
Sheen Brisals &
Luke Hedger

Foreword by Jeff Barr

Serverless
Development on
 AWS
Building Enterprise-Scale
Serverless Solutions

CLOUD COMPUTING

“Don’t start your
serverless journey
without this book—it’s
your roadmap for
production success.”

—Luca Mezzalira
Principal Serverless Specialist at AWS

and author of Building Micro-Frontends
(O’Reilly)

“A must-read guide
that blends insight and
expertise with real-world
applications. I wish I had
this during my serverless
learning journey.”

—Ben Smith
Principal Developer Advocate,

Serverless at AWS

Serverless Development
on AWS

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

The adoption of serverless is on the rise, but until now, little
guidance has been available for development teams that
want to apply this technology on AWS. This definitive guide
is packed with architectural, security, and data best practices
and patterns for architects and engineers who want to build
reliable enterprise-scale serverless solutions.

Sheen Brisals, an AWS Serverless Hero, and Luke Hedger,
an AWS Community Builder, outline the serverless adoption
requirements for an enterprise, examine the development
tools your team needs, and explain in depth the nuances of
testing event-driven and distributed serverless services. You’ll
gain practical guidance for keeping up with change and learn
how to build serverless solutions with sustainability in mind.

• Examine the serverless technology ecosystem and AWS
services needed to develop serverless applications

• Learn the approach and preparation required for a successful
serverless adoption in an enterprise

• Learn serverless architectures and implementation patterns

• Design, develop, and test distributed serverless
microservices on AWS cloud

• Apply security best practices while building serverless solutions

• Identify and adapt the implementation patterns for your
particular use case

• Incorporate the necessary measures for observable
serverless applications

• Implement sustainable serverless applications in the cloud

Sheen Brisals is an AWS Serverless
Hero who guides enterprise teams in
architecting and building serverless
solutions. Passionate about serverless,
he loves sharing knowledge with the
community.

Luke Hedger is a seasoned software
engineer and AWS Community
Builder. Having led serverless
engineering teams since 2019,
he believes we’re just beginning
to unlock the full potential of this
technology.

9 7 8 1 0 9 8 1 4 1 9 3 6

5 6 5 9 9

US $65.99 CAN $82.99
ISBN: 978-1-098-14193-6

Sheen Brisals and Luke Hedger
Foreword by Jeff Barr

Serverless Development on AWS
Building Enterprise-Scale Serverless Solutions

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-14193-6

[LSI]

Serverless Development on AWS
by Sheen Brisals and Luke Hedger

Copyright © 2024 Sheen Brisals and Luke Hedger. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Megan Laddusaw
Development Editor: Sara Hunter
Production Editor: Gregory Hyman
Copyeditor: Rachel Head
Proofreader: Kim Cofer

Indexer: BIM Creatives, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

February 2024: First Edition

Revision History for the First Edition
2023-01-23: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098141936 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Serverless Development on AWS, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098141936

To my late parents, Mr. V. Brisals and Mrs. Lalitha Joylent. Their struggles and
sacrifices in life made me what I am today. —Sheen Brisals

For Alice and Lois. —Luke Hedger

Table of Contents

Foreword. xiii

Preface. xv

1. Introduction to Serverless on AWS. 1
The Road to Serverless 2

From Mainframe Computing to the Modern Cloud 2
The Influence of Running Everything as a Service 6
Managed Versus Fully Managed Services 9

The Characteristics of Serverless Technology 10
Pay-per-Use 11
Autoscaling and Scale to Zero 11
High Availability 12
Cold Start 13

The Unique Benefits of Serverless 14
Individuality and Granularity of Resources 14
Ability to Optimize Services for Cost, Performance, and Sustainability 15
Support for Deeper Security and Data Privacy Measures 17
Incremental and Iterative Development 20
Multiskilled, Diverse Engineering Teams 20

The Parts of a Serverless Application and Its Ecosystem 22
Why Is AWS a Great Platform for Serverless? 24

The Popularity of Serverless Services from AWS 25
The AWS Well-Architected Framework 26
AWS Technical Support Plans 27
AWS Developer Community Support 28

Summary 30
Interview with an Industry Expert 30

v

2. Enterprise Readiness for Serverless. 35
Preparing for “Thinking in Serverless” 36

Creating a Serverless Mindset 36
First Principles for Successful Serverless Adoption 39
Assessing Workloads for Serverless Suitability 47
How Do You Bring Serverless Awareness to Business Stakeholders? 52
The Role of Organizational Culture 57

Vendor Lock-in Demystified 60
Why Is Vendor Lock-in Seen as So Critical? 60
Is It Possible to Avoid Getting Locked In? 60
Should You Be Worried About Vendor Lock-in in Serverless? 61
Consider the Cloud Provider (AWS) as Your Partner, Not a Vendor 62

Strategies for Migrating Legacy Applications to Serverless 63
Lift-and-Shift 65
All-at-Once Service Rewrite 66
Phased Migration 69
Comparing Migration Strategies 71

Growing Serverless Talent 72
Growing Versus Building 72
Essential Ingredients for Growing a Serverless Team 74
The Structure of a Multidisciplinary Serverless Team 78

Summary 82
Interview with an Industry Expert 82

3. Software Architecture for Building Serverless Microservices. 89
Popular Architectural Patterns 90

Event-Driven Architecture 91
Client/Server Architecture 95
Layered Versus Tiered Architecture 98
Hexagonal Architecture 101

Characteristics of a Microservice 105
Independently Deployable 106
Represents Part of a Business Domain 107
Single Purpose 108
Well-Defined Communication Boundary 109
Loosely Coupled 110
Observable at a Granular Level 110
Owned by a Single Team 112

Microservice Communication Strategies 112
Synchronous Communication 112
Asynchronous Event-Driven Communication 117

Breaking Down a Problem to Identify Its Parts 117

vi | Table of Contents

Using a Set Piece Analogy to Identify the Parts 118
Building Microservices to Serverless’s Strengths 133

Event-Driven Architecture for Microservices Development 135
Event-Driven Computing and Reactive Services 136
Is My Microservice a Reactive Service? 136
An Introduction to Amazon EventBridge 137
Domain Events, Event Categories, and Types 142
The Importance of Event Sourcing in Serverless Development 155
EventStorming 161

Summary 163
Interview with an Industry Expert 164

4. Serverless and Security. 169
Security Can Be Simple 171

Security Challenges 171
Getting Started 172
Combining the Zero Trust Security Model with Least Privilege Permissions 173
The Power of AWS IAM 176
The AWS Shared Responsibility Model 178

Think Like a Hacker 179
Meet the OWASP Top 10 180
Serverless Threat Modeling 182

Securing the Serverless Supply Chain 185
Securing the Dependency Supply Chain 186
Going Further with SLSA 189
Lambda Code Signing 189

Protecting Serverless APIs 190
Securing REST APIs with Amazon Cognito 191
Securing HTTP APIs 193
Validating and Verifying API Requests 195
Message Verification in Event-Driven Architectures 197

Protecting Data 199
Data Encryption Everywhere 199
AWS KMS 201

Security in Production 202
Go-Live Security Checklist for Serverless Applications 202
Maintaining Security in Production 203
Detecting Sensitive Data Leaks 205

Summary 206
Interview with an Industry Expert 207

Table of Contents | vii

5. Serverless Implementation Patterns. 213
An Overview of Software Patterns 214

What Is a Pattern? 215
How Do Patterns Accelerate Serverless Development? 215

Serverless Migration: The Strangler Fig Pattern 219
Implementation Approaches 219
Strangling Data Processing Flows 220
Strangling API Routes to Backend Services 222

Resilient Architecture: The Circuit Breaker Pattern 226
Why Is the Circuit Breaker Pattern Relevant in Serverless? 226
Core Concepts of Circuit Breaker Implementation 226
Failing Faster When the Circuit Is Open 232
Storing Requests When the Circuit Is Open

and Replaying Them When Closed 232
The Functionless Integration Pattern 236

Use Cases for Functionless Integration 238
Things to Be Aware of with Native Service Integrations 245

The Event Triage Pattern 246
What Is Event Triage? 246
Implementation Details 247
Frequently Asked Questions 249

The Gatekeeper Event Bus Pattern 251
The Need for a Gatekeeper Event Bus 252
Implementation Approach 253
Use Cases for the Gatekeeper Event Bus Pattern 254
Things to Be Aware of with the Gatekeeper Event Bus Pattern 255

Microservices Choreography 255
Things to Be Aware of While Choreographing Services 257

Service Orchestration 259
What Do You Orchestrate? 259
In-Service Orchestration 262
Cross-Service Orchestration 264
Distributed Orchestration 266

Summary 273
Interview with an Industry Expert 273

6. Implementing Serverless Applications. 277
Serverless Compute with AWS Lambda 279

How to Write Lambda Functions 281
Optimizing Lambda Functions 287

Most of the Code You Write Will Be Infrastructure 291
Infrastructure as Code 291

viii | Table of Contents

Direct Service Integrations and Delegating to the Experts 295
Production Is Just a Name 298

Ship on Day 1, and Every Day After 299
Boring Delivery Pipelines—Safety, Speed, and Predictability 303

Documentation: Quality, Not Quantity 306
Summary 309
Interview with an Industry Expert 309

7. Testing Serverless Applications. 315
How Can Serverless Applications Be Tested? 317

Why Serverless Requires a Novel Approach to Testing 317
The Serverless Square of Balance: The Trade-off Between

Delivery and Stability 319
Serverless Failure Modes and Effects Analysis 321

Designing a Serverless Test Strategy 322
Identifying the Critical Paths 323
Just Enough and Just-in-Time Testing 325
Upholding Standards with a Definition of Done 328

Hands-on Serverless Testing 329
Event-Driven Testing 329
Unit Testing Business Logic in Lambda Functions 332
Contract Testing Integration Points 336

Summary 339
Interview with an Industry Expert 340

8. Operating Serverless. 347
Identifying the Units of Scale 349
Promoting Serverless Observability 350

Observing the Health of Critical Paths 351
Metrics, Alarms, and Alerts 354
Critical Health Dashboard 356
Capability Alerting 358
Event-Driven Logging 360
Using Distributed Tracing to Understand the Whole System 361

When Things Go Wrong 367
Accepting Failure and Budgeting for Errors 368
Everything Fails All the Time: Fault Tolerance and Recovery 368
Debugging with the Core Analysis Loop 370

Disaster Recovery 371
Avoiding Single Points of Failure 371
Understanding AWS Availability 372
Multi-Account, Multi-Region: Is It Worth It? 373

Table of Contents | ix

Summary 373
Interview with an Industry Expert 374

9. Cost of Serverless Operation. 379
Understanding Serverless Cost Models 380

Total Cost of Ownership in the Cloud 381
Compute Costs 383
Storage Costs 385
Avoiding Serverless Cost Gotchas 388

Serverless Cost Estimation 390
How to Estimate Costs 391
The More You Use, the Less You Spend 392
How Much Can Be Done with the AWS Free Tier? 393

Serverless Cost Monitoring Best Practices 394
Creating Cost Awareness in a Serverless Team 394
Monitoring Costs with Budget Alerts 397
Reducing the Operational Cost of Serverless 398

Summary 400
Interview with an Industry Expert 401

10. Sustainability in Serverless. 405
So, What Is Sustainability? 406

The Three Pillars of Sustainability 407
The UN Sustainable Development Goals 407

Why Is Sustainability Thinking Necessary in Serverless? 408
The Three Elements of the Cloud 409
The Serverless Sustainability Triangle 409

Building Sustainable Serverless Applications 411
How Do You Identify Unsustainable Serverless Applications? 412
Characteristics of a Sustainable Application 413

Development Processes and Practices That Promote Sustainability 414
Follow Lean Development Principles and Reduce Resource Waste 415
Start from a Simple Set of Requirements and Scale Fast 416
Automate Everything Possible 417
Rethink the Throwaway Prototypes of the Past 417
Nurture Your Serverless Engineers 418

Sustainability and the AWS Cloud 419
Implementation Patterns and Best Practices for Sustainability 420

User Behavior 420
Software Architecture 424
Data and Storage 426
Development and Deployment 432

x | Table of Contents

Introducing Sustainability in Your Engineering Teams 433
Sustainability in Technology: Awareness Day 434
Sustainability Focus Areas for Your Team 435
Sustainability Audit Checklist 435

Summary 435
Interview with an Industry Expert 436

11. Preparing for the Future with Serverless. 439
Emerging Trends in Serverless 440

The Low-Code and Functionless Promise 440
The Renaissance of Event-Driven Architecture 441
Multicloud Orchestration 443
Infrastructure from Code 443
The Evolution and Influence of Generative AI 445

Keeping Up with the Evolution of Serverless 447
Challenges Facing Enterprise Teams 447
Sustaining a Serverless Knowledge Pool 448
Embracing Continuous Refactoring 449

Playing the Long Game 451
Establishing a Serverless Guild and Center of Excellence 452
Becoming a Serverless Evangelist 453
Joining a Serverless Community 453

Summary 455
Interview with an Industry Expert 456

A. PostNL’s Serverless Journey. 461

B. Taco Bell’s Serverless Journey. 461

C. Templates and Worksheets. 461

Index. 463

Table of Contents | xi

Foreword

From interactive programming on minicomputers and mainframes in junior high
school and high school, to taking a bit of a step back to a batch-oriented, card-
powered mainframe in college, while actually earning money first selling and then
later writing code for the first generation of personal computers, I have seen many
forms of computers and computing come and go. While the programming models
for each of these systems differed, they invariably had one thing in common—there
was a fixed amount of compute power, memory, and storage. My job, as a developer,
was to write code that made the best use of all three of these then-precious resources,
trimming features, compressing data, and so forth.

With the emergence of cloud computing in 2006 with the launch of Amazon Elastic
Compute Cloud (EC2), this model began to change. Developers could pick and
choose the instance size and type that was the best match for their code, make
changes later, and add or remove instances quickly in response to changing work‐
loads. This was a big step forward, and one that paved the way for the introduction of
serverless computing in 2014 with the launch of AWS Lambda.

In the decade since the launch of Lambda, developers have used it to build applica‐
tions that are more flexible, scalable, and cost-effective than ever before. While the
word “revolutionary” is used far too often in our industry, I believe that it applies
here. Freed from the constraints and able to focus on applications instead of on
servers, developers can devote more of their time to building applications that will
meet the needs of their customers.

If you want to participate in this ongoing revolution, you have come to the right
place! The book that you are holding in your hands will teach you what you need to
know about serverless computing so that you can put it to work in your environment.

In this book, Sheen and Luke show you how to reap all of the benefits that serverless
computing promises. In the succeeding chapters you will learn about how to prepare
your organization for serverless, build powerful serverless architectures, understand

xiii

and manage security, make use of serverless design patterns, understand serverless
costs and economics, and much more.

While the chapters certainly build on each other and are best read fully and in order,
you can also start by sampling the ones that are of personal and immediate interest
to you. Either way, I am confident that you will quickly learn something new that you
can put to use on your current serverless project.

The eleven chapters that make up this book contain a great mix of theoretical back‐
ground and practical advice, knowledge that Sheen and Luke have gained through
years of experience designing, building, and running serverless applications at global
scale. You are now in a position to learn from this experience and to get a running
start on your serverless journey.

— Jeff Barr
VP & Chief Evangelist, Amazon Web Services

Seattle, Washington
January 2024

xiv | Foreword

Preface

Helsinki. It was a warm spring morning in 2019, and I (Sheen) was in the city to
speak at ServerlessDays. A couple of engineers I met there during the break sought
my advice on taking the serverless story to the public sector department they were
working in. They were looking for inspirational serverless adoption stories to bring
to their team. Almost a year later, an engineer at AWS Community Day in Stockholm
asked an innocent but important question: What is this “serverless,” and is it good for
my company?

Several similar conversations on different occasions led me to a realization: engineers
who are new to serverless need a basic understanding of the technology, clarity on the
applicability of serverless to enterprise workloads, and guidance on how to design,
develop, and operate serverless applications. Above all, they need to know how to
take the serverless story to their CTOs and stakeholders with a clear plan, get buy-in,
and make the investment profitable and valuable for the organization.

Though I had been writing articles about serverless on different topics, bringing
everything together as a serverless development lifecycle was not in my mind then.
Then one day, during the COVID-19 lockdown, a publisher approached me to
discuss the possibility of developing a specific concept I had written about into a
book. While I wasn’t confident enough to expand that concept into a whole book,
that was the spark that led me to explore the opportunity of bringing the end-to-end
serverless development spectrum into focus in one place for the benefit of all the
eager engineers I interacted with.

A few days later, I arranged a call with my friend Danilo Poccia, Chief Evangelist
at AWS. Danilo is the author of AWS Lambda in Action: Event-Driven Serverless
Applications (Manning), and a good resource on industry trends and needs. Our brief
chat left me with some interesting ideas and the confidence to explore further.

With a draft idea in mind, I pitched it to a few engineers to assess the need for
such a book, and all the feedback was encouragingly positive. By that time, I had
known Luke for a few months. During my conversations with him, I secretly admired

xv

the depth of his serverless knowledge and the freshness in his thinking. Luke had
previously led a serverless team at Cancer Research UK, a charitable organization,
and had firsthand experience of the cost benefits of serverless. One afternoon, we
sat down for a chat, and I explained in detail the outline of the book. Luke’s instant
reaction was: I wish I’d had such a book on my desk when I started my serverless
journey!

This book is the result of that initial conversation: a comprehensive collection of
our combined experiences, ideas, thoughts, lessons, and better practices designed to
introduce you to serverless and show you a path to structure your development and
operate your applications in a secure and sustainable way.

Thank you for your interest. Let’s start our journey together!

Who We Wrote This Book For
Serverless as a technology continues to mature and evolve along with its industry
adoption. Due to its unique benefits, it attracts a wide spectrum of technology
audiences. When Luke and I were discussing the tone and depth of the content,
we wanted it to appeal to developers who are new to serverless, engineers who are
familiar with and progressing on their journey with serverless, and architects and
CTOs who make some of the core decisions and influence the adoption of serverless
in their organizations.

By no means is this book a one-stop solution to all your serverless queries and
worries. It is a collection of options and ideas that you can draw upon to prepare
your serverless meal according to your and your organization’s dietary requirements.
Along with serverless technology, the popularity of several development frameworks,
runtimes, build and infrastructure tools, etc., is also on the rise. Consequently, there
are as many approaches to implementing your application as there are frameworks
and runtimes out there. As suggested by the widespread phrase in the software
industry, the code you write today is legacy tomorrow, it is hard to maintain the
code you have written today in this fast-evolving technology space. This is not a
book that delves deep into hands-on implementation examples. Its aim is to teach
you the underlying concepts that you can rely on in the future, regardless of your
circumstances; to teach you to fish, as it were, rather than feeding you just once.

The book starts with a discussion of the evolution of serverless technology and the
preparations necessary for successful adoption. It then introduces you to the core
security principles of serverless, leading you through event-driven architecture and
implementation patterns. Understanding the core principles guides you through the

xvi | Preface

development cycle and operating your serverless applications in the cloud. The cost
of serverless is a key part of its adoption, and we have a chapter dedicated to making
you aware of the main cost factors. In addition, modern application development
requires thinking about our environmental ecosystem and the world we live in.
Sustainability is an essential and core part of cloud operation, and you will learn
several patterns and best practices to build and operate serverless applications in a
sustainable way. The book closes with a look at how you can make your serverless
journey rewarding and refreshing for decades into the future.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Preface | xvii

Supplemental Material
Three online-exclusive appendices to this book are available to readers for download:

• Appendix A: “PostNL’s Serverless Journey”
• Appendix B: “Taco Bell’s Serverless Journey”
• Appendix C: “Templates and Worksheets”

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/serverless-dev-on-aws.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

xviii | Preface

https://oreil.ly/riwzp
https://oreil.ly/R325t
https://oreil.ly/Nw9fs
https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/serverless-dev-on-aws
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Acknowledgments
First of all, our deepest thanks to you, the readers of the book. Our inspiration to
write this book originated from the many people like you we’ve interacted with.
Your stories from the trenches motivated us to share our collective experiences with
everyone.

We would like to thank our acquisition editors at O’Reilly, Jennifer Pollock and
Megan Laddusaw, for helping us with the initial proposal and successfully guiding us
in shaping the structure of the book. Thanks also to Cassandra Furtado and Chelsea
Foster from the O’Reilly contracts and accounting teams, respectively.

We wouldn’t have reached this point without our amazing development editor, Sara
Hunter. Thank you, Sara, for being patient and supportive, and guiding us with
positivity and encouragement. We always wondered the secret behind your quick and
thorough reviews.

We also thank the amazing production team at O’Reilly: Kristen Brown, Gregory
Hyman, and Rachel Head. Content editing is only complete once Rachel has edited
it! Working with you and observing many things about content writing has been our
privilege. Thank you, Rachel, for making this book readable and understandable to
everyone!

Thanks also to our O’Reilly marketing team, Suzanne Huston and Gabriella Train,
and everyone at O’Reilly for giving us this opportunity we’d never dreamed of.

As authors, we were fortunate to work with some of the powerhouses of the tech
industry as our technical reviewers. Our sincere thanks to Jeff Barr, Luca Mezzalira,
and Mike Roberts. Jeff Barr is an inspiration to many, and his support for this book
has been invaluable. As one of our technical reviewers, Jeff ’s thoughtful feedback
helped us shape the content, and he kindly agreed to write the foreword for the book.
Thank you, Jeff!

Throughout the book, we have industry leaders and subject matter experts sharing
the most relevant and thoughtful insights on serverless for every reader to benefit
from. Our special thanks to the book’s chapter experts, Danilo Poccia, David Ander‐
son, Matt Lewis, Nicole Yip, Jeremy Daly, Sara Gerion, Sarah Hamilton, Yan Cui, Ben
Ellerby, Adrian Cockroft, and Farrah Campbell.

The unique serverless case studies in the book cover a wide spectrum of the industry,
from a global hospitality giant to a highly regarded postal and logistics company.
Sharing experiences and learning from each other is the core of a vibrant tech
community. As part of the AWS and serverless communities, we are fortunate to have
several leading organizations and technology thought leaders helping others to pros‐
per. We are indebted to and thankful for the contributions of Luc van Donkersgoed,
Robbie Kohler, and Vadim Parizher.

Preface | xix

On several occasions while writing this book, we reached out to our well-wishers in
the industry, shared our ideas, and sought their advice and direction. We offer our
gratitude and thanks to everyone who participated in this process.

We are thankful to our colleagues at work who constantly course-corrected our
serverless journeys and to everyone who gave us opportunities and encouraged,
trusted, and molded us along the way. This work wouldn’t be possible without what
we learned from you.

To our families:

• Sheen would like to thank his wife and sons.•
• Luke would like to thank Alice and Lois.•

Finally, when we started this work, the world was going through the worst pandemic
of our time—COVID-19. While our journey progressed, many didn’t. We take a
pause to remember those dark days and salute those who kept our hopes alive and got
us this far. We are better together.

xx | Preface

CHAPTER 1

Introduction to Serverless on AWS

The secret of getting ahead is getting started.
—Mark Twain

Welcome to serverless! You are stepping into the vibrant ecosystem of a modern,
exciting computing technology that has radically changed how we think of software,
challenged preconceptions about how we build applications, and enabled cloud
development to be more accessible for everyone. It’s an incredible technology that
many people love, and we’re looking forward to teaching you all about it.

The software industry is constantly evolving, and the pace of evolution in software
engineering is faster than in just about any other discipline. The speed of change
disrupts many organizations and their IT departments. However, for those who are
optimistic, change brings opportunities. When enterprises accept change and adjust
their processes, they lead the way. In contrast, those who resist change get trampled
by competition and consumer demands.

We’re always looking for ways to improve our lives. Human needs and technology go
hand in hand. Our evolving day-to-day requirements demand ever-better technology,
which in turn inspires innovation. When we realize the power of these innovations,
we upgrade our needs, and the cycle continues. The industry has been advancing in
this way for decades, not in giant leaps all the time but in small increments, as one
improvement triggers the next.

To fully value serverless and the capabilities it offers, it is beneficial to understand its
history. To stay focused on our subject without traveling back in time to the origins of
bits and bytes, we’ll start with the cloud and how it became a force to reckon with.

Sit back, relax, and get ready to journey through the exciting world of serverless!

1

The Road to Serverless
During the early 2000s, I (Sheen) was involved in building distributed applications
that mainly communicated via service buses and web services—a typical service-
oriented architecture (SOA). It was during this time that I first came across the term
“the cloud,” which was making a few headlines in the tech industry. A few years later,
I received instructions from upper management to study this new technology and
report on certain key features. The early cloud offering that I was asked to explore
was none other than Amazon Web Services.

My quest to get closer to the cloud started there, but it took me another few years
to fully appreciate and understand the ground-shifting effect it was having in the
industry. Like the butterfly effect, it was fascinating to consider how past events had
brought us to the present.

The butterfly effect is a term used to refer to the concept that a
small change in the state of a complex system can have nonlinear
impacts on the state of that system at a later point. The most
common example cited is that of a butterfly flapping its wings
somewhere in the world acting as a trigger to cause a typhoon
elsewhere.

From Mainframe Computing to the Modern Cloud
During the mid-1900s, mainframe computers became popular due to their vast com‐
puting power. Though massive, clunky, highly expensive, and laborious to maintain,
they were the only resources available to run complex business and scientific tasks.
Only a lucky few organizations and educational institutions could afford them, and
they ran jobs in batch mode to make the best use of the costly systems. The concept
of time-sharing was introduced to schedule and share the compute resources to run
programs for multiple teams (see Figure 1-1). This distribution of the costs and
resources made computing more affordable to different groups, in a way similar to
the on-demand resource usage and pay-per-use computing models of the modern
cloud.

2 | Chapter 1: Introduction to Serverless on AWS

Figure 1-1. Mainframe computer time-sharing (source: adapted from an image in Guide
to Operating Systems by Greg Tomsho [Cengage])

The emergence of networking
Early mainframes were independent and could not communicate with one another.
The idea of an Intergalactic Computer Network or Galactic Network to interconnect
remote computers and share data was introduced by computer scientist J.C.R. Lick‐
lider, fondly known as Lick, in the early 1960s. The Advanced Research Projects
Agency (ARPA) of the United States Department of Defense pioneered the work,
which was realized in the Advanced Research Projects Agency Network (ARPANET).
This was one of the early network developments that used the TCP/IP protocol, one
of the main building blocks of the internet. This progress in networking was a huge
step forward.

The Road to Serverless | 3

https://oreil.ly/Zrs-q
https://oreil.ly/ejbz1

The beginning of virtualization
The 1970s saw another core technology of the modern cloud taking shape. In 1972,
the release of the Virtual Machine Operating System by IBM allowed it to host
multiple operating environments within a single mainframe. Building on the early
time-sharing and networking concepts, virtualization filled in the other main piece
of the cloud puzzle. The speed of technology iterations of the 1990s brought those
ideas to realization and took us closer to the modern cloud. Virtual private networks
(VPNs) and virtual machines (VMs) soon became commodities.

The term cloud computing originated in the mid to late 1990s. Some attribute it
to computer giant Compaq Corporation, which mentioned it in an internal report
in 1996. Others credit Professor Ramnath Chellappa and his lecture at INFORMS
1997 on an “emerging paradigm for computing.” Regardless, with the speed at which
technology was evolving, the computer industry was already on a trajectory for
massive innovation and growth.

The first glimpse of Amazon Web Services
As virtualization technology matured, many organizations built capabilities to auto‐
matically or programmatically provision VMs for their employees and to run busi‐
ness applications for their customers. An ecommerce company that made good use of
these capabilities to support its operations was Amazon.com.

During early 2000, engineers at Amazon were exploring how their infrastructure
could efficiently scale up to meet the increasing customer demand. As part of that
process, they decoupled common infrastructure from applications and abstracted it
as a service so that multiple teams could use it. This was the start of the concept
known today as infrastructure as a service (IaaS). In the summer of 2006, the com‐
pany launched Amazon Elastic Compute Cloud (EC2) to offer virtual machines as
a service in the cloud for everyone. That marked the humble beginning of today’s
mammoth Amazon Web Services, popularly known as AWS!

Cloud deployment models
As cloud services gained momentum thanks to the efforts of companies like Amazon,
Microsoft, Google, Alibaba, IBM, and others, they began to address the needs of
different business segments. Different access models and usage patterns started to
emerge (see Figure 1-2).

4 | Chapter 1: Introduction to Serverless on AWS

https://oreil.ly/pVVni
http://Amazon.com

Figure 1-2. Figurative comparison of different cloud environments

These are the main variants today:

Public cloud
The cloud service that the majority of us access for work and personal use
is the public cloud, where the services are accessed over the public internet.
Though cloud providers use shared resources in their data centers, each user’s
activities are isolated with strict security boundaries. This is commonly known as
a multitenant environment.

Private cloud
In general, a private cloud is a corporate cloud where a single organization has
access to the infrastructure and the services hosted there. It is a single-tenant
environment. A variant of the private cloud is the government cloud (for example,
AWS GovCloud), where the infrastructure and services are specifically for a par‐
ticular government and its organizations. This is a highly secure and controlled
environment operated by the respective country’s citizens.

Hybrid cloud
A hybrid cloud uses both public and private cloud or on-premises infrastructure
and services. Maintaining these environments requires clear boundaries on secu‐
rity and data sharing.

The Road to Serverless | 5

Enterprises that prefer running their workloads and consuming
services from multiple public cloud providers operate in what is
called a multicloud environment. We will discuss this further in the
next chapter.

The Influence of Running Everything as a Service
The idea of offering something “as a service” is not new or specific to software.
Public libraries are a great example of providing information and knowledge as a ser‐
vice: we borrow, read, and return books. Leasing physical computers for business is
another example, which eliminates spending capital on purchasing and maintaining
resources. Instead, we consume them as a service for an affordable price. This also
allows us the flexibility to use the service only when needed—virtualization changes it
from a physical commodity to a virtual one.

In technology, one opportunity leads to several opportunities, and one idea leads to
many. From bare VMs, the possibilities spread to network infrastructure, databases,
applications, artificial intelligence (AI), and even simple single-purpose functions.
Within a short span, the idea of something as a service advanced to a point where we
can now offer almost anything and everything as a service!

Infrastructure as a service (IaaS)
IaaS is one of the fundamental cloud services, along with platform as a service (PaaS),
software as a service (SaaS), and function as a service (FaaS). It represents the bare
bones of a cloud platform—the network, compute, and storage resources, commonly
housed in a data center. A high-level understanding of IaaS is beneficial as it forms
the basis for serverless.

Figure 1-3 shows a bird’s-eye view of AWS’s data center layout at a given geographic
area, known as a Region. To offer a resilient and highly available service, AWS has
built redundancy in every Region via groups of data centers known as Availability
Zones (AZs). The core IaaS offerings from AWS include Amazon EC2 and Amazon
Virtual Private Cloud (VPC).

6 | Chapter 1: Introduction to Serverless on AWS

Figure 1-3. An AWS Region with its Availability Zones

Platform as a service (PaaS)
PaaS is a service abstraction layer on top of IaaS to offer an application development
environment in the cloud. It provides the platform and tools needed to develop,
run, and manage applications without provisioning the infrastructure, hardware,
and necessary software, thereby reducing complexity and increasing development
velocity. AWS Elastic Beanstalk is a popular PaaS available today.

Software as a Service (SaaS)
SaaS is probably the most used and covers many of the applications we use daily,
for tasks such as checking email, sharing and storing photos, streaming movies, and
connecting with friends and family via conferencing services.

Besides the cloud providers, numerous independent software vendors (ISVs) utilize
the cloud (IaaS and PaaS offerings) to bring their SaaS solutions to millions of users.
This is a rapidly expanding market, thanks to the low costs and easy adoption of
cloud and serverless computing. Figure 1-4 shows how these three layers of cloud
infrastructure fit together.

The Road to Serverless | 7

Figure 1-4. The different layers of cloud infrastructure

Database as a service (DBaaS)
DBaaS is a type of SaaS that covers various data storage options and operations.
Along with the traditional SQL relational database management systems (RDBMSs),
several other types of data stores are now available as managed services, including
NoSQL, object storage, time series, graph, and search databases.

Amazon DynamoDB is one of the most popular NoSQL databases available as a
service (see Figure 1-5). A DynamoDB table can store billions of item records and
still provide CRUD (Create, Read, Update, and Delete) operations with single-digit
or low-double-digit millisecond latency. You will see the use of DynamoDB in many
serverless examples throughout this book.

Figure 1-5. Pictorial representation of Amazon DynamoDB and its data tables

Amazon Simple Storage Service (S3) is an object storage service capable of handling
billions of objects and petabytes of data (see Figure 1-6). Similar to the concept of
tables in RDBMSs and DynamoDB, S3 stores the data in buckets, with each bucket
having its own specific characteristics.

The emergence of services such as DynamoDB and S3 are just a few examples of
how storage needs have changed over time to cater to unstructured data and how
the cloud enables enterprises to move away from the limited vertical scaling and

8 | Chapter 1: Introduction to Serverless on AWS

mundane operation of traditional RDBMSs to focus on building cloud-scale solutions
that bring value to the business.

Figure 1-6. Pictorial representation of Amazon S3 and its data buckets

Function as a service (FaaS)
In simple terms, FaaS is a type of cloud computing service that lets you run your
function code without having to provision any hardware yourself. FaaS provided a
core piece of the cloud computing puzzle by bringing in the much-needed compute
as a service, and it soon became the catalyst for the widespread adoption of serverless.
AWS Lambda is the most used FaaS implementation available today (see Figure 1-7).

Figure 1-7. Pictorial representation of AWS Lambda service and functions

Managed Versus Fully Managed Services
Before exploring the characteristics of serverless in detail, it is essential to understand
what is meant by the terms managed services and fully managed services. As a devel‐
oper, you often consume APIs from different vendors to fulfill business tasks and
abide by the API contracts. You do not get access to the implementation or the
operation of the service, because the service provider manages them. In this case, you
are consuming a managed service.

The distinction between managed and fully managed services is often blurred. Cer‐
tain managed services require you to create and maintain the necessary infrastructure
before consuming them. For example, Amazon Relational Database Service (RDS)
is a managed service for RDBMSs such as MySQL, SQL Server, Oracle, and so
on. However, its standard setup requires you to create a virtual network boundary,
known as a virtual private cloud (VPC), with security groups, instance types, clusters,
etc., before consuming the service. In contrast, DynamoDB is a NoSQL database
service that you can set up and consume almost instantly. This is one way of

The Road to Serverless | 9

distinguishing a managed service from a fully managed one. Fully managed services
are sometimes referred to as serverless services.

Now that you have some background on the origins and evolution of the cloud and
understand the simplicity of fully managed services, it’s time to take a closer look at
serverless and see the amazing potential it has for you.

The Characteristics of Serverless Technology
Serverless is a technological concept that utilizes fully managed cloud services to
carry out undifferentiated heavy lifting by abstracting away the infrastructure intrica‐
cies and server maintenance tasks.

John Chapin and Mike Roberts, the authors of Programming AWS Lambda (O’Reilly),
distill this in simple terms:

Enterprises building and supporting serverless applications are not looking after that
hardware or those processes associated with the applications. They are outsourcing this
responsibility to someone else, i.e., cloud service providers such as AWS.

As Roberts notes in his article “Serverless Architectures”, the first uses of the term
serverless seem to have occurred around 2012, sometimes in the context of service
providers taking on the responsibility of managing servers, data stores, and other
infrastructure resources (which in turn allowed developers to shift their focus toward
tasks and process flows), and sometimes in the context of continuous integration
and source control systems being hosted as a service rather than on a company’s
on-premises servers. The term began to gain popularity following the launch of AWS
Lambda in 2014 and Amazon API Gateway in 2015, with a focus on incorporating
external services into the products built by development teams. Its use picked up
steam as companies started to use serverless services to build new business capabili‐
ties, and it’s been trending ever since.

During the early days, especially after the release of AWS Lambda
(the FaaS offering from AWS), many people used the terms ser‐
verless and FaaS interchangeably, as if both represented the same
concept. Today, FaaS is regarded as one of the many service types
that form part of the serverless ecosystem.

Definitions of serverless often reflect the primary characteristics of a serverless
application. Along with the definitions, these characteristics have been refined and
redefined as serverless has evolved and gained wider industry adoption. Let’s take a
look at some of the most important ones.

10 | Chapter 1: Introduction to Serverless on AWS

https://oreil.ly/-vxcv
https://oreil.ly/m22jj

Pay-per-Use
Pay-per-use is the main characteristic that everyone associates with serverless. It
mainly originated from the early days of serverless, when it was equated with FaaS:
you pay for each function invocation. That interpretation is valid for ephemeral
services such as AWS Lambda; however, if your application handles data, you may
have a business requirement to store the data for a longer period and for it to be
accessible during that time. Fully managed services such as Amazon DynamoDB
and Amazon S3 are examples of services used for long-term data storage. In such
cases, there is a cost associated with the volume of data your applications store every
month, often measured in gibibytes (GiB). Remember, this is still pay-per-use based
on your data volume, and you are not charged for an entire disk drive or storage
array.

Figure 1-8 shows a simple serverless application where a Lambda function operates
on the data stored in a DynamoDB table. While you pay for the Lambda function
based on the number of invocations and memory consumption, for DynamoDB, in
addition to the pay-per-use cost involved with its API invocations for reading and
writing data, you also pay for the space consumed for storing the data. In Chapter 9,
you will see all the cost elements related to AWS Lambda and DynamoDB in detail.

Figure 1-8. A simple serverless application, illustrating pay-per-use and data storage cost
elements

Autoscaling and Scale to Zero
One of the primary characteristics of a fully managed service is the ability to scale up
and down based on demand, without manual intervention. The term scale to zero is
unique to serverless. Take, for example, a Lambda function. AWS Lambda manages
the infrastructure provisioning to run the function. When the function ends and is
no longer in use, after a certain period of inactivity the service reclaims the resources
used to run it, scaling the number of execution environments back to zero.

The Characteristics of Serverless Technology | 11

AWS Lambda Execution Environments
When a Lambda function is invoked, the AWS Lambda service runs the function
code inside an execution environment. The execution environment is run on a
hardware-virtualized virtual machine (MicroVM) known as Firecracker. The execu‐
tion environment provides a secure and isolated runtime environment for function
execution. It consists of the function code, any extensions, temporary local filesystem
space, and language runtime.

One execution environment is associated with one Lambda function and never
shared across functions.

Conversely, when there is a high volume of requests for a Lambda function, AWS
automatically scales up by provisioning the infrastructure to run as many concurrent
instances of the execution environment as needed to meet the demand. This is often
referred to as infinite scaling, though the total capacity is actually dependent on your
account’s concurrency limit.

With AWS Lambda, you can opt to keep a certain number of
function containers “warm” in a ready state by setting a function’s
provisioned concurrency value.

Both scaling behaviors make serverless ideal for many types of applications.

Lambda Function Timeout
At the time of writing, a Lambda function can run for a maximum execution time
of 15 minutes. This is commonly referred to as the timeout period. While developing
a Lambda function, you can set the timeout to any value up to 15 minutes. You set
this value based on how long the function requires to complete the execution of its
logic, and expect it to finish before its timeout. If the function is still executing when
it reaches its set timeout, the AWS Lambda service terminates it.

High Availability
A highly available (HA) application avoids a single point of failure by adding redun‐
dancy. For a commercial application, the service level agreement (SLA) states the
availability in terms of a percentage. In serverless, as we employ fully managed

12 | Chapter 1: Introduction to Serverless on AWS

services, AWS takes care of the redundancy and data replication by distributing the
compute and storage resources across multiple AZs, thus avoiding a single point
of failure. Hence, adopting serverless provides high availability out of the box as
standard.

Cold Start
Cold start is commonly associated with FaaS. For example, as you saw earlier, when
an AWS Lambda function is idle for a period of time its execution environment
is shut down. If the function gets invoked again after being idle for a while, AWS
provisions a new execution environment to run it. The latency in this initial setup
is usually called the cold start time. Once the function execution is completed, the
Lambda service retains the execution environment for a nondeterministic period.
If the function is invoked again during this period, it does not incur the cold
start latency. However, if there are additional simultaneous invocations, the Lambda
service provisions a new execution environment for each concurrent invocation,
resulting in a cold start.

Many factors contribute to this initial latency: the size of the function’s deployment
package, the runtime environment of the programming language, the memory
(RAM) allocated to the function, the number of preconfigurations (such as static
data initializations), etc. As an engineer working in serverless, it is essential to under‐
stand cold start as it influences your architectural, developmental, and operational
decisions (see Figure 1-9).

Figure 1-9. Function invocation latency for cold starts and warm executions—requests 1
and 2 incur a cold start, whereas a warm container handles request 3

The Characteristics of Serverless Technology | 13

The Unique Benefits of Serverless
Along with the core characteristics of serverless that you saw in the previous section,
understanding some of its unique benefits is essential to optimize the development
process and enable teams to improve their velocity in delivering business outcomes.
In this section, we’ll take a look at some of the key features serverless supports.

Individuality and Granularity of Resources
“One size fits all” does not apply to serverless. The ability to configure and operate
serverless services at an individual level allows you to look at your serverless applica‐
tion not just as a whole but at the level of each resource, working with its specific
characteristics. Unlike with traditional container applications, you no longer need to
set a common set of operational characteristics at the container level.

Say your application has several Lambda functions. Some functions handle user
requests from your website, while others perform batch jobs on the backend. You
may provide more memory for the user-facing functions to enable them to respond
quickly, and opt for a longer timeout for the backend batch job functions where
performance is not critical. With Amazon Simple Queue Service (SQS) queues, for
example, you configure how quickly you want to process the messages as they come
into the queue, or you can decide whether to delay when a message becomes available
for processing.

Amazon SQS is a fully managed and highly scalable message queu‐
ing service used to send, receive, and store messages. It is one of
AWS’s core services and helps build loosely coupled microservices.
Each SQS queue has several attributes; you can adjust these values
to configure the queue as needed.

When you build an application that uses several resources—Lambda functions, SQS
queues, DynamoDB tables, S3 buckets, etc.—you have the flexibility to adjust each
resource’s behavior as dictated by the business and operational requirements. This is
depicted in Figure 1-10, which shows part of an order processing microservice.

The ability to operate at a granular level brings many benefits, as you will see
throughout this book. Understanding the individuality of resources and developing
a granular mindset while building serverless applications helps you design secure,
cost-effective, and sustainable solutions that are easy to operate.

14 | Chapter 1: Introduction to Serverless on AWS

Figure 1-10. A section of an order processing microservice, illustrating how each server‐
less resource has different configurations

Ability to Optimize Services for Cost, Performance, and Sustainability
Cost and performance optimization techniques are common in software develop‐
ment. When you optimize to reduce cost, you target reducing the processing power,
memory consumption, and storage allocation. With a traditional application, you
exercise these changes at a high level, impacting all parts of the application. You
cannot select a particular function or database table to apply the changes to. In such
situations, if not adequately balanced, the changes you make could lead to perfor‐
mance degradations or higher costs elsewhere. Serverless offers a better optimization
model.

