

This gives us a condition we can check with Knockout.js’ logical bindings. First, we make 
the discount parameter optional, giving it a default value of 0. Then, we create an 

observable for the discount so Knockout.js can track its changes. Finally, we define a 
computed observable that returns a user-friendly version of the discount percentage. 

Let’s go ahead and add a 20% discount to the first item in 
PersonViewModel.shoppingCart: 

      this.shoppingCart = ko.observableArray([ 
        new Product("Beer", 10.99, null, .20), 
        new Product("Brats", 7.99), 
        new Product("Buns", 1.49, ['Baked goods', 'Hot dogs']); 
      ]); 

The if and ifnot Bindings 

The if binding is a conditional binding. If the parameter you pass evaluates to true, the 

contained HTML will be displayed, otherwise it’s removed from the DOM. For instance, 
try adding the following cell to the <table> containing the shopping cart items, right 

before the "Remove" button. 

        <td data-bind='if: discount() > 0' style='color: red'> 
          You saved <span data-bind='text: 
formattedDiscount'></span>!!! 
        </td> 

Everything inside the <td> element will only appear for items that have a discount 

greater than 0. Plus, since discount is an observable, Knockout.js will automatically re-

evaluate the condition whenever it changes. This is just one more way Knockout.js helps 
you focus on the data driving your application. 



 

34 

 

Figure 15: Conditionally rendering a discount for each product 

You can use any JavaScript expression as the condition: Knockout.js will try to evaluate 
the string as JavaScript code and use the result to show or hide the element. As you 
might have guessed, the ifnot binding simply negates the expression. 

The with Binding 

The with binding can be used to manually declare the scope of a particular block. Try 

adding the following snippet towards the top of your view, before the “Checkout” and 
“Add Beer” buttons: 

Sample code: item015.htm 

  <p data-bind='with: featuredProduct'> 
    Do you need <strong data-bind='text: name'></strong>? <br /> 
    Get one now for only <strong data-bind='text: price'></strong>. 
  </p> 

Inside of the with block, Knockout.js uses PersonViewModel.featuredProduct as the 

binding context. So, the text: name and text: price bindings work as expected 

without a reference to their parent object. 

Of course, for the previous HTML to work, you’ll need to define a featuredProduct 

property on PersonViewModel: 

      var featured = new Product("Acme BBQ Sauce", 3.99); 
      this.featuredProduct = ko.observable(featured); 



 

35 

Summary 

This chapter presented the foreach, if, ifnot, and with bindings. These control-flow 

bindings give you complete control over how your ViewModel is displayed in a view. 

It’s important to realize the relationship between Knockout.js’ bindings and observables. 
Technically, the two are entirely independent. As we saw at the very beginning of this 
book, you can use a normal object with native JavaScript properties (i.e. not 
observables) as your ViewModel, and Knockout.js will render the view’s bindings 
correctly. However, Knockout.js will only process the template the first time around—
without observables, it can’t automatically update the view when the underlying data 
changes. Seeing as how this is the whole point of Knockout.js, you’ll typically see 
bindings refer to observable properties, like our foreach: shoppingCart binding in the 

previous examples. 

Now that we can control the logic behind our view templates, we can move on to 
controlling the appearance of individual HTML elements. The next chapter digs into the 
fun part of Knockout.js: appearance bindings. 



 

36 

Chapter 5  Appearance Bindings 

In the previous chapter, we saw how Knockout.js’ control-flow bindings provide a basic 
templating system for view code. Control-flow bindings provide the visual structure for 
your application, but a full-fledged templating system needs more than just structure. 
Knockout.js’ appearance bindings give you precise control over the styles and formatting 
of individual elements. 

As of this writing, Knockout.js ships with six bindings for controlling the appearance of 
HTML elements: 

 text: <value>—Set the contents of an element. 

 html: <value>—Set the HTML contents of an element. 

 visible: <condition>—Show or hide an element based on certain conditions. 

 css: <object>—Add CSS classes to an element. 

 style: <object>—Define the style attribute of an element. 

 attr: <object>—Add arbitrary attributes to an element. 

Like all Knockout.js bindings, appearance bindings always occur inside of the data-
bind attribute of an HTML element. But unlike the control-flow bindings of the previous 

chapter, appearance bindings only affect their associated element—they do not alter 
template blocks or change the binding context. 

The text Binding 

The text binding is the bread and butter of Knockout.js. As we’ve already seen, the 

text binding displays the value of a property inside of an HTML element: 

        <td data-bind='text: name'></td> 

You should really only use the text binding on text-level elements (e.g., <a>, <em>, 

<span>, etc.), although technically it can be applied to any HTML element. As its 

parameter, the text binding takes any data type, and it casts it to a string before 

rendering it. The text binding will escape HTML entities, so it can be used to safely 

display user-generated content. 

 

Figure 16: The text binding automatically escaping HTML entities in the view 



 

37 

It’s also worth pointing out that Knockout.js manages cross-browser issues behind the 
scenes. For IE, it uses the innerText property, and for Firefox and related browsers it 

uses textContent. 

The html Binding 

The html binding allows you to render a string as HTML markup. This can be useful if 

you want to dynamically generate markup in a ViewModel and display it in your 
template. For example, you could define a computed observable called formattedName 

on our Product object that contains some HTML: 

    function Product(name, price, tags, discount) { 
      ... 
      this.formattedName = ko.computed(function() { 
        return "<strong>" + this.name() + "</strong>"; 
      }, this); 
    } 

Then, you could render the formatted name with the html binding: 

  <span data-bind='html: featuredProduct().formattedName'></span> 

While this defeats the goal of separating content from presentation, the html binding can 

prove to be a versatile tool when used judiciously. 

 

Figure 17: The html binding rendering HTML entities in the view 

Whenever you render dynamic HTML—whether via the html binding or ASP.NET—

always make sure that the markup has been validated. If you need to display content 
that can’t be trusted, you should use the text binding instead of html. 

In the previous snippet, also notice that featuredProduct is an observable, so the 

underlying object must be referenced with an empty function call instead of directly 
accessing the property with featuredProduct.formattedName. Again, this is a 

common mistake for Knockout.js beginners. 



