

Eben Hewitt

Technology Strategy
Patterns

Architecture as Strategy

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04087-3

[LSI]

Technology Strategy Patterns
by Eben Hewitt

Copyright © 2019 Eben Hewitt. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editors: Brian Foster, Mary
Treseler
Development Editor: Alicia Young
Production Editor: Nan Barber
Copyeditor: Rachel Monaghan

Proofreader: Sharon Wilkey
Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

October 2018: First Edition

Revision History for the First Edition
2018-10-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492040873 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Technology Strat‐
egy Patterns, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the author and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781492040873

Table of Contents

Preface. vii

Introduction. xv

Part I. Context: Architecture and Strategy
The Origins of Patterns 1
Applying the Patterns 2

1. Architect and Strategist. 3
Business Strategies 3
The Architect’s Role 7
The Strategist’s Role 15
Summary 21

Part II. Creating the Strategy
A Logical Architecture of the Creation Patterns 23

2. Analysis. 27
MECE 29
Logic Tree 37
Hypothesis 41
Strategic Analysis as Machine Learning 66
Summary 67

iii

3. World Context. 69
PESTEL 70
Scenario Planning 77
Futures Funnel 80
Backcasting 83
Summary 85

4. Industry Context. 87
SWOT 87
Porter’s Five Forces 89
Ansoff Growth Matrix 95
Summary 97

5. Corporate Context. 99
Stakeholder Alignment 99
RACI 108
Life Cycle Stage 111
Value Chain 116
Growth-Share Matrix 124
Core/Innovation Wave 126
Investment Map 130
Summary 132

6. Department Context. 133
Principles, Practices, Tools 133
Application Portfolio Management 146
Summary 158

Part III. Communicating the Strategy

7. Approach Patterns. 161
30-Second Answer 161
Rented Brain 163
Ars Rhetorica 167
Fait Accompli 174
Dramatic Structure 179
Deconstruction 185
Scalable Business Machines 194
Summary 211

iv | Table of Contents

8. Templates. 213
One-Slider 214
Use Case Map 217
Directional Costing 218
Priority Map 226
Technology Radar 227
Build/Buy/Partner 229
Due Diligence 232
Architecture Definition 235
Summary 250

9. Decks. 253
Ghost Deck 253
Ask Deck 256
Strategy Deck 259
Roadmap 260
Tactical Plan 261

10. Bringing It All Together. 265
Patterns Map 265
Conclusion 267

A. Recommended Reading. 269

Index. 271

Table of Contents | v

Preface

Welcome
Thank you for picking up Technology Strategy Patterns.

This book came out of a paper I gave at the O’Reilly Software Archi‐
tecture Conference in New York City in the spring of 2018, called
“The Architect as Strategist.” I’m grateful for the many conversations
it sparked. At the conference, a number of the architects in attend‐
ance asked if it could become a book. And so it is.

Intended Audience
This book is for anyone in information technology who wants to do
more strategic, relevant, important work for their organiza‐
tions. Therefore, there is no code in the book, and nothing too tech‐
nical. People who will get the most out of it include:

• Architects
• Principal developers or tech leads who wish to become archi‐

tects
• Technology managers in engineering, testing, and analysis,

whether on the product development side or the IT back office
• Product managers
• Project and portfolio managers
• Business consultants
• Technology executives

vii

• Strategy analysts and managers
• Anyone interested in strategy, architecture, and leadership

Whether you are a senior developer, enterprise architect, or CTO, or
have never read a line of code in your life, I know you’ll find some‐
thing useful, and feel welcome and at home here.

Purpose of the Book
The book has two aims. The first is to help architects, product man‐
agers, and executives at technology companies or in technology
organizations who are charged with producing technology strate‐
gies. This stuff works across industries. My hope is that with these
practical tools and guidance, your strategies will be deeper, stronger,
and clearer, and you’ll get approval, support, and funding to make
your ideas a reality. The primary assumption of the book is that
you’re in technology management of some kind, or want to be, and
want to think more holistically and incisively about your technical
roadmaps. The second aim is to help you in your career. I suppose
an alternate, but less becoming, title for this book could be How to
Become the CTO.

If you’re familiar with patterns-oriented books, such as the Gang of
Four classic Design Patterns (Addison-Wesley), this book takes
inspiration from them without adhering too tightly to the template
they typically employ. One of my favorite books, and one that
changed how I think about software and the evolution of ideas, was
A Pattern Language by Christopher Alexander (Oxford University
Press). I have devised and refined this bricolage of ideas over several
years from this and many sources. This book is, in a sense, just a
written record of how I’ve approached this aspect of my work, as
much an intellectual memoir as anything else.

While I’ve written books before on Cassandra, the Java program‐
ming language, software development, architecture, SOA, and web
development, Technology Strategy Patterns is my first real book in
nearly a decade. That’s on purpose. I’ve been developing these ideas
for the better part of that decade in my work conceiving and execut‐
ing strategy as CTO, CIO, and Chief Architect at global tech compa‐
nies. It represents a synthetic fabric of three areas:

• The first is a set of frameworks borrowed from the world of
business strategy consulting as it is conceived in McKinsey,

viii | Preface

Bain, BCG, and Harvard Business School. We technologists are
often told that if we want to be heard, be understood, and get
funding, we must “speak in the language of the business”—
without quite being told what that is or how to do it. This book
serves as the translation—the Rosetta Stone, if you will—for the
language of business executives to teach you what they know to
strengthen your work and help it succeed.

• Second, I borrow from the world of philosophy, having studied
and fallen in love with it in graduate school, and finding its rig‐
ors and explosive power very helpful in my 20-year career in
tech.

• Finally, there are many perhaps idiomatic tools and frameworks
that I developed myself while running large teams of engineers,
helping grow businesses, instituting organizational and cultural
changes, and designing and implementing globally scalable,
mission-critical, distributed software systems running thou‐
sands of transactions per second. Together, they form an array
of lenses that you can variously employ over time in different
contexts as needed. They’ll help you define, create, elaborate,
and refine your architecture goals and plans, and communicate
them in rhetorically powerful ways to an audience of executives
who must approve them as well as the teams who must imple‐
ment them.

I recommend that you read the book front to back. As the Mad Hat‐
ter says, “Begin at the beginning, and when you get to the end,
stop.” The ideas build on each other, refer to each other, and are
carefully organized in a logical architecture of their own to reveal to
you the beautiful world of strategy one peek at a time. After you’re
done, keep the book handy to refer back to later as needed. You
won’t make a new strategy every day, but I think you’ll see how
many of the techniques can be woven into your daily work.

The tools in this book are proven. They work. I’ve used these techni‐
ques for years, in many contexts with many different leaders in
many different organizations. Employing these techniques has
repeatedly helped me win technology strategy funding for $1M,
$10M, $30M, $50M, $75M, and more. If you employ these tools,
your ideas will be sharper, your plans more accurate, relevant, empa‐
thetic, and fruitful. Executives will approve and fund your work, and

Preface | ix

your teams, your company, your customers, and your partners will
benefit.

I truly hope that you find this book useful and inspiring for years to
come, and that it serves you. It was written with affection and care.
May it strengthen and deepen your work, and help you, your com‐
pany, and your customers succeed.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data‐
bases, data types, environment variables, statements, and key‐
words.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

x | Preface

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available
for download at https://www.aletheastudio.com.

This book is here to help you get your job done. In general, if exam‐
ple code is offered with this book, you may use it in your programs
and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usu‐
ally includes the title, author, publisher, and ISBN. For example:
“Technology Strategy Patterns by Eben Hewitt (O’Reilly). Copyright
2019 Eben Hewitt, 978-1-492-04087-3.”

If you feel your use of code examples falls outside fair use or the per‐
mission given above, feel free to contact us at permis‐
sions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a
membership-based training and reference
platform for enterprise, government, educa‐
tors, and individuals.

Members have access to thousands of books, training videos, Learn‐
ing Paths, interactive tutorials, and curated playlists from over 250
publishers, including O’Reilly Media, Harvard Business Review,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft

Preface | xi

https://www.aletheastudio.com
mailto:permissions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com/safari

Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks,
Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, and Course Technology, among
others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at http://
www.oreilly.com/catalog/0636920175155.

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I would like to thank my friends and colleagues at Sabre who shared
important insights and supported this work.

First, to our wonderful enterprise architecture team of Andrea Bay‐
lor, Holt Hopkins, Tom Murray, Jerry Rossi, and Andy Zecha. You’re
such a joy to work with every day. I’m grateful to get to hang out

xii | Preface

http://www.oreilly.com/safari
http://www.oreilly.com/catalog/0636920175155
http://www.oreilly.com/catalog/0636920175155
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

with such knowledgeable, sharp, funny, dedicated, passionate, good
people.

President Clinton Anderson, previously of Bain & Company, and
Sabre Hospitality VP of Strategy Balaji Krishnamurthy, previously of
McKinsey, both inspire me, are such fun to work with, and teach me
every day. I’m so grateful to work with you and know you. Thank
you for sharing your thoughts and methods, and in so doing, help‐
ing inspire this book. You both get stickers.

A special thank you to Justin Ricketts for his support on this project
and for being so terrific to work with. I am grateful to my colleagues
across Sabre, especially Tom Winrow.

Thank you to Brian Mericle, enterprise architect, and my longtime
friend and colleague, for his valuable edits to this book.

Thank you to my old friends and mentors Todd Davis, Deryl Heit‐
man, Steve Miller, and Ted Taylor for the many opportunities you
afforded me to grow and learn.

Thank you to Mike Loukides, my longtime friend and editor at
O’Reilly, who always pushes me to see farther. I’m grateful for your
help in developing this book and these ideas. Thank you for our
sprawling, fabulous conversations. Thank you too to Brian Foster
for welcoming this book at the Software Architecture Conference
and your guidance of this work. Thank you to my development edi‐
tor, Alicia Young, whose diligence and care improved this work.
Thank you to all my friends at the wonderful O’Reilly Media,
including Mary Treseler, Nan Barber, Rachel Monaghan, and Sharon
Wilkey for your terrific work that improved this book. I am grateful
for what you do in the world to help spread the knowledge of inno‐
vators. What a beautiful company you created, Tim; may it ever
flourish.

I am most indebted to my wife, Professor of Philosophy Alison
Brown, for her wisdom, better ideas, revisions, suggestions, summa‐
tions, expansions, explanations, expiations, encouragement, tenac‐
ity, and love. You are the sine qua non, as ever.

Preface | xiii

Introduction

This Is Water
My favorite joke is told by philosopher and author David Foster
Wallace in his address to the graduating class of Kenyon College in
2005. It goes like this: One morning two young fish are swimming in
the ocean. They come across an older fish who waves happily and
calls out to them, “Morning, friends! How’s the water?” They nod in
acknowledgment and swim on. Once they’re out of sight, one turns
to the other and asks, “What the hell is water?”

With this joke, Wallace reminds us that the most obvious, important
realities are often the ones hardest to see, that we can lock ourselves
in mental models so complete that we don’t even know we’re impris‐
oned by them.

As technologists, we can be perhaps particularly susceptible to this.
Our work is engaging and requires a watchmaker’s attention to
detail. Yet, as technologists, we are businesspeople. A hammer
doesn’t exist to be a hammer. It’s a tool to construct something else.
Technology is one tool with which businesses are constructed, rise,
and fall. We operate in wide spheres of ever-farther-reaching impact
on the world around us. In a sense, this book is about constructing a
new mental model within this water of business.

Discovering Strategy
The roles that are ultimately valued at an organization tend to be the
people who do what the boss did. If the boss used to be a salesperson
or deal-maker, that’s who she’ll recognize, side with, empathize with,
reward, understand, and listen to most. If you want your voice to be

xv

http://bit.ly/2wapscd

heard, you must make a concerted effort to empathize with people,
and employ the tools, techniques, and language that they respond to.

At one point in my career I was running the enterprise architecture
department of a large corporation. My manager, the CTO, asked me
to help him estimate a large project. He wanted me to go off and
determine the “incrementals.” I didn’t know what he meant. But in
my stupidity, I didn’t want to look stupid, so I didn’t ask him, thereby
enthroning myself as truly stupid. So I went off and tried to figure it
out myself and came back to him three or four times with some‐
thing different than he needed. I was a pretty good technologist, but
I didn’t sufficiently understand the language of business. And
therein lies the problem. It’s hard for people to know what they
mean themselves, much less express it to others in a way that ach‐
ieves their aims. After all, that’s the secret to happiness in life: figur‐
ing out what you want, and learning how to ask for it.

As I have progressed in my career from developer to architect to
CTO and CIO and Chief Architect, I have been asked to create a
technology strategy many times. Concluding that no one asks the
not-as-clever people to craft strategies for stuff that doesn’t matter, I
was always delighted at the prospect. It felt like an honor, sounded
really cool, and seemed important and big, like I had been asked to
help make decisions about how to guide the organization. So I was
over the moon for a moment. And then suddenly scared. Because I
realized for all the times I’d heard people say the word as if they
knew what they were saying, I had never seen anything that I
thought looked like a strategy. My concern grew as I realized many
of my (accomplished and perfectly reasonable) bosses hadn’t either.
They didn’t know exactly what they were asking me to do, or what
the result should look like. Perhaps the strategists were the only peo‐
ple left in the world with a higher room in the Ivory Tower than
architects and academics. Eventually we all bumbled our way
through it and got to something good enough. But in some cases
this process took a year and wasn’t always optimal.

Yet I was intrigued, in part because it wasn’t lost on me that the
clever people, and the people running the organization (only occa‐
sionally the same thing), were keenly interested in strategy.

While trying to discover what a good strategy should look like, I
grew more concerned at being able to construct this seemingly criti‐
cal but elusive and mystical document. Companies do not tend to

xvi | Introduction

publish their strategies externally since they contain revealing
secrets about their plans and fears. So it is hard to find any recent,
good, complete, relevant examples. I therefore took it upon myself
to go to the source: strategy consultants. They are devoted to pub‐
lishing their work and excitedly talking about it nonstop to anyone.

But once you’ve devised a strategy, it languishes on the shelf if you
can’t make people excited to hear it, understand it, care about it,
approve it, and execute it. Any technology strategy is, in a sense, a
request to spend millions of dollars of someone else’s money. If you
think of your work as a technology strategist in this way, you’ll do it
differently. By which I mean better.

I have known many smart people, wonderful technologists, who do
not get their ideas heard by upper management. They state what the
problems are and where the problems are going to be, write that up,
and put it on the wiki—and nothing changes. Once it’s too late and
the platform is burning, those same architects get called in to rescue
the situation. While people love to say, “I told you so,” no one likes
to hear it. These well-intentioned souls may have had the best rec‐
ommendations, but it never mattered. These folks can become alien‐
ated, feeling misunderstood and unappreciated. And the business
loses out on their great ideas. This is precisely what I don’t want to
see happen to you, and the reason I wrote this book.

Driving Strategy with Patterns
This book employs, albeit loosely, a suggestion of patterns that is
likely familiar to you from the realm of software design patterns
such as Decorator, Factory, Visitor, and Pub/Sub. They’re used as
shorthand for known, proven solutions, to provide an easy way for
us to communicate to each other. I chose patterns to represent the
ideas in this book because of that familiarity, and because that struc‐
ture makes it easy for you to look up these ideas for years to come.
To aid in this, they’re divided into logical concept architectures.

Analysis
First we explore foundational and general tools for critical
thinking that will underpin the other patterns in the book.

Creation
These are the patterns that help you directly create your tech
strategy. If you implement all of these patterns, you’ll have a

Introduction | xvii

comprehensive, compelling annual tech strategy. But you don’t
need to always implement all of them. You can also pick and
choose individual patterns to take a strategic approach to more
local, specific project work.

Communication
These patterns help you to organize the components of your
strategy in a way that your colleagues and executives can under‐
stand, get excited about, and support.

I’m sorry to repeat an old saw, but it’s true: increasingly, it is impos‐
sible to distinguish between business and technology. But that dis‐
tinction is still more powerful than it deserves to be, given typical
organizational structures and the resistance to change, and an
uncertainty about how to do so. I hope that in part this book will
help you, your colleagues, and your organization to embrace this
cross-pollination. I hypothesize that in the future, people who can
learn quickly as synthetic interdisciplinarians will be highly effec‐
tive, and highly prized, because maintaining that distinction is
increasingly a barrier to progress, creativity, and innovation.

This book, I hope, gives technologists, strategists, product managers,
executives, technology managers, and the architects who frequently
mediate these worlds all a shared language. In this, may you be more
fruitful.

xviii | Introduction

PART I

Context: Architecture and
Strategy

All models are wrong; some models are useful.
—Statistician George Box

The Origins of Patterns
Christopher Alexander was a professor at the University of Califor‐
nia, Berkeley. With a group of graduate students in the mid 1970s,
he set out to catalog common practices he saw throughout architec‐
ture. He noted that many problems in architecture are inveterate,
and that recording a set of optimal, or at least frequently employed,
solutions to these problems would help elevate architecture as a field
and expedite the work of architects. He called these common solu‐
tions “patterns,” and his most excellent book, A Pattern Language,
catalogs dozens of them.

Inspired by Alexander’s work in the architecture of houses, build‐
ings, and city planning, the Gang of Four applied the idea of pat‐
terns to software in their book Design Patterns. Since then, many
books have employed patterns in a variety of technological domains,
and the present work expands on this idea, taking repeated solutions
found in the work of business strategists and illustrating how we can
apply them to better our work as technologists.

The use of patterns as a structuring mechanism here is intended to
make the book easy to use later as a reference after you’ve read it.

Applying the Patterns
There are five basic steps to follow in formulating your strategic
technology analysis. Here is a simplified outline:

1. Establish context
a. Analyze the trends happening in the world outside.
b. Analyze the forces at work across your industry, your organi‐

zation, and your department.
c. Gain a view on your stakeholders.

2. Understand your competition, the market, and the technology
landscape.

3. Identify strategic options in your products, services, and tech‐
nology roadmap.

4. Evaluate those options.
5. Make a compelling recommendation with a coherent, cohesive,

comprehensive strategy to gain approval and resources to exe‐
cute your plans.

With this process in mind, let’s turn our attention to how to view
your technology work through the lens of architecture and strategy,
so we have a shared understanding and vocabulary.

CHAPTER 1

Architect and Strategist

This chapter provides an overview of three different, somewhat tra‐
ditional business strategy examples from different industries. We’ll
then look at the role of the architect and the role of the strategist in
modern business, to see how strategically minded technologists can
be a catalyst for real, meaningful change in their organizations.

Business Strategies
Business strategies reveal how companies allocate resources toward
a certain aim. Let’s take three examples: Michelin, a tire-company-
turned-dining giant; Oracle, a dominant name in software; and
Xerox and Canon, companies whose strategies set them on very dif‐
ferent paths in the copy industry. Our brief look at these strategies
will provide you with context for the concept of “strategy” and illus‐
trate the business implications different strategies can have.

Marketing at Michelin
The Michelin Guide has been in circulation for nearly 120 years. It
is known across the globe as the gold standard for fine dining res‐
taurant ratings and reviews. The world’s top chefs work year-round
in pursuit of the coveted Michelin star, because being awarded one
means that your restaurant is worth a detour, worth making a spe‐
cial trip just to eat there. And thousands of diners trust the guide as
a well-known authority on the best restaurants. Such excitement is
created in France each year upon its publication that the media
frenzy it ignites has been compared to that for the Academy Awards.

3

But Michelin is a tire company. How in the world, and why, did a
tire company come to hand out the highest honors in fine dining?

In 1900, there were only a few thousand cars in France. Cars were
new, they were relatively expensive, and the culture had not yet shif‐
ted toward the idea that everyone needed to own a car. For tire man‐
ufacturer Michelin, that presented a problem. How could it sell
more tires and thrive as a company when there were so few cars?

There are only two ways to create more demand for its product: sell
more cars to outfit with tires, or find a way to make people who
already have cars drive more so their tires would need to be replaced
sooner. The company created the Michelin Guide and gave it away
for free. In doing so, Michelin got its name out across France, then
Europe, then the world as an excellent advertisement, and posi‐
tioned itself as an approachable, authoritative company. It created
inspiration for drivers and a reason for more people to have cars,
and sold more replacement products as a result. The company also
made money on the guide once it started charging for it.

This was an innovative, counterintuitive, winning business strategy
that worked well for decades.

The guides, known affectionately as the “red books,” grew the value
of the brand overall and seem to be a real asset. Yet today, published
on paper and sold in bookstores, the guides lose Michelin €19 mil‐
lion per year. These days, with the ubiquity of cars, and the joys of
the open road firmly ensconced in the popular imagination, the
guides don’t act as powerfully in their original capacity. Yet they’re
still obviously important. They became disconnected from the idea
of getting people to drive more, and started to have to run as their
own business. Perhaps a new strategy better supported by, and bet‐
ter integrated with, technology could help make it profitable again.

Acquisition and Integration at Oracle
In 2007, Oracle Corporation determined a business strategy with a
simple principle: either make its software number one or number
two in every product category, or buy the market leader. In other
words, if you can’t beat them, buy them. Between 2008 and 2013,
Oracle bought nearly 60 companies—a rate of almost one per
month. Oracle spent $45 billion acquiring companies between 2004
and 2014.

4 | Chapter 1: Architect and Strategist

When Thomas Kurian assumed leadership of the product teams for
Oracle Fusion Middleware in 2008, his technology strategy was
made clear to everyone at Oracle and to its customers: all products
would use Oracle’s middleware stack and must be modified to
interoperate with it.

This technology strategy has turned out to be a mixed bag. On the
one hand, it’s a terrific example of how a technology architecture
decision was made to directly support the business strategy of
aggressive acquisitions, and that’s a strong lesson to learn.

On the other hand, Oracle spent considerable time over many years
on refactoring and redoing the internals of many products to com‐
ply with this architecture. That time was not spent on innovation or
features for customers. In that time, Oracle entirely missed the criti‐
cal revolutions in the cloud and machine learning, putting it years
behind competitors in those crucial areas. More than 10 years later,
the technology strategy and architecture within products remains
unchanged.

Published Reference Architecture

A few years ago, Oracle published its set of tech‐
nology strategies, reference architectures, and
practitioner guides in a fairly comprehensive
website. This is an excellent example of working
to help educate your community on how to best
take advantage of your strategy once you’ve pub‐
lished it.

Differentiation at Xerox and Canon
In 1968, Xerox introduced the 914 copying machine, which was
capable of copying at what then was the astonishing rate of 120
copies per minute. With this product, it became the world’s fastest
company to grow to a billion dollars.

By the early 1970s, Xerox had a 95% market share in the global cop‐
ier market. The large Xerox machines sold to large corporations
with high-volume copy needs. The price: a whopping $80,000 to
$129,000 each.

Business Strategies | 5

http://bit.ly/2PLP1cr

Xerox had a sophisticated and sizable sales force, all armed with
deep product knowledge. Its mission was to build close, long-term
customer relationships with all the Fortune 500.

Reliability was paramount: a stop in the copiers could mean a stop
of the customer’s business. Because of the centrality of the copiers in
the business, Xerox built sturdy machines, but also touted its 24-
hour customer service network. It required an extensive capital
investment to create, train, and maintain such a capable network
and build out the logistics. Such folks commanded hefty fees. Xerox
enjoyed a large revenue stream from the service of its copiers, which
required highly trained and skilled technicians. The company was at
the top of its game, a seemingly impenetrable fortress with a sizable
moat around it. In the same way that “to google” has become synon‐
ymous with “to search the web,” people didn’t copy documents, they
Xeroxed them.

But within five years, the company‛s market share fell from 95% to
14%. By the end of the decade, profits from Xerox’s $7B copying
business had sunk by 40%. Today Xerox represents 17% of the mar‐
ket it once dominated. What happened?

Canon entered the market.

Canon had dedicated technology research in the 1960s to develop
an alternative to Xerox’s patented photostatic copying process. To
create what it called the “New Process,” Canon drew on two of its
existing capabilities and techniques: micro-electronics, which it
knew from its existing calculator business, and optics and imaging,
which it drew from its camera business. This allowed it to make
smaller copiers.

Canon designed its copiers for high reliability. They had only eight
basic parts, making them orders of magnitude simpler than Xerox’s
products. In a shocking move, Canon made the primary assembly
(toner, copier drum, charger, and cleaner) to be disposable. This was
unthinkable, that you would design a key component of a critical
piece of technology to be disposable. But Canon had its customers
in mind: customers could easily remove and replace the assembly.
This meant there was no need to build out, train, and manage the
logistics for an extensive service department, keeping Canon lean
and its costs down.

6 | Chapter 1: Architect and Strategist

Furthermore, Canon designed its copiers around the manufacturing
process—an inversion of conventional wisdom. The copiers could
be made by robots on an assembly line, which dramatically reduced
production costs. This meant Canon could redefine the market:
instead of having to make a product that only the richest and largest
companies would need or could afford, Canon designed its copiers
this way to capture the individual and small business markets, sell‐
ing them for $700 to $1,200. This opened up a new revenue
stream, one that the market leader could not compete with. It
quickly eroded Xerox’s large corporate business, because companies
realized they could have a hundred Canon copiers for the same cost,
reducing their risk if anything went wrong, and they could budget
for them much more easily.

This story illustrates how a technology strategy can work hand in
hand with the business strategy, how they can drive as copilots. It
represents a combination of technology and business strategy won‐
derfully aligned and interlinked. This is the essence of what a tech‐
nology strategist does. With that in mind, let’s look now at the role
of the architect followed by the role of the strategist.

The Architect’s Role
There are two jobs in the world that people want to do the most
while knowing the least about: architect and strategist.

I should start by saying that this section does not offer a treatise on
how to do architecture. I’m offering an overview of my perspective
on the field, which I hope is a unique and interesting take on it, in
order to provide context for the work at hand: devising a winning
technology strategy for your business.

Technology systems are difficult to wrangle. Our systems grow in
accidental complexity and complication over time. Sometimes we
can succumb to thinking that other people really hold the cards, that
they have the puppet strings we don’t.

This is exacerbated by the fact that our field is young and growing
and changing, and we’re still finding the roles we need to have to be
successful. To do so, we borrow metaphors from roles in other
industries. The term “data scientist” was first used in the late 1990s.
In 2008 or so, when “data scientist” emerged as a job title, it was
widely ridiculed as a nonjob: the thought that people who just

The Architect’s Role | 7

worked with data could be scientists, or employ the rigors of their
time-honored methods, was literally laughable in many circles. By
2012, Harvard Business Review published an article by Jeff Hammer‐
bacher (of Facebook and Cassandra fame) and DJ Patil called “Data
Scientist: The Sexiest Job of the 21st Century.” Today, it’s one of the
most desired jobs, with pundits declaiming the terrifying state that
we do not have nearly enough of them to tackle our most central
technology problems.

Likewise, the term “architect” didn’t enter popular usage to describe
a role in the software field until the late 1990s. It, too, was ridiculed
as an overblown, fancy-pants misappropriation from a “real” field.
Part of the vulnerability here is that it hasn’t always been clear what
the architect’s deliverables are. We often say “blueprints,” but that’s
another metaphor borrowed from the original field, and of course
we don’t make actual blueprints.

With such origins, and with the subsequent division of the architect
role into enterprise architect, solution architect, data architect, and
so forth, the lines have blurred further. The result is that decades
later, the practice and the art of the architect in technology varies
dramatically not only from one company to the next, but also from
one department and one practitioner to the next.

So we will define the role of the architect in order to proceed from
common ground. This is my tailored view of it; others will have dif‐
ferent definitions. Before we do that, though, let’s cover some histor‐
ical context that informs how we think of the role.

Vitruvius and the Principles of Architecture
Architecture begins when someone has a nontrivial problem to be
solved. The product management team states what must be done to
solve the problem, and the architect describes how to realize that
vision in a system.

The first architect of record is a fellow named Vitruvius, who
worked as a civil engineer in Rome in the first century BC. While
you may not know his name, during the Renaissance, Leonardo da
Vinci popularized the “Vitruvian Man” with perfect proportions
based on Vitruvius’s ideas. Everyone who goes to architecture school
learns his work.

8 | Chapter 1: Architect and Strategist

Vitruvius is the author of de Architectura, known today as Ten Books
on Architecture. It’s a delightful, engaging read, and had a strong
influence on Renaissance artists such as Michaelangelo as well as da
Vinci. In it, Vitruvius expands on the three requirements that any
architecture must demonstrate:

Firmitas
It must be solid, firm.

Utilitas
It must be useful, have utility.

Venustas
It must be beautiful, like Venus, inspiring love. This is some‐
times translated as “delightful.”

It’s a given that we must design a system, including a local software
architecture, that actually runs, that it’s “solid.” It may need to run
for many years, even decades, and be maintainable to adapt to
changes over that time. Solid doesn’t mean inflexible. Skyscrapers
are built on purpose to sway slightly with the wind, specifically to be
more durable. The Sears Tower in Chicago regularly sways between
six inches and a foot; taller buildings in America sway as much as
four to five feet. Your architectures, and your strategies, must be
similarly flexible in order to endure. We’ll look at this later when we
discuss how to support evolutionary architectures through our
strategies.

It must also be fit to purpose, which means understanding deeply
what the real purpose of the system is, and how to manage user
expectations. This is supported in real terms through standards and
consistent application of conventions, both in the information archi‐
tecture (i.e., the user experience and design), and within the soft‐
ware construction itself.

Beauty, for Vitruvius, isn’t really in the eye of the beholder. It is
about harmony of proportion. One suggestion we can deduce from
this for our current purposes is that we must rightsize our architec‐
ture and strategy work for the task at hand.

Vitruvuis states—without irony—that an architect must concern
himself with and become educated in several diverse fields of study,
such that they find their way into the work. He outlines them in
Chapter 1 of de Architectura:

The Architect’s Role | 9

http://bit.ly/2ChIAv0
http://bit.ly/2ChIAv0

• Skill in manual labor as well as in theory
• Proclivity and desire for continuous learning
• A dexterity with tools
• An understanding of optics—how the light gets in
• History, such that you can emphasize and not misinterpret signs

of cultural significance
• A strong understanding of philosophy, in order to practice

abstract thinking as well as honesty and courtesy
• Physics, to help make things sturdy
• Art, music, theater, drawing, painting, and poetry, to help make

things beautiful and well suited to their human purposes
• Math
• Medicine
• Astronomy
• Politics

He concludes that absent a degree of education and even lay practice
in any one of these areas, one cannot refer to oneself as an architect.
These are excellent guides for us in technology today. For those of us
concerned with the business of making software and setting the
direction for other technologists, to hold ourselves to account in
these ways would serve us very well.

In a recent conversation I had with Ben Pring, philosopher, noted
futurist, and director of The Future of Work Center at Cognizant, he
underscored the importance of beauty in software, pointing out that
historically our most culturally significant buildings have been not
merely adorned, but specifically built with beauty in mind as a cen‐
tral, driving narrative. I conclude from this that such foregrounding
reinforces in the popular imagination the power of the institutions
that build them. I base this conclusion on the preface in the Ten
Books, in which Vitruvius writes openly and directly to Emperor
Caesar, stating:

But when I saw that you were giving your attention not only to the
welfare of society in general and to the establishment of public
order, but also to the providing of public buildings intended for
utilitarian purposes, so that not only should the State have been
enriched with provinces by your means, but that the greatness of its

10 | Chapter 1: Architect and Strategist

power might likewise be attended with distinguished authority in its
public buildings, I thought that I ought to take the first opportunity
to lay before you my writings on this theme. (emphasis mine)

Realizing these broad dicta into an architecture means, I think, find‐
ing the concentrations of power, and determining how to best sup‐
port and ultimately inspire the human factor in the forms we create.
I hope once you’re done with this book, you’ll have some ideas for
how to enable and reveal the three facets of firmitas, utilitas, and
venustas in your own work.

Three Concerns of the Architect
Whereas developers are typically focused on delivering working
code for a user story within the next two weeks for one system
within their one team, architects are concerned with how technol‐
ogy can fulfill business goals given a long-term outlook across a
variety of interrelated systems across many teams. It’s analogous to a
project view versus a portfolio view. They should have their visors
raised much higher. The architect is hopefully not concerned with
low-level details of the code itself inside one system, but is more
focused on where data-center boundaries are crossed, where system
component boundaries are crossed.

Here’s my definition of an architect’s work: it comprises the set of
strategic and technical models that create a context for position
(capabilities), velocity (directedness, ability to adjust), and potential
(relations) to harmonize strategic business and technology goals.
Notice that in this definition, the role of the architect and technol‐
ogy strategist is not to merely serve the business but to play together.
I have been in shops where technology was squarely second fiddle, a
subservient order-taking organization to support what was deemed
the real business. That’s no fun for creative people who have some‐
thing to contribute. But more importantly, I submit that businesses,
now more than ever, cannot sustain such a division, and to create
greater competitive advantage must work toward integration with
co-leadership.

Over my 20 years in this field, I’ve come to conclude that there are
three primary concerns of the architect:

• Contain entropy.
• Specify the nonfunctional requirements.

The Architect’s Role | 11

• Determine trade-offs.

There are many different roles that architects legitimately play in
different organizations. But the primary struggle I have seen comes
when they are not focused on a deliverable, on what could be con‐
ceived as a “blueprint.” Without that focus, they tend to weigh in at
project meetings or make declarations informally that can’t be
remembered or followed. To stay pertinent to the project, and to
help guide it in a way that others may not have the purview to do,
drawing a line at these boundaries seems to work out pretty well.
The definition remains, of course, rather open to interpretation, in
grudging deference to the machinations of the real world.

Let’s unpack each of those responsibilities.

Contain entropy
This viewpoint on the architect’s work I learned in a fun conversa‐
tion over dinner in New York with the very smart and funny
Cameron Purdy, the founder of Coherence, who at the time ran Java
at Oracle. “Entropy” refers to the second law of thermodynamics,
which roughly states that systems over time will degrade into an
increasingly chaotic state, such that the amount of energy in the sys‐
tem available for work is diminished.

The architect defines standards, conventions, and toolsets for teams
to use. These are common practices, and generally idiosyncratic to
any given organization. As application or solution architects, they
help within a system, within an ecosystem, and across an organiza‐
tion to create a common set of practices for developers that help
things both go quicker and be more understandable and maintaina‐
ble. This is a form of containing entropy. As we mature, we realize
that picking one tool or framework or language or platform is not a
matter of personal taste, but rather a choice with broad ramifica‐
tions for future flexibility, mergers and acquisitions, training, our
ability to hire future supporting teams, and our future ability to
directly support—or subvert—the business strategy.

Those with more business-oriented concerns and technologists can‐
not ignore each other’s fields. Working as a pattern-maker and a
synthesizer, the architect-as-strategist broadens and ennobles these
concerns, creating technology strategies that both are rooted in the
causes and concerns of the business and recognize its constraints
and opportunities. In collaboration with product management, and

12 | Chapter 1: Architect and Strategist

with colleagues in strategy, business development, finance, and HR,
the architect works to ensure that there is alignment between the
systems, yes, but also between those systems and the organization,
and between the organization and its stated aims.

In short, for far too long we architects have thought we were in the
business of making software. But we’re in the business of building a
business.

The architect who is containing entropy is stating a vision around
which to rally; showing a path in a roadmap; garnering support for
that vision through communication of guidelines and standards;
and creating clarity to ensure efficiency of execution and that you’re
doing the right things and doing things right.

I love this definition of containing entropy because it offers some‐
thing to both the software-minded and the business-minded archi‐
tect (which I hope are two categories this book will help collapse).
One cannot be successful as an architect without thinking of not
only what to do, but how to get it done within an organization,
which requires knowing why it should matter to someone who isn’t
a technologist.

We often hear of architects with failed dreams of how the system
should have been. They are consumed by writing documents and
those documents are subsequently ignored, leading them to give up.
Left with only the most informal conversational avenues to offer
insufficient direction to teams, they become frustrated and even
marginalized.

Knowing that you’re in the business of building a business, and that
technology is just an avenue by which you enable that, is a critical
first step to being not only useful but powerful as an architect and
strategist.

Specify nonfunctional requirements
Knowing what you’re on the hook for, letting others know it, and
making sure that it’s a concrete deliverable will all go a long way to
ensuring your vision is understood and realized.

Product management is responsible for specifying what the system
must do for the end user. They might state functional requirements
in user stories and epics.

The Architect’s Role | 13

The nonfunctional requirements are properties of the system that do
not necessarily appear directly to the user. They are typically
described as the “-ilities.” The ones I focus on most are scalability,
availability, maintainability, manageability, monitorability, extensi‐
bility, interoperability, portability, security, and performance.

The architect is responsible for specifying how the system will real‐
ize the functional and nonfunctional requirements in its construc‐
tion. In order to do so, she must write a document that specifies how
these will be realized.

This document, the architecture definition, serves as the technolo‐
gist’s answer to the blueprint. It should be structured in four broad
categories to include business, application, data, and infrastructure
perspectives, and expressed with clarity and decisiveness, using pri‐
marily testable statements as valid propositions (which we’ll exam‐
ine in the next chapter) and math.

Finding ways to make those expressions concrete and executable is
too often overlooked. In addition to writing and publishing a formal
architecture definition document to the teams, you can do this by
adding nonfunctional requirements to user stories as acceptance cri‐
teria.

Determine trade-offs
You can never try to escape one danger without encountering another.
Prudence consists in recognizing the different dangers and in accepting
the least bad as good.

—Machiavelli, The Art of War

As we know, every action produces an equal and opposite reaction.
Adding security reduces performance. Sharding and partitioning the
database affords greater performance and distribution but creates
complexity that is difficult to manage. Adding robust monitoring
can generate huge volumes of log data to be stored, rotated, secured,
and cleansed. Keeping the design “simple” often defers the interests
of flexibility until later, where it becomes very expensive.

The role of the architect is to see where those challenges may lurk,
seek to make them explicit, and make value judgments about how to
balance the solutions and the new problems they occasion, under
the guidance of the broader business strategy. As English poet John
Milton wrote in Paradise Lost, you make “the darkness visible.”

14 | Chapter 1: Architect and Strategist

In short, you’re never quite solving a problem. You’re only trading it
for one that you’d rather have. We solve our need for shelter by
assuming a mortgage that we then must pay for. Paul Virilio, the
French cultural theorist and philosopher, reminds us lucidly, “When
you invent the ship, you also invent the shipwreck…Every technol‐
ogy carries its own negativity, which is invented at the same time as
technical progress” (Politics of the Very Worst, Semiotexte). Your
architecture and strategy work will do well to examine not only how
you are addressing the problems you’ve been given, but also what
new problems your solutions precipitate.

Any trade-off eventually reduces to a trade-off of time and money.

Absent a strategic mindset, many technologists left to their own
devices create what amounts to little more than shopping lists of
shiny objects. These can include the latest and most fashionable tech
because it’s popular or because it might bolster their résumé. We
hear this frequently described as “a solution looking for a problem.”
Moreover, the less shallow or cynically minded among us are still
rather prone to chasing exciting technology for its own sake, not
unlike a dog chasing a squirrel. Intellectual curiosity is a wonderful
thing, a best thing. But to ensure that your technology and architec‐
ture decisions are truly supportive of the business—that is, give it
the best chance to create competitive advantage—they need to be
not shopping lists of shiny objects, but squarely strategic.

So let’s look at the role of the strategist.

The Strategist’s Role
Strategy is about getting more power than the starting position would
suggest. Strategy is the art of creating power.

—Lawrence Freedman, Strategy: A History (Oxford University
Press)

The word strategy originates from the Greek strategos. The term first
appeared in fifth-century Athens as a conflation of the words mean‐
ing the expansion of the military general, and came to be used to
refer to the offices or science of the general—the general’s work. But
the word strategy entered general use only at the start of the 19th
century in Antoine-Henri Jomini’s writing on Napoleon’s methods.

Jomini was of Swiss origin; he started out as a banker in Paris, later
joined the French army under Napoleon, and eventually got promo‐

The Strategist’s Role | 15

ted to general. Jomini began writing down Napoleon’s methods in
such a lucid manner that they came to be published as a book, enti‐
tled Treatise on Major Military Operations, in 1803. Jomini’s strate‐
gies were employed in the US Civil War and eventually taught at
West Point Academy. He is considered the founder of modern strat‐
egy by many military historians.

Jomini’s definition of strategy helpfully divides the word. He writes,
“Strategy decides where to act; logistics brings the troops to this
point; tactics decides the manner of execution.” In other words,
means (resources) are allocated and subjected to a method in order
to achieve a goal.

Yet definitions of strategy vary. One of the more abstract definitions
comes from Sun Tzu, a Chinese general and philosopher, and author
of The Art of War in 500 BC. His book was not translated to English
until the 20th century, at which point it began serving as a founda‐
tional text for guiding military strategies. It entered the popular
imagination once it got adapted and marketed for business pur‐
poses.

He writes, “Strategy is the art of making use of time and space.” This
is a tall order, and while aesthetically I appreciate the definition, we
can break this down further in order to come to something practi‐
cally executable.

The History of Strategy

If you’re interested in the intellectual history of
strategy, its origins, and its evolution from mili‐
tary thought to game theory to business, I highly
recommend Lawrence Freedman’s Strategy: A
History (Oxford University Press). It’s a fascinat‐
ing read, and offers a much richer view than we
need here.

For our purposes, strategy is about determining the problems and
opportunities in front of you, defining them properly, and shaping a
course of action that will give your business the greatest advantage.
Balancing problem solving with creating and exploiting new oppor‐
tunities through imagination and analysis is the cornerstone of a
great strategy.

16 | Chapter 1: Architect and Strategist

Echoing Jomini, we’ll say that strategy is about determining the best
balance between a set of goals, the method used to achieve them,
and the resources available as means. With the current rate of
change in business, we can’t set it and forget it, expecting that a
three- or five-year strategy will go unrevised. At the same time, con‐
stant revision amounts to a reactionary collection of tactics, which is
no strategy at all.

Most business strategies will concern themselves with the following:

• The goals of the organization
• The operating model: processes and how your company con‐

ducts its business
• Culture: the mores and value system, the modes of communica‐

tion
• Talent strategy: how you source and retain talent, how you train

them
• Facilities strategy: where you do business, relevant local laws,

and cost concerns

Strategies should be created at different levels: broad corporate-level
strategies, business unit or division strategies, departmental strate‐
gies, and portfolio strategies. These will be more or less formal, and
be revised more frequently according to the climate and what you
find yourself in (see “Life Cycle Stage” on page 111). (Life cycles are
discussed in Chapter 5.)

The Triumvirate: Strategy, Culture, and Execution
Culture eats strategy for breakfast.

—Management professor Peter Drucker

Any business aims to do one or many of these things:

• Grow shareholder value
• Grow earnings per share
• Increase revenue
• Manage costs
• Diversify or create new revenue streams
• Cross-sell more products

The Strategist’s Role | 17

• Increase market share
• Increase share of wallet
• Increase yield
• Improve customer retention
• Reduce product error/defect rates
• Improve safety
• Improve time to market/speed of operations
• Grow through acquisition

Of course, there are different emphases at different times. To achieve
these aims, broadly speaking, the strategist asks these questions:

• Are resources devoted to the right areas, to the most important
customers?

• Are we creating products and services that can thrive in a mar‐
ket in different time horizons?

• Where should we spend money? Where should we cut costs?
• Where do skills need to be added or strengthened?
• Where can productivity be improved?
• What culture, attitude, and skills are required?

Many companies have a Chief Strategy Officer or VP of Corporate
Strategy. Strategy season frequently begins in the spring, giving this
person and her team a couple of months to prepare a deck to
present to the executive leadership team in the late summer. This
will be discussed, revised, and eventually approved and used as
input for budget season, which begins in the fall and continues until
the budget for the following year is approved. We in technology
tend to like to see our ideas realized moments after we have them.
Being aware of this calendar and corporate planning process will
help you plan for adding any big-ticket items to the slate in time for
them to receive the necessary attention, support, and budget alloca‐
tions.

That said, the evolution of agile software methods, the preponder‐
ance of “disruptive” startups, and a growing global economy have all
aligned variously to dilute the formality and rigidity of the strate‐
gist’s role in such a process, leading her to rely more on regular con‐

18 | Chapter 1: Architect and Strategist

versations with the executive team, and create reports with tighter
scopes on an ongoing basis.

Depending on her level of power and position within the organiza‐
tion, the strategist finds herself concerned with some or all of the
following:

• Identifying business development opportunities, such as part‐
nerships, joint ventures, cooperative arrangements with com‐
petitors, and the like

• Finding, proposing, and validating mergers and acquisition
opportunities

• Building strategic capabilities within certain areas of the organi‐
zation, such as helping create a sustainable AI practice in the
face of growing trends

• Performing research based on data to recommend long-term
directions for the company (generally 1–3 years)

This last one is very common, and how many strategists are trained
as consultants entering the field at the venerable strategy firms such
as Bain, Boston Consulting Group (BCG), and McKinsey. They
likely work with business analysts, marketing, sales, technology, and
operations teams in a cross-functional working group to develop
hypotheses for how the business climate might be enabling or
impinging upon their competitive advantage, and how they should
define a goal and direction and allocate resources to win in the mar‐
ketplace.

According to one McKinsey report, 40% of strategists responding to
their survey are most focused on “using fact-based analysis to spot
industry shifts and to understand their own companies’ sources of
competitive advantage as a foundation for clear, differentiated
strategies.”

But spending months researching and creating data-driven decks is
no longer enough. Because the world is moving so fast, the tradi‐
tional strategist has taken the driver’s seat in building capabilities. As
the walls between business and technology continue to fold in on
each other, the strategist may well find himself leading a team of
data scientists to create an analytics platform to help themselves and
customers gain precious insights into their business operations. My
colleague Balaji Krishnamurthy, the VP of Strategy at Sabre Hospi‐

The Strategist’s Role | 19

https://mck.co/2PtDZry

tality, who was previously in strategy roles at McKinsey and
LinkedIn, offers this observation:

To be a good strategist, you need to be ready to deal with ambiguity.
You need to be ready to pivot. You must form a hypothesis quickly
about what must be done, then synthesize lots of data. You must
then see options and possibilities available, determine a goal, and
present your findings clearly with a recommendation on how to
allocate resources to achieve that goal.

Ultimately, companies are looking to grow and gain some distinctive
competitive advantage. They can do this through technical innova‐
tion properly applied to real-world business problems. One asser‐
tion of this book is that the roles of Chief Architect and Chief
Strategist are more blurred, and more aligned, than ever, and that
their mutual understanding of each other’s concerns and methods
will be an increasingly important driver for winning organizations.

Learn from your executive and product leadership teams what areas
of focus they have for their business strategy and product roadmaps,
so you can be prepared to match your technology to them.

For example, if your business is in cost-cutting mode, as companies
tend to be when revenue is soft or they’re preparing for an IPO, then
your technology strategy should match. You can do that by examin‐
ing the people angle: Can you move workers or ramp down in
expensive cities in order to hire programmers in lower-cost develop‐
ment centers? Can you examine your delivery and release processes
to add automation and reduce manual labor there? Can you use free
and open source libraries in place of expensive commercial soft‐
ware? These are examples from people, process, and technical per‐
spectives of how you can map your technology strategy to the
business strategy.

A Strategy Deck is analogous to an architecture definition document
for the organization. Neither will achieve the desired aims if you
assume it lives in a vacuum.

The culture of your organization comprises your stated principles,
and to a far greater extent, the actual lived principles as reflected by
the attitudes, communication styles, and behaviors of your teams. If
your teams are territorial and competitive, an integrative platform
strategy must identify and address that challenge.

Finally, your teams must be ready and capable of executing on your
strategy. A Strategy Deck that states lofty, exciting aims will fail if it

20 | Chapter 1: Architect and Strategist

also doesn’t include diligent, consistent execution and clear metrics
to measure its success. This triumvirate is illustrated in Figure 1-1.

Figure 1-1. The triumvirate dominating forces of strategy, culture, and
execution

Find ways to work with your leadership and across teams to ensure
all of these forces are aligned. A good first step for doing so is to cre‐
ate two versions of the strategy: one that provides an honest and
detailed examination of all three factors to share with the executive
team, and another shorter version that communicates only the
changes you’re driving in a way that you can share publicly with
teams. In long-range planning there are financial, business transac‐
tion, and personnel matters that obviously can’t be disclosed.

Summary
In this chapter, we defined the roles of the architect and strategist.
We highlighted key responsibilities and practices for these fields and
set the context for the next part, in which we begin our exploration
of the pattern language, starting with strategy creation patterns.

Summary | 21

PART II

Creating the Strategy

Part II of this book is organized around the “creation” patterns—
those that help you define components of your technology strategy.

A Logical Architecture of the Creation Patterns
Here I present 19 creation patterns to help you turn a vision into a
holistic, strong technology strategy. They bridge the gap between an
idea and an executable plan that has taken all key aspects into
account.

The following is a kind of logical architecture of the 19 creation pat‐
terns. They are divided into five categories, starting with the broad‐
est scope and narrowing from there, each of which corresponds to a
chapter in this part:

• Analysis
• World
• Industry
• Company
• Department

Figure II-1 illustrates the logical architecture of how these patterns
work together.

Figure II-1. The set of creation patterns all together in a logical archi‐
tecture

This architecture is organized into concentric shapes representing
increasingly narrow scopes of influence, impact, and relevance. This
should help you to match the problem to the set of applicable pat‐
terns. The divisions are not strict; they’re just a guide. Consider this
a visual table of contents for all the patterns relating to creating your
technology strategy. It’s meant to act like a high-level, logical system
architecture. Its purpose is to offer you an overview of the patterns
all together and show where they operate in their different spheres.
It gives you a quick reference point to select the tool that might help
you for the job at hand.

Your boss might simply ask you to “make a technology strategy,”
because she felt she didn’t have one, or didn’t know what it was, and
thought it would be a good idea to create one. This has happened to
me several times in my career. In these cases, you need to ask clarify‐

ing questions about the concerns she expects you to address, and the
scope of the recommendations she expects, so that you aim at the
right level.

Consider the following situations.

You need to make a strategy to upgrade the online database. In this
case, you’ve got a clear, localized, specialized problem. But it may
have high impact if things go wrong. So you’ll need a plan, and
you’ll need to contact some folks in different organizations if you
miss the cutover window. So maybe this is a small project, and you
only need to employ the MECE, Logic Tree, Stakeholder Matrix, and
RACI patterns, along with elements of Principles, Practices, and
Tools, to make your plan.

Or, you’ve been asked for a strategy to migrate from your home-
grown legacy billing system to a new off-the-shelf product. This is a
larger project that has impact and constraints outside your tech
department and requires more analysis and understanding of your
application portfolio and trends in the industry.

Maybe your boss asked if your software development method is
right, or if you should switch to a new architectural model. These
are larger problems, and you should expect to employ many or all of
the patterns in the scopes of Department, Company, and Industry.

If you’re the CTO, CIO, or Chief Architect, or you’re on the enter‐
prise architecture team and have been tasked with creating the tech‐
nology strategy for your company, expect to employ all the patterns
here. This work will take weeks and involve a lot of reading and
writing and refining.

You don’t design software by opening the classic Design Patterns
book and dutifully making one component for every pattern. It’s the
same here. Use what pattern you need when you need it, and they’ll
be different for different strategy problem scopes.

But unless you’re creating an overarching, multiyear strategy for
your entire technology organization, you don’t need to use all of
them all of the time. That would be overkill, incredibly time-
consuming, and silly. Of course, keep this book around as a refer‐
ence and use the ones relevant for the scope and type of the job at
hand.

Now let’s look at the patterns.

CHAPTER 2

Analysis

To use language is to enter into the territory of categories, which are as
necessary as they are dangerous.

—Rebecca Solnit, The Mother of All Questions

The only cost that matters is opportunity cost.
—Larry Page

This chapter covers foundational patterns for analysis that you can
broadly apply. They are MECE, Logic Tree, and Hypothesis.

MECE stands for “Mutually Exclusive, Collectively Exhaustive.” It
represents a kind of metapattern. It offers a quick way to check that
the building blocks of your strategy work are valid and complete. I
call it a metapattern because it doesn’t produce any direct output
that you can drop right into your strategy like many of the others.
It’s a light form of analysis that’s broadly applicable across all the
other patterns we’ll explore.

Logic Tree is used by strategy consultants as a simple tool for deter‐
mining a set of relevant problems and possible causes. It helps orga‐
nize your ideas, making quick work of examining any problem.

The Hypothesis pattern is a way of making a guess, based on some
supporting suppositions and data, about what the root problem
might be.

The patterns we’re starting with are the most abstract. These are
tools for analysis that will act as the underpinnings of any
strategy work.

27

In the world of strategy consulting, analysis of this kind is per‐
formed on what they call cases. A case is a particular industry prob‐
lem to be solved, like a detective “on the case.” Job candidates for
consultant positions at McKinsey or Bain or BCG must go through
the case interview, in which they use a framework of tools and a cer‐
tain approach to analyzing a problem to properly define and under‐
stand it, so they can make good recommendations or solutions. This
is not dissimilar from when we are asked to envision a project or an
architecture or define a technology solution within a business con‐
text. It’s about how to make great choices from competing viable
alternatives.

In business, opportunity cost refers to what happens when you pick
one alternative from many: you may realize a gain from the one you
pick, but forfeit any potential gains that could have been realized by
the opportunities you didn’t pick. If the returns on the choice you
picked are more than the returns you could have had otherwise, you
made the best decision from the available options.

There are obvious questions we get asked a lot. Do you choose to
upgrade the current data center, or move to the cloud? Should you
build or buy? Should you train your teams on artificial intelligence
in-house, or execute an “acqui-hire” (buy a company not for its tech‐
nology or customers but to get its knowledgeable employees)? What
database vendor should you go with? Do you rush to be first to mar‐
ket and get customer feedback even if your product is a bit buggy, or
make it solid and delay the launch?

Answering these questions well is hard, because these are complex
problems with many moving parts, and because there is considera‐
ble risk involved when decisions are hard to reverse, when they’re
costly, or when you get only one shot at them. As architects, we’re
asked to make recommendations with imperfect knowledge, and
need to do research, try some stuff out, and make a call. The more
times we show good judgment, make the right call through a fog of
business uncertainties, and minimize opportunity cost and maxi‐
mize returns, the more our own stock price goes up in the organiza‐
tion.

As a technology strategist, you have many jobs:

• Survey the landscape across your industry, organization, cus‐
tomers, stakeholders, competitors, and employees.