Serverless enables deeper optimization
A serverless application is composed of several managed services, and it may contain
multiple resources from the same managed service. For example, in Figure 1-10, you
saw three Lambda functions from the AWS Lambda service. You are not forced to
optimize all the functions in the same way. Instead, depending on your requirements,
you can optimize one function for performance and another for cost, or give one
function a longer timeout than the others. You can also allow for different concurrent
execution needs.

The Unique Benefits of Serverless | 15

Based on their characteristics, you can exhibit the same principle with other
resources, such as queues, tables, APIs, etc. Imagine you have several microservices,
each containing several serverless resources. For each microservice, you can optimize
each individual resource at a granular level. This is optimization at its deepest and
finest level in action!

Optimizing for Sustainability
In addition to the traditional cost and performance optimization strategies, there
is now a need to consider sustainability as well. Chapter 10 explains this in detail,
presenting several patterns for developing and operating your applications in a sus‐
tainable AWS cloud environment.

Optimizing for sustainability may have an impact on cost and performance. As a
general principle, when you optimize to reduce cost, you are likely to consume fewer
compute resources, resulting in lower power consumption, thus promoting sustaina‐
bility. However, optimizing for higher performance often results in consuming more
energy and may not align with sustainability goals. In such situations, you’ll need to
make trade-offs: identify the expected performance level, and optimize up to it and
not beyond.

Storage optimization
Modern cloud applications ingest huge volumes of data—operational data, metrics,
logs, etc. Teams that own the data might want to optimize their storage (to mini‐
mize cost and, in some cases, improve performance) by isolating and keeping only
business-critical data.

Managed data services provide built-in features to remove or transition unneeded
data. For example, Amazon S3 supports per-bucket data retention policies to either
delete data or transition it to a different storage class, and DynamoDB allows you
to configure the Time to Live (TTL) value on every item in a table. The storage
optimization options are not confined to the mainstream data stores; you can specify
the message retention period for each SQS queue, Kinesis stream, API cache, etc.

DynamoDB manages the TTL configuration of the table items
efficiently, regardless of how many items are in a table and how
many of those items have a TTL timestamp set. However, in some
cases, it can take up to 48 hours for an item to be deleted from the
table. Consequently, this may not be an ideal solution if you require
guaranteed item removal at the exact TTL time.

16 | Chapter 1: Introduction to Serverless on AWS

AWS Identity and Access Management (IAM)
AWS IAM is a service that controls the authentication and authorization of access
to AWS services and resources. It helps define who can access which services and
resources, under which conditions. Access to a service or resource can be granted to
an identity, such as a user, or a resource, such as a Lambda function. The object that
holds the details of the permissions is known as a policy and is stored as a JSON
document, as shown in Example 1-1.

Example 1-1. IAM policy to allow read actions on DynamoDB Orders table

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:BatchGet*",
 "dynamodb:Get*",
 "dynamodb:Query"
],
 "Resource": "arn:aws:dynamodb:eu-west-1:12890:table/Orders"
 }
]
}

Support for Deeper Security and Data Privacy Measures
You now understand how the individuality and granularity of services in serverless
enable you to fine-tune every part of an application for varying demands. The same
characteristics allow you to apply protective measures at a deeper level as necessary
across the ecosystem.

Permissions at a function level
Figure 1-11 shows a simple serverless application that allows you to store orders
and query the status of a given order via the POST /orders and GET /orders/{id}/
status endpoints, respectively, which are handled by the corresponding Lambda
functions. The function that queries the Orders table to find the status performs a
read operation. Since this function does not change the data in the table, it requires
just the dynamodb:Query privilege. This idea of providing the minimum permissions
required to complete a task is known as the principle of least privilege.

The Unique Benefits of Serverless | 17

The principle of least privilege is a security best practice that grants
only the permissions required to perform a task. As shown in
Example 1-1, you define this as an IAM policy by limiting the
permitted actions on specific resources. It is one of the most fun‐
damental security principles in AWS and should be part of the
security thinking of every engineer. You will learn more about this
topic in Chapter 4.

Figure 1-11. Serverless application showing two functions with different access privileges
to the same data table

Granular permissions at the record level
The IAM policy in Example 1-1 showed how you configure access to read (query)
data from the Orders table. Table 1-1 contains sample data of a few orders, where
an order is split into three parts for better access and privacy: SOURCE, STATUS, and
ADJUSTED.

Table 1-1. Sample Orders table with multiple item types

PK SK Status Tracking Total Items
SOURCE 100-255-8730 Processing 44tesYuwLo 299.99 { … }
STATUS 100-255-8730 Processing 44tesYuwLo
SOURCE 100-735-6729 Delivered G6txNMo26d 185.79 { … }
ADJUSTED 100-735-6729 Delivered G6txNMo26d 175.98 { … }
STATUS 100-735-6729 Delivered G6txNMo26d

18 | Chapter 1: Introduction to Serverless on AWS

Per the principle of least privilege, the Lambda function that queries the status of
an order should only be allowed to access that order’s STATUS record. Table 1-2
highlights the records that should be accessible to the function.

Table 1-2. STATUS records accessible to the status query function

PK SK Status Tracking Total Items
SOURCE 100-255-8730 Processing 44tesYuwLo 299.99 { … }
STATUS 100-255-8730 Processing 44tesYuwLo
SOURCE 100-735-6729 Delivered G6txNMo26d 185.79 { … }
ADJUSTED 100-735-6729 Delivered G6txNMo26d 175.98 { … }
STATUS 100-735-6729 Delivered G6txNMo26d

To achieve this, you can use an IAM policy with a dynamodb:LeadingKeys condition
and the policy details listed in Example 1-2.

Example 1-2. Policy to restrict read access to a specific type of item

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowOrderStatus",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:Query"
],
 "Resource": [
 "arn:aws:dynamodb:…:table/Orders"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:LeadingKeys": [
 "STATUS"
]
 }
 }
 }
]
}

The conditional policy shown here works at a record level. DynamoDB also supports
attribute-level conditions to fetch the values from only the permitted attributes of a
record, for applications that require even more granular access control.

The Unique Benefits of Serverless | 19

1 A module is an independent and self-contained unit of software.

Policies like this one are common in AWS and applicable to several common services
you will use to build your applications. Awareness and understanding of where and
when to use them will immensely benefit you as a serverless engineer.

Incremental and Iterative Development
Iterative development empowers teams to develop and deliver products in small
increments but in quick succession. As Eric Ries says in his book The Startup Way
(Penguin), you start simple and scale fast. Your product constantly evolves with new
features that benefit your customers and add business value.

Event-driven architecture (EDA), which we’ll explore in detail in Chapter 3, is at the
heart of serverless development. In serverless, you compose your applications with
loosely coupled services that interact via events, messages, and APIs. EDA principles
enable you to build modular and extensible serverless applications.1 When you avoid
hard dependencies between your services, it becomes easier to extend your applica‐
tions by adding new services that do not disrupt the functioning of the existing ones.

Multiskilled, Diverse Engineering Teams
Adopting new technology brings changes as well as challenges in an organization.
When teams move to a new language, database, SaaS platform, browser technology,
or cloud provider, changes in that area often require changes in others. For example,
adopting a new programming language may call for modifications to the develop‐
ment, build, and deployment processes. Similarly, moving your applications to the
cloud can create demand for many new processes and skills.

Influence of DevOps culture
The DevOps approach removes the barriers between development and operations,
making it faster to develop new products and easier to maintain them. Adopting
a DevOps model takes a software engineer who otherwise focuses on developing
applications into performing operational tasks. You no longer work in a siloed soft‐
ware development cycle but are involved in its many phases, such as continuous
integration and delivery (CI/CD), monitoring and observability, commissioning the
cloud infrastructure, and securing applications, among other things.

20 | Chapter 1: Introduction to Serverless on AWS

Adopting a serverless model takes you many steps further. Though it frees you from
managing servers, you are now programming the business logic, composing your
application using managed services, knitting them together with infrastructure as
code (IaC), and operating them in the cloud. Just knowing how to write software
is not enough. You have to protect your application from malicious users, make it
available 24/7 to customers worldwide, and observe its operational characteristics to
improve it continually. Becoming a successful serverless engineer thus requires devel‐
oping a whole new set of skills, and cultivating a DevOps mindset (see Figure 1-12).

Figure 1-12. Traditional siloed specialist engineers versus multiskilled serverless
engineers

The Unique Benefits of Serverless | 21

Your evolution as a serverless engineer
Consider the simple serverless application shown in Figure 1-8, where a Lambda
function reads and writes to a DynamoDB table. Imagine that you are proficient in
TypeScript and have chosen Node.js as your Lambda runtime environment. As you
implement the function, it becomes your responsibility to code the interactions with
DynamoDB. To be efficient, you learn NoSQL concepts, identify the partition key
(PK) and sort key (SK) attributes as well as appropriate data access patterns to write
your queries, etc. In addition, there may be data replication, TTL, caching, and other
requirements. Security is also a concern, so you then learn about AWS IAM, how to
create roles and policies, and, most importantly, the principle of least privilege. From
being a programmer proficient in a particular language, your engineering role takes
a 360-degree turn. As you evolve into a serverless engineer, you pick up many new
skills and responsibilities.

As you saw in the previous section, your job requires having the ability to build
the deployment pipeline for your application, understand service metrics, and proac‐
tively act on production incidents. You’re now a multiskilled engineer—and when
most engineers in a team are multiskilled, it becomes a diverse engineering team
capable of efficient end-to-end serverless delivery. For organizations where upskilling
of engineers is required, Chapter 2 discusses in detail the ways to grow serverless
talents.

The Parts of a Serverless Application and Its Ecosystem
An ecosystem is a geographic area where plants, animals, and other organisms, as well
as weather and landscape, work together to form a bubble of life.

—NationalGeographic.org

In nature, an ecosystem contains both living and nonliving parts, also known as
factors. Every factor in an ecosystem depends on every other factor, either directly or
indirectly. The Earth’s surface is a series of connected ecosystems.

The ecosystem analogy here is intentional. Serverless is too often imagined as an
architecture diagram or a blueprint, but it is much more than FaaS and a simple
framework. It has both technical and nontechnical elements associated with it. Ser‐
verless is a technology ecosystem!

As you learned earlier in this chapter, managed services form the bulk of a serverless
application. However, they alone cannot bring an application alive—many other
factors are involved. Figure 1-13 depicts some of the core elements that make up the
serverless ecosystem.

22 | Chapter 1: Introduction to Serverless on AWS

http://NationalGeographic.org

Figure 1-13. Parts of the serverless technology ecosystem

They include:

The cloud platform
This is the enabler of the serverless ecosystem—AWS in our case. The cloud host‐
ing environment provides the required compute, storage, and network resources.

Managed cloud services
Managed services are the basic building blocks of serverless. You compose your
applications by consuming services for computation, event transportation, mes‐
saging, data storage, and various other activities.

Architecture
This is the blueprint that depicts the purpose and behavior of your serverless
application. Defining and agreeing on an architecture is one of the most impor‐
tant activities in serverless development.

Infrastructure definition
Infrastructure definition—also known as infrastructure as code (IaC) and
expressed as a descriptive script—is like the circuit diagram of your application.
It weaves everything together with the appropriate characteristics, dependencies,
permissions, and access controls. IaC, when actioned on the cloud, holds the
power to bring your serverless application alive or tear it down.

The Parts of a Serverless Application and Its Ecosystem | 23

Development and test tools
The runtime environment of your FaaS dictates the programming language,
libraries, plug-ins, testing frameworks, and several other developer aids. These
tools may vary from one ecosystem to another, depending on the product
domain and the preferences of the engineering teams.

Repository and pipelines
The repository is a versioned store for all your artifacts, and the pipelines per‐
form the actions that take your serverless application from a developer environ‐
ment all the way to its target customers, passing through various checkpoints
along the way. The infrastructure definition plays a pivotal role in this process.

Observability tools
Observability tools and techniques act as a mirror to reflect the operational state
of your application, offering deeper insights into how it performs against its
intended purpose. A non-observable system cannot be sustained.

Best practices
To safeguard your serverless application against security threats and scaling
demands and ensure it is both observable and resilient in the face of unexpected
disruptions, you need well-architected principles and best practices acting as
guardrails. The AWS Well-Architected Framework is an essential best practices
guide; we’ll look at it later in this chapter.

Builders and stakeholders
The people who come up with the requirements for an application and the ones
who design, build, and operate it in the cloud are also part of the ecosystem.
In addition to all the tools and techniques, the role of humans in a serverless
ecosystem is vital—they’re the ones responsible for making the right decisions
and performing the necessary actions, similar to the role we all play in our
environmental ecosystem!

Why Is AWS a Great Platform for Serverless?
As mentioned earlier in this chapter, although the term serverless first appeared in
the industry in around 2012, it gained traction after the release of AWS Lambda in
2014. While the large numbers of people who jumped on the Lambda bandwagon
elevated serverless to new heights, AWS already had a couple of fully managed
serverless services serving customers at this point. Amazon SQS was released almost
10 years before AWS Lambda. Amazon S3, the much-loved and widely used object
store in the cloud, was launched in 2006, way before the cloud reached the corners of
the IT industry.

This early leap into the cloud with a futuristic vision, offering container services
and fully managed serverless services, enabled Amazon to roll out new products

24 | Chapter 1: Introduction to Serverless on AWS

faster than any other provider. Recognizing the potential, many early adopters swiftly
realized their business ideas and launched their applications on AWS. Even though
the cloud market is growing rapidly, AWS remains the top cloud services provider
globally.

The Popularity of Serverless Services from AWS
Working closely with customers and monitoring industry trends has allowed AWS
to quickly iterate ideas and launch several important serverless services in areas
such as APIs, functions, data stores, data streaming, AI, machine learning, event
transportation, workflow and orchestration, and more.

What’s in a Name?
When you look at the AWS service names, you’ll notice a mix of “Amazon”
and “AWS” prefixes—for example, Amazon DynamoDB and AWS Step Functions.
This confuses everyone, including employees at Amazon. Apparently, it’s not a
random selection but a way to differentiate services based on their fundamental
characteristics.

The most popular and relevant theory suggests that services with the Amazon prefix
work on their own (standalone services), whereas the ones with the AWS prefix
support other services (utility services) and are not intended to be used on their own.
AWS Lambda, for example, is triggered by other services. However, as services evolve
over time with new capabilities, you may find exceptions where this distinction no
longer holds true.

AWS is a comprehensive cloud platform offering over 200 services to build and
operate both serverless and non-serverless workloads. Table 1-3 lists some of the
most commonly used managed serverless services. You will see many of these services
featured in our discussions throughout this book.

Table 1-3. Popular serverless services from AWS

Category Service
Analytics Amazon Kinesis, Amazon Athena, AWS Glue, Amazon QuickSight
App building AWS Amplify
API building Amazon API Gateway, AWS AppSync
Application integration Amazon EventBridge, AWS Step Functions, Amazon Simple Notification Service (SNS), Amazon

Simple Queue Service (SQS), Amazon API Gateway, AWS AppSync
Compute AWS Lambda
Content delivery Amazon CloudFront
Database Amazon DynamoDB, Amazon Aurora Serverless

Why Is AWS a Great Platform for Serverless? | 25

Category Service
Developer tools AWS CloudFormation, AWS Cloud Development Kit (CDK), AWS Serverless Application Model

(SAM), AWS CodeBuild, AWS CodeCommit, AWS CodeDeploy, AWS CodePipeline
Emails Amazon Simple Email Service (SES)
Event-driven architecture Amazon EventBridge, Amazon Simple Notification Service (SNS), Amazon Simple Queue Service

(SQS), AWS Lambda
Governance AWS Well-Architected Tool, AWS Trusted Advisor, AWS Systems Manager, AWS Organizations
High volume event
streaming

Amazon Kinesis Data Streams, Amazon Kinesis Data Firehose

Identity, authentication,
and security

AWS Identity and Access Management (IAM), Amazon Cognito, AWS Secrets Manager, AWS
WAF, Amazon Macie

Machine learning Amazon SageMaker, Amazon Translate, Amazon Comprehend, Amazon DevOps Guru
Networking Amazon Route 53
Object store Amazon Simple Storage Service (S3)
Observability Amazon CloudWatch, AWS X-Ray, AWS CloudTrail
Orchestration AWS Step Functions
Security AWS Identity and Access Management (IAM), Amazon Cognito, AWS Secrets Manager, AWS

Systems Manager Parameter Store

The AWS Well-Architected Framework
The AWS Well-Architected Framework is a collection of architectural best practices
for designing, building, and operating secure, scalable, highly available, resilient, and
cost-effective applications in the cloud. It consists of six pillars covering fundamental
areas of a modern cloud system:

Operational Excellence
The Operational Excellence pillar provides design principles and best practices
to devise organizational objectives to identify, prepare, operate, observe, and
improve operating workloads in the cloud. Failure anticipation and mitigation
plans, evolving applications in small but frequent increments, and continuous
evaluation and improvements of the operational procedures are some of the core
principles of this pillar.

Security
The Security pillar focuses on identity and access management, protecting appli‐
cations at all layers, ensuring data privacy and control as well as traceability and
auditing of all actions, and preparing for and responding to security events. It
instills security thinking at all stages of development and is the responsibility of
everyone involved.

Reliability
An application deployed and operated in the cloud should be able to scale and
function consistently as demand changes. The principles and practices of the

26 | Chapter 1: Introduction to Serverless on AWS

https://oreil.ly/YDnvJ
https://oreil.ly/Cxkyr
https://oreil.ly/nnGlq

Reliability pillar include designing applications to work with service quotas and
limits, preventing and mitigating failures, and identifying and recovering from
failures, among other guidance.

Performance Efficiency
The Performance Efficiency pillar is about the approach of selecting and the use
of the right technology and resources to build and operate an efficient system.
Monitoring and data metrics play an important role here in constantly reviewing
and making trade-offs to maintain efficiency at all times.

Cost Optimization
The Cost Optimization pillar guides organizations to operate business applica‐
tions in the cloud in a way that delivers value and keeps costs low. The best
practices focus on financial management, creating cloud cost awareness, using
cost-effective resources and technologies such as serverless, and continuously
analyzing and optimizing based on business demand.

Sustainability
The Sustainability pillar is the latest addition to the AWS Well-Architected
Framework. It focuses on contributing to a sustainable environment by reducing
energy consumption; architecting and operating applications that reduce the use
of compute power, storage space, and network round trips; use of on-demand
resources such as serverless services; and optimizing to the required level and not
over.

AWS Technical Support Plans
Depending on the scale of your cloud operation and the company’s size, Amazon
offers four technical support plans to suit your needs:

Developer
This is the entry-level support model, suitable for experimentation, building
prototypes, or testing simple applications at the start of your serverless journey.

Business
As you move from the experimentation stage toward production deployments
and operating business applications serving customers, this is the recommended
support level. As well as other support features, it adds response time guarantees
for production systems that are impaired or go down (<4 hours and <1 hour,
respectively).

Enterprise on-ramp
The main difference between this one and the Enterprise plan is the response
time guarantee when business-critical applications go down (<30 minutes, versus

Why Is AWS a Great Platform for Serverless? | 27

https://oreil.ly/5IQkW
https://oreil.ly/3S17n
https://oreil.ly/ns1a9
https://oreil.ly/tFve2

<15 minutes with the higher-level plan). The lower-level plans do not offer this
guarantee.

Enterprise
If you’re part of a big organization with several teams developing and operating
high-profile, mission-critical workloads, the Enterprise support plan will give
you the most immediate care. In the event of an incident with your mission-
critical applications, you get support within 15 minutes. This plan also comes
with several additional benefits, including:

• A dedicated Technical Account Manager (TAM) who acts as the first point of•
contact between your organization and AWS

• Regular (typically monthly) meeting cadence with your TAM•
• Advice from AWS experts, such as solution architects specializing in your•

business domain, when building an application
• Evaluation of your existing systems and recommendations based on AWS•

Well-Architected Framework best practices
• Training and workshops to improve your internal AWS skills and develop‐•

ment best practices
• News about new product launches and feature releases•
• Opportunities to beta-test new products before they become generally•

available
• Invitations to immersion days and face-to-face meetings with AWS product•

teams related to the technologies you work with

The number one guiding principle at Amazon is customer
obsession: “Leaders start with the customer and work back‐
wards. They work vigorously to earn and keep customer trust.
Although leaders pay attention to competitors, they obsess
over customers.”

AWS Developer Community Support
The AWS developer community is an incredibly active and supportive technical
forum. There are several avenues you can pursue to become part of this community,
and doing so is highly recommended, both for your growth as a serverless engineer
and to ensure the successful adoption of serverless within your enterprise. They
include:

Engage with AWS Developer Advocates (DAs).
AWS’s DAs connect the developer community with the different product teams
at AWS. You can follow serverless developments on social media. You will find

28 | Chapter 1: Introduction to Serverless on AWS

the serverless specialist DAs helping the community by answering questions and
contributing technical content via blogs, live streams and videos, GitHub code
shares, conferences, meetups, etc.

Reach out to AWS Heroes and Community Builders.
The AWS Heroes program recognizes AWS experts whose contributions make
a real impact in the tech community. Outside AWS, these experts share their
knowledge and serverless adoption stories from the trenches.

At the time of writing this book, Sheen Brisals has been recognized as an AWS
Serverless Hero.

The AWS Community Builders program is a worldwide initiative to bring
together AWS enthusiasts and rising experts who are passionate about sharing
knowledge and connecting with AWS product teams and DAs, Heroes, and
industry experts. Identifying the builders who contribute to the serverless space
and learning from their experiences will deepen your knowledge.

At the time of writing this book, Luke Hedger has been recognized as an AWS
Community Builder.

Join an AWS Cloud Club.
There’s a thriving student-led community, with AWS Cloud Clubs in multiple
regions worldwide. Students can join their local club to network, learn about
AWS, and build their careers. Cloud Club Captains organize events to learn
together, connect with other clubs, and earn AWS credits and certification
vouchers, among other opportunities.

Sign up with AWS Startup or AWS Educate.
AWS has popular programs to help bring your ideas to realization. AWS Activate
is for anyone with great ideas and ambitions or start-ups less than 10 years old.
AWS offers the necessary tools, resources, credits, and advice to boost success at
every stage of the journey.

AWS Educate is a learning resource for students and professionals. It offers AWS
credits that can be used for courses and projects, access to free training, and
networking opportunities.

Attend AWS conferences.
An essential part of an enterprise’s serverless adoption journey is continuously
evaluating its development processes, domains, team organization, engineering
culture, best practices, etc. Conferences and collaborative events are the perfect
platforms to find solutions for your concerns, validate your ideas, and identify
actions to correct before it is too late.

The type and scale of conferences vary. For example, AWS re:Invent is
an annual week-long conference that brings tens of thousands of tech and

Why Is AWS a Great Platform for Serverless? | 29

https://oreil.ly/k3Phm
https://oreil.ly/6FAoW
https://oreil.ly/tsxmC
https://oreil.ly/VuoVo
https://oreil.ly/aWMEg

business enthusiasts together with hundreds of sessions spread over five days,
whereas AWS Summits and AWS Community Summits are local events—mostly
one-day—conducted around the world to bring the community and technology
experts closer. Most of the content gets shared online as well. AWS Events and
Webinars is a good place to identify events that might suit your purposes.

Summary
As you start your serverless journey, either as an independent learner or as part of an
enterprise team, it is valuable to have an understanding of how the cloud evolved and
how it facilitated the development of serverless technology. This chapter provided
that foundation, and outlined the significant potential of serverless and the benefits it
can provide to an organization.

Every technology requires a solid platform to thrive and a passionate community
to support it. While by no means the only option out there, Amazon Web Services
(AWS) is a fantastic platform with numerous service offerings and dedicated devel‐
oper support programs. As highlighted in this chapter, to be successful in your
serverless adoption, it is paramount that you share your experiences and learn from
proven industry experts.

In the next chapter, we will look at serverless adoption in an enterprise. We will
examine some of the fundamental things an organization needs to evaluate and do
to onboard serverless and make it a successful venture for its engineers, users, and
business.

Interview with an Industry Expert
Danilo Poccia, Chief Evangelist (EMEA), Amazon Web Services
Danilo works with start-ups and companies of all sizes to support their innovation.
In his role as Chief Evangelist (EMEA) at Amazon Web Services, he leverages his
experience to help people bring their ideas to life, focusing on serverless architectures
and event-driven programming and the technical and business impact of machine
learning and edge computing. He is the author of AWS Lambda in Action: Event-
Driven Serverless Applications (Manning) and speaks at conferences worldwide.

Q: Why does the software industry need serverless technology?

When you build an application, it can become complex to deploy, test, or add a
new feature sooner or later without breaking the existing functionalities. In the
last 20 years, complexity has become a science that has found similarities across
many different fields, such as mathematics, physics, and social sciences. Complexity
theory finds that when there are strong dependencies between components, even

30 | Chapter 1: Introduction to Serverless on AWS

https://oreil.ly/Yl3k9
https://oreil.ly/Yl3k9

simple components, you might experience the emergence of “complex” and difficult-
to-predict behaviors. For example, the behavior of an ant is simple, but together, ants
can discover food hidden in remote locations and bring it back to their nest. The
emergence of unexpected behaviors applies very well to software development.

When you have a large codebase, it requires a lot of effort to reduce side effects so
that you don’t break something else when you add a new feature. In my experience,
monolithic applications with a large codebase only work when there is a small core
team of developers that have worked for years on the same application and have accu‐
mulated a large amount of experience in the business domain. Microservices help,
but you still need business domain knowledge to find where to split the application.
That’s what domain-driven design (DDD) calls the “bounded context.” And that’s why
microservices are more successful if they are implemented as a migration from an
existing application than when you’re starting from scratch. If the boundaries are well
chosen and defined, you limit the internal dependencies to reduce the overall code
complexity and the emergence of unexpected issues.

But still, each microservice brings its nonfunctional requirements in terms of secu‐
rity, reliability, scalability, observability, performance, and so on. Serverless architec‐
ture helps implement these nonfunctional requirements in a much easier way. It can
reduce the overall code size by using services to implement functionalities that are
not unique to your implementation. It lets you focus on the features you want to
build and not managing the infrastructure required to run the application. In this
way, moving from idea to production is much faster, and the advantage of serverless
technologies is not only for the technical teams but also for the business teams that
are able to deliver more and faster to their customers.

Q: As the author of the first book on AWS Lambda, what has changed in serverless since your
early experience?

When I wrote the book in 2016, there was very little tooling around AWS Lambda. In
some examples of my book, I call Lambda functions directly from the browser using
the AWS SDK for JavaScript. In a way, I don’t dislike that. It makes you focus more
on the business functions you need to implement. Also, even if many customers were
interested in AWS Lambda at the time, there were very few examples of serverless
workloads in production.

The idea for the book started from a workshop I created where I wanted to show
how to make building an application easier. For example, I start with data. Is data
structured? Put it in a fully managed database like Amazon DynamoDB. Is it unstruc‐
tured data? Put it in an Amazon S3 bucket. Where is your business logic? Split it into
small functions and run them on AWS Lambda. Can those functions run on a client
or in a web browser? Put them there, and don’t run that code in the backend. Maybe
the result is what we now call “serviceful” architecture.

Interview with an Industry Expert | 31

Today, we have many tools that support building serverless event-driven applications
to manage events (like Amazon EventBridge) or to coordinate the execution of your
business logic (like AWS Step Functions). With better tooling, customers are now
building more advanced applications. It’s not just about serverless functions like in
2016. Today, you need to consider how to use the tools together to build applications
faster and have less code to maintain.

Q: In your role as a technology evangelist, you work with several teams. How does serverless as
a technology enable teams of different sizes to innovate and build solutions faster?

Small teams work better. Serverless empowers small teams to do more because it lets
them remove the parts that can be implemented off the shelf by an existing service.
It naturally leads them to adopt a microservice architecture and use distributed
systems. It can be hard at first if they don’t have any experience in these fields, but it’s
rewarding when they learn and see the results.

If you need to make a big change in the way you build applications, for example,
adopting serverless or microservices, put yourself in a place where you can make mis‐
takes. It’s by making mistakes that we learn. As you move to production, collecting
metrics on code complexity in your deployment pipeline helps keep the codebase
under control. To move that a step further, I find the idea of a “fitness function”
(as described in the book Building Evolutionary Architectures by Rebecca Parsons,
Neal Ford, and Patrick Kua [O’Reilly]) extremely interesting, especially if you define
“guardrails” about what the fitness of your application should be.

Automation helps at any scale but is incredibly effective for small teams. The AWS
Well-Architected Framework also provides a way to measure the quality of your
implementation and provides a Serverless Lens with specific guidance.

Q: As the leading cloud platform for developing serverless applications, what measures does
AWS take to think ahead and bring new services to its consumers?

I started at AWS more than 10 years ago. Things were different at the time. Just
starting an EC2 instance in a couple of minutes was considered impressive. But even
if some time has passed, at AWS, we always use the same approach to build new
services and features: we listen to our customers. Our roadmap is 90 to 95% based on
what our customers tell us. For the rest, we try to add new ideas from the experience
we have accumulated over the years in Amazon and AWS.

We want to build tools that can help solve customers’ problems, not theoretical issues.
We build them in a way so that customers can choose which tools to use. We want to
iterate quickly on new ideas and get as much feedback as possible when we do it.

32 | Chapter 1: Introduction to Serverless on AWS

https://oreil.ly/ZZOko

Q: What advice would you give to the readers starting their personal or organizational
serverless adoption journey?

Learn the mental model. Don’t focus on the implementation details. Understand the
pros and cons of using microservices and distributed architectures. Time becomes
important because there is latency and concurrency to be considered. Design your
systems for asynchronous communication and eventual consistency.

Faults are a natural part of any architecture. Think of your strategy to recover and
manage faults. Can you record and repeat what your application is doing? Can events
help you do that? Also, two core requirements that are more important now than
before are observability and sustainability. They are more related than one might
think at first.

Offload the parts that are not unique to your application to services and SaaS offer‐
ings that can implement those functionalities for you. Focus on what you want to
build. It’s there where you can make a difference.

Interview with an Industry Expert | 33

CHAPTER 2

Enterprise Readiness for Serverless

I do not believe you can do today’s job with yesterday’s methods and be in business tomorrow.
—Nelson Jackson

When a renowned coach takes charge at a sports club, they bring their team of
assistants and support staff—mainly due to the comfort of working with a known
team and their mutual understanding—and the club prepares to adapt to the changes
needed to make the transition successful. A similar phenomenon can be observed
with new technology adoption in an organization. New technologies bring changes,
sometimes minor and at other times considerable. Adopting modern technologies
such as the cloud and serverless can require significant changes to teams, tools,
processes, and even people’s thinking.

Before hiring a new coach, the club usually conducts an extensive assessment process
to evaluate their past achievements, understand their attitudes and what they will
bring to the club, and ensure the club’s future vision aligns with the coach’s. It’s a
lengthy exercise, but a crucial one. When an organization plans to adopt serverless,
it should be prepared to undergo a similar process to map out the organization’s
business ambitions with the capabilities of serverless. A readiness evaluation is thus
critical to identify the best strategy before starting on the serverless journey.

This chapter begins by walking you through how to create a serverless mindset and
assessing your migration needs. We’ll go through some common migration patterns
to help you identify the best-fit strategy for your domain and workloads. We’ll also
look at topics like getting stakeholder buy-in and growing a successful serverless
team. Just as every successful sports club puts significant effort into the development
of new talent, for serverless adoption to succeed a vital part of the journey is nurtur‐
ing talented serverless engineers within your organization.

35

Preparing for “Thinking in Serverless”
Your confidence in any new technology will grow over time as you use it, just as
daily tasks in life become more manageable with experience. Serverless adoption is
similar—you’ll become increasingly fluent as you continue to work on it. To provide
the optimal conditions for success, however, organizations that are newly adopting
serverless require clarity in their understanding and guidance with their strategy.

This book aims to guide you through the essentials—organizational standards, archi‐
tectural constructs, developmental practices, operational principles, and other funda‐
mentals—so that you, your team, and your organization are well equipped as you
embark on your serverless adoption journey.

Creating a Serverless Mindset
Humans constantly think, both consciously and subconsciously. But thinking as a
process to solve a particular problem or outline the growth strategy for your company
is not easy. When we are forced to think and produce an outcome, we rely naturally
on our experience to find ideas and draw parallels to apply. When facing a problem
with methodology or technology, we tend to follow a similar approach. Hence,
switching from legacy practices to modern ones takes time and requires training and
orientation. With cloud technology as its base and using the latest developmental
practices, serverless requires you to transform your thinking to higher levels.

What are the mental changes you and your organization need to go through? This
section describes how you can transform your thinking and cultivate a serverless
mindset.

Aligning your thought process to serverless
As you saw in Chapter 1, the first thought transformation you should focus on is to
view serverless technology as an ecosystem, and recognize that you need both tech‐
nical and nontechnical factors to work together to succeed. Keeping this ecosystem
view in mind and understanding serverless’s characteristics and unique benefits is
crucial to developing a serverless mindset (see Figure 2-1).

Many elements in the serverless ecosystem, such as the source code repository and
deployment pipelines, will likely already be familiar to you. But while many of the
basic concepts remain the same, the tools and deployment targets will differ—for
example, your deployment target will now be the cloud, and the operating environ‐
ment will change.

36 | Chapter 2: Enterprise Readiness for Serverless

Figure 2-1. The importance of keeping the serverless ecosystem view as a whole

The essentials of serverless thinking
The ability to operate at a granular level in serverless can be challenging to under‐
stand if you have been working with containerized or monolithic applications. Here
are some essential areas to focus on to equip your mind to think about the new ways
of working with serverless:

• Developing knowledge of the serverless technology ecosystem and its parts•
• Gaining a practical understanding of the characteristics of serverless•
• Determining how to map the benefits of serverless to your business requirements•
• Recognizing that observability principles are as important as business logic•
• Creating cost awareness while architecting and building your serverless applica‐•

tion
• Trusting AWS as your cloud provider and using managed services•

Preparing for “Thinking in Serverless” | 37

Alongside the serverless-specific areas, your experience with Agile development prac‐
tices, microservices, and DevOps principles will be highly beneficial. You will see all
these points discussed throughout this book.

Habits to offboard from a legacy mindset
As well onboarding the essentials mentioned in the previous section, removing some
of the traditional thoughts and habits you might have been clinging to for years is
equally important. Here are some tips:

• Move away from the legacy siloed development rituals followed in waterfall•
models. For example, lengthy testing phases by dedicated QA teams or infrequent
production deployment by designated teams won’t suit an agile team iteratively
building serverless solutions.

• Disperse “superstar” teams and encourage equal participation and delegation.•
The idea is to equip and develop all engineers to share the responsibility.

• As there are no servers to manage, accept that you don’t need to SSH into virtual•
machines to troubleshoot.

• The roles and responsibilities of team members need not be fixed and per‐•
manent. As serverless favors multiskilled engineers (see “Multiskilled, Diverse
Engineering Teams” on page 20), you may not find a dedicated database adminis‐
trator, infrastructure, or network engineer in every serverless team.

• The flow of architecture and design proposals is not one-way between archi‐•
tects and engineering teams. With the cloud and serverless, it’s a collaboration
between architects, tech leads, and engineers.

These are just a few of the changes you will commonly notice in serverless teams, but
remember, these practices vary between organizations and teams.

Technology alone cannot be the sole contributor to your success. Without the right
people (engineering, product, and business stakeholder teams) and the necessary
processes (analysis, design principles, best practices, etc.), serverless adoption is not
guaranteed to yield the expected long-term success. The following section takes you
through what you need to realize this goal and explains how all three of these
elements are vital for successful serverless adoption.

38 | Chapter 2: Enterprise Readiness for Serverless

First Principles for Successful Serverless Adoption
Developing, deploying, and invoking a Lambda function is easy, as demonstrated
in many conference sessions, learning portals, and YouTube videos. Once you
have experienced the process once, repeating it to write more Lambda functions
is straightforward. Does that mean you can simply declare that serverless is easy
and instruct your teams to go forth and go serverless? Many enterprise teams make
mistakes here.

While implementing and running a Lambda function may be easy, remember, as you
learned in Chapter 1, that FaaS is just one part of the serverless ecosystem. Success
of operating a simple function cannot be used as the yardstick to measure your
organization’s ability to adopt serverless—building and operating production-ready
enterprise-scale serverless applications involves far more than creating a few Lambda
functions! Enterprises with multiple teams and many engineers need to develop the
endurance for a marathon, not a quick-burst hundred-meter sprint.

Serverless is not a silver bullet
As discussed earlier, developing a serverless mindset is critical for successful ser‐
verless adoption. You need to prepare yourself psychologically. The technical and
product teams should have a clear understanding of the reasons why serverless
requires a change of scenery. In an organization riddled with years of technical
neglect, team misalignment, Stone Age thinking, and stubborn engineering minds
that resist change, serverless adoption is a tough act to pull off. There is considerable
preparation work required to bring such an organization into a state conducive to
serverless adoption and growth.

You’ll hear the term serverless-first a lot in the industry. However, there is much to
consider when determining whether serverless is the best-fit technology choice to
build and operate business applications to deliver value faster. It requires strategic
thinking, not a compulsion to jump in headfirst and build everything serverless.

When enterprises force their way into developing applications using serverless
technology and scale quickly without the necessary scaffolding, they often end up
creating a tangled web of distributed monolith known as a ball of serverless mud
(BoSM), as shown in Figure 2-2, rather than a smaller, self-contained, modular, and
extendable architecture. As an engineer, architect, technology advisor, or CTO, your
responsibility is to prevent such calamities from unfolding in front of your eyes.
Instead of leaping straight to serverless-first thinking, your focus should start with an
understanding of a few other first principles.

Preparing for “Thinking in Serverless” | 39

Figure 2-2. A tangled event-driven ball of serverless mud

First principles thinking is a thought process that can help you get to
the fundamentals of a problem. Rather than focusing on the prob‐
lem as a whole, you break it into parts to identify the basic elements
and causes. Understanding the basics often makes it simpler to find
innovative solutions to the business problems your enterprise is
trying to solve. In this space, serverless is just a technology enabler.

The first principles that you will need to understand before adopting a serverless-first
mindset include domains, teams, APIs, microservices, and events. Let’s take a look at
how you might approach each of these elements to see how they lay the foundation
for success in an organization on the verge of adopting serverless. Then we’ll come
back to the idea of serverless-first.

Domain-first
Domain-first thinking is heavily influenced by the principles discussed by Eric Evans
in his book Domain-Driven Design: Tackling Complexity in the Heart of Software
(Addison-Wesley Professional). For enterprise-scale serverless adoption, domain-first
thinking is a necessary precursor to serverless-first thinking. Understanding the
problem you are trying to solve is crucial. In start-ups or small-scale businesses, the
business domain or problem may be clear and concise. However, this isn’t always
the case in larger enterprises. While most enterprises operate in one domain—retail,
hospitality, insurance, gaming, toys, etc.—bigger ones often have multiple domain
areas. For example, Microsoft sells laptop computers and cloud computing services,
and Amazon runs a retail business and Amazon Web Services.

40 | Chapter 2: Enterprise Readiness for Serverless

Going deep into domain-driven design is beyond the scope of
this book. A good resource with practical examples is Learning
Domain-Driven Design: Aligning Software Architecture and Business
Strategy by Vlad Khononov (O’Reilly).

As you distill things further and break your business domains into subdomains, you
identify the bounded contexts (see Figure 2-3 for an example). A bounded context
is a boundary within a domain where a particular domain model applies. It reveals
distinct characteristics and interacts with other bounded contexts via well-defined
communication mechanisms such as APIs.

Figure 2-3. An ecommerce domain with subdomains and bounded contexts

Answering the following questions becomes easier when you get to this level:

• Who is responsible for protecting the domain boundary and implementing the•
domain logic?

• How will you safeguard the domain boundary to control the information flow•
into and out of that domain?

• Within a guarded boundary, which technology is apt to implement the business•
logic?

Once you’ve mapped out your subdomains and their boundaries, you need people
who are well versed in each subdomain and speak the common business (ubiquitous)
language used by the domain experts and business stakeholders. These people/teams
must be aligned to focus on one thing and work together with a single purpose. This,
then, is the starting point for thinking about the team structure.

Preparing for “Thinking in Serverless” | 41

https://oreil.ly/Ct8CL
https://oreil.ly/Ct8CL
https://oreil.ly/Ct8CL

The two-pizza team rule at Amazon stipulates that a team should
be small enough to be fed by two pizzas. According to founder
Jeff Bezos, smaller teams collaborate better because there are fewer
communication links between the members. This in turn allows
them to move faster with development and releases. This approach
requires removing silos and giving teams end-to-end visibility of
their products—that is, an ownership culture.

Team-first
Amazon’s two-pizza team concept is often brought up in discussions about modern
software development teams. But while it’s become common to measure the size of
a team based on their appetite for pizza, people often forget that these teams are
intentionally kept small because the business domains they are part of are also broken
down to a granular level to give each team a singular purpose, focus, and identity.
Such teams are known under different names: product development teams, engineer‐
ing teams, development squads, product squads, feature squads, service teams, etc. In
their book Team Topologies: Organizing Business and Technology Teams for Fast Flow
(IT Revolution Press), Mathew Skelton and Manual Pais call them stream-aligned
teams. According to Skelton and Pais, a stream-aligned team is a team aligned to a
single, valuable stream (flow) of work that is aligned to a business domain, as shown
on the right in Figure 2-4.

Figure 2-4. Team ownership of multiple bounded contexts versus a single bounded
context

42 | Chapter 2: Enterprise Readiness for Serverless

Enabling Teams
Team Topologies introduces new thinking around effective team structures for enter‐
prise software delivery. It discusses four team types: stream-aligned, enabling, plat‐
form, and complicated subsystem teams.

A key observation is that not all engineering teams in an enterprise are responsible
for building products and services that express domain logic. Enabling teams act as
enablers for those stream-aligned teams so they can perform efficiently. Their focus
might be on the platform, DevOps practices, tooling, developer experience, security
measures, auditing, and observability principles, among other things. These teams
may have different names in different organizations, but their general responsibilities
remain the same.

A common misconception in the industry is that serverless technology does not
require some of the roles and responsibilities an enabling team fulfills. This is not
entirely true, even though serverless eliminates most platform and infrastructure
heavy lifting. Your organization requires engineers with the expertise to set up
guardrails and processes, such as security principles, well-architected service audit
processes, etc. Unlike the siloed team structure, the key difference here is that ena‐
bling teams don’t carry out the work on behalf of the stream-aligned teams; instead,
they empower others to perform better with a reduced cognitive load and work
efficiently to increase velocity and flow.