 

38 

The visible Binding 

Much like the if and ifnot bindings, the visible binding lets you show or hide an 

element based on certain conditions. But, instead of completely removing the element 
from the DOM, the visible binding simply adds a display: none declaration to the 

element’s style attribute. For example, we can change our existing if binding to a 

visible binding: 

        <td data-bind='visible: discount() > 0' style='color: red'> 

The resulting HTML for both the if and the visible versions is shown in the following 

code sample. This example assumes the condition evaluates to false: 

<!-- Using if binding: --> 
<td data-bind="if: discount() > 0" style="color: red"></td> 
 
<!-- Using visible binding: --> 
<td data-bind='visible: discount() > 0' 
    style='color: red; display: none'> 
  You saved <span data-bind='text: formattedDiscount'></span>!!! 
</td> 

Deciding when to use visible versus if is largely determined by context. In this case, 

it’s actually better to use the if binding so the empty <td> creates an equal number of 

columns for each row. 

This binding takes the same parameter as the if and ifnot bindings. The condition can 

be a property of your ViewModel, a JavaScript expression, or a function that returns a 
Boolean. 

The css Binding 

The css binding lets you define CSS classes for HTML elements based on certain 

conditions. Instead of taking a condition as its parameter, it takes an object containing 
CSS class names as property names and conditions for applying the class as values. 
This is best explained with an example. 

Let’s say you want to draw extra attention to a product’s discount when it’s more than 
15% off. One way to do this would be to add a css binding to the “You save __%” 

message inside of the <table> that displays all of our shopping cart items: 

Sample code: item016.htm 

        <td data-bind='if: discount() > 0' style='color: red'> 
          You saved <span data-bind='text: formattedDiscount, 
                     css: {supersaver: discount() > .15}'></span>!!! 



 

39 

        </td> 

First, you’ll notice that it’s possible to add multiple bindings to a single data-bind 

attribute by separating them with commas. Second, the css binding takes the 

{supersaver: discount() > .15} object as its argument. This is like a mapping that 

defines when a CSS class should be added to the element. In this case, the 
.supersaver class will be added whenever the product’s discount is greater than 15%, 

and removed otherwise. The actual CSS defining the .supersaver rule can be defined 

anywhere in the page (i.e. an external or internal style sheet). 

.supersaver { 
  font-size: 1.2em; 
  font-weight: bold; 
} 

If you add a 10% discount to the second product, you should see our css binding in 

action: 

 

Figure 18: The css binding applying a class when discount() > .15 

The condition contained in the object’s property is the same as the if, ifnot, and 

visible bindings’ parameter. It can be a property, a JavaScript expression, or a 

function. 

The style Binding 

The style binding provides the same functionality as the css binding, except it 

manipulates the element’s style attribute instead of adding or removing classes. Since 

inline styles require a key-value pair, the syntax for this binding’s parameter is slightly 
different, too: 

          You saved <span data-bind='text: formattedDiscount, 
                     style: {fontWeight: discount() > .15 ? "bold" : 
"normal"}'></span>!!! 

If the product’s discount is greater than 15%, Knockout.js will render this element as the 
following: 



 

40 

        <td style='color: red; font-weight: bold'> 

But, if it’s less than 15%, it will have a font-weight of normal. Note that the style 

binding can be used in conjunction with an element’s existing style attribute. 

The attr Binding 

The attr binding lets you dynamically define attributes on an HTML element using 

ViewModel properties. For example, if our Product class had a permalink property, we 

could generate a link to individual product pages with: 

  <p><a data-bind='attr: {href: featuredProduct().permalink}'>View 
details</a></p> 

This adds an href attribute to the <a> tag pointing to whatever is stored in the 

permalink property. And of course, if permalink is an observable, you can leverage all 

the benefits of Knockout.js’ automatic dependency tracking. Since permalinks are 
typically stored with the data object in persistent storage (e.g., a blog entry), dynamically 
generating links in this fashion can be very convenient. 

But, the attr binding can do more than just create links. It lets you add any attribute to 

an HTML element. This opens up all kinds of doors for integrating your Knockout.js 
templates with other DOM libraries. 

Summary 

This chapter introduced Knockout.js’ appearance bindings. Many of these bindings 
change an HTML element when a particular condition has been met. Defining these 
conditions directly in the binding is an intuitive way to design templates, and it keeps 
view-centric code outside of the ViewModel. 

Remember, Knockout.js’ goal is to let you focus on the data behind your application by 
automatically synchronizing the view whenever the data changes. Once you’ve defined 
your bindings, you never have to worry about them again (unless you change the 
structure of your ViewModel, of course). 

The appearance bindings presented in this chapter provide all the tools you need to 
display your data, but they don’t let us add any user interaction to our view components. 
In the next chapter, we’ll take a look at how Knockout.js manages form fields.  



 

41 

Chapter 6  Interactive Bindings 

Form elements are the conventional way to interact with users through a webpage. 
Working with forms in Knockout.js is much the same as working with appearance 
bindings. But, since users can edit form fields, Knockout.js manages updates in both 
directions. This means that interactive bindings are two-way. They can be set 
programmatically and the view will update accordingly, or they can be set by the view 
and read programmatically. 

 

Figure 19: Knockout.js propagating changes in both directions 

For example, you can set the value of a text input field from the ViewModel and it will be 
displayed in the view. But, the user typing something into the input field causes the 
associated property on the ViewModel to update, too. The point is, Knockout.js always 
makes sure that the view and the ViewModel are synchronized. 

Knockout.js includes 11 bindings for interacting with the user: 

 click: <method>—Call a ViewModel method when the element is clicked. 

 value: <property>—Link a form element’s value to a ViewModel property.  

 event: <object>—Call a method when a user-initiated event occurs. 

 submit: <method>—Call a method when a form is submitted. 

 enable: <property>—Enable a form element based on a certain condition. 

 disable: <property>—Disable a form element based on a certain condition. 

 checked: <property>—Link a radio button or check box to a ViewModel 

property. 

 options: <array>—Define a <select> element with a ViewModel array. 

 selectedOptions: <array>—Define the active elements in a <select> field. 

 hasfocus: <property>—Define whether or not the element is focused. 

Like the appearance bindings presented in the previous chapter, these are all defined in 
the data-bind attribute of an HTML element. Some of them (like the click binding) work 

on any element, but others (like checked) can only be used with specific elements. 

One of the major benefits of using Knockout.js to manage HTML forms is that you still 
only have to worry about the data. Whenever the user changes a form element’s value, 
your ViewModel will automatically reflect the update. This makes it very easy to integrate 
user input into the rest of your application. 