28 | Chapter 2: Analysis

• Examine trends in technology.
• Determine what current priorities, problems, and possible

opportunities are presented to your company.
• Analyze and synthesize these problems and opportunities into a

course of action: decide what to do, and what not to do.
• Make strong recommendations for how to allocate your

company’s resources, in what way, in what places, to what
extent, and to what end.

That is the work of the technology strategist, whether you’re an
architect, director, VP, CTO, or CIO.

Because there is not unlimited money and time to invest in every‐
thing, strategy is about making the right recommendations to mini‐
mize organizational damage and positional disadvantage, and
maximize advantage, profit, and benefit. The better you are at raw
analysis, the more often you’ll make choices with higher
probabilities of winning.

MECE
MECE, pronounced “mee-see,” is a tool created by the leading busi‐
ness strategy firm McKinsey. As stated previously, it stands for
“Mutually Exclusive, Collectively Exhaustive,” and dictates the rela‐
tion of the content, but not the format, of your lists. Because of the
vital importance of lists, this is one of the most useful tools you can
have in your tool box.

The single most important thing you can do to improve your chan‐
ces of making a winning technology is to become quite good at
making lists.

Lists are the raw material of strategy and technology architecture.
They are the building blocks, the lifeblood. They are the foundation
of your strategy work. And they are everywhere. Therefore, if they
are weak, your strategy will crumble. You can be a strong technolo‐
gist, have a good idea, and care about it passionately. But if you
aren’t practically perfect at list-making, your strategy will flounder
and your efforts will fail.

That’s because everything you do as you create your technology
strategy starts its life as a list, and then blossoms into something
else. Your strategy is, at heart, a list of lists. Thinking of your work

MECE | 29

from this perspective is maybe the best trick to creating a sane,
organized, productive context for your work. Let’s talk about lists for
a moment.

There are two parts to a practically perfect list: it must be conceived
properly, and it must be MECE, which we will define in a moment.

In a properly conceived list, two things are crystal clear:

• Who the audience is
• Why they care

You can determine who your audience is by asking the following key
questions:

• Upon reading this list, can the audience make a decision they
could not make before having the information in the list?

• Upon reading the list, can the audience now go do something
they could not have known to do before?

These are the two reasons to bother creating any kind of informa‐
tion in a strategy. In this context, there is little point, time, or
patience for a document that merely helps a general audience
“understand” something. Your lists must be lean. That means mak‐
ing them directive toward work that someone will go and do, or
providing the data that allows a decision maker to decide the best
course of action. The RACI is a list. It answers the question for the
project team of who is assigned to what role so that everyone knows
who is in charge of what, who is the decision maker for what, and
who is doing the work, and if someone sees his name on the list with
an “R” by an item, he can go do that work. The Stakeholder List is
primarily for the project manager. It lets him decide whom to
include in what meetings and whom to contact for certain ques‐
tions. But if these, and all the many other lists you create as part of
your technology strategy, are not MECE, your building blocks will
be weak and your strategic efforts will crumble. Let’s look at some
examples to make this clear.

This formula is MECE:

Opportunity Cost = Return of Most Lucrative Option – Return of
Chosen Option

30 | Chapter 2: Analysis

This formula is MECE:

Profit = Revenue – Cost

Revenue – Cost = Profit is MECE. That’s because together those
three items make a complete thought, divided across lines that don’t
overlap, and nothing is left out. All of the parts of the money are
accounted for within the same level of discourse. It is nonsense to
leave out Revenue and simply state “– Cost = Profit.” There are only
two ways to increase profit: increase revenue or decrease costs. Rec‐
ognizing the formula as MECE can help remind you to address both
the cost and the revenue aspects in your strategy.

This list is MECE:

Spades, Diamonds, Hearts, Clubs

This list is MECE:

Winter, Spring, Summer, Fall

Each entry in the list is mutually exclusive of every other one. There
is no overlap in their content. Winter ends on a specific day of the
year, and then the next day is the start of Spring. Every date on the
calendar is, with certainty, part of one and only one season. There is
no card in the deck that is part Spades and part Diamonds.

The elements in the list, when taken together as a collection, entirely
define the category. No item is left out, leaving an incomplete defini‐
tion. Thus, the list is collectively exhaustive.

This is not MECE:

North, South, West

It’s not collectively exhaustive. It fails to include East, and is there‐
fore an improperly structured list.

Consider the following list:

Revenue – Cost = Profit. Free Cash Flow.

This is not MECE because “free cash flow” is not at the same level of
discourse as the other items. It is true that free cash flow is an
important part of any public company’s earnings statements. But
that is unrelated to this equation, even though they appear to all be
in the category of “stuff about money in a company.” That’s a weak

MECE | 31

category for a list because it’s not sufficiently directed to an audience
for a goal.

What about this one:

Internal Stakeholders, External Stakeholders, Development Teams

This isn’t MECE because “internal” and “external” divide the world
between them. Development Teams are a subcategory of Internal
Stakeholders for a technology strategy.

Elements that are subcategories of other elements must not be
included. Consider this list:

North, South, Southwest, East

This is not MECE because it leaves out one of the elements, West,
and so is not collectively exhaustive. It also includes Southwest,
which is not topologically on the same plane as the other elements.
It dips into a lower level of distinction, as in the “free cash flow”
example. Southwest is contained within the higher level of abstrac‐
tion of South. So the elements on this list are not mutually exclusive.

These examples are straightforward (obvious) in order to illustrate
the point. But they share an attribute that precious few lists in the
world have: they are enums by definition. It is clear what goes on the
list and what doesn’t. Most things in life are not this simple.

Consider the following list of departments or job roles in a dev shop:

• Software Developers
• Architects
• Analysts

It’s not exhaustive: we left out Testers, and other roles depending on
your organization, such as Release Engineers, Database Administra‐
tors, Project Managers, and so on. To test if our list is MECE, we
must ensure we have pushed ourselves to think of all the relevant
components that make up that category.

Remember the first rule: know your audience. Your longer, more
detailed lists should be kept for your private analysis to help you
reach your conclusion, or reserved for lists of things to be done in
the project, such as a work breakdown structure. But you don’t want
long lists when working with executives because they have Executive
ADD. Even though you’ll worry that you’re leaving crucial things

32 | Chapter 2: Analysis

out, just give them the summary, but make it MECE. Then you can
reveal only the headline: the impactful conclusion that makes a dif‐
ference to your audience.

The Rule of Three
A good rule of thumb is to find the level of abstraction that keeps
your lists in categories of three or five items. For whatever reason,
people seem to more naturally understand and remember lists of
three, or at the least, odd-numbered lists. Consider two movie titles:
The Good, The Bad, and The Ugly is more memorable than The
Cook, The Thief, His Wife, and Her Lover. Push yourself to make
your lists with three to five items. Prefer lists of three or five over
lists of four. You’ll find this little trick helps keep your thinking
quick and nimble, and it will shorten your turnaround time because
your work will be closer to what you’ll need to present to executives
and stakeholders.

Consider this list of age groups:

• 0–5
• 6–10
• 11–15
• 16–25
• 26–35
• 36–45
• 46–54
• 55–65
• 66–75
• 76 and above

This list is technically MECE. None of the categories overlap, and
the sum of the subcategories equals the whole category. It might be
OK for a data scientist doing customer segmentation. But probably
not even then. It’s too fine-grained and low-level, so it’s not very
good for strategy work. You need to keep your visor higher; look
more broadly to horizons to distill the few things that really make an
impact and drive change. It’s more analysis and art than science. So
even though the list is technically correct, you will lose your audi‐
ence with details like this, and you can find ways to cluster and con‐
solidate them better, along the contours of a real difference or

MECE | 33

divergence depending on your own organization’s products, serv‐
ices, and markets.

Let’s look at a quick example of how to apply this idea of MECE lists.

Applying MECE Lists
Imagine you’ve been enlisted to create a recommendation to the
CTO for a new database system to replace your legacy system. If you
merely state the single database system you want to buy, any respon‐
sible executive will reject your recommendation as heavily biased,
poorly considered, and potentially reckless.

So we want to first consider our audience, with empathy, and always
ask: Who is this for, and what do they need to know either to make a
decision or to do the thing in question?

Your deciding audience wants to know that they have been given a
clear, thorough, thoughtful, unbiased proposal and that they are not
being manipulated. In our empathy, we realize that everyone has a
boss, and that no one in a company of any size just makes a decision
in a vacuum. It’s not the CTO’s money. So your CTO must in turn
answer to his bosses for the system he selects, and is accountable for
its success. Your recommendation will be successful if you give your
deciding audience a list of MECE lists.

But the list of database system choices is potentially in the thou‐
sands. It is impossible to include all of them, and impractical and
unhelpful to include even 20 of them. Being ridiculous is not what is
meant by “collectively exhaustive.” So first we’ll create a list of crite‐
ria to help us make our final list MECE. I include three or five fac‐
tors on which you will base your selection and write those down, as
they become part of your recommendation too. You’re showing your
audience how you came to your conclusion, just like showing the
long math in school: you’re not just giving the answer, but providing
the steps by which you arrived at it. This helps the audience follow
your story and agree with your conclusion.

Then we’ll perform a survey of the landscape, including systems that
meet the criteria. Include open source alternatives as well as com‐
mercial vendors. We might have a few of each. If we recommended
only the one we already wanted, we would miss the chance to per‐
form the analysis, squander an opportunity for learning that might
change or augment our view, and lose confidence in our choice and

34 | Chapter 2: Analysis

ability to execute. Including only our one recommendation would
certainly and immediately invite considerable skepticism and ques‐
tioning about the alternatives and how we considered them.

So make a MECE list of options. The list is exhaustive according to
your chosen criteria. Say you have 8 or 10 options in your list of “all
the database systems considered.” Say so in your recommendation. It
shows you’ve done your homework and suggests less bias and a
more data-driven, analytical approach. Then say you narrowed it
down to five options to present. That list includes two you reject and
state why. You have a list of three options remaining.

For each element on your list of remaining recommended vendors,
create another list of lists: “advantages, disadvantages” (that’s a
MECE list itself). The elements in each list should be something
about the technology, particularly 1) the functional requirements
such as key features that distinguish it from the competition and 2)
nonfunctional requirements such as performance, availability, secu‐
rity, and maintainability (that’s a MECE list, too). Consider these
systems also from the business perspective: ability to train the staff,
popularity/access to future staff, ease of use, and so forth.

Then from the list of acceptible candidates, present them all, ranked
as Good, Better, and Best. (The Good, Better, Best list is MECE too,
because you wouldn’t improve its MECE-ness by adding a “Horri‐
ble” option: the category or name of this list is the acceptable options,
which presumably does not include “horrible, and therefore
unusable ones.”)

The Good option might be the one that is acceptable to you, and is
low cost but not optimal. The Best one might be the most desirable
but highest cost, and so on.

Organizing your list this way makes an executive feel more confi‐
dent that you have an understanding of the entire landscape, aren’t
too biased, and show your reasoning. That makes your recommen‐
dation stronger.

The Celesital Emporium...
In 1668, English philosopher John Wilkins published a proposal for
adopting a universal language as well as a universal system of meas‐
urements. In his estimation, this was an entirely rational classifica‐
tion system.

MECE | 35

In 1952, Argentine poet Jorge Louis Borges published an essay
titled “The Analytical Language of John Wilkins.” As a critique of
Wilkins’s work, Borges offered the following list, in his story “The
Celestial Emporium of Benevolent Knowledge,” purported to have
been created by a 14th-century Chinese emperor as his taxonomy
for classifying the members of the animal kingdom:

1. Those that belong to the emperor
2. Embalmed ones
3. Those that are trained
4. Suckling pigs
5. Mermaids (or sirens)
6. Fabulous ones
7. Stray dogs
8. Those that are included in this classification
9. Those that tremble as if they were mad

10. Innumerable ones
11. Those drawn with a very fine camel hair brush
12. Et cetera
13. Those that have just broken the flower vase
14. Those that, at a distance, resemble flies

The list is hilarious, because it is so obviously an example of an
incomplete set of sets. There’s a lot left out here. Many of the cate‐
gories also overlap (can a creature not be at once “fabulous” and
belong to the emperor and have just broken the flower vase?). Do
not all animals, at a sufficient distance, resemble flies? What
belongs in “Et cetera”? Who could possibly make meaningful use of
this?

Borges’s point was that there is not a single, unifying, rational way
to classify All The Things, that there are cultural differences that
affect our views, and that ultimately such taxonomies can be shown
to be arbitrary. So that’s understood. The point here is that the divi‐
sion of animals in the “Celestial Emporium of Benevolent Knowl‐
edge” is perhaps the least-MECE list in the history of earth. Yet how
many of our project and architecture lists, on further inspection,
perhaps resemble it?

Getting good at quickly checking if you are thinking in lists and
then making sure they’re MECE has the pleasant side effect of help‐
ing build your powers of analysis. Think of MECE as a lens. Every
time you make a list, immediately test if it is MECE. Use it as a heu‐

36 | Chapter 2: Analysis

ristic device with your team: inspect your list with the team as you’re
meeting, be sure to ask if the current list you’re working on is
MECE, and then refine it. Your team may groan at first, but they will
gradually start to see the value, and then they will not be able to
imagine how they ever lived without it.

Make your work lists of lists, and make those lists MECE. Your rec‐
ommendations have a better chance of getting accepted, supported,
and executed on. And you will create more power for your organi‐
zation and your team.

Logic Tree
If I had only one hour to solve a problem, I would spend up to two-
thirds of that hour in attempting to define what the problem is.

—Unnamed engineering professor at Yale, via William Markle

A Logic Tree is sometimes called an Issue Tree in the world of strat‐
egy consulting. The tree branches out as a decomposition of the
problem you’re starting with. Collect possible root causes into
groups, using the MECE technique, and then break them down into
subgroups. As a technologist, analysis of this kind should be very
straightforward for you.

The output of a Logic Tree exercise is a diagram. You can draw it in
a mind mapping tool or presentation software. If you sketch on a
whiteboard or paper for your initial draft with your team, transfer it
into digital form so you can keep it in your growing Strategy Deck.

You will use Logic Trees in two ways. The first is for determining the
problem. These are called Diagnostic Logic Trees. The second is for
determining the solution set, called Solution Logic Trees. Either way,
you’re following the same method with the same type of diagram
as output.

Every strategy starts with a set of problems to be solved. The strat‐
egy itself is the set of solutions to those problems. A Logic Tree is
the critical starting point for any strategy. It ensures you have
defined the problem correctly and helps you enumerate the best
strategic solutions.

If you are not very clear on the reason for making a strategy, it will
be more general work, less relevant to any audience, and less exe‐
cutable. So if you’re asked to make a multiyear strategy, or a smaller

Logic Tree | 37

local strategy, be certain you have alignment on what problem your
strategy is meant to address before doing any other work. If you just
got asked to make a strategy (as sometimes happens), be sure to ask
your manager a few questions first about what problem she
wants solved.

People at large organizations spend a lot of time doing hard work on
poorly defined or unimportant problems. The result is useless at
best, and a disaster at worst. To avoid this trap, you first must know
what problem you are solving. There is no generic, cookie-cutter
strategy in the world: there are frameworks to help you consider
which set of actions is right for you. This one will help focus your
work, make it go quicker, and make your resulting strategy more
relevant and executable.

Diagnostic Logic Tree
Diagnostic Logic Trees attempt to determine the applicable subcate‐
gories of problems and a root cause. They answer the question of
why the issue has occurred.

As you ask “why,” you are using your powers of deductive reasoning,
working backward from a known current state.

To reiterate, you start any strategy by first clarifying what problem
you need to solve. You are then ready to create the Diagnostic Logic
Tree to determine why this problem or situation is occurring.

Solution Logic Tree
Solution Logic Trees are a way of representing possible solutions or
courses of action to address a problem. They answer the question of
how to proceed. You create this kind of tree after making the Diag‐
nostic Logic Tree.

Creating the Tree
To create the tree, you’ll first conduct a diagnostic analysis and then
a solution-oriented analysis. These are separate exercises. It is
tempting to jump to solutions without taking the time to gain a clear
understanding of the true problem.

38 | Chapter 2: Analysis

Represent your thinking in two separate trees. You may be familiar
with the Five Whys, or fishbone diagram, which is also called an
Ishikawa diagram. We’ll use a similar structure to create the trees.

Once you are presented with a problem, ask why that would be the
case. You may quickly see several possible reasons. Write each rea‐
son as the second level of the fishbone diagram. Then ask in turn
why that would be the case, and write the reasons at the next level.
Do this using the MECE technique (see “MECE” on page 29).
Repeat a total of five times to come up with a set of possible root
causes. Now you can make a declarative statement in your Ghost
Deck (see “Ghost Deck” on page 253) that this is the problem and
this is the root cause. For more on Ghost Decks, see Chapter 9.

My colleague at Sabre, Justin Ricketts, likes to use the example in
Figure 2-1 to help teams see how to approach a Five Whys analysis.
It shows a memorable way of demonstrating how you can come to
simple solutions and processes.

Figure 2-1. Example of Five Whys

So it turns out that the Jefferson Monument was eroding because the
lights that illuminate the statue at dusk attracted tiny midge flies,

Logic Tree | 39

http://bit.ly/2wGI5Vx

which attracted spiders, which attracted pigeons, which required
cleaning crews to use harsh chemical processes to continuously keep
it clean.

The solution to the problem was to simply turn on the lights that
illuminate the statue one hour later—saving work crews, preserving
the statue, saving on electricity and bulb replacement costs, and dis‐
rupting fewer tourists who come to observe the statue—and it cost
nothing and took no time to implement. Justin’s illustration is a
great way of showing how you can get to the root cause, but also
how the solution may be easier than you’d think.

After you have determined some problems your strategy can
address, and then figured out their root causes, you can start to for‐
mulate plans for addressing them through a variety of lenses and
with tools we’ll explore in subsequent chapters.

The other part of the strategy scoping is to consider solutions. To do
this, start by imagining the ideal end state—that is, what the world
looks like after the problem has been solved or no longer exists.
Make that declarative statement in your Ghost Deck. Ask “how” that
state could be realized by determining what the prior necessary con‐
dition would have to be to achieve it. Do this in five layers of depth,
regressing closer to the current state that has the problem. This will
help you plan the path forward.

Problems Versus Opportunities
Here we’ve focused, for the sake of brevity and convenience, on
problem solving. But if you focus only on problems, the best you
can do is maintain the status quo. Therefore, don’t forget to focus on
opportunities for your strategy, things that represent gains to your
customers and organization that they might not be aware they need.

This requires you imagining a better world, absent any direct feed‐
back that people are hurting without it. For example, no one in 2007
was walking around the streets feeling the pain of not having a
smartphone—they didn’t exist. No one had apps, and no one was
sad about it. The iPhone didn’t directly address a clear and present
pain that consumers felt at not having apps in their lives. But the
invention represented a gain for consumers, augmenting and
improving their lives and giving them conveniences they hadn’t
thought of or knew they wanted.

40 | Chapter 2: Analysis

Apple commonly employs this strategy of looking for customer
gains, not just pains to solve. Take one of many other examples from
the company: in 1998, no one was in despair or unable to be pro‐
ductive because their computers were only one color: boring black.
But once Apple made the iMac in five colors named after fruit, the
product sold like hotcakes, and is actually responsible for saving the
company, bringing it out of the financial crisis created in Steve Jobs’s
absence. The strategy seems to have worked out OK for Apple.

Hypothesis
Let us employ the symbol 1, or unity, to represent the universe, and let
us understand it as comprehending every conceivable class of objects
whether actually existing or not, it being premised that the same indi‐
vidual may be found in more than one class, inasmuch as it may possess
more than one quality in common with other individuals.

—George Boole, The Mathematical Analysis of Logic

A hypothesis is a starting point for an investigation. When you
hypothesize, you make a claim about why something might be the
case, based on limited data, to offer an explanation or a path for‐
ward. You wouldn’t make a proposition about something you are
certain of. You may not have enough evidence yet to even convince
you that it’s true. But making such a claim puts a stake in the ground
that suggests a path for focused analysis. In philosophy of logic, a
proposition takes the basic form P → Q, meaning “if P, then Q.”

In your strategy work, there is no one single moment in which you
declare a hypothesis. A hypothesis is a tool that gets worked into
conversation, that gets used together with other tools as a helper.
Unless you regularly keep company with strategy consultants, you
won’t often hear people say, “My hypothesis is…” (but strategy folks
love the phrase). You have to recognize that when your team asks,
“Why do you think this happened?” or “What’s the reason for this?”
you’re being asked to state a hypothesis.

Consultants at Bain and McKinsey are hired at exorbitant rates to
answer hard questions for CEOs. They might have an engagement
to recommend whether the company should sell a certain division
and exit the market or whether it should acquire a company, or they
might be asked why profits are down in Europe, or what strategy the
company should use to market in China. These are big, difficult,

Hypothesis | 41

strategic questions. If they were easy to answer, there would be no
need for consultants.

These consultants will spend the next six weeks to six months
answering these questions. They conduct research using every avail‐
able channel, run workshops with key employees, and create recom‐
mendations. Their work product is a deck. These decks are usually
very long and dense, containing loads of graphs and charts. This
deck represents the answer to the key questions that started the
engagement.

McKinsey consultants famously start engagements by quickly mak‐
ing a hypothesis, maybe after only a few days or hours on the job at
a new company. Given that there is so much on the line, they don’t
work at the company, they may not have prior experience in the cli‐
ent’s industry, and they may hold an MBA but be otherwise straight
out of school, this sounds preposterous. But it isn’t, and here’s why.
They’re very good at forming hypotheses, using mental models simi‐
lar to what we’ll discuss here.

The Five Questions
Hypothesis formulating is making a claim about the world: “this is
that.” Or, “the reason for X is Y.” Or, “the way to make A better is to
stop doing B and start doing C.” I suppose you can just start making
statements along these lines and call it a hypothesis. But that’s not
going to get anyone a strategy consulting job at McKinsey, and it’s
not going to serve you as a building block for your strategy.

This pattern is implied by the hypothesizing that strategy consul‐
tants do, but is not their process. So you might see very different
material on this pattern in other sources. What I describe here I’ve
adapted and customized based on my graduate studies in philoso‐
phy and what I have to put to work making successful strategies in
my roles as CTO, CIO, and Chief Architect in a variety of
companies.

Clinton Anderson was a Bain strategy consultant for 20 years. He
once told me that his job in that time was about asking the right
questions. The hard part is determining what the right questions
are. Professor of Philosophy Alison Brown helped me see that in this
context, hypothesizing (asking the right questions) tends to mean
we start by asking these five key questions:

42 | Chapter 2: Analysis

1. What is the conjunct of propositions that describe the problem?
2. What semantics characterize these propositions?
3. What are the possible outcomes?
4. What are the probabilities of each of these outcomes

coming true?
5. What “ease and impact” scoring values suggest the right

strategy?

This is our framework for asking those questions well. Let’s take
them in order.

1. The Conjunct of Propositions Describing the Problem
When it’s time to perform an analysis, which is most of the time, we
start with the first of our five questions: What is the conjunct of
propositions that describe the problem?

Twentieth-century philosopher Ludwig Wittgenstein was one of the
leading thinkers in propositional logic. Propositions and propositio‐
nal logic are well, but not definitively, explored in his book Tractatus
Logico-Philosophicus, which I highly recommend. Ten years earlier,
in 1911, Wittgenstein’s teacher Bertrand Russell wrote a paper titled
“Le Réalisme Analytique” in which he describes propositions. Here
we’ll unpack a few simple tools from this field to aid in our analysis.

In the Tractatus, Wittgenstein writes that “a proposition asserts the
existence of a state of affairs” (section 4.21). So when you make a
proposition, you are making a claim about the world. You are char‐
acterizing something that should be able to be expressed as a truth
value.

When you are presented a problem, define it as a set of propositions.
Each proposition is connected by the conjunct (the logical operator
AND). Within each proposition, the variables, or constituent names,
are also linked by logical connectors, so that you can deduce the
truth value of the overall formula from determining the truth or fal‐
sity of each variable.

In modal logic, a proposition is true in accordance with its being
borne out by the facts. So you must collect a few data points before
making a proposition. Ultimately, your hypothesis will be a list of
subhypotheses, each based on an insight, which in turn are each

Hypothesis | 43

based on a series of data points (see Figure 2-2). As we frequently
hear from machine learning teams: if you think your data is clean,
you haven’t looked at it hard enough.

Figure 2-2. Hierarchy of data, insights, and hypotheses

Proposition P is a truth function of a set of constituent propositions
if and only if you fix the truth value of P while determining the truth
value of every proposition in the set. This is a cheerfully academic
way of saying you have to be clear on what you are talking about:
define your terms. People use “resource” to mean “compute power”
or “human programmer.” When you say “customer,” do you mean
the franchisor you are selling to or their customer? Your definition
of “system” is likely too slippery to be talked about. So again, the
simple solution is to define your terms.

Insights
An insight is when you mix your creative and intellectual labor with
a set of data points to create a point of view resulting in a useful
assertion. You “see into” an object of inquiry to reveal important
characteristics about its nature. In regular conversation, this is
required all the time—for instance, to understand the punchlines of
jokes. An old Groucho Marx joke goes like this: “This morning I
shot an elephant in my pajamas. How he got into my pajamas, I’ll
never know.” Getting the joke requires us to see into the ambiguity
of language, that the word “in” has multiple meanings. It can mean

44 | Chapter 2: Analysis

that Marx is wearing the pajamas, or that the elephant has found its
way into Marx’s pajamas, which we don’t expect.

McKinsey publishes a set of its insights every year. This is a collec‐
tion of conclusions and recommendations it’s reached based on its
surveys and independent research (the data points). You can read
one at https://mck.co/2MIY1Bs. That document represents a rich set
of examples of what we’re talking about here. Let’s take one example
of forming an insight. The document states, “Culture is the most sig‐
nificant self-reported barrier to digital effectiveness.” Then it
presents a chart containing the top 10 factors technology executives
cite as preventing them from effectively executing their digital
strategies. This is not an insight, because it mixes no thought with
the survey McKinsey conducted. It’s just a representation of the raw
findings—the data. Additional research from McKinsey indicates
that several companies that have addressed their cultural problems
head-on, by cutting down silos, have performed better and more
quickly than competitors that have not. This is another data point.
These data points are combined to reveal the insights that compa‐
nies that are more willing to take risks, more responsive to custom‐
ers, and more connected across diverse functions do better in the
market. These insights lead to the hypothesis that executives must
not ignore this fact and must not wait for their cultures to change
organically, but instead must foreground and emphasize this specific
kind of culture change—cutting down silos—in order to succeed at
their digital strategy. That’s making a claim, based on insights, based
on data, and it recommends a course of action that is not obvious or
intuitive. As you build your strategy, this is what you want to do.

Note that it’s a good idea to read and cite material like McKinsey
Insights reports in your Strategy Deck appendix, as part of your data
point collection work, to help you reach your own insights that lead
to your strategy.

Sometimes, to the untrained eye, a mere tautology can appear as an
insight. A tautology is something that is necessarily true, so as to be
redundant. That’s not an insight. A tautology is an assertion—a
proposition—that is true for every possible value of its constituent
variables, so it’s not useful. Nineteenth-century German philosopher
Hegel refers to them as “trivially true”: he’s basically saying that
although “A = A” is true, it reduces to making no claim, so it
shouldn’t be discussed like it matters—it’s trivial. Sometimes people
(ourselves even) speak in redundant or circular terms when trying

Hypothesis | 45

https://mck.co/2MIY1Bs

to define a problem. The statement “all bachelors are unmarried” is
necessarily true as a proposition, but only because we have redun‐
dantly reworded the definition of bachelor: we have added nothing
to our understanding. Watch out for tautologies as you perform
analysis work in creating a hypothesis, or a Logic Tree (see “Logic
Tree” on page 37), or in many other exercises in strategy creation
where you need to form a real insight about the topic at hand.

2. The Semantics Characterizing These Propositions
Now let’s ask the second question in hypothesis formation: What are
the semantics that characterize each of the propositions?

Here you are creating an interpretation, determining the discourse
around each of these propositions. That’s because, again according
to Wittgenstein, the “elementary proposition consists of names. It is
a nexus, a concatenation of names” (Tractatus, section 4.22). But
your interpretation must be clearly prescribed by a domain of dis‐
course. To put it more simply, the word “play” means something dif‐
ferent to a shortstop than it does to a theater goer than it does to a
violinist than it does to a femme fatale in a film noir than it does to a
toddler than it does to a deconstructionist philosopher. “Gradient”
means something different to a data scientist than it does to a UI
designer.

As you conduct your analysis, it’s powerful to realize that you are
operating within a discourse, a patois, a learned and shared and, to
some extent, private language. What are the terms you aren’t sure
of? What are the terms someone else might not be sure about? Your
work and the spheres of technology and architecture participate in
what Wittgenstein called a language game. We use old words in new
ways, and new words in old ways, and apply a word from one realm
of life to another. Words have a preponderance of meaning.

This causes confusion, missed expectations, improper specifications,
and incorrect application. It’s bad for software and organizations.

To sum up the point of this second of the five key questions: “stuff
means stuff.” Being aware of the language games in which you and
your teams are working is a great step toward being clear with your
language.

This allows you to be clear on your definitions of each proposition,
such that you can assign quantifiers and qualifiers with more rigor.

46 | Chapter 2: Analysis

You examine here what is believed, what is doubted, what is hoped
for, and what has been invested in to determine the truth value of
your proposition. For example:

• Ask yourself how biases might be entering your work. Keep a
data dictionary to act as a glossary of terms if necessary. Keep
your language and terms clear and precise and accurate. A com‐
mon mistake here is use of the word “platform.” People in tech
say it so much that they think they have one just because they
said it, but it often is improperly used as a synonym for “system”
or “application.” A true platform offers APIs that allow custom‐
ers to build something new of their own on top of it. Android is
a platform. Alibaba is a platform. AWS is a platform. Salesforce
is a platform. Your mission-critical system might be important
to your customers, and wonderful, but if people can’t make new
applications of their own on top of your system without talking
to you, it’s not a platform.

• Ask yourself what language is used that isn’t clear. I have heard
product managers ask teams for a “concept model.” This was
apparently an art term brought over from a previous employer,
and might be a great idea. But no one knew what it was. Is it the
same as an information architecture? A set of use cases? A set of
UX wireframes? Are we telling customers that we’re delivering
an AI platform, but the data scientists think we’re doing a few
machine learning algorithms in the background? That’s lauda‐
ble, but different, and linguistic alignment turns out to be A
Thing. You can’t deliver it if you don’t know what it is. Rooting
out ambiguous terms will go a long way later.

3. Possible Outcomes
Our third question is, What are the possible outcomes?

Determining the possible outcomes of a decision or action is an act
of imagination, and also of reasoning. You can brainstorm with your
team to consider what the possible outcomes might be. Write them
down into a MECE list. Keep this list around in a spreadsheet or
something, because although you’ll soon get started by focusing on
one path, that doesn’t invalidate others. You’ll want to use this list for
further exploration.

Hypothesis | 47

Brainstorming is a useful activity when organized and timeboxed. It
will give you a load of sticky notes that suggest good next steps. But
it’s not going to draw the trajectory from here to a possible future in
any sophisticated way, or help you hash through your hypothesis as
a thought experiment before you go too far. For that, we’ll quickly
review inductive and deductive reasoning.

Inductive reasoning finds a fact (a true proposition) and generalizes
from there to create a new proposition about broader circumstan‐
ces. You draw conclusions based on data. The data, as true facts,
offer evidence that supports a conclusion. This is what we hope to
do as a necessary first step in strategy construction. This is quite
useful in hypothesizing. But people fall into traps when they gener‐
alize here, and can draw incorrect conclusions. With inductive rea‐
soning, the facts are certainly true, but the conclusion is only
probably true. It cannot be certainly true. Insights are the product of
inductive reasoning. It can add nuance and support to the claims
you make within your strategy work if you show the probabilities.
More importantly, you must be careful to not take as certainly true
what is only maybe true. We see this frequently at business meetings,
and we need to be able to identify when claims are being overstated
so we can determine what other evidence we should collect, or take
a different direction in the analysis.

Start by defining your terms and looking at the data you have, and
labeling it properly. What relevant facts are there, what research can
you do, what database queries can you make, what invoices can you
find, what logs can you trace, who can you call up to get a report so
you can start with some thread of data?

If you’re considering opportunities instead of problem solving, read
McKinsey Insights reports, industry articles, technology trends
books, business books, Harvard Business Review, O’Reilly books,
MIT Sloan School of Management books, and your favorite web‐
sites, and talk with your colleagues to see what you might be able to
take advantage of.

Either way, it’s a research problem, like in school. You’re like an
investigator at the scene of the crime. You need a starting point that
isn’t based on conjecture. You don’t need the whole picture, and
probably can’t get it yet, if ever. So you start with something con‐
crete to work with and take a shot at making a hypothesis quickly so
you can start testing.

48 | Chapter 2: Analysis

4. Probability of Each Outcome
The fourth question you ask in conducting an analysis regards figur‐
ing out how likely different possibilities are to occur: What are the
probabilities of each of these outcomes coming true?

You don’t have to be super-specific, like “the probability of hypothe‐
sis A coming true is 76%.” If you feel you have enough real data and
sophstication in your methods and a small enough problem set to
make such a claim, knock yourself out. But I try not to talk that way.
That’s because in general, people whose full-time jobs it is to predict
things are typically pretty bad at it. For instance, Kevin Warsh, for‐
mer governor of the Federal Reserve System, recently stated at the
AH&LA Forum in Virginia that the Fed accurately predicted 0 of
144 financial crises globally that resulted in a recession between
2005 and 2014. And that’s kind of all the Fed does. But you can
roughly assign probabilities to each of those outcomes with some
kind of traffic light to represent ranges of probability such as High,
Medium, or Low.

We might state our claims as “I hypothesize that our customers can
increase their revenue by 40% if they use our machine learning
product.” Or we might say, “I hypothesize that within five years
mobile phones will represent only 10% of the market and therefore
we should use our technology to create a wearables product.” Those
are fine hypotheses, assuming we have done our homework and can
show the data in a slide that helped us draw that conclusion. But one
trap here is a logical fallacy called false precision. If we were to ask
anyone on the street what the temperature of a human body is, we
would likely hear “98.6 degrees.” This is not as true as it suggests.
The precision of this number, and the decimal place, gives the
impression that it is a single number that is constant and never fluc‐
tuates within more than a tenth of a degree. Of course, human body
temperatures regularly fluctuate, and depend on a great variety of
factors, such that it’s more accurately stated as a range (it’s some‐
thing like 97.5 to 99.5 degrees under normal conditions). Precise
numbers make things that aren’t facts look like facts. Executives
don’t like having expectations set for them that aren’t met. We set
them up for disappointment when we overstate things this way. We
tend to produce numbers instead of ranges for estimates all the time.
I suspect that’s because we are afraid as technologists to state that we
don’t know something, since our whole careers are predicated not
on how sociable and sporting and what snappy dressers we are, but

Hypothesis | 49

on how smart we are. Train yourself to use ranges. Technologists
commit the fallacy of false precision more than any other group of
people I’ve seen—as much as 27.3% more.

We must not be misled by the traps of inductive reasoning. Just
because we have seen something in the past does not mean it will
continue.

Bertrand Russell famously and colorfully indicts inductive reason‐
ing thusly: Imagine a turkey who is an inductive reasoner. He is fed
without fail every morning of his life for years, and reasonably con‐
cludes this will continue to the point of never thinking of it, until
Thanksgiving morning when his throat is cut. This is a good lesson
for technology strategists and business executives alike.

And we should make another, more nuanced point. We can reason
that a fair coin has a 50% probability of coming up heads when we
flip it. However, upon the first flip coming up heads, we then start to
assume that the next time it will come up tails. Thus has much
money been lost at the roulette tables in Las Vegas. Every flip is
independent of the last. It is possible that we flip a coin 76 times,
and that every time it comes up heads. Of course, the probability of
flipping a fair coin 76 times and its coming up heads is 1.3 × 10–23

(or 1 in 1.3 sextillion). We do not expect this to happen. But if, that
having happened, we were to place a bet that the next time it would
come up tails, we would be seduced into thinking that the chances
of it coming up heads yet again must be impossibly low. But there is
no “yet again” to the fair coin. Even on this 77th flip, the probability
of heads remains one in two. This is debated delightfully in Tom
Stoppard’s play Rosencrantz and Guildenstern Are Dead. Upon see‐
ing the coin flipped heads 77 times in a row, one character remarks,
“A weaker man might be moved to re-examine his faith, if in noth‐
ing else at least in the law of probability.” (Fun fact: Rosencrantz and
Guildenstern are two minor characters from Shakespeare’s play
Hamlet.) So flipping with the same outcome 76 times in a row is an
entirely different question, and different probability, than this dis‐
crete flip after 76 previous flips that happened to come up heads. So
there are two matters, not one.

We must first understand the data without adding our assumptions,
conjecture, explanations, filters, and biases to them, and make sure
we’re clear on what we mean. Here’s an example, devious in its appa‐
rent innocence. Once when making a strategy for a company, my

50 | Chapter 2: Analysis

team needed to understand the number of customers we supported
on the current hardware so we could help project costs for support‐
ing more customers in the future, and use that as input to determine
the cost differences if we migrated to the cloud. I asked the team
how many customers were on the system. I was told it was about
30,000. That ballpark was good enough to start working, but as we
needed to refine the business case, we thought eventually we should
actually query the database. I was told it was 44,000—a difference of
47%! A short time later, I was given another number of 39,000 and
then later, 34,000. This was a very straightforward question. We
were all over the map. How could this be? It turned out that there
were some guesses, and then some assumptions built into the quer‐
ies people ran—in one case the DBA filtered by “active” customers
(a perfectly reasonable assumption), which refined the query to
throw out rows that hadn’t been updated “recently” (whatever that
means). Starting with good data and only true facts, and refining
what you name things so you’re clear about their status, is critical to
increasing the probability of your inductions being true, relevant,
useful, and important.

Bayesian probability
There is a tendency in our planning to conclude the unfamiliar with the
improbable. The contingency we have not considered seriously looks
strange; what looks strange is thought improbable; what is improbable
need not be considered seriously.

—Nobel Prize winner Thomas Schelling

Schelling’s lesson for us is to not make assumptions too quickly
regarding what we find unfamiliar in the data. Unless you start con‐
ducting a data science project on your own strategy project, the
probabilities you assign to your hypotheses will be more like educa‐
ted guesses. Those guesses should be as free as possible of assump‐
tions based on what is unfamiliar to you. It may be new, or it may be
new to you, but that fact alone is value-neutral in terms of what
strategy should be pursued.

Here’s a little framework, as a set of general steps, for assigning bet‐
ter probabilities to your hypotheses.

Imagine that the president asks you if acquiring a certain technology
company is the right thing to do, or you’re weighing in at a meeting
about whether we should pursue customers in South America or
Europe next, or the CIO asks you to recommend whether we should

Hypothesis | 51

build or buy a key part of the technology offering, or the CTO asks
if we should use an open source or commercial database at the heart
of our next product, or your manager asks why this component
keeps failing on a semiregular basis. In short, something has hap‐
pened to cause these questions to be posed: there’s a new event
requiring you to hypothesize a diagnostic explanation, offer an
opportunity, or project an outcome. Let’s take a semi-Bayesian
approach to the case:

1. The first step here is recognizing that these are very difficult,
open-ended questions, and that you are in fact being asked to
hypothesize.

2. Next, based on the event, quickly develop your first hypothesis,
a judgment of something that you predict might be the case
based on data and insights you draw from them.

3. Then determine the probability that your hypothesis is correct,
without succumbing to the fallacy of false precision.

4. To do so, first ask: What is the prior probability? That’s X. It’s the
probability you would have assigned to your hypothesis coming
true before this new event occurred, under the current circum‐
stances. This should help separate the distinctive and relevant
aspects of the situation (the signal) from the noise.

5. Now estimate the probability of this event occurring as a condi‐
tion of your hypothesis being true (Y)…

6. …and of it being false (Z).
7. Assign your posterior probability—your revised estimate based

on the fact of the event.

This technique is useful during troubleshooting, or when you’re cre‐
ating Logic Trees for diagnostics.

This sounds like an unrealistically laborious process to undergo, but
once you get used to it, you can do it roughly in your head in a
minute or two. Instead of assigning a specific numeric probability,
you can use ranges and just state High, Medium, or Low.

In broader strategy discussions, I suppose you could use this as a
model if the situation calls for it, but this is a level of detail that I
rarely see applied. Once people know enough and are talking
enough about these things to be able to do this, they start to a con‐

52 | Chapter 2: Analysis

versation in a new way where no one would think to ask about this
kind of precision.

This is the simpler and more useful formula for how to make deci‐
sions under high levels of uncertainty:

1. Create and hold a variety of hypotheses in our heads at once.
2. Think about them probabilistically, using an informal applica‐

tion of the Bayesian method.
3. Update them frequently as we get new information that might

be more or less consistent with each.

Deductive reasoning
Deductive reasoning is the opposite of inductive reasoning: from a
general principle, you move to a specific conclusion. It asks, “If we
assume the premises are true, does the conclusion logically follow?”

If the premise is true, then it should be very easy to test it, using the
basic rules of logic, to determine the validity, assumptions, and con‐
tradictions that are at work in the analysis.

Our job here is to be sure that the stated principle is one that is valid
enough to cause us to act on it, and determine the ways in which we
must act. For example, sometimes enterprise architects publish a set
of principles for the organization to follow. I’ve done this myself, fol‐
lowing my TOGAF (The Open Group Architecture Framework),
training many years ago. A popular principle of this kind is “Data is
an asset.” The point of such principles is that architects can’t specify
where the programmers should put every semicolon in their code,
and nor should they. The principles allow that when developers are
left to their own devices to make a local judgment call, they can refer
to the principles to help them decide how to create this particular
module in accordance with the stated architectural values. I’ve also
heard this principle ridiculed as “meaningless” or “empty.” But if
such a principle is not stated, developers on a team maintaining, say,
a shopping service might not siphon off the shopping data to save
for later, because they’ve written only the code necessary to fulfill
customer shopping requests. In that case, the data scientists who fol‐
low them—hoping to exercise some machine learning algorithms
for better classification, customer segmentation, or a recommender
system—will be out of luck. If architects publish their premises, and

Hypothesis | 53

teams can perform a bit of deductive reasoning to form a logical
conclusion to direct them in solving a local concern, the organiza‐
tion will be more aligned and more agile.

5. Ease and Impact Scoring
The fifth and last question in our analysis framework takes up the
set of possible outcomes along with their probabilities, so assigns
them a value in order to prioritize them. We ask: What “ease and
impact” scoring suggests the right strategy?

We’ve done our homework, collected data, formed propositions as
insights while recognizing the semantics at work, stated hypotheses,
and assigned them probabilities, and now we’ve got a pretty sizable
collection of possible stuff we could set the organization off to go
execute. But we can’t do everything at once. So we must prioritize.

To prioritize the work, we’ll use a practical method.

Create a spreadsheet listing your hypotheses or other work items.
Add two columns: one for ease of execution (how easy it would be
to get that done) and one for impact (how much of a difference it
would make to do it, how much positional advantage it would give
you). Figure 2-3 presents an example.

Figure 2-3. Resulting scatterplot chart of scoring your proposals on
ease of execution and impact/value

54 | Chapter 2: Analysis

Using a spreadsheet program to automatically plot these items, color
four quadrants with equal areas behind the plot, like so:

• The top right are items that are relatively easier to do and have
the greatest effect. Color this quadrant green. They should be
prioritized first.

• The bottom left are the things that will be hard to do and make
only a small advance. Color this quadrant red. They should be
prioritized last.

• The top-left quadrant are things that are easiest to do but have a
relatively small impact. Color this quadrant yellow. They should
probably be prioritized second.

• The bottom-right quadrant are things that are hard or very
time-consuming to get done, but are important to advancing
your strategy. They don’t represent quick wins and aren’t the
most important, so should likely be prioritized in a third group.

This is only a guide, not a hard-and-fast rule. It serves only as input
for you to make your final determinations on what to recommend
doing in what order. So it may be that there are elements from the
middling quadrants that you exchange in priority, doing one or two
big-ticket items instead of several easier, small ones. This is a judg‐
ment call depending on your other competing priorities, team
capacity, and strategic directives from executives. The resulting
chart makes a great visual for your deck, to help substantiate that
you considered many alternatives, took a data-driven approach, and
made your recommendations from the many available options
based on what made sense.

You can use a variation on this, replacing “Impact” for “Value” and
“Ease” for “Effort.” While these are words a businessperson readily
understands, I don’t like them as much because they are not both
positive axioms, so they’re inverted from each other: you want more
value for less effort. So “easy” is good, and “valuable/impactful” is
good too. It’s kind of “six of one, half a dozen of the other,” as they
say, but helps make the chart quick and easier for your audience to
understand, which is empathetic and therefore helpful rhetorically.

Signal and Noise
We can draw a line from the Ease and Impact scatterplot to a related
idea: the 80/20 rule, sometimes called the Pareto rule. An common

Hypothesis | 55

example of this rule is that 80% of your profits come from 20% of
your customers. Using the 80/20 rule as a starting point gives us a
different way to filter and sort our data, hypotheses, and strategic
priorities. It’s an informal way of separating the signal from the
noise:

Signal
Something that points to the true state of affairs, something that
represents the stuff that matters.

Noise
Random patterns that might easily be mistaken for signal, or the
sound produced by competing signals.

Business moves quickly, and we are frequently asked to make rec‐
ommendations and estimates long before we feel comfortable that
we have enough data, or enough understanding of the problem to
do so properly. I’ve seen architects poring over data for many weeks
on end, trying to ensure they’ve looked at every aspect of the prob‐
lem before coming to any conclusion. They do endless prototyping
and analysis for months just to determine that, yes, in fact the most
popular deep learning library is the one they want to use. This
doesn’t work for modern business. While it seems thorough, and is
perhaps well intentioned, it’s bad for business and it’s unnecessary.
You cannot read and try out everything, and everything isn’t impor‐
tant. As Larry Page stated, the only cost that matters is opportunity
cost, so hone your intuition to make quick “good enough” conclu‐
sions, which you can carefully refine later.

There’s a discussion in Nate Silver’s wonderful book The Signal and
the Noise that illustrates the point using poker. Silver discusses how
“keeping the water level high” means that new players can level the
playing field with very experienced, strong players by doing these
things:

• Learn the hands
• Learn a rough idea of the odds
• Fold your worst hands
• Make a modest effort to consider what cards your opponents

might hold

Doing only those things will substantially mitigate your losses.
Because of the distribution of the cards, 80% of the time, you’ll be

56 | Chapter 2: Analysis

making the same decision about your hand as the best poker players
would, even though you’ve spent 20% of the time learning the intri‐
cacies of the game as they have.

Therefore, when wading through hypotheses to make your strategy
recommendations, you can hope to make the same recommenda‐
tions as the best strategists by using just a few of the most applicable
patterns, identifying the most fundamental data points, and devel‐
oping hypotheses that open to the biggest impact. You might come
up with 67 recommendations to fix the problem. What are the 10
best, based on high impact and ease of execution? You have better
hopes of getting 10 important things done in a quicker time frame,
with more clarity of vision for the teams, if you can prioritize well.

Come up with a few, or several, hypotheses quickly, and pick the one
that looks most promising to investigate. Your first avenue might
not be right, or it may be that multiple forces are at work and there’s
not a clear, discrete, simple answer.

Perhaps the question posed to you as part of formulating your strat‐
egy is: How do we make higher-quality products with less defect
leakage? You might hypothesize that you don’t have high-quality
developers because you don’t pay a market rate. Alternatively, you
might hypothesize that you have high-quality developers, but the
code base was allowed to grow without a concomitant investment in
test and deployment automation. Or perhaps you have a capable
development staff and automation but don’t have domain expertise,
or the product management team has consistently prioritized fea‐
tures over nonfunctional requirements. Or management says it cares
about quality, but at the end of the day, everyone is bonused on hit‐
ting the date, and ultimately that prevails at a cost to stable, main‐
tainable software. Brainstorming for a few candidate ideas goes
quickly at a whiteboard. All of these hypotheses sound reasonable,
and will quickly spring to mind. They present very different strate‐
gies for correcting them, and it is not necessary that only one is the
most impactful root cause.

There is an obvious challenge with starting with a hypothesis so
early in your engagement. You can, almost per force, introduce a
bias. That’s to be assumed, and it serves to give you a scope of work
to begin to gather the data and understand the relevant factors. And
then you can stand back objectively and let the data speak for itself.

Hypothesis | 57

Revise your hypothesis if the data does not support it, and follow a
different path.

Your initial hypotheses may very well be wrong. That’s fine. This is
about putting a stake in the ground to get a good place to start, and
then coming up with more hypotheses. It’s about proving something
right or wrong as quickly as possible so that you can move on.

Context
Taking things out of context is another common cause for faulty
reasoning, which leads to faulty conclusions, which makes for bad
strategies. Unfortunately, it’s all too common. We forget or forego
the context in which an executive or competitor made a declaration,
or the context for a managerial decision to use this vendor instead of
that, or the context in which an outage occurred or a message was
sent.

Recording, and making transparent, how you arrived at a conclu‐
sion will help provide context to future readers of your strategy.
Indeed, many of these patterns are tools to help you build, piece by
piece, a proper set of propositions to arrive at the right strategic con‐
clusions, and happily offer a transparent trail of how you got there.

Resist the temptation to wait until you have all the data before you
start. You will never have all the data. There is no such thing as “all
the data.” The universe is an infinite conjunct of propositions.
Therefore, you must necessarily draw a line around some set of
propositions that you collect together in strong relation. Then be
bold and make a claim. Ask smart people you trust who aren’t syco‐
phants to argue the hypothesis.

Eventually a hypothesis will need to be tested by action. Let the
impact of being wrong determine how much analysis you do before
taking that action—to a point. Once you start building on your
hypothesis by creating the execution plan, you will be able to tell if
you’re in the right ballpark.

Once you’re in the ballpark, you need to perform more data gather‐
ing. This means conducting research within your company and on
the web, reading industry reports, and finding anything you can to
help you determine that your hypothesis is true (in the case of diag‐
nosing problems), or probable (as in the case of imagining opportu‐
nities).

58 | Chapter 2: Analysis

This is a simple technique, but starting with it early in your strategy
engagement will help align your subsequent strategic technology
choices with the business.

Objects and Relations
As Wittgenstein shows us in the Tractatus, the world is all that is the
case. It is a collection of propositions, an infinite conjunct of lists-of-
lists of objects, their attributes, and their relations to one another.

For our purposes here, let’s call an object anything that is a possible
focus of inquiry. It’s something that we can call discrete, such that
we could refer to it directly, as a sign, like a child pointing at a ball
and uttering “ball!” (Yes, that’s a very problematic statement in semi‐
otics, the philosophical study of signs, but I won’t fascinate you with
the reasons here.)

When you conduct an analysis, determine what the objects are, how
they are compositions of other objects, and where objects are finally
atomic (no longer usefully divisible for your purposes).

Determine what their necessary relation is to other objects: that is,
this object exists if and only if another object does.

What is a necessary but not sufficient condition? To get a job, it is a
requirement (necessary) that you apply for it, but that alone is not
sufficient, as you must also interview and get accepted.

What are the contingent relations? This object exists if and only if a
given relation or attribute continues to exist.

For our purposes, there are a few different kinds of relations in the
world, but surprisingly few. Let’s review them, as shown in
Figure 2-4, so when we’re conducting research or creating our strat‐
egy, we can sort large volumes of data more quickly and reliably.

Figure 2-4. Kinds of relations, on a spectrum of interestingness

Hypothesis | 59

Identity
Identity says, this thing is that thing, in every particle: A = A. This
kind of relation is a tautology and represents a thing in itself, in a
vacuum. It’s not interesting.

Let me take that back, just slightly. It’s interesting in only one way.
But it’s a doozie. As astonishing as it may sound, companies tend to
not know who they are. By which I mean, they don’t have a clear
sense of their own identity. Everyone in the organization does not
have a rock-solid shared understanding of why the company exists,
who its customers and partners and competitors are, or how it
makes money. If I had not seen this many, many times in my career I
wouldn’t remark on it, because it sounds absurd. The lesson is to be
sure that you do know the answer to these questions, so it can
inform your strategy. It may surprise you.

Equality
Equality means the complete description of this differs in no case
from the complete description of that: A = B. This kind of relation is
important if you can show that two seemingly different objects
reduce to the same thing, or two seemingly different courses of
action actually reduce to the same effect. This is fine for informal
analyses. Saying “this is that” is the stuff of metaphors and poetry.
That’s actually the definition of a metaphor, because it’s certain that
“this” is, by definition, this, and not that, upon any inspection. It
turns out to be impossibly problematic, even for the smartest people
in history, to properly find a good referent for “this,” or “here.”
Nonetheless, such statements abound in conference room meetings,
and can mislead us if we don’t recognize them as the poetry of busi‐
ness that they are.

Association
Associations represent the state that two known different things
offer some kind of interaction that changes them. Things are now a
bit more interesting. Associations can be directional: one way or two
way. Determining nonobvious associations is necessary, but not suf‐
ficient, to doing great strategy work.

60 | Chapter 2: Analysis

Predicate
The term “predicate” is somewhat overloaded. In logic a predicate is
a property or attribute of something, which is different than in
grammar, where it refers to an affirming verb statement about a sub‐
ject (a related idea). A predicate is an expression asserting some
state of affairs. It represents something you can say about an object,
something descriptive about its attributes.

In grammar and logic we can say “is a cat” is an expression. It is not
a complete sentence. Likewise, “has a longer tail than” is a more
complex predicate, as it presumes two variable values (the subject
and the object).

The complex predicate is a statement of a relational property, an
assertion that “cat” is a be-able thing and existence (“is”) is a thing
(sort of). Alone, it is not true or false. To determine whether a predi‐
cate is true or false, you must fill in the missing referent (the who or
what that is being referred to). To say, “Mister Boy is a cat,” we now
have an assertion that we can test the validity of.

We write ∃x to mean “there exists some x.” This is a claim that x is
something to be, that is capable of bearing the property of existence,
which means both less and more than we tend to think. We can state
“x = cat” and “B = Mister Boy,” just assigning variables. We state
∃xBx to mean “there exists some cat such that Mister Boy is a cat.”