In addition to establishing different types of teams with distinct responsibilities, many
organizations adopting cloud and serverless form a working group commonly known
as the cloud center of excellence (CCoE), described in more detail in Chapter 11.

API-first
In Chapter 1, you saw that multiskilled, diverse engineering teams are better for
serverless development. When such a team owns and operates its single-purpose
product, it becomes the guardian responsible for protecting its contextual boundary
by employing adequate technical and communication measures. API-first is a thought
process and mechanism for implementing these measures.

Once you have identified and marked the boundaries of each subdomain, it becomes
easier to answer the following questions:

• How can you protect the boundary?•
• Who can get access to interact with the system?•
• How can you grant access to external systems?•
• What information can be transacted across the border?•

Preparing for “Thinking in Serverless” | 43

https://teamtopologies.com

To effectively accomplish these tasks, you must consider published interfaces to your
application—that is, application programming interfaces (APIs). An API acts as an
agreed contract for exchanging data without knowing the implementation details.

An API-first approach is about identifying, implementing, and publishing the inter‐
faces to the system you are building. The API becomes a first-class citizen and plays a
significant role in the tactical design and evolution of the application. Figure 2-5 illus‐
trates a customer microservice with its API to perform defined actions. It promotes
loose coupling and interoperability between multiple services within and outside the
product domain.

Figure 2-5. A microservice inside a bounded context with its API for interaction

API governance and discoverability are the two most common
issues enterprises face when several teams own and operate APIs.
API portals often help discover and consume APIs in a self-service
model. However, if you are just starting out with your API-first
strategy and initial APIs, don’t get overburdened with these differ‐
ent processes, as they can be worked on in parallel as you create
more APIs and gain experience.

Microservices-first
With a marked boundary (bounded context) and well-defined (micro) interfaces
(API), it becomes easier to own and manage the implementation of the business
logic. In this context, microservices offer a suitable development pattern to realize
the domain logic. Each microservice has a purpose and identity. In most designs, you
will find a microservice related to a bounded context as a one-to-one mapping, but
that isn’t the only option. You saw in Chapter 1 that granularity is one of the unique
characteristics of serverless. Utilizing the power of granularity, you can break down
the problem domain within a bounded context into several smaller microservices, as
shown in the card payments bounded context in Figure 2-6.

44 | Chapter 2: Enterprise Readiness for Serverless

Figure 2-6. Mapping one microservice to a bounded context, versus multiple
microservices

A microservice should be owned and operated by one team. Never have two teams
share ownership of one microservice. This clear responsibility and business align‐
ment reduces the cognitive load on engineers, thereby increasing development veloc‐
ity and flow. Chapter 3 discusses designing microservices in detail.

Event driven–first
Asynchronous communication and event-driven architecture are terms you will often
hear in serverless and throughout this book. These terms sometimes trouble tradi‐
tional engineering minds that are accustomed to developing monolithic applications
using legacy practices and on-premises technologies. Even if the event-driven concept
is new to your teams, it is essential that they begin to understand its significance.
Asynchronicity, eventual consistency, and event-driven communication are the driv‐
ing forces behind the managed services that power serverless. To highlight their
significance in serverless and modern cloud computing, Dr. Werner Vogels, CTO of
Amazon.com, declared in his keynote at AWS’s annual re:Invent conference in 2022
that “The world is asynchronous.” The core of Dr. Werner’s message was to demon‐
strate how event-driven architecture with serverless technology enables businesses to
innovate at scale.

An event, in general, is something that has already happened.
A domain event is about something that has happened within
your business domain. Event-driven architecture (EDA) is an
architectural concept that uses events to communicate between
decoupled microservices asynchronously. In EDA, there are sys‐
tems that produce events (producers), systems that consume events
(consumers), applications that transport events (event buses, mes‐
saging systems, etc.), and systems that react to events. Among
several other benefits, EDA is key to the scaling and resiliency of
applications.

Preparing for “Thinking in Serverless” | 45

http://Amazon.com

Approaching serverless adoption with a clear understanding of event-driven concepts
and their application in practice is core to stream-aligned teams building distributed
and loosely coupled microservices. Event-driven thinking elegantly connects domain
thinking with serverless thinking — upholding contractual boundaries and keeping
microservices loosely coupled. Identifying domain events and knowing what data
goes out (is published) and what data comes in (is subscribed to) are as important
as the API contracts. Familiarizing yourself with domain events and activities such
as EventStorming is therefore crucial when your organization goes through a digital
transformation and serverless adoption. You will learn why EventStorming is essen‐
tial in serverless development in Chapter 3.

Figure 2-7 shows a simple event-driven architecture where two applications consume
an “order placed” event published by an ordering app to update the inventory and
ship the order, respectively.

Figure 2-7. Illustration of a simple event-driven architecture

Chapters 3 and 5 discuss event-driven concepts alongside serverless architectures and
implementation patterns, respectively.

Serverless-first
When an organization gets ready to adopt serverless, it has already decided on
a cloud-first strategy utilizing the public cloud (e.g., AWS) to host, develop, and
operate its business applications, over on-premises and self-managed legacy systems.
Serverless-first is a way of thinking that views serverless as the best-fit technology
choice to build and operate business applications to deliver value faster.

While discussing how organizations can transform with a clear purpose and increase
velocity with modern technologies, in the book The Value Flywheel Effect: Power the
Future and Accelerate Your Organization to the Modern Cloud (IT Revolution Press),
David Anderson sums it up nicely:

It’s about doing the simplest thing to deliver value by removing the unnecessary bag‐
gage. Today serverless-first is the perfect strategy to achieve this; it’s a quiet revolution

46 | Chapter 2: Enterprise Readiness for Serverless

1 Depending on your business domain and priorities, you may also consider principles such as DevOps-first,
security-first, DevX-first, observability-first, etc.

happening right in front of us. A serverless-first mindset enables teams to focus on
business outcomes and business impact, not keeping the lights on.

It’s about driving value for your business in this modern, fast-paced, and highly
competitive world. Organizations are constantly iterating and finding ways to reach
customers and bring value to the business quicker than before. As an engineer,
architect, or CTO, you are part of the fast-spinning value flywheel. Hence, you must
learn to leave the heavy engineering to the managed cloud service providers, such as
AWS, and evolve your business solutions on top with a pragmatic and practical mind‐
set. Serverless-first as a principle and strategy becomes part of that value-generation
process.

Though not an exhaustive list,1 adopting the principles described in the previous
sections will help you broaden your serverless mindset with the essentials crucial
for your journey. Building your serverless technology ecosystem without a strong
business foundation, team alignment, and clearly defined purpose will eventually lead
to ambiguity and unsustainable applications that hamper progress.

Not all enterprises start serverless adoption with exclusively green-field product
development. Many have a mix of legacy systems, newer applications, and upcoming
future requirements. So, how do you make sure serverless is the best-fit technology
choice? The following section takes you through an evaluation process to understand
its suitability in your business domain.

Assessing Workloads for Serverless Suitability
A common use case that became popular during the early days of serverless was
image processing with Amazon S3 and Lambda functions. It showed how easy it
was to upload a file and execute code in the cloud without manual intervention.
Countless trivial serverless use cases and how-to articles soon flooded the tech media.
While such simple examples give firsthand reports on the possibilities of serverless,
enterprises have bigger challenges to overcome (both functional and nonfunctional).
These include:

• The complexity of business logic tucked inside legacy monoliths•
• Engineering teams spread across multiple departments•
• The volume of users flocking to the website to consume the services•
• Unpredictability of visitor traffic during certain times, days of the week, and•

special occasions
• Making sure the services are available around the clock and globally•

Preparing for “Thinking in Serverless” | 47

• Releasing new features and fixes without impacting users•
• Securing customers’ personal information and confidential business data•
• Protecting the business from malicious users, bots, and malware•

This list is already long, but the suitability assessment should consider all aspects of
the application, not just the implementation part. While a serverless enthusiast might
assure you that it’s suited to every workload, there are some fundamental questions
you should ask. For example:

• Will this application perform efficiently on serverless?•
• Will it be cost-effective?•
• Can I trust the serverless expert to be objective?•

Efficient and cost-effective are tricky to explain in a cloud and serverless context. In
distributed computing, being efficient doesn’t always relate to speed. Sufficiently is
an equivalent term that you can use to evaluate suitability in many cases. Similarly,
cost-effectiveness does not always mean being cheaper than your on-premises or
cloud-hosted container applications in like-for-like comparisons.

When you assess the suitability of serverless technology with
serverless-first thinking, you consider serverless as your first tech‐
nology choice. This does not mean you overrule other technologies
with a serverless-must mindset.

Understanding the performance measures of distributed serverless applications
Unlike in legacy systems, where performance is mostly measured by the speed of
an operation as one big unit, in modern serverless applications, there isn’t a simple
yardstick to measure performance. This is because there are different parts to an
application that can be independently measured for efficiency, and each part can be
unique in its criteria. In some cases, you look at each part in isolation and measure
the latency; in others, you group a few or all of them to measure the end-to-end
performance or the completion of a business process. Here are some examples of
possible performance measures for different use cases:

End-to-end efficiency
An API that fetches the price of a given product and returns it to the frontend
to display on the website should be highly performant end-to-end, as you don’t
want a frustrated customer leaving your site for a competitor’s. This action
crosses several layers in the architecture and chains multiple applications (possi‐
bly including external third-party applications) in the flow. Here, the end-to-end
latency becomes the measure of efficiency.

48 | Chapter 2: Enterprise Readiness for Serverless

Part efficiency
A customer who submits their order as the final step of a checkout flow only
cares about receiving a quick acknowledgment to confirm everything is fine. The
API that accepts the order details should efficiently serve the customer with a low
latency. The actual processing of the order, which is hidden from the customer,
still needs to be performant, but not necessarily as efficient as that API. Here, the
efficiency is relative to each part.

Deliberate efficiency and inefficiency
In an event-driven architecture, you may deliberately configure one processing
pipeline to be faster than another. For example, an image processing website
might handle images uploaded by a premium account holder faster than an
anonymous customer. Here, you work with serverless resources capable of pro‐
viding the same efficiency level, but you deliberately downgrade one according to
your business policy.

Expected efficiency
When the end-to-end latency is not time-bound, different parts of the solution
can have different expected efficiency. For example, there are situations where a
microservice expects to receive a domain event as quickly as possible from the
producer. However, processing of the event data may take longer or be deferred
to later.

Contractual efficiency
This measure is appropriate for use cases where there is time criticality in the
flow of information from the start to delivery to a consuming application and the
data may become obsolete or non-processable beyond a certain period, defined
by SLAs and contract agreements. With ticket booking systems, for example,
there is a session validity period; the overall success depends on the customer’s
actions during the session, but contractual efficiency is required of the applica‐
tion supporting those actions within a session.

A legacy system that chains multiple applications in a syn‐
chronous end-to-end call cannot be considered “efficient” in
modern computing if using low latency as the only measure of
efficiency. The ability to scale with demand, 24/7 availability,
resilience during disruptions, and operating in a secure envi‐
ronment all count toward being performant and efficient.

While assessing your business use cases and applications, you may identify some that
are not a perfect match for serverless. These include:

Preparing for “Thinking in Serverless” | 49

Compute-heavy, complex applications
A compute-heavy engineering application that performs structural analysis and
has high memory demands running on a High-Performance Computing (HPC)
EC2 instance is one such example. AWS offers HPC-optimized instances as
one of the high-end instance types, and you cannot match their power and
performance with the resources available to a Lambda function. A serverless
application can pick up the results of the computation and continue with the
flow, but that core compute part won’t be efficient with serverless.

Long-running applications
Certain data processing batch jobs at banks and insurance companies, complex
biomedical research tasks, etc., can take a very long time to complete, stretching
beyond the timeout limit of a Lambda function. Unless you rearchitect to split
a batch into manageable chunks of extract, transform, load (ETL) tasks, you
cannot achieve the required efficiency with serverless.

Low-level computing tasks
Highly complex low-level programs require access to the underlying operating
system, processors, and networking that are not suitable to operate as Lambda
functions.

Applications that must consistently provide ultrafast response times
If you have a highly critical use case where the application is expected to
respond within, say, 10 ms for almost 100% of the invocations, regardless of
the frequency of invocations, you may find it challenging to meet this expectation
with serverless.

Durable connection to ports using proprietary protocols
Legacy integrations that require maintaining connections to ports using nonstan‐
dard protocols are not ideal for serverless. Here, you can consider a hybrid
architecture that uses container apps for such integrations and serverless to
handle the downstream processing.

Assessing for cost-effectiveness
As you saw in the previous chapter, the common understanding around cost in
serverless is based on the cost of computing and the volume of data you store. Sounds
simple, right? But take another look at the resources shown in Figure 1-10, in “Indi‐
viduality and Granularity of Resources” on page 14. With different configurations,
each of those Lambda functions and DynamoDB tables will vary in cost. In addition,
each service sends logs and metrics to Amazon CloudWatch (a service for collecting
logs and metrics for monitoring and observability), and the use of CloudWatch adds
to the cost. The Lambda functions use services, such as AWS Secrets Manager, to
store and read credentials that also contribute to overall spending. Though you are
not expected to unpick the costs of every service and its associations with others at

50 | Chapter 2: Enterprise Readiness for Serverless

a granular level, some overall awareness and understanding are valuable. Chapter 9
discusses in detail the cost of serverless operation, but here are some examples of
assessments of various use cases and how they influence the cost:

Compute-intensive data processing
The back-office computing operation of a big corporation continuously runs
highly complex, long-running data manipulation jobs. Several processes run in
parallel as the data gets fed in from branch offices worldwide. Each process takes
around 10 minutes to complete and handles, on average, 7 GB of data.

Assessment: This is a clean use case for Lambda functions, with the resource
requirements within its limits. However, with several long-running Lambda
functions with high consumption of RAM constantly being invoked, the cost
of computing could become a concern here.

Verdict: Consider rearchitecting to achieve cost-effectiveness with serverless. For
example, splitting each batch into smaller batches requires functions with lower
memory needs and shorter execution times.

Ingestion and processing of data from thousands of IoT devices
An environmental agency measures the air quality of cities worldwide, receiving
data feeds from hundreds of thousands of devices multiple times per day. Data is
cleansed and analyzed as the feeds come in before storing the consolidated and
essential details in a big data platform. A team of dedicated engineers currently
looks after the infrastructure and data storage needs.

Assessment: This is a cost-effective use case to migrate to serverless. In addition
to the powerful and low-cost data streaming services available for ingestion,
processing, and storage, there is a potential to reduce the engineering hours spent
on managing the current infrastructure.

Verdict: Potential cost savings with serverless in different areas. For example,
Amazon Kinesis offers a high-volume event ingestion service and with the com‐
bination of S3, Lambda, and other fully managed services, you can implement a
resilient and highly scalable architecture.

High volume of CloudWatch metrics calls
A popular online retail platform has its backend applications running as several
microservices. The frontend and backend applications send a high volume of
logs and metrics to a third-party monitoring tool for observability and business
insights. Several dashboards and metric queries are performed by teams that look
after the business in multiple countries.

Assessment: Migrating the backend microservices to serverless would bring scala‐
bility and availability benefits. In terms of collecting and reporting on logs and
metrics, CloudWatch has options that can be utilized to send data to third-party

Preparing for “Thinking in Serverless” | 51

monitoring tools. However, the volume and the length of logs stored in Cloud‐
Watch must be assessed for cost, and the high number of CloudWatch metrics
API calls can result in costly operation.

Verdict: Find the optimal log retention period to lower the cost. Rearchitect to
send (stream) metrics to the third-party tool to minimize the metric query API
calls and reduce costs.

All managed services within the serverless technology ecosystem
offer automated ways to remove unwanted data and transition
static data to low-cost storage. Unlike legacy applications that go
through routine cleanup operations that are costly, risky, and often
disruptive, serverless offers efficient and smooth operations with
no side effects. Such measures also aid you in operating sustainably
as you consume fewer cloud resources.

As you can imagine, it would be impossible to cover all the different flavors of
real-world use cases here to analyze performance and cost efficiency measures. Your
use cases will differ from the ones we’ve discussed, and from those you see elsewhere.
When you are looking for someone to guide you at a crossroads, reach out to AWS
teams and the serverless developer community for direction.

Once you understand the appropriate efficiency measures for your applications and
use cases and have determined that serverless is a good fit, you’ll face one of the
main challenges of serverless adoption: convincing the people you work with about
its merits. Some people will be on a different wavelength than you are with new
technologies and ways to utilize them for business gains. In enterprises, getting the
message across to all the relevant teams can take considerable time and perseverance.
Business stakeholders are a vital group to work with, and the next section focuses on
bringing them into the serverless ecosystem.

How Do You Bring Serverless Awareness to Business Stakeholders?
Convincing product teams and business stakeholders of the necessity of a new
technology is a tough ask. Though they may not directly influence the choice of
technology, they’re responsible for the final approval in many enterprises. Surpris‐
ingly or otherwise, in such situations, the main reason these stakeholders reject new
technology is often fear of change—and the two main fear factors center around
business disruption and cost of operation.

Business disruption does not always mean service unavailability or downtime. Stake‐
holders may fear technology change because of the risk of poorer quality of ser‐
vice, customer revolt, performance degradations, reduced business insights, changes
to developer velocity that affect outcome and flow, and more. Moreover, many

52 | Chapter 2: Enterprise Readiness for Serverless

enterprises still operate in siloed team structures where business stakeholders are
not always kept updated on upcoming technology changes and often only learn about
changes when things go badly, or through hearsay from peers and canteen gossip,
which is unhealthy for any organization.

Serverless adoption adds extra mystery for your stakeholders, because it’s not always
well understood. If engineers find a serverless mindset is hard to attain, you can
imagine the difficulty for others. Hence, it’s essential to keep the stakeholders in the
loop and start the conversations with them as early as possible.

Speak a common language, and avoid serverless language
Does serverless have a language? Well, it depends on how you talk about it! At least
during the early days of selling serverless to stakeholders, try not to use specific
service names such as Lambda, DynamoDB, and S3 or possibly unfamiliar phrases
like managed services, FaaS, SaaS, etc. You should not expect everyone to know what
these are. Instead, use universal terms like cloud, programs, functions, databases,
tables, and files, and understandable flows such as “a function is called or executed
when the user enters data,” “data is stored in a table,” “a notification is sent when a
customer account is created,” etc.

While working on solution designs, include high-level context and
flow diagrams with basic notations for everyone to understand the
problem domain. Keep the cloud and serverless service icons and
technical drawings aimed at engineers in a detailed design section.

Invite stakeholders to team showcases
If your teams conduct regular sprint reviews or showcases to demonstrate their work
that includes serverless experimentation or PoCs, these are ideal opportunities to
invite business stakeholders. Even if these showcases are tech-heavy, they can still
provide clues about the utility of serverless to observers from outside the teams.
Phrases like “Serverless works great in this case,” “We were able to develop this
quickly,” “This prototype can be easily extended further with serverless services,” etc.,
are the kinds of signals that can trigger curiosity and further conversations with
non-engineering colleagues.

If that’s not feasible in your organization due to the team structure or culture, arrange
special product demo meetings with the relevant stakeholder teams. This is a practi‐
cal approach as it brings everyone together and is suited to a question-and-answer
format that can encourage nontechnical people to get involved in the conversation.

When engineering teams interact closely with stakeholders, they should remember
to speak the common language mentioned earlier. They can also use simple logical

Preparing for “Thinking in Serverless” | 53

model diagrams, like the one in Figure 2-8, to make sure everyone understands the
context, explain the approach, and highlight the benefits to the business.

Figure 2-8. A simple logical flow diagram showing the interactions between a user, order
application, and payments system

Map technology reasons to business gains
As an engineer, you likely get disgruntled when a business stakeholder rejects or
overlooks your proposal to improve certain technical aspects of the system. While
you are good at diving deep into the technicalities of your recommendations, perhaps
you could be better at correlating them with the business gains for your nontechnical
colleagues to digest. The following are a few examples of how to translate technical
improvements into recognizable business gains:

1. Technical reason for using queues: Serverless offers many benefits by allowing1.
you to use managed services in your implementation. Amazon Simple Queue
Service (SQS) is a highly scalable and hugely popular message queue service. It is
one of the core services used in event-driven architectures, capable of ingesting
hundreds of thousands of messages. It allows downstream services such as a
Lambda function to process messages either one at a time or in batches, enabling
frontend applications to receive a high volume of requests.
Stakeholder translation: The serverless queue service allows us to serve more
customers. It easily handles fluctuating customer demand and always provides a
fast response.

2. Technical reason for using automated data deletion: DynamoDB is a high-2.
performing NoSQL database. One of its features is TTL, to set an expiry time.
By enabling TTL on a table and adding a timestamp in epoch format to an
item, you can ensure that DynamoDB will automatically remove that item from
the table once the expiry time is reached. This allows you to optimize storage
requirements and ensure that old items are removed or that sensitive data is
deleted soon after processing to comply with regulatory requirements.

54 | Chapter 2: Enterprise Readiness for Serverless

Stakeholder translation: Automatically deleting data after keeping it for the length
of time required by the business reduces the amount of data stored and, thereby,
the storage cost.

Engineering teams’ interaction with business stakeholders is not a
one-time affair but an ongoing collaboration. Following on from
the initial icebreaker meeting on serverless, invite them to witness
the progress of every iteration. The goal should be to provide as
much visibility into the new technology as possible and demon‐
strate how it accelerates business.

Highlight the serverless cost benefits
As you saw in Chapter 1, pay-per-use is a fundamental driver behind serverless
adoption, and it sparks a lot of interest. It is beneficial to highlight the possible cloud
spending economies that can be achieved by using serverless during stakeholder
interactions. To make the message stick, staying at a high level and not delving into
more minor details is essential. For example, if you’re discussing the execution of a
few Lambda functions to perform some business logic, stay at the level of the number
of invocations per month and the expected overall cost; don’t split it into invocation
costs, compute costs, etc.

An important aspect of serverless is the reduction in the amount of time spent on
managing the infrastructure. This unique advantage should be brought up during
conversations with stakeholders and explained in an understandable manner. Though
applications built with serverless technology still require operational activities, ser‐
verless frees engineers from infrastructure and platform heavy lifting, thus saving
considerable engineering time.

Discuss the convenience of serverless as a technology
Though lower cloud costs is a key driver for serverless, you must illustrate its other
benefits to the business stakeholders as well. Solutions built for the modern consumer
world have many demands. For example:

• Applications are expected to be highly secure and withstand brutal cyberattacks.•
• Companies are pressured to comply with regulatory policies to protect personally•

identifiable information (PII) and other sensitive data.
• Customer demands constantly fluctuate; keeping them engaged and serving•

them faster is crucial.

Preparing for “Thinking in Serverless” | 55

As technology evolves, it pulls the entire industry along with it, moving faster with
each iteration. Organizations often get caught in this flywheel with little time to react.
As a result:

• Businesses are looking for the easiest way to run their workloads.•
• Stakeholders are looking for the fastest way to release a feature.•
• Engineers are looking for the safest way to handle data.•
• Customers are looking for the simplest way to purchase a product.•

The COVID-19 pandemic of 2020 shook every corner of our world. While many
businesses went through hardship, some thrived even during those dark days as
they quickly adapted to the world’s changing needs, making course corrections on
a practically daily basis. For many of them, it was the convenience and flexibility
of serverless that made the difference. According to a BBC survey, new company
registrations in the UK actually increased during the COVID-19 lockdown period, as
shown in Figure 2-9.

Figure 2-9. Statistics showing the increase in new business registrations during the
COVID-19 lockdown period

Working from home, engineers were able to capitalize on the capabilities of cloud
and serverless to launch new products and services and rapidly deliver them to
consumers’ living rooms. Serverless technology enables anyone to build and operate

56 | Chapter 2: Enterprise Readiness for Serverless

global-scale applications from anywhere. Along with its cost benefits, you must
bring the convenience of delivering solutions faster using serverless technology to the
attention of business stakeholders.

Talk about serverless success stories
Identify serverless adoption success stories from the industry and invite people from
those organizations to share their experiences with stakeholders. This information is
relevant to both engineering and business teams, but ensure the content is balanced
and suitable for both audiences. To make these collaborations efficient, create a clear
agenda and share it with the teams in advance. Though not always possible, hear‐
ing serverless success stories from organizations that operate in a similar business
domain as yours can help stakeholders relate and understand the applicability of
serverless quickly. Refer to the serverless case studies included in Appendixes A and B
as a guide to preparing your agenda and discussion points.

Here are a few points you might want to cover in your success stories:

• Business pain points or constraints with the legacy technology•
• Motivation behind moving to serverless•
• Business and technology teams’ buy-in on serverless•
• Development approach, including team structures and communication•
• Benefits since migrating to serverless•
• Lessons learned and things to be aware of•

You might also want to identify and invite serverless experts—independent consul‐
tants, AWS solution architects, and serverless training providers—to share their
experiences.

The Role of Organizational Culture
Organizational culture, which can be expressed in various ways—corporate princi‐
ples, mottos, enterprise themes, business ethics, company values, etc.—plays a vital
role in successful adoption of serverless. Enterprises often strive for a culture that
favors innovation, bravery, and curiosity. Though not always successful, the aim is to
instill a culture that encourages experimentation and removes the fear of failure from
its employees. Jeff Lawson narrates this beautifully in his book Ask Your Developer:
How to Harness the Power of Software Developers and Win in the 21st Century (Harper
Business). Experimentation is the prerequisite to innovation, and every big idea starts
small. Thinking, trialing, succeeding, and adopting serverless in your organization
requires such an environment and culture.

Preparing for “Thinking in Serverless” | 57

The two camps of serverless adoption
In engineering teams, it is common to find two camps of people: those with a practi‐
cal mindset versus a purist mindset. Purists often look for perfection in everything,
invest in processes before practice (establishing development and coding guidelines
before acquiring an in-depth knowledge and understanding of the technology, or
outlining detailed operational procedures before gaining hands-on experience), are
reluctant to take risks, and tend to follow a safer path. On the other hand, those
with a practical mindset experiment in small steps, look for a workable solution first
rather than perfection, and improve incrementally and iteratively. Faced with the
rapid evolutionary pace of technology, those with a practical mindset tend to be able
to adapt and move faster than perfectionists, who often get bogged down in lengthy
processes and left behind.

The organizational culture plays a vital part in the attitude and approach of these
teams. Lack of encouragement for experimentation can be a factor, but it can also
be due to engineers with a legacy mindset who are unwilling to change. If your
organization operates in a consumer domain, the competition is stiff, and customer
needs change frequently. With the exception of those who work in a research and
development (R&D) environment predicting and devising the future of technology,
everyone else is constantly climbing the technology curve after it has evolved. Hence,
it is paramount to create the mindset that will enable you to be part of the fast
adoption camp, as shown in Figure 2-10.

Figure 2-10. The two ways of approaching serverless: fast adoption versus endless
experimentation

58 | Chapter 2: Enterprise Readiness for Serverless

The magic quadrant for serverless adoption
Amazon founder Jeff Bezos once said, “Speed matters in business.” Speed is also
important when it comes to successful serverless adoption, as the previous section
showed. If you draw a four-quadrant chart with success and speed of adoption on the
two axes, as shown in Figure 2-11, which quadrant would you like your organization
to be in?

Figure 2-11. The serverless adoption magic quadrant

As you start your serverless adoption journey, you are at the initial state shown in the
bottom-left quadrant. Your aim is to reach the target state quadrant at the top right.
For this, you need speed and a high success rate.

When it comes to technology adoption, speed is relative—it’s not about attaining a
certain velocity (like a car traveling east at 100 mph), but about experimenting with
the technology sooner rather than being slow to try it out. The faster you identify,
evaluate, and adopt suitable modern technologies, the faster you’ll understand how
to accelerate your business. Start with some of the best practices highlighted in Fig‐
ure 2-10, and make sure you thoroughly understand the first principles of serverless
adoption explained earlier in this chapter. You don’t want to go so fast that you spin
out of control!

There can be many hazards and speed bumps on the road to serverless adoption. One
of them, as mentioned in Figure 2-10, is the fear of vendor lock-in. We’ll look at that
next.

Preparing for “Thinking in Serverless” | 59

Vendor Lock-in Demystified
Vendor lock-in is a hotly debated topic in cloud adoption, and serverless in particu‐
lar. It creates fear among technology decision-makers, curbs progress, and creates
confusion. Although in the modern cloud era people often associate the term vendor
with a cloud provider and lock-in with a cloud platform, the concept is not new, and
certainly not specific to cloud or serverless—these are generic terms that are also
applicable to non–cloud technology providers and products.

Vendor lock-in is a condition an organization gets into by becoming dependent on
the specific vendor of a given product or platform they use. This typically happens
because switching to a different product or platform from another vendor would
incur technical challenges, resulting in high porting or migration costs and potential
service disruption.

Why Is Vendor Lock-in Seen as So Critical?
The choice of any technology, product, or platform results in some form of lock-in,
be it a programming language, RDBMS, payroll application, customer relationship
management system, enterprise resource planning software, or cloud platform. And
although it can be challenging and time-consuming, at some point every enterprise
moves from one technology, product, or platform to another, whether for reasons of
cost, feature richness, ease of use, better SLAs, the needs of the company’s product
teams, or to gain a competitive advantage.

When it comes to the cloud and consuming managed services, cost is a critical
differentiator. With serverless, you consume several cloud services to compose your
application, each with its own pricing structure. If the cost of a critical service you
consume is higher with your current provider than with others, you might decide
to switch to its equivalent in another provider. However, your options will likely be
limited, as it will disrupt the functioning of your application. Many enterprises face
such decisions. Often, it makes more sense to consider all the advantages the current
platform yields rather than comparing individual services.

Is It Possible to Avoid Getting Locked In?
Well, maybe. Selecting a cloud provider to grow your business is a conscious business
decision. While it may be possible to avoid lock-in in some parts of your serverless
operation (e.g., by implementing function logic in a cloud-agnostic way), whether the
extra effort yields sufficient benefit is something to be evaluated.

Here are some ways you might consider to reduce the dangers of lock-in:

60 | Chapter 2: Enterprise Readiness for Serverless

Open API standards
In software, conformance to API standards allows you to consume solutions
from different vendors who conform to the same standard. Unlike with electrical
equipment, pure plug-and-play compatibility is rare in software, and you’ll prob‐
ably need to make some changes to your code. However, following standards
reduces the complexities.

Open source software
You might be wondering if using open source software can get you out of lock-in.
Unfortunately, it’s unlikely. Open source software may not have a cloud provider’s
name associated with it, but product lock-in is still an issue. In an enterprise,
switching from one open source product to another is not as simple as it sounds
in marketing speak. One can argue that the impact may be low compared to
changing cloud platforms, but it is a business disruption, nevertheless.

To operate open source software for the needs of a globally
distributed modern consumer base, you require scalability,
availability, security, and resiliency. You will likely run it on
a cloud platform to achieve all these goals. Even if you use
containers and bare metal, switching from one platform to
another does involve effort and disruption.

Software patterns
Architectural patterns (such as hexagonal architecture, discussed in Chapter 3)
can help you architect and build your solution in a way that provides encapsula‐
tion around the data assets, for example. Though the details of how the pattern is
realized are specific to a given platform or provider, you can usually implement
the same pattern as it was initially intended on another platform. If your team
follows the solution design process, you will likely incorporate the design pat‐
terns that fit the purpose. As Mike Roberts, author of Programming AWS Lambda
(O’Reilly), opines, if 90% of your Lambda function code is unaware of running in
a Lambda function, then only 10% of it will need to be recoded if you move to a
different cloud provider’s compute host environment.

Patterns won’t eliminate the lock-in but will speed up your implementation
efforts on the target platform by acting as a blueprint to replicate the solution
quickly.

Should You Be Worried About Vendor Lock-in in Serverless?
Managed services from cloud providers take care of the undifferentiated heavy lifting,
to let you focus on building business solutions. Though many of these services
align regarding their purpose on each cloud platform, they do not follow common
standards to enable you to move seamlessly from one provider to another. Due to the

Vendor Lock-in Demystified | 61

nature of cloud services, switching between providers can be confusing, costly, and
time-consuming.

Should this cause you concern with regard to your plans to adopt serverless in your
organization? Provided that you’re aware of the matter, have a clear understanding of
the pros and cons of your selected cloud platform and provider, and carefully choose
the services you build your applications with, it’s not really a concern but a business
or corporate decision.

In making this decision, you’ll likely have to weigh different priorities, such as:

• Business growth•
• Gaining and maintaining a competitive edge•
• Development velocity (releasing features faster)•
• Satisfying your customers with their ever-changing demands•
• Bringing value to the business•

You can either make trade-offs among these priorities or spend X amount of extra
time, engineering effort, and cost trying to find the perfect solution. Along the way,
you’ll probably reinvent many wheels with the unrealistic long-term goal of achieving
technical purity, not business velocity.

Gregor Hohpe, an enterprise architecture strategist and author of Cloud Strategy—
A Decision-Based Approach to Successful Cloud Migration, highlights the mental lock-
in in certain situations that affects people’s thinking based on their experience or
situations they are familiar with. The most important thing is to not get into a state
where the vendor lock-in causes a mental lock-down that curbs your progress and
stops you moving forward by delivering value and business growth.

Consider the Cloud Provider (AWS) as Your Partner, Not a Vendor
The change of mindset that’s necessary when you work with serverless goes beyond
technology. Often, the way you work with the cloud and third-party application
providers also requires adjustment. After all, everyone—yourself, your team, the
organization, and third parties—should work together to bring value to the business.
Your cloud provider, who runs your serverless workloads, is also part of the equation.

The term vendor refers to someone who sells or trades. It originated as a description
of the street vendors who sell various consumer goods and then evolved to cover
business establishments and enterprises that sell industrial products, retail goods,
and software applications. When you buy a license to install and use a database
application, you take care of most of its day-to-day operation yourself. You contact
the vendor only when you encounter an issue with the product.

62 | Chapter 2: Enterprise Readiness for Serverless

The situation is different in the cloud, where you consume multiple services—both
infrastructure-heavy container applications and fully managed serverless services—to
compose your business applications. Consequently, you form a working relationship
with your cloud provider to identify the most efficient and cost-effective services
for your business and the optimal operational configurations. Furthermore, when
your team prepares for special events such as new product launches, movie trailer
releases, or festive sale events such as Black Friday, you seek your cloud provider’s
expertise and work with their infrastructure event management (IEM) team to get
your organization through the occasion smoothly.

There should be mutual trust between your organization as a cloud service consumer
and your cloud service provider. This partnership is more warm and cordial than
your typical impersonal third-party vendor relationship.

Strategies for Migrating Legacy Applications to Serverless
Perhaps surprisingly, the questions companies ask when they’re thinking about
adopting serverless are often not related to technology, but strategy. Back in 2010,
when the cloud was gaining attention (and serverless wasn’t even a word!), Gartner
published its 5 Rs model as a framework for developing a strategy for migrating
to the cloud: Rehost, Refactor, Revise, Rebuild, or Replace. Later, Stephen Orban,
author of Ahead in the Cloud: Best Practices of Navigating the Future of Enterprise IT
(CreateSpace), created the 6 Rs strategy: Rehost, Replatform, Repurchase, Refactor,
Retire, and Retain. While these strategies focus on cloud migration as a whole, they
are relevant to serverless adoption as well.

Every technology migration has challenges. Compared to a start-up, with a simple
domain, a smaller customer base, and fewer employees, enterprises have many strate‐
gic angles to contemplate before deciding on a serverless migration strategy. These
include:

• The experience and relevant skills of their engineering teams (i.e., whether they•
will be able to successfully execute the migration tasks)

• Making the business stakeholders understand the technology, the necessity of•
migration, and its business impact

• A clear assessment of the impact on customers worldwide or in specific areas•
where the business operates

• Presenting the case to the executive team and the board of directors•
• Possibly, assuring the shareholders of their investment’s benefits and monetary•

value

Strategies for Migrating Legacy Applications to Serverless | 63

https://oreil.ly/Ilryo

For an organization serving customers 24×7, unsurprisingly, customer impact is
usually the first question raised about migration. In our competitive business world, a
minor blip in one’s trading can lead to significant gains for someone else.

Downtime and Disruption
Every technology migration raises two common concerns: service downtime and
disruption. Service downtime is when an entire application or parts of it become
unavailable to its end users. It may be planned or unplanned. Depending on how the
system is architected and built, disruption during downtime can be severe, minimal,
or nonexistent.

Whereas with scheduled downtime there are usually defined steps (a playbook) to
keep the system operational, unexpected disruption requires problem investigation
and mitigation. Depending on the nature of the root cause, the disruption can be
minor or devastating.

With cloud and modern architectural patterns, consumers expect 100% uptime of
services. Even a few milliseconds of downtime in a competitive consumer market
could be extremely costly. Hence, serverless migration tasks should be well-thought-
out and carefully coordinated activities.

Convincing your business and stakeholders about the benefits of serverless is only
part of the process, as soon after you will be asked questions like the following:

• What do we do with the acres of tech spread across our organization?•
• How do we decide which applications are suitable for the serverless stack?•
• How quickly can we move everything over to serverless?•

The standard answer to all such questions in the software industry is, it depends!
And while the appropriate strategy does depend on your domain, the state of existing
applications, their complexity, etc., you must be able to offer the proper guidance.
In the following sections, we’ll take a look at the three most common serverless
migration approaches:

• Lift-and-shift•
• All-at-once service rewrite•
• Phased migration•

64 | Chapter 2: Enterprise Readiness for Serverless

Lift-and-Shift
Lift-and-shift as a migration strategy is synonymous with rehosting—lifting the appli‐
cation from its current platform and hosting it in the cloud. Though lift-and-shift was
once the most common cloud migration strategy, its popularity is steadily declining.
As you have observed already in this book, serverless has unique characteristics.
To reap the real benefits of serverless, you must build applications that utilize the
strengths of managed services and employ modern development practices. A lift-and-
shift approach does not do this, and hence it’s considered the least favored approach
for serverless.

That said, there are some situations where specific workloads can be lifted and shifted
with some scaffolding and care, often as a stopgap solution or short-term plan. AWS
Fargate and AWS App Runner are two services that can provide stopgap solutions to
shift a legacy application onto a container service first before fronting it with an AWS
API Gateway endpoint and migrating the backend to AWS Lambda.

Suitability
Applications migrated to serverless with a lift-and-shift approach primarily originate
from two domains:

• A self-managed on-premises setup•
• A cloud-hosted container stack•

Here are some examples of applications where lifting and shifting to serverless with
minimal effort may be suitable:

• Applications developed with the most recent technologies and following modern•
development practices

• Modular applications written in a language supported by the AWS Lambda•
runtime

• Self-contained microservices that do not bring a deeper dependency chain and•
keep the deployment artifact size within reasonable limits

• Containerized applications suitable to package as a container image and run as•
Lambda functions

• Batch jobs with resource requirements that are within the limits of Lambda•

Strategies for Migrating Legacy Applications to Serverless | 65

Migration considerations
Here are some important characteristics to consider before continuing with a lift-
and-shift migration:

Timeouts
As a FaaS, Lambda has a timeout limit (15 minutes at the time of writing). If
re-creating REST APIs on Amazon API Gateway, it has a timeout of 29 seconds.

Memory limits
A Lambda function can be allocated a maximum of 10 GB RAM (at the time of
writing).

Payload size constraints
The data payload sizes of cloud services differ. It’s not just about the API request
and response payload; events and messages pushed to queues also have size
constraints to comply with.

Code package and container image size limits
At the time of writing, the maximum deployment package size is 50 MB for a .zip
archive and 250 MB for unzipped files, and the size limit for container image
deployment packages is 10 GB.

Concurrency limits
Lambda has a default concurrent execution limit per account (you can request
AWS to raise it with a valid use case). Knowledge of the limits of managed
services is important before migrating to avoid throttling and failures.

Monoliths and big balls of mud
Lifting and shifting a monolithic application with tangled communications and
hard dependencies and running it as-is in serverless may not be ideal. It may end
up as a ball of serverless mud, as shown in Figure 2-2—a dampener for serverless
adoption.

All-at-Once Service Rewrite
Applications developed with a serverless-native approach benefit from using the full
potential of managed services. For example, if your legacy application stores binary
large objects (BLOBs) in its relational database, you will find Amazon S3 is the better
storage option as the application is migrated to serverless.

Rewriting the business logic confined inside your legacy application enables you
to untangle the hard dependencies and rearchitect it as event-driven and loosely
coupled microservices to support future scaling and business growth. Migrating
legacy monolithic applications to microservices requires a good understanding of
the business domain and microservices principles and patterns. Sam Newman’s book

66 | Chapter 2: Enterprise Readiness for Serverless

Monolith to Microservices (O’Reilly) is a great resource on this topic and covers
several migration patterns.

Workload suitability
An all-at-once service rewrite is a useful migration strategy for just about any work‐
load, with the exception of a few outliers mentioned in “Assessing Workloads for
Serverless Suitability” on page 47. Apart from those special cases, serverless technol‐
ogy is well suited for most applications in this modern world.

Here are a few use cases as a guide, but bear in mind that this is not an exhaustive list:

High-volume event ingestion and processing
There are a range of workloads that ingest, store, process, and distribute events
in high volume. For example, website clickstream events reveal user behavior and
offer opportunities for personalization. When you multiply hundreds of events
generated per customer visit by thousands or millions of customers concurrently
browsing the website, you get the potential scale of this operation.

The number of visitors to the website can vary dramatically depending on the
time of the day, day of the week, season of the year, special occasions, weather
patterns, and global and local economic and political events. A simple architec‐
ture is enough for scaling, availability, and near-real-time processing.

Scheduling and activating a large number of tasks
Organizations often have several business functions that run on a schedule:
expired session data cleanup, policy renewal reminders, special occasion greet‐
ings, etc. Some are deliberately scheduled to happen at a particular time of day,
such as batch jobs set to run when energy consumption is low, or low-priority
tasks scheduled for when fewer users are using the services. You can use server‐
less services to schedule millions of one-time and recurring tasks, eliminating
mundane and inefficient custom logic.

Highly scalable backend applications
A variety of backend applications power both small- and large-scale web applica‐
tions. As you saw in the event-streaming example, the scale of operation of these
applications varies. The volume of users, the unpredictability of visitor patterns,
and the ease of extending the services are some of the basic concerns of enter‐
prises that operate in ecommerce, insurance, finance, gaming, multimedia, and
other domains. Once they’ve successfully migrated to serverless, organizations
will see a reduction in their total cost of ownership (TCO) and, critically, will
have a technology platform that allows them to innovate faster.

Big data and data lakes
Successful organizations collect and use data in the right way. The more useful
the data, the better. Organizations that battle with legacy tech stacks constrained

Strategies for Migrating Legacy Applications to Serverless | 67

https://oreil.ly/m0nfL

by the vertically scalable nature of databases can benefit immensely from server‐
less. AWS offers a variety of data stores as managed services to operate with
unimaginable volumes of data—there’s a data store for every type of data in AWS.
With the services offered for data lakes and lake formation, running analyses and
building insights, archiving and deleting data, etc., teams can focus on extracting
value from the data to make data-driven business decisions.