 

42 

An HTML Form 

This chapter uses a new HTML page for the running example. Instead of a shopping cart 
display page, we’ll be working with a registration form for new customers. Create a new 
HTML file called interactive-bindings.html and add the following: 

Sample code: item017.htm 

<html lang='en'> 
<head> 
  <title>Interactive Bindings</title> 
  <meta charset='utf-8' /> 
  <link rel='stylesheet' href='../style.css' /> 
</head> 
<body> 
  <h1>Interactive Bindings</h1> 
 
  <form action="#" method="post"> 
    <!-- ToDo --> 
  </form> 
 
  <script type='text/javascript' src='knockout-2.1.0.js'></script> 
  <script type='text/javascript'> 
    function PersonViewModel() { 
      var self = this; 
      this.firstName = ko.observable("John"); 
      this.lastName = ko.observable("Smith"); 
    } 
 
    ko.applyBindings(new PersonViewModel()); 
  </script> 
</body> 
</html> 

This is a simplified version of what we’ve been working with throughout the book. In this 
chapter, we’ll only be worrying about configuring form elements. Processing form 
submissions is left for the next chapter. 

The click Binding 

The click binding is one of the simplest interactive bindings. It just calls a method of 

your ViewModel when the user clicks the element. For example, add the following button 
inside of the <form> element: 

<p><button data-bind='click: saveUserData'>Submit</button></p> 



 

43 

When the user clicks the button, Knockout.js calls the saveUserData() method on 

PersonViewModel. In addition, it passes two parameters to the handler method: the 

current model and the DOM event. A saveUserData() method utilizing both of these 

parameters would look something like: 

      this.saveUserData = function(model, event) { 
        alert(model.firstName() + " is trying to checkout!"); 
        if (event.ctrlKey) { 
          alert("He was holding down the Control key for some 
reason."); 
        } 
      }; 

In this particular example, model refers to the top-level ViewModel instance, and event 

is the DOM event trigged by the user’s click. The model argument will always be the 
current ViewModel, which makes it possible to access individual list items in a foreach 

loop. This is how we implemented the removeProduct() method in Chapter 3. 

The value Binding 

The value binding is very similar to the text binding we’ve been using throughout this 

book. The key difference is that it can be changed by the user, and the ViewModel will 
update accordingly. For instance, we can link the firstName and lastName observables 

with an input field by adding the following HTML to the form (before the <button>): 

    <p>First name: <input data-bind='value: firstName' /></p> 
    <p>Last name: <input data-bind='value: lastName' /></p> 

The value: firstName binding makes sure that the <input> element’s text is always 

the same as the ViewModel’s firstName property, regardless of whether it’s changed 

by the user or by your application. The same goes for the lastName property. 

 

Figure 20: Two-way connections between observables and form fields 



 

44 

We can examine this further by including a button for displaying the user’s name and 
another to set it programmatically. This lets us see how the value binding works from 

both ends: 

    <p> 
      <button data-bind='click: displayName'> 
        Display Name 
      </button> 
      <button data-bind='click: setName'> 
        Set Name 
      </button> 
    </p> 

The handler methods should look something like the following: 

Sample code: item019.htm 

      this.displayName = function() { 
        alert(this.firstName()); 
      }; 
      this.setName = function() { 
        this.firstName("Bob"); 
      }; 

Clicking Display Name will read the ViewModel’s email property, which should match 

the <input> element, even if it has been edited by the user. The Set Name button sets 

the value of the ViewModel’s property, causing the <input> element to update. The 

behavior of the latter is essentially the same as a normal text binding. 

Once again, the whole point behind this two-way synchronization is to let you focus on 
your data. After you set up a value binding, you can completely forget about HTML form 

elements. Simply get or set the associated property on the ViewModel and Knockout.js 
will take care of the rest. 

We won’t be needing the displayName and setName methods or their respective 

buttons, so you can go ahead and delete them if you like. 

The event Binding 

The event binding lets you listen for arbitrary DOM events on any HTML element. It’s 

like a generic version of the click binding. But, because it can listen for multiple events, 

it requires an object to map events to methods (this is similar to the attr binding’s 

parameter). For example, we can listen for mouseover and mouseout events on the first 

<input> element with the following: 



 

45 

    <p data-bind='event: {mouseover: showDetails, mouseout: 
hideDetails}'> 
      First name: <input data-bind='value: firstName' /> 
    </p> 

When the user fires a mouseover event, Knockout.js calls the showDetails() method 

of our ViewModel. Likewise, when he or she leaves the element, hideDetails() is 

called. Both of these take the same parameters as the click binding’s handlers: the 

target of the event and the event object itself. Let’s implement these methods now: 

      this.showDetails = function(target, event) { 
          alert("Mouse over"); 
      }; 
      this.hideDetails = function(target, event) { 
          alert("Mouse out"); 
      }; 

Now, when you interact with the First name field, you should see both messages pop 
up. But, instead of just displaying an alert message, let’s show some extra information 
for each form field when the user rolls over it. For this, we need another observable on 
PersonViewModel: 

      this.details = ko.observable(false); 

The details property acts as a toggle, which we can switch on and off with our event 

handler methods: 

      this.showDetails = function(target, event) { 
        this.details(true); 
      }; 
      this.hideDetails = function(target, event) { 
        this.details(false); 
      }; 

Then we can combine the toggle with the visible binding to show or hide form field 

details in the view: 

Sample code: item020.htm 

    <p data-bind='event: {mouseover: showDetails, mouseout: 
hideDetails}'> 
      First name: <input data-bind='value: firstName' /> 



 

46 

      <span data-bind='visible: details'>Your given name</span> 
    </p> 

The contents of the <span> should appear whenever you mouse over the First name 

field and disappear when you mouse out. This is pretty close to our desired functionality, 
but things get more complicated once we want to display details for more than one form 
field. Since we only have one toggle variable, displaying details is an all-or-nothing 
proposition—either details are displayed for all of the fields, or for none of them. 

 

Figure 21: Toggling all form field details simultaneously 

One way to fix this is by passing a custom parameter to the handler function. 

Event Handlers with Custom Parameters 

It’s possible to pass custom parameters from the view into the event handler. This 
means you can access arbitrary information from the view into the ViewModel. In our 
case, we’ll use a custom parameter to identify which form field should display its details. 
Instead of a toggle, the details observable will contain a string representing the 

selected element. First, we’ll make some slight alterations in the ViewModel: 

      this.details = ko.observable(""); 
 
      this.showDetails = function(target, event, details) { 
        this.details(details); 
      } 
      this.hideDetails = function(target, event) { 
        this.details(""); 
      } 

The only big change here is the addition of a details parameter to the showDetails() 

method. We don’t need a custom parameter for the hideDetails() function since it just 

clears the details observable.  