This may sound like I’m being overly complicated about obvious
stuff, like who’s this guy who doesn’t know if he has a cat or not?
Well, things may be in certain sets, or in multiple sets, or in no sets.
Sets may be empty (have no members). Sets exist within a discourse
that mediates the objects, the relations, and the sets they’re part of.

Consider this proposition. Consider “everyone.” We say “everyone,”
but we don’t mean it. Do we mean all the people alive in the uni‐
verse right now? Do we include Sophia the robot citizen of Saudi
Arabia? Everyone who has ever lived, is now alive, and will be alive
in the future? That’s the MECE set translation of “everyone.” So I
think we don’t usually mean that. We mean something more modest
like “these six analysts at the customer site in this one room who
used this one feature one day, but there might be more or less of
them even now as we speak and they may have put someone else
into some of those roles by next week.”

Hypothesis | 61

The ∀ symbol means All The Things, everything. It means that
within a domain of discourse any (all) of the members can be substi‐
tuted for a variable—something is universally true within the uni‐
verse of the domain.

Let x = the predicate “is in New York City.”

The predicate logic expression ∀x then translates to “everything is in
New York City.” One challenge in everyday life as we sit around
making great technology strategies is that this is a valid statement—
not because it’s the case that everything is in New York City (con‐
trary to what New Yorkers may think), but because it’s a properly
constructed statement within predicate logic.

To help with this, predicate logic conveniently provides us the idea
of the domain of discourse. Think of a domain as a set.

We’ll refer to your set (your universe you’re demarcating, your
domain of discourse) by S. S has only one member (in set theory,
and thereby in computers, we call this a singleton). And that mem‐
ber is the “Empire State Building.”

The statement ∀xSx could be translated then as “for everything that
is in New York City, a domain exists called the Empire State Build‐
ing, and that domain, with all its universe of members, has the prop‐
erty of existing in New York City,” which actually reduces to
“everything is in New York City,” which sounds wrong, but is not
only valid (properly constructed) but sound—it’s actually true. That
is, it’s true in this case, because of the demarcation of the domain of
discourse—the entirety of “everything” here consists only of the one
thing, the Empire State Building. It’s also the precise equivalent of
saying “The Empire State Building is in New York City,” which is
nice because it’s rather exhausting talking the other way.

The lesson for both the architect and the strategist is that we have
this domain today, but can we create a competitive advantage by
establishing an outpost in an adjacent domain? If our domain is
“hotels,” an adjacent domain might be “vacation rentals” since they
both have to do with travel accommodations. If our domain is pub‐
lishing books, an adjacent domain might be streaming instructional
videos, since they both have to do with ways of teaching. A book
and a video may have very similar content ostensibly, but use very
different means of production, have different audiences, and use dif‐
ferent distribution channels. They might be one thing and they

62 | Chapter 2: Analysis

might be two separate things, depending on your purposes and
where the business is going, can go, and should go.

So the architect must look at these two ideas, determine the relevant
questions about what members are in each set, and check how much
overlap there is. That helps you determine whether you’re really
talking about one thing or two things. This is important in system
decomposition. The mistake I see architects make a lot, and the rea‐
son I belabor all this here, is that they don’t start in this prior step:
they make all manner of assumptions about the demarcation of the
domain, don’t look at the propositions, and don’t examine the lan‐
guage. So they won’t decompose the system properly or in a strategic
way. But starting in this prior step of determining what the domain
really is, and what the sets are, what each set’s members are, and
what the discourse is will have wonderful ramifications for the way
you design the system, how extensible and performant it is, and
what business strategies it enables or curtails.

Remember the Five Questions. The second question, regarding the
semantics around a proposition, shows us that we are in a domain.
In short: when people say “everything,” they never mean everything.

To help clarify, push people to make absolute statements. If someone
says, “This thing is what happens,” then you can take them at their
predicate logical meaning and ask, “Is that true for everyone, alive
and dead, always, and in all cases, across time and all eternity?”
Then they say “no.” And you say, “Well, that’s what you said.” And
they reply, “I’m so grateful to be corrected by you; that’s really
charming. What I meant was, that’s what Sally does on Tuesdays. If
it’s not raining.”

We Don’t Know What Money Is
Why am I emphasizing this? It may seem like the furthest thing
from your job, but I urge you to scrutinize your language and the
language of others in order to be rigorously clear on what you
mean. I belabor the point here because it’s arguably the most
important thing in the book. Knowing what you’re talking about is
almost impossible, and drawing a logical boundary around a
domain is almost impossible, and saying anything articulate and
meaningful about it is almost impossible. At a recent gathering of
Washington, DC “luminaries,” I had the good fortune to meet
Kevin Warsh, former governor of the Federal Reserve System, who

Hypothesis | 63

went to MIT, graduated from Stanford, and got a JD from Harvard.
He was talking to a small group about the economy—a complex
language game in itself. He rattled off the top of his head 10 or 12
statistics about the state of things and concluded publicly, “The bot‐
tom line is that we don’t know what inflation is. Because we don’t
know what money is.” That is an incredibly articulate, accom‐
plished, smart man. He wasn’t joking. He meant it, and he was
right.

There is a point to this perhaps surprising divergence for a business
book (if that’s what this is) into the details of predicate logic. Didn’t
expect to see any backward Es when you woke up this morning, did
you? People have often asked me how I can be successful in tech‐
nology when my degree is not in computer science. It’s very easy to
learn Java syntax and write flexible, maintainable software if you
understand predicate logic, and it’s easy to design software APIs if
you understand semiotics and language games, and it’s at least not
as hard to make resilient and scalable architectures if you under‐
stand set theory.

It boils down to this, and if we can promise each other to remember
this lesson, then I will let this go: we are making uncreditable
assumptions all the time about all the things, such that we make
equally uncreditable claims, such that we make bad decisions about
architecture and strategy and suffer bad outcomes.

In short: saying stuff is certain when it is not certain sinks ships.

Improve your semiotics, improve your life.

Examine your objects and their relations. Make lists of their predi‐
cates. Be careful to not overstate.

To adhere to this lesson, deconstructing this a bit will help us.

Predicates are incredibly important in analysis, and are the building
blocks of predicate logic and propositional logic. Predicates are the
mines where most gold is hidden, and where the most miners meet
their doom. In other words, the attributes of an object are more
complicated than they appear, and if you get them wrong, the conse‐
quences for your analysis can be disproportionately problematic. It
is deceptively difficult to list the predicates of an object.

64 | Chapter 2: Analysis

Correlations
Two objects are correlated if a change in one will usually produce a
change in the other, or if the two objects are very frequently found
together. This is much the stuff of machine learning, in which algo‐
rithms execute over massive data sets to determine the algorithms
that describe the data in order to make predictions. These are partic‐
ularly fascinating, and must be carefully noted throughout your
analysis.

Causation
The fact of this state of affairs necessarily and unequivocally causes
some next state to occur. It seems obvious to suggest that if you hit a
ball with a cricket bat, you caused it to sail into the air. Fair enough.
In simple, direct, physical relations, it’s harmless to assign causations
to things, unless you’re a quantum physicist. Familiar causation of
this kind affords wonderful things, like ball games and rocket ships
and being able to perform crucial acts like drinking coffee. It’s
important. But in the business world, as in the unruly sphere of
human behavior, assigning causations is dangerous. It is almost
never the case that there is a simple, easily explained line directly
creating a new circumstance. Sigmund Freud calls things that have a
preponderance of valid-sounding causes “over-determined.” That is,
there are too many things operating at once, all contributing in
some way to producing this state of affairs to really reasonably say,
“This caused that.” Or worse, “This causes that” (present tense), as if
it’s a rule that it always happens that way. Things tend to be more
nuanced, contingent, more correlated, more variously associated in
a complex business and technology world than straight causation
allows for. Causes tend to be a panoply of reasons, with various
prior causes, operating at various intensities in various circumstan‐
ces in varying frequency. If you can identify all these vectors, you
might be able to find a cause. That requires careful work and a lot of
description. So if you can find a true causation in your analysis,
more power to you; that’s fantastic: it will make your job much eas‐
ier. But, you know, good luck with that. And don’t blow too much
time on it. Do just enough to make a useful claim without overstat‐
ing, overreaching, and overestimating probabilities.

Hypothesis | 65

Strategic Analysis as Machine Learning
In its most basic sense, the process of machine learning (ML) has
roughly the same basic construction as our analysis process as pre‐
sented here. It involves hypothesizing, finding a model, and casting
probabilities, much like the work of strategy consultants. Of course,
as a relative of data science, it follows more or less the scientific
method. Though this doesn’t extend our pattern set, I thought I
would draw a connection conceptually, because this connection
makes the world feel richer and more delightful.

In the popular imagination, perhaps for grammatical reasons, peo‐
ple tend to think of “machine learning” as the machine itself learn‐
ing what to do, such as what next chess move to make. But what the
machine is learning is actually a function: what it’s learning is what
function best explains the data. A machine learning job is one that,
given a mass of data, determines how to frame the data in the con‐
text of a hypothetical function (f) that would explain the data, and
that hypothetical function is the thing the machine learning algo‐
rithm tries to figure out. In the simplest terms, given the data as
input, use the learned function to predict the probability that the
output is accurate. Stated as a function, that’s:

Output = f(Input)

The job of machine learning is to determine this equation:

Y = f(x)

...where x is the input data, f is the function or model that can draw
correlations and fit the data (such as the function that can draw a
line through data points on a plot), and Y is the label, the predicted
value the ML elects. Machine learning asks what is the right function
f to give you label Y?

The process goes like this:

1. Determine your hypothesis, your question, the label you want to
find.

2. Determine the data sources that can provide you a meaningful,
relevant answer or context, using internal and external sources.
Prepare and clean the data and impute missing values.

66 | Chapter 2: Analysis

3. Determine the right model. In ML we ask, would this work best
with linear regression, a random forest, or another model? Usu‐
ally an ensemble of methods can produce the best results.

4. Fit the model.
5. Predict.

In ML, fitting the model means finding the algorithm that draws a
line through the data points, the statistical function that explains the
data best such that it can properly label new data. For the strategist,
it means something analogous: finding the right mental model, the
right systems architecture, the right recommendations and decisions
across people, processes, and technology that creates the best path
through the available data to the future. This involves making some
predictions about what the world will look like and how you’ll want
to be positioned, and assigning probabilities as we’ve discussed.

My hope is that this correlation between our present work and our
ML work is interesting to you and spurs some additional thoughts
in your context. To me, the strategy process is analogous to this ML
process. It works for me as a mental model, and I hope it does for
you too.

Summary
The steps for forming a sound analysis include:

1. Quickly gather data to form more than one hypothesis based on
the question.

2. Perform the initial analysis by asking the Five Questions, exam‐
ining context, using inductive reasoning, and separating signal
from noise.

3. Narrow the areas of focus by prioritizing them, scored accord‐
ing to ease and impact.

4. Assign probabilities to key propositions by using Bayesian
probability.

5. Gather more data, test, and revise your hypotheses and analysis
as necessary.

Use the MECE technique (see “MECE” on page 29) and Logic Trees
(see “Logic Tree” on page 37) throughout, as applicable.

Summary | 67

This is an iterative process (depending again on the scope of your
assignment and whether you have time for more than one shot at it).

This is also what I’ll call here a fractal process. With a fractal, each
part has the same statistical character as the whole: the pattern is
self-similar across any scale. It can be big, such that you’re applying
it across a broad question or problem with a lot of research and for‐
mal expressions of each of the items, taking hours to complete. Or it
can be small: using this process on just this, another small piece of
one small piece of the puzzle. A fractal is an equation that is emi‐
nently scalable. If you train yourself to think this way, using it as a
default processing mechanism when people make claims to you,
you’ll start to do this quickly, naturally, and informally in your head,
once you get really good at it.

Remember, too, that when you are given a problem to solve, you
should analyze the problem and the solution separately.

Whether the scope of the strategy you are building is small and
local, or broad and far-reaching, these questions and the analysis
patterns presented here will help you create a great strategy. Use
them all as metapatterns throughout your work, like fractals: quickly
and informally in your head for small problems, and with lots of
evidence, time, care, discussion, and formal recording all along the
way for big problems.

In the next chapter, we dive into the patterns for creating your strat‐
egy, starting with the broadest context: that of the outside world.

68 | Chapter 2: Analysis

CHAPTER 3

World Context

In the previous chapter, we looked at how to reason in ways that will
be applicable throughout your strategy patterns work. Now, we get
to the heart of the creation patterns.

The patterns presented here represent the broadest context—that of
the world outside your own company. We start here to ensure your
strategy work is properly grounded and that your more specific,
local strategy choices consider important trends, themes, and vec‐
tors beyond the walls of your corporation, and even your industry.
They’ll give you more empathy and understanding with your cus‐
tomers. These patterns will also help shape your views to ensure the
technology strategies you create are the most applicable and sup‐
portable. Additionally, presenting your homework in these patterns
will show your executive team that their concerns are your con‐
cerns, giving both of you the confidence that your technology strat‐
egy is aligned with the business, and not only a shopping list of
shiny objects.

While these patterns could seem distant from your comfort zone in
technology, that’s part of the point. People who are strategists for a
living base their business decisions on this kind of work. Rooting
your work in analyses of the climate and directions the broader
world is taking will help make your strategy thoughtful, sound, and
complete. Understanding the context and the language in which the
business operates will give you a terrific boost in making your archi‐
tectural recommendations best support your organization. I hesitate
to say that you, as a technologist, can do very well to think like a

69

businessperson and talk in their language. That’s because, after all, if
you’re in a position to make strategy recommendations in your
organization, I’m sorry to tell you, but you’re already a
businessperson.

There are four patterns we’ll look at to help ferry you in your jour‐
ney to the dark side of business:

• The PESTEL analysis is a simple framework for understanding
the broad political, macroeconomic, social, and technological
trends operating in the world outside. It helps give you neces‐
sary context to make your technology direction in harmony
with the conditions informing your business. The work you do
here can feed Scenario Planning.

• Scenario Planning is a fun, collaborative exercise that will help
you imagine different futures so that you can plan how to
encourage the happy ones and shore up against the scary ones.
The work you do here can feed the Futures Funnel.

• The Futures Funnel is a diagram that presents in one compelling
picture your conjecture of different possible ways your compa‐
ny’s future could play out. I’ve found it to be a quick, easy, and
provocative way to have a level-setting conversation with execu‐
tives to ensure that you have the right focus and common
understanding of the business vectors.

• The inverse of the Futures Funnel is Backcasting, in which you
posit a desired future state and trace backward to the current
state to see what you’d need to do to make it come true.

If you are creating a broad multiyear strategy, or need to make a pre‐
sentation to your colleagues or peers in your industry about where
you’re headed, these patterns are quite useful.

PESTEL
The PESTEL analysis was created in 1967 by Harvard Business
School professor Francis Aguilar. You use a PESTEL analysis to
answer this question: What strategic direction is suggested by the
current and anticipated Political, Economic, Social, Technological,
Environmental, and Legal climates?

PESTEL offers a simple, memorable framework with which to ana‐
lyze the key drivers of change in the context in which your business

70 | Chapter 3: World Context

operates. It’s used by “businesspeople” (of which you are one) to
determine when to launch a product, when to create or update a
brand, when to shore up investments in one area of the business,
and when to perform organizational planning, marketing planning,
and so on. Clinton Anderson, President of Sabre Hospitality and 20-
year Bain consulting veteran, defined strategy to me as “the purpo‐
sive allocation of resources to help achieve a certain aim.” The
PESTEL isn’t about allocating those resources: it comes before that.
It helps you see what the weather might be, so you know to pack an
umbrella. It’s one of the strategist’s starting tools.

The PESTEL analysis is in this chapter because it isn’t specific to any
particular industry and is foundational. But if you’re in the business
of making pharmaceuticals, the aspects of the PESTEL climate you’ll
find relevant will differ from those of the strategist from a telecom‐
munications company. You will create your PESTEL while viewing
each category through the lens of your own industry. That is, to take
one of the six PESTEL elements as an example, there’s no such thing
as “the economy” in a sense—that’s a reification. But you can bring
your comments back to the specific ways a given trend or climate
within each category might impact your industry and your custom‐
ers. For instance, if you’re in the travel industry, fluctuating gas pri‐
ces might affect your customers and your business. How will you
mitigate this? If you’re making software products, gas prices are
likely a weakly linked relation, and therefore an unnecessary, irrele‐
vant place to focus your economic analysis. You’re not analyzing
“the economy” itself—you’re using the economic landscape as a con‐
text for one aspect of your business.

PESTEL Is MECE

PESTEL itself is MECE—all of the six subcate‐
gories it comprises together are on the same
level of abstraction, they shouldn’t overlap as
you perform your analysis, and they represent a
complete, good enough picture of the
broader world.

Let’s look at each aspect more closely by offering some examples of
the types of questions you can ask. There’s no formal framework
within PESTEL to help you answer these questions. As an idea, it’s
really not much more than the acronym.

PESTEL | 71

Political
How will government policy change incentives for different
industries? Consider trade and taxation changes. How might
terrorism and military actions impact your contracting busi‐
ness? Regulation in China is different than in other areas, and
its firewall means you might need to create a separate copy of
software. How does that change your deployment strategy? How
would new government sanctions deprioritize or delay your
president’s interest in international expansion? If a state travel
ban on Mexico is instituted, how would that modify
your strategy?

Economic
Do consumers have the discretionary or disposable money to
buy your leisure electronics or luxury product? What is the cost
of financing to your customers who need to build an office to
create space that your software helps lease? What are foreign
exchange rates such that people might become less engaged in
international travel, stay home, and drive more? What about
unemployment levels and projections, level of GDP, and other
economic trends?

For example, your research might uncover the following data
points:

• Travel and tourism investment in 2016 was USD 806.5B, or
4.4% of total investment. It should rise by 4.1% in 2017, and
rise by 4.5% per year over the next 10 years to USD 1.3T in
2027.

• Millennials save at a higher rate than other generations:
One in six millennials has saved over $100K, and millenni‐
als save money at a rate twice that of baby boomers.

• By 2025, the eight largest cities in the world will have a total
population equivalent to what the US had in the 1960s.

These are unadorned, uninterpreted facts. Once you have those
data, you can put your thinking cap on, draw some conclusions,
and look to gain insights about them. That might look like this:

• Fluctuations in the US dollar, Euro, and other foreign cur‐
rencies can create sudden pockets of places where travel
unpredictably becomes undesirable for a period of months.

72 | Chapter 3: World Context

• Introduction of Bitcoin and other cryptocurrencies could
require additional infrastructure if it enters the mainstream
for payments.

These are insights because they’re making weak claims and pro‐
jections about possible outcomes.

Social
What are the changing attitudes of the people who constitute
your primary base of customers, vendors, partners, and
employees? Consider generational trends, family trends, and
educational trends. Do the differing tastes and habits of millen‐
nials cause your CEO to reconsider certain aspects of the busi‐
ness or create a new brand? How health-conscious are people?
What are the dietary trends? Are people more active? What are
the educational trends? If most people read on a cell phone, or
learn through watching videos, or live with their parents until
they are 30 at a far higher rate than they used to, how do you
imagine your CEO will find that relevant to the business, and
how might that in turn change your strategy?

Technological
This one may seem redundant for us, but it’s often not. We get
focused on the work at hand, and if we’re heads down in a
mobile tech project or a legacy migration, we may not be keep‐
ing up with the latest in IoT and artificial intelligence. Consider
this as if you are not a technologist, so you can more objectively
look at technology trends from a business perspective. Work to
understand how broad populations (countries, generations, cus‐
tomer segments) are using different kinds of technology and
what advances are being made in popular areas of tech. Go to
meetups and tech conferences or watch them online afterward,
read Forester or Gartner papers, and McKinsey Insights, and
check out websites such as O’Reilly, ThoughtWorks, Tech
Crunch, and others as an easy start. They publish many white‐
papers you can access even if you don’t have a membership.

Environmental
What are the ecological influences on your business? Are cli‐
mate changes affecting your industry? How likely was it that
trends toward sustainability in the consumer mindset and
efforts to produce low-emission vehicles contributed to the rise
of Tesla and its technology strategy with laptop batteries for

PESTEL | 73

electric vehicles? Are your customers or fulfillment associates
and suppliers affected by the weather in ways that your products
or logistics software can better support?

Legal
What laws are hotly debated recently that may change? Again,
try not to think from a technologist’s view, considering only
things like net neutrality (though that’s a good one to be aware
of, especially in the internet business). What recent laws have
been passed; what sanctions have been imposed on different
countries? What new laws are brewing or anticipated? GDPR
likely has an impact on your big data, analytics, and machine
learning strategy. If you’re a franchisor, the co-employment laws
would make a difference to your technology strategy, so maybe
don’t suggest writing your own franchise employee scheduling
application. Does the legalization of marijuana potentially
change your business? What about antitrust laws if you’re inter‐
ested in a merger or acquisition?

Creating the PESTEL
Making your PESTEL document is much like writing a concise,
high-level research paper at school.

First you do the research, and then you write it into a short analysis
paper. The length will depend on how broad the strategy is that
you’re doing at this moment.

Next, you put those points into slides for your Strategy Deck. The
PESTEL should go in the appendix to support the technology rec‐
ommendations and claims you make in the body of the deck. People
won’t likely want to read it up front—they’ll start skipping to the
conclusion, so you may as well anticipate this and put it in the back.

Researching for PESTEL
These areas of research may be new to us as technologists.

The kind of thing you’re looking for are broad statements, with data
and sources, about the state of the economy and political outlook.
This is how CEOs talk and will help give you the context that can
inform your decisions.

Your job here is to quickly research for key stats that serve as signals,
or indicators, that you can use in your Strategy Deck to ensure that

74 | Chapter 3: World Context

you make technology decisions properly within that context and do
not disregard it. CEOs and executives are interested in things
like this:

• Are baby boomers living longer such that more people will be in
hospitals or nursing homes for longer, and how will that change
their business?

• How are people in the millennial or digital native generation
using technology differently? How do their expectations, habits,
lifestyles, incomes, savings, gender identities, and political atti‐
tudes differ from their parents’ as they grow to become the
dominant consumer base?

• Are people moving to the cities or the suburbs? What is driving
that?

• What areas of the world are seeing organic (people being born)
and inorganic (people moving) population growth? How does
this change the languages, internationalization, and localization
that they may ask you to support in your software? If you glob‐
alize, you might need a plan to roll out one continent at a time.
Which ones, in which order?

Your PESTEL should include statistics to support a long-term out‐
look, say, two- to five-year projections. For the Political, Economic,
Environmental, and Legal parts of the analysis, there are several
sources you can use. Find sources in economic forum conferences,
or in published research papers, or in outlooks published by McKin‐
sey, Bain, and BCG on their website. Also look for those published
as “Global Economic Outlooks” by the likes of Ernst and Young,
Deloitte, Forbes, and the International Monetary Fund. For the
Social outlook, you can find good sources in the International
Labour Organization, Pew Research, Pew Social Trends, and
SIRC.org in the UK, and check out resources such as Cognizant’s
Future of Work website. Note that many of these web searches read‐
ily produce a variety of other options depending on your needs.
Because the methods and sources used vary, and because you want
to make it easy to validate and look up later, don’t forget to cite your
source.

The PESTEL probably needs to be updated only once per year, or
following some major historical or disrupting event.

PESTEL | 75

http://bit.ly/2wQmJps

Applying the PESTEL
You want to start with a PESTEL analysis early in your strategy
work. Write it out as a document, preferably in a word processor
first. I’ve found it helpful to create a scrapbook to use as a kind of
“raw material dumping ground” to generate a lot of data and mate‐
rial quickly. Then, in a second round, you can go through and refine
it, distill it down to the connected points that start to paint a picture
of the landscape for you. Eventually it will become a set of slides
after you have gathered your raw material. You will use it in a few
different ways.

First, you’ll want to have the PESTEL document yourself so you can
refer back to it later as you continue applying other patterns to cre‐
ate your strategies. Its primary purpose is as a reference and contex‐
tual guide for you in executing the next stages of your strategy
creation. Then you’ll put it into slides in your Strategy Deck appen‐
dix. It will ensure you are making choices from a business perspec‐
tive, and considering what executives are concerned with.

Next, you can use the PESTEL document as an independent, stand‐
alone analysis. Once you’ve got a draft, you can use it as a token to
gain consensus from others in the business. Share it with your non‐
technical colleagues in product, strategy, or sales, or with members
of the executive team, and ask for feedback to see if you have con‐
sidered the right things, didn’t leave out anything, and are drawing
conclusions that make sense to them. They may know more about
this area, as technology is a small part. Validating the PESTEL up
front ensures you’re building on a solid foundation.

If you’re creating a holistic, longer strategy (say, a one- to three-year
outlook), you’ll doubtless end up creating a deck to represent it. You
can include these PESTEL slides in an appendix of your Strategy
Deck for your executive audience so they can recognize the home‐
work you’ve done. It will give you and them confidence that you are
thinking from a business perspective and that your subsequent tech‐
nology recommendations are therefore the right ones for them to
pursue.

So the PESTEL work is in three parts:

1. Gathering the data through research while doing your best to
not mix your biases and assumptions with it.

2. Stating your insights.

76 | Chapter 3: World Context

3. Making local recommendations based on your insights. These
will roll up together to form your business strategy.

There is likely a business strategy already, created by your Chief
Strategy Officer. So it’s important to check in with her to make sure
that you are in alignment, see things the same way, and can cross-
validate your findings. Sure, you could just use her existing business
strategy, but it may not be written down or accessible, and this helps
you learn the language of the business and be more empathetic with
the broader concerns so that your tech strategy develops more natu‐
rally from a business-oriented view. The fresh perspective will
present a good opportunity for a rich conversation. Plus, it’s fun.

Scenario Planning
Of the many strategies in the world, the default strategy is consis‐
tently the “Do Nothing” strategy. We don’t wake up every morning
and evaluate whether or not we should still live in this house, eat
breakfast, and continue to have a dog. We think, “This is my life,”
and we continue our established routines. Maintaining the status
quo—the Do Nothing strategy—is far and away the dominant strat‐
egy of people and corporations.

There are two problems with this strategy. The first is that it creates
optimism bias. Worse, it deepens our belief in established and famil‐
iar patterns, enervating our ability to perceive change and anticipate
the unexpected. People assume the future will look like the past—
recall what happened to Russell’s turkey (“4. Probability of Each
Outcome” on page 49). Instead, can you ask “What if?”

Your technology strategy will be richer and more layered, and will
support the business in a more relevant and powerful way. You’ll
choose to spend time and resources on stuff that matters more.

Scenario Planning is an an organized way of asking the question
“What if—?”

Its history traces back to the 1950s at the RAND corporation, where
a fellow named Herman Kahn devised the tool to test a variety of
military strategies that could be employed against the Soviet Union
during the Cold War. You can read more about the history of Sce‐
nario Planning in the Harvard Business Review.

Scenario Planning | 77

http://bit.ly/2CvheSr

You may recall the movie War Games from the 1980s in which the
computer played the game “Global Thermonuclear War” against
itself (in a kind of generative adverserial neural net, I surmise) mil‐
lions of times in order to determine the winning strategy (conclu‐
sion: there isn’t one). This was a popular computer version of
military Scenario Planning in action.

This is one basic format for conducting Scenario Planning in your
organization, based on my experience several years ago with a
McKinsey engagement. It starts with the consulting group conduct‐
ing a lot of research and interviewing key members of the leadership
team. This process takes several weeks. Then the group schedules a
two- or three-day workshop for the leadership team, and gives us a
presentation for an hour or so that represents its findings and
hypotheses. This serves as a starting point and level setting for the
exercise. Then we break into small groups, generate a bunch of sce‐
narios, and work through a variety of them to imagine how they
might play out. We then reconvene to distill the ideas down to a few
that sound interesting and important. You can do this with a private
voting round. Then with the remaining few, we divide into teams to
figure out good arguments for why our scenario should be the one
to win. The leadership takes this as input and thinks about it. As a
result of this workshop, my company’s leadership at the time deci‐
ded to go into an adjacent line of business and buy a company.

That’s the basic process you can use for Scenario Planning.

Steps for Scenario Planning
Scenario Planning is not rocket science. It’s mostly about carving out
the time for the leadership team to get out of daily operations and
think about the future with a diverse crowd so they can gain addi‐
tional perspectives on how well they are positioned in the market,
what competitors or substitutes might be coming for them, and
what opportunities they have to grow the business.

To get into a bit more detail, you can create a map. Pick one of the
scenarios you’ve imagined, even if it’s a “weak signal.” You’ll need a
basic shared understanding of a barrier for plausibility. Imagine
what three possible impacts of that would be. Then do the same for
each of those impacts to create a set of second-order impacts that
result from the first. You’re projecting the weak signals out into the
future to come up eventually with a tree of how things play out in

78 | Chapter 3: World Context

the world, using your PESTEL (see “PESTEL” on page 70) as a back‐
drop. In our logical architecture of the pattern catalog, this pattern
operates in the sphere of the world, so you don’t want to confine
yourself to only your industry. You’re on the plane of global, large-
scale trends. There’s also nothing here specific to technology.

During the workshop you want to:

• Review all the trends out in the world that could affect your
company’s business. You can get this from your PESTEL. Look
at different geographies, different industries. Consider how dif‐
ferent trends might disrupt, reroute, or otherwise hurt your
business. This is an intelligence-gathering exercise. Define a
strategic problem on this basis. It should come in the form of a
sentence such as “Should we pursue an alternate growth strat‐
egy?”

• Create a list of the trends with your estimation of the impact.
• Build the scenarios together as a list. This is not something you

delegate to others. Given their daily book of work, more junior
folks may not be able to raise their visors enough to see
far. Don’t allow yourselves to succumb to group think, or to
avoid alternatives that are plausible, but less so, in favor of the
most likely or dramatic one.

• Assess the impact of each scenario. Develop alternate paths for
each as in a Logic Tree (see “Logic Tree” on page 37). Do not
give too much weight to things that seem very improbable. If
that sounds counterintuitive, it is not uncommon for teams to
get bogged down trying to suss out details or estimate probabili‐
ties for scenarios and impacts that are largely unknown. Just
give it a tag and move on. You can do this more easily by assign‐
ing different levels of uncertainty, relative to the other items
instead of something like a raw score.

If you’re not the CEO, then pulling together the top 10 or 12 leaders
in the company to run this workshop will be a challenge. Putting
three McKinsey consultants in a room for a month to do research
and dream up hypotheses will run you around $500,000. If this isn’t
in your budget, you can hold 50,000 bake sales to raise the money,
hire a cheaper firm, or just do it yourself. For our purposes, we’ll
treat it this way. But this isn’t one you do alone. Put together a half-
day workshop. Invite the clever people, making sure that it’s a

Scenario Planning | 79

diverse audience of cultural and work-role backgrounds. Then
brainstorm for a bit and follow the preceding outline.

I recommend you do a poor man’s version of the initial “imagining
the future” deck by bringing in experts from various parts of the
business and technology to create and present their own short deck
on their vision of the future. Having directors put this together is a
wonderful way to invite them into the leadership team, and give
them a place to shine. This has the added benefit of giving you a
good sense of who the go-getters on your team might be, who the
next leaders might be.

Look for the weak but plausible signals you hear from them. Then
use inductive reasoning to forecast each of the weak signal’s impacts.
You’re not picking your favorite, or one that you want to see happen.
You’re forecasting the future. If it calls for rain, you gotta say it’s
going to rain, even if you wanted to go to the beach.

If you’re in a legacy company that has a cash cow and isn’t the most
innovative, this could be the workshop that saves your company and
helps point it to the future.

The value of Scenario Planning is real, but indirect. Use the results
not so much in their own right—no one is going to look at the
poster boards afterward—but rather capture them into a set of
slides, which again you can put in your Strategy Deck appendix or
just save to refer to as you conduct your technology strategy. It’s per‐
fect homework to feed a Futures Funnel (see “Futures Funnel” on
page 80) and a Backcasting (see “Backcasting” on page 83).

That said, Scenario Planning does create value in these ways:

• It exercises your imaginative muscles.
• It helps you to perceive change and be agile in adapting to it.
• It gives your team a (fair) perception that your company is

thinking ahead and thinking objectively in order to plan prop‐
erly to take advantage of opportunities and stave off adversaries.

Futures Funnel
The Futures Funnel pattern is closely related to Scenario Planning
(see “Scenario Planning” on page 77), and is really just a visual rep‐
resentation of the final, distilled outcome of that work. It’s a fun and

80 | Chapter 3: World Context

compelling view that is useful for busy executives. You need to be
able to fit it on a single slide, as shown in Figure 3-1.

Figure 3-1. Your Futures Funnel looks just like this before you add
your descriptions

The funnel in the picture acts like a Venn diagram, of course. Think
of each of the circles at the end of the funnel as a set. Your Futures
Funnel will look just like this. Literally just plunk this down into
your deck, with the addition of only one thing: a brief description of
each of the four futures.

The widest set is all the things that could happen, the possible
futures: any future can eventuate only if it’s possible.

Within that, it gets slightly more complicated. The next smallest
subset is the plausible realm. This is the set of things that are more
reasonable to expect to happen. It’s possible that a giant lizard rises
up from the ocean and squashes Portland, but it’s not plausible. We
don’t think about the ones that aren’t plausible too much.

You’ll notice there is one key difference between this and Scenario
Planning. Here you are adding the value judgment of the preferred
future. These are the things you want to happen. This, sadly, is the
tiniest little port for us to try to land. It stretches across things that
are plausible and probable and preferred, which is great, and things
that are preferred but silly.

Next there are the probable outcomes. This is the set of things likely
to happen, some of which we want, and some of which we don’t.
Both areas are the place to focus. To help you think deeper about the
preferred and plausible outcomes, and the preferred and probable

Futures Funnel | 81

outcomes, I refer you to the Backcasting pattern (see “Backcasting”
on page 83).

Ignore any thought of what’s preferred but not plausible: this is the
realm of fantasies. I suppose you could win the lottery, which might
be preferred, but it’s not reasonable to suppose that you will, and
there’s not much to be done about it anyway, so there’s no point in
thinking about it.

But how do you come up with the material here? I suppose you
could just put your thinking cap on, sit down, and invent what all
the possible, plausible, probable, and preferred futures are going to
be. And if you’re a futurist and can do that, that’s terrific. But if that’s
not working for you, Table 3-1 shows a little framework to help you
as you consider what this set of possible futures might be.

Table 3-1. Considered futures framework

Internal Conceptual External
Financial, organizational resources Correlations Potential futures
Current and roadmap architecture Causal chains Expected customer behaviors
Current and roadmap product portfolio Expected competitor behaviors

To help you fill these out, I recommend you use some other relevant
patterns here: the SWOT analysis (see “SWOT” on page 87) and
Porter’s Five Forces pattern (see “Porter’s Five Forces” on page 89).
Those will really help jump-start your Futures Funnel.

Beyond its role as representing the outcome of a sophisticated Sce‐
nario Planning exercise, a second use of the Futures Funnel is to act
as a substitute for Scenario Planning. If you have very little time to
turn something in, or you are not working on a strategy of broad
scope at this point, just do a Futures Funnel instead. It acts as a less
rigorous (not at all rigorous, but that’s fine for many situations),
mini–Scenario Planning exercise. Used this way, instead of the
expensive multiday workshop, you implement it by just sitting alone
in a room, thinking about what might happen, what’s plausible,
what’s probable, and what’s likely. And then write it down and
ship it.

82 | Chapter 3: World Context

Backcasting
We know what forecasting is: you start in the present and try to look
into the future and imagine what it will be like. Backcasting is the
opposite: you state your desired vision of the future as if it’s already
happened, and then work backward to imagine the practices, poli‐
cies, programs, tools, training, and people who worked in concert in
a hypothetical past (which takes place in the future) to get you there.

It’s a wonderful tool.

In any forecast (or backcast), there are two kinds of variables:
dependent and independent. The values of dependent variables can
be known only on the basis of the values of the independent vari‐
ables. Dependent variables are the unknowns, the moving parts that
you want to ascribe an outcome to in order to engineer a strategy
toward making that outcome more probable. Independent variables
are controlled by the strategist, and make up the levers that you can
pull to try to change your outcome. Figure 3-2 shows the process.

Figure 3-2. The backcasting process

Necessary but Not Sufficient != Sufficient but Not
Necessary

Be careful when assigning causation, as we dis‐
cussed in Chapter 2. It seems reasonable to say
“a necessary condition of having a baby is being
pregnant.” But this is obviously false. So as
always with antecedents in backcasting, and root
cause analysis in diagnostics, beware of assump‐
tions and biases creeping in.

Backcasting | 83

Here are the steps in the backcasting process:

1. With your architecture, strategy, and product teams together,
create a simple vision of the Beautiful Future. Do not give con‐
sideration to today’s circumstances, or how achievable it might
be, just where you want to be. Don’t edit yourself. This should
be a concrete image, or a metric goal such that you can deter‐
mine very decidedly whether you have achieved it or not. For
example, it could be fairly direct, like “All our software releases
are on time,” or “No customer finds a bug before we do,” or
“Defects have been reduced to six sigma levels.” Those may not
seem like the realm of the strategist, but they are the realm of
the CTO and development executives. And often you’ll have
“get well” strategies. But these are examples. A more complex
future vision might be about a legacy system replacement with a
new, modern system. How does the team know when they’re
done? How about “when they cut the power cord on the exist‐
ing legacy system.” That’s an image, it’s concrete, and you can
quickly see how a whole lot of things would need to have hap‐
pened before that moment.

2. Hypothesize the immediately prior necessary state: those things
that have to happen before the next moment can happen are
called antecedents. They are the necessary condition for the next
state to obtain. This is shown in Figure 3-2.

3. Then, once you have hypothesized the array of antecedents to
the end state, you repeat the process to hypothesize the antece‐
dent to that antecedent and so on, until you work your way back
to the current state.
The current state is also called the status quo. It’s Latin for “the
state in which” we find ourselves today. It’s the set of present
affairs across people, process, and technology.
When you are performing this tracing back, keep in mind what
would have to change with people, processes, and technology in
each of the three steps. You cannot typically change one of those
elements without incurring at least some impact on the others.
Thinking of only one of these categories will result in myopia,
and a failed strategy.

84 | Chapter 3: World Context

4. Next, consider the consequent. A basic statement in propositio‐
nal logic has three parts: the hypothesis, the consequent, and the
logical connector between the two. It looks like this:

P ⇒ Q

and means, “If P, then Q.”
What you’re looking for here is that true premises can never
produce a false consequence, which means it’s logically valid.
But a hypothesis is a premise, not a statement of fact. So it’s easy
to get into trouble and assign as consequents things that don’t
follow.
The consequent does not necessarily mean the consequence as
it does colloquially, as in, “This directly causes that.” The conse‐
quent here should be the logical conclusion that necessarily fol‐
lows, as an implication, as in “If Mister Boy is a cat, Mister Boy
is a mammal.” As we’ve been cautioning, people in business
meetings are not typically rigorous about this sort of reasoning.
It is tempting to say, “If Mister Boy is a cat, Mister Boy is adora‐
ble,” but this is not a necessary consequent.
Worse, there are many absurd-sounding statements that are log‐
ically valid, but still nonsense, because you’re dealing with a
hypothetical proposition. For example:

If pigs can fly, then I should wash my car on Tuesday.

Once you have worked out your vision, your antecedents, and
your consequents, use your powers of analysis as described in
Chapter 2) in probability assignment to tag each antecedent
hypothesis with a probability, given the current state. If you’re
pressed for time, you can guess. But going through the exercise
and sketching it out as shown will point you to a set of conclu‐
sions about actions to take. Then you can prioritize them and
get them in a project plan.

Summary
When creating a broad, multiyear strategy, you can apply these pat‐
terns in the order they are presented, starting with analysis: first
consider MECE and create a Logic Tree (both described in Chap‐
ter 2), and create a set of hypotheses. Then, write your PESTEL anal‐

Summary | 85

ysis (see “PESTEL” on page 70) and conduct a Scenario Planning
exercise (see “Scenario Planning” on page 77). You can then create
your Futures Funnel (see “Futures Funnel” on page 80) diagram and
perform a Backcasting (see “Backcasting” on page 83). That will
then likely cause you to refine your analyses.

Of course, if you’re making a more specific, localized strategy for,
say, changing out your database vendor, you can take the PESTEL
analysis, for example, more lightly, or skip these, and move on to the
next set of patterns: those for understanding the context of your
industry.

86 | Chapter 3: World Context

CHAPTER 4

Industry Context

You can’t just ask customers what they want and then try to give that to
them. By the time you get it built, they’ll want something new.

—Steve Jobs

In this chapter, we review three patterns useful in understanding the
industry that your company operates in:

• SWOT
• Porter’s Five Forces
• Ansoff Growth Matrix

Even if you have not been explicitly asked to perform an industry
analysis and are only making a local architecture, I encourage you to
quickly consider your project through these lenses, as they will
improve your design’s extensibility and fitness to purpose.

SWOT
You may have used a SWOT analysis. Because they’re simpler and
quicker to create than other patterns in this book, they are more
popularly known. We can cover this quickly.

SWOT is an acronym for Strengths, Weaknesses, Opportunities, and
Threats. It gives you a view of these in a single slide.

87

You can conduct a SWOT analysis in three easy steps:

1. Conduct interviews with people at different levels in the organi‐
zation and in different departments and roles. Ask them what
they think your strengths are as an organization; what gives you
competitive advantage; what people, process, and technology
you have that makes a difference and helps you win in the mar‐
ket. Then ask them what your weaknesses are in people, pro‐
cess, and technology within the organization. Ask them what
they see as new, different, innovative things the organization
could be doing and where there is an underserved market, stub‐
born competitor that perhaps you could topple, or similar busi‐
ness you can serve.

2. Record their responses in a list organized into those four cate‐
gories, with tags for “internal” (forces within your organiza‐
tion), and “external” (forces outside your organization). Reduce
the list into the most important elements, removing duplicates
and overly anecdotal or biased items.

3. Transfer the lists into a slide that looks like Figure 4-1.

Figure 4-1. Strengths, Weaknesses, Opportunities, Threats

These ideas are organized through two lenses, or across two axes:
placement and potential. Placement is either inside your company
or outside it. Potential refers to whether it’s harmful or helpful.

Strengths
These are internal, helpful things.

Weaknesses
These are the internal, harmful things.

88 | Chapter 4: Industry Context

Opportunities
These are external things that can potentially help you if you
can figure out how to prioritize and take advantage of them.

Threats
These are external things that you can’t control and must survey,
understand, and determine how to shore up a defense for.

You can exercise the most control over internal things, so these are
generally good places to start. Getting your own house in order is
frequently easier and far more beneficial than always eyeing the
competition and praying it doesn’t rain.

The SWOT can become part of your overall Strategy Deck to com‐
municate with executives, and is most useful as material to focus
and provide drivers for your architecture decisions.

Recall you can apply this and many other patterns in a variety of sit‐
uations:

• As a new person in an organization, you can do a SWOT analy‐
sis less formally and for your own understanding of the busi‐
ness, and to help you know where to focus.

• When you’re creating an evolution of a legacy system, SWOT
can help you plan the architecture and the accompanying prod‐
uct.

• You can use SWOT when creating a departmental strategy.
• When planning partner business updates or key customer meet‐

ings or large customer pursuits, SWOT can help you plan sell‐
ing points, key differentiators, and responses to complaints and
concerns.

• SWOT analysis can help you create a long-term broad-based
technology strategy across your whole organization.

Porter’s Five Forces
Michael Porter attended Princeton and then Harvard, and is a pro‐
fessor in Harvard’s School of Business. He founded The Monitor
Group, which was later sold to Deloitte. He is widely considered one
of the most prominent thinkers in the theory of management. He
developed the Five Forces model in 1980 to help companies under‐

Porter’s Five Forces | 89

stand the different kinds of pressures that bear down on business so
they can create and maintain competitive advantage. The forces he
identifies are shown in Figure 4-2.

Figure 4-2. Michael Porter’s Five Forces

Let’s review each force.

Threat of New Entrants
This is the set of risks presented by new competitors entering your
market. Google entered the search market in 1998, upsetting the
then-dominant Yahoo! Amazon entered the brick-and-mortar retail
grocery market with its acquisition of Whole Foods, creating a chal‐
lenge for Sprouts and similar outlets.

The most attractive market segment is one in which entry barriers
are high and exit barriers are low. High barriers to entry also tend to
make exit more difficult. The airline industry has an incredibly high
barrier to entry, since by definition you need to buy or otherwise
have access to an airplane to fly people around in, you’ve got to get a
variety of deals to land those planes at many airports, and there are
serious regulatory hurdles to contend with.

You may have assets of your own in the form of patents and rights
that can prevent others from entering your market. But beware of
relying too heavily on this. The New York City taxi companies had a
barrier to new entrants in the form of expensive medallions issued
by the Taxi and Limousine Commissions. The gig economy upen‐
ded this.

There are several other factors to consider:

• Switching cost: how hard is it for your customers to leave your
service and use a competitor’s?

90 | Chapter 4: Industry Context

• Access to key distribution channels
• Government polices and regulations
• Capital requirements and total costs
• Economies of scale that can be realized
• Product differentiation
• Customer loyalty to established brands and brand equity
• Industry profitability

You can see how nearly all of these factors work against the airline
industry, as an example. If an industry has high margins, such as the
software industry, it becomes attractive to startups.

Ease of Substitution
A substitute product uses a different technology to try to solve the
same economic need. Examples include meat, poultry, fish, and tofu,
which can substitute for one another. Many landlines have been sub‐
stituted with cell phones. This one is interesting because it seems
like they’re both phones. But the threat came from outside the tradi‐
tional phone industry—Apple wasn’t in the landline business and
made a better landline that people switched to. So ask yourself how
easy it is and what the main candidates would be for someone to
stop using your product because of a substitution.

Factors to consider include:

• Perceived level of product differentiation.
• Number of substitute products available in the market.
• Availability of close substitute. The Netflix engineering teams

foregrounded the creation of APIs, as did Amazon, to make
their products more ubiquitous and easy to access, and to miti‐
gate against new devices or channels that could give audiences
different content.

• The general propensity to substitute. If you sell enterprise
accounting or resource planning software systems, the propen‐
sity of middle-aged executives to change their multimillion-
dollar operational software is typically low. Teenagers, on the
other hand, eagerly search out substitutes for any current fash‐
ion or means of social connection.

Porter’s Five Forces | 91

• Relative price of the substitute (consider the Canon and Xerox
example in Chapter 1).

• Switching costs buyers will incur.

Far fewer people buy desktop computers than did 10 and 20 years
ago due to the advent of the powerful laptop, the smartphone, and a
variety of internet-connected devices.

Bargaining Power of Customers
How much power do your customers have in the relationship? What
is the degree to which they can influence or dramatically change
your business? Factors include:

• Degree of dependency upon existing distribution channels, and
number of available alternative channels

• How differentiated the products in the space are
• Bargaining leverage, particularly in industries with high fixed

costs
• Buyer switching costs
• Buyer information availability and customer education on the

products
• Availability of existing substitute products
• Buyer price sensitivity

Bargaining Power of Suppliers
Suppliers are the organizations that provide your company with the
raw materials, components, labor, and services so that you can create
your product. Suppliers can wield considerable power, depending
on the dynamics of the industry, particularly where there are few
substitutes, and the resources or talents are unique.

In the software business, there are really two primary suppliers. You
need storage and compute (some kind of data center) and you need
software developers. Your “supply” in this case is people. You can
hire them, grow them as interns, get a bunch at once through an
acquisition, outsource, hire agencies, and use consultants. Currently,
much AI work requires PhDs in math or computer science, and the
supply falls far short of the demand across not only the software

92 | Chapter 4: Industry Context

industry, but all industries as they seek further automation and com‐
petitive advantage. As a result, they command incredibly high salar‐
ies, and can pick from an array of potential employers. As suppliers,
these developers wield considerable power.

Factors to consider include:

• Employee solidarity and labor unions
• Level of differentiation between alternate sources
• Impact of inputs on cost and differentiation
• Potential substitutes
• Strength of distribution channel
• Ratio of supplier concentration to firm concentration
• Supplier options to serve other companies

The software industry doesn’t really have labor unions. But in Cali‐
fornia, anyone with the job title of “engineer” is required to make a
state-governed minimum salary. Of course, many firms pay higher
than this, but it is a form of supplier power.

Related to differentiation levels across sources is the idea of the “10X
programmer”—the special talent so skilled and knowledgeable that
they can do the work of 10 regular programmers. Whether such a
unicorn really exists at such a level is perhaps debatable, but it is
crystal clear that not all programmers are created equally, any more
than all basketball players are created equally. The more your tech‐
nology stack is a commodity, the less differentiation there will be.

Consider the following talent life cycle.

In an emerging technology, where there are innovations springing
up and relatively few pioneers on the planet who have even done
this cutting-edge thing, and others in the same industry have yet to
even hear of it, there is incredible talent differentiation.

Eventually word gets out, people get excited, and the clever people
start learning this new technology and how to apply it. There is still
considerable differentiation, but mostly because while the supplier
pool has grown, there is a wide gap between “I’ve done it before”
and “I just heard of it.” There are still precious few experienced prac‐
titioners, there is fierce competition to attract them, they do their
own startups, and they command high salaries.

Porter’s Five Forces | 93

If there’s enough application and profit in it, eventually many tech‐
nologists arrive on the scene, companies arise to teach it, and inno‐
vators profit by making it accessible to less schooled and less
experienced practitioners. The sillier startups start failing, the hype
cycle settles, and people see the tech’s true utility and where to apply
it.

Eventually, however, when the tech becomes very widespread, it
becomes like a commodity relative to its use value, where there is
precious little differentiation. The price for this talent goes way
down, and it becomes rather easy for employers to substitute one
developer for another. This is where, say, Java is today: high
demand, but everyone’s sort of just expected to know it and there’s
little wringing of hands in executive suites about whether they’ll be
able to find Java talent.

Then the tech becomes all but entirely automated away. People used
to have whole jobs where they only had to type HTML because the
web seemed like magic. Now only robots make HTML; it’s not a job
for people anymore.

Industry Rivalry
Industry rivalry is about how the public perceives a product and dis‐
tinguishes it from that of the competitors. A business must be aware
of its competitors’ marketing strategy and pricing and also be reac‐
tive to any changes made. Considerations here include:

• Sustainable competitive advantage through innovation
• Powerful competitive strategy
• Competition between online and offline companies
• Level of advertising expense
• Firm concentration ratio
• Degree of transparency

Applying the Five Forces
Using the Five Forces is about thinking of your company in a holis‐
tic way and doing the research—getting the data—to create insights
about what’s happening to your company.

94 | Chapter 4: Industry Context

This is a very powerful tool for the technologist. That’s because
while every businessperson knows about Porter’s Five Forces, their
familiarity with it may mean that it isn’t written down in a formal
way. If it is, and you can access it, fantastic. But what I’ve mostly
seen is that this is the very job of the business folks—to know these
things, keep them in their heads, and make decisions accordingly.
So, in addition to helping you learn about your business, ask smart
questions, and instigate interesting conversations among your peers,
you’ve got another reason to use the Five Forces. The business folks
who have to do this kind of analysis quickly and in their heads, and
just maintain the knowledge and make slight adjustments to their
outlooks as they read headlines, have likely not seen the business
from your perspective, through the lens of technology. Prepare your
thoughts with this framework specifically in terms of how it applies
to your technology, your software product portfolio, and your orga‐
nization.

Here are four easy steps for putting the Five Forces to work:

1. In your scrapbook deck, or your burgeoning Ghost Deck (see
“Ghost Deck” on page 253), for your strategy work, make a slide
for each force, and list how, in your view, the company is posi‐
tioned within it.

2. Make your claim regarding how an aspect of your proposed
technology solution or direction supports or defends against
each force. How do these circumstances change what you had
previously thought your technology strategy should be? How do
they expand it?

3. Tag each threat with a traffic light: state in red, yellow, and green
if the threat seems high, medium, or low.

4. In a conclusion slide, make succinct recommendations regard‐
ing how you as a technologist think you can best position
against each force.

Ansoff Growth Matrix
The Ansoff Growth Matrix (AGM) was first published in the Har‐
vard Business Review in 1957 by H. Igor Ansoff. In his article
“Strategies for Diversification,” Ansoff illuminated the need for
product managers, marketers, and executives to think about the

Ansoff Growth Matrix | 95

potential avenues and risks of growth, and gave us a rule-of-thumb
type of guide for so doing.

The Ansoff Growth Matrix looks like Figure 4-3.

Figure 4-3. The Ansoff Growth Matrix

It’s about four different ways you can grow the business. Here’s how
to read it:

Market penetration strategy
In the bottom left is the set of products that you have currently
and the current markets in which they’re selling. With these
products, you’re trying as a product manager to figure out how
to gain market share. This is the easiest avenue, since you have
confidence in your existing products and can build on word of
mouth to get more customers like the kind. Can you acquire a
competing company in the same field to gain more customers
like the kind you already have? Can you introduce a loyalty
scheme or otherwise create some stickiness? How do you ramp
up your sales force?

Market development strategy
Moving up, develop new markets to sell your existing products
in. This means that you don’t necessarily have to change the
products but instead sell them to a different kind of customer as
a substitute for existing products in those markets, or begin sell‐
ing in new countries, which may mean you have to adapt them.
This is what Canon did when it figured out how to make cop‐
iers priced low enough that the company could sell to individu‐
als and small businesses, who were previously neglected. The
menu items and labels and even the names of products some‐

96 | Chapter 4: Industry Context

times need to change. You may have to consider what additional
special features to offer to cater to the new market.

Product development strategy
Create new products in current markets. Can you create addi‐
tions to your technology, building a platform or ecosystem?
Amazon Web Services, for example, frequently adds new capa‐
bilities to extend the product set it offers to the same set of cus‐
tomers.

Diversification strategy
Develop new products in new markets. This is quite risky and
expensive. The benefit to considering diversification, just as in
your personal financial portfolio, is that you minimize any neg‐
ative impacts in changing tides.

The AGM will likely be one of the more distant models for you as a
technology strategist, so I won’t belabor it further, but it’s good to
realize that your product counterparts and marketers may be think‐
ing this way, and you can understand your portfolio better through
such a lens.

As with many of the models in this pattern catalog, you can extend
the AGM to consider not only your business and technology strate‐
gies, but your personal career strategy for growth and development
as well.