Data-driven is a strategy where business decisions are made based
on evidence found in the data. Data-driven organizations collect
and analyze data to find insights that enable them to make
informed decisions, rather than making hasty decisions without
any solid basis. To make decisions based on data, companies
require the technical capabilities to ingest, process, store, analyze,
interpret, and report on vital clues and patterns that emerge from
the data landscape—hence the necessity for big data platforms and
related services.

Migration risks
Here are some of the risk factors to understand before opting for an all-at-once
migration:

Misunderstanding of serverless technology
While discussing the structure of this book, we spent a considerable amount of
time on the content of the first two chapters. We deliberately decided to start
from the basics to provide a solid foundation rather than diving straight into
technical details. A mistake often repeated during serverless adoption is jumping
in headfirst without a clear understanding of serverless technology or whether
it’s actually a good fit for your business. Familiarity with the characteristics
of serverless (described in Chapter 1) and how to assess your workloads for
suitability is crucial.

Inadequate or poor planning
Trying to make a quick start on serverless without a thorough understanding
and deep thinking is like building on sand. You won’t be able to extend your
solution to add services and features on the initial foundation. It’s important to
take the time to lay the groundwork for successful serverless adoption, taking
into account the first principles and other factors outlined in this chapter.

Time and cost
Rearchitecting and rewriting legacy applications using serverless technologies
will pose challenges and can become time-consuming and costly. When facing
situations beyond your team’s capabilities, seek help from AWS and serverless
experts sooner rather than later, as lost engineering time is expensive.

68 | Chapter 2: Enterprise Readiness for Serverless

If you are up against moving a mountain of a task, pause, have a rethink, and
see if the phased migration approach explained in the following section suits you
better.

Legacy influence
As you move to serverless development, you will inevitably carry your past
experience with you—but it’s important not to make the same mistakes or fall
into the same trenches. Rewriting legacy systems demands fresh thinking and
the mindset change explained earlier. Let everything be new, including your
thinking.

Phased Migration
For organizations with many subdomains and applications that use different tech‐
nologies spread across many teams, an all-at-once service rewrite is impractical. A
phased migration with an incremental approach will suit them better, as it gives them
more control and provides greater visibility of the progress. The duration of each
phase will depend on the domain complexity, criticality, availability of engineering
expertise, and business priorities.

If your enterprise is entirely new to serverless, start in a noncritical business area
as your first phase. For example, suppose the head office runs several nightly data
consolidation jobs to generate downloadable daily reports for internal teams. This
is a non-customer-facing and non-business-critical area with relatively low impact.
It’s a perfect use case to launch your serverless adoption. Once you have successfully
completed your first serverless migration, you can showcase your success to build
further momentum for subsequent use cases.

Once you have grown your team of serverless engineers and gained experience with
successful product migrations, you may plan for parallel migration phases depending
on business priorities and technical fluency, but make sure you don’t end up in a
situation where you chase two rabbits and catch none!

Organizational suitability
As with an all-at-once service rewrite, a phased migration is suitable for almost any
workload. However, certain organizational principles are essential for this approach
to succeed:

Clear vision
Migrating applications to serverless in phases is like making strategic moves on
a chessboard. It requires a high-level business vision with clarity and purpose.
Business stakeholders, engineering leads, and architects should collaborate to
plan each phase and the dependencies between the phases.

Strategies for Migrating Legacy Applications to Serverless | 69

Long-term growth plan
For a success-oriented organization, serverless adoption is not a mere cost-saving
measure but a growth strategy. Migrating suitable applications to serverless is
like the cherry on top of a cloud cake! Enterprises that successfully start with
serverless witness increased development velocity and product release cycles.
Serverless acts as a catalyst for those with a clear growth strategy for the future.

Focus on continuous improvement
Modern development teams follow a rigorous incremental and iterative product
delivery cycle. As explained in Chapter 1, as a technology, serverless is ideal
for such a development practice. Unlike with the legacy waterfall model and its
maintenance phase, modern agile teams engage in continuous refactoring and
improvement. This is a required trait for serverless as the technology is evolving
so fast. Teams with the right attitude can benefit from a phased migration as
they constantly improve, feeding from one phase to the next. (In Chapter 11,
you will learn about the measures you can take to keep up with the evolution of
serverless.)

Migration considerations
In addition to the risk factors described for an all-at-once service rewrite strategy,
here are some things to watch out for with a phased migration:

Dependencies between the phases
As you migrate from on-premises to serverless, you will inevitably find yourself
with a mix of cloud and legacy stacks to manage. Managing the dependencies
between them can cause technical issues. Having APIs to communicate between
the applications in different stacks reduces the complexity, but you cannot expect
these to be available in all cases.

Getting stranded due to unforeseen complexities
Unexpected technical challenges are common in software engineering, and ser‐
verless migration is no exception. A delay in the completion of one phase can
cause delays in other dependent phases. This may cause tension between the
teams and can lead to blaming the technology itself.

Service disruptions and unhappy customers
With a phased migration strategy, unpleasant situations can arise due to the
incompatibility of services on different stacks (API protocols, data formats, pro‐
gramming languages, synchronous versus asynchronous operations, etc.). The
service limits on the two sides may also differ, and it is essential to find common
ground for services to mitigate service disruptions impacting customers.

70 | Chapter 2: Enterprise Readiness for Serverless

Comparing Migration Strategies
Take a look at Figures 2-12 and 2-13, which compare the three strategies based on
time to completion and level of risk.

Figure 2-12. Serverless migration strategies based on time to completion

Figure 2-13. Serverless migration strategies based on risk level and preference

Once you have gained knowledge of the technology, identified the appropriate work‐
loads to migrate, and charted a transition strategy, there’s one more important area
to focus on. This is perhaps the most crucial factor of the ecosystem: the engineers.
Their attitudes and skills will be a defining factor in the success of your organization’s
serverless journey. We will complete this chapter by looking at ways to develop your
knowledge base.

Strategies for Migrating Legacy Applications to Serverless | 71

In some business scenarios it may be appropriate to apply a mix
of strategies. Whether you take an all-at-once or phased migration
approach, you may decide to retain some complex and core logic
in its existing form but change the code around it to fit within the
new environment. For example, suppose you are rewriting legacy
logic as Lambda functions using TypeScript. However, there is a
critical piece of logic originally written in C# that you prefer not
to rewrite. You can use the .NET runtime for AWS Lambda with
minimal changes to the event handling part of the function.

Growing Serverless Talent
The renowned author Robin Sharma once said “the swiftest way to grow a company
is to grow its people.” People are the most valuable commodity in every organiza‐
tion, and it’s important to nurture and care for this asset. Along with technological
advancements, engineers’ growth is attributed to their soft skills, happiness, self-
esteem, attitude, and belonging, among other things. Improvements, however, don’t
happen overnight but are made over time with adequate support.

Growing Versus Building
Why do we talk about “growing” serverless talent? Growing is organic, whereas
building is a matter of assembling and joining components. To build something, you
source the parts and raw materials, employ labor, and make a blueprint or equivalent.
Enterprises often apply the fast-track build principle to quickly make a product by
hiring specialist consultants, doing a bit of team scaffolding, and setting it to work.
Though this approach may produce the intended outcome, it doesn’t necessarily grow
the skills of the engineering staff or promote a culture of togetherness and belonging.
Driven by business pressure and a need for fast outcomes, leaders disregard the dis‐
tribution of knowledge from the consultants to internal engineers. This is a mistake
teams make time and time again. A failure to grow the internal serverless knowledge
base can be devastating for an organization in the long run, resulting in a lack of
commitment and ownership of applications (or services and features).

Growing talent takes time and effort, though. If a fast-track build approach generates
the expected product outcome, why endure the hardship? The answer is in the
philosophy mentioned earlier: the swiftest way to grow a company is to grow its people!
When there is no people growth, there is no team growth. When there is no team
growth, there is no organizational growth. Needless to say, in such organizations
there won’t be any serverless growth either.

72 | Chapter 2: Enterprise Readiness for Serverless

So, how can you grow serverless engineers and teams in your organization? Organic
growth takes time. Do you have the patience and energy to embark on a growth
mission?

The Demoralizing Fast-Track Build Formula
The fast-track development mantra is common in the software industry. This
approach comprises the following phases:

Hiring consultants
In the initial phase, talent acquisition teams in an organization reach out to
industry experts and enter into fixed-term contracts to utilize their expertise,
agreeing to pay a premium price.

Assembling a team
Forming a team in this context is mainly a matter of assembling a collection
of individuals capable of performing the tasks required to develop the desired
solution. Depending on the engineers’ specialist skills, they take possession of
different parts of the serverless ecosystem (architecture, tooling, testing, opera‐
tions, etc.), reflecting a siloed setup within the team itself.

Developing the product(s)
The serverless development, in this setup, is based on the experiences the indi‐
vidual engineers bring in. Usually, the most aptly skilled engineer will take the
lead and replicate their experience. The team’s main goal is to build the product
quickly, not to lay the groundwork for future projects in the organization.

Delivering the product(s)
Deploying the products in the production environment to the satisfaction of the
business stakeholders marks the completion of the work. Management will start
reducing the team size at this stage to reduce costs. In the majority of cases,
the operational aspects of the product will become the responsibility of internal
teams.

Dispersing the team
Retaining consultants once they’ve served their core purpose is costly, so they
rapidly get offboarded from the team and organization. This may happen as soon
as their contracted term ends or more gradually, depending on the agreement.
Once the experts are all gone, the internal engineers, who never received proper
training or knowledge transfer, become the maintenance team for the product.
These engineers are often the most demoralized people in an organization.

With the fast-track template now in place, enterprise teams get sucked into a
spinning flywheel as a shortcut to success. The organization’s formula becomes:

Repeat [Hire, Assemble, Develop, Deliver, Disperse]

Growing Serverless Talent | 73

The adverse by-product of this fast-track development flywheel is disgruntled,
demotivated, demoralized, and growth-deprived engineers. With no people
growth, there is no team growth. With no team growth, there is no organiza‐
tional growth. This is not an environment for serverless growth either.

Essential Ingredients for Growing a Serverless Team
As you saw in Chapter 1, builders and stakeholders are one of the essential com‐
ponents of the serverless technology ecosystem. Builders (i.e., engineers) are the
people who architect, build, and operate serverless applications. When we talk about
growing an engineer in a serverless ecosystem, we can draw parallels with how a
plant grows in our environmental ecosystem. Taking inspiration from nature, here
are some of the essentials for growing a successful team of serverless engineers:

• A fertile field (a conducive environment)•
• Healthy seeds (passionate pilot engineers)•
• A gardener (a serverless enabler to guide the team)•
• Water, sunlight, and nutrients (training and a knowledge base)•

Let’s take a closer look at each of these key ingredients.

Conducive team environment
A healthy serverless ecosystem needs a favorable enterprise environment with a cul‐
ture that fosters growth in the fertile surroundings. As you saw earlier in this chapter,
adopting serverless requires adequate space for experimentation and innovation.

As shown in Figure 2-14, the characteristics of a fertile environment include:

• Freedom to take risks to build self-belief among the engineers•
• Encouragement to experiment with ideas to foster product inventions•
• Teams’ involvement in technical and operational decision making to build trust•

and promote motivation
• Autonomy to self-govern, removing bureaucracy and allowing increased team•

velocity

74 | Chapter 2: Enterprise Readiness for Serverless

• Nurturing an ownership culture to create a sense of belonging that encourages•
responsibility

• Sufficient learning opportunities to keep engineers in the know about advances•
in technology

Figure 2-14. Characteristics of a growth-promoting enterprise environment

You cannot readily source these traits from outside; they must be initiated by the
leadership teams and radiated down to everyone in the organization.

Passionate pilot engineers
If your organization is starting fresh on serverless, you will unlikely have serverless
specialists in-house. In such situations, it is beneficial to identify the best engineers
with a forward-thinking mind and set them up as the torchbearers for serverless
adoption. They will assume the role of pilot engineers and act as catalysts to spear‐
head the serverless revolution, inspiring others and laying the foundation for success.

In addition to solid software engineering skills, including architecture and security,
pilot engineers should possess a positive attitude and willingness to take on chal‐
lenges and identify pathways to success (see Figure 2-15). They’ll work closely with
the business stakeholders and product teams, guided by the serverless enabler (see
the next section), to map your organization’s serverless journey.

Growing Serverless Talent | 75

Figure 2-15. Necessary skills of a pilot engineer to promote serverless adoption

A serverless enabler to guide the team
With a fertile field and healthy seeds, the ground is ready for serverless growth. The
role of a “gardener” to cultivate that ground during serverless adoption’s early stages
is vital. Your engineers need a strong guide to help them navigate the uncharted
territory of serverless in your organization. This serverless enabler could be a senior
or lead engineer, an architect, an engineering manager, or even the CTO, depending
on the structure of your organization. It’s not the title that matters here; as Gregor
Hohpe states in his book The Software Architect Elevator (O’Reilly), what you’re
looking for is someone who can comfortably “ride the elevator” between the ivory
tower (of business stakeholders and enterprise architects) and the IT engine room (of
engineers).

Serverless adoption in an organization is a journey. As illustrated in Figure 2-16, you
need a committed, tech-driven, passionate, and business-friendly navigator who can
show you technical direction to enable the growth of engineers in technology.

Figure 2-16. The necessary qualities of a serverless enabler to guide serverless adoption

76 | Chapter 2: Enterprise Readiness for Serverless

https://oreil.ly/hHF5j

Training and a knowledge base
Along with water and sunlight, nutrition is essential for every living entity in an eco‐
system. Similarly, the engineers who are part of an organization’s serverless ecosystem
need a constant supply of knowledge to upskill and keep up with the evolving tech‐
nology landscape. New services, features, tools, frameworks, patterns, and capabilities
are announced almost daily, and keeping pace with the speed of change can be chal‐
lenging for a new team of serverless engineers. Hence, the necessary measures must
be identified and implemented to swiftly assess and address these needs from the
early days of serverless adoption. Coaching, training, workshops, and other learning
methods must be considered and encouraged (see Figure 2-17).

Figure 2-17. Different avenues to enrich serverless knowledge

Depending on the level of experience in your teams, you can employ two strategies
for upskilling:

• Make the strengths of the engineers stronger. This means perfecting their skills•
and advancing them to a higher level to maximize their potential for increased
performance.

• Identify and improve on the engineers’ weaker skills. This means learning new•
skills to make them efficient in their daily tasks and enable them to experiment
with new ideas for innovation.

Make sure to record your learnings and processes along the way, so they can be repli‐
cated in the future and used to help onboard future team members. See Chapter 11
for more on the importance of establishing a serverless guild/center of excellence.

Growing Serverless Talent | 77

Celebrating the growth of your team
Cultivating a growth-promoting enterprise environment for serverless is not a solo
effort. It involves several teams—engineering, products, people partners, recruitment,
etc.—working toward a unified goal. As teams of engineers grow, differences in
opinion, complacency, and conflicts can arise. The role of a serverless enabler as a
gardener becomes essential to nip such disputes in the bud by acting as a listener and
mediator and finding quick resolutions to steady the serverless ship.

As your serverless team or teams begin to showcase their early achievements and
little victories, ensure these are well communicated within the organization, especially
to business stakeholders. In “How Do You Bring Serverless Awareness to Business
Stakeholders?” on page 52 you saw how engineering teams can help stakeholders
understand serverless technology and its benefits. It’s vital to celebrate technology
victories together—especially when the technology is serverless!

Table 2-1 shows how business stakeholders’ views of serverless evolve along with the
engineering achievements of the serverless team.

Table 2-1. Mapping team outcomes to stakeholder opinions

Engineering outcome Stakeholder view
Proof of concept (PoC) finished and demonstrated faster and cheaper than before. Beginning to trust the team.
Minimum viable product (MVP) completed and delivered. The confidence in the team grows.
First serverless application deployed to production to serve customers. Lower operational
and maintenance costs.

The team earns respect.

As serverless engineers and teams grow, you will have internal experts on the many
factors of the serverless ecosystem. This is incredibly enriching for the organization.
Depending on the engineers’ backgrounds and interests, they may become proficient
in more than one skill—a sign of a true serverless engineer in a multidisciplinary
serverless team.

The Structure of a Multidisciplinary Serverless Team
We’ve covered a lot of ground since the mention of “multiskilled, diverse engineering
teams” in Chapter 1 as one of the benefits serverless brings to an organization. We
also discussed how the granularity of managed services aids in developing software
iteratively in small increments. “First Principles for Successful Serverless Adoption”
on page 39 highlighted the need for business, organizational, and technology think‐
ing to have long-term sustainable teams.

A multidisciplinary serverless team consists of people who:

78 | Chapter 2: Enterprise Readiness for Serverless

• Form a small group that can be fed with two pizzas•
• Understand their business domain and interact with stakeholders•
• Are responsible for their software products•
• Are quality-conscious and automate their tests•
• Can define and implement their deployment pipelines•
• Understand security and employ threat prevention measures•
• Implement good observability and engage in proactive monitoring•
• Take part in architectural discussions and implement solution designs•
• Are not afraid to deploy to production on a Friday afternoon•

Based on these qualities (and our experience), we can sketch out the composition
of a typical serverless team, as shown in Figure 2-18. Of course, this is not the
only possible team composition; the makeup of a successful serverless team may
vary depending on the business domain, organizational structure, and skills and
experience of the engineers.

Figure 2-18. Serverless teams with different roles working with a serverless enabler

Let’s break down the different roles in this figure:

Growing Serverless Talent | 79

Product manager or product owner
The product manager or product owner is the person who connects the engi‐
neers with the product teams and business stakeholders. They work closely with
the engineering lead to set team goals and outcomes.

Engineering lead
The engineering lead is the technology counterpart of the product manager,
responsible for the engineering efforts of the team. They set the technology
direction, help the engineers grow their skills, introduce engineering practices
and principles, and ensure best practices are adhered to.

Engineers
There is generally a mix of engineers with varied levels of experience, from senior
to junior, responsible for the engineering activities in the team. These engineers
possess most of the traits listed earlier in this section.

Data engineer(s)
As many teams produce and own their data, they will need engineers with the
necessary skills to provide guidance on data management, governance, models,
algorithms, etc.

QA engineer(s)
There are often one or two quality assurance specialists who work closely with
other engineers to define and execute the testing strategy. It is essential for the
team’s growth that these engineers be involved in all the team’s activities, such as
design discussions, ideation sessions, etc.

UX designer (optional)
Teams responsible for web apps, user interactions, etc., usually include designers
specialized in the user experience domain, for better collaboration and outcomes.

Serverless Engineers
The term serverless engineer is common today in tech media and on industry job
boards. It refers to an engineer who works with serverless technology—but what are
the characteristics hidden behind the term? How different is a serverless engineer
from a software engineer? We can define the role as follows:

A serverless engineer is a software engineer who is innovative and capable of build‐
ing efficient, secure, cost-effective, functional, and event-driven solutions iteratively
using managed services and operating them on the cloud.

In addition, a serverless engineer is expected to grow with a deeper understanding
of cloud and serverless technologies, analytical and architectural skills, and an opera‐
tional and ownership attitude.

80 | Chapter 2: Enterprise Readiness for Serverless

Responsibilities of a serverless engineer
Everyone has responsibilities based on their role in the ecosystem they are part of.
With no silos, smaller, stream-aligned teams promote communication and sharing
of knowledge and tasks between engineers. Everyone in the team becomes aware
of all the disciplines of a serverless team mentioned in the previous section. For
software engineers whose primary focus is developing applications, this means they
will become fluent with many of the activities that are part of the end-to-end cycle of
a product increment.

In Chapter 1, while discussing how serverless technology enables the growth of
diverse engineering teams, you saw the need for a DevOps mindset and related traits
to help engineers evolve into serverless engineers. Serverless engineers are part of
a team that contributes to business growth by employing serverless technologies
and modern development practices—it’s not the title that counts, but the role and
responsibilities. We’ll talk more about these responsibilities in later chapters, as we
explore the development and operational aspects of serverless applications.

Frequently asked questions about serverless teams
Here are some common questions people ask about serverless teams, and some
analysis about the accuracy of the underlying conceptions and misconceptions:

Is a serverless team a backend team?
This is not always true. In a commercial product development organization,
you’ll see teams that focus on domain logic implementation as microservices,
teams that own the end-to-end flow of user-facing features, teams that focus
mainly on the user experience and aesthetics, and teams that handle data pro‐
cessing and utility services. All these teams could use serverless technology in
part or in full.

Is a full-stack team ideal for serverless development?
A stream-aligned engineering team that owns a feature or a product is responsi‐
ble for its end-to-end flow, including both frontend and backend functionality.
Such a team functions with engineers capable of working on any part of the
application stack and avoids the frontend and backend silos. Serverless thrives in
environments where knowledge is shared and there is a greater collaboration.

Is serverless technology only for developing microservices?
Modern applications have several parts, and many of these parts can benefit
from serverless. The backend microservices that implement business logic, the
Backend for Frontend (BFF) layers that use GraphQL federation, and the front‐
end user experience implementations that require server-side rendering, data
processing pipelines, etc., can all use serverless technologies.

Growing Serverless Talent | 81

Summary
This chapter explored the many facets of an enterprise, assessing them from a ser‐
verless adoption point of view. As authors, our aim is to equip you with all the
information you’ll need as you bring serverless technology to your organization, to
enable effective collaboration between your technical and business colleagues during
critical decision-making processes and ensure your engineers have the right attitude
and skills and the necessary support to capitalize on the benefits of serverless. We
hope these first two chapters have helped get you into the serverless mindset, with a
clear vision of the tasks involved in adopting serverless in your organization.

In the next couple of chapters, we’ll start to get closer to the technical aspects of
serverless adoption by exploring the underlying architectural concepts, microservices
principles, and design patterns before delving into the serverless development cycle
and processes.

Your serverless journey is well and truly underway!

Interview with an Industry Expert
David Anderson, Architect, G-P Globalization Partners
David is a technical leader who enjoys writing and speaking about the leading edge
of technology. After starting out as a software engineer in leading telecom companies
(including Three, Nokia, and Ericsson), David moved to Liberty Mutual in 2007,
where he continued to drive technology change and cloud adoption. As a practicing
architect with G-P, he continues to empower and enable peers with a focus on
serverless-first, well-architected principles, and engineering excellence, all to enable
digital transformation, AI, improved time to value, and high-performing teams. His
book The Value Flywheel Effect, published by IT Revolution in fall 2022, continues to
inspire modernization journeys. David is based in Belfast, writes on The Serverless
Edge, is the lead organizer for ServerlessDays Belfast, and is a member of the Wardley
Mapping community. You can find him on X (formerly Twitter) at @davidand393
and @david-anderson-belfast on LinkedIn.

Q: What is a serverless mindset, and why is it essential to serverless adoption?

For me, the serverless mindset is a set of tenets or principles that must be true for the
technical and executive leadership and the engineers. I see many companies building
on legacy cloud (i.e., treating the cloud like a data center), but they have yet to
experience the transformational change the cloud should bring. It’s important they
ask the question of why a company would spend 25–50% of their technology budget
building an infrastructure platform that (in most cases) is not needed and will, in the
long term, slow delivery.

82 | Chapter 2: Enterprise Readiness for Serverless

https://oreil.ly/wIehw
https://oreil.ly/wIehw
https://oreil.ly/NqCTp
https://oreil.ly/je9WK
https://oreil.ly/sc9GF

“The technology strategy is the business strategy.” We speak the same language and
can relate technology efforts to the top line.

“Offload as much as possible to external cloud providers.” You think differently about
architecture, but that’s okay.

“Embrace the fallback.” Start with serverless and fall back when you need to. Don’t
be dogmatic—containers are not evil, but make sure engineers don’t fall back because
“we don’t know serverless.”

“Code is a liability; the system is the asset you are creating.” You don’t need to build
everything. Spend time on the big picture of what you are building, and don’t code
your way out of trouble. Step back and look at the overall design. Create logical
components over actual classes.

Finally, “be brave about your approach.” What seems like a complicated feature could
be a solved problem by a managed service; don’t be afraid to use it. No one will think
less of an engineer who can deliver a six-month project in two weeks.

The serverless mindset embraces evolutionary architecture and uses cloud providers
to create business value quickly. Get features in the hands of users and adapt based on
feedback. Don’t be pressured into using a vendor recommendation—think for your‐
self and use vendor services as building blocks. Don’t get locked into a framework.

By the way, you will notice I didn’t mention functions. If you think serverless is
functions, you need to broaden your thinking. Serverless is “access to capability when
needed”—but we still don’t have a good name for it.

Q: You played a pivotal role in Liberty Mutual’s adoption of serverless. The term serverless-first
became a mantra from those days. What does it mean to an organization thinking of adopting
serverless?

Following the principle of “building blocks, not frameworks,” it’s essential that tech‐
nology leaders understand that their outcomes drive the company forward. Technol‐
ogy is not a cost center; it’s an engine for business growth. There was a phase when
companies would say, “We are not an X company; we are a technology company
that sells X.” Liberty Mutual is an insurance company with a deep understanding
of technology—this happens when you make a long-term bet on “technology as a
differentiator.” Policyholders don’t care how cool the event logger for the web app is
or that the backend is Lambda; they just need help quickly. The journey at Liberty
Mutual was awesome, and there are a lot of nice articles if you google “Liberty Mutual
serverless.”

Interview with an Industry Expert | 83

Specifically, for an organization-wide adoption of serverless, there are several key
areas:

Infrastructure
There is a significant evolution required for the infrastructure teams. We are
not building a wrapper around the cloud, and the infrastructure team is not the
conduit for everything external—this is not sustainable. Don’t wrap application
engineers in cotton wool; clear guardrails will enable them to move quickly.
Serverless allows application teams to do some infrastructure as code, and the
infrastructure teams focus on management and governance of the cloud. The
cloud provider is now one of your platform teams (you have several).

Security
Security [experts] must think in a very purist way about the cloud. The tradi‐
tional approach of building a wall around the data center does not work for the
cloud. The principle of least privilege is critical, and the application engineers
now become the front line of security. We need to train our engineers in security
(teach them the threat model) and partner with them. Serverless may be a
challenge for some of the existing security tools, so we need to think differently.

IT and product leadership
Courage is required, as serverless is a paradigm shift. The technology and tech‐
niques that IT leaders used when they were engineers (or executing projects)
have often changed dramatically. Some leaders will say, “When I was an engineer,
we did this.” That is correct sometimes; other times, it is the opposite of what
needs to happen in a serverless environment. IT leaders must learn about the
serverless mindset and trust their technology leaders. It’s difficult for busy execu‐
tives and managers to carve out time to learn about new technology, but it is
critical for success.

Engineering capability
We must ensure the engineers and architects are comfortable with the new
technology and techniques, maybe through cloud certification, workshops and
labs, or even external speakers and internal conferences. Regardless, bring your
engineers on the journey and invest in them. You won’t hire a new cohort of
serverless engineers; bring your engineers today through the journey, and they
won’t let you down.

One of the critical blockers against serverless is “we can’t get buy-in.” Pitching a
“let’s rebuild everything in this new tech” effort is challenging. It’s better to focus on
key problem areas and show the value of serverless through results: “We built this
solution in 50% of the time,” “We’ve reduced running costs by 80%,” or “We can now
scale to meet our demand, and our costs are lower.” Start with showing the results
and demonstrate that a serverless mindset was the technique that made it possible—
show, don’t tell.

84 | Chapter 2: Enterprise Readiness for Serverless

Finally, it’s critical to value tech leadership. The cloud is changing quickly, so you
need technical leaders who are switched on and will spot new developments early.
Technical leaders will drive engineering excellence (EE). For me, EE is the corner‐
stone of a serverless organization. I define it as three things: autonomy for teams
(build it, own it, run it), mastery (the engineers apply good practices consistently
across the organization), and purpose (business KPIs drive tech efforts, and the teams
know exactly why they are building). Yes, this is borrowed from Dan Pink’s Drive, but
don’t be afraid to reuse!

Q: Could you share some of the measures you have employed to promote the growth of
serverless skills in an organization?

When teams take more responsibility, we must ensure they are executing well. Look‐
ing through the lens of the three engineering excellence areas, we can measure high
performance through:

Mastery
The critical measure here uses the Well-Architected Framework (from AWS, but
it equally applies to the version from Google or Azure). I like to use a process
called SCORP (Security, Cost, Operational Excellence, Reliability, Performance—
it’s detailed in my book) that enables teams to gather metrics for these five pillars
and publish them in a single dashboard (a wiki page or whiteboard). This is
updated and reviewed every sprint. Well-architected becomes front of mind, not
just an audit-type activity.

Speed of delivery is also essential, so we look at the four key DORA metrics. I
dislike being too formal about these, but deployment frequency is a great leading
indicator.

Autonomy
I’m a huge fan of Team Topologies, and there are many measures for fast flow
around team metrics. What is the team type, team size, work prioritization,
and effectiveness of process? There is a sociotechnical element to the serverless
organization. You have to get the technology environment and system design
right. You also have to get the team dynamics right to ensure the people can
interact with the technology effectively.

Purpose
This is the easiest one, but the one that is often most ignored. Does the team own
a business KPI? (It could also be two teams contributing to the same KPI.) The
best measure is to ask an engineer about the business KPI—is the team aware of
what it is and how they are changing it?

Interview with an Industry Expert | 85

https://oreil.ly/tGInu

There are some antipatterns or smells that I often look out for:

• The team’s purpose is “looking after technology X”—“We are the Kafka team.”•
• The stack is not ephemeral. If we deleted that stack now, could you recover it•

quickly?
• You’re locked into a process, and a QA/infrastructure/security team is slowing•

down delivery.
• What is the Time to Try?•

Time to Try is a great metric. Let’s imagine a new cloud service announcement at
noon on a Monday. How long will it take for an engineer in a regular team to access
the service (in a compliant manner) with a view to using it in production? Many
traditional organizations will give estimates from weeks to months (we need to make
security updates, add to our internal portal, write some Terraform, train our platform
team, etc.). My expectation would be 24 hours, for a security review and an update to
the cloud policies to add the service to the allow list.

Q: Your book The Value Flywheel Effect has a chapter dedicated to discussing the “environment
for success.” In your opinion, what should the environment be for an enterprise adopting
serverless?

There are four phases in the book The Value Flywheel Effect: Clarity of Purpose
(ensures the goal is clear), Challenge (creating an environment for success), Next Best
Action (applying a serverless-first approach for rapid execution), and Long-Term
Value (using the Well-Architected Framework for sustainable change). My coauthors
(Mark McCann and Michael O’Reilly) and I have observed this pattern in many
companies. When it’s in effect, change happens rapidly and repeatedly.

The second phase addresses “the environment for success.” The primary method is
the ability to challenge. I have found that Wardley Mapping is an excellent technique
to open up Challenge (and by Challenge, I mean the environment to ask questions
and respectfully critique strategy).

What we describe here is the opposite of the HIPPO (Highest Paid Person’s Opinion)
effect. Technical leaders should always have the environment to dig into how and
what we are doing to solve a problem. The Amazon leadership principle “Have
backbone; disagree and commit” captures this well.

In short, we are talking about psychological safety in the organization. Do engineers
(at all levels of the organization) have the confidence and are comfortable in their
ability to perform? You don’t want “beaten down engineers.” If your engineers do not
exceed your expectations, you need to look at their environment.

86 | Chapter 2: Enterprise Readiness for Serverless

Q: You are active in the AWS and serverless communities, organizing meetups and conferences
and sharing technical content via blogs and videos. How do tech communities help engineers
and organizations begin their serverless journey?

Everyone needs the time and space to explore new ideas. I always enjoyed the old joke
about training: “CFO: What happens if we train them and they leave? CEO: What
happens if we don’t, and they stay?”

What I always try to do is two things. First, help people with the time to learn
by curating good content and making it easy to discover new things. Second, help
people with the space to learn via events like Lean Coffee, Open Space, or tech talks/
conferences.

I do this in my own time at TheServerlessEdge.com, a blog and podcast where
the team share content. I also founded ServerlessDays Belfast, a community event
to give engineers a platform to share their tech talks. (And please look out for a
ServerlessDays near you!)

I firmly believe that engineers listen to other engineers. Creating a sense of commu‐
nity or tapping into an existing one will change perspectives, accelerate learning, and
build confidence. We are trying to encourage humility—true mastery is simply the
willingness to learn.

A final saying that has stayed with me for many years is, “Show me the person who
knows it all, and I’ll show you the fool.” Serverless is constantly evolving, so don’t
lock into a particular set of practices—technology is evolving faster than any single
organization, so keep up.

Interview with an Industry Expert | 87

http://TheServerlessEdge.com

CHAPTER 3

Software Architecture for Building
Serverless Microservices

Man: “I just don’t think it’s that simple. Nothing is.”
Woman: “Everything is when you break it down!”

—From the movie Mamma Mia! Here We Go Again

The word architecture has different interpretations depending on the context. As
you read this book on serverless development, naturally, you relate it to the software
context, or the serverless context, to be precise. If you detach the context, you are
likely to relate architecture to buildings—this is where the term originated, from the
days of our hunter-gatherer ancestors as they built structures for their shelter and
safety.

When you appreciate something as good architecture, you likely admire its aesthetics
or appeal. However, architecture has three main parts: art, structure, and technique
to hold everything together. This is true in any context, including software and
serverless.

There is a difference, however. You can stand in front of and admire the appearance
of a Mayan temple or the Taj Mahal, but you don’t get to see the architecture of
your flight booking system. Software architecture has an invisible appeal. The art of
software architecture—represented by its component elements (databases, processes,
queues, functions, etc.) and the relationships between them—resides with the team
that built it.

The elements and their relationships vary based on the context of the software.
You may not see all the software elements and relationships of a legacy system you
worked on in the past in a serverless application. Moreover, these elements and
their interrelationships evolve, even in the same context. Your role as an engineer or

89

architect is to understand, apply, and update as necessary to sustain the architecture
for as long as possible.

Many legacy multitier applications portrayed architecture as a vast web of complex
interconnections of diverse shapes spread across stacks of layers. But software archi‐
tecture need not be complex—serverless architecture is not measured by its breadth
or complexity, but by its fitness for purpose!

A critical difference between the architecture of a building and a serverless appli‐
cation is the possibility for change. Once completed, it is almost impossible to
change the architecture of a building. We acknowledge this with older structures rec‐
ognized as architectural successes, saying they have “stood the test of time”—they’re
unchanged but still attractive. In contrast, serverless architecture can evolve, and we
can apply the changes without impacting the existing solution. Over time, it may
cease to resemble the initial architecture completely.

Advances in serverless technology, user demands, business strategies, and architec‐
tural patterns can influence your architecture. While architecting, you must consider
your design’s ability to incorporate technical improvements, new features, etc. This
chapter is about equipping you with modern approaches to design solutions that you
can iterate and evolve. It delves deep into event-driven architecture and the essentials
of designing serverless applications, and discusses domain-driven design and how
to apply it to building microservices. Microservices introduce you to a new way of
breaking down a problem domain and building extendable services.

Popular Architectural Patterns
Architectural patterns are repeatable styles of architecture. As an engineer, you might
be familiar with design patterns in software development. Architectural patterns, on
the other hand, work at a higher level. (We’ll talk more about design patterns in
serverless development in Chapter 5.)

These repeatable styles are common in buildings and software. Looking at past and
present buildings, you’ll notice different styles influenced by era, culture, geography,
religion, available building materials and technologies, etc. A simple illustration is the
Egyptian pyramids: there isn’t just one pyramid, but hundreds following a similar
architectural style.

Similarly, several factors influence the architectural style you choose for your applica‐
tion. These patterns often change as technology evolves, but a few survive the test
of time and technological advancement, usually because they are fundamental to
several other architectural patterns. One such pattern is the client/server architecture
discussed later in this chapter. However, we’ll start with the most popular architec‐
tural pattern in serverless: the event-driven architecture.

90 | Chapter 3: Software Architecture for Building Serverless Microservices

Event-Driven Architecture
The event-driven architecture is arguably the most common pattern you will use in
serverless. The previous chapter briefly introduced this pattern while discussing the
first principles for serverless adoption:

Event-driven architecture (EDA) is an architectural concept that uses events to com‐
municate between decoupled microservices asynchronously. In EDA, there are systems
that produce events (producers), systems that consume events (consumers), applica‐
tions that transport events (event buses, messaging systems, etc.), and systems that
react to events.

The following are the four main elements of EDA, as illustrated in Figure 3-1:

• Events (also, in some cases, known as messages)•
• Event producers (also known as event sources, publishers, or senders)•
• Event consumers (also known as event targets, subscribers, or receivers)•
• Event carriers (also known as event routers, buses, channels, or mediators)•

Figure 3-1. The basic elements of an event-driven architecture

Events
As discussed in Chapter 2, an event is something that has already happened. For
example, a customer has paid for their order is an event. In the context of an applica‐
tion, an event carries information about what happened, and most importantly, it
cannot change—that is, it’s immutable. For example, an event about a customer’s pay‐
ment for an order will contain the customer’s identification, order number, payment
type, amount, and other related details, as shown in Example 3-1.

Example 3-1. An event containing the details of a customer’s payment for an order

{
 "metadata": {
 "version": "1.0",
 "created_at": "2023-12-30T09:12:27Z",
 "trace_id": "skdj834sd3-j3ns-cmass23",

Popular Architectural Patterns | 91

 "domain": "ecommerce",
 "subdomain": "orders",
 "service": "service-payments",
 "category": "domain_event",
 "type": "data",
 "name": "payment_received"
 },
 "data": {
 "customer_id": "730e-4dfb-9166",
 "order_number": "123-987-456",
 "payment_reference": "cc-visa-9076-cv3s5s",
 "payment_type": "creditcard",
 "amount": 35.99,
 "currency": "GBP",
 "paid_at": "2023-12-30T09:12:27Z"
 }
}

You will learn more about the structure, categories, and types of events in “Domain
Events, Event Categories, and Types” on page 142.

Event producers
Event producers are applications that create and publish events, as shown in Fig‐
ure 3-2. Various applications can produce events, including web applications, micro‐
services, database systems, IoT devices, etc. Some applications produce a high volume
of events (for example, tracking users’ activities on a website).

Figure 3-2. A customer account application emits multiple events as an event producer

Event producers are usually agnostic to the consumers of their events. An event
should carry details about the occasion that triggered the producer system to emit the
event. The event producer should not make assumptions about who or what might
consume it, or tailor its contents based on such an assumption. This behavior keeps
microservices decoupled, which is one of the benefits of event-driven architecture.

92 | Chapter 3: Software Architecture for Building Serverless Microservices

Event consumers
Applications that subscribe to one or more events, as shown in Figure 3-3, are
known as event consumers. Depending on the event data, consumers may know the
identity of the event producer, but this is not always the case. Consumers receive
events in near real time, and depending on their logic they may handle them either
immediately or after some delay.

Figure 3-3. Two applications consuming events from an event producer

Though event-driven architecture portrays event publishers and
consumers as two separate applications, it is common for an appli‐
cation to act as both a publisher and a consumer of events.

Event carriers
An event carrier is a service that accepts events from producers and securely delivers
them to the subscribers. Terms like event router, event bus, event channel, event
mediator, event broker, event bridge, event hub, and so on are often used inter‐
changeably to represent the same service, although there can be slight variations
between these components.

As shown in Figure 3-4, some of the basic capabilities of event carriers include:

• Support for event producers to publish events•
• Support for event filtering to identify and channel events•
• Support for transforming events where needed•
• Support for routing the filtered events to one or more event consumers•
• Support for successfully delivering events to the target consumers•

Popular Architectural Patterns | 93

Figure 3-4. Main components of an event carrier application that receives events from
producers and delivers them to consumers

Besides the basic features, services such as Amazon EventBridge, discussed in greater
detail later in this chapter, provide capabilities to:

• Store events•
• Replay events for a certain time window•
• Register the schema of the events•
• Retry event delivery to a consumer in case of failure•
• Collect the events that failed to be delivered to a consumer•
• Encrypt events•
• Invoke HTTP endpoints to deliver events•

How relevant is event-driven architecture to serverless?
Based on what you’ve learned so far, it should be clear that EDA is core to serverless.
In addition to using EDA in building your serverless applications, most of the man‐
aged cloud services from AWS are also event-driven.

When we discussed the event driven–first mindset in Chapter 2, we mentioned that
asynchronicity and event-driven communication are core characteristics of the ser‐
verless technology ecosystem. Within this ecosystem, it’s common to find both simple
event-driven architecture constructs like the one shown in Figure 3-5 and distributed
architectures that span across multiple applications, as shown in Figure 3-6.

In an event-driven architecture with multiple event producers and
consumers, there is a possibility that consumers may receive dupli‐
cate events. It is the responsibility of the consumer to implement
the required measures to identify and eliminate the consequences
of event duplication. You will learn more about this later in the
chapter.

94 | Chapter 3: Software Architecture for Building Serverless Microservices

Figure 3-5. A simple event-driven application where a file upload to an S3 bucket creates
an event and invokes a Lambda function

Figure 3-6. A distributed application where decoupled microservices coordinate via
Amazon EventBridge, acting as their event router

Client/Server Architecture
The client/server architectural pattern has existed for many decades. As shown in the
simple example in Figure 3-7, it has two distinct components, the client and server,
which communicate via an established protocol. Let’s take a closer look at these three
elements:

Server
A server provides a service or shares a resource for others to consume. Tradition‐
ally, a server is a computer system that hosts data files, databases, HTML pages,
etc. These types of servers are still in common use today, but now there are also
servers hosting software programs that implement business logic to offer as a
service to clients.

Client
A client consumes the resources or services of a server. For example, when you
open your email client on your laptop, tablet, or mobile phone, it communicates
with the server to fetch your emails. You can think of a client as a lightweight
computing device that fetches the data from one or more servers.

Popular Architectural Patterns | 95

Communication
Communication establishes the relationship between a client and one or more
servers; without it, the architecture does not function and is inactive. Com‐
puter networks and protocols are the backbone of this communication. In a
client/server architecture, the client primarily initiates the communication with
the server. For example, when you open your inbox, your email client sends a
request to the email server to establish communication.

Figure 3-7. A simple client/server architecture

Though there is no direct reference to a server in serverless archi‐
tecture, the concept of a server as the provider of resources and
services for clients to consume is common terminology.

Two-tier client/server architecture
The client/server architecture shown previously is the simplest form, a two-tier
client/server pattern. Here, you have a server as the information provider and a
client as the consumer. Before the browser-based technologies transformed the user
interface, two-tier architectures provided a graphical user interface (GUI) on local
computers to read and enter data. Over time, these client applications began to
perform more functionality, enriching their ability to input, validate, and translate
data. This came to be known as the presentation tier, as shown in Figure 3-8.