 

47 

Next, we’ll use a function literal in the event binding to pass the custom parameter to 

showDetails(): 

    <p data-bind='event: {mouseover: function(data, event) { 
         showDetails(data, event, "firstName") 
       }, mouseout: hideDetails}'> 

The function literal for mouseover is a wrapper for our showDetails() handler, 

providing a straightforward means to pass in extra information. The mouseout handler 

remains unchanged. Finally, we need to update the <span> containing the details: 

      <span data-bind='visible: details() == "firstName"'>Your given 
name</span> 

The First name form field should display its detailed description when you mouse over 
and hide when you mouse out, just like it did in the previous section. Only now, it’s 
possible to add details to more than one field by changing the custom parameter. For 
example, you can enable details for the Last name input element with: 

    <p data-bind='event: {mouseover: function(data, event) { 
         showDetails(data, event, "lastName") 
       }, mouseout: hideDetails}'> 
      Last name: <input data-bind='value: lastName' /> 
      <span data-bind='visible: details() == "lastName"'>Your 
surname</span> 

Event bindings can be a little bit complicated to set up, but once you understand how 
they work, they enable limitless possibilities for reactive design. The event binding can 

even connect to jQuery’s animation functionality, which is discussed in Chapter 8. For 
now, we’ll finish exploring the rest of Knockout.js’ interactive bindings. Fortunately for us, 
none of them are nearly as complicated as event bindings. 

The enable/disable Bindings 

The enable and disable bindings can be used to enable or disable form fields based 

on certain conditions. For example, let’s say you wanted to record a primary and a 
secondary phone number for each user. These could be stored as normal observables 
on PersonViewModel:  

      this.primaryPhone = ko.observable(""); 
      this.secondaryPhone = ko.observable(""); 



 

48 

The primaryPhone observable can be linked to a form field with a normal value 

binding: 

    <p> 
      Primary phone: <input data-bind='value: primaryPhone' /> 
    </p> 

However, it doesn’t make much sense to enter a secondary phone number without 
specifying a primary one, so we activate the <input> for the secondary phone number 

only if primaryPhone is not empty:  

    <p> 
      Secondary phone: <input data-bind='value: secondaryPhone, 
          enable: primaryPhone' /> 
    </p> 

Now users will only be able to interact with the Secondary phone field if they’ve entered 
a value for primaryPhone. The disable binding is a convenient way to negate the 

condition, but otherwise works exactly like enable. 

The checked Binding 

checked is a versatile binding that exhibits different behaviors depending on how you 

use it. In general, the checked binding is used to select and deselect HTML’s checkable 

form elements: check boxes and radio buttons. 

Simple Check Boxes 

Let’s start with a straightforward check box:  

    <p>Annoy me with special offers: <input data-bind='checked: 
annoyMe' type='checkbox' /></p> 

This adds a check box to our form and links it to the annoyMe property of the ViewModel. 

As always, this is a two-way connection. When the user selects or deselects the box, 
Knockout.js updates the ViewModel, and when you set the value of the ViewModel 
property, it updates the view. Don’t forget to define the annoyMe observable:  

      this.annoyMe = ko.observable(true); 

Using the checked binding in this fashion is like creating a one-to-one relationship 

between a single check box and a Boolean observable. 



 

49 

 

Figure 22: Connecting a Boolean observable with a single check box 

Check-box Arrays 

It’s also possible to use the checked binding with arrays. When you bind a check box to 

an observable array, the selected boxes correspond to elements contained in the array, 
as shown in the following figure: 

 

Figure 23: Connecting an observable array with multiple check boxes 

For instance, consider the following observable:  

      this.annoyTimes = ko.observableArray(['morning', 'evening']); 

We can connect the items in this observable array to check boxes using the value 

attribute on each <input> element: 

Sample code: item022.htm 

    <p>Annoy me with special offers: <input data-bind='checked: 
annoyMe' type='checkbox' /></p> 
    <div data-bind='visible: annoyMe'> 
      <div> 
        <input data-bind='checked: annoyTimes' 



 

50 

               value='morning' 
               type='checkbox' /> 
        In the morning 
      </div> 
      <div> 
        <input data-bind='checked: annoyTimes' 
               value='afternoon' 
               type='checkbox' /> 
        In the afternoon 
      </div> 
      <div> 
        <input data-bind='checked: annoyTimes' 
               value='evening' 
               type='checkbox' /> 
        In the evening 
      </div> 
    </div> 

This uses the annoyMe property from the previous chapter to toggle a list of check boxes 

for selecting when it would be a good time to be annoyed. Since value='morning' is on 

the first check box, it will be selected whenever the "morning" string is in the 

annoyTimes array. The same goes for the other check boxes. "morning" and 

"evening" are the initial contents of the array, so you should see something like the 

following in your webpage: 

 

Figure 24: Check boxes displaying the initial state of the annoyTimes observable array 

And since we’re using an observable array, the connection is two-way—deselecting any 
of the boxes will remove the corresponding string from the annoyTimes array. 

Radio Buttons 

The last context for the checked binding is in a radio button group. Instead of a Boolean 

or an array, radio buttons connect their value attribute to a string property in the 

ViewModel. For example, we can turn our check-box array into a radio button group by 
first changing the annoyTimes observable to a string:  

      this.annoyTimes = ko.observable('morning'); 

Then, all we have to do is turn the <input> elements into radio buttons:  



 

51 

        <input data-bind='checked: annoyTimes' 
               value='morning' 
               type='radio' 
               name='annoyGroup' /> 

Each <input> should have "radio" as its type and "annoyGroup" as its name. The 

latter doesn’t have anything to do with Knockout.js—it just adds all of them to the same 
HTML radio button group. Now, the value attribute of the selected radio button will 

always be stored in the annoyTimes property. 

 

Figure 25: Connecting an observable string with multiple radio buttons 

The options Binding 

The options binding defines the contents of a <select> element. This can take the 

form of either a drop-down list or a multi-select list. First, we’ll take a look at drop-down 
lists. Let’s edit the annoyTimes property one more time:  

      this.annoyTimes = ko.observableArray([ 
        'In the morning', 
        'In the afternoon', 
        'In the evening' 
      ]); 

Then we can bind it to a <select> field with: 

    <div data-bind='visible: annoyMe'> 
      <select data-bind='options: annoyTimes'></select> 
    </div> 



 

52 

You should now have a drop-down list instead of a radio button group, but it’s no use 
having such a list if you can’t figure out which item is selected. For this, we can reuse the 
value binding from earlier in the chapter:  

      <select data-bind='options: annoyTimes, value: 
selectedTime'></select> 

This determines which property on the ViewModel contains the selected string. We still 
need to define this property:  

Sample code: item024.htm 

      this.selectedTime = ko.observable('In the afternoon'); 

Again, this relationship goes both ways. Setting the value of selectedTime will change 

the selected item in the drop-down list, and vice versa. 