Summary
This chapter introduced a few patterns to help you analyze your par‐
ticular industry so that your tech strategy can take it into account.
These included the SWOT pattern (see “SWOT” on page 87), Por‐
ter’s Five Forces (see “Porter’s Five Forces” on page 89), and the Ans‐
off Growth Matrix (see “Ansoff Growth Matrix” on page 95).

In the next chapter, we will drill down to the corporate level. The
patterns there will help you understand how to create a strategy
informed by your corporate position.

Summary | 97

CHAPTER 5

Corporate Context

In this chapter, we look at the patterns that operate internally within
the sphere of your own company. There are more patterns in the
corporate sphere than in the others, as the work of your technology
strategy is primarily centered on how to position your company for
competitive advantage. They are:

• Stakeholder Alignment
• RACI
• Life-Cycle Stage
• Value Chain
• Growth-Share Matrix
• Core/Innovation Wave
• Investment Map

Stakeholder Alignment
Strategy without tactics is the longest route to victory. Tactics without
strategy is the noise before defeat.

—Sun Tzu

The way to be successful in a company is to do something that mat‐
ters to someone who matters. To test the validity of this assertion,
consider the alternatives.

99

1 This phrase is from “Something Identifies You” by Peruvian poet César Vallejo: “Some‐
thing separates you from the one who remains with you, and it is your common slavery
to depart: thus, your meagerest rejoicing.”

The first is for you to spend time doing stuff that doesn’t matter to
the people who matter. If the work you’re doing does not matter to
the executive leadership in your company, you face a choice. On one
hand, you can get on board with something that does matter to
them. Drop what you’re doing and find a different team, a different
role, or a different project that does matter to them; or redefine what
you’re doing so that it fits better with the stated direction and values.
On the other hand, some soul searching may reveal that your pas‐
sion for that misaligned project or process is so consuming, persis‐
tent, and fierce that you simply do not want to give it up. In that
case, you must convince the executive leadership that it must
change, or you can leave the company for one that shares your pas‐
sion or start your own.

Projects that don’t matter to the people who matter are misaligned.
These projects will keep you employed for a short time perhaps, but
they are not likely to complete, and will not advance your organiza‐
tion or your career. Eventually, someone will ask about that little
project line item on a budget spreadsheet. If no one in the confer‐
ence room knows what it is or why we’re doing it or who the cus‐
tomer is, it will be sidelined and cancelled. Being on the team of
misaligned projects wastes the time and resources of both you and
the organization.

The second alternative is to do stuff that does matter, but only to
people who are not the leaders. The leaders set the strategy—the
technical and business direction—and expect it to be executed.

In both of these scenarios—even if your personal contribution is
strong, and you show up every day with conviction and do your best
—if your project is misaligned, it will be cancelled. If somehow you
and your team do cross the finish line with a misaligned project,
that day will see your meagerest rejoicing,1 as it will highlight some‐
thing that was previously thriving only because it was under the
radar. If you are associated with projects that don’t matter to people
who matter, it dramatically lessens your own chances of being
viewed as a strategic, go-getting up-and-comer in the organization.

100 | Chapter 5: Corporate Context

http://bit.ly/2QaA18p

The impact to the company is that resources are hidden or misspent,
delaying the chance to complete the strategic projects.

If your organization has a proliferation of projects that don’t matter
to the people who matter, it must gain alignment so can spend its
resources working on stuff that does matter. Organizations that can‐
not do this fail.

Therefore, you must be sure that you have the support of the most
powerful leader you can. The most technical or highest-ranking
leader in your organization will likely be the CTO or CIO, or in
smaller organizations, the VP of IT. It goes without saying that there
is no meaningful technology strategy without their support. How‐
ever, their support alone is not enough. You must also have the
highest-level executive’s support, or the probability is high that your
strategy will stagnate and suffer. It is the noise before defeat.

In my view, the best leaders and the best-led organizations are
sharply focused on strategy, and the projects they fund and the cus‐
tomers and partnerships they pursue all logically follow as conse‐
quents from this strategy.

Yet not every leader recognizes the centrality of strategy. Your presi‐
dent or EVP or SVP may change direction quickly, without notice,
chasing any dollar waved in front of him for any customer or attrac‐
tive project that comes along. He may have an unhealthy relation‐
ship with partners, vendors, or customers, resulting in an inability
to see himself as master of his own fate. He may simply lack the
focus and tenacity to stick to a plan that spans longer than a quarter.
These are very difficult working conditions for the strategically
minded architect.

Executives in some organizations may ignore or even show outright
contempt for strategy. They proudly act on instinct and inspiration,
and consider any strategy as the work of bureaucrats or dreamers
disconnected from the real world, or as something quaint and cute
that best belongs on the shelf to collect dust with the rest of the stuf‐
fed animals. People can enjoy the freewheeling lifestyle and moder‐
ate success that sometimes accompany this mode, but this is not
how market leaders are typically made.

Alternatively, your executive leaders may not have quite such an
adversarial view, but still may not understand the importance of
your technology strategy. But regardless of what it is, you must

Stakeholder Alignment | 101

understand your highest leader’s view on strategy. This is the only
way to know where you’re starting from. Typically, leaders will read‐
ily sort themselves into strategic, or something else. That “some‐
thing else” will lurk in the guise of “intuitive” or “deal-driven” or
“operational” or too busy to think about the future. If your CEO or
business unit president or Chief Whatever Officer is not interested
or well versed in strategy, you can still be successful, but will have a
longer, harder road ahead of you. If this person shows outright con‐
tempt for strategy, my estimation of the probability of your success
is low. In that case, my recommendation is that you put down this
book, stop caring about strategy, and ride the roller coaster until it
goes off the rails, or, if you find yourself now inspired and steadfast
in the joys and fruits of strategy, find a more clueful organization to
work for.

It may also be the case that your leadership understands well enough
that it must have a strategy, and you have simply been tasked with
creating or contributing to your organization’s technology strategy.
That’s a fortuitous first step, and saves you the work of convincing
them that strategy matters. That’s a hard row to hoe.

Determining Stakeholders
If you want to get something meaningful done, you must first
understand the organization chart. To do so, start at the top. Find
out who is the CEO, and your business unit president. Ultimately,
your strategy must matter to these people, or it will fail.

Stakeholders in What?

All this stakeholder business is more about who
has an interest in the project that will result
from your strategy. It’s not about the stakehold‐
ers in the process of creating the strategy docu‐
ments. But use it as applicable.

You must know who reports to whom so you can make smart deci‐
sions about who to communicate with and include in your strategy
creation project. To gain support for your strategy, you must have
alignment from only three groups of people:

• The people who will pay for it and stand on a stage and tell oth‐
ers that it’s important (your leaders, the executive team).

102 | Chapter 5: Corporate Context

• The people who will execute it, and need to understand it well
enough to care about it and execute it properly (your teams, the
individual contributors doing the work).

• The people who will ignore or undermine it if their views, aspi‐
rations, and concerns aren’t represented (your peers).

Therefore, you must have a 360-degree view of the organization.
This will help you understand how your organization works, aspects
of the process of getting things on the Roadmap and funded, where
bottlenecks might be, and more.

Determining Drivers
Once you have examined the org chart, determine what leaders at
the VP, Senior Director, and/or Director level matter in terms of
your strategy.

These people will be inside your technology organization, but you
must also take into account those in other organizations within your
company. If the operations or “run” team is under a different leader,
identify key leaders here. You must consider product management,
sales and account management, the legal team, project management,
and the HR team. Your strategy will not be the right strategy, and
will not be supported or effective, if you do not consult key leaders
in these organizations.

Similarly, you should expand the circle and consider those outside
your company entirely. Depending on your business, it is likely a
good idea to consult with key customers and important franchisees,
and gain an understanding of what plans and views your vendors
and suppliers have.

While you must understand these fundamentals, it is not necessary
or practical to consult everyone. Don’t do this. It will take inordinate
time, and likely result in something that looks like it was designed
by a committee, whereby everything is watered-down and compro‐
mised to such an extent that it is drained of all meaning. If you find
that your strategy contains any platitudes that might make good
candidates to be printed on a T-shirt or chiseled in the lobby’s mar‐
ble floor, this is a sign that you have gone too far. If you are not mak‐
ing statements that someone could reasonably argue with, you are
not making a meaningful or impactful statement—you’re not mak‐
ing a choice and putting a stake in the ground to forge a new future.

Stakeholder Alignment | 103

Who stands out as powerful on this team? While most leaders will at
least try to make it appear that they love all their children equally, in
reality they do not. Based on their background and proclivities,
where they are trying to take the company, the problems and oppor‐
tunities they face, or the tenure of the members of their executive
team, the CFO may exercise far more power than the head of sales,
or vice versa. The mergers and acquisition (M&A) team may be two
people languishing with no funding to buy anything and therefore
little of consequence to do. If the prevailing view is that it is too
risky, error-prone, and lengthy to build many things from the
ground up, and the strategy is to acquire the best and integrate
them, then the M&A team at a conglomerate might be very large
and well funded (read: powerful) and busy buying another company
every week. In such a case, it is important to consult this team, as
their input matters more, and your strategy should reflect that.

If your business unit president cares about the sales team more than
anything else, you must include relevant messages for your sales
team, and give them a script to talk to customers with. If your CEO
seems to listen most closely to her CMO, and you frequently see
them on stage together, it would be wise to consult them both and
see what materials they have that you can start with.

Reaching out to these extended members of the leadership team for
their input has the additional benefit of making them aware of your
strategy.

Stakeholder List
Once you have considered all the different teams and leaders just
discussed, you might find your list is surprisingly long. You will not
be able to keep it in your head.

Therefore, keep your list of the key stakeholders in a list. Make a
simple spreadsheet with columns for:

• Name
• Title
• Organization
• Contact information

If it seems that the stakeholders are too obvious, or that there are too
few to bother making such a list, you have not dug deep enough.

104 | Chapter 5: Corporate Context

Expect that the list will contain 10–30 names, depending of course
on the size and nature of your organization.

Creating the list is simple. It will serve as a building block for other
useful documents, such as the Stakeholder Matrix (see “Stakeholder
Matrix” on page 105) and the RACI chart (see “RACI” on page 108).

You will also need it for later, in architecture documents, town hall
invite lists, invite lists for steering committees, and more.

Stakeholder Matrix
Different stakeholders have different roles within your strategy
project. The frequency and type of interaction you have with each of
them depends on the nature and focus of your strategy. Consider
your work from their point of view. Is their support important to its
success? Do they have knowledge or expertise that could improve,
refine, and strengthen your strategy? How much will your strategy
change their processes or daily work once implemented?

Once you have your stakeholder list, add two columns to it:

• Influence
• Impact

Influence refers to how important this person’s support is. What is
her ability to change your direction, impose new priorities, dictate
critical aspects, ensure your funding, or otherwise determine con‐
straints for your technology strategy? It’s the degree to which she
can impact your strategy.

Impact, on the other hand, refers to the degree to which your strat‐
egy, as it becomes realized, will impact her. For example, your strat‐
egy will have a high impact on the developers now using an aging
technology stack if you’re proposing to consolidate on a single
modern toolset. If you are introducing a services strategy, you must
be closely engaged with the product management team. If your
strategy involves outsourcing nondifferentiating systems to vendors,
this may impact sales and HR. Of course, these are simply examples
and depend on what your company does.

Now that you have these two additional columns, use them to score
each stakeholder on a scale of 1 to 5 for his or her influence and
impact.

Stakeholder Alignment | 105

Generating 2×2 Matrices

We’ll do a lot of generating 2×2 matrices, the
four-quadrant charts that plot values to help
drive decision making. The basic process is that
you enter the values in Excel, create a bubble
chart, and then color the backgrounds to create
the quadrants.
See http://bit.ly/2MlCIpr for a tutorial or down‐
load my template from http://www.aletheastu‐
dio.com.

You can now use the scores to plot your stakeholders on a 2×2 chart
with influence on the y-axis and impact on the x-axis. It contains
four quadrants, as shown in Figure 5-1:

Monitor
Those who are relevant enough to make the list, but have com‐
paratively low scores for both influence and impact.

Maintain confidence
Those who have high scores for influence but low scores for
impact.

Keep informed
Those who have low scores for influence but high scores for
impact.

Collaborate
Those who have high scores in both influence and impact.

Figure 5-1. Once your matrix is complete, the names will appear in the
quadrants

106 | Chapter 5: Corporate Context

http://bit.ly/2MlCIpr
http://www.aletheastudio.com
http://www.aletheastudio.com

Here is how you work with the stakeholders represented in each
quadrant:

Monitor
Ask them on a regular basis about changes in their worlds and
what they see coming, and note what might inform your work.
Check in with them occasionally and informally regarding your
progress. Broader understanding of what you are doing and
why will create additional groundswells of support that may be
handy later.

Maintain confidence
Invite them to executive steering committees for your technol‐
ogy strategy. Send them reports on your activities. Be sure they
understand your milestones and know how you are doing with
respect to achieving those. Ensure they understand and approve
your metrics for success. Ask about trends or insights they have
that might modify your strategy. Follow up on their continued
buy-in on the Roadmap. Discuss your progress and funding
regularly in some detail in one-on-one meetings.

Keep informed
Include them in an email distribution offering occasional
updates on the strategy. Invite them to broad forums such as a
town hall where you are presenting an update. Talk with them
about work they might have to prepare, such as communica‐
tions, trainings, deck updates in their departments, or other
materials they might have to create as your strategy progresses.
Go to their department meetings to present specifically to their
team. Discuss the strategy and progress with them at cocktail
parties.

Collaborate
Actively work with these people on a regular basis in full part‐
nership to co-create the ideas and execution plans within your
strategy.

Now you’ve got a strong understanding and representation of the
organization. You may need to update this from time to time as peo‐
ple come and go, get promoted, and change positions, depending on
the length of your project. But now you are well prepared to quickly
get things done in parallel threads.

Stakeholder Alignment | 107

RACI
Now that you have created your Stakeholder List (see “Stakeholder
List” on page 104) and Stakeholder Matrix (see “Stakeholder Matrix”
on page 105), you have the raw material for helping you collaborate
and communicate about your technology strategy project.

RACI is an acronym originating at the Project Management Insti‐
tute (PMI). It stands for Responsible, Accountable, Consulted,
Informed. These are classifications for the participants in your
project.

We make a separate document for the RACI instead of just adding
to the Stakeholder Matrix. That’s because though there will be some
overlap, these lists tend to have different people on them.

List broad categories of work down the lefthand side:

Responsible
These people do the hands-on work to complete this task.
Depending on the nature of the items in your work list, this can
be any level of title.

Accountable
These people are answerable to executives for this item being
delivered on time with appropriate fitness and quality. May be a
VP or director.

Consulted
These are subject matter experts on some aspect of the system.
They are not directly on the hook for doing the work. They may
make local decisions or certain aspects that you seek them out
for. They’ll give advice such that their ideas will change your
work, the design, or otherwise modify your strategy. Identifying
the right Cs on a project is the difference between a lot of buy-in
and a robust product, and something more tepid. If you’re mak‐
ing new software, you should likely consult the CISO’s office.

Informed
This is a one-way street. You update these people on project sta‐
tus, and they don’t have a say or a recommendation about the
work you’re doing and can’t change it. This category might
include the VP of tax so that he’s aware of your project and can
look you up when it’s time to determine if he can apply for an
R&D tax credit.

108 | Chapter 5: Corporate Context

In the column headers across the top of the RACI spreadsheet, list
who is involved in the project in each of these four ways. To com‐
plete the spreadsheet, enter an R, A, C, or I at the cell intersecting
which person is assigned that role for that item. Not all of the cells
will be filled in. For each work item, you must have exactly one per‐
son assigned as accountable for each item. For the other items, at
least one person must be assigned to each of the four roles. Typi‐
cally, there are one or more responsible people, several consulted,
and several informed. The completed RACI document looks like
Figure 5-2.

Figure 5-2. A typical RACI spreadsheet (source: Wikipedia)

The primary mistake I see people make in RACIs is the temptation
to assign multiple people as accountable for a given item. Because
the accountable person is typically a VP, or someone with the power
to stop or change the definition of that item, or to build the team
involved, she must have decision-making authority, and her boss
must have the convenience of going to one leader capable of creating
the outcome and reporting on progress. Yet assigning multiple
accounting parties seems to happen every time people start to make
a RACI. Still, you must force yourself and the team to pick only one
accountable person for each item. It is tempting to do otherwise
because it seems democratic, and multiple stakeholders may have a
vested interest in the outcome, or a team may be shared. But it’s
likely a sign that you have not defined the task properly. Inspect the
task with the team to see if it needs to be recast or split. If upon
inspection it truly is the proper definition and level of granularity,
and two leaders still seem right, pick the one who has the most con‐
trol or vested interest in the outcome of that item.

RACI | 109

Horizontal Headers

Excel has a feature that every project manager
knows, but technologists might not: you can
turn your header text horizontal to save space.
This little trick compacts your RACI and makes
it more readable.

RACIs are very valuable and often underused. On the surface, tech‐
nologists might view them as too obvious or superfluous to bother
creating. They might dismiss the RACI as busy work that doesn’t
matter. If you find yourself tempted to do so, I urge you to recon‐
sider and to take the time to create the RACI. You can often get it
done in a short time, and you will refer to and refine it throughout
your project as things become clearer.

The RACI clarifies the first two of the following key aspects of any
project (the last two are represented in the vision and the project
plan):

• What are we doing?
• Who is doing it?
• When must we do it?
• Why are we doing it?

That’s going a long way for very little investment.

Alignment Meetings
You can use the RACI and the Stakeholder Matrix in a variety of
ways. You’ll be surprised how often you return to them and refine
them as your project progresses. Their uses include:

• Performing work streams or creating work breakdown struc‐
tures

• Creating the project plan, Roadmap, and backlog
• Structuring town halls in which you announce the strategy and

provide periodic updates
• Populating invite lists to executive steering committee meetings
• Informing working group meetings for a specific subset of your

project

110 | Chapter 5: Corporate Context

• Providing customer forum updates
• Delivering business updates with vendors and partners
• Conducting one-on-one meetings with stakeholders

There are numerous variations on RACI, including one from Bain
called RAPID. If you feel something’s missing, or are fascinated by
the subject, you can read more about it on wikipedia.

Life Cycle Stage
Companies, like living creatures, have a life cycle. They’re created,
they grow, they enter maturity, they decline, and eventually they
reach the end of life. Every company that exists is at some point
within this life cycle.

Companies, like people, stay in these different stages for different
periods of time. It’s important for you to know at what stage your
company currently is, how long it has been there, and how long you
estimate it’s likely to stay there before moving to the next.

The reason this matters is that there are typically different levels of
value associated with companies at different points in their life cycle.
That sense of value creates a level of willingness to pursue innova‐
tion. This is typically very high in the beginning of a company’s life,
when it’s trying to create a new product and gain market share or
create a market. It’s usually more cautioned and considered in
mature companies, and all but absent in companies in decline.
Knowing the stage you’re in gives you a sense of how much work
you’ll have to do to get something done. It also gives you some guid‐
ance on what your tech strategy should be about.

Determining your company’s current stage is easy. If you’re in a pub‐
lic company, you can read the 10-K report. This report is required
by the Securities and Exchange Commission and details the finan‐
cial performance and the outlook for future earning prospects.
There are quarterly earnings statements posted, and quarterly earn‐
ings calls that anyone can listen to or read transcripts of. This gives
you a good idea of where your company might be. What you’re
looking for are specific revenue numbers. Figure 5-3 illustrates the
basic flow of each stage, but it’s just for rough guidance.

Life Cycle Stage | 111

http://bit.ly/2MEluTq

Figure 5-3. Life cycle value stages

The following are some basic guidelines; these are in no way hard-
and-fast rules. Companies have hiccups and turnaround efforts,
change how they report revenue, and so forth. So you can’t just read
one number and know the answer. Longstanding companies can
enter dark periods and then get a leader with a different vision and
create renewed energy, introduce a great new product, and emerge
successfully. So anything goes, but let’s look at some broad categories
as a guide:

• If your company made 5–8% more revenue than it did last year,
you may be in a mature company. These companies tend to be
well established. They may have long-term customer contracts.
They may have saturated market, having sold their flagship
product so well that now there’s no one left to sell it to. That
means the business will be looking for alternate growth strate‐
gies. Its sales pipeline may be dry, and so it may be looking for
greater share of wallet—the business term for how much money
you’re getting from a customer versus your competitors or other
vendors. The company may be looking for ways to cross-sell. In
that case, a tech strategy that foregrounds platforms or focuses
on stickiness, or quick-win add-ons to the existing product,
could be relevant and lucrative.

• If your company made 8–15%, look at its revenues from the
previous years. This could be strong growth, or a sign of slow‐
ing down, depending on the charts. This will likely be a soul-
searching strategy season for your company in which it must
figure out carefully how to position itself for sustained growth.
Expect a pivot of some kind, and be sure to stay close to your
executives to know how this should inform your technology

112 | Chapter 5: Corporate Context

plans. Expect fluidity and volatility, and ensure your tech strat‐
egy aligns with this pivot by focusing on agility in the system,
such as microservices or improved Agile development methods.

• If the company made 20% or more, it’s likely in growth mode.
Your strategy might focus on getting to market quickly and
strengthening your core. If you have deadbeat products that
aren’t performing, do you resurrect them or kill them off?
Explore this further in the Core/Innovation Wave pattern (see
“Core/Innovation Wave” on page 126).

• A company whose revenues are on a continuous downward
trend, or which is growing at 0–5%, is likely in the declining
side of maturity. Employees tend to expect a 3% raise every year
just for showing up. If your company is growing at 3%, and a
primary cost driver is labor, it’s not growing at all. Ask why this
is happening. Look at what in your tech product portfolio you
can repurpose quickly. To know how to focus your strategy in
this case really requires careful planning, and using more of the
patterns here to create a more holistic strategy will be impor‐
tant. It will also be important to focus your strategy on cutting
costs. However, you must consider how your strategy will posi‐
tively impact both top-line revenue and bottom-line costs.

Companies with negative revenue growth tend to go into a spiral:
they have to cut costs to make up for missing revenue, which leaves
no money to innovate, which makes them lose more customers and
more revenue. This is a tough one.

If you’re in a private company, leaders tend to be tight-lipped about
the financial performance of the company, and it can be difficult to
determine what stage you’re in. Consider how long you’ve been in
business, ask some executives if they’ll divulge the revenue numbers,
especially in comparison with recent years, and have them charac‐
terize it.

This is a simple pattern: you determine the life cycle stage your
company’s in, and then use the preceding guide to informally con‐
sider how should shape your insights and hypotheses. These are
some relevant questions you could consider at different stages of the
life cycle:

Life Cycle Stage | 113

Introduction
Can you expand from one key customer to other customers in
the same market? How can you properly time your investments
in help so you can grow rapidly without overinvesting? How
can you get your name out there and acquire more customers?
This is survival mode, and you are all about revenue.

Growth
Here the concerns shift a bit. To grow substantially, you’ll be
considering expansions. New market, new products, new cus‐
tomers. This means you’ll need to consider automation strate‐
gies, but balance that investment as more opportunities and
customer feedback change your product. Do you need to update
your product to include more internationalization or localiza‐
tion features? How are you examining your processes for effi‐
ciency? How do decisions get made now? Is the culture getting
away from you? How can you deal with the fact that “what got
you here won’t necessarily get you there”? How can you reuse
certain aspects of the business? Have you mastered your prod‐
uct quality? It’s not only about revenue now, but about cost
management as well.

Maturity
At this point, a company has significant market share, is a
known leader in some area, enjoys recurring revenues from its
scaled business model, and can reasonably manage costs. That
means it has a target on its back, and a set of existential ques‐
tions before it: How can it expand into other markets in order
to diversify its kingdom? It will have taken some time to reach
this stage, and the world has been changing. What are the envi‐
ronmental threats as suggested by a PESTEL (see “PESTEL” on
page 70)? What substitutes might be introduced, even by a com‐
pany with no direct aim of toppling you? What competitors are
squarely aiming for you and your customers, and what are their
methods, and what threats do they present as suggested by the
Five Forces (as described in “Porter’s Five Forces” on page 89)?
How do you stay relevant? Your processes are all in place; your
employees, suppliers, and customers have all come to expect
certain things; and yet you must in a sense reinvent yourself
without losing your ground, to prepare for continued growth
and defend against the threats.

114 | Chapter 5: Corporate Context

Mature Tech Companies
We have seen IBM and Microsoft go through the maturity
stage and wrestle with these existential questions. They tend to
challenge prior assumptions and find a way to incorporate, or
sublate, two seemingly opposing terms. IBM’s stronghold in
the mainframe market started to loosen when the availability
of cheap, commodity servers and the attendant possibilities for
automation meant that software designers could rethink terms
like resilience and distributed systems. IBM had to reinvent
itself as a services company. Microsoft in recent years has come
to offer Linux products—something absolutely unthinkable in
the early part of this century.

Companies can potentially stay at this stage indefinitely, as long
as they are sharply focused on operational management. But
they won’t grow without doing something different.

Decline
Companies do not have to decline, though of course most do
eventually. The companies that cannot find a successful answer
to these existential questions of reinvention will enter a death
spiral of cost management, which prevents research and devel‐
opment and innovation, which precipitates stagnation and
irrelevance, which continues the vicious cycle.

Growth for Growth’s Sake
For what it’s worth, since we’re trying to be rigorous about challeng‐
ing our assumptions, companies are not required to grow beyond a
self-sustaining size. There is no law to that effect. Of course, such a
statement is anathema, if not downright blasphemy, to typical cor‐
porate dicta in the US, whereby growth for growth’s sake is a wholly
unchallenged assumption. This is typically because outside invest‐
ors want to see a better return for their money and create this pres‐
sure. But consider for a moment the oldest companies in the world
that still are in business today. Many of them were started 1,000
years ago, with the oldest continuously operating business having
started in Japan in the year 587: nearly 1,500 years ago. There are
nearly 5,600 companies in the world older than 200 years. Of those,
fully 60% are Japanese—four times as much as the second-place

Life Cycle Stage | 115

country, Germany. And Japan is home to more than 21,000 compa‐
nies older than 100 years—more than any other country. Of course,
most of these oldest companies are in industries that have continu‐
ously served humanity’s unalienable needs, making some form of
food, drink, or hotel accommodations. But it’s also interesting to
note that 90% of the companies on the list have fewer than 300
employees.

When companies try to grow at all costs, they can enter into mar‐
kets whose forces they don’t understand, try to appeal to customers
they don’t understand, and start doing things they aren’t good at.
Growth is obviously important to investors. I hope they’ll let you
pursue it in a sustainable fashion.

This analysis is but one input of many we’re discussing to help direct
how your strategy should be focused, or at least what it should take
into account; that’s all.

Value Chain
Competitive advantage cannot be understood by looking at a firm as a
whole. It stems from the many discrete activities a firm performs in
designing, producing, marketing, delivering, and supporting its product.
Each of these activities can contribute to a firm’s relative cost position
and create a basis for differentiation.

—Michael Porter

In 1985, Michael Porter, whom you met earlier as the father of the
Five Forces, wrote a book called Competitive Advantage: Creating
and Sustaining Superior Performance, as a follow-up to his 1980
book, Competitive Strategy: Techniques for Analyzing Industries and
Competitors (both from Free Press). Both books became classics
within management circles and offered a new framework called the
Value Chain.

One purpose of the Value Chain is to help you understand where
your bread is buttered. That is, it divides the world into value cre‐
ation and support to illuminate where value is created and where it
isn’t. You should be crystal clear on what your company does to cre‐
ate value, what products they sell, and to whom. If this sounds too
obvious to say, it’s surprising how this is not always clear, especially
depending on your products and industry.

Let’s look at the framework itself, shown in Figure 5-4.

116 | Chapter 5: Corporate Context

Figure 5-4. Porter’s Value Chain

The image envisions a company as a series of inputs, a transforma‐
tion at each step, and subsequent outputs along the chain that work
together to provide value and realize profit. Let’s unpack each of the
five major activities leading to profits:

Inbound logistics
Receiving raw materials from suppliers to the plant

Operations
Transforming the raw materials into valuable products

Outbound logistics
Getting the products from the plant to market

Marketing and sales
Getting the products from the market into customers’ hands

Service
Repairing or correcting or improving the products after they’ve
been purchased

You examine each point in the chain to find opportunities for
improvement and deliver the maximum value for the minimum
cost, and in so doing create a competitive advantage. Businesspeople
are used to doing this sort of thing. But if you as a technologist
approach your architectures with this in mind, you can create more
value for your company.

Value Chain | 117

Maximizing Efficiency
Here are some efficiency questions you might ask yourself:

• In your software product development, can you reduce debili‐
tating technical debt? Getting some of the cruft out of the way
can improve time to market and time to value, as well as reduce
what (at software companies, anyway) often amounts to 80% or
more of the cost of doing business: human labor.

• Are there parts of the code or systems architecture you can
rework to reduce the server cost? We’ve all seen inefficient,
long-running jobs and carelessly written or poor-quality code
that spawns a million network messages when smarter code
could accomplish the same work more efficiently. I’ve seen code
on distributed systems get rewritten and double the throughput
on half the servers with a lower network bill. These can be hard
to measure based on your tools, but subject matter experts who
know the system well will likely have an idea of where to start to
sniff out such areas.

• What are current manual processes that could be automated to
reduce the turnaround time, improve quality, or save on human
labor that can be used for more creative purposes?

• Can you use free, open source software in certain places, replac‐
ing costly enterprise contracts with their attendant 20% or 22%
annual maintenance fees? Or can you use free versions of com‐
mercial software such as MailChimp and Google Analytics?

• Can you digitize outbound logistics with digitized training or
delivery methods? Can you improve tracking and customer
transparency? Can you create automated agents or assistants to
bring more transparency or put more power in the hands of
customers?

• Can you reduce travel costs through digital or virtual applica‐
tions, or free applications such as Skype, Hangouts, or Face‐
Time?

• Can you reduce service costs and turnaround by designing and
architecting your products in a more modular way, like Canon
did?

118 | Chapter 5: Corporate Context

• Does this step truly add in your value proposition and market
differentiation? If so, keep it in-house and become expert at it. If
not, consider outsourcing or contracting. (For more on this dif‐
ference, see the “Core/Innovation Wave” on page 126.)

• Can you separate true needs at each step versus perceived
needs? Sometimes inefficiencies leak in because “that’s how
we’ve always done it.” Are there “entitlements” that have built up
over time as what were once nice-to-haves became expectations,
resulting in false requirements?

• Can you use the cloud or Software as a Service in new ways? If
you migrate to the cloud, can you foreground automation to
turn servers on and off, particularly in nonproduction environ‐
ments, so that you aren’t paying for what you’re not using? Can
you be sensitive to transferring capital expenditures (capex) to
operational expenditures (opex)?

• Are there places where process participants can collaborate bet‐
ter, or collapse several steps into a few?

• Are there redundant or legacy versions of products you can
consolidate or kill off and offer lagging customers an alterna‐
tive?

• Can you organize your applications into services to reduce the
likelihood of redundant, inefficient code?

Maximizing value
Similarly, at each point there are some value-related questions you
can ask, based on the type of value that technologists can offer:

Sustain the value
Running current business operations, and providing the sys‐
tems, applications, plumbing as requested. There’s value in
email and office software that we surely would feel if it left us.
But the problem is that this is where we typically focus, and no
one cares about it until it breaks. This is the preventative and
regular maintenance category.

Maximize value
Finding places to create value in current systems; doing the
same things better.

Value Chain | 119

Discover value
Inventing new things of value. Can we provide new markets,
new products, new channels? Can we discover Post-it notes in
the lab while trying to do something else?

As usual, the way to approach this is by making a terrific analysis list
as described in Chapter 2.

Supporting Functions
There are supporting activities as well—those necessary evils for a
company of any size, like HR and the IT folks. Porter leaves out
some obvious things, such as Legal, which could be a sizable, or at
least powerful, portion of your company and even have some non‐
trivial impact on the Value Chain (I can think of a few large enter‐
prise software companies for whom this is true. Some even make
money suing their own sales reps.) So this kind of diagram sort of
fails our prized MECE test (see “MECE” on page 29), but we can let
that go.

The supporting functions, since they do not directly create value or
competitive advantage, are more frequent candidates for cost-
cutting measures than value-maximizing measures. For instance,
look at how you can automate or outsource tax preparation and
invoicing. Check with your legal team about upcoming contract
renewals to see if there are less expensive but still effective options.

Get Real
Once I made a technology proposal to the company president. She
is a very smart woman, and before becoming president was the
CFO. As I pitched my technology strategy to her, I pointed out that
by taking one of my recommendations, the company would save
half a million dollars. She asked how. I replied that with the pro‐
posed automation, the work that was done by 10 people today
could be done by 6, with better quality. I was proud that I had done
some quick third-grade math and been so thoughtful as to fore‐
ground the financial aspect that she cared about over the technol‐
ogy. But her response was something I’ll never forget: “Which four
people are you going to fire today?” I said I hadn’t thought of that
and didn’t want to fire anyone—they were all good, capable people
and could do other things. She said, “Fine, but you can’t say ‘cost
savings’ since they’re still on the payroll. There’s maybe some bene‐

120 | Chapter 5: Corporate Context

fit here, but it’s not cost savings. Fix your deck.” That was a good
lesson.

Applying the Value Chain
A second purpose of the Value Chain is to help provide you a handy
list of each of the key processes to check to determine where you can
create more value, gain higher margin, create a differentiating
advantage, and cut costs.

Here’s how I suggest using it:

• Treat it as a high-level checklist to establish a baseline under‐
standing of what your business unit does, as a reminder to
yourself to not leave any of these process points unaddressed in
your technology strategy. Of course, depending on the challenge
you’ve been posed, certain areas will be more or less relevant.

• Determine the owners or some knowledgeable, communicative
person within each of these areas to determine how it works,
where it sees advantage, and where it needs help. Consider each
in terms of people, process, and technology.

• Consider and identify specific ways that your technology strat‐
egy can directly improve costs, improve margins, or add to
profitability for each of the points in the process. Map technol‐
ogy recommendations to each.

You may wonder about technology being relegated to a support
function. In 1985, the web didn’t yet exist, so we can still interpret
the Value Chain chart pictured earlier as relevant today. In a soft‐
ware product company, we can think of operations as the function
that makes the product, with technology still existing as it does on
Porter’s chart as a support function in the form of the back office
and plumbing.

Revenue diversity
But the larger the company, the more diverse it will be, and it will
have its hands in many cookie jars, making money in a variety of
ways—even within a single division. We all are familiar with Pepsi,
and think of it as a soft drink maker. It’s easy to assume all the
money comes from Pepsi cola. But the company also owns Tropi‐
cana and Gatorade and partners to sell the ready-to-drink beverages

Value Chain | 121

you buy from Starbucks (which, by the way, owns a record label),
and Lipton tea, and Stolichnaya vodka. Yet, in the last decade,
despite how Pepsi might be thought of in the popular imagination,
beverages accounted for only 50% of PepsiCo’s revenues. Pepsi also
owns Quaker Oats (which also sells Rice-a-Roni and Cap’n Crunch),
has had numerous restaurant chains like California Pizza Kitchen,
and acquired Wilson Sporting Goods equipment company in 1970,
and even owned North American Van Lines.

Did you ever see the movies Stripes, Ghostbusters, Karate Kid, or
Tootsie in the 1980s? They were produced by Columbia Pictures in
the five-year period that the movie studio was owned and run by
none other than…the Coca-Cola Company.

The candy company Mars ran a company called Chappell Brothers.
You may not have heard of them: they make dog food. But that
shouldn’t be surprising given that Nestle, whom you probably think
of as a chocolate bar company, owns Purina, one of the largest pet
food manufacturers in the world, and has a significant stake in
L’Oreal, the makeup company. In fact, Nestle has over 8,000 brands.

What about Proctor & Gamble? In 2014 it announced that it was
selling off 100 brands in order to focus on its remaining 65 brands,
which represented 95% of the company’s profit. That’s a lot of
brands, and a lot of money concentrated in only 39% of the com‐
pany (recall the Pareto rule from Chapter 2).

But such revenue diversity is not the sole domain of conglomerates.
We think of hotels as selling hotel rooms. While of course that’s true,
most higher-end hotels typically make only half their money on sell‐
ing hotel rooms, with the rest coming from restaurants, meeting
rooms, convention fees, tee times, spas, and the like. Many hotels in
Las Vegas sell the room for very cheap or even give it away for free,
because the bulk of their revenue comes from gambling.

And these things change and shift with differences in consumer
trends and competitive forces. According to a Bank of America
report, in 1990 nearly 65% of revenue in Las Vegas came from gam‐
bling. Twenty years later, a Business Insider article reported that
65% of its revenue came from nongaming sources, such as shopping
and restaurants.

Companies enter joint ventures, partnerships, agreements, and
licensing arrangements. If you think you know how you get paid in

122 | Chapter 5: Corporate Context

https://read.bi/2MEvKuU

your company, I urge you to investigate and dig deeper to really find
out all the sources of revenue. Only then can you understand all the
sources of value creation in your company and how to account for
them in a supporting architecture. You might build a set of different
microservices or design a data model differently if you understand
these aspects of your business.

Then there’s the other side of the coin: things companies do strategi‐
cally but that don’t have clear revenue streams yet. These can matter
tremendously. At the recent O’Reilly Artificial Intelligence confer‐
ence in New York City, a Google executive stated quite plainly,
“Google is an AI company, full stop.” We think of Google as making
money through selling ads (since even in recent years that’s where
$80 billion of its revenue comes from, with all its other products and
businesses generating only $10 billion altogether). Of course there is
a plan there, and it’s holistic. All those other businesses feed Google
the data it needs for its current and future AI work. Waymo, the
division within Google for autonomous vehicles, is projected to add
as much as $40 billion to Google’s top line by 2025.

So companies are more diverse than they may at first appear, and
place a number of bets—some of which they expect to pay off long-
term, and some more near-term. Understanding the ecosystem
within the Value Chain is helpful to the business-minded architect. I
once created an architecture that probably wasn’t the optimal design
for a particular system, because I was too focused on the technology
and thought of one company in particular as a big competitor. That
was true, but unbeknownst to me, that company was also our part‐
ner in a joint venture arrangement little known outside the execu‐
tive team. Had I been aware, I would have made different
technology choices. Since then, I do my best to know where our
bread is buttered and make the architecture decisions and technol‐
ogy strategies accordingly.

The Value Chain is intended to be used within a single business unit
or division, to keep things coherent. But you can also apply it within
a department, depending on the level of analysis you’re performing
and for what purpose. But Porter’s statement from the epigraph at
the beginning of this pattern doesn’t preclude us from using the
Value Chain breakdown at the global level, the industry level, the
corporate level, or the department level. We are not business profes‐
sors. People get entire PhDs on the idea of Value Chains. People can
get incredibly nerdy about this stuff. If you want to be nerdy about

Value Chain | 123

Value Chains, you’re welcome to read Porter’s 600-page book and its
companion volume, which is a slimmer 400 pages. For us, it’s just a
picture. And that’s just fine. We needn’t adhere to the strict dicta
around the use of a tool like this. Think of it instead as a good
reminder of all the different areas of your division to tour. Your
strategies will be more holistic, more pertinent, and more impactful
if you are sharply focused on real business problems and creating
value, and see many opportunities to do so.

Getting your baseline metrics
One final but critical point: you need to get a sense of the relevant
costs in each of these areas. Take a baseline and know where you’re
starting from. That way, after your new solution is implemented,
you’ll be able to measure and demonstrate the costs reduction you
created. This will be an important metric to have in your back
pocket, not only so that you understand how effective your solutions
were, but so that management knows that too.

The Process Posture Map (see “Process Posture Map” on page 138)
will help you with the Value Chain.

Growth-Share Matrix
The Growth-Share Matrix is also known as the “BCG Box.” It was
created by Bruce Henderson in 1970 for the Boston Consulting
Group. It was intended as a tool to help companies analyze and
manage their portfolios. Its purpose is to help companies allocate
resources.

Here are the four quadrants. Depending on the size of your com‐
pany, this matrix can be used to view products in your portfolio or
entire business units:

Cash cows
These have low growth but high market share. These are your
successful, mature products in an established industry and
mature market. You milk them for the cash they consistently
bring, and they’re fantastic because they don’t cost much to keep
running. You don’t want to invest much in these products,
because the opportunity for further growth is limited if the mar‐
ket is not growing. You won’t see a great return on additional
money, even though these products are cherished. These parts

124 | Chapter 5: Corporate Context

of the business tend to be used to fund innovations or startup
areas in the business.

Question marks
These are the problem children. The market is growing, but this
product has low market share. These are typically young prod‐
ucts or startups. You must ask why they are not more successful.
Do they just need more time, is the market too crowded, has a
competitor gained on you with better features or stability, are
customers not interested in your product, or have substitutes
emerged? The job here is to determine how to turn them into
stars by getting more share. This usually requires big invest‐
ments and can be a tough decision. If after years of investing
they can’t grow, they become dogs. So these are the ones to
focus your analysis on.

Stars
These products enjoy high market growth and high market
share. They’re big and getting bigger. These are where you
invest and protect. But continuing growth requires continuing
capital investment. Your hope is that you can dominate the mar‐
ket and these become cash cows.

Dogs
These products have low market growth and low market share.
Stop investing and retire them.

The Growth-Share Matrix is shown in Figure 5-5.

Figure 5-5. The Growth-Share Matrix

Growth-Share Matrix | 125

Generating the Growth-Share 2×2

You should just keep a template around for
making these since you’ll do it with some fre‐
quency. That’s because executives and business
strategy consultants simply adore these kinds of
four-quadrant overlays on scatterplots. If you
are attacked by a wild strategy consultant, do
not run: simply show him a PowerPoint slide
with a 2×2 matrix on it, and he will be instantly
absorbed and begin looking for holes to poke in
it, giving you time to escape. (See the note in
“Stakeholder Matrix” on page 105 for a quick
way to generate the 2×2 for this and similar
matrices).

You can use this matrix in your portfolio planning and strategy sea‐
son exercises. You should at the least be aligned with the strategy
team on the placement of the applications. Do not make grandiose
plans to make a lot of upgrades and feature enhancements in dogs.

The Growth-Share Matrix is a very familiar tool to many business‐
people. If you don’t spend too much time on it or treat it too seri‐
ously, it makes a nifty way to visualize where to focus your time and
attention in a product management Roadmap.

Core/Innovation Wave
As shocking as it may be to hear, people don’t always automatically
agree on what projects to fund and how much to fund them. Arriv‐
ing at the answers for what systems, products, and projects to fund;
what features to pursue; and how much of the pie each item should
get is hard to determine and can be highly contentious. These mat‐
ters are debated by product management, product development,
architecture, strategy, IT, business operations, and finance, of course
with a breezy executive dropping an occasional bomb on the pro‐
ceedings on the order of, “Oh, didn’t I tell you? The leadership team
just decided to move all the operations to the moon. Can you redo
everything with that in mind?”

The process is sometimes fraught with ego and emotion. Worse, it’s
played as a zero-sum game: if you get that $10 million, then that’s
$10 million less for my project.

126 | Chapter 5: Corporate Context

To create a modicum of order, the strategist will look for a list (or
better, a 2×2 grid) to diffuse the intensity and bring data to bear.
Enter the Core/Innovation Wave. This tool was shown to me by
Sabre Hospitality Chief Strategist Balaji Krishnamurthy.

This pattern is useful if you’re considering a set of future projects,
and you aren’t sure which ones to pursue or ask for funding for.
Sometimes you want to get a quick idea of how complex it might be
to do something. If it’s far from your core business or most mission-
critical systems, then it may be something you’re not mature in,
don’t understand well, and will need more time or more funding to
pursue properly. This is even more true if the project you’re consid‐
ering represents creating something entirely new to the world or to
your organization.

During strategy season in late spring, you can use the Core/Innova‐
tion Wave as a planning tool to assist you in envisioning where the
applications in your portfolio lie with respect to two key vectors:
proximity to the core and innovation (see Figure 5-6). It’s useful in
conjunction with an Ansoff Growth Matrix (see “Growth-Share
Matrix” on page 124) and an Investment Map (see “Investment
Map” on page 130) and Application Portfolio Management (see
“Application Portfolio Management” on page 146).

Proximity to the core refers to how close this proposed project,
acquisition, product, or feature is to your main business or your key
applications. Proximity to the core means how mission-critical the
application is to your division and your customers. How much reve‐
nue is generated by each application today, and how much revenue
is expected to be generated? How much other stuff does it enable?
The ones with the most are your core products.

The x-axis is Innovation: Does this feature already exist entirely, or a
little bit but it needs modification, or not at all? How differentiating
is it with respect to enabling your future? Like babies, innovative
young projects need far more nurturing than they can give in
return. Moreover, you will have a harder time reaching new custom‐
ers, accessing new markets, and doing things differently.

Core/Innovation Wave | 127

Figure 5-6. Core/Innovation Wave

To use the tool, get a list of your applications, the companies you’re
considering acquiring, or the projects you’re considering asking the
board for funding to do. In the figure, the dots represent the scatter‐
plot for each application or proposed product or proposed acquisi‐
tion or activity. Consider them across these two axes.

You can use a chart such as this to score each item as shown earlier.
When you’re done, layer over the waves to tag the priority level of
the funding each should get, with a bias toward those in the upper
right: these are the ones that are most innovative and closest to the
core of your business.

The “waves” are meant to help you sort out your bubbles into gen‐
eral categories. For things that are close to the core and not innova‐
tive, you likely have many maintenance teams already working on
them. You can staff those differently than innovative work that has
little customer-facing, revenue-generating impact. You will need to
fund that to ensure proper maintenance. The risk profiles are differ‐
ent, and the pioneering mindset, attitude, and maturity and talent of
the individuals needed will be different.

You can also use this to help visualize a timeline projection, to help
the executive and your teams talk with customers and present to
their management. What work you will do in the next year? Next

128 | Chapter 5: Corporate Context

two or three years? It helps them start to conceptualize what the
opportunity size might be, and why they should care.

Used in an executive slide, this chart can provide a wonderful
opportunity for them to ask questions, understand broader strategic
alignment, and see where your Roadmap is headed. You can show a
set of pursuits you want to make in acquiring new technology com‐
panies to add to your platform.

It’s easy to get this done quickly, and use that as input to a more
detailed Roadmap planning session with development management.

Note that you don’t have to use this tool only in strategy season once
a year for big budget asks. The Wave also helps you sort other
aspects of how to staff projects, and how much architectural atten‐
tion to give them. You can use it just within your architecture team
to determine where, and how extensively, you need to write archi‐
tecture definition documents (see “Architecture Definition” on page
235) to support dev teams, or otherwise make specifications about
toolsets and understand the emerging tech.

You can also use it within a project team. As with many patterns
here, you can consider this a fractal, and use it to help prioritize the
work of your Roadmap within a single project or system. When
you’re triaging features, which happens frequently, this can help you
assign management or other oversight of the work, and determine
places where you can try out new technologies or may need more
time (if something is innovative and close to the core).

As management, you may look at items that are very innovative and
see if you can carve out 5–10% of the team for some R&D work, and
not load them up with commitments on the daily Roadmap. Other‐
wise, don’t expect the items to get addressed.

Don’t use this pattern on its own. Use it in conjunction with the
Growth-Share Matrix and Investment Map. The Wave alone won’t
make any decisions for you. But it will help frame the conversation
as you have the budget planning and trade-off discussions, and will
help you communicate easily to executives within the deck you’re
building.

Core/Innovation Wave | 129

Investment Map
You can’t do everything at once, and you can’t invest equally in All
The Things. You must prioritize.

The Investment Map isn’t so much about money as offering a simple
lens for the executive to view, in a quick and easy way, her portfolio
of applications plotted against how you are thinking of planning the
next year or so of work. It marries your current application set along
with your emerging, innovative ideas for where you think the Road‐
map should go. It will spur terrific conversations between product
management, strategy, product development, and architecture about
where your tech organization’s focus should be.

The purpose of the Investment Map is to help you temper and bal‐
ance the exciting, cool things that you want to do, the level of diffi‐
culty and preparedness you’ll need to pull them off, how ready you
hypothesize (see “Hypothesis” on page 41) the market is to receive
them, and how big the barriers might be.

Here’s the process to create the map:

1. In a spreadsheet, list the items in your portfolio and list the
ideas you have for work you want to do to create new products,
enhance existing ones, or try a new technology. This could
include major architectural changes to key systems that might
require a project to complete.

2. Score them according to the two key vectors: how difficult will
it be to do that item, and how ready, right now, are your current
customers and the market you’re serving in general?

3. Generate the 2×2 matrix and label the quadrants.
4. Use it as input to team conversations, Roadmap planning, budg‐

eting, and prioritizing.
5. Add it to a slide in your burgeoning Strategy Deck.

The result of this exercise will look like Figure 5-7.

130 | Chapter 5: Corporate Context

Figure 5-7. The Investment Map

The first vector is how hard or easy something will be to do (which
can include its novelty, risk, complexity, level of effort, budget
requirement, number of critical unknowns, and so forth).

The second vector is how ready your customers are to receive it. For
example, years ago a number of the big hotel chains wanted to add
digital keys that could be sent to guests’ mobile phones on check-in.
There were two barriers: the guests weren’t ready, and their franchis‐
ing customers weren’t ready. There were some startups that offered
this tech. But it was new, so it didn’t work perfectly. If a game on
your phone doesn’t work, you can just turn it off. If you can’t get
into your hotel room, that’s a bigger problem. Market research
revealed that there weren’t enough people with smartphones—sure,
tech company executives all had them as early adopters and could
afford them. Even today, only 75% of Americans have a smartphone
of any kind. But nearly everyone has to stay in hotels, and phones
run out of juice, so you’d need the regular door lock anyway, which
is expensive to hoteliers. So the idea, even though it was a good one
and continues to trickle into the market today, was incredibly slow
to catch on. A sizeable, pioneering investment here would have been
a mistake, as neat as the idea was.

The Investment Map works great in concert with Growth-Share
Matrix/BCG Box and the Core/Innovation Wave. You want to con‐
sider these during strategy season, and budget season, and Roadmap
planning season. You might update this twice per year.

I won’t belabor this tool further since it’s not likely going to be used
every day, and by now generating 2×2 matrices should be old hat for

Investment Map | 131

you. It’s just a handy, easy way to help drive general direction for
both your current portfolio and future-oriented ideas.

Summary
In this chapter, we reviewed several patterns at the corporate or
business unit level:

• Stakeholder Alignment (see “Stakeholder Alignment” on page
99)

• RACI (see “RACI” on page 108)
• Life Cycle Stage (see “Life Cycle Stage” on page 111)
• Value Chain (see “Value Chain” on page 116)
• Growth-Share Matrix (see “Growth-Share Matrix” on page 124)
• Core/Innovation Wave (see “Core/Innovation Wave” on page

126)
• Investment Map (see “Investment Map” on page 130)

In the next chapter, we’ll examine just a few quick patterns with a
tighter focus: the departmental or organizational level within your
company.

132 | Chapter 5: Corporate Context

CHAPTER 6

Department Context

This short chapter catalogs the patterns you can use within a depart‐
mental level.

Principles, Practices, Tools
This pattern helps you organize your thoughts, and consider the
department holistically in the following situations:

• Aligning teams around a vision, especially a new direction
• Setting up a new department
• Creating a new structure within your department
• Creating a new methodology
• Introducing a new process or changing an existing one
• Developing an enterprise architecture
• Creating a “get well” plan
• Creating a Roadmap for a turnaround or change management

plan
• Creating an efficiency plan or streamlining activities
• Choosing a toolset
• Making a build/buy/partner decision
• Aligning around a platform
• Devising a portfolio management plan

133

Its purpose is to help you and your teams get a clear picture of how
your department works and to show them how their daily work sup‐
ports the vision.

This pattern helps you create alignment in your department by
showing the linkage between the principles you have, the practices
you have, and the tools you employ. It helps you create a unified and
efficient department because you are drawing a connection between
these three things. That means first that you must have each of them
in place.

Principles
A principle is a proposition (as we saw in Chapter 2). It serves as the
foundation for a system of beliefs. As propositions, principles are
abstract, but they should precipitate actions on the part of your
teams that support them. Presumably, the principles are subsets or
decompositions of your overarching corporate vision. If they’re not,
your teams and department will suffer from a lack of alignment.
You’ll be doing stuff that doesn’t matter. This is mistaking activity
for progress.

The Open Group Architecture Framework (TOGAF), which was
my architecture training and certification many years ago, publishes
an in-depth way of approaching technology principles. You can take
a shortcut and read Digital Principles or IBM’s old published princi‐
ples.

Here is a set of principles that I’ve used in the past that you can
adopt and adapt or use as a jumping-off point for creating your
own:

• Primacy of principles
• Portfolio of development work aligned with strategy-driven

architecture
• Compliance with laws, regulations, and standards
• Primacy of security, stability, and quality
• Management of technical diversity
• Data as an asset
• Getting value from data and services portfolio requires steward‐

ship

134 | Chapter 6: Department Context

http://bit.ly/2Buottr
http://bit.ly/2BtQ5ib
https://ibm.co/2wbWoRG
https://ibm.co/2wbWoRG

• Software solutions created as public, scalable, open, interopera‐
ble, loosely coupled, governed services

• Design for failure
• Global cloud

Once you have stated your principles, unpack them to explain fur‐
ther what you mean. Stating “Global cloud” is not going to drive an
ounce of change in your organization. So explain it further in more
technical terms to folks who have a chance of finding practical ave‐
nues into actual projects, like this (as an example):

Services and applications of the platform should be built ready to
run in the cloud and take advantage of such features as autoscaling
and other auxiliary components while maintaining portability
within the application structure.
Services should externalize configurations to account for such
portability.
Infrastructure as code should be employed.
Services must expect to be deployed globally across multiple cloud
data centers, and thus should externalize their localized values and
internationalizeable application qualities. They should be stateless,
and their data should be partitioned to account for multiple con‐
current global deployments routed to geo-specific customer
groups.

These start you down a path of creating a set of practices that derive
from the propositions, are actionable, and are embodied by the
principles. For example, from the preceding text, we can see that we
need a few practices to realize that principle. Examples might
include:

• Infrastructure as code
• Continuous integration/continuous delivery pipelines
• Service design review and governance

First we’ll need to pick one or more cloud providers and state what
we’re using. Let’s say we’re going to use AWS. We can then make that
statement.