Figure 3-8. A two-tier client/server architecture where clients communicate with a
remote database server

96 | Chapter 3: Software Architecture for Building Serverless Microservices

Three-tier client/server architecture
In a two-tier architecture, the client is responsible for both the presentation layer and
the application layer (the application interface and the logical operations). Some of
the business logic is shared with the data tier, meaning that a change in logic affects
both tiers.

The motivation of the three-tier client/server architecture is to separate the business
logic as much as possible from the presentation and data tiers and abstract in a
middle tier, known as the application tier, as shown in Figure 3-9. You may also see
this referred to as the business logic or service tier.

Figure 3-9. A three-tier client/server point of sale (POS) system

Introducing this middle tier brought a few important changes to the architecture:

• It prevented the presentation tier from directly manipulating the data in the data•
tier.

• It reduced the processing power needed at the presentation tier, enabling the use•
of thin clients instead of rich clients.

• It allowed different types of clients, such as desktop and web applications, to•
access the same application tier.

One technology evolution that fueled the popularity of the appli‐
cation tier during the 1990s was interfaces. An interface, in this
context, is a communication protocol that the presentation tier
uses to connect remotely with one or more applications in the
middle tier. The introduction of interfaces allowed engineers to
package business logic into software modules or components, with
each component publishing its interface definition using technol‐
ogies such as the Common Object Request Broker Architecture
(CORBA), Component Object Model (COM), Distributed COM
(DCOM), Enterprise Java Beans (EJB), etc.

Popular Architectural Patterns | 97

How relevant is client/server architecture to serverless?
Though technology has gone through many iterations since the client/server pattern
was first introduced, if you are coming from a client/server application development
background and are adopting serverless you will notice many resemblances bridging
the old with the new, as highlighted in the following list:

Distribution of applications
The primary pattern you’ll notice in client/server architecture is separating appli‐
cations to run in different computing environments. Distributed computing has
existed in this pattern for many decades.

The principle of breaking an application and operating as distributed services is a
core concept you will find in serverless architectures.

Interfaces to communicate with software components
Interfaces are integral to everything you do in modern software architecture.
You learned about API-first thinking in the preceding chapter as one of the
fundamentals for adopting serverless. The interpretation and protocols may vary
with regard to how serverless APIs function, but the principle is the same.

Modular systems and components
Engineers have been building applications split into modules, subsystems, com‐
ponents, libraries, etc., since well before the introduction of microservices. Two
crucial differences were:

• Legacy software modules did not always map to business domains.•
• Hard dependencies between modules and tight coupling were common in•

legacy applications.
Though many of the modules and subsystems of the past were built as monoliths,
the concept of modularization of applications is very relevant in a serverless
architecture.

Your client/server architecture knowledge will help you quickly adapt to serverless,
with the necessary changes to your mindset. Moreover, if you are migrating legacy
client/server applications to serverless, this chapter will help you reflect on what you
know and what you need to know.

Layered Versus Tiered Architecture
The layered architecture pattern has a close resemblance to the tiered client/server
patterns discussed in the previous section. Though the terms are often used inter‐
changeably, there is an important difference: the layered architecture pattern focuses
on the logical separation of components that perform different functions, whereas
tiered architecture focuses on their physical separation. Figure 3-9 shows the physical
separation of the presentation, data, and application tiers in a simple system. But as

98 | Chapter 3: Software Architecture for Building Serverless Microservices

an architect, when you design a client/server architecture, you don’t start with the
physical separation of tiers. Rather, you conceptualize and identify the layers of the
system and their interactions.

As the complexity of systems increased over the years, separation of concerns and
grouping of related business and processing logic became recommended practices.
These groupings then evolved to become layers of the application. Figure 3-10 shows
a tax application where the logic for rule computation and data access has been split
into separate layers.

Figure 3-10. A tax system with its application tier split into two layers

Layered architecture
Figure 3-8 depicts a simple two-tier client/server application with a physical separa‐
tion of the presentation and data tiers. In Figure 3-11, you see the same shown as a
layered architecture.

Figure 3-11. A two-layered versus a multilayered application architecture

Typically, with this pattern each layer depends on the layer beneath it. The popularity
of layered architecture rose with object-oriented programming, as it helped break
down functionality into several thin layers. The benefits of layered architecture
include:

• Separation of concerns and grouping of functionality that changes together•
• Code reuse and ease of testing of individual layers•

Popular Architectural Patterns | 99

The downside of this approach is that without careful consideration it can lead to
lasagne architecture, an antipattern of layered architecture where you have too many
layers.

Tiered architecture
As you saw earlier, the advantages of tiered architecture include the physical separa‐
tion of the parts of a system that perform different functions, modularity, and clear
interfaces. The combination of tiers and layers, as illustrated in the example architec‐
ture in Figure 3-12, adds flexibility, as it promotes the modularity of applications and
their distribution.

Figure 3-12. A three-tier architecture with multiple layers

How relevant are layered and tiered architectures to serverless?
These patterns evolved to provide options to build scalable applications with redun‐
dancy, to make them resilient. Though terms such as modules and distribution sound
similar, how you architect and operate serverless applications differs; hence, you may
not find a perfect alignment, but you will still find your knowledge transferable to
serverless. Here are some commonalities:

Applications are deployed and run on physical tiers
As you’ve learned, in serverless, you do not think of machines, computers, or
servers, nor do you provision or manage hardware. Due to this, the separation
of a physical tier, as in client/server architecture, has a modified representation in
serverless.

Figure 3-13 is a high-level cloud architecture version of the three-tier cli‐
ent/server architecture shown in Figure 3-9.

Figure 3-13. A simple representation of the cloud version of a three-tier client/server
architecture

100 | Chapter 3: Software Architecture for Building Serverless Microservices

Though Figure 3-13 shows the separation of tiers, it does not show the mode
of separation in a cloud environment, as each tier’s application components and
services could exist in any of the following deployment scenarios:

• Applications in all three tiers are deployed and operated by a single AWS•
account in one Region.

• Applications in each tier are deployed and operated in one AWS account but•
in different Regions.

• Applications in each tier are deployed and operated in individual AWS•
accounts in different Regions.

• Each application in each tier is deployed and operated in a separate AWS•
account and Region.

Though the capability to distribute your application in a cloud architecture may
seem difficult to comprehend, it brings an array of benefits in terms of security,
resilience, scalability, and flexibility.

Logical separation of application layers
The logical separation of applications and services as layers is still relevant in ser‐
verless, but with a difference. Unlike the stacked layers in a layered architecture,
in serverless you can think of the architectural separation of distributed parts of
an application.

Figure 3-14 shows an ecommerce application as three layers. Each of these layers
can be divided into multiple sublayers as necessary. In serverless, visualizing your
application as a distribution of logical layers and physical components is more
important than thinking about physical tiers.

Figure 3-14. High-level architectural view of the layers of an ecommerce application

Hexagonal Architecture
Dr. Alistair Cockburn proposed hexagonal architecture as a pattern to ease compo‐
nent dependency issues between the architectural layers. Hard dependencies between
layered components restrict flexibility to change. Hexagonal architecture promotes
loose coupling between service components and consumers, allowing applications to
be driven by users, programs, automated tests, or batch scripts, developed and tested
in isolation from runtime devices and databases.

Popular Architectural Patterns | 101

https://oreil.ly/-iAcn

As shown in Figure 3-15, hexagonal architecture achieves its objective by using two
important elements: ports and adapters. Hence, it’s sometimes also known as the
ports and adapters pattern.

Figure 3-15. Depiction of the core elements of hexagonal architecture

Let’s take a closer look at the different items in this figure:

Core application or service
This is the domain application or a microservice with the business logic imple‐
mentation. It has the domain model and entities at its core, as shown in
Figure 3-16.

Ports
These are interfaces that the core application defines. Outside systems (drivers)
interact with the application via ports. Ports are also the gateway for the core
application to interact with outside (driven) systems. You can think of ports as
APIs, database protocols, topics, etc.

Adapters
These are specific implementations for interacting via the ports. They are not
part of the application but belong to the outer adapter layer, as illustrated in Fig‐
ure 3-16. Their implementation is specific to the drivers or target systems on the
driven side. Examples of adapters include HTTP adapters, REST API adapters,
NoSQL adapters, event bus adapters, legacy customer relationship management
(CRM) adapters, etc.

Per Wikipedia, “The term ‘hexagonal’ comes from the graphical
conventions that show the application component like a hexagonal
cell. The purpose was not to suggest that there would be six borders
or ports but to leave enough space to represent the different inter‐
faces needed between the component and the external world.”

102 | Chapter 3: Software Architecture for Building Serverless Microservices

https://oreil.ly/cjp4K

Figure 3-16. A typical hexagonal architecture with several adapters interacting via ports

How suitable is hexagonal architecture for serverless?
The main motivation of hexagonal architecture is to decouple core business compo‐
nents from the technology-specific service consumers and providers. While achieving
its goal, it inadvertently brings more complexities, especially when you’re looking for
development efficiency by using managed cloud services.

The concept of ports as interfaces to your core application or microservices is appli‐
cable in many contexts, including serverless. The purpose is to make your services
decoupled and relevant in serverless development.

The need for an adapter or a layer acting as an adapter is situation-specific. When
you compose microservices using serverless technology, you leverage the benefits
of managed cloud services, meaning you are not always looking to build adapters.
However, there can be situations where you use an adapter to resolve technology
incompatibilities between what you are building with serverless and the decades-old
legacy system you will be integrating.

Popular Architectural Patterns | 103

A common theme for hexagonal architecture is using adapters for testing purposes.
Though this may sound appealing, you need to assess the value you gain versus the
extra effort involved, especially when you have smaller single-purpose microservices
with clear communication interfaces. You’ll learn about testing strategies to apply in
serverless development in Chapter 7.

Hexagonal architecture has its place when you have a heavy core
domain shared by several applications and teams across the organi‐
zation that use different technologies. For most smaller teams that
own and operate single-purpose services within a bounded con‐
text, assess the need and the overhead before employing full-scale
implementation of ports and adapters.

Onion, Clean, and MACH Architectures
There are many architectural patterns in the industry, and it is beyond the scope of
this book to analyze each from a serverless development point of view. However, for
completeness, here are a few you’re likely to come across:

Onion architecture
The onion architecture was originally conceived by Jeffrey Palermo. It is yet
another software design pattern influenced by the popularity of object-oriented
programming and based on the inversion of control principle. Like an onion, it
has a core and several outer layers, which interact with each other and the core.

The core of the onion architecture represents the core domain and its busi‐
ness model. The layers represent different responsibilities, with the outer layers
depending on the inner layers, whereas the inner layers need not be aware of the
outer layers. This architecture supports the creation of core business logic central
to many applications.

Clean architecture
The clean architecture was introduced by Robert C. Martin, fondly referred to
as Uncle Bob. Like the onion architecture, it uses the concept of circles, with
the inner circle representing the core entities and business logic. The motivation
is to separate concerns and build your application layers independently of frame‐
works, user interfaces, databases, and external systems. The data passed between
the layers follows a standard structure, with outer layers not influencing the data
formats used in the inner layers.

104 | Chapter 3: Software Architecture for Building Serverless Microservices

https://oreil.ly/3G8Kt
https://oreil.ly/V3koE

MACH architecture
MACH is an architectural pattern that motivates enterprises to compose modular
business applications and integrate with third-party solutions with agility and
velocity. It promotes pluggable, scalable, replaceable, and independently deploya‐
ble software components to achieve its goal. The name is an acronym for:

Microservices
Microservices are small, independent pieces of business functionality that
communicate via well-defined APIs and events. You will learn more about
microservices in the next section.

API-first
As you learned in the previous chapter, the API-first approach is about
identifying and implementing interfaces to the system you are building. The
API becomes a first-class citizen and plays a significant role in the tactical
design of the application.

Cloud native
By taking full advantage of the cloud and shifting the heavy lifting to the
cloud provider, you can build applications for modern consumer demands
using Agile and DevOps principles. Adopting serverless takes this a step
further, as you use managed cloud services to compose and operate your
products in the cloud.

Headless
API-first services enable you to decouple the frontend, or the user experi‐
ence layer, from the backend microservices. This is an entirely different
architectural approach to the two-tier client/server architecture pattern you
saw earlier.

Characteristics of a Microservice
The previous chapter gave a brief introduction to microservices, and you’ve seen the
term in several places so far in this chapter—but what exactly are microservices?

In his book Building Microservices, 2nd Edition (O’Reilly), Sam Newman provides
this simple definition that serves as a good starting point: “Microservices are
independently releasable services that are modeled around a business domain.” Fig‐
ure 3-17 shows a microservice you saw in Chapter 2. We will use it here to study the
main characteristics of microservices.

Characteristics of a Microservice | 105

https://machalliance.org
https://oreil.ly/uJRP3

Figure 3-17. A customer microservice

In sum, a microservice:

• Is independently deployable•
• Represents part of a business domain•
• Has a single purpose•
• Has a well-defined communication boundary•
• Is loosely coupled•
• Is observable at a granular level•
• Is owned by a single team•

This is not a definitive list, and you may argue that some elements are missing, such
as microservices being modular and extendable (to which we might reply that loose
coupling already incorporates those aspects). However, it serves our purpose here,
which is not to analyze them with a theoretical lens but simply to provide a practical
introduction to working with microservices and serverless. That said, let’s dig a bit
more deeply into the implications of each of the characteristics mentioned in the
preceding list.

Independently Deployable
You should be able to deploy every microservice without impacting other microser‐
vices or needing them to be deployed along with it, as shown in Figure 3-18.

Independently deployable microservices, each owned and operated by a single team,
allow engineers to work in parallel, avoiding dependencies and merge conflicts and
enabling team velocity and flow.

106 | Chapter 3: Software Architecture for Building Serverless Microservices

Figure 3-18. Independent deployment pipelines of microservices inside a bounded
context

Represents Part of a Business Domain
The implementation of a microservice represents some business logic. The use of
the words part and some here is intentional. You don’t always represent the entire
business logic inside a bounded context with a single microservice. One or more ser‐
verless microservices can share the business logic, as shown in Figure 3-19; together,
they accomplish the business logic of the bounded context.

Figure 3-19. One or more microservices may share the implementation of the business
logic of a bounded context

Characteristics of a Microservice | 107

When a need arises for adding new business logic or a new feature, depending on
the nature of the change, you can isolate the logic in a new microservice. Changes
to microservices should not violate the existing interfaces and provide backward and
forward compatibility. For example, in Figure 3-19, if the business wants to support
payments via a secure web payment link emailed to customers, you can implement
this as a new microservice.

The Single-Responsibility Principle
The single-responsibility principle (SRP) is another concept developed by software
engineer and author Robert C. Martin. According to Martin, “each software module
should have one and only one reason to change.”

In object-oriented (OO) programming, for example, this means that a class should
have only one job. You can also apply the SRP at the method level, so each method in
a class is responsible for doing one thing (such as finding a customer with the given
account number). Likewise, each instance of a class—an object—represents the data
and its operations of a single entity.

Single Purpose
Domain-driven design guides you to split each business domain into subdomains
and bounded contexts. Each bounded context has its own boundary, business logic,
and model, and distinct characteristics. The implementation of the business logic
might involve microservices, web applications, etc.

As described in the previous section, and per the single-responsibility principle,
each microservice is responsible for a single piece of business logic, and that’s its
sole purpose. A microservice’s purpose, responsibility, and identity should be clearly
defined. Figure 3-20 depicts this with a microservice that acts as a mediator between
an external system and internal microservices.

The term anti-corruption layer (ACL) comes from Domain-Driven
Design by Eric Evans (Addison-Wesley Professional). It is a layer
implemented between different systems to translate the requests
between them to ensure the domain model of a system is not
affected (corrupted) by its dependency on another system.

108 | Chapter 3: Software Architecture for Building Serverless Microservices

https://oreil.ly/DFY8v

Figure 3-20. A microservice interacting with an external system

The identity of a microservice is the name used to identify it, which should be
consistent in all designs and implementations. Usually, the name of a service reminds
everyone of its purpose and responsibility. Though it sounds simple, teams often have
lengthy debates about microservice names!

Some teams assign nicknames to important microservices they
own. One of this book’s authors was once part of a team that
named a microservice PUPPy. It stood for Product Update Post-
Processor, and the y represented the upside-down Lambda notation
λ. Though the codebase used a longer service name, PUPPy stuck
with everyone, including the business stakeholders.

Well-Defined Communication Boundary
The concepts of bounded contexts, separation of concerns, and having a single
responsibility and purpose are design patterns that enable you to build applications
that are independent, modular, and extendable. Yet, microservices typically must
coordinate with applications both inside and outside their bounded context. Estab‐
lishing a clear communication channel thus becomes necessary to keep them loosely
coupled and allow internal changes without impacting external interactions.

Characteristics of a Microservice | 109

As illustrated in Figure 3-21, APIs provide a contract for exchanging information
without exposing a microservice’s internal details. Interacting via events, as in an
event-driven architecture, is a widely adopted communication mechanism and keeps
the services decoupled.

Figure 3-21. A microservice with a defined API that emits domain events

Not all microservices you develop in serverless offer APIs. A
microservice can rely on event-driven communication to trigger its
functionality. For example, a report generation microservice may
work on a schedule or rely on the arrival of certain events to trigger
the reporting process and need no API.

Loosely Coupled
Loose coupling allows a microservice to be independently deployable without
impacting other microservices. As loose coupling avoids hard dependencies between
services, each one knows little or nothing about the others.

Microservices communicate via well-defined APIs and events. When a microservice
exposes an API, it publishes a data schema and contract that service consumers must
comply with, promoting the goals of independence and loose coupling. Similarly,
communicating using events promotes asynchronous invocation between services
and is vital to keep the services decoupled.

Observable at a Granular Level
The operational benefits of microservices are as important as their independent
deployability. Though you might consider a microservice as a closed box from the
outside except for its defined communication channels, you must be able to observe
its operational status at all times—in other words, the box should be made of glass.

Unlike the obfuscated operational view of a monolith, a serverless microservice, due
to its use of cloud resources, can provide a deeper and more granular view of its
operation. Chapter 8 contains tips on implementing the best observability principles
for your serverless applications.

110 | Chapter 3: Software Architecture for Building Serverless Microservices

The Significance of Domain-Driven Design in Serverless
Back in 1995, Amazon’s retail system was a single monolithic application called
Obidos. A few years later, Amazon published the Distributed Computing Manifesto.
It enabled it to break Obidos up and build a three-tier architecture by separating
the presentation (client), business logic (service), and data layers. This approach was
called service-based architecture. Microservices, as a term and an implementation
pattern, came to exist a few years after the publication of Eric Evans’s revolutionary
book Domain-Driven Design in 2003. Viewing an organization as a set of intercon‐
nected business domains with subdomains, core domains, bounded contexts, and
domain models inspired object-oriented developers used to working with monolithic
applications to think in terms of modules. While DDD promoted modularity, VM
and containerization technologies enabled the deployment and operation of these
independent components as microservices.

All the early references on microservices focused on packaging components as inde‐
pendent mini-monoliths adhering to the characteristics of microservices. As the
popularity of the cloud and containers grew, deploying and operating microservices
on containers became the norm, and this continues to be the case across many
organizations.

The evolution of serverless as a parallel technology ecosystem to containers gathered
momentum a few years after microservices rose to popularity. The early serverless
adoptions focused on utility tasks, image processing, data conversions, scheduled
batch jobs, etc., partly because the cold-start latency concerns of Lambda functions
in the early days meant many teams were reluctant to use serverless for critical
customer-facing business functionality.

Another reason for the slow influence of DDD on serverless was that for many
engineers who’d started their careers with cloud and web development, learning and
applying a design concept that was two decades old wasn’t their priority (Evans’s
seminal book on DDD was published 20 years ago and uses unified modeling lan‐
guage models and object-oriented code examples).

Often, when engineers start experimenting with serverless to build their proofs of
concept, their priority is to prove serverless is well suited for building and releasing
applications quickly (as the marketing of serverless created the impression that it
would enable engineers to get things done quickly and deployed to production in
no time). Such quick-fix efforts brought success in most cases. This early experimen‐
tation success encouraged teams to enhance and extend the solutions in an ad hoc
and unstructured manner. As you can imagine, this style of application development
is susceptible to distasteful experiences and failures. Many of these efforts ultimately
yielded tangled event-driven applications and balls of serverless mud like the one
shown back in Figure 2-2.

Characteristics of a Microservice | 111

https://oreil.ly/H9n2Z

Enterprises adopting serverless cannot be naïve and take risks with such an unstruc‐
tured approach. Simple PoCs to evaluate certain services for a given purpose are fine,
but beyond that, solutions must be executed with upfront thinking and adequate
planning. The principles of domain-driven design act as a guide to steer enterprise
teams on the right path, enabling them to avoid the mistakes mentioned previously
and successfully adopt serverless. DDD is the forerunner for serverless adoption at
your enterprise.

Owned by a Single Team
Ownership is an essential aspect of microservices. As discussed in “Microservices-
first” on page 44, a single team should have ownership of each microservice. A
microservice should never become the responsibility of two teams. Single ownership
improves flow, increases velocity, and reduces the cognitive load on engineers.

If your organization has structured its teams based on the breakdown of business
domains, it becomes easier to assign the ownership of a bounded context and its
microservices to a stream-aligned team.

Microservice Communication Strategies
At least some of your serverless microservices will communicate with other services
and external systems. As mentioned earlier, not every microservice offers an API
or publishes events, so the communication strategies vary. The main differentiator
is whether the communication is asynchronous or synchronous. The coupling level
between services decreases as you move from a synchronous (request/response) to an
asynchronous (event-based) communication pattern.

Synchronous Communication
Synchronous (request/response-based) communication over HTTP is the most com‐
mon form of interaction used by microservices. Figure 3-22 shows an example where
a microservice acting as a client (checkout) requests the service of another microser‐
vice or application (here, payments), invokes its API, and waits for a response.

Figure 3-22. Synchronous communication between microservices

112 | Chapter 3: Software Architecture for Building Serverless Microservices

Depending on the nature of the functionality offered by the API and the network
round-trip time, the response could be instantaneous (within a few milliseconds), fast
(within a few seconds), or slower. The client is blocked from proceeding further while
waiting for a response, which creates a coupling between the two services. Suppose
the payments API takes a long time to respond, or the service is unavailable; this will
directly impact the checkout service, causing complications in the application.

The three main implementation patterns of synchronous communication are:

• Simple request/response•
• Request with an acknowledgment response•
• Request with an acknowledgment and client polling•

Simple request/response
Extending the example shown in Figure 3-22, Figure 3-23 depicts a realistic use of the
synchronous request/response pattern. It shows a chained synchronous call involving
four parties. The web application that initiates the call is unaware of the call chain
between the checkout and payments services and the third-party payment provider.
If any of those parties experiences operational issues or outages, it directly impacts
the web application serving its users. To increase availability and resiliency in such
situations, you should consider reducing the number of synchronous hops between
the microservices.

Figure 3-23. A microservices communication architecture showing a synchronous
request/response pattern

An architectural challenge in this example is the risk of service timeouts. For
instance, Amazon API Gateway has a maximum timeout of 29 seconds for REST
APIs. From a user experience (UX) point of view, it is not ideal to keep a user
waiting for this long. From an operations perspective, unexpected high latency or
performance degradations in downstream services can result in the connection from
the web application being abruptly terminated. In Chapter 5, you will learn about a
circuit breaker pattern to handle such situations.

Microservice Communication Strategies | 113

When a Lambda function initiates a synchronous API call and
waits for the API provider to respond, it sits idle, and the waiting
time gets added to its overall execution time. The cost calculation
for a Lambda function takes into account both the execution time
and the memory (RAM) allocation.

Request with an acknowledgment response
A variation of the simple request/response pattern that introduces an element of
asynchronicity is request with an acknowledgment response. With this pattern, when
a client invokes a service and the service’s API receives the request, rather than
immediately fulfilling the request it responds with an acknowledgment (HTTP status
code 202 Accepted). The handling of the request then happens asynchronously, and
the client does not wait for it to be completed. This decouples the service from the
caller. Whether or not the service processes the request immediately depends on the
business logic. Figure 3-24 shows this scenario.

Figure 3-24. A synchronous call pattern where the response is an acknowledgment of
acceptance

Authorization of the payment for an online purchase, for example, can take anywhere
from a few seconds to minutes depending on the type of payment, bank, verification,
user authentication process, etc. To avoid this unpredictable and long delay degrading
the user experience, the checkout service receives the payment request, writes the
details to a queue for the payments service to process, and sends an acknowledgment
that the request has been accepted to the web application. The example in Figure 3-24
uses message queues for communication between the checkout and payments serv‐
ices; later, you’ll see the use of other patterns for this purpose.

This example illustrates one of several use cases that benefit from this communication
pattern. Others include:

Submitting bulk data processing tasks
Many businesses request that the funds for a purchase be transferred from the
buyer’s account to the merchant’s when the order is shipped. This process is

114 | Chapter 3: Software Architecture for Building Serverless Microservices

called settlement or capture. They do this in batches throughout the day, so
the finance application will call the payments service at certain times during
the day with batches of perhaps thousands of payment references. The finance
application need not keep the network connection open while waiting for the
processing of each batch to be completed.

Generating large volumes of discount codes for distribution
A business that offers unique discount codes for redemption may require hun‐
dreds of thousands of such codes. A microservice that provides this service will
receive the request, send an acknowledgment, and disconnect from the requestor.
The request to generate the codes and eventually dispatch them to the recipient
will be handled asynchronously.

Processing uploaded images and videos
An image processing facility receives links to images and videos throughout the
day. However, downloading and storing the content happens at night, when the
energy consumption is low in that particular AWS Region. The API customers
use to submit the links accepts the details with an acknowledgment reference. A
scheduler then invokes the content downloader service at the desired time.

An important thing to notice with these example use cases is that there is no commu‐
nication back to the requestor upon successful completion of the request—the initial
acknowledgment is just to confirm the validity of the request (i.e., that it conforms to
the API contract). The following section describes a pattern that enables a service to
determine the final status of the submitted request.

Request with an acknowledgment and client polling
In the example in Figure 3-24, when the checkout service writes a request it has
received from the web application to the “payments to authorize” queue, it sends
an acknowledgment to the web application and disconnects. Later, it receives a
corresponding payment authorized message in the “payments authorized” queue.
However, as the web application that submitted the request is now disconnected from
the checkout service, how does it know if the request succeeded? One way of making
this information available to the web application is by providing an additional com‐
munication mechanism so that it can query the checkout service for the status of its
payment request. This method of querying or pulling the status details from a service
provider is known as polling.

Figure 3-25 illustrates this scenario. The checkout service provides a special API
endpoint called /status to query the status. Depending on when the web application
makes its first status query, the payment authorization might not have been comple‐
ted. So, it repeats the call at certain intervals until the final status is known; hence the
term polling.

Microservice Communication Strategies | 115

Figure 3-25. Synchronous call pattern where the response is an acknowledgment of
acceptance, but the client polls for the status of the original request

Though polling works in most cases, it has some disadvantages:

• Clients need to invoke a different endpoint to know the status.•
• Clients need to implement the logic to call the status endpoint repeatedly at an•

interval.
• Clients may need to make several network round trips to determine the status.•
• Clients need to keep track of the number of calls or duration before giving up in•

case of no final status from the service.
• To cope with the service provider being down, clients need to implement expo‐•

nential backoff and retry logic.
• Additional API calls add to the cost of the provider service.•
• Additional API calls add to the call quota of the clients.•

The following section discusses an improvement over polling-based communication
with an asynchronous push notification.

Synchronous request/response with an asynchronous webhook notification
Another option for adding asynchronicity to the synchronous request/response pat‐
tern is by using a webhook, as shown in Figure 3-26. This approach facilitates push
notifications. Instead of the web application polling for the status, it provides an
endpoint (webhook) for the checkout service to call when the payment is authorized.
Similarly, the payments service provides a webhook for the third-party payment pro‐
vider to call. With this pattern, the service provider is pushing the information out to
the clients by invoking the webhook endpoint. It is an efficient way of communicating
and reduces the load on the service provider.

116 | Chapter 3: Software Architecture for Building Serverless Microservices

Figure 3-26. Synchronous call pattern with an asynchronous notification to the client via
a webhook

A webhook is a form of user-defined HTTP callback. To receive
notifications, the client registers an endpoint URL with the service
provider to call back with the information. The client then reacts to
the incoming information to trigger further processing. Webhooks
are an efficient way of communicating compared to polling.

Asynchronous Event-Driven Communication
As you saw in the previous section, with synchronous communication between a
service provider and consumer there is a connection, or a form of coupling, as
the client needs to understand the API contract, protocol, and URL. When a client
establishes a connection with the service provider and makes an API call, the service
provider serves the request and responds as part of the same connection.

In asynchronous communication, the services are decoupled with no durable connec‐
tion established between them. As you learned earlier in the chapter, events carry
the information from producers to consuming services and trigger some action.
We’ll talk more about EDA and asynchronous communication in “Event-Driven
Architecture for Microservices Development” on page 135.

Breaking Down a Problem to Identify Its Parts
In Chapter 2, you learned about the common migration strategies enterprises choose
when adopting serverless. Inside every organization, you will find legacy monolith
systems of varying sizes, shapes, and complexities. Many of these systems grew
organically from simple applications as various business features were bolted on,
numerous customizations scaffolded, and countless bug fixes hacked in, with the
evolution of their architectures bringing in a mix of technologies.

But the problem isn’t always existing monoliths. Organizations constantly embark on
new product development projects to meet modern customer needs and stay ahead

Breaking Down a Problem to Identify Its Parts | 117

of the competition. They look for technologies that will help them quickly deliver
the products to bring value to their business. The problems modern organizations
tackle vary in breadth, width, and volume. They span from user-facing web front‐
end and browser technologies to process-heavy complex business logic at the back.
Applications must be available to everyone worldwide and capable of working with
mountains of data to extract incredibly fine-grained insights.

When presented with an existing legacy monolith or a yet-to-be-built, mightily ambi‐
tious new initiative, a common problem faced by engineers and teams is knowing
where and how to make a start—and, once you have made a start, how you can keep
progressing in the right direction.

Domain-driven design and the first principles discussed in the previous chapter
provide guidance and help you bring some form of order and structure to the process
of transitioning to serverless. Event-driven architecture, EventStorming (an activity
we’ll talk about later in this chapter), and several implementation patterns can help
you along the way. One of the strengths of serverless, as you’ll hear often in this book,
is the ability to think, build, and operate services at a granular or fine-grained level.
Among other things, it helps organizations:

• Get clarity on the different parts of an application•
• Plan and develop solutions incrementally and iteratively•
• Gain operational visibility and control at deeper levels•
• Implement separation of concerns and isolation levels, to have a resilient and•

highly available system

There are countless other benefits, depending on your business domain and applica‐
tion. To get you started, let’s dive into an approach you can use for envisioning and
structuring your application or parts of your applications as pieces—set pieces, to be
more specific.

Using a Set Piece Analogy to Identify the Parts
Vision and focus are two important aspects of everyone’s lives. You have a vision of
what you want to achieve in your personal and professional life. Your employer has
visions too—growth vision, product vision, technology vision, etc. Your initial vision
of what you want to accomplish acts as a guide as you navigate toward it. You may
have an overarching high-level vision that’s divided into smaller “subvisions.” When
you picked up this book, your vision might have been to understand a structured
approach to serverless development and successfully guide your team and organiza‐
tion to adopt it.

118 | Chapter 3: Software Architecture for Building Serverless Microservices

Focus, on the other hand, is the instrument that enables you to achieve your vision.
It’s the harder of the two. Focus makes you apply your mental and physical effort as
you edge toward achieving your vision. As shown in Figure 3-27, when you focus,
you typically define or mark a small part of your overall vision and accomplish it
before focusing on the next area. So, with vision, you visualize the whole, or the
big picture (the forest); with focus, you concentrate on smaller portions, parts, or
pieces (the trees). For example, your current focus is on completing this section of the
chapter and understanding how to break down a problem domain, but this is just one
step in the path to achieving your vision.

Figure 3-27. Your vision as a whole and how you focus on achieving parts of that vision
over a period of time

Though Figure 3-27 shows the parts as a sequence of focus items,
in reality, they need not be completed in that order.

In Lean Software Development (Addison-Wesley Professional), Mary and Tom Pop‐
pendieck introduce the following statement: think big; act small; fail fast; learn rapidly.
It adds a great deal of meaning to some of the thought processes and development
concepts echoed in this book.

Vision and Focus—A Cosmos Analogy to Break Down
a Complex Problem

When you look at the vastness of a clear night sky, you get a glimpse of our cosmos—
a visualization of the great universe. As you gaze, you don’t see much other than the
bright sandy and orange dots across the canvas. It’s like a complex problem domain
that you are trying to understand or a monolith puzzle you are trying to solve. No
matter how hard you stare at it, you see the same things, with the possible exception
of a few shooting stars, depending on the season and where you are on Earth.

Breaking Down a Problem to Identify Its Parts | 119

Consider each of those bright spots as different parts of the cosmos. You now focus
on a big orange dot. With the right equipment, you zoom in. Soon, you realize you
are looking at a galaxy hundreds of light-years away. What you have just focused on as
one of the many parts of the cosmos has become a blurry object—a subvision.

You are not giving up. You repeat, focusing in on the galaxy only to find more bright
spots—a sun! Each sun reveals its star pattern: the planets and their moons.

If you were in a faraway galaxy, this iteration of vision and focus might continue until,
at some point, you encountered the Earth, its land, seas, and cloud formations—and
finally, somewhere on the planet, you would find yourself (and us)!

Clearly, this is an oversimplification. However, it teaches us how a vision of impossi‐
bilities can be turned into a focus on possibilities. As you adopt serverless and build
applications, develop the discipline to carefully analyze the task at hand and break it
into manageable pieces to focus your work on.

What is a set piece?
When a production company decides to make a motion picture or movie, its vision
is to create a financially successful product based on a given topic, story, or concept.
However, the filming process does not start with the opening scene and continue in
a linear fashion until the end. Instead, the production team identifies the set pieces,
breaking it down into scenes or sequences of scenes that may be completed in any
order. The term set piece is also common in theater, where it refers to a realistic piece
of stage scenery built to stand independently as part of a stage set, and in music, to
refer to individual parts of a composition that are written, rehearsed, recorded, and
then edited together.

A similar concept is applied in team sports, model building, and more. Here are some
of the general characteristics of a set piece:

• A set piece is part of a whole thing (the vision).•
• When a person or a team works on a set piece, the focus is on the piece.•
• Every set piece goes through adequate planning.•
• Rehearsal, practicing, or testing is essential for a successful set piece.•
• Different groups of people can work on different set pieces.•
• All the pieces are brought together to make the whole.•

120 | Chapter 3: Software Architecture for Building Serverless Microservices

Applying set piece thinking in serverless development
One of the challenges enterprise teams face in building modern cloud and serverless
applications is the varying depth and breadth of skills engineers possess. Not every‐
one has been through a domain-driven design phase in their career; many have never
studied or worked with object-oriented programming, unified modeling language
(UML), or many analysis and design principles or processes that would equip them
in the right way to think about and break down a given problem domain. One of
the advantages of the first principles of serverless adoption that you learned about in
the previous chapter is that they encourage engineers to own a part of the domain
and focus inside their specific bounded context boundary. The set piece analogy and
mode of thinking becomes easier to apply when serverless teams migrate, refactor,
or design and build new solutions within their ownership boundary. Let’s consider
an example use case. The following is the problem statement for a customer reward
system:

Your business is looking for a way to offer several types of digital and physical rewards
to its online retail customers. Stakeholders create and upload files with the reward
details to their content management system (CMS). The CMS can propagate content
changes to its consumers. The rewards uploaded to the CMS need to be configured in
the backend system to keep track of their usage and apply the required business logic
for issuing and redemption. There is a third-party CRM system that acts as a rewards
ledger and receives all updates on the rewards.

This is a simple business use case common in the industry. You can identify certain
details based on the problem statement:

• The business domain is online retail or ecommerce.•
• The subdomain could be customer.•
• The bounded context could be customer rewards.•

Your task is to analyze and design the solution with a set piece mindset, bearing in
mind the characteristics mentioned in the previous section.

Customer rewards system vision. Figure 3-28 shows the initial vision of this require‐
ment as a logical representation. It covers all the main elements given in the problem
statement.

Breaking Down a Problem to Identify Its Parts | 121

Figure 3-28. High-level vision of a customer rewards system

With monolithic thinking, you might be tempted to develop the entire thing as a
single microservice. You normally see this approach in non-serverless tech stacks,
where you think of traditional or textbook-style microservices and operate them in
containers.

Figure 3-29 shows some prompts that give clues as to how you might divide your
vision into focusable parts.

Based on the details available in Figure 3-29, you can start to capture some additional
information that will assist you in identifying the set pieces:

• Reward content is created in advance. A reward’s lifetime is controlled by its val‐•
idity period. This indicates that the reward upload and configuration processes
are asynchronous.

• The CMS sends notifications of content creation and changes. The rewards•
system needs a way of receiving these notifications. This is an ideal candidate for
the callback communication pattern with a webhook that you saw earlier.

• The content from the CMS (as supplied by the stakeholders) requires some•
cleansing and translation before mapping it into the rewards model at the back‐
end. This functionality resembles the anti-corruption layer of DDD.

122 | Chapter 3: Software Architecture for Building Serverless Microservices

• Implementing the business logic to assist the frontend serving customers requires•
a way to consume the services offered by the rewards backend. This is a user-
facing synchronous operation with a request/response communication pattern
and is a candidate for a microservice.

• The interaction between the rewards backend and the external CRM system•
involves transforming data to fit each one’s model. This indicates a need for an
ACL between the rewards backend and the CRM system.

• How about the availability of the third-party CRM platform? Do you know its•
SLA, usage quota limits, etc.? Consider separating these concerns related to CRM
away from the main rewards backend.

Figure 3-29. The rewards system with some of its characteristics

Breaking Down a Problem to Identify Its Parts | 123

Identification of the set pieces. With the ideas you’ve gathered, you’re ready to identify
the actionable parts. Figure 3-30 shows the result, with each of the potential set pieces
marked with a boundary for easy recognition and focus.

Figure 3-30. The rewards system with its set pieces

Let’s take a look at each of these possible set pieces:

content-upload
This is currently an independent manual activity between the content creators
and the CMS. If you think of a future extension to this work, you can consider
building an uploader service, but for the discussion here, we won’t be talking
much about it.

Frontend
The frontend covers the web part of the feature where customers interact with
the system to find and redeem rewards. As it is bigger than it sounds, we won’t
be delving into its details. We consider the frontend as a consumer of the rewards
service.

124 | Chapter 3: Software Architecture for Building Serverless Microservices

content-updates
From the problem statement and the details gleaned earlier, we know that the
three main functions of this set piece are:

• Implementing a callback webhook to enable notifications of content changes•
• Translating the rewards data between the CMS and the backend•
• Updating the CMS of any rewards data changes to keep the models in sync•

When you think of the implementation pattern for this set piece, you will find it
fits perfectly as a microservice.

rewards-service
This is where most of the business logic lives. It provides the rewards service
to several consumers, including the frontend. As it handles issuing and redeem‐
ing rewards, it is likely to coordinate with other services and systems, both
synchronously and asynchronously. For brevity, we will not explore its full
responsibilities.

From an architecture and implementation point of view, the rewards-service set
piece also fits well as a microservice.

rewards-crm
This set piece resembles the content-updates one, as both interact with external
applications. In addition to its basic requirements of data transformation and
updating both the CRM system and the backend, it must consider operational
constraints such as the CRM system’s SLA, downtime, usage quotas, etc. It then
becomes the responsibility of the rewards-crm set piece to implement the neces‐
sary measures so that none of the other pieces of the system get impacted.

Another possibility, though not part of the problem statement, is that there could
be a future need to listen for updates from the CRM system. In that event, the
architecture should be extendable to accommodate it.

As you might have guessed, this is also a good candidate for a serverless micro‐
service.

You’ve now made good progress in breaking down your vision (i.e., the problem
domain) and identifying the parts with a set pieces mindset. If we redraw Figure 3-30
based on the preceding discussion, it will resemble Figure 3-31.

Breaking Down a Problem to Identify Its Parts | 125

Figure 3-31. The rewards system with its microservices and external applications

Figure 3-31 is simple, clean, and straightforward to understand. However, it does not
reveal an important characteristic. Intentionally, the diagram shows the connecting
lines without any arrows—we’ll discuss the reason for this in the next section.

Bringing the set pieces together. You might be thinking: breaking a monolith or the
problem domain into many parts, focusing on each part as a set piece, and developing
them independently is all good, but how do they come together to work in harmony
as one system? To find the answer, you need to go back to where we started with set
pieces as a concept in movies, theater, and music. A movie, for example, goes through
an editing process, and background music or dialog is added to make the transitions
between set pieces and other scenes understandable.

In serverless, you also have powerful ways to make the set pieces work together. They
are:

• APIs, for synchronous request/response communication•
• Events, as in the publish/subscribe model in event-driven architecture for asyn‐•

chronous communication
• Messages, for more direct and decoupled communication between a producer•

and a consumer

You can use these primary concepts as appropriate to add meaning to the lines con‐
necting the shapes in Figure 3-31, as the annotations in Figure 3-32 show. Remember,
in addition, there are several architectural and implementation patterns (such as
choreography and orchestration) that you will use as a blueprint to coordinate and
orchestrate the services to perform the business functionality. In Chapter 5, you will
learn about several patterns that are common in serverless development.

126 | Chapter 3: Software Architecture for Building Serverless Microservices

Figure 3-32. The potential communication techniques between the microservices, service
consumers, and external applications

The individuality of set pieces. Earlier we mentioned that one of the main benefits of
thinking and working in set pieces is that it allows you to focus on one part of the
overall vision and do the necessary planning, storyboarding, and rehearsals or testing
before marking it as ready. If more than one piece is in the making, then different
engineers or teams can work in parallel and in isolation, as there is no overlap.

With the implementation techniques and communication strategies between these
pieces identified and agreed upon, you can reap the same benefits if you take these
characteristics forward and apply them in serverless development:

• You can assign one or more engineers from the team that owns the rewards•
system to work on a set piece.

• You can focus on the planning (architecture and design) of each piece in•
isolation.

• Development and testing for each microservice can be carried out in an individ‐•
ual pipeline, with no or minimal conflicts with other development streams (as
depicted in Figure 3-33).

• With few or no dependencies between these pieces, each service can be released•
soon after it progresses from the testing stage to a ready state.

Breaking Down a Problem to Identify Its Parts | 127

Figure 3-33. A pictorial representation of the individuality of microservices’ CI/CD
pipelines

Completing the vision of the rewards system. Though you design, build, and deploy
most of your set pieces in isolation, they all need to come together, communicate,
and coordinate to function as one rewards system (see Figure 3-34). Internally in
each microservice, you will use services such as AWS Lambda, Amazon API Gateway,
SQS, and DynamoDB, and several others, depending on the needs of the services.
You will employ Amazon EventBridge to coordinate between the microservices and
decouple them with event-driven capability.