Using Objects as Options 

Combining the options and the value bindings give you all the tools you need to work 
with drop-down lists that contain strings. However, it’s often much more convenient to 
select entire JavaScript objects using a drop-down list. For example, the following 
defines a list of products reminiscent of the previous chapter:  

      this.products = ko.observableArray([ 
        {name: 'Beer', price: 10.99}, 
        {name: 'Brats', price: 7.99}, 
        {name: 'Buns', price: 2.99} 
      ]); 

When you try to create a <select> element out of this, all of your objects will be 

rendered as [object Object]: 

 

Figure 26: Attempting to use objects with the options binding 

Fortunately, Knockout.js lets you pass an optionsText parameter to define the object 

property to render in the <select> element:  

      <select data-bind='options: products, 



 

53 

          optionsText: "name", 
          value: favoriteProduct'></select> 

For this snippet to work, you’ll also have to define a favoriteProduct observable on 

your ViewModel. Knockout.js will populate this property with an object from 
PersonViewModel.products—not a string like it did in the previous section.  

The selectedOptions Binding 

The other rendering possibility for HTML’s <select> element is a multi-select list. 

Configuring a multi-select list is much like creating a drop-down list, except that instead 
of one selected item, you have an array of selected items. So, instead of using a value 

binding to store the selection, you use the selectedOptions binding:  

      <select data-bind='options: products, 
            optionsText: "name", 
            selectedOptions: favoriteProducts' 
          size='3' 
          multiple='true'></select> 

The size attribute defines the number of visible options, and multiple='true' turns it 

into a multi-select list. Instead of a string property, favoriteProducts should point to an 

array: 

Sample code: item025.htm 

      var brats = {name: 'Brats', price: 7.99}; 
      this.products = ko.observableArray([ 
          {name: 'Beer', price: 10.99}, 
          brats, 
          {name: 'Buns', price: 2.99} 
      ]); 
      this.favoriteProducts = ko.observableArray([brats]); 

Note that we needed to provide the same object reference (brats) to both products 

and favoriteProducts for Knockout.js to initialize the selection correctly. 

The hasfocus Binding 

And so, we come to our final interactive binding: hasfocus. This aptly named binding 

lets you manually set the focus of an interactive element using a ViewModel property. If, 
for some strange reason, you’d like the “Primary phone” field to be the initial focus, you 
can add a hasfocus binding, like so:  



 

54 

    <p> 
      Primary phone: <input data-bind='value: primaryPhone,    
        hasfocus: phoneHasFocus' /> 
    </p> 

Then you can add a Boolean observable to tell Knockout.js to give it focus: 

Sample code: item026.htm 

      this.phoneHasFocus = ko.observable(true); 

By setting this property elsewhere in your application, you can precisely control the flow 
of focus in your forms. In addition, you can use hasfocus to track the user’s progress 

through multiple form fields. 

Summary 

This chapter covered interactive bindings, which leverage Knockout.js’ automatic 
dependency tracking against HTML’s form fields. Unlike appearance bindings, 
interactive bindings are two-way bindings—changes to the user interface components 
are automatically reflected in the ViewModel, and assignments to ViewModel properties 
trigger Knockout.js to update the view accordingly. 

Interactive bindings, appearance bindings, and control-flow bindings compose 
Knockout.js’ templating toolkit. Their common goal is to provide a data-centric interface 
for your web applications. Once you define the presentation of your data using these 
bindings, all you have to worry about is manipulating the underlying ViewModel. This is a 
much more robust way to develop dynamic web applications. 

This chapter discussed forms from the perspective of the view and the ViewModel. 
Interactive bindings are an intuitive, scalable method for accessing user input, but we 
have yet to discuss how to get this data out of the front-end and into a server-side script. 
The next chapter addresses this issue by integrating Knockout.js with jQuery’s AJAX 
functionality. 



 

55 

Chapter 7  Accessing External Data 

For most web applications, collecting user input is relatively useless if you can’t pass 
that data along to a server. In this chapter, we’ll learn how to send and receive 
information from a server using AJAX requests. This puts the model back into the Model-
View-ViewModel design pattern underpinning Knockout.js. 

 

Figure 27: Adding the model back into our MVVM pattern 

Remember that Knockout.js is designed to be compatible with any other client-side or 
server-side technology. This book uses jQuery’s $.getJSON() and $.post() functions, 

but you’re free to use any JavaScript framework that can send and receive JSON data. 
Similarly, the server-side scripting language is completely up to you. Instead of 
presenting back-end code samples, this chapter simply includes the JSON data 
expected by Knockout.js. Generating this output should be trivial to implement in any 
modern scripting language. 

A New HTML Form 

We’re going to use a fresh HTML page to experiment with Knockout.js/AJAX integration. 
Since this page will have to interact with some server-side code, make sure it’s 
accessible from the document root of your local server. We’ll start out with something 
similar to the previous chapter:  

<html lang='en'> 
<head> 
  <title>External Data</title> 
  <meta charset='utf-8' /> 
  <link rel='stylesheet' href='style.css' /> 
</head> 
<body> 
  <h1>External Data</h1> 
 
  <form action="#" method="post"> 
    <p>First name: <input data-bind='value: firstName' /></p> 
    <p>Last name: <input data-bind='value: lastName' /></p> 



 

56 

    <div> 
      Your favorite food: 
      <select data-bind='options: activities, 
          value: favoriteHobby'></select> 
    </div> 
    <p><button data-bind='click: loadUserData'>Load Data</button></p> 
  </form> 
 
  <script type='text/javascript' src='knockout-2.1.0.js'></script> 
  <script type='text/javascript' src='jquery-1.7.2.js'></script> 
  <script type='text/javascript'> 
    function PersonViewModel() { 
      var self = this; 
      self.firstName = ko.observable(""); 
      self.lastName = ko.observable(""); 
      self.activities = ko.observableArray([]); 
      self.favoriteHobby = ko.observable(""); 
    } 
 
    ko.applyBindings(new PersonViewModel()); 
  </script> 
</body> 
</html> 

This is a basic form with a few <input> fields so we can see how to send and receive 

information from the server. Notice that we also include the jQuery library before our 
custom <script> element. 