We can also see what tools we might take advantage of to help real‐
ize the practice. GruntWorks, for example, could be used to support
the infrastructure-as-code practice. Or you could decide to build
this yourself using Python and CloudFormation. That choice might

Principles, Practices, Tools | 135

depend on other principles, or the outcome of a simple Build/Buy
analysis, which will mostly reduce to this: build the things that are
competitive differentiators for you and buy ones that aren’t.

These should give you an idea of what principles look like and how
to write them so you can come up with your own:

Practices
These are the things people do on a daily basis. They are the
processes, they way you get stuff done, the manner in which the
principles are realized in your daily work. These might be things
like DevOps or infrastructure as code or chaos engineering.

Tools
These are the specific instances of software applications that
teams use as part of carrying out the practices. These should not
be abstract but rather concrete, actual tools that force you to
make a selection. “TensorFlow” or “Ansible” or “Log4J” or
“Kafka” is the level of the values in your tools list.

It’s really important to think in terms of principles, practices, and
tools. If you don’t, you’ll have less efficiency, less clarity, and less
harmony. And you’ll have a collection of diverse overlapping tools
and less alignment between people’s daily work and the strategic
vision. Many shops are just collections of tools. The tools support
the practices; the practices realize the principles.

Here you’re looking for three things:

• Missing elements, or logical gaps
• Mismatches
• Opportunities for improvement or upgrade

The Process Posture Map gives you a picture of either 1) elements of
your current state that need to be supported or revised or 2) a prac‐
tical map of how everything in your enterprise architecture will
work together. So you can use this map as a diagnostic or alignment
tool for the current state, or as an image of the Beautiful Future, an
aspirational vision.

136 | Chapter 6: Department Context

Example: NASA Strategy
For a good example of a CIO’s strategy report that is driven by
vision > mission > strategic principles > goals > outcomes, check out
the NASA CIO’s official strategy plan.

NASA is a government body and this plan is a public document, so
it’s a bit different than what I discuss in this book. But it’s a textbook
example of published principles (see “Principles” on page 134),
clearly aligned business and IT goals, explicit IT goals, and so forth.
If you think principles are too abstract to matter, note that while the
NASA CIO states several of them, he does not state “innovation” as a
principle, but instead states “secure,” “integrated,” and “cost-
effective.” That would drive certain decision criteria and adoption
practices for sure.

So this is a great document in terms of making the process clear.
Within a business setting, however, it’s less likely that long-form
written documents such as this would be the preferred format. I’m
not sure how many businesspeople read strategies like the one from
NASA, and it’s a bit more old-fashioned than many tech companies
would want to see—NASA has no competitors in a sense, and is a
government agency. It’s clear to me that publishing a five-year tech
strategy in a tech company is only for full-on bureaucrats; it’s the
kind of thing that’s irrelevant before it hits the streets. So we try to
make ours more modular and easier to update on occasion, and
keep the horizon tighter. But sometimes you’re doing a turnaround
job modernizing legacy systems, and those are the kinds of internal
things that will take three to five years, depending on the damage. I
just point out this NASA one because it is texbook, and you can take
it under advisement. Alternate perspectives help you shape a rich
strategy.

Current and Future Model
There are whole books, fields of study, and certificates on Six Sigma,
process improvement, efficiency experts, process mapping, process
automation, and the like. If you have the time and inclination to
learn more about those areas, that’s terrific. I recognize that those
are important to really helping drive process change.

But for an architect, or for a Strategy Deck, you can get 80% of the
way there with 20% of the work. People feel the pain every day of

Principles, Practices, Tools | 137

https://go.nasa.gov/2oH83EN

what’s broken. You learn about DevOps, or site reliability engineer‐
ing, or data science, and have an idea those might help you trans‐
form from your current state to a better one.

There are three things you can do to help you do “process optimiza‐
tion lite”:

1. Examine the technology landscape for trends in new practices.
2. Make a Process Posture Map for your current state practices.
3. Make a Current State and Future State Operating Model.

You can include in your Strategy Deck something that helps your
managers or leadership team understand the current state for what
it is and see where you want to go within a new operating model.

Process Posture Map
The first step in a Process Posture Map is listing your processes in a
pretty and organized way within a slide deck. Figure 6-1 shows an
organized example of four main categories, with their processes
under each.

Then assess the processes in your own mind and validate your
thinking by talking with others to assign the process a posture.
Assign one of the following five tags to each process:

Start We do not do this in a meaningful or established way as an organization, but should
define how we want to do this and begin to implement that.

Continue This capability may require the normal continuous improvements of the local leaders but
is generally is on track.

Invest We have a nascent activity here that may have strong roots or certain strong practices
and potential, and we would realize gains if we focused and grew the capability.

Assess We have an ostensible capability here, but it should be examined for efficiency
improvements in some areas.

Revise This is clearly an ailing or weak capability that must be overhauled.

As an example, your Posture Process Map might look like
Figure 6-2.

138 | Chapter 6: Department Context

Figure 6-1. Organized list of processes

Principles, Practices, Tools | 139

Figure 6-2. Initial Posture Process Map

140 | Chapter 6: Department Context

What we’ve done here is divide the world into MECE categories (see
“MECE” on page 29). This figure represents the set of processes
within the category of “Managing for Business Value.” We then can
make a list of each business process within that. We state the goal of
the business process and the value it brings. This acts as a definition
of terms and allows you to see what your organization does. You
might also add a column for the business process owner if there is
one. If not, that might be a sign that you need some additional
maturity in that process. Finally, we have the “Action” column. Using
values from the table, state your recommended action.

At this point, you will have essentially created a slate of work. You
will have a list of all your processes, shared definitions, and some of
them that you need to go fix. Of course, process reengineering is an
entire field of its own that is beyond this book’s scope, but what you
can do with this is consider the following:

• How mature are your processes in general? Do you have a lot
with the “start” tag, which indicates that you aren’t doing that
process at all yet? Maybe you don’t do change management or
service governance in any kind of formal or explicit way and
you can see benefit in instituting such a process.

• How extensive is the damage? Do you have a lot of processes
with a “revise” tag?

• Recall Michael Porter’s Value Chain (see “Value Chain” on page
116)—a purposeful network of business processes that, when
designed together, cumulatively transform a set of inputs into
an output of greater value to customers and deliver it to them.
How well do these processes work together? As a collective set,
are they MECE?

The point is that now you have the basis for a conversation. On your
own you won’t go off and just start reengineering all the weaker pro‐
cesses. But you can understand how much others agree with your
assessments, and gain another perspective that helps focus your
strategy in the areas most beneficial to your business.

Again, process reengineering is a vast field, and we can’t cover
everything here. If you have the budget and inclination, you can hire
a firm to examine all your processes and rework them. If you need
to or want to do it yourself, I recommend getting familiar with Lean
Six Sigma, which is the most widely accepted, popular, and rigorous

Principles, Practices, Tools | 141

method for process reengineering. You can start with the Six Sigma
Handbook by Pyzdek and Keller (McGraw-Hill)—it’s accessible,
practical, and comprehensive, and it gives you some tools to help
make your “poor person’s process reengineering” more rigorous and
standard. And, if you get super-excited about this stuff, it will help
you get a Green Belt or Black Belt certification. My custom
approach to this is called Scalable Business Machines, which we
cover in Chapter 7.

Current and Future State Operating Model
Next, create a simple slide that looks something like Figure 6-3. This
model helps your teams see where they are (recall the “this is water”
joke from “This Is Water” on page 15) and where your department
needs to go. You can then have managers figure out how to draw the
connections themselves for how to change the current state into the
future state. You made the vision; now let them put together what
exactly needs to change to get you there. They should come back
with proposals with concrete actions (using an RACI as described in
“RACI” on page 108) and then you can track progress.

Now you have a few slides to include in your Strategy Deck to make
sure you’ve covered people, process, and technology altogether and
are making the right recommendations so they support and enhance
each other.

After you’ve created your Process Posture Map, and made a slide for
your Current and Future State Operating Model process, you can
drill down by making a current and future model slide, and then
further by making a Sankey diagram representing your principles,
practices, and tools.

The Principles, Practices, Tools Sankey Diagram
A Sankey diagram is a way of showing how energy flows in a system:
what direction and in what magnitude. I’ve adopted Sankeys to
show myself and my teams that our principles all had at least some
practices to realize them and those practices were all realized by one
or more tools.

142 | Chapter 6: Department Context

Figure 6-3. Current and Future State Operating Model

Using the diagram is fun, makes a neat visual to share with teams,
and is a good way of checking the holistic integrity of the depart‐
mental system you are creating. If you have some principles with no
practices supporting them, they are just abstract platitudes. You
need to either give up the pipe dream that the item’s actually a prin‐
ciple of yours, or go create a process that is capable of realizing it.

You can generate your own Sankey diagram with a free online tool
called SankeyMATIC. It’s great. You enter your plain-text list of
principles, practices, tools, and their magnitudes, and click a button.
The diagrams it produces look like Figure 6-4 (it’s just a snippet).

Principles, Practices, Tools | 143

http://sankeymatic.com

Figure 6-4. Snippet of a Sankey showing principles, practices, and tools

You can see in the diagram how we have defined some principles, on
the left: Automated, Global-Ready, Resilient. In the middle, we show
which practices realize those principles. Then on the right, we have
the list of actual tools we use to support those practices.

So when we say we want to be more resilient as an organization, it’s
not a platitude: we do many real things to be more resilient, such as
have a strong dev test practice. To make sure we are in fact doing
dev testing and to set an expectation with developers about what
tools they should use to keep us efficient, and to check that these ele‐
ments all work together, we can see that in support of the dev test
practice, we use the tools JUnit, JProfiler, YourKit, Postman, and
SOAP UI.

You can also make Sankey diagrams easily in R for the more pro‐
grammatically inclined. They’re a slick way to be sure you have all
three factors working together and to what extent.

Business Process Mapping
Business Process Model Notation (BPMN) 2.0 is a standard notation
created by the Object Management Group for representing business
processes. As you look at your challenging processes—the ones you
want to improve—I encourage you to find someone on the team
who is interested in this sort of thing and have him map out the cur‐

144 | Chapter 6: Department Context

rent state process. Then examine it together with the team. Then,
together, map a better future state process.

It’s not hard to do, but like drawing UML diagrams, it is sort of
detailed, and you want to get the notation right. You can read the
(very long) spec at http://www.omg.org/bpmn. Read books and get
tools from various vendors (https://bpmn.io offers many wonderful
examples, and Visio and LucidChart work well) to help you draw
proper BPMN diagrams. Figure 6-5 shows an example.

You and your team likely have a pretty good idea where the head‐
aches are. Pick a few of the processes, chart them on an ease and
impact 2×2 matrix and pick a few to tackle. With a few smart go-
getters on your team and some proclivity for lifelong learning, you
might get 80% of what a process expert would in 20% of the time
and money.

Figure 6-5. Example BPMN diagram

The Law of the Product of Probabilities
The law of the product of probabilities, or the product rule, is useful
when you are examining your processes and practices for improve‐
ment. In the field of probability studies, particularly in genetics and
biology, the product rule states that the probability of two or more
events occurring together is the product of their independent proba‐
bility of occurring. If you have two events in a process, each with a
50% chance of happening, the law of probabilities suggests that the
chance of them happening together within a given instance of the
execution of some process is 25% (because .5 x .5 = .25).

Principles, Practices, Tools | 145

http://www.omg.org/bpmn
https://bpmn.io/

The trap is that we tend to take the optimization levels in each step
in the process together as an average instead of as their product. It’s
a very different picture, and a critical distinction when you’re con‐
sidering how optimal your overall process is.

This is useful when we’re optimizing processes, because we tend to
think things are better than they are as a result of thinking in aver‐
ages rather than products. So it’s a good reminder that, unfortu‐
nately, we usually have further to go than we think.

We can think of the optimal scores as whatever metric we’re measur‐
ing at that point in the process. For example, you might have a
deployment process or a software methodology, and you can arrive
at metrics such as defect leakage or technical debt. Note that what
we’re talking about here are independent variables within the same
instance of a process. We’re not talking about repeated executions of
the same step in different instances.

Here’s an example. Imagine you have a five-step process that you
want to optimize, and you determine that at each step you have 80%,
85%, 90%, 85%, and 90% optima. It looks like you have a score of
86% overall, taken as an average. When taken as a product, however,
the total optimization of the overall process is 47%: a very different
picture.

More on Probabilities

It’s far beyond what’s necessary for our purposes
(remember the logical fallacy of false precision),
but if you’re interested in this topic, there’s a
good overview on event probabilities at the Yale
website.

Taken together, the Process Posture Map, the Current and Future
State Operating Model chart, and the Sankey diagram of your Prin‐
ciples, Practices, and Tools give you a significant Roadmap, viewed
through different lenses, for your organizational strategy—which
your technology goals must align to.

Application Portfolio Management
The idea behind Application Portfolio Management (APM) was
borrowed from the world of financial portfolio management, and

146 | Chapter 6: Department Context

http://bit.ly/2PqeEiP
http://bit.ly/2PqeEiP

originated in the mid-1970s in a Harvard Business Review article.
With APM, you view your applications altogether and apply a cost-
benefits analysis in order to determine how to best rationalize and
plan the portfolio comprehensively. In this way, APM provides a key
practice for the strategic enterprise architect.

A purposeful APM exercise will help you answer the following ques‐
tions:

• Does your application portfolio properly support the current
and stated future aims of the business?

• Are you devoting enough resources to your strategic applica‐
tions?

• Are you providing too much financial support to noncritical
applications? Can you release some of that support to better
fund and position critical applications?

• Are you wasting money on legacy applications of low business
value?

• How can you plan future application consolidation or rationali‐
zation?

• Can you reduce overall IT cost by changing the way you sup‐
port certain applications?

• What risks do you have in the portfolio? Where should you
focus thought and design effort?

Once you’ve done the APM exercise, you’ll have a map to help you:

• Identify and eliminate redundant and unused applications.
• Consolidate similar applications into a single new application.
• Retire older and more expensive-to-maintain applications.
• Determine which data flows through which applications to opti‐

mize security controls.

Here’s an overview of how to approach your APM work and imple‐
ment this pattern:

1. List the known business goals.
2. List your technological goals.

Application Portfolio Management | 147

3. List your applications altogether, and the owners in business
and tech.

4. Apply the APM rubric to the application list to cluster them
according to business and technology attributes.

5. Evaluate and list strategies for each application.

The result of the APM exercise will be a strongly coherent view of
your total application portfolio that illustrates how well-aligned it is
with the business goals, offering you insight into what your strategic
plans should be to rationalize and optimize the portfolio. It gives
you a view into what applications are at risk, which should be dives‐
ted or retired, and which should be invested in and grown. It sug‐
gests a path for applying the skill sets of your teams to make them
more efficient.

The output of this exercise will be a spreadsheet in which you do
your APM work, and then a deck into which you transfer your find‐
ings. The spreadsheet will store your rubric of questions, the
answers for each application, and the graphs you generate. It is the
keeper of your “long math,” showing how you arrived at your rec‐
ommendations and substantiating the claims you’ll make in your
deck for how to move forward. You then use the deck to review with
stakeholders and align on your plans.

This process involves the following steps:

1. As you start the work, be sure that you first agree on your busi‐
ness goals and the list of applications. It’s amazing how people
don’t mean the same thing or that mature tech companies don’t
have a clear and commonly defined set of SKUs. This will help
guarantee that alignment.

2. Once you’ve defined the list of applications that everyone can
agree on (this is what the salespeople actually sell, this is what
the IT teams actually maintain, this is what business operations
actually budget and report on, etc.), then you want to make sure
that you have the list of the proper owners for each system.
You’ll need to consult with these people later when it’s time to
negotiate the plans for their applications.

3. Next you establish a set of questions that you can ask about each
application in order to establish its posture with respect to risk
and alignment. The questions are divided into business and

148 | Chapter 6: Department Context

technology categories. They aren’t open-ended, but rather
should have a numeric score attached to them, such as 1–5.
Each should be weighted by its relative importance. You’ll use
these scores to generate a scatterplot and make it into a 2×2
matrix as we’ve done before. That picture can then be used as a
cornerstone of your resulting APM deck with your recommen‐
dations. The resulting bubble chart looks something like
Figure 6-6.

Figure 6-6. The resulting APM bubble chart

The questions or assessment attributes on which you will evaluate
each application should be tailored to your environment. But in
general, they’ll focus on these ideas:

• What is the business value versus costs to maintain the applica‐
tion?

• What is the expected future business value or goals for the
application?

• What are the skills required to maintain and grow the applica‐
tion in the future, and how well positioned are we for such sup‐
port?

• What is the application health level, and what risk does that
pose to the business?

Application Portfolio Management | 149

• How ready is the application to undergo certain known or
postulated initiatives, such as a move to the cloud or legacy
transformation?

I’ll offer a set of questions or desired attributes in a moment that
you can use to help you get started, but you’ll likely want to custom‐
ize them for your organization and purposes.

Planning with Asset Classes
The APM is typically employed in organizations with too many
applications to keep in your head at once, and where different
knowledgeable, rational people might disagree on what the real
boundaries of the different systems might be. If you have only six or
eight technology products you’re doing an APM for, it’s probably
overkill and doesn’t make sense.

But if you have a large, diverse, mature organization under your
span of control, you might have a portfolio of 50 or 80 or 150 appli‐
cations. In these cases, an APM is essential, and you may want to go
an extra step and assign each application in the portfolio to an asset
class.

An asset class is nothing more than a label from the following
taxonomy, which you can use as a guide to suggest how to plan for
the future of the applications in each category. These are presented
in order of their presumed strategic value:

Strategic
Consider an application strategic if it represents a competitive
advantage to your company, has many customers, is expected to
grow, or is a competitive necessity. In these cases, you want to
ensure it has strong market positioning, you’re applying your
most innovative thinkers to it, and you’re focused on how to
add value and create a diverse, rich platform around it.

Informational
If an application is informational, your most likely course of
action will be to ensure it’s providing the most reliable data in
the quickest way, that it enjoys a comprehensive data set, that it
has a short turnaround time to get the data to support timely
decision making, and that the data is properly surfaced where
people need to see it.

150 | Chapter 6: Department Context

Transactional
These tend to be the backbone of business, whether they are
customer-facing or internal. There are only a few, clear things to
do with transactional applications: to lower costs and improve
throughput, ensure good-enough stability without overinvest‐
ing, and promote legacy modernization.

Infrastructure
If your team is a central organization providing infrastructure
services to the rest of the business, your aim is to provide the
quickest, most reliable support to the teams making the
customer-facing, revenue-generating applications. Note the
power of the asset classes: at AWS, compute and storage in the
form of S3 or EC2 are not in the infrastructure: they are strate‐
gic, because they are competing diligently with other cloud
companies. Unless you’re in the cloud provider business, it’s
pretty certain that storage and compute for you belong to infra‐
structure. All too often, infrastructure teams get caught up in a
“gatekeeper” mentality, rather than serving their internal cus‐
tomers with an enabling attitude. The thing to do with infra‐
structure is reduce costs to the business units, allow optimal
business flexibility and choice to best serve customers, and pro‐
vide some standardization. All too often, this standardization is
interpreted by those in central infrastructure teams with a war‐
den’s mentality—that is, as a means of keeping all the business
unit prisoners in line. This is the opposite of what they should
be doing. Standardization is intended to make it easier for the
business units to count on something, to train and skill up
appropriately, and to build their stacks on. If the infrastructure
teams can provide and even create real value, that’s fantastic.
Overindexing on standardization for its own sake to the detri‐
ment of customers is missing the point at best and an abuse of
power at worst.

Capability Mapping
Depending on the current purpose of your APM exercise, you may
want to take some additional time to create a capability mapping.
This means listing out the applications that participate in a process
or provide a business capability.

Application Portfolio Management | 151

If an application supports more than one business capability, you
will likely need to decompose it into modules or logical groups
within that application to state which supports what capability.

Business and Technology Attributes
The core of the APM pattern (as I like to use it) is a spreadsheet (see
Figure 6-7). Here you write the attributes you desire across the busi‐
ness and technology vectors; score each application against those
attributes, multiplying for assigned weights; and then get a score for
each vector for each application. That offers a quick way to reference
what you should do with each one.

Figure 6-7. List of attributes with each application and the resulting
recommendation

Here’s a set of technology attributes you can use to consider the level
of technical risk each application poses. But of course feel free to
modify it and add your own to best suit your purposes:

• Application code adheres to standards/strategy.
• Infrastructure adheres to standards/strategy.
• Data adheres to information management architecture.
• Application architecture is modular.
• There is an appropriate fault-tolerance architecture for applica‐

tion.

152 | Chapter 6: Department Context

• Monitoring/management is complete.
• Automated testing is complete.
• Provisioning/deployment is automated.
• Training and documentation are complete.
• Security implementation is complete.
• Technology foundation will be relevant in three years.
• Application requires a sustainable skill set.
• Core application is stable and meets SLAs.
• Integrations are stable and meet SLAs.

These are focused on a legacy application portfolio with an aim
toward rationalization. Using these will help you arrive at an overall
recommendation.

Here are some business attributes you might consider:

• Application is a strategic differentiator.
• Application strategy is well defined, consistent.
• Application is mission-critical.
• System outage creates high customer impact.
• System outage creates high corporate impact.
• Application features align with current business needs.
• Application features align with future business needs.
• Ability to quickly add features to the system.
• Clear governance steers the application.
• Enhancement efforts are historically accurate.
• Business process is efficient with no processes defined to work

around technical issues.

List these in your spreadsheet and do the math to score each appli‐
cation. The data page of your workbook should be constructed like
Figure 6-8.

Application Portfolio Management | 153

Figure 6-8. The data summary page of the APM spreadsheet

The data summary allows you to take a snapshot to put into your
recommendation deck or the appendix of your Strategy Deck. It
shows the long math that gives executives and yourself confidence
that you aren’t just making stuff up, but have a measured, objective
approach to portfolio management.

In the Quadrant column, you’ll assign one of four labels, depending
on where each application lands in one of four quadrants in a 2×2
chart that looks like Figure 6-9.

Figure 6-9. The APM application assessment quadrant

After scoring your applications according to their attributes for
importance and alignment to the business, you can chart them from
a spreadsheet into a scatterplot and see where they land within this
2×2 matrix. Each quadrant suggests a different posture for each
application and an attendant direction to take with them:

Grow/evolve/maintain
These are your highly aligned, strategically important, and low-
risk applications. Assess their costs to be sure those are optimal
and have not become bloated over the years. The risks, technical

154 | Chapter 6: Department Context

debt, and technology implementation are well positioned.
Assess your investment plans with these applications to ensure
you’re providing the right level to grow them, focusing on cus‐
tomer features, innovation, broader market applicability. Main‐
tain them at high levels and support them with disciplined,
strong staff and leaders who can act as operators.

Tolerate
These are your low-value/low-alignment and low-risk applica‐
tions. They exist for some reason, to fulfill some purpose, but
they don’t represent your future. You need to keep them around.
Staff them with more entry-level people. Evaluate their costs to
minimize them. You really don’t want too many applications in
this quadrant, or it’s a sign of stagnation overall. Figure out what
you want to do with these applications in the future. They aren’t
a high priority, but you don’t want stuff staying in this quadrant
forever either. Nudge them toward consolidation with other
applications in the growth category; or figure out if you can
nudge them toward the Retire quadrant, and get rid of them by
changing a process or eliminating the related low-importance
process; or outsource them.

Retire
These have low business alignment with high technical debt or
risk to the business. The costs to keep them around may far out‐
weigh their value to the business. These require you to make a
hard call, because invariably there are nice people associated
with these languishing applications, and some middle manager
fearing for the future who will campaign to save these. But
they’re almost certainly not worth it and no longer relevant. See
if there is any function here worth saving that you can consoli‐
date into another application, and scrap the rest and move on.

Reengineer/modernize/replace
These are the problem children, the question marks (see
“Growth-Share Matrix” on page 124). They have both high
business alignment and strategic importance, but have been
mismanaged and allowed to devolve into a high-risk state of
considerable technical debt. These are your workhorse applica‐
tions that are crucial to your business, but that have unfortu‐
nately been “stewarded” by a revolving door of leaders who were
interested only in short-term gains, investing in features and
not architecture. Or they may have been underinvested by exec‐

Application Portfolio Management | 155

utives who mistook them too early for a cash cow, found them‐
selves strapped for cash for long periods, or somehow deluded
themselves into thinking that their sports car never needs a
tune-up, new belts, an oil change, and tire replacement. You
have another tough decision to make with these, and the out‐
come is hard to achieve, the planning complex, and the work
long and hard. But it must be done because these are strategic
applications that are important to the business. Their features
are not inappropriate: they do what they’re supposed to. But
they won’t scale in the current architecture to grow the business.
Or they’re out of headroom. Or hasty decisions or full-on kick‐
ing the can down the road means they’re on an incredibly
expensive and proprietary database platform. They need serious
attention. So you must make a further business assessment and
have many stakeholder conversations here to determine which
quadrant to nudge them into: Can you replace them entirely
with a new greenfield system, putting them in the Grow quad‐
rant? That’s an expensive proposition and risky in itself, and
you’re almost certain to incur the wrath of business or product
managers who then worry about competing in the market since
they won’t be getting customer-facing features while you over‐
haul the internals. Or do you modernize them piece by piece,
service-enable them, move them to the cloud, and get them off
TPF and onto a modern platform? That’s an even slower pro‐
cess, and potentially a death by a thousand cuts that you may
not have time for.

This is the heart of the result of the APM work. But the APM in
itself does nothing. It gives you a current state assessment, and then
it is up to you to bring those findings before other stakeholders and
use it as the start of some crucial conversations. It’s one easy-to-
reference input into your overall strategy. You’ll need to pick based
on the outcome of the APM what projects it suggests, and in what
priority you should do them. Moreover, this approach to APM is
helpful because it will give you a handy reference guide as you plan
and prioritize the particular hot spots within each application. This
could help you not only in long-term planning, but in quick-win,
local remediation efforts as well.

156 | Chapter 6: Department Context

Project Heat Map
When you come into a new organization, you will discover various
projects under way. You may wish to apply the same general kinds of
ideas from our APM to determine the value and alignment of these
projects to evaluate their future. This idea is very similar to the
Investment Map (see “Investment Map” on page 130), but with a
finer grain and focus on projects. It’s simple. First, list the projects.
Next, determine their net value to the business based on standard
metrics such as internal rate of return (IRR) or anticipated return on
investment (ROI). Then, examine the quality of the project based on
metrics such as the technology employed, the capabilities it pro‐
vides, and whether the costs are in line and the timeline is on track.
Finally, you can plot them in a heat map. Figure 6-10 shows an
example of your results.

Figure 6-10. Project heat map

This heat map is clear. If the project is of low quality and low busi‐
ness value, kill it. If it’s of high quality, stay with it. If there are ques‐
tion marks on the project, then the recommended actions to take
are shown within the heat map, depending on where each project
lands. The recommendations and colors stay the same across any
given use of the heat map.

Use the APM deck to consult with key leaders in business and tech
to form investment plans. It can be used well alongside the Invest‐
ment Map and Process Posture assessments (see “Process Posture

Application Portfolio Management | 157

Map” on page 138) as you gather material for your Strategy Deck or
an Ask Deck (see “Ask Deck” on page 256).

If you have further interest in this subject, you can check out the
website of NASA’s Office of the CIO to see how it presents its appli‐
cations with APM.

Summary
This brings our technology strategy creation patterns catalog to a
close. You now have a wealth of frameworks that you can use in con‐
cert to create a comprehensive and long-term strategy, or that you
can use individually for more local strategic decision points and sol‐
utions of a smaller scope.

In the next part, you’ll see how you can communicate what you’ve
constructed in a compelling way that helps realize your plans and
architectural direction.

158 | Chapter 6: Department Context

https://go.nasa.gov/2BwI3Fl

PART III

Communicating the Strategy

In Part II, we examined a catalog of patterns to help you create your
strategy. In this part, we’ll look at how to take the strategy you’ve
created and communicate it in a compelling way to a variety of audi‐
ences in order to achieve your aims. The 20 communication pat‐
terns in this part are represented in Figure III-1.

There are patterns for the approach we take to the work as a mental
model. These are the most abstract, and represent a unique take on
how to think about your work, but also feature many practical tips
you incorporate into your daily work to make you more successful.
Finally, we’ll look at frameworks for putting together the decks in
which you will keep your strategy and make executive requests.

All of the creation and communication patterns taken together rep‐
resent a holistic, unified framework of templates you can use to cre‐
ate the substance of your technology strategy and successfully roll it
out.

Figure III-1. The logical architecture of the patterns for communicating
strategy

CHAPTER 7

Approach Patterns

Here we introduce the world of the communication-oriented pat‐
terns. You might think of this chapter as analogous to Chapter 2,
where I discussed analysis. It contains the underpinnings for com‐
municating in a variety of business settings to help you accomplish
your goals.

These are the patterns we examine in this chapter:

• 30-Second Answer
• Rented Brain
• Ars Rhetorica
• Fait Accompli

30-Second Answer
Executives are busy and need to synthesize a lot of diverse data
points quickly. They ask technologists questions because they have
something else in mind. They need to know things directionally
more than in great detail. When they ask you a question, give them
an answer that takes less than 30 seconds and has structure:

1. Map an outline of three bullet points in your head, and then
give the executives the simple, declarative, definitive answer.

2. Add your three reasons or characterizations with your three
bullet points also as high-level declarative statements. Picture a

161

single slide, with one headline that is your answer, and three
supporting points written in big, 30-point font.

3. Stop talking and let the executive proceed. They will either
make a decision, or follow up on the points they are interested
in if they want more information.

Here’s a secret: nobody knows what to do. The boss is a person with
children and a sick parent and nagging concerns about who will win
the pennant and what’s for dinner and the possible emptiness of
existence—like everyone else.

Here’s another secret. We hear about “busy executives” and think,
well, we’re pretty busy too. And so we all are. But the following
secret is maybe the most practically useful thing in this book for you
to know: the boss has to pee.

The boss has 19 meetings per day. She is late to every one of them,
not because she’s disorganized, but because it’s impossible to be on
time. She as a thousand mouths to feed. She has calls with the office
in Singapore and lunch with a customer. She has to deal with the
fallout of a security breach and is trying to hire a key salesperson
that could turn things around. She has coordinations and skip levels
and shifts gears constantly. I mean this quite literally: she doesn’t
have time for a two-minute break. People are talking to her con‐
stantly. She can’t walk down the hall with a moment to think. She
sleeps in hotel rooms more than her own bed. She goes to exotic
locations like Paris, Tokyo, London, Berlin, Brussels, Sydney, New
York, and Wichita, places we all dream of going—and she never sees
anything except the four off-white walls of a windowless conference
room before being whisked back onto the red-eye flight home. If
you fail to recognize this, and give long-winded, equivocal answers
in which you dissertate on the myriad possibilities in an open-ended
fashion to show how smart you are, because it’s a rare and exciting
and somewhat scary moment to have the boss ask you something
and you feel (rightly) that you’re on an audition, you have blown it.
Because in this short time that the boss is trying to listen to you, and
she needs to know the answer. And if she hasn’t had a break for six
hours, you are trying her patience in ways that can’t be spoken.

It’s an old saw that the architect’s answer to everything is, “It
depends.” This isn’t a good answer. We get it that stuff is complex,
abstract, ambiguous, and risky. That’s why we get to have jobs as
intellectual laborers, to sort these things out. Instead, give executives

162 | Chapter 7: Approach Patterns

the three headlines and let them “drill down” or “double-click” into
one they may want to hear more about.

This takes some training. Here’s an example. Say you run into the
SVP of Development in the hallway and he asks you, “Should we
delay the deployment one week in order to fix these two issues or
not?” He’s in information-gathering mode, collecting data points. He
will ask five other people and make a call. So your response might be
something like this: “Yes. We should delay one week. First, our cus‐
tomers are heading into the peak season, so we’ll have fewer oppor‐
tunities to make changes. Second, the load test results are
inconclusive. Third, it’s Memorial Day weekend coming up, and we
may not have the full team in support.”

The boss may then ask to drill down, saying, “Tell me more about
what’s wrong with the load tests.” Or he may say, “Got it, thanks,”
and move on. Either way, you did your job, and he’s happy. Of
course, being able to do speak in this way requires a bit of discipline,
and empathy, and knowing your book of business. It gets easier with
practice and the confidence that leaving out details is actually help‐
ful. Say the three critical things and then stop. Here’s how to think
about framing your answers. The boss almost always wants to know
one of these things:

• What is the project status?
• Do they need to do anything to help, or has the team got it?
• What is your recommendation on a particular proposed action?

Seeing into the boss’s question to consider which of these things he’s
probably asking is a fairly reliable way to frame your answers.

The 30-second answer is helpful and polite and shows that you
understand (empathize with) the boss’s concerns.

Rented Brain
Duff McDonald, author of The Firm: The Story of McKinsey and Its
Secret Influence on American Business (Simon & Schuster), drew this
connection in 2013: more than 70 past and present CEOs of Fortune
500 companies were McKinsey alumni. In 2011, more than 150
McKinsey alumni were running companies with more than $1 bil‐
lion in annual sales. The McKinsey consultant’s chances of becom‐

Rented Brain | 163

ing a Fortune 500 CEO are the best in the world, and more than
three times better than the second-place company, Deloitte.

They go to the best schools, often paying expensive fees to take
training courses to help them study just to interview for internships,
and compete for few spots in the most well-known firms. They
spend their time analyzing data and advising CEOs and other execu‐
tives in large corporations who can afford their hefty fees. They see
into many companies in many industries across the world. They
have access to enormous databases with company data from which
to draw their insights, access to templates and techniques that are
well tested, and access to thousands of colleagues all doing the same
thing.

Strategy consultants are sometimes called “Rented Brains.” They get
invited in, they get asked hard questions, and then they research and
put together a deck with their recommendations.

Early in my career, I worked for a very successful multibillion-dollar
retail company that is number one at what it does. Its top executives
loathed consultants. It was an ethos of the company. A story circula‐
ted that once upon a time a new vice president had been hired into
the company. The venerable, smart, dedicated, generous, and kind
CEO asked the VP for a plan in his area. Some time later, the VP
returned to the CEO and stated that his plan was to hire consultants
from a fancy consulting company to come in and make the recom‐
mendation. The CEO replied cheerfully, “That sounds terrific. Let’s
do that. So then is this your resignation? Because now I can’t think
of what I need you for.” The VP got the message, did his own home‐
work, and made the plan that he was accountable for. And he and
the CEO lived together happily ever after, and everyone became
rich. I think literally every employee at this 12,000-person company
knew this story of the idiotic VP who doesn’t think it’s his job to
know his own book of business. It was legend and lore; and the mes‐
sage was clear: 1) never hire consultants at this company, or recom‐
mend to because they couldn’t possibly care about and know our
business the way we do, in such deep detail. And 2) care about and
know about our business deeply: you’re part of the family, and we’ll
all be fine.

Working for an incredibly successful company—whose owner was
the richest man in the state, with happy employees who stay work‐
ing there for decades, and that had such an ethos—made a big

164 | Chapter 7: Approach Patterns

impression on me. I also had contempt for business consultants, and
for companies who hired them. Because I thought it meant three
things:

• It shows mismanagement on the part of the executive who hires
them, because it means he has not built his own leadership
team, and has not properly developed his people to care about
the company and know their book of business. They don’t know
how to do research, make a plan, and get something done.

• Even if the first is false, and the team is every bit as prepared as
“big four” consultants to make a good plan, but the leader still
thinks he needs the consultants, it can be for only one reason: he
does not trust his team to be objective and give him the hard facts.
He has built a team of sycophants, yes-men, wishy-washies with
no point of view at best, or political social climbers or outright
liars at worst. It means the leader has failed in his crucial, cen‐
tral role as Chief Culture Officer. Especially since, as we learned
earlier from Peter Drucker, culture eats strategy for breakfast.

• The first job of a consultant is to get the next job. They make
recommendations solving one problem in a way that creates a
new, bigger problem requiring more time and fees to help solve.

The Smartest Guys in the Room
Between May of 2000 and December of 2001, Jeff Skilling was CEO
of Enron. In that time, he had more than 20 meetings with McKin‐
sey consultants. Skilling himself was an ex-McKinsey consultant. As
he was driving Enron into the ground, the firm was paid more than
$10 million in consulting fees. The scandals also brought its com‐
plicit auditor, Arthur Andersen, down with it, not to mention wip‐
ing out the pensions of thousands of workers who were innocent of
the accounting frauds going on. One side effect of this scandal was
that it caused the Senate to introduce the Sarbanes-Oxley Act in
2002 to protect shareholders by improving the accuracy and relia‐
bility of corporate public accounting. The decline of Enron under
such manipulation is well portrayed in the engaging 2005 docu‐
mentary film Enron: The Smartest Guys in the Room.

Consultants have directly contributed to tremendous success, but
also the most colossal and scandalous failures in American business
over decades. But that’s just like most leaders. Business is complex,

Rented Brain | 165

there are a lot of people involved in successes and failures, and
there’s a lot of rolling of the dice and hoping for the best. My role
here is not to glorify and rave about some magic of these firms, or
to impugn and condemn them. They do a particular thing and have
some tools that, in the right hands, can be helpful.

Consultants can be a wonderful benefit to your team, and can
advise companies very well in areas where they can’t be experts.
This pattern isn’t to tell you to hire consultants or not to hire them.
It’s to remark on one mental shift in your own attitude that can be
helpful to you and your organization.

The good leader constantly asks her team for the bad news. Help
your team feel comfortable at saying what’s wrong. If you fly off the
handle and freak out every time someone tells you the hardware is
delayed two weeks, you are teaching them to hide things from you.
They come to decide that while you may eventually find out about
the delays, it won’t be from them, by which point it’s too late for you
to help.

Here’s the principle of this pattern. Every day when you go into
work, pretend you don’t work at your company. Pretend you are a
hired consultant, a Rented Brain, who is absolutely comfortable tell‐
ing the bad news, making the hard call, saying what truly needs to be
said, exposing the elephant in the room. You’re clear. Because as a
Rented Brain, you understand well that it’s your job to know your
book of business, and you’re perfectly comfortable giving the boss
your honest, best recommendation, even if it’s not what he wants to
hear, or doesn’t put his prior decisions in the best light. Act as if you
were a consultant who was not only free, but actually required to say
what needed to be said, and not just maintaining the status quo or
going along to get along. This mental shift isn’t that hard to do, since
you’re already exchanging your intellectual labor for a salary any‐
way.

Put a simpler way: speak truth to power. Tell powerful people what
they need to hear, not what they want to hear. You’ll be seen as (and
actually be) honest, forthright, forthcoming, objective, strong, confi‐
dent, and smart. These are cherished, and rare, qualities.

If your boss is a nut job who hates hearing the truth, can’t stomach
bad news, or can’t hear that he might not be perfect, just get another
gig. It’s over anyway.

166 | Chapter 7: Approach Patterns

Ars Rhetorica
You can use facts and logic and data and be right, and still lose.

When you are making a deck to recommend a strategy or technol‐
ogy architecture, you need a way to structure your arguments so
that your audience approves them. Remember the secret to happi‐
ness: figuring out what you want (that’s the first part of the book)
and then learning how to ask for it (that’s this part).

When you make a strategic recommendation, you need to be right
about the best course of action. If you have followed the patterns in
the first part of the book, you will be. So here we’ll assume your
claims make sense and are valid and have some data to substantiate
them.

Around the year 350 BC, Aristotle finished a treatise called Ars
Rhetorica, Latin usually translated as “The Art of Rhetoric” or “On
Rhetoric.” In this book, Aristotle positions rhetoric firmly alongside
logic as one of the three key concerns of philosophy (the third being
dialectic). His purpose is to illustrate how you can use debate and
persuasion to get people to see things your way—not by using omis‐
sion or manipulation, but in a logical and ethical manner.

According to Aristotle, to make a truly persuasive argument, include
three key elements:

• Logical arguments (logos)
• Ethical arguments (ethos)
• Emotional arguments (pathos)

You won’t be able to convince all the people all the time, but this
gives you better odds. Let’s look at each element.

With logical arguments, you persuade your audience based on logi‐
cal conclusions stemming from facts.

To make a logical argument, show charts, graphs, and numeric data
points, and illustrate in a direct line how they support your claims
by using the elements of analysis we covered earlier. These might
include:

• Using inductive and deductive reasoning, syllogisms
• Stating your hypotheses and the reasons for it

Ars Rhetorica | 167

• Stating your method to proceed in proving your hypotheses
• Stating the metrics you’ll use to measure your progress and how

you’ll source them
• Probabilities and ranges, confidence levels

Ethical arguments originate in the notion that we are easily persua‐
ded by people we trust. We scrutinize their arguments less. We take
them on their word as an authority and assign them credibility
based on who they are, their expertise in a related field, their work
history, and so on. In fact, an ethical appeal was the centerpiece of a
popular TV ad in the 1980s: “When EF Hutton talks, people listen.”
If Jeff Dean said something about the future of AI, we would listen.
If Warren Buffet even looks at the market funny, the Dow Jones goes
berserk.

Be careful here not to misstep into some of the logical fallacies out‐
lined next. It’s easy to do that because while someone’s background
as an airplane pilot is impressive and laudable, that doesn’t necessar‐
ily mean that person knows much about business leadership.

Ethical appeals can be valid, and citing research from noted authori‐
ties on different facets is a key ingredient to a successful argument.
In fact, Aristotle’s ethos-based rhetorical appeal forms the basis of
the Google’s PageRank algorithm.

Emotional arguments persuade your audience by swaying their
emotions, stirring them to righteous anger or disgust at the enemy,
winning their hearts with rousing and exciting talk. We see this all
the time in political speeches. These are actually important in busi‐
ness because if people don’t feel personally invested and committed
to your cause, they won’t perform as well. But if you try to get mil‐
lions of dollars out of the CIO based on emotional appeals, don’t
expect a check anytime soon. You can pull this lever more in town
halls and 20-minute speeches, with demos that are intended to
induce “ooohhhs and ahhhhs” from your audience.

These three types of arguments should be used all together, depend‐
ing on the setting and what you’re doing.

Note that overuse or improper use of emotional appeals is consid‐
ered a logical fallacy too (see the next section). The more scientific-
and business-minded among us tend to see through these
arguments quickly.

168 | Chapter 7: Approach Patterns

http://bit.ly/2Pw9BNT

Logical Fallacies
Earlier we showed several things you can do to help make a valid,
reasoned, logical argument. Some arguments look logical, but are
actually invalid or false pretenses to logic. These are called logical
fallacies and must be avoided. They use irrelevant points and contor‐
tions to make their claims, and will undermine your own persua‐
siveness. There are dozens of them, and they are particularly
perilous because they are so commonly employed in standard dis‐
course.

Learning how to spot logical fallacies when others try to pass them
off as logical arguments, whether intentionally or not, is an impor‐
tant aspect of doing good work. We see politicians using them all the
time. Let’s look at a few of the most popularly used fallacies.

Ad hominem
Latin for “against the man,” the ad hominem fallacy attacks a per‐
son’s background, physical traits, personality, irrelevant habits, race,
religion, sexual orientation, or other personal attribute in order to
suggest that their point or work is suspect, indefensible, or irrele‐
vant. Examples of the kinds of horrible things that get said all the
time that have no place in our work:

• What would she know about technology? Her degree is in phi‐
losophy!

• Don’t hire anyone from that company—they’re all corrupt.
• Well, you can’t trust anything that guy says; he’s a lefty.
• People of his religion are just concerned with making money.
• He’s no fun at parties. He wouldn’t make a good manager.
• As a woman, she would probably be great in HR or marketing.
• You know that guy’s a liar: he’s a lawyer!

This one is sometimes called “poisoning the well.”

Affirming the consequent
In the logical statement “If P, then Q,” the antecedent is P, and the
consequent is Q. In the statement, “If today is Tuesday, then I have a
committee meeting,” the consequent is “I have a committee meet‐
ing.” To affirm the consequent is to claim that the consequent is true.

Ars Rhetorica | 169

When you commit the fallacy of affirming the consequent, you
make an assertion, and by concluding that the consequent is true,
you then also conclude that the antecedent is true. But logic doesn’t
let us do that. The fallacy takes the form: “If P, then Q. Q. Therefore,
P.” We do this a lot in technology, in our panic to find solutions to
problems while troubleshooting.

Example:

• If the virus-scanning software runs too long, the application
server will stop. The application server has stopped. Therefore,
the virus-scanning software ran too long again.

Blind authority
The inverse of the ad hominem fallacy is the blind authority fallacy,
which is equally common, especially in business. It states, “A is the
ultimate authority. A made claim B. Therefore, claim B is true.” It
mistakes a military leader, business leader, or impressive corpora‐
tion as a sufficient condition or valid and sound premise unto itself.
This is false. The businessperson’s version of this is to cite someone’s
title as the reason they are right. We sometimes see this referred to
as the HIPPO: the Highest Paid Person’s Opinion. The technologist’s
version of this is to substitute “big important tech company” as
“ultimate authority.” Examples:

• Programmers at Amazon open-source their software, so we
should too.

• Google is putting AI at the heart of its strategy, so we should
too.

• Facebook doesn’t use the cloud—it uses its own data centers, so
we should too.

• The CTO said we should should run all the servers out of his
basement. That’s why it was right for me to pack them up and
move them there.

• The CEO said we should use mark-to-market accounting, so we
know it’s a best practice.

In technology we go crazy with the blind authority fallacy. Luckily,
it’s easy to spot and dismiss.

170 | Chapter 7: Approach Patterns

Blinding with science
We see the blinding with science fallacy in tech a lot. Smug technolo‐
gists who just want to get their way try to bore their executive busi‐
ness leaders by dumping tons of only marginally relevant data on
them to make them “cry uncle,” or try to give the impression that
they’re such authorities that you should just go with their conclu‐
sion. To commit this fallacy, overuse acronyms, drop names, and
refer constantly to arcane and highly technical-sounding things. Be
suspicious if you hear something akin to this in a meeting:

• The X-86 Xeon double-cores their dev ports because their
hyperthreading has a 2.11 rating but they have an in-bloom fil‐
ter, which, in version 9.8.1 finally, uses Merkle Trees so we’ll get
the best results. You should spend five million dollars on those
servers.

Developers do this a lot by digging into arcane details of their favor‐
ite JavaScript frameworks and claiming that we have to then switch
everything to their flavor of the month. Pharmaceutical companies
sometimes talk like this publicly in their advertisements. When
someone starts talking like this, and I don’t know for sure a) what all
the things they are talking about are, and b) that those things are all
both true and relevant, I get very suspicious that they’re trying to
manipulate me into doing what they want, regardless of its true
importance or validity, by blinding me with science. These same
people commonly also employ, and are themselves the frequent vic‐
tims of, the blind authority fallacy.

Here’s the antidote: immediately divest your authority on the matter,
but become incredibly interested in the details, effectively taking the
fallacy committer at her word. In this way, you can be completely
polite yet entirely disarm the committer. Say, “Can you explain that
to me? I don’t know what an X-86 hyperthreaded dev port is. Why is
that important to our throughput issue?” Another version of this,
put more bluntly, is “Explain it to me like I’m 10.” Maybe her con‐
clusion is sound and you should in fact buy her favorite server. But
now you’ll know.

Hasty generalization
Sometimes called “converse accident,” the hasty generalization is a
common fallacy for inductive reasoners to misstep into. It is very
common for technologists as well, who look at data and are fre‐

Ars Rhetorica | 171

quently pressed to give answers before having enough time to collect
relevant samples. Hasty generalization means making an unjustified
conclusion based on very limited data, an anomaly, one special
example, or biased evidence. You can recognize this fallacy because
it always proceeds from the particular to the general. Examples:

• There are three rows in the database with bad data. Our pro‐
grammers are so sloppy.

• Suzy is a really good programmer. Technologists are always so
smart.

• Robin: I guess you can never trust a woman.
Batman: You’ve made a hasty generalization, Robin. It’s a bad
habit to get into. (Batman television series, 1966)

Petitio principii
Commonly referred to as “begging the question,” petitio principii is
one of the scariest, most damaging forms of fallacy, for two reasons:
first, it’s so common, and second, people can do this without realiz‐
ing they’re doing it, and think they’re being perfectly reasonable. It’s
a method of using as your evidence for a claim simply a restatement,
or rewording, of that same claim. It takes the logical form P ⇒
P′ (where P′ is merely a rephrasing of P). It’s a fallacy because the
conclusion does not logically follow from the premise. Here are
some examples:

• “All men are rational, so Charles is rational.” We forgot to say
that Charles is a cat.

• “Effective learning occurs during short study periods because
your study time is not wasted in longer stretches of drudgery.”
(Jeremy Bentham)

• “To allow every man an unbounded freedom of speech, must
always be, on the whole, advantageous to the State; for it is
highly conducive to the interest of the community, that each
individual should enjoy a liberty perfectly unlimited of express‐
ing his sentiments.” (Douglas Walton, Argumentation)

This is often called “circular reasoning,” like “P, therefore P,” or more
subtly, “A, therefore B, and B, therefore A.” Hardcore logicians will
take issue with my saying this, because they’ll make finer distinc‐

172 | Chapter 7: Approach Patterns

tions, but it’s close enough for our purposes. The way to defeat this
fallacy is to ask for evidence, upon which the committer will likely
restate the premise, and you’ve got him.

Post hoc, ergo propter hoc
Post hoc, ergo propter hoc is often shortened to simply post hoc. The
full phrase is Latin for “after this, therefore because of this.” It looks
like this: “P happened. Then Q happened. Therefore, P caused Q.”
We do this in troubleshooting a lot: “I upgraded the Java version on
the server. An hour later, the server went down. Therefore, upgrad‐
ing Java made the server go down.” I have seen this kind of logic
employed countless times at 2 a.m. on crit-sit calls. It’s a tempting
conclusion to draw because the first thing we want to isolate is what
changed. But it’s a fallacy. All that you’ve done here is identify a
potential candidate to investigate. Which is a laudable and necessary
thing to do in troubleshooting. Just don’t make too many assump‐
tions based on it.

There are many more logical fallacies (a frightening number,
actually—it’s amazing anything works at all given how frail our
arguments can be), and many good books devoted entirely to the
subject. A really fun read on logical fallacy is called How to Win Any
Argument: The Use and Abuse of Logic by Madsen Pirie (A & C
Black). But being armed with these popular ones should go a long
way.

In this pattern, we’ve covered the three elements of a strong argu‐
ment: the logical, ethical, and pathetic appeals. These are
called “appeals,” because you’re appealing to that faculty or aspect of
your audience. To be truly persuasive, your arguments, your public
rallying toward a vision, and your decks should contain elements of
all three.

You can read a more in-depth discussion in Book II of Aristotle’s
original text.

Ars Rhetorica | 173

http://bit.ly/2Pt7Hh1
http://bit.ly/2Pt7Hh1

Fait Accompli
When the good leader’s work is done, his aims fulfilled, the people will
all say, “We did this ourselves.”

—Lao Tzu

The term fait accompli is French for “an accomplished fact,” as in a
“done deal.” It refers to something that has been decided or hap‐
pened before those affected have a chance to hear about it or
reverse it.

After you’ve done the work of crafting a strategy with tools we dis‐
cuss here, you will be faced with a meeting to present your findings
to the board of directors, the senior leaders in your department, or
some other deciding managerial body, depending on your place in
the organization and the scope of your work. This pattern is about
how you handle that meeting. You can have the greatest strategy in
the world, but if you let this meeting get away from you, you can
really damage and dilute the chances for your good work to thrive.

Facing a Cold Audience
This pattern is about making sure you don’t go in to present to a
cold audience. By “cold audience,” I don’t mean necessarily one that’s
adversarial or defensive, but rather one that you have not prepped,
and does not have at least some idea of what you’re going to say.

The naïve approach is to come to the meeting and unveil your work
to a cold audience. You’ve scheduled the meeting, people show up
wondering what you’re going to show them, you present your strat‐
egy, and you ask if there are any questions. In such a forum, with a
cold audience, you will be lucky to get past the third slide.

What is most likely to happen is that the managers, directors, VPs,
senior executives, or whatever level of folks are in this audience will
completely reroute the conversation away from what you’re present‐
ing. It won’t be on purpose, they won’t mean to, and the origins of
where you lost them will be hard to trace. But an argument over
some tangential matter will ignite, or you will get tremendous focus
of a very aggressive nature. People will launch damning questions,
puzzle out loud, or otherwise attack the work.

174 | Chapter 7: Approach Patterns

You will be left standing there, having presented a small portion of
your ideas, with no one seeming to care about it or a palpable sense
of confusion about what you’re trying to do and why. Because the
presentation erupted into a bunch of side conversations with people
not paying attention or performing an outright mutiny on the ideas,
it gets rejected either explicitly or implicitly, with people not want‐
ing to hurt your feelings or be the shark at the meeting, but ulti‐
mately you’ve not moved them or changed their minds or gotten
them on board with your plans.

This is a failure, and you don’t usually get another shot at it. This
can be incredibly frustrating for you, and prevent the organization
from moving ahead with your great ideas. Why would this happen?
There are a few, marginally related reasons.

Anytime you’re presenting in a work forum like this, people have
only one question in their minds: What’s in it for me? They immedi‐
ately start calculating. How does this message affect me, my teams,
and my chances for success; encroach on my territory; or signal the
coming of some change that I might find incredibly disturbing or
rife with opportunity?

There’s a cliché we often hear in business: people do not like change.
We’ve all heard this. But it’s not quite true. What it really means, or
should mean, is that people don’t like change that is imposed on
them. We might be perfectly happy to change jobs, get a new hair‐
cut, or move to the Smoky Mountains. People are fine with change
and they do it all the time. But we would not be happy changing in
any of those ways if someone else forced us to do it without asking
us, without consulting us, or without recognizing that we have some
vested interest. We can make all kinds of changes all the time, with
great enthusiasm, even as a work force within a big software com‐
pany. But not if we aren’t included.

Here’s the mistake we made in our meeting: we didn’t include the
audience in our process, or at the least given them a heads up and
taken some input. When you go to a meeting and some director
unveils her new “strategy” and you’re not sure why you’re at that
meeting, what the outcome is supposed to be, who she thinks she’s
talking to, what’s going to be decided, and worse, those proposals
tend to get undermined explicitly or politely disregarded.