The rewards system example used here to demonstrate how to break down a problem
using analogies such as whole and parts, vision and focus, and set pieces was deliber‐
ately kept simple. In the real world you will face much more complex systems, but
you should always approach the complexity with the view that any problem can be
broken down into simple, manageable pieces that you can then focus on to successful
completion.

128 | Chapter 3: Software Architecture for Building Serverless Microservices

Figure 3-34. A high-level architectural representation of the rewards system

If you follow DDD, break your business domains into subdomains, core domains,
and bounded contexts, and apply an event-driven approach, you’ll no longer have
to face the giant architectural blueprints of the past complex network of monolithic
applications that span the entire organization. Instead, you’ll be able to work with
architectural constructs that stay within smaller boundaries owned and operated by
smaller teams.

Techniques to identify set pieces. This section has introduced several new concepts that
will help prepare you to tackle domain complexities. Here is some common thinking
you can apply to help you break down a problem and identify its parts:

• Using DDD, break your business domain into subdomains and identify the•
bounded contexts.

• Identify synchronous interactions that require request/response API contracts.•
• Isolate business logic that can be performed asynchronously.•
• Look for external interactions (for example, with legacy systems, third-party plat‐•

forms, SaaS applications, data feeds to your corporate data lake, etc.) and assess
the need for dedicated microservices to handle them as an ACL implementation.

Breaking Down a Problem to Identify Its Parts | 129

• Group administrative activities that are specific to the system boundary (API•
client creation, credential rotation, API usage quota monitoring, etc.).

• Dispatch push notifications from your application to its service consumers.•
• Identify common resources and static data, such as size measurements, currency•

conversions, and country codes, that are accessed by different microservices.
• Think about your observability needs: log streaming, analysis, and filtering•

activities.
• Determine fraud prevention and intelligence activities that should be part of your•

business logic (inspecting data, monitoring user activities, etc.).

This is by no means a complete list, but it should help trigger ideas and allow you to
identify points for further discussion among your team members with regard to vali‐
dating your model and splitting the complexity into manageable pieces. Remember,
as mentioned earlier, not all microservices need to host API endpoints or publish and
subscribe to custom domain events. For example:

• You may have a microservice to perform nightly batch jobs or data cleansing•
activities that runs on a schedule.

• You may have a microservice that is responsible for sourcing and persisting all•
the events in your application. It may not have any API but can act as a catch-all
for the domain events.

• You may have a microservice that provides APIs to serve its consumers with•
static data, utility computations, or service status checks. It may log all its func‐
tioning for observability, but not emit any events.

Incorporating a new set piece. When you follow an agile and iterative development
process, it is a necessity that you accommodate new features as you progress incre‐
mentally from your early minimum viable product (MVP) vision toward your maxi‐
mum value product (another MVP!) vision. A challenge teams often face and debate
for a long time is how to incorporate a new feature into the application—is it
preferable to make changes to the existing services, or make changes to extend the
application? It can be difficult to decide without knowing the details. However, where
possible, your priority should be to look at ways of extending the application, such as
by adding a new part or set piece.

Consider this new requirement for the rewards system:

After receiving customer feedback, your business now wants to offer to email the
reward codes to the users of the rewards system.

Assuming that millions of customers use the rewards system worldwide, you need
a robust emailing service to support the business’s ambition and growth. Amazon

130 | Chapter 3: Software Architecture for Building Serverless Microservices

Simple Email Service (SES) is a fully managed email service provider ideal for your
use case. However, there are some important factors you need to consider:

• Amazon SES has strict policies regarding send quotas per second, per day, etc.•
Your architecture should be capable of utilizing the service in accordance with
the account quota limits.

• Your business may want to use different email templates based on the season,•
reward type, value, country, language, etc., meaning you need to associate the
right template with every email request to send to SES.

• Dispatching emails to customers happens in near real time.•
• Sending emails to customers is more of a utility task or helper activity that is not•

part of the core business logic.
• If this is the first evolution of the rewards system, the business may have•

future ambitions to send other forms of emails, such as for account registration,
monthly reports, etc.

Considering these points, it will be beneficial to consider adding a new set piece (and
microservice) to the current rewards system, as shown in Figure 3-35.

Figure 3-35. The rewards system, with the addition of a service to send emails to
customers

Breaking Down a Problem to Identify Its Parts | 131

Now suppose you’ve developed and rolled out the emailing feature worldwide in a
phased manner, and it has become popular with customers. After a while, you begin
to hear the following from stakeholders:

Some customers have raised concerns via the support center about missing emails or
not receiving emails with the reward codes. To assess the validity of such claims and
help customers, we need end-to-end visibility of the emailing process.

To support this new business requirement, the rewards-emails service needs to keep
a log of when an email was sent to a customer and what happened at the receiving
end. Luckily, SES can help here by providing feedback on the delivery of each email,
including whether the email was opened, the link was clicked, the email was bounced,
and more. Collecting these crucial insights will help the business to understand and
validate each claim.

Though this late requirement seems like it might be a good fit as a set piece, a
better strategy in this case would be to incorporate it into the existing dedicated
rewards-emails service, as shown in Figure 3-36, for the following reasons:

• The rewards-emails service already holds the record of all the emails it has•
dispatched, and it’s beneficial to have visibility and traceability in one place.

• With SES, the sender (rewards-emails) can attach custom tags to the outgoing•
requests to SES. SES will then associate the custom tags with the feedback events,
making it easier to correlate them with individual requests.

• Receiving email feedback from SES involves handling streams of events and•
processing them for business insights. With this approach, rewards-emails can act
as the point of contact for SES and the gateway to everything related to emails for
the rewards system.

When you’re building a service for sending emails via Amazon
SES, depending on the scale of the organization and the business
domains, there may be more than one business area sending differ‐
ent types of emails to customers. In such cases, you may benefit
from having a dedicated team owning the emailing service with an
architecture and implementation to support the needs of multiple
teams.

132 | Chapter 3: Software Architecture for Building Serverless Microservices

Figure 3-36. The rewards system, with the option to receive and handle email feedback
events from SES

Building Microservices to Serverless’s Strengths
How big a microservice should be is arguably the most debated topic in microservices
forums. This is because you cannot quantify a microservice based on the number of
lines of code or the size of its deployment package. While these are good measures to
stop you from losing control and building monoliths, one size does not fit all when
it comes to microservices. And when you’re building microservices in a serverless
technology ecosystem, they have many more characteristics to consider on top of
what a standard microservice has. Here are a few points to keep in mind.

Breaking Down a Problem to Identify Its Parts | 133

The size of a serverless microservice is not measured by the number of Lambda functions
One of the primary differentiators (and mindset changes that you need to make)
when building serverless microservices is that you’re not programming everything
using a particular language to create your microservice. Instead, you are composing it
using managed services. Programming is part of the process, but not all of it.

If you’re new to serverless, it can be hard to digest that writing Lambda functions is
not necessarily the primary development task in building a serverless application. If
you think back to Chapter 1, where we looked at the serverless technology ecosystem
and how the role of a serverless engineer requires diverse skills, this is why.

There are several use cases where a serverless microservice may not even need
a Lambda function. It may contain business logic orchestration using AWS Step
Functions, and its integration capability with other AWS services may be provided
via AWS SDK and native service integrations. In some cases, unless there is a specific
purpose, you may not need a function to handle an API request. You can integrate
Amazon API Gateway directly with services other than AWS Lambda.

The infrastructure definition of your serverless microservice is as important
as the business logic code
In traditional microservice development, you are likely to code your business logic
and bundle it to deploy to an application server or a cloud-hosted container. A siloed
team responsible for managing the container clusters and the server infrastructure
will take care of operating your microservices. As you’ll have gathered from the
discussions in the book, the approach is different in serverless development. You
select your tool to represent the infrastructure definition at the point at which you
start developing, similar to choosing your compiler in a traditional programming
environment. You and your team decide to use AWS Cloud Development Kit (CDK),
AWS CloudFormation, AWS Serverless Application Model (SAM), or other frame‐
works before you even begin your development work.

Say you’ve decided to use a Node.js runtime for your Lambda functions and will
develop using TypeScript. On top of this, you are using CDK to model and define the
serverless infrastructure of your application. In this setup, you are programming your
business logic and infrastructure in TypeScript. You use the same syntax to compose
your API Gateway endpoint that integrates with a Lambda function that contains
the business logic of the service you offer via the API. This is an example of how
serverless development comprises business and infrastructure logic.

The more granularity, the deeper the observability
As you have seen, granularity and fine-grained control are some of the strengths
of serverless. Unlike with traditional microservices running in containers, you have
much control over each resource in a serverless microservice. Each managed resource

134 | Chapter 3: Software Architecture for Building Serverless Microservices

may provide several operational metrics, and you can pick and choose the essential
ones. For example, you may be keeping a watch on the latency of an API endpoint or
the memory consumption of a Lambda function. In contrast, for an SQS queue, you
are interested in the volume of messages it handles.

When a managed service provides you with a granular level of visibility, you benefit
from the deeper observability targets for your microservice. The operational benefits
you gain from serverless yield improvements in business visibility, service quality,
and end-user satisfaction.

In the previous section, you learned how to split your problem and build smaller
microservices. That approach lets you focus on each piece of your solution and gauge
its functioning, setting up observability targets and measures for each service. For
example, a customer-facing microservice’s monitoring needs differ from those of a
report-generating utility service. Always remember that observing the activities in a
pond is way more manageable than in an ocean!

Event-Driven Architecture for Microservices Development
We’ve covered a lot of ground with regard to architecting serverless applications,
including:

• The many components of the serverless technology ecosystem•
• The unique characteristics of serverless technology•
• The importance of thinking about domains, boundaries, smaller teams, APIs,•

and event-driven architecture (that is, the first principles)
• Common approaches for migrating legacy applications to serverless•
• The important concepts of domain-driven design and how they are relevant to•

building microservices
• Microservices, their characteristics, and how to architect and build them to•

serverless’s strengths
• Some common software architectures and the relevance of event-driven architec‐•

ture in serverless development

That’s a long list of great information that you have been exposed to. If you are new
to modern architectural patterns, the encouraging news is that you have done all the
hard work and are ready to move forward. In the remainder of this chapter, we’ll fill
in some of the remaining but crucial details about event-driven architecture that will
become part of your daily serverless development process.

Event-Driven Architecture for Microservices Development | 135

Event-Driven Computing and Reactive Services
You’ll often hear the terms event-driven architecture and event-driven computing used
interchangeably, but are they the same? Consider the following definitions:

• Event-driven architecture is an architectural paradigm that uses events to com‐•
municate asynchronously between decoupled microservices.

• Event-driven computing is the implementation or realization of event-driven•
architecture and the behavior of systems that work asynchronously.

In other words, event-driven architecture is a high-level thought process used in
designing applications and microservices that promotes asynchrony and eliminates
hard dependencies to make them loosely coupled or decoupled. Event-driven com‐
puting then turns those design ambitions into implementation artifacts, making the
concepts a reality.

You saw the four main parties in event-driven architecture—events, event carriers,
event producers, and event consumers—earlier in this chapter. The key member of
the event-driven ecosystem is the event carrier, also known as an event router, bus,
mediator, broker, etc. Though these terms have subtle differences in their meaning,
for your overall understanding, you can consider all of them to be services that ingest
events from applications and deliver them to one or more applications.

Is My Microservice a Reactive Service?
By definition, a reactive service is loosely coupled, resilient, and scalable. Importantly,
it responds to events promptly, according to its purpose and operational responsibili‐
ties. When we say a microservice is reactive, we’re talking about its behavior at an
architectural level. Consider the example shown in Figure 3-37, where the customer
account microservice of a media company emits an event when a customer subscribes
to a particular channel, and the media enablement microservice reacts to channel
subscription events. At this level, beyond loose coupling, it does not reveal much
about its characteristics as a reactive service; we don’t know how scalable or resilient
it is.

Figure 3-37. Depiction of simple event-driven and reactive microservices

136 | Chapter 3: Software Architecture for Building Serverless Microservices

Suppose you now look at the internal design and implementation of the media
enablement microservice, as shown in Figure 3-38. Here, you will notice the different
cloud services that it uses to fulfill its task asynchronously using event-driven com‐
puting implementation constructs.

Figure 3-38. A detailed view of the internals of a simple event-driven microservice

If you inspect the AWS services that compose the media enablement microservice,
you’ll find that each has scalability, high availability, and resiliency built into it.
Individually and collectively, as microservices, they are reactive services.

Event-driven computing and reactive services are core to serverless. They comple‐
ment serverless technology in that they enable on-demand computing, scale to zero,
and pay per use, among other things. As you are not running services and consuming
cloud resources when they’re not needed, this reduces energy consumption and aids
with cloud sustainability measures (we’ll talk about patterns and best practices for
sustainability in serverless development in Chapter 10).

An Introduction to Amazon EventBridge
Amazon EventBridge is a fully managed serverless event bus that allows you to
send events from multiple event producers, apply event filtering to detect events,
perform data transformation where needed, and route events to one or more target
applications or services (see Figure 3-39). It’s one of the core fully managed and
serverless services from AWS that plays a pivotal role in architecting and building
event-driven applications. As an architect or a developer, familiarity with the features
and capabilities of EventBridge is crucial. If you are already familiar with EventBridge
and its capabilities, you may skip this section.

Event-Driven Architecture for Microservices Development | 137

https://oreil.ly/qC3wO

Figure 3-39. The components of Amazon EventBridge (source: adapted from an image
on the Amazon EventBridge web page)

The technical ecosystem of EventBridge can be divided into two main categories. The
first comprises its primary functionality, such as:

• The interface for ingesting events from various sources (applications and•
services)

• The interface for delivering events to configured target applications or services•
(consumers)

• Support for multiple custom event buses as event transportation channels•
• The ability to configure rules to identify events and route them to one or more•

targets

138 | Chapter 3: Software Architecture for Building Serverless Microservices

https://oreil.ly/mW-Ku

The second consists of features that are auxiliary (but still important), including:

• Support for archiving and replaying events•
• The event schema registry•
• EventBridge Scheduler for scheduling tasks on a one-time or recurring basis•
• EventBridge Pipes for one-to-one event transport needs•

Let’s take a look at some of these items, to give you an idea of how to get started with
EventBridge.

Event buses in Amazon EventBridge
Every event sent to EventBridge is associated with an event bus. If you consider
EventBridge as the overall event router ecosystem, then event buses are individual
channels of event flow. Event producers choose which bus to send the events to, and
you configure event routing on each bus.

The EventBridge service in every AWS account has a default event bus. AWS uses the
default bus for all events from several of its services.

You can also create one or more custom event buses for your needs. In addition, to
receive events from AWS EventBridge partners, you can configure a partner event
source and send events to a partner event bus.

Event routing rules
The rules you create in EventBridge are the logic behind the filtering and routing of
events that you associate with an event bus. These rules are effectively part of your
application logic, and are designed, documented, deployed, and tested as such. A
rule comprises three parts: the event filter pattern, event data transformation, and the
target(s).

To filter an event in and send it to a target, you configure an event pattern as your
filter condition. The sample pattern in Example 3-2 will match events like the one in
Example 3-1 based on the domain, service, type, and payment_type attribute values.

Example 3-2. An example event filter pattern

{
 "detail": {
 "metadata": {
 "domain": [
 "ecommerce"
],
 "service": [
 "service-payments"

Event-Driven Architecture for Microservices Development | 139

],
 "type": [
 "payment_received"
]
 },
 "data": {
 "payment_type": [
 "creditcard"
]
 }
 }
}

As part of each rule, you can perform simple data transformations. At the time of
writing, for each rule you can add up to five targets to send matching events to.

An important fact to keep in mind is that EventBridge guarantees at least once
delivery of events to targets. This means a target may receive an event more than once
(i.e., it may receive duplicate events). You will learn how to handle this situation later
in the chapter.

Event archiving and replay
In EventBridge, you can store events in one or more archives. The events you archive
depend on the event filter pattern. For example, you could create an archive to store
all the events that match the pattern shown in Example 3-2.

You can create multiple archives to cater to your needs. Then, based on your business
requirements, you can identify the events within your bounded context that need
archiving and send them to the appropriate archives using different filter conditions.
Unless there is a specific requirement to archive all the events, keep your archives as
lean as possible as a best practice. Figure 3-40 shows a comparison of the different
approaches for a better understanding.

To replay events from an archive, you specify the archive name and the time window.
EventBridge reads the events from the archive and puts them onto the same event bus
that originally emitted them. To differentiate a replayed event from the original event,
EventBridge adds a replay-name attribute.

140 | Chapter 3: Software Architecture for Building Serverless Microservices

Figure 3-40. Different event archiving approaches, from least to most favored

Event schema registry
Every event has a structure, defined by a schema. EventBridge provides the schema
for all the AWS service events, and it can infer the schemas of any other events sent to
an event bus. In addition, you can create or upload custom schemas for your events.

Schema registries are holding places or containers for schemas. As well as the default
registries for built-in schemas, discovered schemas, and all schemas, you can create
your own registries to provide groupings for your schemas.

EventBridge provides code bindings for schemas, which you can
use to validate an event against its schema. This is useful to protect
against introducing any breaking changes that might affect the
downstream event consumers.

EventBridge Scheduler
EventBridge Scheduler is a way to configure tasks to be invoked asynchronously, on
a schedule, from a central location. It is fully managed and serverless, which allows
scheduling of millions of tasks either for one-time invocation or repeatedly. The
schedules you configure are part of your architecture.

Event-Driven Architecture for Microservices Development | 141

The EventBridge Scheduler can invoke more than 270 AWS services; it has a built-in
retry mechanism and a flexible invocation time window.

EventBridge Pipes
Earlier, we discussed using EventBridge routing rules to filter events and send them
to multiple targets. EventBridge Pipes, on the other hand, builds a one-to-one inte‐
gration pipeline between an event publisher and a subscriber. Within a pipe, you have
the option to perform event filtering, data transformation, and data enrichment (see
Figure 3-41). This is quite a powerful feature, and it reduces the need for writing
custom code in many use cases.

Figure 3-41. A representation of EventBridge Pipes integration between an event source
and its target (source: adapted from an image on the Amazon EventBridge Pipes web
page)

Domain Events, Event Categories, and Types
As mentioned earlier in this chapter, in its simple and pure form, an event is some‐
thing that has already happened. In the context of EventBridge, it’s a notification
about that thing happening—a data capsule containing information about the event
that has occurred. The place where the event happened could be your backend
microservice, a web application serving customers, a third-party system you interact
with, or a legacy on-premises system in your enterprise.

An event is single-purpose and carries details about one thing. Event producers
are the applications that publish information about the thing that happened. Event
consumers are the applications that show interest by subscribing to certain events.

How do you represent an event?
Defining the structure of an event is not as easy a task as it may sound, due to
differing standards and usage patterns. The difficulty and disagreements mainly

142 | Chapter 3: Software Architecture for Building Serverless Microservices

https://oreil.ly/ciXEj
https://oreil.ly/ciXEj

center around deciding on a particular standard so that your events are portable
across different applications, event carriers, and cloud platforms.

Events are represented as JSON objects. The structure of the events used in this book
follows the pattern used by Amazon EventBridge. Example 3-3 shows all the possible
fields or attributes in an EventBridge event.

Example 3-3. A sample EventBridge event

{
 "version": "0",
 "id": "6a7e8feb-b491-4cf7-a9f1-bf3703467718",
 "detail-type": "Order submission",
 "source": "service-checkout",
 "account": "111122223333",
 "time": "2023-12-22T18:43:48Z",
 "region": "eu-west-1",
 "resources": [
 "arn:service-identifier"
],
 "detail": {
 }
}

When you send an event from your application to EventBridge, it must contain the
following mandatory fields:

detail-type

A string value that describes the type of the event

source

A string value that identifies the source of the event

detail

A JSON object that contains the information about the event

The detail field carries the actual event data payload. You can think of this field as
user-specific, whereas the other fields are AWS-specific.

As the detail field takes a JSON object as its value, it is up to you to add the
necessary data as the event payload. However, it is highly recommended that you
devise a common, high-level structure that every team in your organization can
follow.

If you refer back to Example 3-1, you will notice that it follows a pattern—it splits the
event payload into metadata and data sections, as shown here:

{
 "detail": {

Event-Driven Architecture for Microservices Development | 143

 "metadata": {
 },
 "data": {
 }
 }
}

You can use the metadata section to include all the common data items, as illustrated
in Example 3-4. In the majority of cases, one or more of these fields and their values
will become the filter criteria when setting up routing rules.

Example 3-4. Event metadata section carrying the domain and service details

{
 "metadata": {
 "domain": "ecommerce",
 "subdomain": "orders",
 "service": "payments",
 "category": "domain_event",
 "type": "data",
 "name": "payment_received"
 }
}

This is a simple representation where the metadata section contains the basic infor‐
mation about the origin of the event and its type. You can adapt and tailor its contents
for use in your team and organization. Example 3-5 shows an extended use of the
metadata field, carrying both domain-specific and critical operational details.

Example 3-5. Event metadata section carrying domain and operational details

{
 "metadata": {
 "version": "2.0",
 "trace_id": "skdj834sd3-j3ns-cmass23",
 "created_at": "2023-12-12T11:24:38Z",
 "domain": {
 "name": "ecommerce",
 "subdomain": "orders",
 "service": "payments",
 "category": "domain_event",
 "type": "data",
 "event": "payment_received"
 },
 "TTL": 1730419200
 }
}

144 | Chapter 3: Software Architecture for Building Serverless Microservices

Adding a TTL value, as in this example, is a way of propagating the data retention
policy to the potential consumers.

The data section contains the event instance details. This might be information about
a specific customer order, for instance, as shown in Example 3-6.

Example 3-6. Event data specific to the customer order

{
 "data": {
 "customer_id": "730e-4dfb-9166",
 "order_number": "123-987-456",
 "payment_reference": "cc-visa-9076-cv3s5s",
 "payment_type": "creditcard",
 "amount": 35.99,
 "currency": "GBP",
 "paid_at": "2023-12-30T09:12:27Z"
 }
}

The data section can be simple and compact, as in this example, or contain nested
structures, depending on the information it carries.

It is beneficial to adhere to a standard structure for defining
events across your organization or at a business domain level. This
promotes uniformity and will make it easier to interpret events
produced and consumed by applications across different domains.
While teams may introduce certain variations and adaptations, it’s
a good idea to have a common base structure.

Event categories in serverless development
Categorization of events has always been a discussion point among software engi‐
neers. From a business point of view, domain events are the most important events.
However, those who look after a distributed system will likely say operational events
carry equal importance. In serverless development, it will be advantageous to under‐
stand the different categories of events you will encounter and use them where they
fit. These include:

• Domain events•
• Operational events•
• AWS events•
• Internal events•

• Local events•
• Transformed events•
• Custom events•

Event-Driven Architecture for Microservices Development | 145

Differentiating event categories from event types. The event categories mentioned in the
previous section are a logical way of separating events based on their origin, bound‐
ary, and ownership. This is one way of classifying events, but it may vary across teams
and organizations.

The terms event category and event type are often used interchangeably, and there is
no written specification explaining how to differentiate them. The type of an event
reflects its purpose and is explicitly associated with the event. Though events are
primarily envelopes of data, and each set of data represents something that happened
in the system, if you shift your mindset from being a purist to a practical thinker you
will soon find ways to add more meaning to your events. For example, you can add a
field within the metadata section to indicate the event type.

The following are some common event types in event-driven architecture:

Command
An instruction from the publisher directing the subscriber to perform an action.
This type of event is useful in cases where the publisher has no direct control
over another service, application, or third-party system.

Data
A publish-and-forget style informational event. A data event is simply a carrier of
some data.

Query
An informational request from the event publisher. Similar to the request type,
but the publisher is asking for data, not a service.

Request
A request for downstream consumers to fulfill. For example, if service A is
handling an order, it might require service B to send some data to another system
so that it can eventually set a flag or data item. Service A raises a request event
and updates its system when it receives a response event (described next) from
service B.

Response
An event emitted by a consumer in reply to a request event.

Status
An informational event (similar to the data type) carrying information about the
status of some activity. For example, customer update action failed, third-party
system down, etc.

146 | Chapter 3: Software Architecture for Building Serverless Microservices

Task
This type of event is used to coordinate multiple tasks as part of a higher-level
task handled by the primary publisher. It is useful when you have workflows that
span multiple microservices.

With that differentiation in mind, let’s take a look at some of the categories listed
earlier.

Domain events. A domain event represents a significant business occurrence reported
by an application that implements the business logic of a domain. According to
Martin Fowler, it’s an event that “captures the memory of something interesting
which affects the domain.” In an enterprise, domain events flow between systems that
are part of different domains. They connect the dots to depict a user’s journey across
the different systems or data flows across the enterprise.

Example 3-7 is a typical example of a domain event emitted when a payment is
successfully received for an order. It states its domain along with the necessary details
about the payment.

Example 3-7. A domain event providing information about the receipt of a credit card
payment

{
 "detail": {
 "metadata": {
 "version": "1.0",
 "created_at": "2023-12-30T09:12:27Z",
 "trace_id": "skdj834sd3-j3ns-cmass23",
 "domain": "ecommerce",
 "subdomain": "orders",
 "service": "payments",
 "category": "domain_event",
 "type": "data",
 "name": "payment_received"
 },
 "data": {
 "customer_id": "730e-4dfb-9166",
 "order_number": "123-987-456",
 "payment_reference": "cc-visa-9076-cv3s5s",
 "payment_type": "creditcard",
 "amount": 35.99,
 "currency": "GBP",
 "paid_at": "2023-12-30T09:12:27Z"
 }
 }
}

Event-Driven Architecture for Microservices Development | 147

https://oreil.ly/UuSjN

A main differentiator for a domain event is its representation of business data that
is valid across the organization. Domain events are often classified as business confi‐
dential and rarely shared with external systems.

Use past tense to name domain events: for example, pay

ment_received, order_submitted, etc. In an organization with
multiple domains, subdomains, teams, microservices, and so
on, you can adopt a fully qualified name pattern for naming
events: com.<your-org>.<domain>.<bounded-context>.<micro

service>@<event-name>. For example, com.myorg.ecom.orders
.payments@PaymentReceived.

Operational events. Events that convey the operational health of an application, the
latency of an API endpoint, the deployment status of a microservice, and so on
are examples of operational events. You can argue that operational events are also
domain events as they capture something that affects the domain. If you associate
the domain events with the business functioning of a system—customer_account

_created, for example—operational events help to draw a separation between busi‐
ness functionality and system behavior.

Most of the operational events stay within a team’s own boundary, but there may be
operational events that get routed to the central operation team or platform team,
depending on the organizational structure. Example 3-8 shows an example of an
operational event that indicates a change in the uptime of a service.

Example 3-8. A sample operational event

{
 "metadata": {
 "version": "1.0",
 "created_at": "2023-12-20T02:22:27Z",
 "trace_id": "skdj834sd3-j3ns-cmass23",
 "domain": "holiday-travel",
 "subdomain": "flight-booking",
 "service": "service-status-checker",
 "category": "operational_event",
 "type": "status",
 "status": "down"
},
 "data": {
 "system": "anytime-payment-provider",
 "current_status": "down",
 "previous_status": "up",
 "status_count": "2",
 "checked_at": "2023-12-20T02:15:00Z"
 }
}

148 | Chapter 3: Software Architecture for Building Serverless Microservices

AWS events. AWS events are events owned and produced by AWS services. We are
mentioning them here as a type of event in order to create awareness of them as
distinct from the domain and operational events your applications emit. The AWS
cloud platform generates hundreds of events during the development and operation
of serverless applications. You may not handle many, but they drive the asynchronous
operation of the managed services. Example 3-9 shows an example of an S3 event for
uploading a new file, discount_codes.csv, to the bucket festival-promotions.

Example 3-9. A sample Amazon S3 event

{
 "Records": [
 {
 "eventVersion": "2.0",
 "eventSource": "aws:s3",
 "awsRegion": "eu-west-1",
 "eventTime": "2023-12-01T00:00:00.000Z",
 "eventName": "ObjectCreated:Put",
 "userIdentity": {
 "principalId": "EXAMPLE"
 },
 "requestParameters": {
 "sourceIPAddress": "127.0.0.1"
 },
 "responseElements": {
 "x-amz-request-id": "EXAMPLE123456789",
 "x-amz-id-2": "EXAMPLE123/5678abcdefghi/mnopqrsEFGH"
 },
 "s3": {
 "s3SchemaVersion": "1.0",
 "configurationId": "testConfigRule",
 "bucket": {
 "name": "festival-promotions",
 "ownerIdentity": {
 "principalId": "EXAMPLE"
 },
 "arn": "arn:aws:s3:::festival-promotions"
 },
 "object": {
 "key": "discount_codes.csv",
 "size": 1024,
 "eTag": "0123456789a6789abcdef",
 "sequencer": "0A1B2C3D4E5F678901"
 }
 }
 }
]
}

Event-Driven Architecture for Microservices Development | 149

The term custom event is a generic name given to any event that
your applications emit. The domain and operational events you
saw earlier are examples of custom events. When your application
emits a custom event, it typically sends the event to one of the
custom event buses you manage. When you work with AWS cloud
services, this is a way of differentiating your events from the AWS
events.

Internal events. Similar to operational events, internal events are local within your
bounded context; they are vital for driving the loosely coupled microservices inside
the boundary but are never shared outside it. Unlike domain events, internal events
may not contain information that is meaningful for services outside of their bounded
contexts. Internal events are also commonly referred to as local events, as they are
local within the application boundary. Example 3-10 shows an example of an internal
event emitted by a service that sends updated reward details to a CRM system,
informing it about a server error and setting the status to "retry".

Example 3-10. A sample internal event

{
 "detail": {
 "metadata": {
 "version": "1.0",
 "created_at": "2023-12-30T09:12:27Z",
 "trace_id": "skdj834sd3-j3ns-cmass23",
 "domain": "rewards",
 "service": "third-party-CRM",
 "category": "internal_event",
 "type": "status",
 "status": "retry"
 },
 "data": {
 "customer_id": "730e-4dfb-9166",
 "reward_code": "DXT876LSA536MBS",
 "order_numer": "123-987-456",
 "info": {
 "activity": "reward_update",
 "code": 500,
 "cause": "Internal Server Error"
 }
 }
 }
}

Transformed events. In Amazon EventBridge, you can modify source events before
sending them to one or more targets. These transformed events get formed at runtime
and do not comply with the original schema representation—in other words, the

150 | Chapter 3: Software Architecture for Building Serverless Microservices

events that go to the targets may not have all the original details included in the
source events. Keep in mind that the event transformation logic is part of your
architecture and design logic and should be treated as such.

There are several use cases for transformed events, as you will understand when you
start building distributed microservices. For example:

• The source event contains sensitive data you want to remove before sending it•
to a target. Here, you are limiting the exposure of sensitive data in downstream
systems.

• The target application requires just the event’s data part and is not interested in•
the metadata. Here, you are following the policy of sharing just the required data.

• The source event acts as a prompt to initiate some action in the target applica‐•
tion. In this scenario, you create a new event with values from the source or an
event with static data for the target. Here, you are performing data hiding.

Differentiating Events and Messages
The terms message and event are often used interchangeably in serverless. However,
their original intent and the purpose they serve are different. A message is infor‐
mation for a specific receiver or target application. It may contain details about
something that happened in the past, activities to be performed in the future, or a
command to instruct the receiver to carry out a specific activity. An example is a
Lambda function that adds the details of an order as a message to an SQS queue
for the order shipping application to process. Handling a message by a consumer
usually involves acknowledging receipt of the message and, in most cases, deleting the
message soon after processing it.

An event is a kind of message, but as we’ve seen, it exclusively conveys information
about something that has already happened. Events get published on topics to which
consumers subscribe to register their interest in receiving those events. For example,
an online gaming site could send an event upon the creation of a new member
account. Applications such as accounts, payments, and others may be interested in
consuming this event to initiate customer onboarding processes.

With the broader adoption of event-driven architecture in serverless, a clear separa‐
tion between events and messages is not always maintained.

Event producers and event publishing best practices
Event producers are applications that create and publish events. As you develop
on AWS, you publish your events to one of your custom event buses on Amazon
EventBridge. Here are some best practices for event publishers to follow:

Event-Driven Architecture for Microservices Development | 151

Event publishers should be agnostic of the consumers of their events.
One of the golden rules in event-driven architecture is that event producers
remain agnostic of the consumers. The event producers should not make
assumptions about who or what might consume their events and tailor the data.
This agnosticism lets you keep applications decoupled—one of the main benefits
of EDA.

In its pure form, consumer agnosticism suggests the use of a
publish-and-forget model. However, the reality, as you develop
granular microservices in serverless, can be different. There
will be situations (still within the loosely coupled services con‐
struct) where a publisher may want to know the outcome of
the handling of an event by a downstream consumer so that it
can update its status for recordkeeping, trigger an action, etc.
The event types listed in “Differentiating event categories from
event types” on page 146 can be indicators for this purpose.

Every event should carry a clear identification of its origin.
The details of the domain, service, function, etc., are important information to
identify the origin of an event. Not all events need to follow a strict pattern of the
hierarchy of their origin, but it benefits cross-domain consumers to set the event
filters as part of consumption.

In a secured and regulated environment, teams apply event encryption measures
to protect data privacy. Often, third-party systems sign the event payload, and
consumers perform IP address checks to validate the event origin before con‐
sumption.

Treat domain events as data contracts that conform to event schemas.
With distributed services, event producers should conform the events to the
published schema definitions, treating them as the equivalent of API contracts.

Versioning your events is essential to avoid introducing breaking changes.

Event producers should adhere to an agreed structure for uniformity across the
organization.

As discussed earlier, uniformity in the event structure at the organizational,
domain, or department level helps make the development process smoother in
many ways.

It may be challenging to create a standard format for your events at the outset.
You can evolve it as you gain experience and learn from others. Allow flexibility
within the overall design to enable teams that need to accommodate information
specific to them to do so.

152 | Chapter 3: Software Architecture for Building Serverless Microservices

An event should carry just the required data to denote the occurrence of the event.
Often it takes time to decide on the content of an event. If you follow the struc‐
ture shown earlier, with metadata and data sections, start with the metadata, as
you may already have clarity on most of those fields.

Begin from the context of when and where the event occurred, and build from
there. It’s a good practice to include a minimal set of shareable data that is just
enough to understand the event as an entity.

Event producers should add a unique tracing identifier for each event.
Including a unique identifier that can travel with the event to its consumers
improves your application’s tracing capabilities and observability.

Be aware of the event payload size limit and service quota.
The maximum payload size of an event in Amazon EventBridge is 256 KB (at the
time of writing). In high-volume event publishing use cases, consider the limit on
how many events you can send to EventBridge per second, and have measures in
place to avoid losing critical events if you exceed this limit.

When you publish events with sensitive data, you can add a meta‐
data attribute—say, severity—to indicate the level of severity of
the risk of this data being exposed, with values like RED, AMBER, and
GREEN. You can then implement logic to prevent certain subscribers
from receiving high-severity events, for example.
The gatekeeper event bus pattern described in Chapter 5 can make
use of the severity classification of events to consider encryption
measures when sharing events outside of its domain.

Event consumers and event consumption best practices
Event consumers are applications on the receiving end. They set up subscription
policies to identify the events that are of interest to them. As you get started with
Amazon EventBridge, here are a few tips and best practices for event consumers to
keep in mind:

Consumer applications may receive duplicate events and should be idempotent.
In event-driven computing, in the majority of cases, the event delivery is guaran‐
teed to be at least once (as opposed to exactly once or at most once). If you don’t
properly account for this, it can cause severe consequences. Imagine your bank
account getting debited twice for a purchase you made!

Building idempotency into an application that reacts upon receipt of events is the
most critical measure to implement.

Event-Driven Architecture for Microservices Development | 153

Storing the event data while processing it has benefits.
Depending on the event consumer’s logic, the event processing may happen in
near real time or with a delay. A practice often adopted by event subscribers is
to store the event data—temporarily or long-term—before acting on it. This is a
form of storage-first pattern, which you will learn about in Chapter 5.

There are several benefits to this practice. Primarily, it helps to alleviate the prob‐
lem of events potentially being received more than once by providing a register
that can be checked for duplicates before handling an event. In addition, storing
the events eases the retry burden on the consumer application; if a downstream
application goes down, for example, it won’t need to request that the producer
resend all of the events that application needs to process.

Ordering of events is not guaranteed.
Maintaining the order of events in a distributed event-driven architecture with
multiple publishers and subscribers is hard. EventBridge does not guarantee
event ordering. If the order of events is crucial, you’ll need to work with the
event producers to add sequence numbering. If that’s not possible, subscribers
can implement sorting based on the event creation timestamps to put them into
the correct order.

Avoid modifying events before relaying them.
There are situations where applications engage in an asynchronous chain of
actions known as the event relay pattern: the service receives an event, performs
an action, and emits an event for a downstream service. In such situations, the
subscriber should never modify the source event and publish a modified version.
It must always emit a new event with its identity as publisher and the schema it is
responsible for.

Collect events that failed to reach the target consumer.
In a resilient event-driven architecture, a consumer may have all the measures it
needs to process an event successfully—but what happens if the event gets lost in
transit and does not arrive, or if the consumer experiences an unforeseen outage?

EventBridge retries event delivery until successful for up to 24 hours. If it fails to
deliver an event to the target, it can send the failed event to a dead letter queue
(DLQ) for later processing. As you saw earlier, you can also use EventBridge’s
archive and replay feature to reduce the risk of missing critical business events.

154 | Chapter 3: Software Architecture for Building Serverless Microservices

CloudEvents is a specification for describing event data in a com‐
mon way. It’s supported by the Cloud Native Computing Founda‐
tion (CNCF). Adopting CloudEvents as the standard for defining
and producing your event payloads will ensure your events remain
interoperable, understandable, and predictable, particularly as
usage increases across the domains in your organization.
AsyncAPI is the industry standard for defining asynchronous
APIs, and it can be used to describe and document message-driven
APIs in a machine-readable format. Whereas the CloudEvents
specification constrains the schema of your event payloads, Async‐
API helps you to document the API for producing and consuming
your events. AsyncAPI is to event-driven interfaces as OpenAPI is
to RESTful APIs.

The Importance of Event Sourcing in Serverless Development
Event sourcing is a way of capturing and persisting the changes happening in a system
as a sequence of events.

Figure 3-3 showed a customer account service that emits account created, account
updated, and account deleted events. Traditionally, when you store and update data in
a table, it records the latest state of each entity. Table 3-1 shows what this might look
like for the customer account service. There’s one record (row) per customer, storing
the latest information for that customer.

Table 3-1. Sample rows from the Customer Account table

Customer ID First name Last name Address DOB Status
100-255-8730 Joe Bloke 99, Edge Lane, London 1966/04/12 ACTIVE
100-735-6729 Biz Raj 12A, Top Street, Mumbai 1995/06/15 DELETED

While Table 3-1 provides an up-to-date representation of each customer’s data, it
does not reveal whether customers’ addresses have changed at any point. Event
sourcing helps provide a different perspective on the data by capturing and persisting
the domain events as they occur. If you look at the data in Table 3-2, you’ll see that it
preserves the domain events related to a customer account. This data store acts as the
source for the events if you ever want to reconstruct the activities of an account.

Event-Driven Architecture for Microservices Development | 155

https://cloudevents.io
https://www.asyncapi.com

Table 3-2. Event source data store for the customer account service

PK SK Event ID First
name

Last
name

Address DOB Status

100-255-8730 2023-04-05T08:47:
30.718Z

Hru343t5-jvcj Joe Bloke 99, Edge Lane,
London

1966/04/12 UPDATED

100-735-6729 2023-01-15T02:37:
20.545Z

lgojk834sd3-
r454

Biz Raj 12A, Top Street,
Mumbai

1995/06/15 DELETED

100-255-8730 2022-10-04T09:27:
20.443Z

Jsd93ebhas-
xdfgns

Joe Bloke 34, Fine Way,
Leeds

1966/04/12 UPDATED

100-255-8730 2022-06-15T18:57:
43.148Z

Zxjfie294hfd-
kd9e7n

Joe Bloke 15, Nice Road,
Cardiff

1966/04/12 CREATED

100-735-6729 2009-11-29T20:49:
40.003Z

skdj834sd3-j3ns Biz Raj 12A, Top Street,
Mumbai

1995/06/15 CREATED

Uses for event sourcing
Although early thoughts on event sourcing focused on the ability to re-create the
current state of an entity, many modern implementations use event sourcing for
additional purposes, including:

Re-creating user session activities in a distributed event-driven system
Many applications capture user interactions in timeboxed sessions. A session
usually starts at the point of a user signing into the application and stays active
until they sign out, or the session expires.

Event sourcing is valuable here to help users resume from where they left off or
resolve any queries or disputes, as the system can chart each user’s journey.

Enabling audit tracing in situations where you cannot fully utilize logs
While many applications rely on accumulated, centrally stored logs to trace
details of system behaviors, customer activities, financial data flows, etc., enter‐
prises need to comply with data privacy policies that prevent them from sending
sensitive data and PII to the logs. With event sourcing, as the data resides inside
the guarded cloud accounts, teams can build tools to reconstruct the flows from
the event store.

Performing data analysis to gain insights
Data is a key driver behind many decisions in the modern digital business
world. Event sourcing enables deeper insights and analytics at a fine-grained
level. For example, the event store of a holiday booking system harvests every
business event from several microservices that coordinate to help customers
book their vacations. Often customers will spend time browsing through several

156 | Chapter 3: Software Architecture for Building Serverless Microservices

destinations, offers, and customizable options, among other things, before com‐
pleting the booking or, in some cases, abandoning it. The events that occur
during this process carry clues that can be used, for example, to identify popular
(and unpopular) destinations, packages, and offers.

Since the conception of event sourcing a couple of decades ago, due
to the emergence of the cloud and managed services, there have
been vast changes in the volume of data captured and the available
ingestion mechanisms and storage options. The data models of
many (but not all) modern applications accommodate storing the
change history for a certain period alongside the actual data, as
per the business requirements, to enable quickly tracing all the
activities.

Architectural considerations for event sourcing
At a high level, the concept of event sourcing is simple—but its implementation
requires careful planning. When distributed microservices come together to perform
a business function, you face the challenge of having hundreds of events of different
categories and types being produced and consumed by various services. In such a
situation:

• How do you identify which events to keep in an event store?•
• How do you collect all the related events in one place?•
• Should you keep an event store per microservice, bounded context, application,•

domain, or enterprise?
• How do you handle encrypted and sensitive data?•
• How long do you keep the events in an event store?•

Finding and implementing the answers to these critical questions involves several
teams and business stakeholders working together. Let’s take a look at some of the
options.