Loading Data 

You probably noticed that unlike previous chapters, all of our observables are empty. 
Instead of hard-coding data into our ViewModel, we’re going to load it from a server 
using jQuery’s $.getJSON() method. First, let’s make a button for loading data 

(typically, you would automatically load the data when your application starts up, but this 
way we can see how everything works step-by-step):  

    <p><button data-bind='click: loadUserData'>Load Data</button></p> 

The handler for this button uses $.getJSON() to call a server-side script:  

      self.loadUserData = function() { 
        $.getJSON("/get-user-data", function(data) { 
          alert(data.firstName); 
        }); 
      } 

http://jquery.com/download/


 

57 

The /get-user-data string should be the path to the script. Again, as long as it can 

encode and decode JSON, any server-side language can be used with Knockout.js. For 
our example, it should return a JSON-formatted string that looks something like the 
following:  

{"firstName":"John", 
 "lastName":"Smith", 
 "activities":[ 
    "Golf", 
    "Kayaking", 
    "Web Development"], 
  "favoriteHobby":"Golf" 
} 

The $.getJson() method automatically translates this string back into a JavaScript 

object and passes it to the handler method via the data parameter. It’s trivial to update 

our ViewModel with the new information:  

      self.loadUserData = function() { 
        $.getJSON("/get-user-data", function(data) { 
          self.firstName(data.firstName); 
          self.lastName(data.lastName); 
          self.activities(data.activities); 
          self.favoriteHobby(data.favoriteHobby); 
        }); 
      } 

After clicking the Load Data button, $.getJSON() loads data from the server and uses it 

to update all of our ViewModel’s observables. As always, Knockout.js automatically 
updates the form fields to match. 

Saving Data 

For normal web applications, saving data is a simple matter of converting objects to 
JSON and sending it to the server with something like jQuery’s $.post() method. 

Things are somewhat more complicated for Knockout.js applications. It’s not possible to 
use a standard JSON serializer to convert the object to a string because ViewModels 
use observables instead of normal JavaScript properties. Remember that observables 
are actually functions, so trying to serialize them and send the result to a server would 
have unexpected results. 

Fortunately, Knockout.js provides a simple solution to this problem: the ko.toJSON() 

utility function. Passing an object to ko.toJSON() replaces all of the object’s observable 

properties with their current value and returns the result as a JSON string. 



 

58 

Create another button called “Save Data” and point it to a saveUserData() method on 

the ViewModel. Then, you can see the JSON generated by ko.toJSON() with the 

following:  

      self.saveUserData = function() { 
        alert(ko.toJSON(self)); 
      } 

Clicking this button should display the current data in your form fields transformed into a 
JSON string. Now that we’ve gotten rid of all our observables, we can send this to the 
server for processing:  

      self.saveUserData = function() { 
        var data_to_send = {userData: ko.toJSON(self)}; 
        $.post("/save-user-data", data_to_send, function(data) { 
          alert("Your data has been posted to the server!"); 
        }); 
      }  

This sends the JSON string representing your ViewModel to a script called /save-user-
data using the POST method. As a result, your script should find the string under a 

userData entry in its POST dictionary. You can then deserialize the JSON string into an 

object, save it into your database, or do whatever kind of server-side processing you 
need to do. 

Mapping Data to ViewModels 

The loading and saving mechanisms covered in the previous two sections provide 
everything you need to create rich user interfaces backed by an arbitrary server-side 
scripting language. However, manually mapping loaded data to observables can 
become quite tedious if you’re working with more than just a few properties. 

The mapping plug-in for Knockout.js solves this problem by letting you automatically 

map JSON objects loaded from the server to ViewModel observables. In essence, 
mapping is a generic version of our saveUserData() and loadUserData() methods. 

The mapping plug-in is released as a separate project, so we’ll need to download it and 

include it in our HTML page before using it:  

  <script type='text/javascript' src='knockout.mapping-
latest.js'></script> 

Next, we’re going to completely replace our PersonViewModel. In its place, we’ll use 

jQuery’s $.getJSON() method to load some initial data from the server and let the 

https://github.com/SteveSanderson/knockout.mapping/tree/master/build/output


 

59 

mapping plug-in dynamically generate observables. Replace the entire custom 

<script> element with the following:  

  <script type='text/javascript'> 
    $.getJSON("/get-user-data", function(data) { 
      var viewModel = ko.mapping.fromJS(data); 
      ko.applyBindings(viewModel); 
    }); 
  </script> 

When our application loads, it immediately makes an AJAX request for the initial user 
data. Your server-side script for /get-intial-data should return the same thing as the 

sample JSON output from the Loading Data section of this chapter. Once the data is 
loaded, we create a ViewModel via ko.mapping.fromJS(). This takes the native 

JavaScript object generated by the script and turns each property into an observable. 
Aside from the saveUserData() and loadUserData() methods, this dynamically 

generated ViewModel has the exact same functionality as PersonViewModel. 

At this point, we’ve only initialized our ViewModel with data from the server. The 
mapping plug-in also lets us update an existing ViewModel in the same fashion. Let’s go 

ahead and add an explicit loadUserData() method back to the ViewModel:  

      viewModel.loadUserData = function() { 
        $.getJSON("/get-user-data", function(data) { 
          ko.mapping.fromJS(data, viewModel); 
        }); 
      } 

In the old version of loadUserData(), we had to manually assign each data property to 

its respective observable. But now, the mapping plug-in does all of this for us. Note that 

passing the data object as the first argument to ko.mapping.fromJS() causes it to 

update the ViewModel instead of initializing it. 

The mapping plug-in only relates to loading data, so saveUserData() remains 

unaffected except for the fact that it needs to be assigned to the viewModel object:  

      viewModel.saveUserData = function() {  
        var data_to_send = {userData: ko.toJSON(viewModel)}; 
        $.post("/save-user-data", data_to_send, function(data) { 
          alert("Your data has been posted to the server!"); 
        }); 
      } 



 

60 

And now we should be back to where we started at the beginning of this section—both 
the Load Data and Save Data buttons should work, and Knockout.js should keep the 
view and ViewModel synchronized. 

While not a necessary plug-in for all Knockout.js projects, the mapping plug-in does 

make it possible to scale up to complex objects without adding an extra line of code for 
every new property you add to your ViewModel. 

Summary 

In this chapter, we learned how Knockout.js can communicate with a server-side script. 
Most of the AJAX-related functionality came from the jQuery web framework, although 
Knockout.js does provide a neat utility function for converting its observables into native 
JavaScript properties. We also discussed the mapping plug-in, which provided a generic 

way to convert a native JavaScript object to a ViewModel with observable properties. 