Fait Accompli | 175

The Meeting Before
What you need is a fait accompli. Put simply, you have the meeting
before the meeting, in a bunch of little meetings, to line everyone
up. Then the big meeting where everyone is ostensibly there to hear
your message and accept it is more or less over before it starts, with
people by and large on board, because their buy-in happened
already: it’s a fait accompli.

You need to have the meeting with each of the key stakeholders,
individually, before the meeting, to get them on board separately.
Then, when the big day comes, it’s just a show about nothing, which
is perfect, because you’ve already made everyone the ally of your
proposal. The best outcome at the big meeting is that nothing much
happens. No one is caught off guard, no one is challenged and gets
defensive, no one is confused about what’s happening, there are no
hecklers taking everyone down a rabbit hole with their one weird
line of reasoning, everyone nods in agreement, and you get a yes
because you’ve already gotten one from everyone privately before‐
hand. With each audience member feeling separately in concert with
your proposal, there’s nothing to discuss, your stuff gets approved
with little fanfare, and you get your bag of money to go change the
world.

In essence, you need to suck the drama out of your own meeting,
before it happens, so no one else can add their drama and under‐
mine your work. If you don’t do this, some person who is the most
threatened, or whose perspective you have least considered or cared
for, will act like a heckler at a comedy show. And if that person has
any power or respect from the others in the room, human animal
nature will be to spot the weakness, see that things are going south,
and pile on. And then you’re sunk.

So instead of relishing the drama of such a meeting, you have several
little informal meetings with the key stakeholders. These can be
short.

It is very hard work to put together a smart strategy for a changing
and complex business. It can take many weeks. After toiling away,
alone in a room, thinking, reading, and working hard, you might
find it incredibly tempting to come to the reveal meeting in the
manner of an artist or a showman, excited about your ideas. That’s
natural. But it’s not strategic. We see Steve Jobs and his attendant
deification, and it’s tempting to want to emulate these kinds of dra‐

176 | Chapter 7: Approach Patterns

matic unveilings. But unless you’re Steve Jobs, this is probably not a
great approach. As the business cliché goes, you want to be posi‐
tioned not as the “sage on the stage,” but the “guide at their
side." When you’re the genius who went to the mountaintop, did a
yoga pose, and had the gods reveal unto you the One True Light and
the Way about what your technology strategy should be, and now
you’ve come back to the commoners to spread your gospel, don’t
expect much support.

So here’s how to implement the Fait Accompli pattern, in a few easy
steps:

1. Look at your Stakeholder Matrix (see “Stakeholder Matrix” on
page 105) and RACI (see “RACI” on page 108) and make the list
of whom to invite to the big proposal meeting.

2. Determine the list of who the key stakeholders are—the people
with the most clout. Determine who is most affected by your
proposal, who has the most to lose by it, and whose daily lives
your proposal would disrupt the most. Carefully consider on
this list the people who don’t like you, aren’t automatically on
board with your ideas, grumble no matter what, showboat at
meetings, and make everything about them. Try to see yourself
as they would, as that external imposer. If you show up to
announce that everyone’s getting a new haircut and moving to
Milan, expect a violent and quick uprising. This will happen
even if everyone in the room wants to move to Milan.

3. Interview these people individually, tell them what you’re think‐
ing, and ask if it makes sense to them, what you’re not consider‐
ing, how it can be improved, and what ideas they are working
on that might be incorporated. Take the notes with gratitude
and make places for them in your work.

4. Then, like a salesperson, ask them bluntly, “If we incorporate
these changes, does this direction make sense to you? Is this
something you can support?” Recognizing later that they
already have signaled their clear approval to you, they’ll be loath
to reverse that publicly at the big meeting.

Fait Accompli | 177

5. Go to your big meeting with the clearly stated agenda that
you’re making your proposal or stating your new direc‐
tion. Once there, make sure that you reference the stakeholders’
work, credit their ideas, and thank them for their contribution.
This is not only honest and proper, but has the pleasant side
effect of creating an echo chamber of support in the room.
You’re implicitly telling the other bosses in the room: “Betty
Boss contributed this idea, so this proposal is partly hers too. So
you can’t attack this without also attacking Betty Boss,” which
they will be much more hesitant to do.

Your strategy will get approved, and you will have made a fait
accompli of the proposal. Nicely done.

This pattern is not about manipulation. It is about empathy and
truly strengthening your work in a material way. There is also an
awareness of some of the quirks of human behavior in business set‐
tings that don’t have to be allowed to run rampant.

Managerial and executive types do not like surprises. Ever. And they
definitely don’t like their authority undermined or ignored. But if
you line them up privately before the meeting so they can make
valid and important points that you can consider, work into your
proposal, and credit them with, and give them a chance to get their
voice heard and state their frustrations or concerns, all will go well.
You won’t be surprised, they won’t be surprised, and your proposal
will actually be better, more relevant, and more impactful with the
multitude of voices with different perspectives taken into account.

When this pattern is most deftly executed, people don’t have an
experience of approving your work at all: they think you are merely
representing them and simply relaying the strategy we all know is
right. They will think, “We did it ourselves.”

Strategy is the art of creating power. If you don’t give them power,
they will take yours.

178 | Chapter 7: Approach Patterns

Dramatic Structure
If in the first act you have hung a pistol on the wall, then in the follow‐
ing act it should be fired. Otherwise don’t put it there.

—Anton Chekov

The good ended happily, and the bad unhappily. That is what Fiction
means.

—Oscar Wilde

The Dramatic Structure pattern is applicable when it’s time to struc‐
ture your Ask Deck (see “Ask Deck” on page 256). When you make a
deck, you need to be very clear on who your audience is and what
you want them to do. The best way to get them to agree to your
plans is to engage them according to the three forms of rhetoric, or
persuasive speaking, that you learned in “Ars Rhetorica” on page
167. You can engage them on an emotional level, not by making
baldly emotional (pathos) appeals as politicians so frequently do
(because this is business), but by weaving it into the way you struc‐
ture your deck.

The structure of most movies, plays, and television shows has
changed little since Aristotle first identified the optimal dramatic
structure in his work The Poetics, some 2,400 years ago. That work is
wide-ranging, and we’ll pick up only a few relevant cues here.

Our culture reuses structures and stories a lot. The popular Disney
movie The Lion King is simply a retelling of Shakespeare’s Hamlet,
but with cartoon lions, as is the goofy comedy Strange Brew, but
with drunk Canadians. That’s not so much because we’re not imagi‐
native, but because certain things work. We find novel ways to apply
the same story or the same structure. There are approximately 10
gazillion blues and folk songs with an E-flat, A-flat, B-flat chord pro‐
gression. It works. So what can we learn from this?

Consider the following. It’s the basic plot structure of the standard
Hollywood movie, dramatic literature, novels, and TV shows across
all media, all genres, and all eras:

1. In the beginning, we see the status quo. This is “the way things
are today.” We understand the main characters in their normal
setting. They get breakfast, take the kids to school, are stymied
in traffic on the freeway. The guards stand watch at the gates,

Dramatic Structure | 179

just like every night. We have established the normal routines.
This is this family, and these are the things they do. Everything’s
fine.

2. But then one day…there’s an Event. This is called the “inciting
incident.” There is a rupture in the status quo: the first earth‐
quake tremors ripple through San Andreas, the bad boy comes
to town, the ghost of Hamlet’s father appears to tell his son he
was murdered, the hotel appears to be haunted, we learn of the
inexorable pull of Willy Wonka’s golden tickets.

3. Now there’s a problem. We can’t possibly just maintain the sta‐
tus quo. Nothing can ever be the same again. The stormtroopers
killed our family. Our lives have been spun in a different, unan‐
ticipated direction. We have no choice but to embrace our new
fate, accept the challenge we never wanted, learn the ways of
The Force, and become the hero we were meant to be, however
reluctant or scared we are to do so, even with all the things we
must leave behind.

4. The hero battles the villain (Darth Vader, Voldemort, the Nazis,
alcoholism, the tornado, the Mean Girls, the aliens). The odds
seem insurmountable. We look for escape, and just when we
think we’ve found a way out, we’re crushed again. We are now in
the depths of despair. But in our resourcefulness and ingenuity
and spunkiness, we see a tiny spark of hope: the dim possibility
of a way forward. But we’re exhausted. If only we could muster
an ounce of energy. We are visited by our teacher, a sage, a mas‐
ter, a ghost, or an angel that reminds us of our fortitude, and
that despite the odds, we must go on.

5. The hero defeats the villain, the enemy is banished, the reluctant
sweethearts get married, and we’re safe again. Even in tragedies
where the hero dies, the conflict is resolved, and the world is
now free to enter the New Normal. We resume the status quo,
but now things are different, and we’ll all adapt to this new state
of affairs, accepting and beginning our new routines undistur‐
bed.

Just about every story in our culture that isn’t a wacky fringe art-
house experiment (and even some of those) follows this structure.
Across the wide range of apparently really different shows, whether
it’s The Godfather, The Wizard of Oz, Willy Wonka and the Chocolate
Factory, The Shining, Silkwood, Star Wars, or Superman, this is the

180 | Chapter 7: Approach Patterns

foundation on which they’re all built. It sounds like most software
projects too.

This structure engages audiences. The purpose of this pattern is to
illuminate this structure so that you can adapt and apply it in your
decks. If you do, your deck will be empathetically taking care of your
audience, helping them hear your story, and see what matters, and
make it more understandable, impactful, and memorable. And
you’ll get a green light.

So let’s translate this for when we have to make a presentation pro‐
posing a new direction. Say you’re making a Strategy Deck (see
“Strategy Deck” on page 259) or an Ask Deck (see “Ask Deck” on
page 256), or want to propose that we embrace a new software
development method. Here’s how to do it.

Establish the Status Quo
The status quo grounds the audience: we know where we are on this
common ground. We restate our shared goals, acknowledge the cur‐
rent process, state a clear picture of our teams, and show the archi‐
tecture diagram of the current state. We’re getting buy-in here that
this is Where We Stand Today. This is a level set of What We Know
to Be True, and Our Shared Understanding.

Create an Inciting Incident
But something’s rotten in the state of Denmark. There’s a scratching
at the door. We show the current state architecture with all its spa‐
ghetti mess of connections, leaving our teams debilitated. We point
out the areas of exposure, weakness, and vulnerability in security.
We show charts depicting the number of Priority One incidents: the
trend is bad. In fact, if we stay on this course and do nothing, we are
doomed. We show the effect of exactly what the state will be if we do
not act. We have two years to migrate the servers, and then we’re out
of IP addresses and we can’t add more customers. State clearly, with
real data and projections, exactly what you expect to happen. The
alien ships will land and enslave everyone they don’t kill, we’ll lose
the family farm to the bank and end up on the street, the spaceship
will go careening into the sun/black hole or run out of fuel, and
everyone dies without a parent to raise their dear children. You
show what bad effects are in store for the business if you don’t act.

Dramatic Structure | 181

As in the movies, the stories in business are few. The effects are
going to reduce to one of these:

• Our costs will go up, while our quality and availability go down.
• We will be slower to market, and the competition will win.
• We will lose this revenue opportunity.
• We will lose these key customers.
• We will lose these key employees.

You should illustrate these with data you cultivate, like the movie
scientist with the white coat and pointy stick who warns everyone
what will happen, but they’re too dumb/lazy/entrenched in making
money to heed his emphatic warnings.

You are showing, as vividly and truthfully as you can, what The
Problem is and what the impact will be if we continue the status quo.
If the problem you’re solving doesn’t reduce to one of these, you
might be framing it wrong.

In Case It’s Not Clear
I want to be crystal clear on this in case someone goes bananas with
this and takes it the wrong way: with this pattern, I am in no
way recommending or suggesting that you overstate anything, fic‐
tionalize anything, make a silly show of anything, or make your
presentation somehow a drama. Quite the opposite. It is an organ‐
izing principle only, and should go completely unstated by you and
entirely unnoticed by your audience. State only true facts and make
the claims you actually believe. I reference this structure only as an
unspoken frame on which to hang real data, actual claims, and logi‐
cal and substantive arguments, as merely a hopefully memorable
way for you to organize your concrete thoughts. There’s no hyper‐
bole and no manipulation of anything or anyone. You’ve got to
organize your slides some way. I’m just saying that when you orga‐
nize them this way, your audience will subconsciously interpret it as
a story, it will make intuitive sense to them, and they will hear you
better than they hear other people, and be more accepting and
appreciative of your work. And secondly, if you struggle to fit your
work into this frame, that means you haven’t done enough home‐
work, so doing it with this principle helps you to see the conse‐
quences and make better strategic choices

182 | Chapter 7: Approach Patterns

The Plan
The plan is how we state the way out. This is the “therefore”
moment. The Rock has got to steal the helicopter, fly it into the dam,
and defuse the bomb—we’ve got two hours until it goes off.

We were living on credit cards and never updated our legacy soft‐
ware, and now it’s time to pay the piper. Here’s how we decompose
the monothlic system and turn it into a modern platform. Here’s
how our new tech will capture this market. Here’s how we fix the
quality and scalability issues that have plagued our mission-critical
system.

Because the world changed in ways we didn’t ask for, didn’t antici‐
pate, or weren’t ready to confront, we must act. And here is the sim‐
ple single statement of the path forward, the clear recommendation
you’re making, your plan: to fix the problem, we must do this. Make
it a single sentence of your new goal. We were just going to live on
this planet and be farmers, but now we have to go be Jedi Knights
and blow up the Death Star to restore peace and justice to the galaxy.

Show what changes you expect across people, process, and technol‐
ogy. Who will be involved, what work will they do, what processes
need changing, what tech will you buy or learn or add to, and what
is the future state architecture?

Using Directional Costing (see “Directional Costing” on page 218),
show how much the plan will cost, so they know what you’re asking.
Show how long it will take and who will do the work.

But much of this we’ll look at in more detail in “Ask Deck” on page
256.

Shock and Awe
Shock and Awe was a military tactic developed in the late 1990s. Its
goal is to paralyze the will of the adversary to fight. Using this as a
metaphor, you overload your audience with such an onslaught of
brutal facts about the status quo that they become incapable of
resistance. Make a show of such decisive force in your deck—the
painful succession of problems and bad outcomes for not agreeing
to your plan, such that it’s urgent that the executive make a decision
now—they obviously will choose your path since you’ve so clearly
gathered the facts and thought it through and they just can’t wait for
your plan.

Dramatic Structure | 183

Here, you all but crush the hero. You never use hyperbole or over‐
state the case or say anything false. Just be brutal in making the
audience uncomfortable, confronting them with the real problems,
as a Rented Brain would (see “Rented Brain” on page 163). Be spe‐
cific about the bad things that will happen, using charts and graphs
and projections in order to be clear on the time frame you have.
How long until the bomb goes off? You pile on more and more in
succession until they all but beg you to stop.

Finally, you state the following:

1. Your definition of done: this is the concrete statement and clear
view of what the world looks like at the end of all this, the future
state architecture once you’re done.

2. How you will measure that success, how you’ll show progress,
and the metrics you’ll use.

3. The structure you’ll put in place to report back on those metrics
and progress to a steering committee made up of these stake‐
holders. The executive is still in control: all she has to do is
agree, and everything will be fine.

You have rocked their world with a cataclysmic event, piled on more
and more pain like the Book of Job, shown them a path forward,
and given them the assurance and mechanism of transparency that
leaves them confident and relieved that this plan is in place and they
are still in control and can’t wait for the New Normal.

Here’s a second great benefit to employing Dramatic Structure: if
you can’t honestly weave your request into this structure, if you
don’t know clearly what the real reasons are that you want to move
to the cloud or make all the programmers learn AI, or you can’t
explain why everyone should stop doing Agile and start doing Fred’s
Cool New Software Development Method, then you might not have
good enough reasons.

If you can’t create the inciting incident this way, and don’t know
what will happen if the team doesn’t follow your recommendation—
or if what will happen is that Everything’s Still Just Fine—then you
might have a solution looking for a problem or you might have
merely made a Shopping List of Shiny Objects that would be fun to
put on your résumé. If you’re not solving a real business problem for
anyone, then it shouldn’t be done.

184 | Chapter 7: Approach Patterns

I’ve employed this structure in every Ask Deck I’ve made for the last
decade, and there have been many of them, requesting many tens of
millions of dollars to go do important stuff that needs doing. With
this structure, I’ve never been told no. It can work for you too.

Deconstruction
It ain’t what you don’t know that gets you into trouble. It’s what you
know for sure that just ain’t so.

—after Josh Billings

When the blackbird flew out of sight,
It marked the edge
Of one of many circles.

—Wallace Stevens, “Thirteen Ways of Looking at a Blackbird”

Il n’y a pas de hors-texte.
—Jacques Derrida

As technology leaders, architects, and strategists given a problem,
we are all too often devoted to directing solutions toward local
optima. In computer science and applied mathematics, the local
optimum is the best solution within a cluster of neighboring candi‐
date solutions. Local optima are easier and quicker to find than
potentially more impactful, global solutions. “Quick wins,” as they
are sometimes called, appeal to leaders of the short-term mindset,
who are focused on quarterly earnings per share, willing to live on
credit cards to enjoy the high life now, and content to defer larger
problems to their successors.

Solving local problems is an important part of our jobs, and needs to
be done. But architects and leaders who too frequently focus on too
fine-grained matters, on small issues with few branches, can actually
perpetuate and worsen the organizational dysfunction that they pur‐
port to address. This is one inherent contradiction in problem solv‐
ing. Another, as Paul Virilio showed us, is that solving one problem
concomitantly creates another.

In short, contradictions abound, and they do so in ways that subvert
the scientific mindset of the typical engineer or data-driven analyst.

Deconstruction | 185

Three Levels of Problems
When you are faced with solving a scalability problem within an
application, consider the very meaning of “scalability.” Consider it
across contexts. What other functions constitute the set of conjuncts
of propositions that make up the domain of discourse? Said more
directly, when you’re solving a problem, look at three things:

• The local problem
• The category that this problem is in, the set this is a member of
• The associations in which this problem arises in other contexts

This is not a deceptive way of suggesting that you turn every mole‐
hill into a mountain. It is saying that if you have a scalability prob‐
lem on this system, you have a scalability problem in general, and
that solving the problem won’t solve the problem, and you’ll have it
again. See further.

When given a problem, we seek solutions and seek to find problems
in our own history that match this one. We are implicated in our
own histories, which can harm as much as benefit us. We solved X
this way in the past, so we might be able to apply that to new prob‐
lem Y. We assume constraints, taking as necessary what may be con‐
tingent. Because of the way we bound the problem within a domain
of discourse, we miss rich signals from other nearby clusters. We can
upgrade to the latest version of some software and increase capacity
on some server to solve a local problem of this bug or that through‐
put. Local optima might solve the problem at hand, creating the best
situation for the here and now, but fail to find the global optima
revealed by a cross-disciplinary approach to our mental model of
the domain.

Moreover, this creates in us an overconfidence in the stability and
veracity of our viewpoints. It is hard work to create a viewpoint, to
come to understand complex systems, methods, and organizations.
It seems therefore difficult, if not exhausting and cruel, to suggest
that our path forward is to destruct, reconfigure, and reconstruct
them at once, even in the act of building, improving, and
honoring them.

Because we do not raise our visor to the horizon of context, we do
not scale as well as we might, either in our own roles or in helping
the organization do so. When we fail in this as leaders, we leave our

186 | Chapter 7: Approach Patterns

organizations inefficient, because we need to solve problems repeat‐
edly instead of addressing the context in which they arise to improve
the overall state. We leave our teams anemic, with a few key subject
matter experts as single points of knowledge and single points of
failure. We cannot scale our business, growing from a $2M funded
startup to a $100M attractive business, to a $300M market leader, to
a $500M public growth company or $1B diverse holding. Scaling
means seeing context and acting to create new contexts.

The problem of having the same repeated problem, which creates
organizational inefficiency, is one thing the Deconstruction pattern
addresses. It is the pattern for a different way to define our mental
models.

Three Causes of Problems
As you approach your work, look not only to solve the local prob‐
lem, but to see the broader frame in which it can obtain (“obtain”
here is used to mean “obtain ontological status,” or “come into exis‐
tence”). To do that is to see those contradictions that adhere as you
interpret data to create insights. The contradictions abound, and
they abound in signs. If we are not aware that we are dealing with
signs, that signs are the “water”—the ocean in which we swim—and
that they are always already rife with contradiction, our vision and
our methods, our ways and means, our strategy, and therefore our
organization, will suffer.

I submit that there are three primary factors in technology organiza‐
tions that account for most, if not all, of their problems:

• Lazy people
• People who are not lazy, but don’t think about how they think

about their work
• A misunderstanding of semiotics

Too frequently we may solve a problem directly, only to have it
appear again later, in the same or similar form. We thereby make a
fundamental mistake: we come to believe that this is our job, the
repeated solving of this same problem, because we get better at solv‐
ing it and better at seeing it in the first place. So we create an unheal‐
thy attachment to it, in a sort of Freudian repetition compulsion.
Freud first discussed this psychological phenomenon in 1914, stat‐

Deconstruction | 187

ing, “The patient does not remember anything of what he has forgot‐
ten and repressed, he acts it out, without, of course, knowing that he
is repeating it.” Freud elaborates this idea in the later work Beyond
the Pleasure Principle, which serves as an unfortunately relevant, if
unwitting, discourse on the state of many work processes in modern
organizations.

Left unwatched, our work is a mere variation on this theme, the
diminishing drudgery of the same little riff, echoing into the eternal
void. This is, in part, a mistake in our mental models, the assump‐
tion that the world is divided between two things: the signified and
the signifier. We see this thing, and we name it. Signified, signifier.
In the act of naming it we create a direct relation to it, and reinforce
the tendency to solve the local problem. The label fixes the concept.
We have then put in an honest day’s work. A continuing collection
of honest days’ work is called our “job.”

Organizations whose constituents mostly act in this perfectly
reasonable-seeming fashion cannot scale. Your “job” gets in the way
of your work.

This is a call to inspect our categories, in order to make a new order
not for solving the same problems, but instead for seeing how to not
have those problems, perhaps without ever “solving” them. Or to be
able to solve the problem while concomitantly extending the con‐
text, such that you invite a bigger, more interesting, better problem
to contend with. In doing this yourself with your team, you will
build a better business, and have a better chance of growing and
scaling the business. Another way of putting this to yourself is,
“rather than solving it, how do we just not have this problem?”

If you are a knowledge worker, your job is not your job. Your job is
to destroy your job. Employ metacognitive thinking: stand outside
and consider how you do what you do, watch yourself and your
organization, externalize what you know, share your knowledge as
fast as you can, create a new context, templatize and automate your‐
self out of a job. If this is your personal aim, your business will start
to scale better and your career will too. Another way of putting this
to yourself is, “How can I work myself out of a job?”

188 | Chapter 7: Approach Patterns

Semiotics: Signs and Symbols
Semiotics is the study of signs and symbols, how they are interpreted
to make meaning, and how they are used to communicate.

In semiotics, a sign is a pointer. It is not the thing itself, but refers to
the thing itself, like a word, or a symptom of illness, or a stop sign. A
signifier is the form a sign takes. The signified is the concept, the
referent, the material aspect of the sign, the thing the word
describes, the illness and not the symptom or its name. We point at a
ball and say “ball,” which refers not to that object so much as our
mental concept of a ball. These differ from ball to ball, and from sig‐
nifying agent to signfiying agent.

But signs take on meaning only in relation to other signs. We know
something is “present” only because something else is “absent.” That
implies that there are traces, or residue, or material connection
between these terms. It foregrounds the importance of context, and
domains of discourse, and extra text—the relatedness and implica‐
tion in each other of apparently contradictory elements. Recogniz‐
ing this is a key to categorizing properly, to knowing what to
include, where you’ll be tripped up, how to create the most compel‐
ling products, how to make processes and organizations with proper
degrees of conflict and harmony, and how to grow a business.

As noted designer, author, and artist Edwin Schlossberg said so
wonderfully, “The skill of writing is to create a context in which
other people can think.” Likewise, the skill of leading an organiza‐
tion, or creating an architecture, or creating a strategy, is structurally
analogous: you are creating a context in which other people can suc‐
ceed.

The Netflix Culture Deck

The best treatise on setting context as a leader is
Reed Hasting’s wonderful Netflix Culture deck. I
highly recommend reading this if you haven’t
already, since it was published in 2009. It is also
an excellent reference as we consider the inter‐
section of strategy, execution, and culture
throughout this book.

Deconstruction | 189

http://bit.ly/2LhKD1H

If you see yourself as a context creator, which I hope you are coming
to do, you must also consider yourself as this observer of systems
and maker of models, keenly aware of the inherent impossibility of
language and the infinite conjunct of interrelated signs. You are
assigning labels to concepts in making a system architecture. This is
that. Epistemology, as a branch of philosophy, is concerned with dis‐
covering what is knowable and our methods of knowing. Metacogni‐
tion refers to the local act of thinking about your own thinking. This
is the job of the architect-strategist. We ask ourselves: What is the
context in which such a circumstance as this, which surely is only
one instance of this phenomena, could come to be true? What cate‐
gory is this in? Can I just as easily solve for the category so our orga‐
nization can get off the hamster wheel and scale? We consider the
assumptions we make, the biases we have, and the constraints we see
that are perhaps not necessary, but only habit.

This is not a beckoning toward the siren song of scope creep. Archi‐
tects are not interested in what every programmer names every
class. Strategists are not interested in this local optima. If you are not
able to look at the big business problems alongside your leaders and
bring your vantage as a technologist, and are overindexed on pick‐
ing this JavaScript framework over that one, you’ll win the battle and
lose the war.

Scopes Without Center
Most of the people who will execute your plans do not report to you.
As a strategist or architect, you must reach them by influence.
Architects often used to be developers, so they see themselves as the
most clever developers who then must rein in the wayward activities
of the less clever developers. This is architect as traffic cop. It’s not
interesting and it’s not necessary and it doesn’t scale. You are adja‐
cent to the big forces of development, product, strategy—but master
of none. Your power comes from making the most important busi‐
ness decisions as if you were a technologist, and the most important
technology decisions as if you were a businessperson. You decon‐
struct the false binary opposition between business and technology.

You influence your adjacent colleagues by the broadness of your
vision, by the soundness of your arguments as to why that’s the right
vision and how your way is the best way to get there, and by stirring
them to care for that vision for themselves.

190 | Chapter 7: Approach Patterns

1 Suspension, or bracketing, is a tool that Derrida frequently employed. See “Structure,
Sign, and Play in the Discourse of the Human Sciences”, Derrida, 1966.

This pattern is in the communication set because it serves as an
offering, a possible plausible underpinning for how to approach
thinking about thinking, conduct conversations, conclude investiga‐
tions, make presentations, form teams, participate in organizations,
and advise senior leaders. It takes inspiration from the work of Jac‐
ques Derrida, the post-structuralist French philosopher and focus of
my graduate studies. Derrida is the originator of the philosophical
approach to textual analysis called deconstruction, a term that is
sometimes seen in popular culture, and invariably abused in dilu‐
tion when it is.

In 1966, Derrida delivered a paper entitled “Structure Sign and Play
in the Discourse of the Human Sciences” (which is a wonderful
paper, right up there with the original DynamoDB paper and the
Page Rank algorithm paper). The term deconstruction is not directly
introduced in this paper, but the method of analysis he suggests is
rather enacted.

Derrida’s phrase “il n’y a pas de hors-texte,” quoted in the epi‐
graph at the top of this pattern, is French for “there is no outside-
text.” We consider our work not having been given this object,
this center, but rather that we mediate signs around what collo‐
quially is called a center, in “a series of substitutions of center for
center, as a linked chain of determinations of the center.” The
center is not the center. It is at once within the structure, and out‐
side it. It is the irreconcilable difference that we reject and live.

The World as System: Synthetic Decomposition
Ultimately, your endeavors in this work will be a matter of synthetic
decomposition. This is a phrase I just made up. It means that you do
two “opposite” things at once (let us suspend, or bracket,1 for a
moment that I don’t believe in “opposites,” but cede that I occasion‐
ally must make a grudging nod to convention). Synthetic decompo‐
sition means you consider a proposition, consider its opposite, and
act from the opposing view simultaneously as from your original
view. In so doing, you will realize the impossibility of signs. You will
have seen into the universe, seen into its contradictions, the inade‐
quacy of explanations, the tyranny of its confusion, and the fickle‐

Deconstruction | 191

http://bit.ly/2nXYn8t
http://bit.ly/2nXYn8t
http://bit.ly/2nXYn8t
http://bit.ly/2nXYn8t
http://bit.ly/2LdfbBD
https://stanford.io/2o1Pk6C

ness of its attitudes, and the emptiness of its presumed virtues. You
must go through this to see the relations, the harmonies, the firm‐
ness, the beauties, the soundness, and vitality. You have destroyed
the signs you thought you knew, redefined the images on a broader
canvas. In creating new signfiers, you create new signifieds. From
such a vantage, your systems, your architectures, your designs, and
your strategies will gather unstoppable force.

In synthetic decomposition, you build by destroying received cate‐
gories. Like Vitruvius, you are concerned with all of the arts and all
of the sciences, and see them together and seed your work with
them. You are combining and composing across disparate patterns
that seem at odds. This plies thinking across your team and is the
germ of innovation.

The Maserati Gran Tourismo is one of the most perfectly engineered
high-performance machines on the planet. It drives nearly 200 miles
per hour, executing with unmatched reliability. Its engine block is
made by Ferrari, a direct competitor. Its unifying inspiration is a
Stradivarius violin. Its design was created by exalted Italian design
group Pinninfarina, which for nearly 100 years has designed cars,
but also wristwatches, bicycles, major appliances, and the Olympic
torch. To believe you are a designer of concepts first allows you to
bring multivariate sources and forces to bear, to engineer like a
designer, to design by emptying yourself of care for design but total
care and empathy for the user, to lead like a philosopher. This inter‐
disciplinary mode of synthetic decomposition will help build your
most powerful and innovative way forward.

You are always building a system: your architecture is a system, your
strategy is a system, your organization is a system, your mental
model as an observer is a system.

So the metamodel, the frame of mind that I encourage you to adopt
in your work, goes like this:

1. Discover and analyze the problems and opportunities about
you. Decompose them into their more atomic constituent parts,
determining correlations and causations.

2. Hypothesize as we saw in Chapter 2. Catalog your hypotheses.
Ask what broader context must exist in order for this circum‐
stance to arise? What is the global maximum across clusters?

192 | Chapter 7: Approach Patterns

3. Observe yourself as an observer in an act of metacognition and
decompose your concepts. See them as signs with false signifi‐
ers. Do your best to undermine your own hypotheses. Argue
against them. Destroy them to find their weaknesses in a mock
trial. Build them as a Logic Tree. Then build them as a poem.
Beware of your biases and ask what assumptions you are mak‐
ing, what you know for sure that just ain’t so.

4. Synthesize to recombine the problems and opportunities from
across different frames: people, process, and technology as well
as the different trajectories of temporality, velocity, and force.
How can you look at the blackbird 13 ways? What threads, or
traces, or residue can you observe in each that can be brought to
bear in new, innovative, overarching, more impactful, global
ways? How can you reconstitute, reformulate, reconstruct to
create a new semiotic of your design?

5. Develop a model taking all of that up, one that represents a new
frame, a new context, in which the constituent parts are opti‐
mized for their metrics, simplified, reduced. You’re making a
framework at the level of context. In this way, you’re externaliz‐
ing what you know, making a template every time you solve a
problem, so that the problem can be solved again without you
when next it arises.

The job of the architect, CTO, technology manager, or strategist is to
determine how to create a context—design a system—in which new
concepts can erupt and evolve (they’re extensible) and people can do
the best at what they do (they’re fit for purpose). Such contexts
involve the interplay between you, your department, your company,
your industry, and the world, and how signs are mediated and how
you participate in creating and destroying their structure at once,
performing the synthetic decomposition, the dearchitecting, the
destrategizing, the deconstruction of all these as an infinite conjunct
of propositions with undermining contradictions, replacements, and
evolutions at their core.

Deconstruction | 193

Scalable Business Machines
Organizations which design systems are constrained to produce designs
which are copies of the communication structures of these organizations.

—Melvin Conway

The spirit is a bone.
—Hegel, The Phenomenology of Spirit

Does your organization have any of the following problems?

• You have a hero culture.
• You have many single points of knowledge.
• You have many single points of failure in processes.
• Your smart people who once really cared don’t care now, are dis‐

engaged, are looking for jobs, or are on perpetual vacation.
• You bought a business that now is integral to your larger com‐

pany’s mission, but it still behaves like a startup.
• Your mature company is struggling to bring the old guard on

board with a new vision.
• You need to be ready to grow your regional business into a

national one, or national to international.
• You are considering adjacent markets to enter and need to have

the real picture of your business to see how you can apply,
reuse, repurpose, refocus, or modify existing elements to make
it work.

If you have any of these problems, your business will struggle to
scale. You need a scalable business machine. Before we say what that
is and how to implement it, let’s look a bit more at a few of these
problems.

First, many of these problems are cultural. But the symptom is not
the illness. Culture and strategy and execution revolve around each
other in spheres of strong influence. And there are many ways to
answer these cultural problems, which are typically the longest and
hardest kind to turn around. This is not an HR book, or a ra-ra lead‐
ership book, and there are many maybe-helpful books to guide you
in that method of addressing cultural problems. So we’ll look at this
from our architecture and strategy perspective: how we can design

194 | Chapter 7: Approach Patterns

our business in order to maximize its efficiency and scalability, as
well as to maximize our chances of any cultural work taking hold
quickly and succeeding.

Hero culture is evident when your company lauds, promotes, and
otherwise exalts the people that repeatedly save the day when some
disaster strikes. Heroes get so many strokes for being heroes that
they do not step back and think how to solve the context in which
problems are created. They are rewarded, bonused, and publicly
celebrated for pulling all-nighters, toiling alone into the wee hours,
doing it all themselves. Again. Loads of otherwise competent people
stand around doing nothing. They’re essentially worthless to the
organization at worst, and underused and alienated at best.

Hero culture is a disaster for a business that’s trying to scale and
grow. Without dismantling that, you can’t scale your business, and it
will be hard to see why it continues to be unable to break through.

Hero culture is vicious, because you don’t want amazing feats of
technical dexterity or brute force that save the day to go unnoticed.
You don’t want to alienate the people on whom Everything Depends.
But if you can’t break this cycle, which is a cross-organizational cul‐
ture problem that starts with the leader and bad processes, then you
cannot scale.

Without a scalable business operational model across your func‐
tions, you cannot be more efficient and maximize revenues and
profits while minimizing costs. You cannot have happy workers who
know they’re doing stuff that matters, who don’t get distracted and
interrupted constantly, so they can focus and think a smart thought
and do something great. Smart people are not interested in working
in mind-numbing bureaucracies where they have to constantly
scream to get anything done. If your processes are not right-sized,
nimble, and efficient, you will be too slow to grow.

This pattern shows you how to create something that I just made up,
called a scalable business machine. You want to use it when you
need to create or revise a set of processes across business functions
in order to grow and scale your business.

Business as System
Architecture is the broader purview over a system. Strategy is the
broader purview over a line of business. Thinking like an architect,

Scalable Business Machines | 195

technology executive, or strategist is to look at the nexus of external
forces and internal forces operating on our work as considered
holistically, whether those be a software application, a process, or an
organization. These take effect across various temporal trajectories,
operating at various velocities, with various degrees of dynamism
within the system.

To improve the organization, observe these forces and see them as a
context to create a model of the world as a system. You are a maker
of systems, which are built with an architecture, which desires cer‐
tain properties: usefulness, firmess, and beauty. Attributes we tend
to design explicitly for as architects include:

• Fitness to purpose
• Portability
• Scalability
• Extensibility
• Availability
• Monitorability
• Manageability
• Maintainability
• Resilience
• Security
• Auditability
• Performance
• Testability
• Elegance

We commonly employ certain principles in architecting and design‐
ing:

• Hide details behind an interface.
• Apply the principle of least knowledge.
• Create a strong separation of concerns.
• Ensure loose coupling.
• Isolate what changes independently.
• Look for opportunities for reuse.

196 | Chapter 7: Approach Patterns

• Explicitly manage risk.

Finally, let’s recall the SOLID principles of object-oriented system
design:

Single responsibility
Things should have one and only one reason to change, mean‐
ing that a class should have only one job.

Open-closed
Things should be open for extension, but closed for modifica‐
tion.

Liskov substitution principle
Objects of a derived class should always be substitutable for a
parent class.

Interface segregation
A client should never be forced to implement an interface that it
doesn’t use, or clients shouldn’t be forced to depend on methods
they do not use.

Dependency inversion principle
Things must depend on abstractions, not on concretions. The
high-level module must not depend on the low-level module.

You can architect an application, a data center, a project, or an organ‐
ization. You design the interactions between software services with a
protocol and a message payload; you design the interfaces between
two departments to maximize efficiency, clarity, security, availability,
monitorability, and speed. You design these systems according to
SOLID and the desirable architecture attributes just stated.

The organization is a system.

The project is a system.

You can apply what you know from designing technology systems to
business systems, like structuring the processes or the projects. The
valued properties are similar across all of these system types. When
you’re designing a process, keep the architecture qualities in mind: I
know of at least one Infrastructure department I’d love to have learn
the principle of interface segregation.

Scalable Business Machines | 197

Reread the SOLID principles and the architecture attributes just
given, but this time seeing them through the lens of process
designer.

This One’s Fractal Too

As you read through this pattern, note that you
can do this for one department only, or for all of
them together and tie them together to view
your business as a single scalable metamachine
consisting of interrelated machines. It works
locally, and works the same globally, like a
fractal.

The Origin Theory
I have a theory I’ll call the Origin Theory that might help you assess
why your company behaves the way it does or has the problems it
has when it’s trying to grow. Sometimes a company starts its life as a
support function. For example, maybe a big company had a little IT
shop to support its real value creation work, and someone along the
way made a software application for internal use that worked well
enough that somebody else thought they could make more money if
they were to spin off a company to sell it as a software product. That
new company has its origins as a support function. The Origin
Theory states that it will therefore continue to act as a support func‐
tion, even to its detriment. In essence, you end where you began.

This happens because in the Olden Days, the little company hired
leaders who matched its size and culture, which is typically one in
which people must perform heroics, and must wear several hats.
That’s not a problem in a startup—it’s a necessity of survival. So the
people were nurtured through the ranks with everyone acting as
participants in a support function. They do not think like product
people. They don’t think in terms of a P&L (profit and loss), or hav‐
ing clear guardrails and documentation and external supporting
functions, and strongly separating responsibilities, and inter-
departmental interfaces, because there’s only one department and it’s
called Get Stuff Done. They think in terms of projects: those long,
drawn-out loci for people doing activities instead of thinking in
terms of outcomes. I have seen this in multiple companies, even
multibillion-dollar public companies that act like private companies

198 | Chapter 7: Approach Patterns

because even after decades in business and having gone public,
there’s really one or two majority shareholders: “Junior.”

It is very difficult to turn around a company in this state. First you
have to recognize it, then you have to get others to see it, then you
have to rethink all your processes to define clear outputs and inter‐
faces, and then you must make a cultural shift that will involve dra‐
matically changing who is on your staff, changing how you manage
and communicate with customers, and thinking of your products
and services as independent of your heroes’ hand-holding. Helping
make such a transformation when you need to grow and scale your
business is the aim of this pattern.

Aspects of the Scalable Business Machine
Implementing this pattern to create your scalable business machine
(SBM) will mean making a project that you need to lead and track.
Even if you are just implementing it within your own department at
first, expect that this is a nontrivial amount of work. You should
make a RACI and Stakeholder Alignment too. Before doing any
work, make sure you’ve got your leader’s buy-in and know who will
make decisions. It’s the kind of thing that you could pay consultants
to do for you, but they wouldn’t do it as well as you would, and the
people wouldn’t receive the change as well if you have this frame‐
work in mind.

Let’s define some terms first. The following are the component parts
of the SBM.

Action
An action is one atomic activity or local work process performed
within a single department in aid of producing a deliverable. Each
action produces something of clear and present value to be used by
other members of the same department. Eventually, together these
culminate in the creation of a deliverable for a customer outside this
process.

For example, one action within the software development depart‐
ment might be to make a user story, another action might be to
write code, a third might be to test it. These are three different roles
within the same real or logical department. Testing on its own is not
of value to anyone else. But all three work in concert to create the
important deliverable that is demonstrable, working software that is

Scalable Business Machines | 199

high quality and fit to purpose. Each action (activity) has a deadline,
typically one person responsible, and is a clear and discrete task.
These are orchestrated together to form a process that makes deliv‐
erables.

Only one role is assigned as responsible to complete that action.
Actions are typically not tracked by many other people, or maybe
are analogous to a task or story in your Scrum tool. They don’t
require significant coordination with others. This is where much of
the workday is consumed, transforming raw materials into an out‐
put of some value: you get a bunch of epics and make an architec‐
ture; you get a bunch of user stories and make working software.

Actions can be one of three types:

Create
Make an initial result in partial fulfillment of a concrete deliver‐
able output document or result.

Approve
An approve action might be performed by a single person in a
role such as the department head, or might be a virtual role
comprising a governance body or other formal committee such
as the “Project X Steering Committee.” For virtual roles, it must
be clearly defined what that virtual role is and the names of
individual, concrete job titles that the virtual role or committee
comprises. You have to know when you are done, which
requires knowing who can approve or reject the work delivera‐
ble.

Review
Check over the initial document to determine its validity, fitness
to purpose, and relevance. This could be a single person in a
named role, or a virtual role consisting of other concrete, exist‐
ing named roles.

Tool
A tool is application or Software as a Service tool used to create a
concrete deliverable that can be reviewed and used by someone else
as valuable output, and sufficiently formally expresses that they
don’t need to participate in the process to make use of it. It’s the
means of making the output.

200 | Chapter 7: Approach Patterns

Examples: a spreadsheet, word processor, IDE, or project manage‐
ment tool, or Salesforce.

Deliverable
A deliverable is a concrete document, created with a tool that has
value to someone else outside the department or process in which it
was created. One or more related actions work together to create a
deliverable.

A deliverable is something that stands on its own, and has value
only within your process. It has no customer value. It’s a work prod‐
uct you must track, assign to someone, and put a deadline on creat‐
ing. But on its own, no one cares. Deliverables are necessary, and
their quality can have tremendous impact on the overall eventual
quality of the output. But they are a means, not an end.

Examples: vision statement, architecture definition document,
release plan, working code, deployment plan, and project plan.

Don’t involve customers in deliverables. They care only about out‐
puts.

Output
An output is a collection of one or more deliverables. Outputs are
the stuff we produce, whether physical or virtual, whether a product
or coherent service. They are the What. These things matter to cus‐
tomers and are visible to them and tangible to them, and customers
pay for them. This is your work product that matters. It’s what cus‐
tomers need to get from you so they can go do their thing. It’s why
you exist: to make this output. You might have to make a project
plan: that is your job. You might have to make an architecture docu‐
ment or type working code: those things are activities in doing your
job. But they are not a total work product usable by a customer on
their own. In themselves, they don’t matter.

Outcome
The outcome is the difference your output makes to a customer.
Outcomes are the Why. They represent the benefits your customer
gets.

Outcomes will ultimately be some variation on a more refined ver‐
sion of one or more of these: increased revenue, reduced costs,

Scalable Business Machines | 201

quicker time to market, better positioning in a market, increased
share of wallet, increased yield, higher margins, better reliability,
and so forth.

One or more actions create a deliverable internal within a depart‐
ment. One or more deliverables together create outputs usable by a
different department in the same business unit or company, or they
are of value to external customers. Creating outputs of value for cus‐
tomers are why businesses exist.

Department
A department is a logical grouping of people who perform actions to
create outputs of the same kind. As we learned in “Value Chain” on
page 116, a department is one of two types:

Value creator
They make the products and deliver the services the company
sells.

Support
These people do not create direct value for customers, but pro‐
vide necessary functions to conduct business. These include
HR, Legal, Finance, Infrastructure, and Procurement. They exist
to serve the value creator departments and make their work
quicker, easier, and compliant with law.

Companies that do not recognize the difference between these two
kinds of departments will see a terrible imbalance of power play out,
resulting in the support functions acting like bureaucrats who are so
far removed from the customers that they think the value creators
exist only to participate in their processes. This isn’t hard for people
in the trenches to see, but correcting it means the most powerful
leader needs to see it and replace the relevant management team
with people more clueful about where their bread is buttered.

Business unit
The business unit owns a slate of product SKUs it sells to customers
and owns a P&L. The business unit can succeed or fail mostly on its
own merits, with help (or interference) from the supporting depart‐
ments that do not create value.

202 | Chapter 7: Approach Patterns

Company
A company is a legal fiction that has the status of a special person.
The company itself doesn’t make anything. It is an abstract class for
holding business units or departments. There are no company out‐
puts that are of value to customers that are not already defined by
some specific business unit.

The company itself is not a value creator other than as a sum of the
department parts. For a smaller company, say, those under $100M,
you may not be subdivided into business units with their own P&L.
In these cases, the business unit and company share an “identity”
relation (they’re the same thing). In such cases, treat their use here
interchangeably.

Figure 7-1 shows a logical architecture of how these components all
relate. In general, here’s the idea behind the SBM: companies do a
bunch of stuff that doesn’t matter and on occasion need to identify
those things and refine their processes to remember how to effi‐
ciently create value and make a difference in the market. They need
to get out from under the inertia that sets in and focus on outcomes.

The SBM is engineered to help you identify where you are, separate
the wheat from the chaff, focus on optimizing outcomes for delight‐
ing customers, and allow you to scale and grow.

Figure 7-1. The terms in an SBM

Scalable Business Machines | 203

Executing
Now that we have the relevant terms defined as we’ll use them, here
are the steps for creating an SBM.

Define vision and scope
First, state the vision and the scope.

The vision is a single sentence characterizing the end state. If you
don’t understand the problem you’re solving, or the desired outcome
you would get at the end, you will just rearrange the deck chairs.

This step sounds lame, but it makes a difference if you actually use
it. You’ll actually use it if it’s not a platitude, but a proposition and
something some reasonable person could conceivably argue against.

Define the departments and customer outcomes
Next you need to create the list of departments that are in scope.
This sounds too obvious to do, but it is in no way obvious to the
people in your organization what the different departments are, why
they exist, what they do, and how they interrelate. Just name them
for now and agree on scope. If you want to give each one a charter
or mission statement, that gets you bonus points, but again, only if
you really use it to organize your thoughts as a Logic Tree.

Start with your external customers first. What is the output of your
business unit for customers?

Then identify the desired outcome for them. What would give them
a benefit or delight them?

Then determine the outputs at a department level. What outputs
does a department make to feed the next department as their neces‐
sary input? These are the internal customers you identify.

List these for each department.

Now you have an overarching vision, a validated list of departments,
their mission for each, the outputs they create in support of it, and
the benefits that will add up to great outcomes—the benefits for
which you exist to give your identified customers.

We are ignoring for now deliverables and actions. That’s on purpose,
and it’s important. We want to go from the outside in, focusing on
what we create that’s of value for someone else, and being clear on

204 | Chapter 7: Approach Patterns

what that value is. We do not care at this point how we create that
value. Companies all too often get focused on their own internal
processes and forget about customers.

At this point, you have a burgeoning spreadsheet (a list of lists) with
roughly the structure shown in Figure 7-2.

Figure 7-2. Your work thus far

It doesn’t look like much, but getting this far is actually pretty great
work. Remember, the key is to be outcome-oriented. Without meas‐
urable outcomes, there is no need for outputs.

At this point, we are hovering above the surface, going one inch
deep across the entire field. Then we can dive deeper later, once this
much is validated.

Define the activities and deliverables
Now, within each department there is the stuff you do to create the
deliverables that add up to the meaningful outputs. In each depart‐
ment you must create a set of documents to proceed to the next step
or hand off to the next role in the internal Value Chain within the
department.

I use the term “document” loosely here to mean any tangible output.
It could be an architecture definition document, a strategy docu‐
ment, a persona-based representation of customers, or a set of
UI/UX wireframes. It is anything you give someone else internally
so they can do their thing.

Scalable Business Machines | 205

Customers of the department don’t typically see these documents.
These are what you hide behind your department’s interface, adher‐
ing to the principle of least knowledge. This is “how the sausage is
made” back in the kitchen. The waiters see some things coming
together, but the customer doesn’t.

Define the customers
This step is adapted from similar ideas in design thinking. You iden‐
tify the customer of each department. Internally, the term “cus‐
tomer” is used loosely to mean someone who needs you to do your
thing and be done so they can go do their thing.

Empathize with your internal customers. Think from outside in.
This will help you be more outcome-based instead of activity-based.

To enact this, you can create a persona for each customer role. Give
them a name and a picture, and state their attitudes and goals.

Give no thought to your internal process as it stands today or how
easy it is. Consider your customers’ pains: What is inconvenient for
them? Difficult? What can’t be done today? What do they complain
about? What could be faster for them? More repeatable or reliable?

What gains could be realized for them? That is, what are new oppor‐
tunities they may not yet understand or are not directly asking for
but would delight them, go “above and beyond” for them?

Define the principles
We have discussed principles before in “The Principles, Practices,
Tools Sankey Diagram” on page 142. These are not stated as passive
values like “honesty” or “integrity” or articles of faith. They are not
attributes of an ideal department.

These are claims about how we execute our processes.

Consider the following principles: Data as an asset. Automation.
Scalability. These may sound obvious, but it costs time and money
and adds complexity to be able to scale. You’re making a trade-off.
You act differently if you think these ideas are necessary and impor‐
tant. They are not principles or meaningful claims if some rational,
knowledgeable person could not reasonably argue the opposite. The
opposite of automation is manual. The opposite of “data as an asset”
is data as merely something processed by applications, necessary to
achieve user goals and otherwise uninteresting. Those are possible

206 | Chapter 7: Approach Patterns

too. But good principles beget clear good practices that you can exe‐
cute using appropriate tools. This is a good place to insert your San‐
key diagram to map the three together.

Define the outputs
Make sure you know for each department what its products and
deliverables truly are. It sounds too obvious to state, but it’s amazing
how infrequently these are actually agreed upon, even with salespeo‐
ple of the same level but in different regions. These may be the out‐
puts (if you’re in product development). They may be some valuable
component of the eventual output, but it must be concrete. For
example, “goodwill” or other abstract ideas aren’t outputs.

Start at the end, assuming all the other necessary components of the
SBM have executed perfectly, and work backward, focusing only on
outputs. Ask what the SKUs and applications are. Then list them
and be sure everyone agrees.

Assess the Value Chain
At this point, you review to make sure everything lines up and is
MECE before going further.

Now assess each input: What activities are required to come into
each department so it has the raw materials to fulfill its role and cre‐
ate the deliverables?

List the required inputs.

Define the processes
Now ask yourself and your team: What are the processes within
each department to make the transformation to that output?

List them at a label level without getting stuck in analysis paralysis.

Define the tools
Ask yourself: What are the tools that realize and support each prac‐
tice?

Then make your Sankey diagram, or finish it now and refine it if
you already started it.

Scalable Business Machines | 207

Define the roles
Now ask the team: What are the roles needed to execute those pro‐
cesses? Who can do something individually, with minimum input
from others?

Looking at all the roles laid out, ask yourself if the list is MECE.

What are the decision rights for each role? Who are the ancillary
stakeholders supporting each, but not directly involved?

Make the RACI chart for the overall output from this.

Now you have your list of roles. That on its own is useful. But we
need to go one step further.

Create a template that is identical, no matter the role, that your team
can use to sketch out further what their own best practices are; cap‐
ture their inputs, process, and outputs; and specify how they partici‐
pate in the overall vision. This gives them clarity and helps them
focus and feel tied to the big picture.

Define the metrics
Now you must determine: What are the metrics to show that each
role is working?

Separately figure out: What are the data you need to create those
metrics?

Make a set of metrics with dummy values in them. Ask other stake‐
holders if you were to actually produce those metrics with real val‐
ues in them, would that give them a clear picture of how well you
are delivering? Are those the most important metrics? Is the list of
metrics together MECE? Do you cover all the ground for the differ‐
ent stakeholders? What behavior are you driving by stating those as
the metrics? How will people game the system when the metrics are
in place? Is there any way to deter that and ensure you’re driving the
right behavior overall?

List the metrics for each role, each product, and each outcome.

Create the templates
Now our machine is complete. But we need to see it altogether in its
breadth and depth and full glory.

208 | Chapter 7: Approach Patterns

So for each department, use the same template (probably in a
spreadsheet) to show the roles, the inputs, the internal processes, the
outputs, the outcomes, and the metrics. For example, if part of the
architecture team’s work is to execute a Due Dilligence (see “Due
Diligence” on page 232) for business development, make a template
the first time you do it, assuming that’s part of your job and you’ll
need to reuse it. That helps externalize what you know, automate
your role a bit more, and make things overall slightly more efficient
in support of the product rule we examined earlier.

Create templates to capture the metrics so the reporting is easier.
Using this, you can visualize the metrics in monthly meetings and be
sure you’re getting the right data in front of executives who can help
make the overall machine go smoother, as well as all the fractal
machines within it.

Create templates for each activity with a deliverable. Once you’re
done, make them accessible on the wiki or the SBM internal website.

Determine the hotspots
For each role and process, determine the Process Posture Map as we
saw in “Process Posture Map” on page 138. This will help you see
what you need to address in your current state to improve and scale.
You may have some areas you need to revise, or start, or assess. Do
this assessment to tag each process with its posture so you know
where you may need to refine, hire differently, or train or communi‐
cate differently.

Communicate the machines
Now you have a ton of material. You have the complete end-to-end
process mapped out, all the subprocesses, role clarity, and a 360-
degree view. You have a map of how and where you create value for
customers both internal and external, and now you have the best
chance to really optimize that.

You need to tell people about all of that. Put the work into decks to
have local conversations. Present the big picture, without details.
Then review a subset of the material in small groups with the stake‐
holder matrix. Take their input and refine if necessary. Check their
level of engagement.

Now you’re ready to discuss how to begin executing in this new
model. It won’t be easy. This will be a change management effort.

Scalable Business Machines | 209

See “Fait Accompli” on page 174. You will need to roll it out in
department meetings, review it regularly with staff, and talk to them
individually.