Dedicated microservice for event sourcing. Domain events flow via one or more event
buses in a distributed service environment. With a dedicated microservice for event
sourcing, you separate the concerns from different services and assign it to a single-
purpose microservice. It manages the rules to ingest the required events, perform
necessary data translations, own one or more event stores, and manage data retention
and transition policies, among other tasks.

Event-Driven Architecture for Microservices Development | 157

Event store per bounded context. A well-defined bounded context will benefit from
having its own event store, which can be helpful for auditing purposes or for recon‐
structing the events that led to the current state of the application or a particular
business entity. For example, in the rewards system we looked at earlier in this
chapter (Figure 3-36), you might want to have an event store to keep track of
rewards updates. With an extendable event-driven architecture, it’s as simple as
adding another set piece microservice for event sourcing, as shown in Figure 3-42.

Figure 3-42. Adding a dedicated rewards-audit microservice for event sourcing to the
rewards system

Application-level event store. Many applications you interact with daily coordinate
with several distributed services. An ecommerce domain, for example, has many sub‐
domains and bounded contexts, as you saw back in Figure 2-3 (in “Domain-first” on
page 40). Each bounded context can successfully implement its own event sourcing
capability, as discussed in the previous subsection, but it can only capture its part in
the broader application context.

158 | Chapter 3: Software Architecture for Building Serverless Microservices

As shown in Figure 3-43, your journey as an ecommerce customer purchasing items
touches several bounded contexts—product details, stock, cart, payments, rewards,
etc. To reconstruct the entire journey, you need events from all these areas. To plot a
customer’s end-to-end journey, you must collate the sequence of necessary events. An
application-level event store is beneficial in this use case.

Figure 3-43. An ecommerce customer’s end-to-end order journey, with the different
touchpoints

Centralized event sourcing cloud account. So far, you have seen single-purpose dedicated
microservice, bounded context, and application-level event sourcing scenarios. A
centralized event store takes things to an even more advanced level, as shown in Fig‐
ure 3-44. This is an adaptation of the centralized logging pattern, where enterprises
use a consolidated central cloud account to stream all the CloudWatch logs from
multiple accounts from different AWS Regions. It provides a single point of access for
all their critical logs, allowing them to perform security audits, compliance checks,
and business analysis.

Event-Driven Architecture for Microservices Development | 159

Figure 3-44. A central cloud account for event sourcing

There are, however, substantial efforts and challenges involved in setting up a central
event sourcing account and related services:

• The first challenge is agreeing upon a way of sharing events. Not all organizations•
have a central event bus that touches every domain. EventBridge’s cross-account,
cross-region event sharing is an ideal option here.

• Identifying and sourcing the necessary events is the next challenge. A central•
repository is required in order to have visibility into the details of all the event
definitions. EventBridge Schema Registry is useful, but it is per AWS account,
and there is no central schema registry.

• With several event categories and types, structuring the event store and deriving•
the appropriate data queries and access patterns to suit the business requirements
requires careful planning. You may need multiple event stores and different types
of data stores—SQL, NoSQL, object, etc.—depending on the volume of events
and the frequency of data access.

• Providing access to the event stores and events is a crucial element of this setup,•
with consideration given to data privacy, business confidentiality, regulatory
compliance, and other critical measures.

160 | Chapter 3: Software Architecture for Building Serverless Microservices

Event sourcing is an important pattern and practice for teams building serverless
applications. Even if your focus is primarily on delivering the core business features
(to bring value), enabling features such as event sourcing is still crucial. As mentioned
earlier, not every team will need the ability to reconstruct the application’s state based
on the events; however, all teams will benefit from being able to use the event store
for auditing and tracing critical business flows.

EventStorming
One of the classic problems in software engineering is balancing what’s in the
requirements, and what gets implemented and delivered. Misunderstandings of busi‐
ness requirements and misalignments between what the business stakeholders want
and what the engineering team actually builds are common in the software industry.
Applying the first principles of serverless development brings clarity to what you are
building, making it easier to align with the business needs. Developing iteratively and
in small increments makes it easier to correct when things go wrong before it is too
late and becomes expensive.

You cannot expect every serverless engineer to have participated in requirements
engineering workshops and UML modeling sessions or to understand domain-driven
design. Often, engineers lack a complete understanding of why they are building what
they are building. EventStorming is a collaborative activity that can help alleviate this
problem.

What is EventStorming?
EventStorming is a collaborative, non-technical workshop format that brings together
business and technology people to discuss, ideate, brainstorm, and model a business
process or analyze a problem domain. Its inventor, Alberto Brandolini, drew his
inspiration from domain-driven design. EventStorming is a fast, inexpensive activity
that brings many thoughts to the board as a way of unearthing the details of a
business domain using simple language that everybody understands. The two key
elements of EventStorming are domain experts (contributors) and domain events
(outcomes). Domain experts are subject matter experts (SMEs) who act as catalysts
and leading contributors to the workshop. They bring domain knowledge to the
process, answer questions, and explain business activities to everyone (especially the
technical members). Domain events are significant events that reflect business facts at
specific points. These events are identified and captured throughout the course of the
workshop.

The EventStorming process looks at the business process as a series of domain events,
arranges the events over a timeline, and depicts a story from start to finish. From the
thoughts gathered and domain events identified, you begin to recognize the actors,

Event-Driven Architecture for Microservices Development | 161

https://oreil.ly/hnuuO

commands, external systems, and, importantly, pivotal events that signal the change
of context from one part to the other and indicate the border of a bounded context.

A command is a trigger or action that emits one or more domain events. For example,
the success of a redeem reward command produces a reward-redeemed domain event.
You will see the domain model emerging as aggregates (clusters of domain objects) as
you identify the actors, commands, and domain events. In the previous example, the
reward is an aggregate that receives a command and generates a domain event.

A full explanation of how you conduct an EventStorming workshop is beyond the
scope of this book, but several resources are available. In addition to the ones listed
on the website, Vlad Khononov’s book Learning Domain-Driven Design (O’Reilly) has
a chapter on EventStorming.

The importance of EventStorming in serverless development
EventStorming is a great way to collaborate and to learn about business requirements,
identify domain events, and shape the model before considering architecture and
solution design. However, depending on the scale of the domain or product, the
outcome of EventStorming could be high-level.

Say your organization is transforming the IT operations of its manufacturing divi‐
sion. The EventStorming exercise will bring together several domain experts, business
stakeholders, enterprise and solution architects, engineering leads and engineers,
product managers, UX designers, QA engineers, test specialists, etc. After a few
days of collaboration, you identify various business process flows, domain events,
model entities, and many bounded contexts, among other things. With clarity about
the entire domain, you start assigning ownership—stream-aligned teams—to the
bounded contexts.

These teams then delve into each bounded context to identify web applications,
microservices, APIs, events, and architectural constructs to implement. While the
artifacts from the domain-level EventStorming sessions form a base, serverless teams
need more granular details. Hence, it is useful in serverless development if you
employ EventStorming in two stages:

Domain-level EventStorming
According to Brandolini, this is the “Big Picture” EventStorming workshop
aimed at identifying the business processes, domain events, commands, actors,
aggregates, etc.

Development-level EventStorming
This is a more small-scale activity that involves an engineering team, its business
stakeholders, the product manager, and UX designers. This is similar to what
Brandolini calls “Design Level EventStorming.”

162 | Chapter 3: Software Architecture for Building Serverless Microservices

https://oreil.ly/AoCnL
https://oreil.ly/1xJaN

Here, the focus is on the bounded context and developments within it. The team
identifies the internal process flows, local events, and separation of functionality
and responsibilities. These become the early sketches for set-piece microservices,
their interfaces, and event interactions. The outcome from the development-level
EventStorming feeds into the solution design process (explained in Chapter 6) as
engineers start thinking about the serverless architecture.

Let’s consider an example situation for development-level EventStorming:

Context: Figure 2-3 (in “Domain-first” on page 40) shows the breakdown of
an ecommerce domain. A domain-level EventStorming workshop has identified
the subdomains and bounded contexts. A stream-aligned team owns the user
payments bounded context.

Use case: Due to customer demand and to prevent fraud, the stakeholders want to
add a new feature where customers who call the customer support center to place
orders over the phone can make their payments via a secure link emailed to them
rather than providing the card number over the phone.

The proposed new feature only requires part of the ecommerce team to participate
in a (development-level) EventStorming session. It is a small-scale activity within a
bounded context with fewer participants.

Summary
You’ve just completed one of the most crucial chapters of this book on server‐
less development. The architectural thoughts, best practices, and recommendations
you’ve learned here are essential whether you work as an independent consultant or
part of a team in a big enterprise. Irrespective of the organization’s size, your ambition
is to architect solutions to the strengths of serverless. Business requirements and
problem domains can be complex and hard to comprehend, and it is the same in
other fields and walks of life. You can observe and learn how people successfully solve
non-software problems and apply those principles in your work.

Serverless architecture need not be a complex and tangled web of lines crisscrossing
your entire organization. Your vision is to architect single-purpose, loosely coupled,
distributed, and event-driven microservices as set pieces that are easier to conceive,
develop, operate, observe, and evolve within the serverless technology ecosystem of
your organization.

You will carry the learnings from these initial chapters with you as you go through
the remainder of the book. You will begin to apply the architectural lessons in
Chapter 5, which will teach you some core implementation patterns in serverless

Summary | 163

development. But first, the next chapter delves into one of the fundamental and
critical topics in software development: security.

Interview with an Industry Expert
Matt Lewis, Chief AWS Architect, IBM UK, AWS Data Hero
Matt is an AWS Data Hero and holds multiple AWS certifications. He works as Chief
AWS Architect at IBM, growing the AWS capability and ensuring customers make
the best use of AWS services to achieve their outcomes and deliver business value.
Previously, he was Chief Architect at a UK central government agency, where he
introduced serverless technologies that successfully handle several billion requests
each month. He set up and runs the AWS South Wales user group and is an organizer
of ServerlessDays Cardiff.

Q: Matt, you have worked in public and private sector organizations architecting highly critical
systems. Is there a fundamental shift in the technology and architectural decision-making
process between these organizations?

I don’t believe there is a fundamental shift in the technology and architectural
decision-making process between public and private sector organizations. Instead,
I see that differences in approaches are linked back to the underlying culture of an
organization. This is related to aspects like their risk appetite, their cloud operating
model, and the levels of autonomy individual engineering product teams have.

As these organizations move to the cloud, many of their existing processes need
to adapt. As these organizations move along the maturity model, the willingness
to adopt new technologies and make rapid architectural decisions increases. This
is because practices such as DevSecOps and the automatic enforcement of controls
through guardrails such as service control policies means that changes can be applied
in a secure and controlled manner.

I believe we will see more organizations adopting serverless technologies when archi‐
tecting highly critical systems. The UK’s National Cyber Security Centre notes that
adopting serverless components makes things easier for you as it moves more of
the shared responsibility model to the cloud provider. This means you can focus
on delivering business value whilst letting the cloud provider manage important
capabilities such as patching, scaling, high availability, and resilience.

164 | Chapter 3: Software Architecture for Building Serverless Microservices

Q: While you were at the DVLA [Driver and Vehicle Licensing Agency], I [Sheen] delivered a talk
to a group of developers and leaders on the benefits of serverless and shared some industry
case studies. How much do such sessions influence technology adoption in a public sector
environment?

I am a huge believer in the value of community and have found these types of
sessions to be influential. I would definitely encourage people to find their local
meetup group and become part of a community. The value that one person brings to
an organization isn’t just what they know individually, but it includes their network.
Technology evolves so quickly, and with it the number of new features and services,
as well as patterns and best practices. It’s not possible for one person to keep up-to-
date on everything. There is also the challenge that working within an organization,
you can be blinkered to just the scope of what is being delivered. Therefore, reaching
out and hearing from experts in the field is vital and plays a really important role.

From a public sector perspective, the digital services offered are ones that we, as
citizens, interact with. We expect the same kind of user experience we get from
major ecommerce sites. It makes sense to listen to experts across the private and
public sectors and find out what worked and what they would do differently if
starting again. This is something I am passionate about, as it results in delivering
higher-quality services at a lower cost point and ultimately delivering better value to
the taxpayer.

Q: As an AWS Data Hero, you have experience working with several data and storage services
on AWS. With a myriad of DBaaS options available, what would be your advice to organizations
migrating their legacy monolith applications that heavily depend on relational database
systems handling structured data?

When looking at migrating applications to the public cloud, I would always start by
mapping the applications against the “7 Rs.” This is an industry approach setting out
the seven most common migration strategies. The three most popular for migrating a
legacy monolith application that depends on an RDBMS are re-host, re-platform, and
refactor.

Re-hosting an application is typically the fastest approach to move to the cloud
but results in the highest total cost of ownership. This is often the first step on a
journey to allow a data center or on-premises servers to be decommissioned before
the application is optimized to take advantage of cloud capabilities.

Interview with an Industry Expert | 165

Re-platforming an application allows you to reshape it. Major opportunities include
migrating to an open source or AWS cloud native database engine and adopting
a managed database service such as Amazon RDS or Amazon Aurora. This way,
the cloud provider is responsible for administrative tasks like server provisioning,
patching, automated backups, and recovery, and you take advantage of continuous
monitoring, self-healing storage, and scaling. You can use the AWS Schema Conver‐
sion Tool (SCT) and Database Migration Service (DMS) tools to help migrate the
data.

Refactoring involves rearchitecting the application, often carried out in phases over
time. The industry move to microservices involves breaking apart monolithic legacy
applications into smaller microservices, which allows the associated data to be broken
up. As Dr. Werner Vogels once wrote, “a one size fits all database doesn’t fit anyone.”
When you break apart a monolith, you can look at NoSQL alternatives for particu‐
lar data domains that may be more appropriate and offer more advantages. AWS
provides a family of purpose-built databases, with many offering a serverless flavor.
Amazon themselves migrated all data from their consumer business from Oracle
to various AWS database services, including Amazon DynamoDB, Amazon RDS,
Amazon Aurora, and Amazon Redshift.

Q: You were at AWS re:Invent 2022 when Werner mentioned the significance of asynchrony
and event-driven architecture in his keynote. Why do you think these two are some of the core
architectural principles in building serverless applications?

Services offered today need to adapt to changes around them. Applications built
using synchronous request/response communication end up brittle and introduce
tight coupling. Issues in one component such as error rate or latency can cause
cascading failures, and it’s difficult to introduce new functionality.

Asynchrony and event-driven architectures are core principles in building modern
cloud native serverless applications. Key to this is decoupling the producer from
the consumers of an event. There are many benefits this introduces for serverless
applications, such as:

Scalability
Scalability is critical to handle unpredictable workloads. Loosely coupled and
stateless components can be scaled individually as needed.

Flexibility
New producers and consumers can be added without any impact on other com‐
ponents, allowing the overall system to evolve over time.

166 | Chapter 3: Software Architecture for Building Serverless Microservices

https://oreil.ly/R58YH

Fault tolerance
An issue with one event consumer does not prevent other consumers from
receiving and processing that event. Events can also be buffered and delivered
once the consumer is back online.

Responsiveness
Event consumers can process an event as soon as they receive it. For example,
using EventBridge or S3 notifications, an AWS Lambda function will be invoked
asynchronously with the details of the event. There is no polling required to
check if an event has taken place.

Simplicity
The concept of events being used to communicate between components creates
an architecture that is simple to understand and comprehend.

Cost efficiency
With no blocking between producers and consumers of events, and no running
servers constantly polling, there is typically no or little cost for components when
not in use. This results in a more cost-efficient architecture.

Q: You know from working in government organizations the importance of sustainability
considerations in digital. How do you balance performance, cost, and sustainability when
proposing new serverless architectures?

Sustainability has rightly become much more important when designing systems,
with its own pillar in the Well-Architected Framework that sets out best practices
and an AWS Customer Carbon Footprint Tool that will enable you to track emis‐
sions and quantify the effect of architectural changes over time. From the outset, I
would ensure that proposed architectures focus on asynchronous over synchronous
communication and are event-driven rather than using polling, for all the reasons
previously mentioned.

In almost all cases, there is a direct correlation between cost and sustainability. This
makes sense with services where AWS manages the scaling, and you are only charged
for resources used. The ability of AWS Lambda to scale to zero means you are
not paying for idle compute when there is no traffic. In addition, I would always
look to take advantage of new and more efficient hardware and software offerings,
such as adopting ARM-based Graviton processors over x86 where supported by the
workload.

The approach to handling data can also have a big impact. Architectures should use
efficient file formats like Parquet, and data should be compressed to reduce its size
before moving it over the network. Lifecycle management policies should be used
that will automatically move data to more energy-efficient storage tiers and enforce
strict data retention policies. The use of caching and edge services places data closer

Interview with an Industry Expert | 167

to the customer and reduces the amount of data that needs to be transferred over
long distances. All of these approaches also improve performance.

Another consideration is around SLAs and the impact these have on performance,
cost, and sustainability. Performance must be good enough, but the more stringent
the nonfunctional requirements (NFRs) around performance, availability, resilience,
etc., the higher the overall cost with more components running that impact sustaina‐
bility. Does all data need to be backed up, or only the most critical elements? Can
you support eventually consistent versus strongly consistent reads with Amazon
DynamoDB?

Finally, once the application has been deployed, it is important to continuously moni‐
tor and optimize. This will allow you to tune any long-running queries, restructure
data as new access patterns emerge, take advantage of provisioned capacity versus
on-demand, and more accurately determine the memory allocated to functions.

168 | Chapter 3: Software Architecture for Building Serverless Microservices

CHAPTER 4

Serverless and Security

We can only see a short distance ahead, but we can see plenty there that needs to be done.
—Alan Turing

Utilizing serverless technologies means some traditional security concerns go away,
such as patching operating system flaws and securing network connections. Yet,
as with any technological advancement, serverless introduces new challenges while
solving existing problems. Serverless security is no different. This chapter examines
the security threats to a serverless application and delves into key security primitives
and how they map to serverless engineering on AWS.

Unfortunately, software developers commonly only consider security once the entire
application has been developed, usually in the weeks or days before going live. Even
then, they tend to focus those last-minute efforts solely on securing the application’s
perimeter. There are two factors that contribute to this: firstly, security seems inher‐
ently complex to engineers, and secondly, engineers often feel that implementing
security measures runs counter to the practice of failure-driven iteration.

While software engineering teams can utilize security tools and delegate certain tasks
to these tools, security must always be a core engineering and operational concern.

Security Is a Process
As security technologist Bruce Schneier wrote in his April 2000 essay “The Process of
Security”: “Security is a process, not a product.”

Schneier is referring to the fact that security vulnerabilities are inevitable in software:
“Systems break, vulnerabilities are reported in the press, and still many people put
their faith in the next product, or the next upgrade, or the next patch. ‘This time it’s
secure.’”

169

https://oreil.ly/TaXp2
https://oreil.ly/TaXp2

Instead of relying on products, libraries, vendors, or services, you should optimize
your security process to maximize the potential for successful prevention, detection,
and remediation of vulnerabilities: “Products provide some protection, but the only
way to effectively do business in an insecure world is to put processes in place that
recognize the inherent insecurity in the products.”

Modern software engineering teams have a long-established development process.
Traditionally, this has looked something like this: design, build, test, deploy. The
DevOps movement ensured the operation of software became embedded in the soft‐
ware development lifecycle. Security must now also be part of the entire development
process.

The popular recommendation is to shift left on security, bringing it into the devel‐
opment lifecycle much earlier, and to leverage identity and access management to
provide defense in depth, not just at the perimeter. Serverless engineering presents
an opportunity to embed a secure-by-design approach into your daily work. As you
design, build, and operate your application, always have in mind the attack vectors,
potential vulnerabilities, and mitigations available to you (see Figure 4-1).

Figure 4-1. Application security involves detecting threats and applying preventative
measures to attack vectors

The practice of threat modeling is increasingly becoming an essential tool to continu‐
ally identify and guard against threats. It was added to the respected Thoughtworks
Technology Radar in 2015, with the observation that “throughout the lifetime of any
software, new threats will emerge and existing ones will continue to evolve thanks to
external events and ongoing changes to requirements and architecture.”

170 | Chapter 4: Serverless and Security

https://oreil.ly/Pa0X2
https://oreil.ly/Pa0X2

As a software engineer, you must also recognize and embrace your limitations. Engi‐
neering teams will typically have limited practical experience or working knowledge
of application security. Consult with security teams early in your software design
and development cycles. Security teams can usually help with arranging penetration
testing and security audits before you launch new applications and major features, as
well as supporting vulnerability detection efforts and incident response. Always be
aware of your organization’s cybersecurity strategy, which should include guidance on
securing cloud accounts and preserving data privacy.

Before we go any further, let’s take a moment to establish an important point: security
can be simple!

Security Can Be Simple
Given the stakes, ensuring the security of a software application can be a daunting
task. Breaches of application perimeters and data stores are often dramatic and
devastating. Besides the immediate consequences, such as data loss and the need
for remediation, these incidents usually have a negative impact on trust between
consumers and the business, and between the business and its technologists.

Security Challenges
Securing cloud native serverless applications can be particularly challenging for sev‐
eral reasons, including:

Managed services
Throughout this book, you will see that managed services are core to serverless
applications and, when applied correctly, can support clear separation of con‐
cerns, optimal performance, and effective observability. While managed services
provide a solid foundation for your infrastructure, as well as several security
benefits—primarily through the shared responsibility model, discussed later in
this chapter—the sheer number of them available to teams building on AWS
presents a problem: in order to utilize (or even evaluate) a managed service,
you must first understand the available features, pricing model, and, crucially,
security implications. How do IAM permissions work for this service? How is the
shared responsibility model applied to this service? How will access control and
encryption work?

Configurability
An aspect all managed services share is configurability. Every AWS service has
an array of options that can be tweaked to optimize throughput, latency, resil‐
iency, and cost. The combination of services can also yield further optimizations,
such as the employment of SQS queues between Lambda functions to provide
batching and buffering. Indeed, one of the primary benefits of serverless that is

Security Can Be Simple | 171

highlighted in this book is granularity. As you’ve seen, you have the ability to
configure each of the managed services in your applications to a fine degree. In
terms of security, this represents a vast surface area for the inadvertent introduc‐
tion of flaws like excessive permissions and privilege escalation.

Emergent standards
AWS delivers new services, new features, and improvements to existing features
and services at a consistently high rate. These new services and features could
either be directly related to application or account security or present new attack
vectors to analyze and secure. There are always new levers to pull and more
things to configure. The community around AWS and, in particular, serverless
also moves at a relatively fast pace, with new blog posts, video tutorials, and
conference talks appearing every day. The security aspect of software engineering
perhaps moves slightly slower than other elements, but there is still a steady
stream of advice from cybersecurity professionals along with regular releases
of vulnerability disclosures and associated research. Keeping up with all the
AWS product updates and the best practices when it comes to securing your
ever-evolving application can easily become one of your biggest challenges.

While cloud native serverless applications present unique security challenges, there
are also plenty of inherent benefits when it comes to securing this type of software.
The architecture of serverless applications introduces a unique security framework
and provides the potential to work in a novel way within this framework. You have a
chance to redefine your relationship to application security. Security can be simple.

Next, let’s explore how to start securing your serverless application.

Getting Started
Establishing a solid foundation for your serverless security practice is pivotal. Secu‐
rity can, and must, be a primary concern. And it is never too late to establish this
foundation.

As previously alluded to, security must be a clearly defined process. It is not a case
of completing a checklist, deploying a tool, or deferring to other teams. Security
should be part of the design, development, testing, and operation of every part of
your system.

Working within sound security frameworks that fit well with serverless and adopting
sensible engineering habits, combined with all the support and expertise of your
cloud provider, will go a long way toward ensuring your applications remain secure.

When applied to serverless software, two modern security trends can provide a
solid foundation for securing your application: zero trust and the principle of least
privilege. The next section examines these concepts.

172 | Chapter 4: Serverless and Security

Once you have established a zero trust, least privilege security framework, the next
step is to identify the attack surface of your applications and the security threats that
they are vulnerable to. Subsequent sections examine the most common serverless
threats and the threat modeling process.

Optimism Is Greater than Pessimism
The Optimism Otter says: “People in our organisation need to move fast to meet
the needs of our customers. The job of security is to help them move fast AND stay
secure.”

Serverless enables rapid development; security specialists should not only support
this pace but also act upon it. They should enhance the safety and sustainability of the
pace and, above all, not slow it down.

Software engineers should delegate to security professionals whenever there is a clear
need, either through knowledge acquisition or services, such as penetration testing
and vulnerability scanning.

Combining the Zero Trust Security Model with
Least Privilege Permissions
There are two modern cybersecurity principles that you can leverage as the corner‐
stones of your serverless security strategy: zero trust architecture and the principle of
least privilege.

Zero trust architecture
The basic premise of zero trust security is to assume every connection to your system
is a threat. Every single interface should then be protected by a layer of authentica‐
tion (who are you?) and authorization (what do you want?). This applies both to
public API endpoints, or the perimeter in the traditional castle-and-moat model,
and private, internal interfaces, such as Lambda functions or DynamoDB tables.
Zero trust controls access to each distinct resource in your application, whereas a
castle-and-moat model only controls access to the resources at the perimeter of your
application.

Imagine a knight errant galloping up to the castle walls, presenting likely-looking
credentials to the guards and persuading them of their honorable intentions before
confidently entering the castle across the lowered drawbridge. If these perimeter
guards form the extent of the castle’s security, the knight is now free to roam the
rooms, dungeons, and jewel store, collecting sensitive information for future raids
or stealing valuable assets on the spot. If, however, each door or walkway had addi‐
tional suspicious guards or sophisticated security controls that assumed zero trust

Security Can Be Simple | 173

https://oreil.ly/3yKCb

by default, the knight would be entirely restricted and might even be deterred from
infiltrating this castle at all.

Another scenario to keep in mind is a castle that cuts a single key for every heavy-
duty door: should the knight gain access to one copy of this key, they’ll be able to
open all the doors, no matter how thick or cumbersome. With zero trust, there’s
a unique key for every door. Figure 4-2 shows how the castle-and-moat model
compares to a zero trust architecture.

Figure 4-2. Castle-and-moat perimeter security compared to zero trust architecture

There are various applications of zero trust architecture, such as remote computing
and enterprise network security. The next section briefly discusses how the zero trust
model can be interpreted and applied to serverless applications.

Zero trust and serverless
Zero trust is often touted as the next big thing in network security. Buzzwords and
hype aside, you will find that it is a natural fit for applying security to distributed,
serverless systems. Indeed, zero trust is often the de facto methodology for securing
serverless applications. Approaching application security with a zero trust mindset
supports the development of good habits, such as inter-service message verification
and internally accessible API security.

You cannot simply move from a castle-and-moat model to zero trust. You first need
a supporting application architecture. For example, if your API, business logic, and
database are running in a single containerized application, it will be very difficult
to apply the granular, resource-based permissions needed to support zero trust.
Serverless provides the optimum application architecture for zero trust as resources
are naturally isolated across API, compute, and storage and each can have highly
granular access control in place.

174 | Chapter 4: Serverless and Security

The principle of least privilege
Identity and access control is essential for an effective zero trust architecture. If the
security perimeter must now be around every resource and asset in your system, you
are going to need a highly reliable and granular authentication and authorization
layer to implement this perimeter.

As your application resources interact with each other, they must be granted the
minimum permissions required to complete their operations. This is an application
of the principle of least privilege, introduced in Chapter 1.

Let’s take a relatively simple example. Suppose you have a DynamoDB table and
two Lambda functions that interact with the table (see Figure 1-11). One Lambda
function needs to be able to read items from the table, and the other function should
be able to write items to the table.

You might be tempted to apply blanket permissions to an access control policy and
share it between the two Lambda functions, like this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FullAccessToTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:*"
],
 "Resource": "arn:aws:dynamodb:eu-west-2:account-id:table/TableName"
 }
]
}

However, this would give each function more permissions than it needs, violating the
principle of least privilege. Instead, a least privilege policy for the read-only Lambda
function would look like this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadItemsFromTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:Query",
 "dynamodb:Scan"
],
 "Resource": "arn:aws:dynamodb:eu-west-2:account-id:table/TableName"
 }

Security Can Be Simple | 175

]
}

And a least privilege policy for the write-only Lambda function would look like this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "WriteItemsToTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem",
 "dynamodb:UpdateItem"
],
 "Resource": "arn:aws:dynamodb:eu-west-2:account-id:table/TableName"
 }
]
}

Fortunately, the underlying permissions engine used by all AWS resources, called
AWS Identity and Access Management (IAM), applies a deny by default stance: you
must explicitly grant permissions, layering in new permissions over time as required.
Let’s take a closer look at the power of AWS IAM.

The Power of AWS IAM
AWS IAM is the one service you will use everywhere—but it’s also often seen as one
of the most complex. Therefore, it’s important to understand IAM and learn how to
harness its power. (You don’t have to become an IAM expert, though—unless you
want to, of course!)

The power of AWS IAM lies in roles and policies. Policies define the actions that
can be taken on certain resources. For example, a policy could define the permission
to put events onto a specific EventBridge event bus. Roles are collections of one or
more policies. Roles can be attached to IAM users, but the more common pattern
in a modern serverless application is to attach a role to a resource. In this way, an
EventBridge rule can be granted permission to invoke a Lambda function, and that
function can in turn be permitted to put items into a DynamoDB table.

IAM actions can be split into two categories: control plane actions and data plane
actions. Control plane actions, such as PutEvents and GetItem (e.g., used by an auto‐
mated deployment role) manage resources. Data plane actions, such as PutEvents
and GetItem (e.g., used by a Lambda execution role), interact with those resources.

Let’s take a look at a simple IAM policy statement and the elements it is composed of:

{
 "Sid": "ListObjectsInBucket", # Statement ID, optional identifier for
 # policy statement

176 | Chapter 4: Serverless and Security

 "Action": "s3:ListBucket", # AWS service API action(s) that will be allowed
 # or denied
 "Effect": "Allow", # Whether the statement should result in an allow or deny
 "Resource": "arn:aws:s3:::bucket-name", # Amazon Resource Name (ARN) of the
 # resource(s) covered by the statement
 "Condition": { # Conditions for when a policy is in effect
 "StringLike": { # Condition operator
 "s3:prefix": [# Condition key
 "photos/", # Condition value
]
 }
 }
}

See the AWS IAM documentation for full details of all the elements of an IAM policy.

Lambda execution roles
A key use of IAM roles in serverless applications is Lambda function execution
roles. An execution role is attached to a Lambda function and grants the function
the permissions necessary to execute correctly, including access to any other AWS
resources that are required. For example, if the Lambda function uses the AWS SDK
to make a DynamoDB request that inserts a record in a table, the execution role must
include a policy with the dynamodb:PutItem action for the table resource.

The execution role is assumed by the Lambda service when performing control plane
and data plane operations. The AWS Security Token Service (STS) is used to fetch
short-lived, temporary security credentials which are made available via the function’s
environment variables during invocation.

Each function in your application should have its own unique execution role with
the minimum permissions required to perform its duty. In this way, single-purpose
functions (introduced in Chapter 6) are also key to security: IAM permissions can
be tightly scoped to the function and remain extremely restricted according to the
limited functionality.

IAM guardrails
As you are no doubt beginning to notice, effective serverless security in the cloud is
about basic security hygiene. Establishing guardrails for the use of AWS IAM is a core
part of promoting a secure approach to everyday engineering activity. Here are some
recommended guardrails:

Apply the principle of least privilege in policies.
IAM policies should only include the minimum set of permissions required
for the associated resource to perform the necessary control or data plane oper‐
ations. As a general rule, do not use wildcards (*) in your policy statements.
Wildcards are the antithesis of least privilege, as they apply blanket permissions

Security Can Be Simple | 177

https://oreil.ly/wquoH

for actions and resources. Unless the action explicitly requires a wildcard, always
be specific.

Avoid using managed IAM policies.
These are policies provided by AWS, and they’re often tempting shortcuts, espe‐
cially when you’re just getting started or using a service for the first time. You
can use these policies early in prototyping or development, but you should
replace them with custom policies as soon as you understand the integration
better. Because these policies are designed to be applied to generic scenarios, they
are simply not restricted enough and will usually violate the principle of least
privilege when applied to interactions within your application.

Prefer roles to users.
IAM users are issued with static, long-lived AWS access credentials (an access key
ID and secret access key). These credentials can be used to directly access the
application provider’s AWS account, including all the resources and data in that
account. Depending on the associated IAM roles and policies, the authenticating
user may even have the ability to create or destroy resources. Given the power
they grant the holder, the use and distribution of static credentials must be
limited to reduce the risk of unauthorized access. Where possible, restrict IAM
users to an absolute minimum (or, even better, do not have any IAM users at all).

Prefer a role per resource.
Each resource in your application, such as an EventBridge rule, a Lambda func‐
tion, and an SQS queue, should have its own unique role. Permissions for those
roles should be fine-grained and least-privileged.

The AWS Shared Responsibility Model
AWS uses a shared responsibility model to define the remit of application security
consumers and the cloud provider (see Figure 4-3). The important thing here is the
shift in security responsibility to AWS when using cloud services. This is increased
when using fully managed serverless services, such as compute with AWS Lambda:
AWS manages patching of the Lambda runtime, function execution isolation, and
so on.

Serverless applications are made up of business logic, infrastructure definitions, and
managed services. Ownership of these elements is split between AWS and the con‐
sumers of its public cloud services. As a serverless application engineer and AWS
customer, you are responsible the for security of:

• Your function code and third-party libraries used in that code•
• Configuration of the AWS resources used in your application•

178 | Chapter 4: Serverless and Security

• The IAM roles and policies governing access control to the resources and func‐•
tions in your application

Figure 4-3. The cloud security shared responsibility model: you are responsible for
security in the cloud, and AWS is responsible for security of the cloud

Think Like a Hacker
With your foundational zero trust, least privilege security strategy and a clear delinea‐
tion of responsibility in place, the next step is to identify the potential attack vectors
in your application and be aware of the possible threats to the security and integrity
of your systems.

When you imagine the threats to your systems, you may picture bad actors who are
external to your organization—hackers. While external threats certainly exist, they
must not overshadow internal threats, which must also be guarded against. Internal
threats could, of course, be deliberately malicious, but the more likely scenario is that
the vulnerabilities are introduced unintentionally. The engineers of an application can
often be the architects of their own security flaws and data exposures, often through
weak or missing security configuration of cloud resources.

The popular depiction of a hacker performing an obvious denial of service attack on
a web application or infiltrating a server firewall is still a very real possibility, but
subtler attacks on the software supply chain are now just as likely. These insidious
attacks involve embedding malicious code in third-party libraries and automating
exploits remotely once the code is deployed in production workloads.

It is essential to adopt the mindset of a hacker and fully understand the potential
threats to your serverless applications in order to properly defend against them.

Think Like a Hacker | 179

Meet the OWASP Top 10
Cybersecurity is an incredibly well-researched area, with security professionals con‐
stantly assessing the ever-changing software landscape, identifying emerging risks
and distributing preventative measures and advice. While as a modern serverless
engineer you must accept the responsibility you have in securing the applications you
build, it is absolutely crucial that you combine your own efforts with deference to
professional advice and utilization of the extensive research that is publicly available.

Identifying the threats to the security of your software is one task that you should not
attempt alone. There are several threat categorization frameworks available that can
help here, but let’s focus on the OWASP Top 10.

The Open Web Application Security Project, or OWASP for short, is a “non-profit
foundation that works to improve the security of software.” It does this primarily
through community-led, open source projects, tools, and research. The OWASP
Foundation has repeatedly published a list of the 10 most prevalent and critical
security risks to web applications since 2003. The latest version, published in 2021,
provides the most up-to-date list of security risks (at the time of writing).

While a serverless application will differ in some ways from a typical web application,
Table 4-1 interprets the OWASP Top 10 through a serverless lens. Note that the list
is in descending order, with the most critical application security risk, as classified
by OWASP, in the first position. We’ve added the “serverless risk level” column as an
indicator of the associated risk specific to serverless applications.

Table 4-1. Top 10 serverless application security risks

Threat category Threat description Mitigations Serverless
risk level

Broken access
control

Access control is the gatekeeper to your
application and its resources and data.
Controlling access to your resources and assets
allows you to restrict users of your application
so that they cannot act outside of their
intended permissions.

• API authentication and
authorization.

• Least-privilege, per-resource IAM
roles.

Medium

Cryptographic
failures

Weak or absent encryption of data, both
in transit between components in your
application and at rest in queues, buckets, and
tables, is a major security risk.

• Classify data being processed,
stored, or transmitted.

• Identify sensitive data according
to privacy laws, regulatory
requirements, and business needs.

• Encrypt sensitive data as a
minimum.

• Protect data in transit with HTTPS/
TLS.

Medium

180 | Chapter 4: Serverless and Security

https://oreil.ly/-MSdz

Threat category Threat description Mitigations Serverless
risk level

Injection Injection of malicious code into an application
via user-supplied data is a popular attack
vector. Common attacks include SQL and
NoSQL injection.

• Validate and sanitize external data
received by all entry points to your
application, e.g., API requests and
inbound events.

High

Insecure design Implementing and operating an application
that was not designed with security as
a primary concern is risky, as it will be
susceptible to gaps in the security posture.

• Adopt a secure by design approach.
• Security must be considered during

business requirements gathering
and solution design and formalized
via threat modeling.

Medium

Security
misconfiguration

Misconfigurations of encryption, access control,
and computational constraints represent
vulnerabilities that can be exploited by
attackers.
Unintended public access of S3 buckets is
a very common root cause of cloud data
breaches. Lambda functions with excessive
timeouts can be exploited to cause a DoS
attack.

• Define a paved road to secure
configuration of cloud resources for
engineers.

• Keep application features,
components, and dependencies to a
minimum.

Medium

Vulnerable and
outdated
components

Continued use of vulnerable, unsupported, or
outdated software (operating systems, web
servers, databases, etc.) makes your application
susceptible to attacks that exploit known
vulnerabilities.

• Delegate infrastructure
management and security patching
to AWS by using fully managed
serverless services.

Low

Identification and
authentication
failures

These failures can permit unauthorized usage
of APIs and integrated resources, like Lambda
functions, S3 buckets, or DynamoDB tables.

• Leverage an access management
service to apply proper, fine-grained
authentication and authorization for
API gateways.

• Rely on AWS IAM for inter-service
communication.

Medium

Software and data
integrity failures

The presence of vulnerabilities or exploits in
third-party code is quickly becoming the most
common risk to software applications.
As application dependencies are bundled and
executed with Lambda function code, they are
granted the same permissions as your business
logic.

• Secure your software supply
chain with automated dependency
upgrades and other controls.

• Remove unused dependencies.

High

Security logging
and monitoring
failures

Attackers rely on the lack of monitoring
and timely response to achieve their goals
without being detected. Without logging and
monitoring, breaches cannot be detected or
analyzed.
Logs of applications and APIs are not
monitored for suspicious activity.

• Enable API Gateway execution and
access logs.

• Use CloudTrail monitoring to identify
and report abnormal behavior.

Medium

Think Like a Hacker | 181

Threat category Threat description Mitigations Serverless
risk level

Server-side request
forgery (SSRF)

In AWS this primarily concerns a vulnerability
with running web servers on EC2 instances. The
most devastating example was the Capital One
data breach in 2019.

• Serverless applications utilizing API
Gateway and Lambda will not
generally be susceptible to SSRF
attacks.

• Avoid accepting URLs in client
inputs, always sanitize incoming
request payloads, and never return
raw HTTP responses to clients.

Low

There are two further noteworthy security risks that are relevant to serverless
applications:

Denial of service
This is a common attack where an API is constantly bombarded with bogus
requests in order to disrupt the servicing of genuine requests. Public APIs will
always face the possibility of DoS attacks. Your job is not always to completely
prevent them, but to make them so tricky to execute that the deterrent alone
becomes enough to secure the resources. Firewalls, rate limits, and resource
throttle alarms (e.g., Lambda, DynamoDB) are all key measures to prevent DoS
attacks.

Denial of wallet
This kind of attack is fairly unique to serverless applications, due to the pay-per-
use pricing model and high scalability of managed services. Denial of wallet
attacks target the constant execution of resources to accumulate a usage bill so
high it will likely cause severe financial damage to the business.

Setting up budget alerts can help ensure you are alerted to denial
of wallet attacks before they can escalate. See Chapter 9 for more
details.

Now that you have an understanding of the common threats to a serverless applica‐
tion, next you will explore how to use the process of threat modeling to map these
security risks to your applications.

Serverless Threat Modeling
Before designing a comprehensive security strategy for any serverless application, it is
crucial to understand the attack vectors and model potential threats. This can be done
by clearly defining the surface area of the application, the assets worth securing, and
the threats, both internal and external, to the application’s security.

182 | Chapter 4: Serverless and Security

https://oreil.ly/vmgvn
https://oreil.ly/vmgvn

As previously stated, security is a continuous process: there is no final state. In order
to maintain the security of an application as it grows, threats must be constantly
reviewed and attack vectors regularly assessed. New features are added over time,
more users serviced and more data collected. Threats will change, their severity will
rise and fall, and application behavior will evolve. The tools available and industry
best practices will also evolve, becoming more effective and focused in reaction to
these changes.

Introduction to threat modeling
By this point you should have a fairly clear understanding of your security respon‐
sibilities, a foundational security framework, and the primary threats to serverless
applications. Next, you need to map the framework and threats to your application
and its services.

Threat modeling is a process that can help your team to identify attack vectors,
threats, and mitigations through discussion and collaboration. It can support a shift-
left (or even start-left) approach to security, where security is primarily owned by
the team designing, building, and operating the application and is treated as a pri‐
mary concern throughout the software development lifecycle. This is also sometimes
referred to as DevSecOps.

To ensure continuous hardening of your security posture, threat modeling should be
a process that you conduct regularly, for example at task refinement sessions. Threats
should initially be modeled early in the solution design process (see Chapter 6) and
focused at the feature or service level.

Threat Composer is a tool from AWS Labs that can help guide and
visualize your threat modeling process.

Next you will be introduced to a framework that adds structure to the threat model‐
ing process: STRIDE.

STRIDE
The STRIDE acronym describes six threat categories:

Spoofing
Pretending to be something or somebody other than who you are

Tampering
Changing data on disk, in memory, on the network, or elsewhere

Think Like a Hacker | 183

Repudiation
Claiming that you were not responsible for an action

Information disclosure
Obtaining information that was not intended for you

Denial of service
Destruction or excessive consumption of finite resources

Elevation of privilege
Performing actions on protected resources that you should not be allowed to
perform

STRIDE-per-element, or STRIDE/element for short, is a way to apply the STRIDE
threat categories to elements in your application. It can help to further focus the
threat modeling process.

The elements are targets of potential threats and are defined as:

• Human actors/external entities•
• Processes•
• Data stores•
• Data flows•

It is important not to get overwhelmed by the threat modeling process. Securing an
application can be daunting, but remember, as outlined at the beginning of this chap‐
ter, it can also be simple, especially with serverless. Start small, work as a team, and
follow the process one stage at a time. Identifying one threat for each element/threat
combination in the matrix in Figure 4-4 would represent a great start.