Remember, Knockout.js is a pure client-side library. It’s only for connecting JavaScript 
objects (ViewModels) with HTML elements. Once you have this relationship set up, you 
can use any other technology you like to communicate with the server. On the client-
side, you could replace jQuery with Dojo, Prototype, MooTools, or any other framework 
that supports AJAX requests. On the server-side, you have the choice of ASP.NET, 
PHP, Django, Ruby on Rails, Perl, JavaServer Pages…you get the idea. This separation 
of concerns makes Knockout.js an incredibly flexible user interface development tool. 



 

61 

Chapter 8  Animating Knockout.js 

Knockout.js is not an animation library. All of Knockout.js’ automatic updates are 
immediately applied whenever the underlying data changes. In order to animate any of 
its changes, we need to dig into Knockout.js’ internals and manually create animated 
transitions using another JavaScript framework like jQuery or MooTools. This chapter 
sticks with jQuery’s animation routines, but the concepts presented apply to other 
animation libraries as well. 

Return of the Shopping Cart 

For this chapter, we’ll return to a simplified version of our shopping cart example. Create 
a new HTML file with the following contents. We won’t be making any AJAX requests, so 
feel free to put this anywhere on your computer. We will, however, be using jQuery’s 
animation routines, so be sure to include a link to your copy of the jQuery library.  

<html lang='en'> 
<head> 
  <title>Animating Knockout.js</title> 
  <meta charset='utf-8' /> 
  <link rel='stylesheet' href='style.css' /> 
</head> 
<body> 
  <h1>Animating Knockout.js</h1> 
  <table> 
    <thead><tr> 
      <th>Product</th> 
      <th>Price</th> 
      <th></th> 
    </tr></thead> 
    <tbody data-bind='foreach: items'> 
      <tr> 
        <td data-bind='text: name'></td> 
        <td data-bind='text: price'></td> 
        <td><button data-bind='click: 
$root.removeProduct'>Remove</button></td> 
      </tr> 
    </tbody> 
  </table> 
 
  <button data-bind='click: addProduct'>Add Beer</button> 
 
  <script type='text/javascript' src='knockout-2.1.0.js'></script> 
  <script src='jquery-1.7.2.js'></script> 
  <script type='text/javascript'> 
    function Product(name, price, tags, discount, details) { 
      this.name = ko.observable(name); 



 

62 

      this.price = ko.observable(price); 
    } 
    function ShoppingCart() { 
      var self = this; 
      this.instructions = ko.observable(""); 
      this.hasInstructions = ko.observable(false); 
       
      this.items = ko.observableArray([ 
        new Product("Beer", 10.99), 
        new Product("Brats", 7.99), 
        new Product("Buns", 1.49) 
      ]); 
       
      this.addProduct = function() { 
        this.items.push(new Product("More Beer", 10.99)); 
      }; 
 
      this.removeProduct = function(product) { 
        self.items.destroy(product); 
      }; 
       
    }; 
    ko.applyBindings(new ShoppingCart()); 
  </script> 
</body> 
</html> 

Hopefully, this is all review by now. We have an observable array containing a bunch of 
products, a foreach binding that displays each one of them, and a button to add more 

items to the shopping cart. 

List Callbacks 

Knockout.js is a powerful user interface library on its own, but once you combine it with 
the animation capabilities of a framework like jQuery or MooTools, you’re ready to create 
truly stunning UIs with minimal markup. First, we’ll take a look at animating lists, and 
then the next section presents a more generic way to animate view components. 

The foreach binding has two callbacks named beforeRemove and afterAdd. These 

functions are executed before an item is removed from the list or after it’s been added to 
the list, respectively. This gives us an opportunity to animate each item before 
Knockout.js manipulates the DOM. Add the callbacks to the <tbody> element like so:  

    <tbody data-bind='foreach: {data: items, 
      beforeRemove: hideProduct, 
      afterAdd: showProduct}'> 



 

63 

Instead of a property, our foreach binding now takes an object literal as its parameter. 

The parameter’s data property points to the array you would like to render, and the 

beforeRemove and afterAdd properties point to the desired callback functions. Next, 

we should define these callbacks on the ShoppingCart ViewModel:  

      this.showProduct = function(element) { 
        if (element.nodeType === 1) { 
          $(element).hide().fadeIn(); 
        } 
      }; 
 
      this.hideProduct = function(element) { 
        if (element.nodeType === 1) { 
         $(element).fadeOut(function() { $(element).remove(); }); 
        } 
      }; 

The showProduct() callback uses jQuery to make new list items gradually fade in, and 

the hideProduct() callback fades them out, and then removes them from the DOM. 

Both functions take the affected DOM element as their first parameter (in this case, it’s a 
<tr> element). The conditional statements make sure that we’re working with a full-

fledged element and not a mere text node. 

The end result should be list items that smoothly transition into and out of the list. Of 
course, you’re free to use any of jQuery’s other transitions or perform custom post-
processing in either of the callbacks. 

Custom Bindings 

The foreach callbacks work great for animating lists, but unfortunately other bindings 

don’t provide this functionality. So, if we want to animate other parts of the user 
interface, we have to create custom bindings that have the animation built right into 
them. 

Custom bindings work just like Knockout.js’ default bindings. For example, consider the 
following form fields:  

  <div> 
    <p> 
      <input data-bind='checked: hasInstructions' 
             type='checkbox' /> 
      Requires special handling instructions 
    </p> 
    <div> 
      <textarea data-bind='visible: hasInstructions, 
                           value: instructions'> 
      </textarea> 



 

64 

    </div> 
  </div> 

The check box acts as a toggle for the <textarea>, but since we’re using the visible 

binding, Knockout.js abruptly adds or removes it from the DOM. To provide a smooth 
transition for the <textarea>, we’ll create a custom binding called visibleFade:  

      <textarea data-bind='visibleFade: hasInstructions, 
                           value: instructions'> 

Of course, this won’t work until we add the custom binding to Knockout.js. We can do 
this by adding an object defining the binding to ko.bindingHandlers as shown in the 

following code sample. This also happens to be where all of the built-in bindings are 
defined, too. 

    ko.bindingHandlers.visibleFade = { 
      init: function(element, valueAccessor) { 
        var value = valueAccessor(); 
        $(element).toggle(value()); 
      }, 
      update: function(element, valueAccessor) { 
        var value = valueAccessor(); 
        value() ? $(element).fadeIn() : $(element).fadeOut(); 
      } 
    } 

The init property specifies a function to call when Knockout.js first encounters the 

binding. This callback should define the initial state for the view component and perform 
necessary setup actions (e.g., registering event listeners). For visibleFade, all we have 

to do is show or hide the element based on the state of the ViewModel. We implemented 
this using jQuery’s toggle() method. 