Manage the change
This part is hard, and the length and complexity depends on the
scope of your overall effort. If it’s just within your department, that’s
easier than if it’s your whole business unit. You’ll talk in groups, lis‐
ten carefully, listen actively, and consider your audience’s suggested
revisions thoughtfully.

But not everyone has an equal voice. Some people are smarter than
others, have better insights, see further, have more diverse or rele‐
vant experience, have less of a chip on their shoulder, have less of a
grudge, have more skin in the game, can think more objectively, can
see the future, are less self-interested, and are motivated differently.
You must listen to the people, but if you, the strategy program team,
and, most importantly, your top leader are convinced that your
machines are the right ones you need to realize the outcomes, trans‐
form your business, and build the future, you must accept that not
everyone will be on board. Not everyone will make it through the
journey. The old guard may have the hardest time seeing the future,
believing in it. There will be passive-aggressive people or people
who just don’t want to participate in that future.

You will need to sort out the audience into roughly thirds: who is on
board, gets it from the beginning, and is a believer and an ally; who
will need to change their ways but can be retrained or nurtured if
you spend the time to help the audience, and who is not on board
and can’t or won’t make the journey. This is cultivating your garden,
and you need to give those people a nice severance package and help
them find the door.

The many other folks who want to be on board will still need help to
manage through the change.

Congratulations: now you have a complete, end-to-end, templated,
clear, visible, and measured scalable business machine that will work
as a fractal for any department or company of any size that’s focused
on making great customer outcomes. That’s pretty awesome.

210 | Chapter 7: Approach Patterns

Summary
In this chapter, we looked at several innovative ways to make a logi‐
cal, persuasive argument and weave it into how you show the value
and impact of your strategy. We examined the following patterns:

• 30-Second Answer (see “30-Second Answer” on page 161)
• Rented Brain (see “Rented Brain” on page 163)
• Ars Rhetorica (see “Ars Rhetorica” on page 167)
• Fait Accompli (see “Fait Accompli” on page 174)
• Dramatic Structure (see “Dramatic Structure” on page 179)
• Deconstruction (see “Deconstruction” on page 185)
• Scalable Business Machine (see “Scalable Business Machines” on

page 194)

Taking the rhetorical approach presented here will help catapult
your architecture and strategy work into messages that are under‐
standable and meaningful to decision makers and a wider audience.

Summary | 211

CHAPTER 8

Templates

This chapter and the next contain very specific templates that you
can use directly in your work to help you advance your technology
projects. The two primary vehicles for this are spreadsheets and
slide decks.

Here you’ll get the following collection of eight practical tools that
you can modify or use out of the box. They’re reusable rubrics to
help you be sure you’ve covered the key aspects of strategy proposals
and help you bring all of your technology project ideas into sharp
focus. With these, you can usher the considerable raw material
you’ve generated so far from the developmental concept realm into
the material realm:

• One-Slider
• Use Case Map
• Priority Map
• Directional Costing
• Technology Radar
• Build/Buy/Partner
• Due Diligence
• Architecture Definition

These represent tools of my own device that I’ve used effectively. It’s
not a project management collection; there are plenty of tools for
that elsewhere. They’re most useful in the early stages of your

213

project when you are trying to figure out what you’re doing, and
what you want to propose to executives or share with the broader
team.

One-Slider
Challenge: You need to pull together the huge and diverse volumes
of analysis work into a simple summary that you can use to inform
teams and executives of the strategy.

Solution: You need to create a single slide that forces you to crystal‐
lize and succinctly state your strategic goals, the initiatives or practi‐
ces as propositions that follow from them, and the supporting
culture you will develop and encourage.

Recall that early in the book, I stated that a strategy must work
together hand in hand with execution and culture in order to suc‐
ceed. This slide is a distillation of how you can keep those three
ideas front of mind and communicate them to your teams.

The One-Slider, as I use it, pulls together in one place each of our
three aspects of strategy, execution, and culture. It might look like
Figure 8-1.

At the top you state your vision. This is an aspirational statement
describing what you want your organization to look like in the mid-
term or long-term future. This should be a one- to three-year time
frame. Less than that won’t give you time to do anything advancing
enough. More than that, and you’ll be befuddled by changing forces.

Next, all of your three or five strategic goals should follow as propo‐
sitions that support and help realize that vision. This is where you
will allocate resources, and your estimation of the best way to get to
that desired vision.

Next you state the initiatives or practices. This is the execution part.
These should be specific, and each will likely be defined as its own
project or program and involve cross-discipline teams.

214 | Chapter 8: Templates

Figure 8-1. The One-Slider summary

The One-Slider does not include all the rich detail you have worked
on throughout this book. That material should go in additional
slides after this summary slide. Make one slide for each initiative
you’ll execute, and show how that decomposes into more localized
specific actions and deliverables. They should include specifics
about the toolset, and meaningful metrics, as we saw in “Scalable
Business Machines” on page 194.

Figure 8-2 shows what your initiatives spreadsheet should look like.

Figure 8-2. The initiatives

You have headers for initiative, actions, and deliverables along with
the named accountable role that owns that deliverable. The initia‐
tives come directly from your One-Slider, and this represents some‐

One-Slider | 215

thing at a high-enough level that you can crank it out quickly as a
communication tool, but it doesn’t represent all the detail of, say, a
Work Breakdown Structure.

Work Breakdown Structure

A Work Breakdown Structure is a standard
project management tool that is defined in the
Project Management Body of Knowledge, as
a “deliverable-oriented hierarchical decomposi‐
tion of the work to be executed by the project
team.” This works well with the Logic Tree and
logical proposition approach we’ve taken in this
book. I encourage you to read more at https://
www.workbreakdownstructure.com/ and apply
this tool if your project is of sufficient size and
complexity that you would realize the benefit.
Doing it on smaller projects doesn’t make a lot
of sense.

This isn’t yet a project plan, but is a transition toward it to ensure
that you are not just talking about these things in your teams, but
that you can do just enough to have a token document for executive
buy-in. Then you can manage the creation of the work as a project.
Of course, you can add a column for due dates and so forth. If you
have had a kick-off meeting and everyone is ready to start working,
and you find yourself wanting to add much more detail, it’s probably
time to turn it over to the PMO, transfer it into whatever project
management tool you use, and schedule regular meetings to get
updates from those with deliverables.

Finally, along the bottom of the summary One-Slider, you have the
culture piece. This is not separate for each initiative, because it’s all-
encompassing and you can’t go creating distinct cultures for differ‐
ent cross-functional teams in the same world. There is the one
culture, and you want to be explicit about what culture you want to
form. I hope by now it’s obvious that if you find yourself stating
empty platitudes here, such as “winning teams,” you are not digging
deep enough. Make only statements as claims that someone else
could reasonably argue against, put a stake in the ground, and be
proud and go after it.

216 | Chapter 8: Templates

https://www.workbreakdownstructure.com/
https://www.workbreakdownstructure.com/

I hope it goes without saying by now too, but make sure that each
section of the slide, and the comprehensive slide altogether, is
MECE (see “MECE” on page 29).

Use Case Map
Challenge: You have a burgeoning, large system design that repre‐
sents one of your strategic initiatives. You need to decompose the
idea further into practical use cases of value to an end user. You need
something to share with an extended team to ensure their alignment
and buy-in with the initiative.

Solution: Make a set of Use Case Map slides, one for each major use
case. You want to think through the use cases from a customer per‐
spective to ensure it is outcome focused and not merely activity
based.

Figure 8-3 shows an example.

Figure 8-3. The Use Case Map

This map has five components:

Customer outcome
Here you state the business benefit that this use case aims to
achieve for customers. This is stated in clear, measurable terms,
reusing the outcome aspect of the SBM (see “Scalable Business
Machines” on page 194).

Use Case Map | 217

Features
Here you list one or more bullet points of the major features of
the system. You will later use these to map to epics. It is some‐
thing at the level an architect or tech lead can design further.
Together, these describe a complete, usable, independent system
as an output, as we saw in “Scalable Business Machines” on page
194.

Data components
These are the sets of data that are required to realize the output
of this use case or to measure the metrics. This is high level in
terms of data types, third-party data, or major kinds of data
you’ll need to purchase or siphon off the shopping system, gain
access to from the data warehouse, or retrieve from third-party
APIs.

System components
These are critical, big components of the software or process
system you’ll need to create. They may exist already as services,
or you may need to refine or reuse some component. They’re
the building blocks of the system that are differentiating, com‐
plex, necessary, and important.

Customer success measure
These are the metrics, stated like SMART goals, with measure‐
ments you can aim for and later verify.

Note that this is particularly helpful in making sure you are thinking
in a way that makes your use cases clear, measurable, and valuable as
an outcome for customers.

From this stage, you or someone in Product can decompose your
Use Case Map into a set of Agile epics or team features to begin
transforming the strategy into architecture plans and executable
project.

Directional Costing
In technology we get asked for estimates all the time. Everyone jokes
about how bad we are at estimating when we will deliver some soft‐
ware module. That’s for a variety of reasons, but an important one is
that estimating is hard because we typically think only of the main
parts of delivering something, and not the many auxiliary aspects
that can take as much time or more. We think of how long it might

218 | Chapter 8: Templates

http://bit.ly/2M81N23

take us to write the code, and don’t think of how we’ll write it again
a different way when we’re unhappy with the first time, handling
errors gracefully, instrumenting, writing tests, writing documenta‐
tion, doing deployments, clarifying requirements, executing builds,
refactoring, profiling, browser checking, fixing some broken win‐
dows we discover along the way, coding for the six important alter‐
nate paths that weren’t accounted for in the stories, learning a new
framework, performance improving, and then hooking it up to the
bigger deliverable. Writing the code itself is probably 33% of the
work, even for a developer. Never mind the time we spend doing a
load of unrelated things.

Projects often take two or three times longer than what we say they
will. When 80% of the cost of a software project is intellectual labor,
that’s a serious financial problem for our leaders.

But the bad news is that as woefully poor as we are at estimating
time, we’re worse at estimating costs. That’s because we’re further
away from the money, we’re less used to talking about it, and we
don’t understand the nuances or even many of the terms nearly as
well as we do our software discipline.

The good news is that the best executives tend to understand that
the world isn’t black-and-white, that estimates can be defined in
stages and in ranges. An executive or salesperson asking for a single,
definitive estimate early in the project is actually the sign of a clue‐
less leader, and less the sign of a truly deficient architect who esti‐
mates badly. Put another way, a leader asking you for an estimate on
the basis of a single-sentence description of a complex problem
might deserve open contempt. A leader asking you how much this
software project will cost to build can be met with, “I don’t know.
How much does science cost?” Refuse such idiotic questions. Much
of our problem is that we don’t refuse them—we throw out a num‐
ber and shake the date tree until a fake deadline falls out—and the
executive believes us (or pretends to for other motives), so all of a
sudden we’ve chained a team of otherwise good people to a death
march.

It’s easy for me to say that you should refuse such questions, but the
fact is that this has happened to me countless times in my career. We
get backed into a corner. Some executive has a board meeting or the
salesperson has a customer meeting or there’s a quarterly review—
there are always wonderful excuses—and like an addict, they just

Directional Costing | 219

http://bit.ly/2Px6p4O
http://bit.ly/2Px6p4O

need one quick number, one little estimate; they promise this is the
last time they ask for an estimate like this, and this time it will be
different and they won’t hold us to it, but they just need an idea.
This is a dysfunctional relationship that sets a lot of people up for
failure. But you can improve it.

The One-Night Estimate
I was once asked by a C-level executive to give him the cost esti‐
mate for a new software project we were considering doing. This
was a multiyear project to replace the mission-critical 30-year-old
system that ran the heart of the business. We didn’t know a whole
lot more than that at this point. Fine. Except he needed the estimate
by tomorrow at 9 a.m. I was irritated at the time, because I felt set
up to fail. In hindsight, this request is just astonishing. But in my
ignorance and vanity, I thought I could do it. And anyway, he was
the boss. What choice did I have? So I worked long into the night
making an estimate like he asked. The estimate seemed like a rea‐
sonable amount, and the project eventually got funded, and we did
it. By the time the project was concluded, that original estimate was
—surprise—off. Way off. About three times off. The project took
twice as long and cost three times as much as my initial estimate
stated. We’ve all been there. This is the cycle we aim to break.

There are two things to do to improve this situation we somehow
constantly find ourselves in: give a really good estimate or give a
much worse estimate. Either of these is desirable, as long as you’ve
set expectations properly.

Rough, Refined, Realistic Estimates
First let’s talk about how you can do a really good estimate, whether
it’s wrong or not.

The first way you can give a better estimate is by realizing, and com‐
municating, that the act of estimating itself is a project. Back in the
day, I used to make money just to do the project of giving someone
an estimate of how much their real software project would likely
cost. Similarly, I’ve paid architects and builders to deliver nothing
but a spreadsheet that is a really detailed, thoughtful, thorough,
researched estimate that everyone could have a lot of confidence in.

220 | Chapter 8: Templates

Consider why estimating should be a little project. For the builder to
make that spreadsheet took weeks. They made dozens of phone
calls, got actual quotes from suppliers with current rates, had many
conversations with crews and the architect, and spent hours with the
blueprints figuring out the proper materials and how many square
feet of everything they’d need, including overruns and thoughtful
waste accounting. They included all the templated items that are the
auxiliary parts we in software often miss, such as hauling costs, gas
costs, site rentals, temporaries, and so forth. That all takes time, it
requires thought and negotiation and research, and that’s worth
money. It’s especially worth the cost because that really good esti‐
mate makes it clear that if the project is just too expensive to go for‐
ward with, you’ll have to go ask the boss for a special dispensation to
get more money, and now everyone can plan more reliably how to
allocate resources. Good estimates matter, and bad estimates can
really screw up a business.

The point is this: the weeks of work the builder in this example did
resulted in a quote you can really hang your hat on, but that requires
many hours of work to put together by a variety of people. If you
don’t charge for it, or don’t treat it like a project, you can’t set proper
expectations.

So the first idea is that you need the time to treat the act of estimat‐
ing itself as a project, if you’re paying millions of dollars over years
to make a building or a software product, and you really want to
have your best chance of being close to the true number.

Second, you need a form to act as the deliverable of this estimate:
you need a template so that you don’t forget all those auxiliary
things that constitute the majority of the product timeline. You can
see the long math that went into the estimate and pick over the
details and refine it.

The third thing you need is a funnel of time with stage gates. Instead
of doing either a terrible, useless estimate off the top of your head or
doing a perfectly refined and thorough estimate after six weeks of
work, find a couple of stages in between. Here’s what I mean. You
might define three stages of estimating:

Rough
This takes only a few days to produce, and everyone knows it’s
only within maybe 50%. If, say, your estimate is $10M, and it’s
labeled “rough,” then you’re not committing to anything other

Directional Costing | 221

than a range of $5M–$15M. Do this first, and see if that ballpark
still allows enough interest from executives to move to the next
stage in the funnel.

Refined
This takes a couple of weeks to produce, and includes more dis‐
covery conversations, and a clear understanding of require‐
ments. Maybe this range has more documentation behind it,
and is within 25%. It has no bearing on the original “rough”
estimate. That is, your new flip of the coin—your new refined
estimate—might reveal that you think the price is now $17M.
That’s fine that it’s outside the rough range. But your range is
now smaller. If you started executing now, you’d need to be
between $12.75M and $21.25M.

Realistic
This has a lot of homework behind it, many customer conversa‐
tions, and a clear understanding and a commitment on the
functional and nonfunctional requirements: the epics and sto‐
ries are written, and the Architecture Definition (see “Architec‐
ture Definition” on page 235) is done. This estimate might be
within 5% or 10% range. Never go without a contingency.

These three labels (which I just made up, so use whatever suits you,
of course) give an executive a good expectation, allow everyone to
mete out the work with shoulder checks along the way to do only as
much as is warranted, and mean that the executive has some more
levers to control: if he’s comfortable with a wide range because it’s a
smaller-risk project or he has more money than time, then he can
start the project wherever he’s comfortable. And you’ve kept your
credibility.

The fourth thing you need in providing good estimates is to use
ranges instead of precise numbers. Remember the logical fallacy of
false precision (see “Logical Fallacies” on page 169). If we tell some
executive the project will cost $18,535,716.34, that’s wrong. We’re
already wrong. We can’t possibly know the cost of a two-year project
with 100 people working on it down to the penny. Of course people
know this, but it sets up a bad expectation. What we can do is use
ranges to instead say something like $18M–$20M. Then we’re acting
in better faith.

The fifth thing that you want in your estimate is a statement of your
assumptions. All too often we skip this step, and a year later we get

222 | Chapter 8: Templates

burned for circumstances beyond our control. Say the CTO declares
that we’re deploying everything in the cloud. Then that guy gets
fired six months later, and along comes a new CTO declaring that
we’ll be deploying everything in new on-premises data centers we’re
building because as a paperclip company, running our own data cen‐
ters is a competitive advantage. Such business regularly goes on, in
which case you should state the sorts of things that could change but
that a big part of your estimate depends on. Write them out as
assumptions as you add up server costs and provisioning efforts.

Estimate Template
You’ll be estimating things a lot. Remember that you don’t want to
solve only the local problem, but to do just a little bit extra to help
scale yourself and the overall organization as well. That means that
when we get asked for an estimate, we do it, and then we also want
to create a template we can reuse.

To create a good estimation template in software projects, consider
these factors: the labor and the data centers.

There are two kinds of labor: the development teams and the sup‐
porting cast. Let’s start with the development team. Make a list of
who is on your typical development team. I like to use the Margarita
Mix team as a standard atomic unit: it’s 4 parts developer, 2 parts
testers, and 1 part analysts. So you can say a development team is
seven full-time employees (FTEs). Find out the blended rate you use
from your PMO or business operations folks. Let’s say it’s $70 per
hour. Here’s some third-grade math that will get us a long way: 7
people × $70 per hour × 40 hours per work week × 2 work weeks in
a sprint = $39,200 per sprint. Let’s round that up to $40K. That’s the
cost of a sprint.

Figure 8-4 gets more refined about the internal rate for the different
roles. Your company may use some value that’s fully loaded or not or
the same blended rate, or Finance may have a rate sheet they use for
doing these kinds of calculations. Use whatever is easy and close at
hand for directional costing—it’s more important to be quick at this
point than it is to be perfect.

Directional Costing | 223

Figure 8-4. Labor costs

Now we can turn our attention to what we know about the work
itself. We look at the entire body of work as we understand it at this
stage. You’re looking for two things: what must be done in serial,
and what can possibly be done in parallel.

Front-load the big blocks that are likely to be “showstoppers”—
things that could sink the project if they don’t go well. You want to
short-circuit the spending if you can, and don’t put off finding out
that something critical is impossible or delayed or different than
anticipated. You’re designing the project just enough to be able to
determine how many teams you can run in parallel. That will give
you the number of sprints you need, the number of teams, and the
anticipated duration. Let’s say you can keep 10 teams busy, working
on different aspects of the project so as to not interfere with each
other. And if you had those 10 teams, the project would take 30
sprints. So you do some more math like this: 30 sprints × 10 teams ×
$40K per sprint = $12M.

Next you’ll need to account for those auxiliary players, which is a bit
trickier to do, since we usually have them only part time, their work
is not divided up so neatly into sprints, and it’s hard to see their
direction relative to the work and therefore how much of their time
we’ll need. We’ll have to consider these roles: Architect, Database
Administrator, Networker, Scrum Master, and Project Manager. Put
these in your spreadsheet and provide a simple calculator. Let’s say
that we’ll need 25% of each of their time for the duration of the
project. That would be 5 people × .25 × $70 per hour × 60 weeks ×
40 hours per week = $210,000.

So our labor cost is around $14.2M. Figure 8-5 an example of how
you might view those in a spreadsheet template on a summary page
that you can pop into a deck quickly. This gives you the best of both
worlds by showing the details and sets of assumptions as to how you

224 | Chapter 8: Templates

got here, as well as recalculating when those assumptions change
and giving you the quick answers that executives will ask about. You
can get more sophisticated later and divide the world into capex and
opex, but for directional costing, this is good for now.

Figure 8-5. Directional costing summary

Now let’s consider the data center business. If you’re using a cloud
provider, it will have costing spreadsheets that make this sort of
thing easy. For example, the AWS Cost Calculator helps you plan out
the fees you’ll be facing monthly, which is great because it makes all
the costs clear. You can fill it out quickly, get a number, and plug it
into your directional costing spreadsheet.

The point of this pattern is not to mislead you with respect to the
many sophisticated frameworks out there for estimating work. It’s to
say this: a lot of times what executives need is not a perfect number,
but a directional cost. They really do want a rough ballpark and don’t
expect it to be perfect. They want to know if it’s more like $1M or
more like $10M.

So sometimes it’s more helpful to produce an estimate quickly, even
if it’s not that great. Executives are used to big numbers and tons of
ambiguity. So being able to tell them the project is likely around
$25M all-in is useful, even if it turns out to cost a bit less or a lot

Directional Costing | 225

http://bit.ly/2Px40XO

more than that. They are calculating things other than what they are
asking you about. They are wondering if they should do the project
at all. But they may be thinking of buying a company, and if they can
buy a whole company with this capability for $50M and get it today
instead of two years from now, and get all their talent and revenue
now, then that might be a better option.

Which is to say that while the rough estimate may be maligned, it’s
often useful—as long as everyone has the same expectations around
it. The Directional Costing pattern turns out to be more about set‐
ting proper expectations than about nerdy project management
math. There’s a time and place for that, and it’s pretty well under‐
stood. So I lay out a different take on it here, in the hopes that this is
useful too.

Priority Map
The Priority Map, shown in Figure 8-6 is a simple guide to help you
prioritize your Use Cases (see “Use Case Map” on page 217) or your
strategic initiatives as in your One-Slider (see “One-Slider” on page
214).

This pattern provides you with a mental map to quickly guide you
through all the angles of both risk and opportunity as you prioritize
strategy efforts and major projects during strategy season or big
shifts. This won’t be useful for prioritizing sprint backlogs or any‐
thing like that, but that’s not what we’re after here.

The map shown in the figure is not the only one you could draw of
this kind, but it’s a good start. You could use the Priority Map in
conjunction with the Growth Matrix (see “Ansoff Growth Matrix”
on page 95), Investment Map (see “Investment Map” on page 130),
or a spreadsheet you devise to score each of your strategic initiatives
across all of these items, weight them, and produce a number you
can use at least as a starting point for the priorities.

226 | Chapter 8: Templates

Figure 8-6. Strategic Priority Map

Technology Radar
How can we have a simple way to help us communicate our Road‐
map for technology tools and practices to broad and diverse techni‐
cal teams, collect feedback, and measure progress against advances
on our strategy?

The Technology Radar pattern was invented by ThoughtWorks. The
company publishes on its website, every six months or so, the set of
technology tools it is reviewing, and gives a summary of its view on
that technology.

The radar is divided into four parts: Tools, Techniques, Languages &
Frameworks, and Platforms. Then ThoughtWorks further divides
the technologies within each of those areas into a category based on
how the company advises you to consider them. These subcategories
are Adopt, Trial, Assess, Hold.

I like to look at this radar on occasion to consider how Thought‐
Works is thinking about technology. But they company opened up
its radar-making tool so that you can generate your own radar using
your own categories and list of items. This is a terrific way for you to
visualize and share with your teams how you’re thinking about the
set of tools out there. Depending on your culture, this can be more
of a dictum or more of a guide.

Technology Radar | 227

https://thght.works/2NqU4AQ
https://thght.works/2Corfko

The radar is not merely a frozen perfect tech future represented in
boxes and arrows, but shows the tools and techniques together and
presents them in a clear, easy-to-understand framework, and pre‐
supposes that you will evolve and update it.

The radar is a set of concentric circles representing criticality and
standardization levels, showing what teams should start using now,
what to learn about and test, and what to contain and avoid.

The Technology Radar will evolve over time, in a methodical, inclu‐
sive, transparent manner. This is a more evocative, realistic, and
planful way to show your thoughts on technology features than a
traditional single, pristine architecture target state as if it could be
frozen in time. Figure 8-7 shows a sample from ThoughtWorks of
what this pattern looks like.

Figure 8-7. Technology radar

There’s value in helping your teams see how you’re thinking, topics
they should be researching, or areas where they might suggest other
items you weren’t aware of. Instead of providing a merely beautiful,
oversimplified, isolated, frozen snapshot of a future state (as archi‐
tects all too often do), you can represent architecture as an evolving
radar, improving the signal-to-noise ratio, and support a practice of
directing capabilities toward a strategy. This can help us offer
options through a variety of lenses.

Remember, too, that the radar-making tool can include any cate‐
gories and items, so you could use it as a way of presenting strategy

228 | Chapter 8: Templates

priorities in conjunction with the Priority Map (see “Priority Map”
on page 226).

Build/Buy/Partner
Sometimes we’re brought into conversations with the business
development folks who do mergers and acquisitions. We can use the
Build/Buy/Partner pattern as a way of framing our conversations
with them. It’s important to align these decisions with your technol‐
ogy strategy. Let’s take an overview of each of the three options in
turn.

Build
There are many reasons to build your own software application or
product:

• You are, or want to be, a pioneer or leader in the market.
• You have some reason or desire to own the intellectual property.
• You have technologists in-house with the proper skills.
• You have time to build it.
• You want to own the technology for a long period because it’s

core to your business.
• You have expansion plans and you’d be in a more flexible strate‐

gic position if you owned the intellectual property.
• You think what you would do with the product is innovative

enough that it could be patented and licensed and become a val‐
uable asset long-term.

The advantages of building yourself are that it provides you with the
most product control: you can have every feature customized just
your way; it offers the best opportunity for profit if you can market
it; it offers you the potential for lowest cost in the long term; and
you get an asset with value.

There are a few disadvantages too: it’s the longest time to market,
and you’ll need to keep a number of development folks around to
maintain it. You could find yourself in a precarious situation if you
later want to switch and have gotten quite used to having all your
processes exactly customized to your company’s nonstandard way of
doing things.

Build/Buy/Partner | 229

If you’re thinking of building a big software system yourself that
someone else could sell you instead, consider these questions:

• Is this the way you want to use the time and resources of your
organization? Are there other opportunities you won’t get to
pursue because of this allocation, and is that OK with you?

• Do you have the resources to not only pursue it, but to complete
it, and do it in a significantly better way than what’s otherwise
available?

• Will you realize a meaningful cost savings?

Basically, it comes down to asking if this software represents a sig‐
nificant differentiating factor for your company that helps position
you strategically and helps you compete in the market.

Buy
The Buy option represents the quickest time to market. You still
have to face integration challenges, but not on top of making the
system in the first place.

The biggest drawbacks are obvious: you don’t own the software, you
may find it very limiting in the options it offers in terms of customi‐
zation, you may have to change your business processes around the
software or have to do things differently than you really want to, and
it’s expensive. You also have the least control during the project,
because there will be expenses of a different kind in terms of coordi‐
nation and management, and there can be many lengthy contract
negotiations and unmet expectations.

There really are two things meant by “buy”: you can buy off-the-
shelf software such as Workday or Salesforce to run noncore func‐
tions or functions that are important but don’t differentiate you in
the market. That is, no one is buying your software product because
of the nuances of your HR system. But the other thing is that you
outright buy the technology or the company that you want to get to
market with. As an example, think of Google buying DeepMind.
Google wanted to become an AI leader and start exploiting that
capability, and would be years behind DeepMind, leaving it available
for a competitor to pick up. Sometimes you want to buy a company
or a key technology just to keep someone else from getting it.

230 | Chapter 8: Templates

The Buy decision comes down to determining what your core prior‐
ities really are. Ask if this is out of scope for the capabilities you are
the best at, and if you bought another company’s solution, whether
you could improve your competitive advantage. If you look at buy‐
ing anything, perform a thorough Due Dilligence (see “Due Dili‐
gence” on page 232) and hope the deal folks trust the assessment of
the tech teams. If not, this can be a very painful, incredibly costly
disaster.

Partner
This blended option means you work together with another com‐
pany, and each brings something distinct that’s of value, in an area
that you’re a leader in, thereby creating a new thing of value.

The advantage here is that you get to market quickest doing some‐
thing complex. This lowers later switching costs, assuming you
design the integrations properly and you get to save on resources.

The challenge with this option is that you get the least control over
your fate, and will lose certain revenue opportunity, depending on
the structure of the deal, of course. Partnering is nice because you
have another company to share the risk with, to help popularize the
product, and to extend the name recognition and reach of your own
brand.

When evaluating a partnership, ask yourself:

• Is the potential partner financially healthy? Will they be able to
hold up their end of the bargain and still be around in a few
years?

• How important or strategic is this deal to them? What’s in it for
them to make sure this is successful?

• Relationship: How well do you know each other, have you done
business before, will your styles of working and your systems be
compatible?

• Execution: Will both of you be able to fulfill the obligations of
the deal?

• Speed: Is speed to market the most important thing, and will
this technology enhance your existing offering in a credible,

Build/Buy/Partner | 231

clear way? Does the partnership buy you time to get into a mar‐
ket and assess how much real potential there is?

With a partnership, the clear trade-off you’re making is for control.
It’s also the middle road, the most compromising kind of decision.

I’m usually not a fan of partnerships. I’ve seen a number of them go
poorly, and precious few go even well. Eventually, someone needs to
decide if they want to be in this business or not, and if they do, they
should own the solution and go be the best in the world at it. That
said, partnerships can be a good way to test the waters if you really
need to see more in order to make that determination. If there is no
clear market leader, partnerships can allow you to work together as a
longer-term way of deciding on an acquisition.

You can use the Build/Buy/Partner pattern in conjunction with Due
Diligence.

Due Diligence
As part of the conversations we have during Build/Buy/Partner (see
“Build/Buy/Partner” on page 229), if things advance to the Buy
stage, we’ll need to perform a Due Diligence. This is an assessment
of the technology and operational aspects of the target company. It’s
very important, because it’s used to determine if the company
should be bought at all. Depending on the outcome of your assess‐
ment, it may suggest that you leave the company be, or pay a differ‐
ent price than what the company is asking, or go a more nuanced
route and pick up only part of its software, or enter into a licensing
agreement. There are too many variables to make those suggestions
into a template here, so this pattern is confined to helping you con‐
sider all the technological aspects so that you can make an informed
decision. I encourage you to make your own template as suits your
purposes. This pattern offers you a strong starting place for per‐
forming this kind of analysis.

First make a spreadsheet that will represent your template. Create a
summary page, as we did with the Directional Costing template (see
“Directional Costing” on page 218). It looks like this:

232 | Chapter 8: Templates

Characteristic Definition
Maintainability Degree of effectiveness and efficiency with which the product or system can be

modified to improve it, correct it, or adapt it to changes in environment and
requirements.

Manageability Degree of effectiveness and efficiency with which a product or system can be
monitored, configured, and deployed.

Portability Degree of effectiveness and efficiency with which a system, product, or
component can be transferred from one hardware, software, or other
operational or usage environment to another.

Security Degree to which a product or system protects data so that persons or other
products or systems have only the degree of data access appropriate to their
types and levels of authorization, and demonstrates modern security.

Compliance Degree to which a product or system complies with auditing and compliance
requirements.

Privacy Degree to which a product or system protects information deemed to be
restricted due to privacy concerns.

Resiliency Degree to which a system, product, or component performs specified functions
under specified conditions for a specified period of time.

Compatibility Degree to which a product, system, or component can exchange information
with other products, systems, or components, and/or perform its required
functions, while sharing the same hardware or software environment.

Performance Degree to which a product, system, or component, relative to the amount of
resources used under stated conditions, is performing.

Usability Degree to which a product or system can be used by specified users to achieve
specified goals with effectiveness, efficiency, and satisfaction in a specified
context of use.

Functional
suitability

Degree to which a product or system provides functions that meet stated and
implied needs when used under specified conditions.

This is your master list of concerns in the assessment. You can add
one for your own company’s particular concerns, and how well the
target aligns with your strategy and Roadmap, distinct from these
generally reusable and standard categories.

You will create a set of questions in each of these categories and give
the target product’s answer a score. Make a legend like this:

0: Unsupported and not on the Roadmap

1: Unsupported but on the Roadmap

2: Implemented but weak

3: Implemented and suitable

Due Diligence | 233

4: Implemented and world-class

Add another column to reflect these scores, as summed on each sec‐
tion’s individual worksheet.

These scores of 0–4 will cover most of the circumstances I tend to
see when doing this kind of work. If the company states that a par‐
ticular feature you’re interested in is unsupported in the current sys‐
tem, and not on the Roadmap, that’s a different signal to you than if
the company knows it’s important and has it prioritized but just
hasn’t done it yet.

Then create separate worksheets for each of those categories that
have the drill-down questions. These will form the core of your
assessment.

Each subsection spreadsheet (you’ll have 12 of them) will look
something like Figure 8-8.

Figure 8-8. Due Diligence subsection spreadsheet

Make a similar worksheet for each of the remaining primary charac‐
teristics. You then score each one of these individual items with a
value from your legend, 0–4. This should sum up to a score for that
characteristic and then appear in the summary page. Together, these
all add up to a score for the product.

There’s a second use for this template: note that as a software ven‐
dor, you could also offer this to large enterprise customers as they
assess whether they should license your software or not.

Internal Use
But wait, there’s more—there’s a third amazing use for the Due Dili‐
gence template.

234 | Chapter 8: Templates

Maybe you’re thinking that you don’t have the opportunity to go
around buying companies every week like Oracle, and this pattern is
maybe not that useful. I love to use this tool in a novel way. Recall
from “Rented Brain” on page 163 that we sometimes (or often) want
to act as if we are a consultant for our own company, so that we can
be a bit more objective, stay out of politics, and speak truth to
power. If you’re a technology leader on a development or product
management team, I encourage you to turn your sights inward, and
execute the Due Diligence on your own products, as if you were
from a different company and sent to assess the quality and state of
the software product.

After making the assessment on your own products, you have an
excellent Roadmap for fixing technical debt, improving features in
lagging areas, and providing a communication mechanism for talk‐
ing with other leaders about how well your software is positioned.
In this sense, Due Dilligence acts like a Process Posture Map for a
single product. While I frequently use this template for both pur‐
poses, I’ve found that we really get a lot of mileage toward improv‐
ing quality by designating an architect to run this internally.

Architecture Definition
I’m going to have to contextualize this template a bit. Let’s start with
recent attitudes toward how we express architectures.

In my experience, the predominant form architectures take is in the
clever people expressing their views over email and in meetings.
This is too informal, too untraceable for architecture work. To be
clear: I reject this mode of business unless the team is small, they all
share extra-sensory perception, and what you’re building doesn’t
require any physical load bearing. If you’re building Yet Another
Trivial Social App for neighbors to spy on and gossip about each
other, that should work just fine.

But when this “method” finds its way into the enterprise, absent any
formal means, teams in these environments will be confused or
uncertain about how to do things. The role of the architect lacks
clarity, and there is insufficient accountability for their decisions.
The products will also suffer as a result, and thereby so will your
customers. Moreover, the architect, and thus the organization, is
unable to scale, since they’re required to be present and speak to

Architecture Definition | 235

how they want things built. This is far too slippery and sloppy a
mode for any really helpful architect.

Yet in recent years we hear formal architecture definitions—and
perhaps even the practice of architecture itself—sometimes derided
in the posh voice of maverick trendsetters, those impresarios of the
modern software stage who denounce waterfall, reject RUP, and poi‐
son the well for any way of representing requirements that doesn’t fit
on a Post-it note. We mustn’t plan because the world “changes” so
fast, we are told. We have no problem spinning up 150 people to
type their hearts out for two years, presuming to use $25M of some‐
one else’s money to build something without a plan or design. But
we can’t afford to have three smart people think about how to build
this thing for three weeks. I find this irresponsible. We need to have
a clear picture of what we’re doing, why we’re doing it, and how
we’re doing it, and we need to be able to refer to those things.

But the currently prevailing trendy attitude in some—not all—soft‐
ware circles can be very inefficient. It can create significant churn,
waste, confusion, redundancy, alienation, and lack of alignment. Yet
in the name of saving time, we sometimes dismiss formal architec‐
tures. “We don’t have time to write this stuff down,” I’ve had dev
leaders tell me. There’s never enough time to do it right, but there’s
somehow always enough time to do it over.

Other detractors would denude the art and science of software
development methods or architecture documents down to a set of
platitudes proclaiming “disruption” and “obsession with customer
feedback” as if their “platforms” will spring to life without a clear
picture of what they’re doing, why they’re doing it, and how they get
there. “Move fast and break things” works if you don’t think your
customers are people, and what you’re “breaking” is trivia within a
predominantly closed system entirely of your own devising with no
operational contractual responsibilities, and you hold people, rela‐
tionships, and data as playthings. I wouldn’t hope to get on an air‐
plane built by software teams proclaiming this hollow creed.

For many practitioners, “Agile” seems to have devolved into “we
don’t have to write requirements,” and “iterative” often translates to
“we don’t have to think about what we’re doing.” But since it’s itera‐
tive, we can just revisit the same code and the same problems over
and over, like a scene from Groundhog Day, or enter a Sisyphean

236 | Chapter 8: Templates

http://bit.ly/2MpYTdX
http://bit.ly/2wnIf46

eternal return from which one day hopefully someone will rescue
us.

Consider that Google was built on a tremendous architecture foun‐
dation. The many (publicly available) founding papers for web
search and PageRank are 20 pages long each—including diagrams
and math!—adding up to many pages of descriptive, specific, planful
architecture that paid careful attention to business architecture
(though they don’t call it that, instead referring to the vulnerability
of the algorithm as what eventually become known as “Google
bombs”), and thoughtful and specific design around the scalability
and the core components. Though the folklore likes to suggest that
Silicon Valley is full of freewheeling geniuses who ride around on
colorful bikes and don’t need to think about how to build their sys‐
tems because it will all “just work” as long as they’re thinking about
disruption, this is a false narrative.

This pattern represents a template to record architectural decisions
and goals with the aim of guiding development teams working in an
Agile environment. So it is up-front. In my experience, architecture
is best expressed with a formality somewhere between a long hall‐
way conversation and a full-blown Turing-complete intricate specifi‐
cation written in thousands of pages with Leslie Lamport’s TLA+. If
you think even this middle-road way of recording architecture is too
formal, this is how real companies are built: see the Google Search
Architecture, the Google BigTable architecture, and the original
Cassandra paper describing its architecture from its creators at Face‐
book. Often these papers were written for the public after the fact to
explain how the systems were built. When this level of forethought
isn’t applied initially, the software tends to quickly be rewritten and
eventually scrapped. Consider the entire AWS website Amazon has
devoted to its whitepapers, or a talk by a hero of mine, Amazon
CTO Werner Vogels, on scalable architecture and how architecture
must work with the business. There are a lot of PhDs writing these
architecture papers. And they didn’t do it after the companies made
their first billions. However people may talk, this level of detail,
thought, and comprehensive planning is how the grown-ups do
architecture.

In my view, to best help guide teams and direct systems toward
demonstrating strong nonfunctional attributes, and to best scale the
organization, the architect needs a template. This template might be

Architecture Definition | 237

http://bit.ly/2PxcrCs
http://bit.ly/2nZEyh1
http://bit.ly/2nZEyh1
http://bit.ly/2wnKl3Y
http://bit.ly/2OWYGvw
http://bit.ly/2OWYGvw
https://amzn.to/2MG6PHz
http://bit.ly/2LnPUow

called the Architecture Definition Document. It’s the document
analogous to the blueprints of a building architect.

The product management team owns the functional requirements:
what the system does. These items are expressed in epics and user
stories and stored in something like CA Agile Central. That’s great.
But the architecture team owns the nonfunctional requirements:
how the system will be realized—and what’s their form of expressing
the architecture?

The purpose of the Architecture Definition pattern is to express in
clear, executable, measurable, testable, directive text what the non‐
functional requirements (NFRs) of the system are. These are the
-ilities,” which we covered in “The Architect’s Role” on page 7.

I’ve used the same basic template for well over a decade to express
architecture requirements. It’s based on TOGAF, but is much lighter
and, I believe, more pragmatic. In this pattern, we’ll walk through
the major sections of this template. Then anytime you have an archi‐
tecture question that needs answering, you can use this template. It
scales from just several pages if you’re making a change to a single
component inside a system, to large documents that cover how to
build entire new systems. I’ve used it to write architectures in just 6
or 10 pages, to 50 pages, to 150 pages. It scales in a different way too.
The lead or enterprise architect might write one capturing the broad
contours of a system, and then have local application architects on a
team write “child” architectures that represent specific subsystems.

One question that comes up is: When should architects weigh in? I
use the following informal little rule of thumb, and make sure the
team knows it too:

• When something is going to cross a data center or other signifi‐
cant network boundary

• When something is going to cross system boundaries
• Anything architecturally significant

The question of what’s “architecturally significant” seems slippery,
but it’s actually rather decidable. It breaks down to one or more of
these, based on the Wikipedia list:

• There is high business value, it’s highly visible across teams, or it
has high technical risk.

238 | Chapter 8: Templates

http://bit.ly/2MKkVHT
http://bit.ly/2OXGty1

• There is high risk of budget overruns or high business risk
based on past experience with similar projects.

• There are outstanding questions or concerns from a key stake‐
holder or business leader.

• This component is new or first-of-a-kind to the organization—
none of the responsibilities of existing components in the cur‐
rent architecture addresses it, or it must dramatically change.

• The requirement has Quality of Service or SLA (service-level
architecture) characteristics that deviate from all the ones that
are already satisfied by the evolving architecture.

If there’s other stuff, architecture can be silent on it and let the team
leads handle it. Now let’s look at the template itself.

The Template
There are five primary sections to the Architecture Definition tem‐
plate I use:

1. Metadata or Front Matter
2. Business Architecture
3. Application Architecture
4. Data Architecture
5. Infrastructure Architecture

Metadata
First, you have the front matter, the document’s metadata. Include
the system name, author, and date. I don’t care about version,
because the date to me seems like the superclass of that data; the
date a unique thing like the version number, and it tells you how
long ago the document was written, which adds useful context. I
also like to list the people who reviewed and contributed to the
document to make sure that readers know who else was involved
and how holistic the perspective is.

My favorite part of the metadata is the Internet Engineering Task
Force (ETF) keywords. I always include “must,” “may,” and “should”
as keywords and state that the document will use them with special
status, like this:

Architecture Definition | 239

Use of IETF Keywords
This document employs a subset of the Internet Engineering Task
Force keywords found in RFC 2119. These words are MUST,
SHOULD, MAY, and their counterparts MUST NOT, SHOULD
NOT, MAY NOT. They are capitalized throughout the document to
draw attention to their special status as keywords used to indicate
requirement levels.

I love the IETF keywords because they are MECE and clear. They
nudge document authors toward decisiveness and specifics, and
make the implementation path more sidirected for readers.

Business Architecture
This part is one of the least understood aspects of architecture for
technical people. Its aim is to provide a map of the common under‐
standing of the organization as a system, with its organizational
models, processes, and capabilities in order to establish alignment
with strategic goals and tactical plans. In that sense, business archi‐
tecture has been an underlying focus of much of this book.

It answers, or at least collects and reflects answers to, the following
core questions:

• What organizations do we have?
• What capabilities do we have?
• What are our Value Chain models (see “Value Chain” on page

116) and their attendant processes? What is the present posture
(see “Process Posture Map” on page 138) of those processes in
order to assess our preparedness to support strategic goals sta‐
ted by the business or strategy teams?

• What information must flow through their processes as their
fuel for them to run?

These are the basic building blocks. But any business architecture
practice that stops there isn’t creating anything of value. We have to
take these raw ingredients and make something useful. This means
drawing connections. We ask:

• What are the relevant regulations, applicable laws, rules, or cor‐
porate policies that might constrain our system?

240 | Chapter 8: Templates

http://bit.ly/2MKSbi4

• Who are the stakeholders (see “Stakeholder Alignment” on page
99)? Who owns what decisions? What events are generated
when a decision is made?

• What initiatives are under way, and how well aligned are they
with the strategy and each other?

• What are all our products and services, as listed in our APM
(see “Application Portfolio Management” on page 146)? How
well aligned are those with the strategy and with each other?

• What training might be required by the new organization or
new system or component we’re architecting?

• What metrics will we use to measure how well we are doing
toward achieving our desired outcomes? What data do we need
to support those metrics? How well aligned across organizations
(or machines) are they? What behavior do they drive?

Now you can start to determine the gaps between your current state
business architecture and where you need to be to support your ini‐
tiative. Recall our model in Chapter 2. In this way, you can view the
first set of previous questions as your data findings—the collection
of research and raw materials—and the second set of questions as
being occupied with the insights you can draw from it.

For me, any good business architecture will answer these two ques‐
tions—different sides of the same coin:

• What business constraints exist that will inform or modify the
proposed technology system? How will they do so?

• How will our business need to change in order to support the
proposed technology system? What training will teams need to
successfully realize the system? What governance will need to be
in place through the large project or subsequent to its comple‐
tion? What processes or teams will be impacted by the system?

When you make a scalable business machine (see “Scalable Business
Machines” on page 194), you are making an executable model of
your business architecture.

As with many things in this book, the business architecture as I
describe it here is fractal: each part has the same statistical character
of the whole. That is, you can ask these same questions about a sin‐

Architecture Definition | 241

gle component that you’re writing an Architecture Definition for, or
for the architecture of a new greenfield application you’re building.

Such a template could look like this:

Major Features
Describe the purpose of the system and its high-level feature set.
What will this system do? What current capabilities can we
draw on? What must be repurposed or modified?

Strategic Fit
What aspect of the business and/or technology strategy does
this effort and design support? How does it help realize strategic
goals? If counter to the goals, how is that justified?

Business Drivers
Make a bullet list of the reasons for doing this project. What
money would be saved, what efficiencies would be created, what
process improved, what customer opportunities enabled?

Business Priorities
Given a conflict of priorities, what is the stakeholder bias (time
to market versus quality, performance versus security, SLA ver‐
sus costs).

Assumptions
Make a bullet list of your assumptions about the current state of
the world, your organization, and your systems that, if later
proved false or changed, could dramatically impact this system.
Consider people (what existing roles or new roles do you
assume will be in place that you might require), process (con‐
sider Procurement, HR, Finance, approval gates, ETO, GNOC,
Security), and technology (consider stated drivers, standards, or
architectural direction or patterns from the leadership team).

Constraints
What are any applicable laws governing the data or processing
of this system? Consider GDPR, or other European personal
data laws, for example. List applicable regulations, such as ADA,
PCI, and PII.

Risks
List business risks in doing the project as envisioned, and risks
to the customer or existing business prospects or processes. Can
the project be maintained and operated properly, are staffing

242 | Chapter 8: Templates

resources easy to find, is funding secured, what countries or
markets will be targeted, what risks are inherent in trade-offs
made?

Impacts
What will this project or this architecture create in terms of the
organization, training, and process?

Stakeholders
List internal and external business partners who are concerned
with or impacted by this project.

Governance
How will the project be governed? Is there an executive steering
committee, or a responsible stakeholder committee? What
cadence and form will they take, with what explicit purpose?

The Business Architecture section should be the first primary sec‐
tion of your burgeoning Architecture Definition Document, after
the headers or metadata.

Application Architecture
This is where you describe the software components and how they
are built:

Applicable Standards and Policies
Make a list of links to published guidelines and conventions for
dev teams to follow (e.g., any internal policies, OTA/HTNG
specs, PCI guidelines, ADA guidelines).

Guidelines and Conventions
Make a list of links to published guidelines and conventions for
dev teams to follow, most likely published internal standards
documents, Google Java coding guidelines, JavaScript conven‐
tions, code quality guidelines, and the like.

User Interface
Specify the anticipated impact of UI/UX to the project, existing
design work, wireframe method, and libraries to be used. You
may have a Concept Model to reference.

Architecture Definition | 243

http://bit.ly/2NcuFHI

Services
List services to be created or existing services to be reused, and
the owners of those services. This one requires some real analy‐
sis beforehand.

Security
Specify the security requirements and design: how data will be
secured, encrypted, authorized, authenticated at rest, in trans‐
mission, or in processing. Outline the use of OWASP Top Ten
and how those are addressed. Cover user roles and authentica‐
tion methods and authorization. What security groups are
required? How will credentials be stored, and how will keys be
managed? Will you use two-factor authentication? Highlight
security requirements for development such as bastion hosts.
List transport or TLS/SSL requirements.

Availability
Target SLA in terms of 9’s uptime and how specifically the
architecture will support such numbers. Document how recov‐
erability, disaster recovery, and the like is being supported.
What compensating actions are taken? Will a circuit breaker be
used? What redundancy is there? What caching? Health check
page? Multideployments?

Scalability and Performance
List the number of transactions per second at this latency and
CPU utilization. What is the unit of scale (container, VM, clus‐
ter)? What are the ways the application and services can scale
through statelessness, autoscaling groups? State thresholds.

Extensibility
List APIs, ways that the application affords future change, how
the application supports customizing per customer, and how
configurations are afforded.

Testability
How will this be tested, what tools will be used, and what spe‐
cific automation and targets will be in place? Include functional
testing, regression testing, automation, tools used, chaos testing,
and resilience testing. What is the load-testing plan?

Maintainability
What software guidance for developers will help make the code
base easier, cleaner, and simple to maintain in the long term?

244 | Chapter 8: Templates

What are the code repository needs or project needs? What is
the maintenance schedule anticipated or downtime for
upgrades strategy?

Monitorability and Metrics
What tools and dashboards are required, and what are the log‐
ging requirements? State how the software itself must support
event publishing to increase visibility. What are the specific
metrics that will indicate system uptime, health, and proper per‐
formance? How will alerts be triggered, and at what threshold?
Consider CPU, memory, drive/filesystem volumes, database
process monitoring, logs, event logs, and required procedures.
These will end up in an operational playbook or hopefully get‐
ting automated.

Data Architecture
The next aspects of the template are all about data: how to get it,
what to do with it, how much there is, how long to keep it, how to
move it, and how to get rid of it.

This section might include the following:

Data Sources
Where should the team get key data from (existing services or
databases or new)? Where is data stored? What database soft‐
ware will be used to store what data? Which instances of those
databases should be used?

Data Strategy
What are the hard limits on the number of key data rows? What
are the key data transaction size limits? What is the tolerance
for eventual consistency for key aspects of the solution? Include
data warehousing, storage and management requirements.
Transfer requirements. Long-term storage.

Transactional Requirements
What are transaction requirements such as two-phase commit,
eventual consistency? What data volumes must be supported?
Include data movement policies and requirements.

Volatility
How often will key pieces of the data change?

Architecture Definition | 245

Data Maintenance
Describe how data will be maintained, data retention policies,
scripting to offload, data restoration. How will data be popula‐
ted for different environments for this application? Will data be
truncated? At what interval? How will data be encrypted? Are
there GDPR or PII/PCI requirements to be stated for dev teams
or infrastructure admins?

Data Migration
How will data get into the system? Is connecting to a legacy sys‐
tem required? How will you replicate data? Is Golden Gate or
Kafka or ETL or another tool in use? What time period is antici‐
pated for this? Will data have to be synchronized over a certain
period time?

Data Volume
How many rows are anticipated to be added daily for the key
services? What size database is anticipated? Will there be multi‐
ple data stores?

Logging
Log rotation policies, Splunk requirements, and indexes.

Analytics
What data must be exposed by the application to support busi‐
ness analytics? How must that data be exposed to support ana‐
lytics tools?

Caching Strategy
Requirements for caching and the locations and technology to
support caching.

Infrastructure Architecture
These aspects of the template are about the data centers, the net‐
work, the hardware, and the operational aspects. We can’t leave
these out: the application and its environment are all of a piece, and
the architecture must consider the full stack.

The key sections here might include:

Cloud and Data Center Requirements
Which data center will this be deployed to? How many? How
will communication between data centers be supported? Will
this be a cloud-based application? How will that be supported?

246 | Chapter 8: Templates

What about cost management strategy? Deployment pipeline
requirements? How will the infrastructure be stood up—are
there infrastructure-as-code or containers and orchestration
opportunities? Do you need to be “cloud-agnostic” (good luck)?

Deployments
List how deployments will be executed, outlining any blue/
green deployments, deployment pipeline, and CI/CD.

Disaster Recovery
Is DR required by this solution? Will it be built-in DR based on
data replication and redundancy?

Network
Describe and diagram networking with firewalls, gateways, load
balancers, VIPs, zones to be used (e.g., PCI, DMZs, routing),
and DNS-specific needs.

That’s the template. It’s a lot, but not all sections are equally impor‐
tant, of course, depending on the size and nature of the product. I
really hope that thinking about your architecture this way helps you
make great systems.

Executable Architectures
I can see you rolling your eyes already: making a document like this
would take too long! No one will read it! Documents like this just
wither and die when we post them on the wiki. They’ll languish at
the edge of the known universe for years. I urge you to think other‐
wise. Here’s why. I have used documents like this for a decade, at
different-size companies, and they work. But not in a vacuum—they
must be used as a first step to translate them into what will be exe‐
cutable within the project team.

But the NFRs need a system for their expression, and we just have to
close the gap between that formal expression of your architecture
and the teams typing the code. We can do that. Depending on the
size of the system or component you’re architecting, there are differ‐
ent ways to handle this.

First, I encourage you to work with the product team and the ana‐
lysts to get your NFRs into the acceptance criteria of user stories
about functional requirements. This is the best way to make sure
your architecture work isn’t ignored. That also ensures that you are

Architecture Definition | 247

writing the architecture requirements in such a way that they are
easily transferable to story form, demonstrable, and testable.

The second way you can do this is to help guide the analysts or
product teams to write stories specifically for the NFRs. If you’ve
defined your NFRs properly, as measurable and specific and testable
and demonstrable, this should be easy to do. I like this way much
less, because it tends to make some of the teams think they aren’t
responsible for thinking about the NFRs, and it means that you can’t
have the proper sense of ownership and delineation.

The definition defense
You cannot simply write an Architecture Definition Document,
hand it off to the development teams, and expect anything good to
happen. Your architecture won’t be realized. We all know that won’t
work. The teams won’t implement it, and you will be viewed as (and
unfortunately actually be) irrelevant.

A critical part of success here is to actually talk to the teams, but
with the document as a center piece of these conversations. This lets
you eat your cake and have it too: you get the formality of the docu‐
ment and the engagement and understanding of the two-way con‐
versation.

Dissertation Defense

If you’re not familiar with the term the “disserta‐
tion defense,” it’s the final committee meeting
before a PhD candidate is granted her doctorate.
The candidate has written a book-length docu‐
ment on her subject, called a dissertation, and
must defend her claims in person before the
committee in a process that takes hours, to
ensure that she really knows the material and
that it makes sense. She must defend her meth‐
ods and research and choices to the committee.

To aid in this eating our cake and having it too with the formality
and the conversation, some years ago I came up with borrowing the
idea of a dissertation defense for us as architects. You need a forum
for people to argue things over, ask questions, clarify misunder‐
standings, and agree to move forward. This will act too as a refining

248 | Chapter 8: Templates

opportunity for you to gain insights into where the architecture isn’t
optimal or the constructs make sense but aren’t expressed clearly.

Have meetings to walk through the document. Invite application
architects, enterprise architects, develpment leaders, analysts, prod‐
uct managers, and relevant technical stakeholders. These are long
forums in which the teams can ask clarifying questions of the archi‐
tect, similar to a dissertation defense in graduate school. It’s similar
to an architecture review board, but inverted, because the architect
who authored the document presents the material instead of being
merely a passive participant as some “star council” sits in judgment.

The dissertation defense meeting has a form similar to this:

• Write your definition document.
• Schedule a meeting that has a clear agenda—a definition

defense meeting. People should know what that is. Your invite
should include the definition document in the meeting agenda
as an attachment.

• Give people a week or few days to read it and remind them to
do so before the meeting.

• Many still won’t read it. Chastise them roundly, and then spend
the first bit of the meeting reviewing your document’s major
decisions and most different, key aspects.

• Open the room up for discussion and welcome questions from
the group. Clarify for them, and take criticisms without defen‐
siveness.

• Take notes and after the meeting revise the document as appli‐
cable and resend it to everyone, thank them for their time and
great ideas, and then follow up in the ways we’ve discussed to be
sure their feedback is incorporated into the work.

If all this sounds very too-too much, my view on that is, “If you
think education’s expensive, try ignorance.” Having a coherent, uni‐
fying vision is the best way to help people understand what they are
doing, why they are doing it, and how their work maps to the bigger
picture and the work of their colleagues. Of course the length and
depth and most relevant sections will be different depending on the
size and nature of the system you’re building. I’ve made versions of
these documents that were five pages and took a day to write, and
I’ve led large greenfield systems representing a major overhaul of a

Architecture Definition | 249

core business product for which our architecture team produced
hundreds of pages of architecture definitions, suitable for different
teams.

If you still don’t like it, consider the alternatives: you could put it all
in software. I’ve never been a fan of the software that purports to
make your architecture executable. It seems forever grandiose, out
of touch, and really disparate to the way teams actually work. It
takes a long time, is forever out-of-date, generates suspect code, and
rarely maps to the real requirements. These approaches are for peo‐
ple who think a commercial tool will solve their problems more
than rigorous thinking, pencil, and paper. Those people struggle on
my teams.

Treating your role, your department, as a scalable business machine
(see “Scalable Business Machines” on page 194) with a clear output
in the form of this document and attendant local requirements in
stories is the best way to ensure that your architecture features are
realized in the final product.

You have now made your templates because you know you will fre‐
quently repeat this kind of work and need to externalize what you
know so you can move on to the next big, exciting work. Then
you’ve filled them out in collaboration with knowledgeable collea‐
gues so you have a mass of insights to use in myriad ways as you
weave together your final strategy in a coherent, compelling set of
decks.

Summary
In this chapter, we covered eight patterns to help you talk about
your strategies and architecture decisions to a wide variety of audi‐
ences at different levels. The tech teams, management and decision-
making executives, and customers will all benefit from the patterns
presented here:

1. One-Slider (see “One-Slider” on page 214)
2. Use Case Map (see “Use Case Map” on page 217)
3. Priority Map (see “Priority Map” on page 226)
4. Directional Costing (see “Directional Costing” on page 218)
5. Technology Radar (see “Technology Radar” on page 227)

250 | Chapter 8: Templates

6. Build/Buy/Partner (see “Build/Buy/Partner” on page 229)
7. Due Dilligence (see “Due Diligence” on page 232)
8. Architecture Definition (see “Architecture Definition” on page

235)

The next chapter will show you different types of slide decks that
you can use to tell others about your great ideas and how to struc‐
ture them so those people understand them, like them, and fund
them.

Summary | 251

CHAPTER 9

Decks

It is like a finger pointing away to the moon. Don’t concentrate on the
finger or you will miss all that heavenly glory.

—Bruce Lee, Enter the Dragon

In this brief chapter, we look at the different kinds of slide decks that
come in handy for the strategist, as well as the structures and key
elements you can use to make them.

Decks can be surprisingly useful as an architecture tool to draw pic‐
tures that communicate succinctly. They’re even more helpful if you
present to customers a lot and need to have something that you can
read from a screen.

But this chapter is more concerned with how you can take up all of
the work that you’ve done throughout this book, and then pull it
into decks that will make your data, insights, hypotheses, and overall
strategic messages really soar.

Here we won’t talk about content—that was the first part of the
book. We’ll just look at structure, assuming along the way that
you’ve done the work from earlier patterns to populate the content
as you need to.

Ghost Deck
The Ghost Deck is also called a Blank Deck. It’s a special way of mak‐
ing an initial deck that has a certain purpose. It’s a wireframe.
There’s no audience but you and your management team, which

253

you’ll subsequently work with to fill in the details of the simple nar‐
rative. The Ghost Deck is a storyboard made for creating a movie:
you’re making sure you have figured out what all the important
shots are before incurring the major expense of shooting them.

Say you need to make a big Ask Deck (see “Ask Deck” on page 256,
or propose an initiative, fulfill the boss’s request to make a “get well”
plan, or illustrate the story of what should be done. You need to craft
the story itself without knowing all the data. You need to make sure
that you have written an outline before you do any of the work, as
we did in elementary school composition class.

The Critical Difference Between a Ghost Deck and an
Outline

Let’s be clear on this important distinction. If,
when you go to make an argument for some‐
thing, you first write out the structure of what
you want to say with no content in it, making
sure that your argument has strong bones, as
our teachers in grade school told us to do, then
that is called an outline. If, on the other hand,
you do the identical thing in PowerPoint and
work for McKinsey and get paid $400 per hour
to do it, then that is entirely different and is
called making a Ghost Deck. The differences can
be subtle, so please try hard to keep them
straight.

Ghost Decks help you when you have three or four colleagues,
maybe on your team or a cross-functional set of leaders, and you
each have different perspectives on the situation. If you need to
make a deck for the board, and you’ve got the tech person and the
strategy person and the boss and the product person all there, it
would be imposssible to open up PowerPoint and start typing a
good deck from the first word.

Here’s how you do it:

1. Make an outline on a whiteboard or some nondeck surface. You
need to stay at surface level and go one inch deep across the
whole football field first.

2. Write only the headline for all the slides in the deck. Look at
them to make sure they still make sense. Back in composition

254 | Chapter 9: Decks

class, we all called this the “topic sentence”—it’s the claim you’re
making. Make sure the headlines have rhetorical punch.

3. Once you’ve written all the headlines, review them, making sure
they are impactful, make a bold claim, and build together, as we
learned in “Dramatic Structure” on page 179 and “Ars Rhetor‐
ica” on page 167.

4. Now you can assign someone to go get the research and write
up the actual content in stages, make the charts and graphs, and
write up the bullet points that prove the headline.

5. Have that helper send you the work in stages for frequent shoul‐
der checks and revisions (or maybe it’s you playing both roles,
and that’s fine too).

The guide I use for structuring a Ghost Deck is this: if your audience
could believe everything that you say only by reading your head‐
lines, they would have the entire story and wouldn’t need to read the
body of the slides at all. Be disciplined enough that the body of the
slides you are making is packed with facts backing up your headline
claims. The bodies are all data, data, data. The headlines are all bold
rhetorical claims.

Here’s a key to this pattern, as I see it anyway: most people treat
headlines as these passive summaries that are a weak restating of
whatever content they dumped into the deck. We, however, treat
headlines as audacious, eye-popping claims like “Our company
should buy company Y” or “We should get out of the coffee business
and into the paperclip business” or “We must move the data center
to the cloud within two years” or whatever that part of the argument
is about. The point is that you’re putting a stake in the ground,
advancing the argument, and not ever writing tepid generalizations
like “The Plan.”

The advantage is obvious: you get to adjust the thrust of your argu‐
ment and make changes to the main hypotheses you’re presenting
before investing a lot of work in substantiating them, making beauti‐
ful charts, and so forth. I suppose you could think of this metaphori‐
cally as creating a backlog for yourself in the form of slide headlines.

If you’re working with a cross-functional group to make the deck,
this can be a good way to align quickly with them without too much
fuss and agree on the message you’re composing. This is valuable,
because otherwise it could look like a Frankenstein’s monster all

Ghost Deck | 255

patched together with different styles and depths. And it wouldn’t be
MECE, which would weaken it and take precious time to straighten
out.

The big thing about Ghost Decks is that they are very helpful in
maximizing your efficiency, organizational clarity, and impact of
your eventual deck. You’re making the wireframe, the storyboard,
first. Then you’re making sure that it makes sense at the wireframe
level. Then you substantiate it in a separate step. I love Ghost Decks
and use them every time I make a deck because the bang-for-the-
buck ratio with them is terrific.

Ask Deck
The Ask Deck is the deck you use when you need to ask an executive
to give you a big bucket of someone else’s money to go do your
project.

By now, it should be clear that you can use the patterns we’ve dis‐
cussed throughout this book as the building blocks for your local
arguments within the Ask Deck.

When making an Ask Deck, first make a Ghost Deck, as described
earlier. The basic structure is as follows.

The ask
The first slide says it all. You write your first slide last. Don’t write it
first. Write it at the very end, only after you know everything. Struc‐
ture it with a single sentence in the headline stating exactly what you
want to do. Then, in the bullet points of the body, state a summary
of all the things the executive would need to know to give an answer.
Those are:

1. The current state is this: X, Y, Z dramatic data points.
2. Therefore, executive, you do this: X important project described

in a single sentence with a name.
3. Here are the milestones so you know what you get along the

way.
4. That will take X duration, require Y number of teams, and cost

$X capex and $Y opex.

256 | Chapter 9: Decks

5. Here is the end state that you will have bought for that money:
something awesome, and now the bad current state is over.

That is, if the executive believed everything you said, he wouldn’t
have to look at the rest of the deck. So the entire rest of the deck is
just a double-click of the first slide.

This one is totally counterintuitive. Most people wait for the big
reveal of the number at the end: they think they’re being smart to
write all the reasons why their project is so great and their thing is so
important and they really want you to fund it, and then they reveal
the number at the end. But you are not on the sales floor at a car
dealership. This is a mistake. If you do this, I bet you dollars to
donuts the CFO picks up his copy of your deck as you’re trying to
present it and just starts flipping back to the end to read the bottom-
line number. They’re grownups. They’re used to seeing big numbers.
They know you’re not going to rebuild the legacy ecommerce system
for $50,000. Give them the news up front so they can contextualize
and adjust how hard they need to pay attention and to what. If they
had the rough idea you were going to ask for something like $10M
and you ask for $12M, then you’ll be having a different conversation
with different levels of scrutiny and focus than if they walked into
the conference room expecting a $1M ask and it’s a $5M ask. They
will hear you better, and you’ll have a more productive, relevant
conversation if you get all the bad news out of the way up front.

In fact, here is how I like to think about making these decks: write it
all but the first slide, then write the One-Slider that says everything
the executive needs to know. The test in my mind is that if he says
“OK” on the first slide, you never need to look at the whole rest of
the deck. You are not at a meeting to force executives to slog
through your PowerPoint. You’re there to get a deal. They are pun‐
ished enough by PowerPoint. If you can get a deal after one slide,
fantastic. Let that be the goal, and drive what you pack into the first
slide.

Imperil the hero
Employ the Shock and Awe and Book of Job techniques from “Dra‐
matic Structure” on page 179 to show the dire situation your com‐
pany will be in without doing this thing. Here you’re making a
statement to show how we are in bad shape or how there is a new
super-exciting opportunity.

Ask Deck | 257

Let the data drive
Now let the data drive. Just be very methodical and objective, pre‐
senting the data that illustrates how any reasonable person would
come to this same conclusion. This is the logical argument of Ars
Rhetorica (see “Ars Rhetorica” on page 167). Examples:

• X number of P1, P2, P3 contributed to Y amount of downtime
YTD

• Trends in P1, P2, P3 total up X% over past three years
• 60 items of technical debt (all detailed in the appendix)
• 12 most impactful things of kind X

Save the hero
Now that you’ve imperiled the hero, you have to offer the Path For‐
ward. This is your vision of how you can claim the prize of the
opportunity or how you can get out of this awful predicament.

To make sure that you have covered all the bases, your Path Forward
should include details on all these elements:

• The roadmap (see “Roadmap” on page 260).
• How long will it take?
• How much will it cost?
• Who will do the work?

Make the plans for these elements first, and do it in detail. Then you
refer back to them as you build out the project plan.

The ask
Now you ask for a decision. Ask them explicitly for a yes answer.
Any salesperson will tell you that the reason you don’t get the sale is
that you never actually ask them to buy.

Appendix
Include an appendix, which might be longer than the deck itself.
The appendix includes all charts, graphs, query results, and any sub‐
stantiating data supporting the claims you made in your main deck.

258 | Chapter 9: Decks

You will want these yourself later too when you won’t be able to
remember the details.

Your main deck should be 12–15 slides. Executives will talk too
much, and you will definitely never get further than 18 slides, and
then you won’t have presented the whole force of your complete
argument. But the appendix can be any length. You can include the
appendix after the main deck in case the executives find themselves
on a cross-Atlantic flight and want to vet your numbers.

Just use the patterns we’ve worked on. Using this structure has hel‐
ped me a dozen times. With this structure, I’ve asked executives for
millions and tens of millions of dollars to make sweeping changes to
entire organizations or do multiyear heart surgery projects on
mission-critical systems. I’ve never been told no. Not once. You can
do it too.

Strategy Deck
The Strategy Deck is the simplest pattern of all. And the most com‐
plex. This is, ostensibly, the center of the book, yet it’s empty. That’s
because, counterintuitively, when you’ve done all your homework,
making the Strategy Deck will be practically a non-event. Here is
how you do it:

1. Execute all the applicable creation patterns of this book while
keeping in mind the analysis patterns along the way. See “Pat‐
terns Map” on page 265.

2. Collect your output from doing that.
3. Do a MergeSort of the output (see “MergeSort Meeting” on page

262) and make it into a deck with a smooth, comprehensive
story using the communication patterns in this book.

Now you have a terrific strategy. That’s it. This is not intended to be
flip. This is the case. The simplicity is lovely.

Strategy Deck | 259

Roadmap
I have an existential map. It has “You Are Here” written all over it.

—Steven Wright

The Roadmap (see “Roadmap” on page 260) is generally for execu‐
tive alignment and is of little use to dev teams. It shows in broad
terms your milestone deliverables and is clear on indicating the end
state. You’re stating less of a timeline here and more of the big build‐
ing blocks, the meaningful work that you can release incrementally
that together make up what you hope to achieve.

The teams won’t be interested in a view this broad, except maybe at
the quarterly town hall meeting. It is of use to you, however, as the
initiative planner: requiring yourself to state milestones like this
makes you think in terms of deliverables (outcomes) that will be of
benefit to your customer and can ship without dependencies on the
rest of the program.

You should start at the end, and use a modified Backcasting (see
“Backcasting” on page 83) technique to determine the right antece‐
dent milestones.

You’ve seen these before. But Figure 9-1 shows an example. You
want the roadmap to fit on a single slide.

If you’re presenting your overall roadmap to customers, I suppose
you’re just putting quarterly releases on a timeline with the major
releases, and that’s simpler. But if you’re embarking on a major ini‐
tiative, stakeholders will need to see what they get when in more
detail, how the planning and building blocks are expected to accom‐
pany this, and internal details such as when you plan to ramp up
teams, when other teams are required to deliver their dependent
part, and so forth, along with the milestones.

Once you have an approved roadmap, and you have done your cost‐
ing and made a conceptual architecture, then make a Tactical Plan
(see “Tactical Plan” on page 261). This is necessary to estimate dura‐
tions, and to figure out how much can be done in parallel versus
what aspects must be done in serial. That is necessary to determine
your Directional Costing (see “Directional Costing” on page 218),
which you need to make an Ask Deck (see “Ask Deck” on page 256).
It’s all of a piece.

260 | Chapter 9: Decks

Figure 9-1. The initiative roadmap

Tactical Plan
The point of the Tactical Plan is to say, more as a reminder than any‐
thing, that the strategy work cannot stop here. This is only the
beginning, the commencement of the strategy work. Stopping at this
point will have achieved nothing.

You must turn your strategy, once approved, into a Tactical Plan.
Remember the words of Sun Tzu: “Strategy without tactics is the
slowest route to victory. Tactics without strategy is the noise before
defeat.”

This can happen in two steps (see Figure 9-2). The first is that you
figure out only the durations. Resist the temptation to put hard dates
on the plan at first, but then you’ll need to do that as a second step.
If you start with dates, you’ll get a worse estimate of timelines.

Tactical Plan | 261

Figure 9-2. The basic Tactical Plan

Of course, there are many management books, courses, certificates,
and software programs devoted to making great project plans, and
you’ve surely participated in many of them. I include this pattern
here mostly for completeness, and to suggest that making a prelimi‐
nary Tactical Plan in this way forces you to think through every‐
thing: you can’t get a good idea of the project to propose in your
Strategy Deck (see “Strategy Deck” on page 259) if you don’t do this
step.

MergeSort Meeting
The MergeSort planning method is a novel way of working through
plan-making meetings for managers that I made up and use on
occasion. It works great if you, like I am, are a huge fan of making
lists, as discussed in Chapter 2.

You use this method to solve problems when you are at the early
stage of planning a large project. You have a mountain of brain‐
storming work you’ve done, or a Strategy Deck or set of ideas on
lists you’ve been building, and you need to turn it into a plan. You
want everyone’s ideas in a quick, unbiased fashion.

When the time comes to make a plan, I like to get everyone’s inde‐
pendent ideas. This could be a “get well” plan or the yearly strategy;
anytime you want to brainstorm with your team, you can use this
method to prevent groupthink from taking over.

You might be familiar with the MergeSort algorithm, invented in the
1940s by John von Neumann. It’s a way of sorting elements in an
array as opposed to BubbleSort, QuickSort, and others. The basic
implementation of MergeSort works kind of like this:

262 | Chapter 9: Decks

http://bit.ly/2MIcM6I

1. Take an unsorted list. Recursively divide it into sublists, which
are trivially sorted.

2. Repeatedly merge these sublists back up the call chain to pro‐
duce new, sorted, combined lists until only one list remains.
This will be the sorted list.

There are different ways to implement it, and there’s a terrific ani‐
mation of the process on Wikipedia. But for our purposes, we’re
using it as a metaphor to help you create your tactical plan.

I use MergeSort as a keyword with my team, like a shorthand for
this process. Here’s how to do it:

1. Call a MergeSort meeting to make your plan, and make sure
you clearly state the scope of what you need to build the plan
for.

2. Have everyone make a separate list of lists, perhaps categories
focusing on different aspects of the project such as “business,”
“data,” “infrastructure,” or whatever are the main categories of
your project as outer headers. Use a common set of categories
such as people/process/technology for the inner loop’s set of
headers.

3. Give everyone time to populate their lists of lists independently.
You will generate a lot more ideas this way, and be more inclu‐
sive of shy people in the group and flatten out the louder voices.

4. Bring the raw material lists together in your MergeSort opera‐
tion meeting.

5. Now you have a single merged list and you want to prioritize it.
So use some other lenses you’ve learned in this book (like mak‐
ing a 2×2 matrix for likelihood/impact) to help prioritize things.

6. The project manager takes over the meeting to take the now
single, merged, prioritized list of lists and assign who does what
by when into a spreadsheet.

7. Now you’ve got a really comprehensive plan that the PM can
track and someone can go execute.

Maybe this is too idiomatic, but I like it. It seems to work when
called for, and I honestly hope you find it useful.

Tactical Plan | 263

http://bit.ly/2MLJdRB

As you have seen in this chapter, your Tactical Plan generally will
look like ones you’ve seen a lot before. But strategy without execu‐
tion is just like the kids in the backyard making neat rules for the
fort with no bearing on reality. A clear Tactical Plan is key to suc‐
cessfully carrying out any strategy.

264 | Chapter 9: Decks

CHAPTER 10

Bringing It All Together

Patterns Map
This completes the discussion of our 39 patterns. Now that you have
a good understanding of each individual pattern, let’s look at them
all (well, all the creation and communication patterns, anyway)
together in a map. When viewed all at once, the patterns in this book
are devised to work on three levels:

Individually
For many of the patterns, you can just implement one pattern
on its own and get real value from it. The Architecture Defini‐
tion (see “Architecture Definition” on page 235) is a great exam‐
ple of this; you can write an architecture for a specific new
project you’re undertaking, and that would be very useful on its
own. And in a different context, the SWOT (see “SWOT” on
page 87), Technology Radar (see “Technology Radar” on page
227), and APM (“Application Portfolio Management” on page
146) are great to use alone too, depending on your need and
your audience. So feel free to do that. On the other hand, some
of them, such as the Investment Map, might not be as fully real‐
ized if approached in a vacuum. And then there is no value
really in doing a Ghost Deck (see “Ghost Deck” on page 253) by
itself—its value is in helping structure the other kinds of major
decks, such as the Strategy Deck and Ask Deck (so that’s why it’s
represented twice in Figure 10-1).

265

Figure 10-1. How all the patterns fit and flow together

In clusters
You can alternatively use several patterns together in clusters of
three or five, if you have a medium-scope problem that is con‐
tained to the technology side or the business/operating model
side. For example, if you’re doing a broad industry analysis, you
can pick patterns from Chapter 4 and use those to make a strat‐
egy recommendation. Or your marketing or product manage‐
ment department may have already created analyses for you to
use as world and industry context and you’re not interested in
that; you might instead just need to do the technology work. In
this case, you could use only the Build/Buy/Partner pattern (see
“Build/Buy/Partner” on page 229), Use Case Map (see “Use Case
Map” on page 217), Architecture Definition (see “Architecture
Definition” on page 235), and Due Diligence (see “Due Dili‐
gence” on page 232). If you have a clear idea of what your tech‐
nical pursuit is already, you might be more focused on this
occasion on the project-oriented cluster: the Stakeholder Align‐
ment pattern (see “Stakeholder Alignment” on page 99), Road‐

266 | Chapter 10: Bringing It All Together

map (see “Roadmap” on page 260), Directional Costing (see
“Directional Costing” on page 218), and Tactical Plan (see “Tac‐
tical Plan” on page 261).

Comprehensively
Finally, you could use the patterns all together. If you do this, it’s
almost certainly for one of two main reasons: to create a broad
organizational strategic plan leading up to a Strategy Deck (see
“Strategy Deck” on page 259), or in order to create an Ask Deck
(see “Ask Deck” on page 256). In one sense, these are the most
important patterns here, inasmuch as they’re the two that all the
others exist to serve. It’s the way you get funded, and to make a
good Ask Deck, you really have to do many of the other pat‐
terns first.

The map of how they all work together is shown Figure 10-1. This
can give you a sense of how they might flow or depend on each
other. You can see how they cluster in a few smaller groups as well.

How many of them you implement depends, of course, on the size,
expense, novelty, risk, and complexity of your project.

I submit that architects (and technology managers and practition‐
ers) can move up the value chain, and help their companies to com‐
pete and differentiate, if they spend less time policing developers
and more time visiting each of the boxes on this map and executing
these patterns as discussed throughout this book. Use the results of
these patterns to work more closely and meaningfully with your
partners in product management, sales, business development, and
strategy.

Conclusion
That’s it! Thank you so much for reading this book. I really hope you
enjoyed it and that you found it useful. We’ve come a long way
together and covered amazing ground. There is so much more to
say on these topics. But my hope is that, in having read this book,
you now have greater awareness of—as David Foster Wallace might
call it—the “water,” the context in which we work as technology
strategists. I hope too that you now feel greater mastery of the art of
creating power for you and your organization, and you see how
these tools can considerably improve your ability to differentiate
and compete in a crowded market.

Conclusion | 267

As you advance in your career, remember that these waters never
stand still: different patterns will make sense for you and your teams
at different times, and you’ll need to frequently adjust. It may seem
daunting, but I promise you: the tools and strategies presented in
this text will help you navigate deftly through this exciting, challeng‐
ing, fabulous ocean.

I’ll leave you with these parting words:
The whole interest of reason, speculative as well as practical, is centered
in the three following questions:

1. What can I know?
2. What ought I to do?
3. What may I hope?

—18th century German philosopher Immanuel Kant, The Critique
of Pure Reason

Thoughts are things.
—Bruce Lee

Best wishes, my friends.

268 | Chapter 10: Bringing It All Together

http://bit.ly/2N7TV1T
http://bit.ly/2N7TV1T

APPENDIX A

Recommended Reading

These books were helpful in considering the ideas in this book, and
I recommend checking them out to gain further ideas and different
perspectives on these subjects.

Strategy Books
Lawrence Freedman, Strategy: A History (Oxford University Press)

Walter Kiechel III, The Lords of Strategy (Harvard Business Review
Press)

Matthew E. Gladden, From Strategic Analysis to Organizational Fore‐
sight (Synthypnion Business)

Avinash K. Dixit and Barry J. Nalebuff, The Art of Strategy (W. W.
Norton & Company)

Richard P. Rumelt, Good Strategy, Bad Strategy: The Difference and
Why It Matters (Crown Business)

Aligning Technology with Strategy (Harvard Business Review Press)

On Strategy (Harvard Business Review Press)

Strategy: Create and Implement the Best Strategy for Your Business
(Harvard Business Essentials)

Michael E. Porter, Competitive Strategy Techniques for Analyzing
Industries and Competitors (Free Press)

269

Thomas Pyzdek and Paul Keller, Six Sigma Handbook (McGraw-Hill
Education)

Babette E. Bensousson and Craig S. Fleisher, Analysis Without Para‐
lysis (Pearson Education)

Consulting Books
Shu Hattori, The McKinsey Edge (McGraw-Hill Education)

Victor Cheng, Case Interview Secrets (Innovation Press)

Ethan M. Rasiel, The McKinsey Way (McGraw-Hill)

Marc P. Cosentino, Case in Point (CaseQuestions.com)

Duff McDonald, The Firm: The Story of McKinsey and Its Secret
Influence on American Business (Simon & Schuster)

Mikael Krogerus and Roman Tschappeler, The Decision Book (W. W.
Norton & Company)

Jeanne W. Ross, Peter Weill, and David C. Robertson, Enterprise
Architecture as Strategy (Harvard Business Review Press)

Philosophy Books
Ian Hacking, An Introduction to Probability and Inductive Logic
(Cambridge University Press)

Paul R. Halmos, Naïve Set Theory (D. Van Nostrand Company, Inc.)

Jacques Derrida, Of Grammatology (Johns Hopkins University
Press)

Peter Bruce & Andrew Bruce, Practical Statistics for Data Scientists
(O’Reilly)

Gary Klein, Sources of Power: How People Make Decisions (MIT
Press)

Leslie Lamport, Specifying Systems (Addison-Wesley)

Alec Ross, The Industries of the Future (Simon & Schuster)

270 | Appendix A: Recommended Reading

http://www.oreilly.com/catalog/0636920175155

Index

Symbols
10-K reports, 111
2×2 matrices, 106, 126
30-second answer, 161-163
80/20 rule, 56
∀ symbol, 62
∃x, 61

A
accountable (RACI), 108
actions, 199

in One-Slider, 215
types of, 200

ad hominem (against the man) fal‐
lacy, 169

affirming the consequent fallacy, 169
after this, therefore because of this

(post hoc, ergo propter hoc), 173
agile, 236
Agile environment, template for

architectural decisions, 237
AGM (see Ansoff Growth Matrix)
Aguilar, Francis J., 70
Alexander, Christopher, 1
an accomplished fact (see fait accom‐

pli)
analysis, 27-68

Hypothesis pattern, 41-65
context, 58
objects and relations, 59-65
signal and noise, 55-58

Logic Tree, 37-41
creating the tree, 38-40

problems vs. opportunities, 40
MECE, 29-37

applying MECE lists, 34-37
steps for sound anallysis, 67
strategic analysis as machine

learning, 66-67
"The Analytical Language of John

Wilkins", 36
AND (logical operator), 43
Ansoff Growth Matrix (AGM), 95-97
Ansoff, H. Igor, 96
antecedents, 84
application architecture, 243
Application Portfolio Management

(APM), 146-158
approaching the work and imple‐

menting the pattern, 147
business and technology

attributes, 152
APM application assessment

quadrant, 154
capability mapping, 151
planning with asset classes, 150
project heat map, 157
questions answered, 147
questions or assessment attributes

for applications, 149
steps in the process, 148

approach patterns (communication),
161-211
30-second answer, 161-163
deconstruction, 185-193

scopes without center, 190

271

semiotics, signs and symbols,
189

three causes of problems, 187
three levels of problems, 186
world as system, synthetic

decomposition, 191
dramatic structure, 179-185

creating an inciting incident,
181

establishing the status quo, 181
shock and awe, 183
the plan, or stating the way

out, 183
fait accompli (an accomplished

fact), 174-178
facing a cold audience, 174
the meeting before, 176

Rented Brain, 163-166
rhetoric, 167-173

logical fallacies, 169-173
scalable business machines,

194-210
aspects of, 199-203
business as system, 195
creating, 204-210
Origin Theory, 198

approve action, 200
architects

attributes designed explicitly, 196
different meanings of architect, 8
role of, 7-15

concerns of the architect, 11
architecture

principle employed in architecting
and designing, 196

Vitruvius and principles of, 8-11
Architecture Definition, 235-250

executable architectures, 247-250
definition defense, 248

list of what's architecturally signif‐
icant, 238

purpose of the pattern, 238
the template, 239-247

Application Architecture sec‐
tion, 243

Business Architecture section,
240-243

Data Architecture section, 245

Infrastructure Architecture
section, 246

Metadata section, 239
when should architects weigh in,

238
architecture definition documents,

129
Aristotle, 167
Ars Rhetorica (The Art of Rhetoric),

167
The Art of War (Sun Tzu), 16
Ask Decks, 256-259

appendix, 258
imperiling the hero, 257
letting the data drive, 258
saving the hero, 258
the ask, 256, 258

asset classes, 150
association, 60
assumptions, stating in estimates, 222
audience

and why they care, determining,
30

facing a cold audience, 174
AWS Cost Calculator, 225
AWS website for white papers, 237

C
Canon, differentiation at, 6
capability mapping (applications),

151
case, 28
cash cows, 124
causation, 65

taking care in assigning, 83
"The Celestial Emporium of Benevo‐

lent Knowledge" (Borges), 36
change, managing, 210
Chief Strategy Officer, 18
cloud

estimating costs for data center,
225

global cloud, defining, 135
cold audience, facing, 174
collaboration with stakeholders, 107
collectively exhaustive (MECE), 31

272 | Index

Competitive Advantage: Creating and
Sustaining Superior Performance
(Porter), 116

Competitive Strategy: Techniques for
Analyzing Industries and Com‐
petitors (Porter), 116

concepts, designer of, 192
conjunct of propositions describing

the problem, 43
insights, 44

consequent, 85
affirming the consequent fallacy,

169
consultants, 163-166
consulted (RACI), 108
consulting books, 270
context, 58
contingent relations, 59
Core/Innovation Wave, 126-129

innovation, 127
proximity to the core, 127
use with Growth-Share Matrix

and Investment Map, 129
corporate context, 99-132

Core/Innovation Wave, 126-129
Growth-Share Matrix, 124-126
Investment Map, 130-132
life cycle stage, 111-116
RACI, 108-111
stakeholder alignment, 99-107

determining drivers, 103
determining stakeholders, 102
stakeholder list, 104
stakeholder matrix, 105-107

Value Chain, 116-124
applying, 121-124
maximizing efficiency, 118
supporting functions, 120

correlations, 65
create action, 200
cryptocurrencies, 73
culture, 20

cutting down silos, 45
in One-Slider, 216
organizational problems caused

by, 194
strategy, execution, and, 17

currencies, fluctuations in, 72

current and future model, 137-142
current and future state operating

model, 142
customers

customer outcome in Use Case
Map, 217

customer success measure in Use
Case Map, 218

defining, 206
defining outcomes for, 204

D
data architecture, 245
data center, estimating costs for, 225
data components (in Use Case Map),

218
"Data Scientist: The Sexiest Job of the

21st Century", 8
data, driving in Ask Decks, 258
data, insights, and hypotheses, 44
de Architectura (Vitruvius), 9
decks (see slide decks)
declining stage (companies), 113, 115
deconstruction, 185-193

scopes without center, 190
semiotics, signs and symbols, 189
three causes of problems, 187
three levels of problems, 186
world as system, synthetic decom‐

position, 191
deductive reasoning, 53
definitions of propositions, being

clear on, 46
deliverables, 201

defining, 205
for estimates, 221
in One-Slider, 215

department context, 133-158
Application Portfolio Manage‐

ment (APM), 147-158
business and technology

attributes, 152
capability mapping, 151
planning with asset classes,

150
project heat map, 157

principles, practices, and tools,
133-146

Index | 273

Business Process Mapping
(BPM), 144-145

current and future model,
137-142

example, NASA stategy, 137
law of the product of probabil‐

ities, 145
practices, 136
principles, 134
Sankey diagram, 142-144
tools, 136

departments, 202
defining, 204

Dependency Inversion Principle, 197
Derrida, Jacques, 191, 191
Design Patterns (Gang of Four), 1
development team, 223
Diagnostic Logic Trees, 38
directional costing, 218-226

estimate template, 223-226
one-night estimate, 220
rough, refined, realistic estimates,

220
dissertation defense, 248
diversification strategy (AGM), 97
Do Nothing strategy, 77
dogs (Growth-Share Matrix), 125
domain of discourse, 46, 62
done deal (see fait accompli)
dramatic structure pattern, 179-185,

257
creating an inciting incident, 181
establishing the status quo, 181
shock and awe, 183
the plan (showing the way out),

183
drivers, determining, 103
Due Diligence, 232-235

internal use, 234

E
ease and impact scoring, 54-55
ease of substutution (Porter's Five

Forces), 91
economic analysis (PESTEL), 72
efficiency, maximizing, 118
emotional arguments (pathos), 168
entropy, containing, 12

environmental analysis (PESTEL), 73
epistemology, 190
equality, 60
estimates, 220

(see also directional costs)
estimating costs, 219
estimating time for software mod‐

ule delivery, 218
ethical arguments (ethos), 168
Excel, horizontal headers, 110
executable architectures, 247-250

definition defense, 248
execution, 21

F
fait accompli (an accomplished fact),

174-178
facing a cold audience, 174
how to implement the pattern,

177
the meeting before, 176

false precision, 49
avoiding in estimates, 222

features (in Use Case Map), 218
The Firm: The Story of McKinsey

and Its Secret Influence on Amer‐
ican Business, 163

firmitas, 9
fishbone diagram (Five Whys), 39
fitting the model, 67
Five Forces model (see Porter's Five

Forces)
Five Whys analysis, 39, 63
Freedman, Lawrence, 15, 16
Freud, Sigmund, 187
The Future of Work Center at Cogni‐

zant, 10
Futures Funnel, 70, 80-82

G
Ghost Decks, 39, 253-256

creating, 254
outlines vs., 254

Google
architecture foundation, 237
as AI company, 123

274 | Index

grow/evolve/maintain (applications),
154

growing the business (see Ansoff
Growth Matrix)

growth, 114
for growth's sake, 115

growth companies, 113
Growth-Share Matrix, 124-126

generating the 2x2 matrix, 126
using Core/Innovation Wave

with, 129

H
Hamlet (Shakespeare), 179
Hammerbacher, Jeff, 8
Hastings, Reed, 189
hasty generalization, 171
Henderson, Bruce, 124
hero culture, 195
HIPPO (Highest Paid Person's Opin‐

ion), 170
horizontal headers (Excel), 110
hotspots, determining, 209
How to Win Any Argument: The Use

and Abuse of Logic (Pirie), 173
Hypothesis pattern, 27

conjunct of propositions describ‐
ing the problem, 43
insights, 44

context, 58
ease and impact scoring, 54-55
five questions, 42
objects and relations, 59-65
possible outcomes, 47
probability of each outcome, 49

Bayesian probability, 51
deductive reasoning, 53

semantics characterizing proposi‐
tions, 46

signal and noise, 55
hypothesis, defined, 41

I
IBM, 115
identity, 60
-ilities, 14

impact scoring (see ease and impact
scoring)

inbound logistics, 117
inciting incident, 180

creating, 181
inductive reasoning, 48

traps of, 50
industry context, 87-97

Ansoff Growth Matrix (AGM),
95-97

Porter's Five Forces, 89-95
applying, 94
bargaining power of custom‐

ers, 92
bargaining power of suppliers,

92
ease of substitution, 91
industry rivalry, 94
threat of new entrants, 90

SWOT analysis, 87-89
industry rivalry, 94
informational applications, 150
informed (RACI), 108
infrastructure applications, 151
infrastructure architecture, 246
initiatives, 214, 241

roadmap, 260
innovation (Core/Innovation Wave),

127
insights, 44
interface segregation, 197
Internet Engineering Task Force

(ETF) Keywords, 239
introduction stage (companies), 114
Investment Map, 130-132, 157

using Core/Innovation Wave
with, 129

Ishikawa diagram, 39
iterative, 236

J
Jobs, Steve, 41, 87, 176
Jomini, Antoine-Henri, 15

K
keeping informed (stakeholders), 107
Krishnamurthy, Balaji, 20, 127

Index | 275

L
labor costs, estimating, 223
language game, 46
language, scrutinizing for meaning,

63
legal analysis (PESTEL), 74
life cycle stage (companies), 111-116

value stages, 111
Liskov Substitution Principle, 197
lists

MECE, 29, 31
applying, 34-37
composing, 30
knowing audience and why

they care, 30
rule of three, 33

RACI, 30
(see also RACI)

local optima, 185
Logic Tree, 27, 37-41, 79

creating the tree, 38
Diagnostic Logic Tree, 38
problems vs. opportunities, 40
Solution Logic Tree, 38

logical arguments (logos), 167
logical fallacies, 169-173

ad hominem (against the man),
169

affirming the consequent, 169
blind authority, 170
blinding with science, 171
hasty generalization, 171
petitio principii (begging the

question), 172
post hoc, ergo propter hoc (after

this, therefore because of this),
173

logical operator AND, 43

M
machine learning, strategic analysis

as, 66-67
maintaining confidence (of stake‐

holders), 107
market development strategy (AGM),

96
market penetraton strategy (AGM),

96

marketing and sales, 117
The Mathematical Analysis of Logic

(Boole), 41
matrices (2×2), 106, 126
mature companies, 112
maturity stage (companies), 114
McDonald, Duff, 163
McKinsey, ix, 19, 28, 29, 41, 42, 45,

73, 75, 78, 163, 165
McKinsey Insights report, 45
MECE (Mutually Exclusive, Collec‐

tively Exhaustive), 27, 29-37
applying MECE lists, 34-37
in Process Posture Map, 141
lists, 29

determining audience and why
they care, 30

rule of three, 33
PESTEL as, 71

meeting before the meeting, 176
mental models, locking into, 15
MergeSort planning method, 262
metacognition, 190
metacognitive thinking, 188
Metadata section, Architecture Defi‐

nition template, 239
metapatterns, 27
metrics, 241

customer success measure, 218
defining, 208

Michelin, marketing at, 3
Microsoft, 115
milestones, 260
ML (see machine learning)
models (in ML), 67
monitoring stakeholders, 107
Mutually Exclusive, Collectively

Exhaustive (see MECE)

N
NASA strategy, 137

Application Portfolio Manage‐
ment (APM), 158

necessary but not sufficient condi‐
tion, 59, 83

necessary relation, 59
negative revenue growth, 113
Netflix Culture deck, 189

276 | Index

noise, 56
(see also signal and noise)

nonfunctional requirements, 247
in Architecture Definition pat‐

tern, 238
specifying, 13

O
objects and relations, 59-65

association, 60
causation, 65
correlations, 65
equality, 60
identity, 60
predicate, 61-64

One-Slider, 214-217
open-closed, 197
operations, 117
opportunities, 40

considering, instead of problem
solving, 48

in SWOT analysis, 89
opportunity cost, 28
Oracle Corporation

acquisition and integration at, 4
published reference architecture,

5
Origin Theory, 198
outbound logistics, 117, 118
outcomes, 201

customer outcome in Use Case
Map, 217

defining for customers, 204
possible, 47
probability of, 49

outlines vs. Ghost Decks, 254
outputs, 201, 204

defining, 207

P
Pareto rule, 56, 122
Partner option (Build/Buy/Partner),

231
Path Forward, 258
Patil, D.J., 8
patois, 46
A Pattern Language (Alexander), 1

patterns
applying, 2
origins of, 1

patterns map, 265-267
PESTEL analysis, 70-77, 79

applying, 76
as MECE, 71
creating the PESTEL document,

74
defined, 70
economic, 72
environmental, 73
legal, 74
political, 72
researching for, 74
social, 73
technological, 73

petitio principii (begging the ques‐
tion), 172

philosophy books, 270
Pirie, Madsen, 173
platforms, 47
plausible futures, 81
political analysis (PESTEL), 72
political, economic, social, technolog‐

ical, environment, and legal cli‐
mates (see PESTEL)

Porter's Five Forces, 82, 89-95
applying, 94
bargaining power of customers,

92
bargaining power of suppliers, 92
ease of substitution, 91
industry rivalry, 94
threat of new entrants, 90

Porter's Value Chain, 116
(see also Value Chain)

Porter, Michael E., 89, 116
possible futures, 81
post hoc, ergo propter hoc (afther

this, therefore because of this),
173

practices, 136, 207
NASA, example, 137
stating in One-Slider, 214

predicates, 61-64
scrutinizing language for mean‐

ing, 63

Index | 277

preferred futures, 81
principles, 134

defining, 206
NASA, example, 137

principles, practices, and tools San‐
key diagram, 142-144

Pring, Ben, 10
Priority Map, 226
probabilities of outcomes, 49

Bayesian probability, 51
probability

law of the product of probabilities,
145

more on event probabilities, 146
problems

confronting your audience with
the real problems, 166, 184

opportunities vs., 40
organizational, 194
three causes of, 187
three levels of, 186

Process Posture Map, 136, 138-142,
158
initial map, example, 138

process reengineering, 141
processes

defining, 207
in Process Posture Map, 138

product development strategy
(AGM), 97

product rule, 145
project heat map, 157
Project Management Institute (PMI),

108
propositions and propositional logic,

43
semantics characterizing proposi‐

tions, 46
statement in propositional logic,

85

Q
question marks (Growth-Share

Matrix), 125
questions, five questions in hypothe‐

sizing, 42

R
RACI, 108-111, 199

alignment meetings, 110
clarification of key aspects of any

project, 110
typical RACI spreadsheet, 109

realistic estimates, 222
reason, interest of, questions, 268
recommended reading, 269-270
reengineer/modernize/replace (appli‐

cations), 155
refined estimates, 222
relations between objects, 59

(see also objects and relations)
Rented Brain, 163-166
repetition compulsion, 187
research, 48

for PESTEL, 74
responsible (RACI), 108
retire (applications), 155
revenue diversity, 121
review action, 200
rhetoric, 167-173

logical fallacies, 169-173
ad hominem (against the

man), 169
affirming the consequent, 169
blind authority, 170
blinding with science, 171
hasty generalization, 171
petitio principii, 172
post hoc, ergo propter hoc,

173
roadmaps, 260-260
roles

accountable role owning delivera‐
ble, 215

considered in estimate template,
224

defining in scalable business
machines, 208

rough estimates, 221
Russell, Bertrand, 43, 50

S
Sankey diagram, principles, practices,

and tools, 142-144, 207

278 | Index

scalable business machines, 194-210,
241, 250
aspects of, 199-203

action, 199
business unit, 202
company, 203
deliverables, 201
departments, 202
outcomes, 201
outputs, 201
tools, 200

business as a system, 195
creating, 204-210

assessing the Value Chain, 207
communicating the machines,

209
creating templates, 208
defining activities and deliver‐

ables, 205
defining customers, 206
defining departments and cus‐

tomer outcomes, 204
defining metrics, 208
defining outputs, 207
defining principles, 206
defining processes, 207
defining roles, 208
defining tools, 207
defining vision and scope, 204
determining hotspots, 209
managing the change, 210

fractal nature of, 198
Origin Theory, 198

Scenario Planning, 70, 77-80
steps for, 78
value of, 80

scope, defining, 204
scopes without center, 190
semiotics

misunderstanding of, 187
signs and symbols, 189

service, 117
reducing costs of, 118

Shakespeare, William, 179
shock and awe, 183
signal and noise, 56
The Signal and the Noise (Silver), 56
Silver, Nathaniel Read (Nate), 56

single-responsibility, 197
Six Sigma Handbook (Pyzdek and

Keller), 142
slide decks, 213, 253-264

Ask Deck, 256-259
Ghost Deck, 253-256
roadmap, 260-260
Strategy Deck, 259
Tactical Plan, 261

social analysis (PESTEL), 73
SOLID principles of object-oriented

system design, 197
Solution Logic Trees, 38
spreadsheets, 213
stakeholder alignment, 99-107, 199

determining drivers, 103
determining stakeholders, 102
listing stakeholders, 104
stakeholder matrix, 105-107

generating 2×2 matrices, 106
Stakeholder List, 30
stakeholders, 241
stars (Growth-Share Matrix), 125
status quo, 84, 179

establishing, 181
strategic analysis as machine learn‐

ing, 66-67
strategic applications, 150
strategic mindset, 15
strategic Priority Map, 226
strategists, 15-21, 28

(see also technology strategists)
concerns of, 19
role of

strategy, culture, and execu‐
tion, 17-21

strategy, 20
books on, 269
discovering, 15
driving with patterns, 17
history of, 16

strategy consultants, 164-166
Strategy Decks, 259
Strategy: A History (Freedman), 15,

16
strengths (SWOT), 88
strengths, weaknesses, opportunities

and threats (see SWOT analysis)

Index | 279

“Structure, Sign, and Play in the Dis‐
course of the Human Sciences”
(Derrida), 191

sufficient but not necessary condi‐
tion, 83

Sun Tzu, 16, 99, 261
support departments, 202
supporting cast (for development

team), 224
supporting functions, 120
SWOT analysis, 82, 87-89

conducting, 88
synthetic decomposition, 191
systems

business as system, 195
system components in Use Case

Map, 218

T
Tactical Plan, 261

MergeSort meeting, 262
tautologies, 45
tech companies, mature, 115
technological analysis (PESTEL), 73
technology attributes (applications),

152
technology principles, 134
Technology Radar, 227-228
technology strategists, jobs of, 28
technology strategy, executives' views

of, 101
templates, 213-251

Architecture Definition, 235-250
Architecture Definition tem‐

plate, 239-247
Build/Buy/Partner, 229-232

Build option, 229
Buy option, 230
Partner option, 231

creating for scalable business
machine, 208

directional costing, 218-226
estimate template, 223-226
rough, refined, realistic esti‐

mates, 220
Due Diligence, 232-235

internal use of, 234
One-Slider, 214-217

Priority Map, 226
Technology Radar, 227-228
Use Case Map, 217-218

Ten Books (Vitruvius), 10
terms, defining, 46
ThoughtWorks, 227
threat of new entrants, 90
threats (SWOT), 89
TOGAF (The Open Group Architec‐

ture Framework), 134
tolerate (applications), 155
tools, 136, 200, 207

defining, 207
Tractatus Logico-Philosophicus

(Wittgenstein), 43, 46, 59
trade-offs, determining, 14
transactional applications, 151

U
Use Case Map, 217-218
utilitas, 9

V
Value Chain, 116-124, 141

applying, 121-124
getting baseline metrics, 124
revenue diversity, 121

assessing, 207
major activities leading to profits,

117
maximizing efficiency, 118

maximizing value, 119
supporting functions, 120

value creator departments, 202
value stages (company life cycle), 112
value, maximizing, 119
variables, 43
venustas, 9
Virilio, Paul, 185
vision and scope, defining, 204, 214
Vitruvius, 8-11
VP of Corporate Strategy, 18

W
Wallace, David Foster, 15
Warsh, Kevin, 49, 63
weaknesses (SWOT), 88

280 | Index

Whys analysis (see Five Whys analy‐
sis)

Wilkins, John, 35
Wittgenstein, Ludwig, 43, 46, 59
Work Breakdown Structure, 216
world context, 69-86

Backcasting, 83-85
Futures Funnel, 80-82
PESTEL analysis, 70-77

applying, 76

creating the PESTEL docu‐
ment, 74

researching, 74
Scenario Planning, 77-80

steps for, 78

X
Xerox, differentiation at, 5

Index | 281

About the Author
Eben Hewitt is CTO at Sabre Hospitality, a global technology com‐
pany. He has led tech organizations as Chief Architect, CIO, and
CTO. He is the author of Cassandra: The Definitive Guide (O’Reilly),
and several other books on architecture, services, and software
development.

Colophon
The animal on the cover of Technology Strategy Patterns is the sharp‐
bill (Oxyruncus cristatus). This small, stocky songbird lives in the
tall, dense rainforests of Panama, Costa Rica, and parts of Brasil,
Columbia, and other regions of Tropical South America. The bird
gets its name from its conical, pointed beak.

The sharpbill is colored olive-green on the back and tailfeathers
with an orange-red crest. The underside is yellow with black polka-
dots. It eats fruit, occasionally supplemented by insects. With toes
well-suited to perching, it can hang upside down to catch insects
and their larvae.

The male has a larger, erect crest and a loud, buzzing song that
descends from high to low in pitch. Until 1980, when the first sharp‐
bill nest was discovered, little was known about this bird’s habits.
The sharpbill is polygamous, with males traveling in groups (leks) to
vie for the females’ attention during mating season.

Many of the animals on O’Reilly covers are endangered; all of them
are important to the world. To learn more about how you can help,
go to animals.oreilly.com.

The cover illustration is by Karen Montgomery, based on a black-
and-white engraving from Shaw’s General Zoology. The cover fonts
are URW Typewriter and Guardian Sans. The text font is Adobe
Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

http://http://bit.ly/cassandra2e
http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Welcome
	Intended Audience
	Purpose of the Book

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Introduction
	This Is Water
	Discovering Strategy
	Driving Strategy with Patterns

	Part I. Context: Architecture and Strategy
	The Origins of Patterns
	Applying the Patterns
	Chapter 1. Architect and Strategist
	Business Strategies
	Marketing at Michelin
	Acquisition and Integration at Oracle
	Differentiation at Xerox and Canon

	The Architect’s Role
	Vitruvius and the Principles of Architecture
	Three Concerns of the Architect

	The Strategist’s Role
	The Triumvirate: Strategy, Culture, and Execution

	Summary

	Part II. Creating the Strategy
	A Logical Architecture of the Creation Patterns
	Chapter 2. Analysis
	MECE
	Applying MECE Lists

	Logic Tree
	Diagnostic Logic Tree
	Solution Logic Tree
	Creating the Tree
	Problems Versus Opportunities

	Hypothesis
	The Five Questions
	1. The Conjunct of Propositions Describing the Problem
	2. The Semantics Characterizing These Propositions
	3. Possible Outcomes
	4. Probability of Each Outcome
	5. Ease and Impact Scoring
	Signal and Noise
	Context
	Objects and Relations

	Strategic Analysis as Machine Learning
	Summary

	Chapter 3. World Context
	PESTEL
	Creating the PESTEL
	Researching for PESTEL
	Applying the PESTEL

	Scenario Planning
	Steps for Scenario Planning

	Futures Funnel
	Backcasting
	Summary

	Chapter 4. Industry Context
	SWOT
	Porter’s Five Forces
	Threat of New Entrants
	Ease of Substitution
	Bargaining Power of Customers
	Bargaining Power of Suppliers
	Industry Rivalry
	Applying the Five Forces

	Ansoff Growth Matrix
	Summary

	Chapter 5. Corporate Context
	Stakeholder Alignment
	Determining Stakeholders
	Determining Drivers
	Stakeholder List
	Stakeholder Matrix

	RACI
	Alignment Meetings

	Life Cycle Stage
	Value Chain
	Maximizing Efficiency
	Supporting Functions
	Applying the Value Chain

	Growth-Share Matrix
	Core/Innovation Wave
	Investment Map
	Summary

	Chapter 6. Department Context
	Principles, Practices, Tools
	Principles
	Example: NASA Strategy
	Current and Future Model
	The Principles, Practices, Tools Sankey Diagram
	Business Process Mapping
	The Law of the Product of Probabilities

	Application Portfolio Management
	Planning with Asset Classes
	Capability Mapping
	Business and Technology Attributes
	Project Heat Map

	Summary

	Part III. Communicating the Strategy
	Chapter 7. Approach Patterns
	30-Second Answer
	Rented Brain
	Ars Rhetorica
	Logical Fallacies

	Fait Accompli
	Facing a Cold Audience
	The Meeting Before

	Dramatic Structure
	Establish the Status Quo
	Create an Inciting Incident
	The Plan
	Shock and Awe

	Deconstruction
	Three Levels of Problems
	Three Causes of Problems
	Semiotics: Signs and Symbols
	Scopes Without Center
	The World as System: Synthetic Decomposition

	Scalable Business Machines
	Business as System
	The Origin Theory
	Aspects of the Scalable Business Machine
	Executing

	Summary

	Chapter 8. Templates
	One-Slider
	Use Case Map
	Directional Costing
	Rough, Refined, Realistic Estimates
	Estimate Template

	Priority Map
	Technology Radar
	Build/Buy/Partner
	Build
	Buy
	Partner

	Due Diligence
	Internal Use

	Architecture Definition
	The Template
	Executable Architectures

	Summary

	Chapter 9. Decks
	Ghost Deck
	Ask Deck
	Strategy Deck
	Roadmap
	Tactical Plan
	MergeSort Meeting

	Chapter 10. Bringing It All Together
	Patterns Map
	Conclusion

	Appendix A. Recommended Reading
	Strategy Books
	Consulting Books
	Philosophy Books

	Index
	About the Author
	Colophon