The element parameter is the DOM element being bound, and valueAccessor is a 

function that will return the ViewModel property in question. In our example, element 

refers to <textarea>, and valueAccessor() returns a reference to the 

hasInstructions observable. 

The update property specifies a function to execute whenever the associated 

observable changes, and our callback uses the value of hasInstructions to transition 

the <textarea> in the appropriate direction. Remember that you need to call the 

observable to get its current value (i.e. value(), not value). However, if 

hasInstructions were a normal JavaScript property instead of an observable, this 

would not be the case. 



 

65 

Summary 

In this chapter, we discovered two methods of animating Knockout.js view components. 
First, we added callback methods to the foreach binding, which let us delegate the 

addition and removal of items to a user-defined function. This gave us the opportunity to 
integrate jQuery’s animated transitions into our Knockout.js template. Then, we explored 
custom bindings as a means to animate arbitrary elements.  

This chapter presented a common use case for custom bindings, but they are by no 
means limited to animating UI components. Custom bindings can also be used to filter 
data as it is collected, listen for custom events, or create reusable widgets like grids and 
paged content. If you can encapsulate a behavior into an init and an update function, 

you can turn it into a custom binding. 



 

66 

Chapter 9  Conclusion 

Knockout.js is a pure JavaScript library that makes it incredibly easy to build dynamic, 
data-centric user interfaces. We learned how to expose ViewModel properties using 
observables, bind HTML elements to those observables, manage user input with 
interactive bindings, export that data to a server-side script, and animate components 
with custom bindings. Hopefully, you’re more than ready to migrate this knowledge to 
your real-world web applications. 

This book covered the vast majority of the Knockout.js API, but there are still a number 
of nuances left to discover. These topics include: custom bindings for aggregate data 
types, the throttle extender for asynchronous evaluation of computed observables, 

and manually subscribing to an observable’s events. However, all of these are advanced 
topics that shouldn’t be necessary for the typical web application. Nonetheless, 
Knockout.js provides a plethora of extensibility opportunities for you to explore. 



 

67 

Appendix A 

body { 
  margin: 20px; 
  font-family: "Arial", "Helvetica", sans-serif; 
} 

button { 
  display: inline-block; 
  outline: none; 
  cursor: pointer; 
  text-align: center; 
  text-decoration: none; 
  font: 14px/100% Arial, Helvetica, sans-serif; 
  padding: .5em 1.3em .5em; 
  text-shadow: 0 1px 1px rgba(0,0,0,.3); 
  -webkit-border-radius: .5em;  
  -moz-border-radius: .5em; 
  border-radius: .5em; 
  -webkit-box-shadow: 0 1px 2px rgba(0,0,0,.2); 
  -moz-box-shadow: 0 1px 2px rgba(0,0,0,.2); 
  box-shadow: 0 1px 2px rgba(0,0,0,.2); 
 
  color: #fef4e9; 
  border: solid 1px #da7c0c; 
  background: #f78d1d; 
  background: -webkit-gradient(linear, left top, left bottom, 
from(#faa51a), to(#f47a20)); 
  background: -moz-linear-gradient(top,  #faa51a,  #f47a20); 
  filter:  
progid:DXImageTransform.Microsoft.gradient(startColorstr='#faa51a', 
endColorstr='#f47a20'); 
} 

button:hover { 
  text-decoration: none; 
  background: #f47c20; 
  background: -webkit-gradient(linear, left top, left bottom, 
from(#f88e11), to(#f06015)); 
  background: -moz-linear-gradient(top,  #f88e11,  #f06015); 
  filter:  
progid:DXImageTransform.Microsoft.gradient(startColorstr='#f88e11', 
endColorstr='#f06015'); 
} 

button:active { 
  position: relative; 
  top: 1px; 



 

68 

  color: #fcd3a5; 
  background: -webkit-gradient(linear, left top, left bottom, 
from(#f47a20), to(#faa51a)); 
  background: -moz-linear-gradient(top,  #f47a20,  #faa51a); 
  filter:  
progid:DXImageTransform.Microsoft.gradient(startColorstr='#f47a20', 
endColorstr='#faa51a'); 
} 
 

table { 
  padding-top: 1em; 
} 
 

th { 
  text-align: left; 
} 
 

th, td { 
  padding: .1em .5em; 
} 
 

td li, td ul { 
  margin: 0; 
  padding: 0; 
} 
 

td li { 
  display: inline; 
} 
 

td li::after { 
  content: ','; 
} 
 

td li:last-child::after { 
  content: ''; 
} 


	The Story behind the Succinctly Series  of Books
	About the Book
	Introduction
	Other Features
	Pure JavaScript
	Extensible
	Utility Functions

	What Knockout.js is Not

	Chapter 1  Conceptual Overview
	Observables
	Bindings
	Summary

	Chapter 2  Hello, Knockout.js
	Download Knockout.js
	Samples
	The HTML
	Defining the ViewModel
	Binding an HTML Element
	Observable Properties
	Accessing Observables

	Using Custom Objects
	Interactive Bindings
	Summary

	Chapter 3  Observables
	Computed Observables
	Observable Arrays
	Adding Items
	Deleting Items
	Destroying Items
	Other Array Methods

	Summary

	Chapter 4  Control-Flow Bindings
	The foreach Binding
	Working with Binding Contexts
	The $root Property
	The $data Property
	The $index Property
	The $parent Property

	Discounted Products
	The if and ifnot Bindings
	The with Binding
	Summary

	Chapter 5  Appearance Bindings
	The text Binding
	The html Binding
	The visible Binding
	The css Binding
	The style Binding
	The attr Binding
	Summary

	Chapter 6  Interactive Bindings
	An HTML Form
	The click Binding
	The value Binding
	The event Binding
	Event Handlers with Custom Parameters

	The enable/disable Bindings
	The checked Binding
	Simple Check Boxes
	Check-box Arrays
	Radio Buttons

	The options Binding
	Using Objects as Options

	The selectedOptions Binding
	The hasfocus Binding
	Summary

	Chapter 7  Accessing External Data
	A New HTML Form
	Loading Data
	Saving Data
	Mapping Data to ViewModels
	Summary

	Chapter 8  Animating Knockout.js
	Return of the Shopping Cart
	List Callbacks
	Custom Bindings
	Summary

	Chapter 9  Conclusion
	Appendix A