Figure 4-4. Applying the STRIDE threat categories per element in your application

184 | Chapter 4: Serverless and Security

A process for threat modeling
As preparation for your threat modeling sessions, you may find it conducive to
productive meetings to have the following information prepared:

• High-level architecture of the application•
• Solution design documents•
• Data models and schemas•
• Data flow diagrams•
• Domain-specific industry compliance standards•

A typical threat modeling process will comprise the following steps:

1. Identify the elements in your application that could be targets for potential1.
threats, including data assets, external actors, externally accessible entry points,
and infrastructure resources.

2. Identify a list of threats for each element identified in step 1. Be sure to focus on2.
threats and not mitigations at this stage.

3. For each threat identified in step 2, identify appropriate steps that can be taken to3.
mitigate the threat. This could include encryption of sensitive data assets, apply‐
ing access control to external actors and entry points, and ensuring each resource
is granted only the minimum permissions required to perform its operations.

4. Finally, assess whether the agreed remediation adequately mitigates the threat or4.
if there is any residual risk that should be addressed.

For a comprehensive threat modeling template, see Appendix C.

Securing the Serverless Supply Chain
Vulnerable and outdated components and supply chain–based attacks are quickly
becoming a primary concern for software engineers.

According to supply chain security company Socket, “supply chain
attacks rose a whopping 700% in the past year, with over 15,000
recorded attacks.” One example they cite occurred in January 2022,
when an open source software maintainer intentionally added mal‐
ware to his own package, which was being downloaded an average
of 100 million times per month. A notable casualty was the official
AWS SDK.

Securing the Serverless Supply Chain | 185

https://socket.dev
https://oreil.ly/sGX4g
https://oreil.ly/sGX4g

Who is responsible for protecting against these vulnerabilities and attacks? Serverless
compute on AWS Lambda provides you with a clear example of the shared respon‐
sibility model presented earlier in this chapter. It is the responsibility of AWS to
keep the software in the runtime and execution environment updated with the latest
security patches and performance improvements, and it is the responsibility of the
application engineer to secure the function code itself. This includes keeping the
libraries used by the function up-to-date.

Given that it is your responsibility as a cloud application developer to secure the
code you deliver to the cloud and run in your Lambda functions, what are the attack
vectors and threat levels here, and how can you mitigate the related security issues?

Securing the Dependency Supply Chain
Open source software is an incredible enabler of rapid software development and
delivery. As a software engineer, you can rely on the expertise and work of others
in your community when composing your applications. However, this relationship is
built on a fragile layer of trust. Every time you install a dependency, you are implicitly
trusting the myriad contributors to that package and everything in that package’s
own tree of dependencies. The code of hundreds of programmers becomes a key
component of your production software.

You must be aware of the risks involved in installing and executing open source
software, and the steps you can take to mitigate such risks.

Think before you install
You can start securing the serverless supply chain by scrutinizing packages before
installing them. This is a simple suggestion that can make a real difference to securing
your application’s supply chain, and to general maintenance at scale.

Use as few dependencies as necessary, and be aware of dependencies that obfuscate
the data and control flow of your app, such as middleware libraries. If it is a trivial
task, always try to do it yourself. It’s also about trust. Do you trust the package? Do
you trust the contributors?

Before you install the next package in your serverless application, adopt the following
practices:

Analyze the GitHub repository.
Review the contributors to the package. More contributors represents more
scrutiny and collaboration. Check whether the repository uses verified commits.
Assess the history of the package: How old is it? How many commits have been
made? Analyze the repository activity to understand if the package is actively
maintained and used by the community—GitHub stars provide a crude indicator
of popularity, and things like the date of the most recent commit and number

186 | Chapter 4: Serverless and Security

https://oreil.ly/vLinO

of open issues and pull requests indicate usage. Also ensure the package’s license
adheres to any restrictions in place in your organization.

Use official package repositories.
Only obtain packages from official sources, such as NPM, PyPI, Maven, NuGet,
or RubyGems, over secure (i.e., HTTPS) links. Prefer signed packages that can
be verified for integrity and authenticity. For example, the JavaScript package
manager NPM allows you to audit package signatures.

Review the dependency tree.
Be aware of the package’s dependencies and the entire dependency tree. Pick
packages with zero runtime dependencies where available.

Try before you buy.
Try new packages on as isolated a scale as possible and delay rollout across the
codebase for as long as possible, until you feel confident.

Check if you can do it yourself.
Don’t reinvent the wheel for the sake of it, but one very simple way of removing
opaque third-party code is to not introduce it in the first place. Examine the
source code to understand if the package is doing something simple that is easily
portable to a first-party utility. Logging libraries are a perfect example: you can
trivially implement your own logger rather than distributing a third-party library
across your codebase.

Make it easy to back out.
Development patterns like service isolation, single-responsibility Lambda func‐
tions, and limiting shared code (see Chapter 6 for more information on these
patterns) make it easier to evolve your architecture and avoid pervasive antipat‐
terns or vulnerable software taking over your codebase.

Lock to the latest.
Always use the latest version of the package, and always use an explicit version
rather than a range or “latest” flag.

Uninstall any unused packages.
Always uninstall and clear unused packages from your dependencies manifest.
Most modern compilers and bundlers will only include dependencies that are
actually consumed by your code, but keeping your manifest clean adds extra
safety and clarity.

Scan packages for vulnerabilities
You should also run continuous vulnerability scans in response to new packages,
package upgrades, and reports of new vulnerabilities. Scans can be run against a code
repository using tools such as Snyk or GitHub’s native Dependabot alerts system.

Securing the Serverless Supply Chain | 187

https://oreil.ly/r9jAb
https://snyk.io
https://oreil.ly/7a9uj

Automate dependency upgrades
Out of all the suggestions for securing your supply chain, this is the most crucial.
Even if you have a serverless application with copious packages distributed across
multiple services, make sure upgrades of all dependencies are automated.

While automating upgrades of your application’s dependencies is
generally a recommended practice, you should always keep in
mind the “think before you install” checklist from the previous
section. You should be particularly mindful of the integrity of the
incoming updates, in case a bad actor has published a malicious
version of a package.

Keeping package versions up-to-date ensures that you not only have access to the lat‐
est features but, crucially, to the latest security patches. Vulnerabilities can be found in
earlier versions of software after many later versions have been published. Navigating
an upgrade across several minor versions can be difficult enough, depending on the
features of the package, the adherence to semantic versioning by the authors, and the
prevalence of the package throughout your codebase—but upgrading from one major
version to another is typically not trivial, given the likelihood of the next version
containing breaking changes that affect your usage of the package.

Runtime updates
As well as dependency upgrades, it is highly recommended to keep up-to-date with
the latest version of the AWS Lambda runtime you are using. Make sure you are
subscribed to news about runtime support and upgrade as soon as possible.

By default, AWS will automatically update the runtime of your
Lambda functions with any patch versions that are released. Addi‐
tionally, you have the option to control when the runtime of
your functions is updated through Lambda’s runtime management
controls.
These controls are primarily useful for mitigating the rare occur‐
rence of bugs caused by a runtime patch version that is incompat‐
ible with your function’s code. But, as these patch versions will
likely include security updates, you should use these controls with
caution. It is usually safest to keep your functions running on the
latest version of the runtime.

188 | Chapter 4: Serverless and Security

https://oreil.ly/Xrn0N
https://oreil.ly/Xrn0N

The same is true for any delivery pipelines you maintain, as these will likely run
on virtual machines and runtimes provided by the third party. And remember, you
do not need to use the same runtime version across pipelines and functions. For
example, you should use the latest version of Node.js in your pipelines even before it
is supported by the Lambda runtime.

Going Further with SLSA
The SLSA security framework (pronounced salsa, short for Supply chain Levels for
Software Artifacts) is “a checklist of standards and controls to prevent tampering,
improve integrity, and secure packages and infrastructure.” SLSA is all about going
from “safe enough” to maximum resiliency across the entire software supply chain.

If you’re at a fairly high level of security maturity, you may find it useful to use
this framework to measure and improve the security of your software supply chain.
Follow the SLSA documentation to get started. The Software Component Verification
Standard (SCVS) from OWASP is another framework for measuring supply chain
security.

Lambda Code Signing
The last mile in the software supply chain is packaging and deploying your function
code to the cloud. At this point, your function will usually consist of your business
logic (code you have authored) and any third-party libraries listed in the function’s
dependencies (code someone else has authored).

Lambda provides the option to sign your code before deploying it. This enables the
Lambda service to verify that a trusted source has initiated the deployment and that
the code has not been altered or tampered with in any way. Lambda will run several
validation checks to verify the integrity of the code, including that the package has
not been modified since it was signed and that the signature itself is valid.

To sign your code, you first create one or more signing profiles. These profiles might
map to the environments and accounts your application uses—for example, you may
have a signing profile per AWS account. Alternatively, you could opt to have a signing
profile per function for greater isolation and security. The CloudFormation resource
for a signing profile looks like this, where the PlatformID denotes the signature
format and signing algorithm that will be used by the profile:

{
 "Type" : "AWS::Signer::SigningProfile",
 "Properties" : {
 "PlatformId" : "AWSLambda-SHA384-ECDSA",
 }
}

Securing the Serverless Supply Chain | 189

https://slsa.dev
https://oreil.ly/5ZFPR
https://oreil.ly/MDEFC
https://oreil.ly/DgIe0

Once you have defined a signing profile, you can then use it to configure code signing
for your functions:

{
 "Type" : "AWS::Lambda::CodeSigningConfig",
 "Properties" : {
 "AllowedPublishers" : [
 {
 "SigningProfileVersionArns" : [
 "arn:aws:signer:us-east-1:123456789123:/signing-profiles/my-profile"
]
 }
],
 "CodeSigningPolicies" : {
 "UntrustedArtifactOnDeployment": "Enforce"
 }
 }
}

Finally, assign the code signing configuration to your function:

{
 "Type" : "AWS::Lambda::Function",
 "Properties" : {
 "CodeSigningConfigArn" : [
 "arn:aws:lambda:us-east-1:123456789123:code-signing-config:csc-config-id",
]
 }
}

Now, when you deploy this function the Lambda service will verify the code was
signed by a trusted source and has not been tampered with since being signed.

Protecting Serverless APIs
According to the OWASP Top 10 list we looked at earlier in this chapter, the number
one threat to web applications is broken access control. While serverless helps to
mitigate some of the threats posed by broken access control, you still have work to do
in this area.

When applying the zero trust security model, you must apply access control to each
isolated component as well as the perimeter of your system. For most serverless
applications the security perimeter will be an API Gateway endpoint. If you are
building a serverless application that exposes an API to the public internet, you must
design and implement an appropriate access control mechanism for this API.

190 | Chapter 4: Serverless and Security

In this section, we’ll explore the available authorization strategies for applying access
control to serverless APIs and when to use each one. The access control options for
API Gateway are summarized in Table 4-2.

Amazon API Gateway provides two types of APIs: REST APIs
and HTTP APIs. They offer different features at different costs.
One of the differences is the access control options available. The
compatibility for each of the access control methods we’ll explore
in this section is indicated in Table 4-2.

Table 4-2. Amazon API Gateway access control options

Access control strategy Description REST API HTTP API
Cognito authorizers Direct integration with the access management service Amazon Cognito

and API Gateway REST APIs. Cognito client credentials are exchanged for
access tokens, which are validated directly with Cognito.

Yes No

JWT authorizers Can be used to integrate an access management service that uses JSON
Web Tokens (JWTs) for access control, such as Amazon Cognito or Okta,
with API Gateway HTTP APIs.

Noa Yes

Lambda authorizers Lambda functions can be used to implement custom authorization logic
when using an access management service other than Cognito or to
verify incoming webhook messages where user-based authentication is not
available.

Yes Yes

a You can still use JWTs to authorize and authenticate REST API requests, but you will need to write a custom Lambda
authorizer that verifies incoming tokens.

Securing REST APIs with Amazon Cognito
There are of course many access management services and identity providers avail‐
able, including Okta and Auth0. We’ll focus on using Cognito to secure a REST API,
as it is native to AWS and for this reason provides minimal overhead.

Amazon Cognito
Before we dive in, let’s define the building blocks you will need. Cognito is often
viewed as one of the most complex AWS services. It is therefore important to have
a foundational understanding of Cognito’s components and a clear idea of the access
control architecture you are aiming for. Here are the key components for implement‐
ing access control using Cognito:

User pools
A user pool is a user directory in Amazon Cognito. Typically you will have a
single user pool in your application. This user pool can be used to manage all the
users of your application, whether you have a single user or multiple users.

Protecting Serverless APIs | 191

Application clients
You may be building a traditional client/server web application where you main‐
tain a frontend web application and a backend API. Or you may be operating
a multitenant business-to-business platform, where tenant backend services use
a client credentials grant to access your services. In this case, you can create an
application client for each tenant and share the client ID and secret with the
tenant backend service for machine-to-machine authentication.

Scopes
Scopes are used to control an application client’s access to specific resources in
your application’s API.

Application-Based Multitenancy
Multitenancy is an identity and access management architecture to support sharing
the underlying resources of an application between multiple groups of users, or ten‐
ants. Conversely, in a single-tenant architecture each tenant is assigned to a separate
instance of the application running on distinct infrastructure. Although tenants share
the same infrastructure in multitenancy, their data is completely separated and never
shared between tenants.

Multitenancy is a very common model that is often used in SaaS products and by
cloud vendors themselves, including AWS. Multitenancy is also complementary to
a zero trust architecture, where a more granular access control model is required.
Consider a single consumer of your API: it is likely the consumer will have multiple
services of its own consuming multiple API resources. In this scenario, a secure,
zero trust approach would be to isolate usage of the API to consuming services,
granting only the minimum permissions needed by that individual service to perform
its requests of the API.

Application-based multitenancy is a technique that will allow your application’s access
control to scale, regardless of whether you start with a single user or multiple tenants.
Each tenant of your application is assigned at least one application client and a set
of scopes that determine the resources the app client can access. If you never scale
beyond a single user, adopting this architecture will still serve you well. Take a
look at the Cognito documentation for more information about implementing app
client–based multitenancy.

Cognito and API Gateway
Cognito authorizers provide a fully managed access control integration with API
Gateway, as illustrated in Figure 4-5. API consumers exchange their credentials (a
client ID and secret) for access tokens via a Cognito endpoint. These access tokens
are then included with API requests and validated via the Cognito authorizer.

192 | Chapter 4: Serverless and Security

https://oreil.ly/S8LB2

Figure 4-5. API Gateway Cognito authorizer

Additionally, an API endpoint can be assigned a scope. When authorizing a request
to the endpoint, the Cognito authorizer will verify the endpoint’s scope is included in
the client’s list of permitted scopes.

Securing HTTP APIs
If you are using an API Gateway HTTP API, rather than a REST API, you will not be
able to use the native Cognito authorizer. Instead, you have a few alternative options.
We’ll explore examples of the most convenient two: Lambda authorizers and JWT
authorizers.

JWT authorizers can also be used to authenticate API requests with
Amazon Cognito when using HTTP APIs.

JWT authorizers
If your authorization strategy simply involves a client submitting a JSON Web Token
for verification, using a JWT authorizer will be a good option. When you use a JWT
authorizer, the whole authorization process is managed by the API Gateway service.

JWT is an open standard that defines a compact, self-contained
way of securely transmitting information between parties as JSON
objects. JWTs can be used to ensure the integrity of a message and
the authentication of both the message producer and consumer.
JWTs can be cryptographically signed and encrypted, enabling ver‐
ification of the integrity of the claims contained within the token
while keeping those claims hidden from other parties.

Protecting Serverless APIs | 193

You first configure the JWT authorizer and then attach it to a route. The Cloud‐
Formation resource will look something like this:

{
 "Type" : "AWS::ApiGatewayV2::Authorizer",
 "Properties" : {
 "ApiId" : "ApiGatewayId",
 "AuthorizerType" : "JWT",
 "IdentitySource" : ["$request.header.Authorization"],
 "JwtConfiguration" : {
 "Audience" : ["https://my-application.com"],
 "Issuer" : "https://cognito-idp.us-east-1.amazonaws.com/userPoolID"
 },
 "Name" : "my-authorizer"
 }
}

The IdentitySource should match the location of the JWT provided by the cli‐
ent in the API request; for example, the Authorization HTTP header. The Jwt
Configuration should correspond to the expected values in the tokens that will be
submitted by clients, where the Audience is the HTTP address for the recipient of the
token (usually your API Gateway domain) and the Issuer is the HTTP address for
the service responsible for issuing tokens, such as Cognito or Okta.

Lambda authorizers
Lambda functions with custom authorization logic can be attached to API Gateway
HTTP API routes and invoked whenever requests are made. These functions are
known as Lambda authorizers and can be used when you need to apply access control
strategies beyond the ones the managed Cognito or JWT authorizers support. The
functions’ responses will either approve or deny access to the requested resources (see
Figure 4-6).

Figure 4-6. Controlling access to API Gateway resources with a Lambda authorizer

Lambda authorizers support various locations for providing authorization claims
in API requests. These are known as identity sources and include HTTP headers
and query string parameters (for example, the Authorization header). The identity

194 | Chapter 4: Serverless and Security

source you use will be required in requests made to API Gateway; any requests
without the required property will immediately receive a 401 Unauthorized response
and the Lambda authorizer will not be invoked.

Lambda authorizer responses can also be cached. The responses will be cached
according to the identity source provided by the API’s clients. If a client provides
the same values for the required identity sources within the configured cache period,
or TTL, API Gateway uses the cached authorizer result instead of invoking the
authorizer function.

Caching the responses of your Lambda authorizers will result in
quicker responses to API requests as well as a reduction in costs, as
the Lambda function will be invoked significantly less frequently.

The Lambda function used to authorize requests can return an IAM policy or what
is known as a simple response. The simple response will usually suffice, unless your
use case requires an IAM policy response or more granular permissions. When using
the simple response, the authorizer function must return a response matching the
following format, where isAuthorized is a Boolean value that denotes the outcome
of your authorization checks and context is optional and can include any additional
information to pass to API access logs and Lambda functions integrated with the API
resource:

{
 "isAuthorized": true/false,
 "context": {
 "key": "value"
 }
}

Validating and Verifying API Requests
There are other ways to protect your serverless API beyond the access control mecha‐
nisms we have explored so far in this section. In particular, publicly accessible APIs
should always be protected against deliberate or unintentional misuse and incoming
request data to those APIs should always be validated and sanitized.

API Gateway request protection
API Gateway offers two ways of protecting against denial of service and denial of
wallet attacks.

First, requests from individual API clients can be throttled via API Gateway usage
plans. Usage plans can be used to control access to API stages and methods and to
limit the rate of requests made to those methods. By rate limiting API requests, you

Protecting Serverless APIs | 195

https://oreil.ly/agWiV
https://oreil.ly/agWiV

can prevent any of your API’s clients from deliberately or inadvertently abusing your
service. Usage plans can be applied to all methods in an API, or to specific methods.
Clients are given a generated API key to include in every request to your API. If a
client submits too many requests and is throttled as a result, they will begin to receive
429 Too Many Requests HTTP error responses.

API Gateway also integrates with AWS WAF to provide granular protection at the
request level. With WAF, you can specify a set of rules to apply to each incoming
request, such as IP address throttling.

WAF rules are always applied before any other access control
mechanisms, such as Cognito authorizers or Lambda authorizers.

API Gateway request validation
Requests to API Gateway methods can be validated before being processed further.
Say you have a Lambda function attached to an API route that accepts the API
request as an input and applies some operations to the request body. You can supply
a JSON Schema definition of the expected input structure and format, and API Gate‐
way will apply those data validation rules to the body of a request before invoking the
function. If the request fails validation, the function will not be invoked and the client
will receive a 400 Bad Request HTTP response.

Implementing request validation via API Gateway can be par‐
ticularly useful when using direct integrations to AWS services
other than Lambda. For example, you may have an API Gate‐
way resource that integrates directly with Amazon EventBridge,
responding to API requests by putting events onto an event bus. In
this architecture you will always want to validate and sanitize the
request payload before forwarding it to downstream consumers.
For more information about functionless integration patterns, refer
to Chapter 5.

In the following example JSON model, the message property is required, and the
request will be rejected if that field is missing from the request body:

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "my-request-model",
 "type": "object",
 "properties": {
 "message": { "type": "string" },
 "status": { "type": "string" }

196 | Chapter 4: Serverless and Security

https://oreil.ly/TpV8j
https://oreil.ly/eFlQe

 },
 "required": ["message"]
}

Deeper input validation and sanitization should be performed in Lambda functions
where data is transformed, stored in a database or delivered to an event bus or
message queue. This can secure your application from SQL injection attacks, the #3
threat in the OWASP Top 10 (see Table 4-1).

Message Verification in Event-Driven Architectures
Most of the access control techniques we’ve explored generally apply to synchronous,
request/response APIs. But as you learned in Chapter 3, it is highly likely that,
as you and the teams or third parties you interact with are building event-driven
applications, at some point you will encounter an asynchronous API.

Message verification is typically required at the integration points between systems—
for example, of incoming messages from third-party webhooks and messages sent by
your application to other systems or accounts. In a zero trust architecture message
verification is also important for messaging between services in your application.

Verifying messages between consumers and producers
Typically, in order to decouple services, the producer of an event is deliberately
unaware of any downstream consumers of the event. For example, you might have an
organization-wide event backbone architecture where multiple producers send events
to a central event broker and multiple consumers subscribe to these events, as shown
in Figure 4-7.

Figure 4-7. Decoupled producers and consumers in an event-driven architecture

Securing consumers of asynchronous APIs relies on the control of incoming mes‐
sages. Consumers should always be in control of the subscription to an asynchronous

Protecting Serverless APIs | 197

API, and there will already be a certain level of trust established between the event
producers and the event broker—but event consumers must also guard against
sender spoofing and message tampering. Verification of incoming messages is crucial
in event-driven systems.

Let’s assume the event broker in Figure 4-7 is an Amazon EventBridge event bus
in a central account, part of your organization’s core domain. The producers are
services deployed to separate AWS accounts, and so are the consumers. A consumer
needs to ensure each message has come from a trusted source. A producer needs to
ensure messages can only be read by permitted consumers. For a truly decoupled
architecture, the event broker itself might be responsible for message encryption and
key management (rather than the producer), but for the purpose of keeping the
example succinct we’ll make this the producer’s responsibility.

Encrypted and verifiable messages with JSON Web Tokens
You can use JWT as your message transport protocol. To sign and encrypt the
messages you can use a technique known as nested JWTs, illustrated in Figure 4-8.

Figure 4-8. A nested JSON Web Token

The producer must first sign the message payload with the private key and then
encrypt the signed message using a shared secret:

const payload = { data: { hello: "world" } };

const signedJWT = await new SignJWT(payload)
 .setProtectedHeader({ alg: "ES256" })
 .setIssuer("urn:example:issuer")
 .setAudience("urn:example:audience")
 .setExpirationTime("2h")
 .sign(privateKey);

const encryptedJWT = await new EncryptJWT(signedJWT)
 .setProtectedHeader({ alg: "dir", cty: "JWT", enc: "A256GCM" })
 .encrypt(sharedSecret);

198 | Chapter 4: Serverless and Security

Public/private encryption key pairs and shared secrets should be
generated separately from the runtime message production and
stored in AWS Key Management Service (KMS) or AWS Secrets
Manager. The keys and secrets can then be fetched at runtime to
sign and encrypt the message.

Upon receipt of a message, the consumer must first verify the signature using the
producer’s public key and then decrypt the payload using the shared secret:

const decryptedJWT = await DecryptJWT(encryptedJWT, sharedSecret);

const decodedJWT = await VerifyJWT(decryptedJWT, publicKey);

// if verified, original payload available at decodedJWT.payload

Only the producer’s public key and the shared secret should be
distributed to the message’s consumers. The private key should
never be shared.

Built-in message verification for SNS
In addition to the approach outlined in the previous section, some AWS services,
such as Amazon Simple Notification Service (SNS), are now beginning to support
message signatures natively. SNS signs the messages delivered from your topic, ena‐
bling the subscribed HTTP endpoints to verify their authenticity.

Protecting Data
Data is the most valuable asset accumulated by any software application. This
includes data personal to users of the application, data about third-party integrations
with the application, and data about the application itself.

Cryptographic failure is the second of the OWASP Top 10 threats to web applications,
after broken access control. This section examines the crucial role of data encryption
in securing a serverless application and how you can encrypt your data as it moves
through your system.

Data Encryption Everywhere
As you develop and operate your serverless application, you will discover both the
power and the challenges that come with connecting components with events. Events
allow you to decouple components and include rich data in their messages. Serverless
compute is inherently stateless, which means the data a Lambda function or Step

Protecting Data | 199

https://oreil.ly/QqRDj
https://oreil.ly/QqRDj

Functions workflow needs to perform its operations must either be queried from a
data store, like DynamoDB or S3, or provided in the invocation payload.

In event-driven systems, data is everywhere. This means data encryption needs to be
everywhere too. Data will be stored in databases and object stores. It will be moved
through message queues and event buses. Dr. Werner Vogels, the CTO and VP of
Amazon, once said on stage at re:Invent, “Dance like no one is watching. Encrypt like
everyone is.”

What is encryption?
Encryption is a technique for restricting access to data by making it unreadable
without a key. Cryptographic algorithms are used to obscure plain-text data with an
encryption key. The encrypted data can only be decrypted with the same key.

Encryption is your primary tool in protecting the data in your application. It’s
particularly important in event-driven applications, where data constantly flows
between accounts, services, functions, data stores, buses, and queues. Encryption
can be divided into two categories: encryption at rest and encryption in transit. By
encrypting data both in transit and at rest, you ensure that your data is protected for
its entire lifecycle and end-to-end as it passes through your system and into other
systems.

Most AWS managed services offer native support for encryption as well as direct
integration with AWS Secrets Manager and AWS KMS. This means the process
of encrypting and decrypting data and managing the associated encryption keys
is largely abstracted away from you. However, encryption is not usually enabled
by default, so you are responsible for enabling and configuring encryption at the
resource level.

Encryption in transit
Data is in transit in a serverless application as it moves from service to service.
All AWS services provide secure, encrypted HTTP endpoints via Transport Layer
Security (TLS). Whenever you are interacting with the API of an AWS service, you
should use the HTTPS endpoint. By default, operations you perform with the AWS
SDK will use the HTTPS endpoints of all AWS services. For example, this means
when your Lambda function is invoked by an API Gateway request and you make
an EventBridge PutEvents call from the function, the payloads are entirely encrypted
when in transit.

In addition to TLS, all AWS API requests made using the AWS SDK are protected by
a request signing process, known as Signature Version 4. This process is designed to
protect against request tampering and sender spoofing.

200 | Chapter 4: Serverless and Security

https://oreil.ly/CPmZp

Encryption at rest
Encryption at rest is applied to data whenever it is stored or cached. In a serverless
application, this could be data in an EventBridge event bus or archive, a message on
an SQS queue, an object in an S3 bucket, or an item in a DynamoDB table.

As a general rule, whenever a managed service offers the option to encrypt data at
rest you should take advantage of it. However, this is especially important when you
have classified the data at rest as sensitive.

You should always limit the storage of data at rest and in transit. The more data is
stored, and the longer it is stored for, the greater the attack surface area and security
risk. Only store or transport data if it is absolutely necessary, and continually review
your data models and event payloads to ensure redundant attributes are removed.

There are also sustainability benefits to storing less data. See Chap‐
ter 10 for more information on this topic.

AWS KMS
The key (pun intended) AWS service when it comes to encryption is AWS Key
Management Service. AWS KMS is a fully managed service that supports the genera‐
tion and management of the cryptographic keys that are used to protect your data.
Whenever you use the native encryption controls of an AWS service like Amazon
SQS or S3, as described in the previous sections, you will be using KMS to create
and manage the necessary encryption keys. Whenever a service needs to encrypt or
decrypt data, it will make a request to KMS to access the relevant keys. Access to keys
is granted to these services via their attached IAM roles.

There are several types of KMS keys, such as HMAC keys and asymmetric keys, and
these are generally grouped into two categories: AWS managed keys and customer
managed keys. AWS managed keys are encryption keys that are created, managed,
rotated, and used on your behalf by an AWS service that is integrated with AWS KMS.
Customer managed keys are encryption keys that you create, own, and manage. For
most use cases, you should choose AWS managed keys whenever available. Customer
managed keys can be used in cases where you are required to audit usage of or retain
additional control over the keys.

The AWS documentation has a detailed explanation of KMS con‐
cepts if you’d like to read more about this topic.

Protecting Data | 201

https://oreil.ly/UJ3Ae
https://oreil.ly/UJ3Ae

Key and Secret Management Guardrails
As your application grows, it will utilize various cryptographic keys and secrets to
handle the encryption and security of data. It is important to establish clear and
actionable key management guardrails for your team. Here are some suggestions:

Use a secure vault.
Always use a secure vault to store encryption keys and secrets, like AWS KMS,
Secrets Manager, or Systems Manager Parameter Store (with secure strings).

Never store secrets outside the secure vault.
For example, do not store keys on a local machine or in a code repository. Only
fetch keys and secrets at runtime, and do not cache them.

Ensure keys are protected from unauthorized access.
For example, enforce least privilege in IAM policies that access KMS keys.

Use independent keys.
When multiple keys are required, use distinct keys rather than sharing keys
across services or clients.

Manage the lifecycle of keys.
Devise a strategy for rotating keys (and algorithms) based on the type of key and
its intended purpose. Key rotation can be either manual or automated.

Security in Production
Making security a part of your development process is key to a holistic security
strategy. But what happens when your application is ready for production and,
subsequently, running in production?

Going into production can be the most daunting time when it comes to asking your‐
self the question: is my application secure? To help ease the process, we’ve created a
final security checklist to run through before releasing your application to your users
that also prepares you to continuously monitor your application for vulnerabilities.
Remember, security is a process and something to continually iterate on, just like
every other aspect of your software.

Go-Live Security Checklist for Serverless Applications
Here’s a practical list of things to check before launching a serverless application.
It can also form part of a security automation pipeline and your team’s security
guardrails:

202 | Chapter 4: Serverless and Security

• Commission penetration testing and security audits early in your application’s•
development.

• Enable Block Public Access on all S3 buckets.•
• Enable server-side encryption (SSE) on all S3 buckets containing valuable data.•
• Enable cross-account backups or object replication on S3 buckets containing•

business-critical data.
• Enable encryption at rest on all SQS queues.•
• Enable WAF on API Gateway REST APIs with baseline managed rules.•
• Use TLS version 1.2 or above on API Gateway APIs.•
• Enable access and execution logs on API Gateway APIs.•
• Remove sensitive data from Lambda function environment variables.•
• Store secrets in AWS Secrets Manager.•
• Encrypt Lambda function environment variables.•
• Enable Lambda function code signing.•
• Enable backups on all DynamoDB tables containing business-critical data.•
• Scan dependencies for vulnerabilities: resolve all critical and high security warn‐•

ings, and minimize medium and low warnings.
• Set up budget alarms in CloudWatch to guard against denial of wallet attacks.•
• Remove any IAM users where possible.•
• Remove wildcards from IAM policies wherever possible to preserve least•

privilege.
• Generate an IAM credential report to identify unused roles and users that can be•

removed.
• Enable Security Hub reports.•
• Create a CloudTrail trail to send logs to S3.•
• Conduct a Well-Architected Framework review with a focus on the Security•

pillar and the Serverless Lens’s security recommendations.

Maintaining Security in Production
In an enterprise, there are several AWS services that you can leverage to continue the
process of securing your application once it is running in production.

Security in Production | 203

https://oreil.ly/xipQ8
https://oreil.ly/I_yCx
https://oreil.ly/yvxaj
https://oreil.ly/fGzB9

Security monitoring with CloudTrail
AWS CloudTrail records all actions taken by IAM users, IAM roles, or an AWS
service in an account. CloudTrail covers actions across the AWS console, CLI, SDK,
and service APIs. This stream of events can be used to monitor your serverless
application for unusual or unintended access and guard against attack #9 on the
OWASP Top 10 list: security logging and monitoring failures.

CloudTrail is a critical tool in counteracting repudiation attacks,
described in “STRIDE” on page 183.

You can use Amazon CloudWatch for monitoring CloudTrail events. CloudWatch
Logs metric filters can be applied to CloudTrail events to match certain terms, such
as ConsoleLogin events. These metric filters can then be assigned to CloudWatch
metrics that can be used to trigger alarms.

CloudTrail is enabled by default for your AWS account. This allows you to search
CloudTrail logs via the event history in the AWS console. However, to persist logs
beyond 90 days and to perform in-depth analysis and auditing of the logs you will
need to configure a trail. A trail enables CloudTrail to deliver logs to an S3 bucket.

Once your CloudTrail logs are in S3, you can use Amazon Athena to search the logs
and perform in-depth analysis and correlation. For more information about Cloud
Trail best practices, read Chloe Goldstein’s article on the AWS blog.

Continuous security checks with Security Hub
You can use AWS Security Hub to support the security practice of your team and
to aggregate security findings from other services, such as Macie, which you will
discover in the next section.

Security Hub is particularly useful for identifying potential misconfigurations, such
as public S3 buckets or missing encryption at rest on an SQS queue, that could other‐
wise be difficult to track down. Security Hub reports will rank findings by severity,
providing a full description of each finding with a link to remediation information
where available and an overall security score.

Vulnerability scanning with Amazon Inspector
Amazon Inspector can be used to continuously scan Lambda functions for known
vulnerabilities and report findings ranked by severity. Findings can also be viewed in
Security Hub to provide a central security posture dashboard.

204 | Chapter 4: Serverless and Security

https://oreil.ly/nIQFE
https://oreil.ly/jwabT

The security benefits of Amazon Inspector come at a cost. You
should understand the pricing model before enabling Inspector.

Inspector can be used in addition to automated vulnerability scanning tools you may
have running earlier in your development process, such as on the code repository
itself.

Detecting Sensitive Data Leaks
As you saw in the previous section on protecting data, keeping your production data
safe is critical. In particular, data that is classified as sensitive must be handled with
the highest level of security.

The degree to which your application will receive, process, and store sensitive data,
such as names, addresses, passwords, and credit card numbers, will depend on the
purpose of the application. However, all but the simplest of applications will most
likely handle some form of sensitive data.

There are four steps to managing sensitive data:

1. Understand protocols, guidance, and laws relating to data management. These1.
could be organizational guidelines for data privacy or data protection regulations
such as the Health Insurance Portability and Accountability Act (HIPAA), Gen‐
eral Data Privacy Regulation (GDPR), Payment Card Industry Data Security
Standard (PCI-DSS), and Federal Risk and Authorization Management Program
(FedRAMP).

2. Identify and classify sensitive data in your system. This could be data received in2.
API request bodies, generated by internal functions, processed in event streams,
stored in a database, or sent to third parties.

3. Implement measures to mitigate improper handling and storage of sensitive data.3.
There are often regulations preventing storing data beyond a certain period of
time, logging sensitive data, or moving data between geographic regions.

4. Implement a system for detecting and remediating improper storage of sensitive4.
data.

Mitigating sensitive data leaks
There are measures that can be applied to limit the potential of sensitive data being
stored in databases, object stores, or logs, such as explicit logs and log redaction.
However, it is crucial to design systems in a way that tolerates sensitive data being
stored inadvertently and to react and remediate as soon as possible when this occurs.

Security in Production | 205

https://oreil.ly/59X3a

The possibility of mishandling sensitive data exists in any system that handles such
data.

It is also advisable to only store data that is absolutely necessary for the operation
of your application, and only store that data for as long as it is needed. Deletion of
data after a certain period of time can be automated in various AWS data stores. For
example, CloudWatch log groups should be configured with a minimum retention
period, DynamoDB records can be given a TTL value, and the lifecycle of S3 objects
can be controlled with expiration policies.

The following sections describe some techniques to detect sensitive data leaks in
application logs and object storage.

Managed sensitive data detection
Some AWS services already offer managed sensitive data detection and other services
may follow in the future. Amazon SNS offers native data protection for messages sent
through SNS topics. Amazon CloudWatch offers built-in detection of sensitive data
in application logs, for example from Lambda functions.

Amazon Macie
Amazon Macie is a fully managed data security service that uses machine learning
to discover sensitive data in AWS workloads. Macie is capable of extracting and
analyzing data stored in S3 buckets to detect various types of sensitive data, such as
AWS credentials, PII, credit card numbers, and more.

Data can be routed from various components in your application to S3 and continu‐
ally monitored for sensitive attributes by Macie. This could include events sent to
EventBridge, API responses generated by Lambda functions, or messages sent to SQS
queues. Macie findings events are sent to EventBridge and can be routed from there
to alert you to sensitive data being stored or transmitted by your application.

Summary
The security paradox dictates that while software security should be of paramount
importance to an enterprise, it is often not a primary concern for engineering teams.
This disconnect is typically caused by a lack of actionable processes.

Security must, and can, be an integral part of your serverless software delivery
lifecycle. You can achieve this by adopting key security strategies like zero trust
architecture, the principle of least privilege, and threat modeling; following industry
standards for data encryption, API protection, and supply chain security; and lever‐
aging security tools provided by AWS, such as IAM and Security Hub.

206 | Chapter 4: Serverless and Security

https://oreil.ly/JFSs9
https://oreil.ly/endvT
https://oreil.ly/vA53q
https://oreil.ly/9cw3V

Most importantly, remember that security can be simple, and by establishing a clear
framework for securing your serverless application you can remove a lot of the usual
fear and uncertainty for your engineers.

Interview with an Industry Expert
Nicole Yip, Principal Engineer
Nicole Yip has spent many years getting engineering teams up and running in AWS
and helping them grow to operational maturity in Australia and the United Kingdom.
Her interests in DevOps (in its many definitions), security, reliability, infrastructure,
and overall system design have helped shape teams in a way that enables them to get
their applications and services out to production safely and securely while maturing
their understanding and processes around owning production systems (most notably
a very popular global retail website).

You can find some conference talks and blog posts about her various interest areas
online, but her main focus has been inspiring, challenging, and implementing growth
in the teams around her in the companies she has been involved with.

Q: There is a perception in the software industry that security is hard and should be left to
cybersecurity specialists. Has the cloud changed this, or should engineers still be scared of
security?

In the software industry it’s true that security is seen as hard and intimidating, but I
would break that down to say that it’s seen as “yet another requirement” and a rabbit
hole, combined.

Security is seen as “hard” because it’s another nonfunctional requirement to be
included at every stage, from design to implementation and even to ongoing opera‐
tions. Security is also hard because there is a lot to discover when you enter the world
of security—it’s not just the code you write, the architecture you design, or the access
controls around the applications you use to meet certain standards and protocols.
There are also entire categories of threats like physical security and social engineering
that wouldn’t come to mind when just looking at security from a software engineer‐
ing point of view but can still be just as, if not more, damaging as entry points to your
system.

For those in security teams, InfoSec tooling that used to be manual, cumbersome, and
scheduled monthly or less frequently as a result has improved and become way more
user-friendly and integrated with the software development lifecycle, making it easier
for issues to be flagged before making it to production or even automatically patching
vulnerable dependencies as they get reported in the community.

Interview with an Industry Expert | 207

Software engineers are typically very curious, so I don’t think they should be scared
of security as a topic—it’s one of those things where the more aware you are, the
more you naturally make more informed decisions when choosing how to host that
application, or whether to click on that link. Security is everyone’s responsibility and
absolutely shouldn’t be “left” to security experts—each line of code written or design
decision made changes the security posture of the system, so the more security-aware
everyone involved in the software development lifecycle is, the less likely it is that a
bad actor will be able to find enough vulnerabilities to successfully do some damage.

Where the cloud comes in is that securing parts of your system becomes the cloud
provider’s responsibility—security of your data centers and data at rest become a
contractual agreement with the cloud provider. For small businesses that is a blessing
as it is yet another thing that would need to be figured out and enforced if they had
chosen to self-host and build a server room.

By using a cloud provider you are guided into configuring a more secure system by
default without realizing it. The choice to start setting up an application in the cloud
can already have you making decisions about security because you are presented with
those decisions when configuring the services.

You can still build a system with vulnerabilities in the cloud, so stay curious; learn as
much as you can about attack vectors (threat modeling helps to identify these) and
the real business implications to your system when someone discovers and exploits
them. It’s not “if ” but “when.”

What does “security” mean?

The end goal is to allow your system to be used in the intended way, and all other
potential abuses and access should be mitigated (limited) or not possible to begin
with.

It’s a risk acceptance scale—you secure a system to the point where you as a business
accept the likelihood and impact of the potential attack vectors in your system. Why?
Because some attack vectors you can’t prevent—like insider threats from a bad actor
in your development team!

Q: Serverless shifts the responsibility of infrastructure management to AWS, allowing
engineers to focus on the code that is deployed to that infrastructure. Does the delegation of
infrastructure management in serverless make security easier or harder?

It depends which lens you are looking from, as an infrastructure/networking engineer
or as a software engineer. Overall I think serverless makes security a little easier as the
environments are sandboxed, which reduces the ability to persist an entry point. But
when you start introducing more complex use cases that for example introduce net‐
working (if running in a VPC), authentication and authorization of clients (that call
your APIs)… then the level of security expertise required remains the same. Instead

208 | Chapter 4: Serverless and Security

of the responsibility maybe resting with an operations or infrastructure team who are
already in the habit of thinking about network-level threats, that responsibility is then
taken on by the software engineering team.

A conscious effort needs to be put in to raise the level of expectations on software
engineers venturing further down the stack into serverless and infrastructure—it’s not
good enough to just configure the libraries you use to their recommended security
levels, you now also need to consider how many permissions does the container
running your code actually need to operate, how much connectivity does it need to
other resources—should they be in the same network or can they be isolated on their
own?

Q: You have led software teams for many years and played an active role in the cloud and
DevOps community. Have you observed any shifts in the role of a software engineer as
they become increasingly responsible for securing their applications when using serverless
technology?

Yes, but not necessarily because software engineers become increasingly responsible
for securing their applications. Software engineers typically start out in a specialty—
frontend, backend, database administrator, etc.—and they learn the leading frame‐
works, patterns, and nonfunctional requirements (including security) for designing
reliable solutions within that specialty. They then start to expand out and collect
specialties and aim to become this mythical “full stack” engineer. “Full stack” used
to broadly include frontend, backend, and database specialties but that can easily
now include operations, networking, and infrastructure with the prevalence of cloud
hosting platforms. With serverless especially this has reduced the barrier to entry to
new specialties they can expand out to, including data (migration and management),
machine learning, and so much more.

As I mentioned before, security is one of those nonfunctional requirements that exists
in all parts of the stack, and all those specialty areas I mentioned before need to
understand security and privacy with different lenses for their areas of the stack.

With serverless this enables software engineers get a foot in the door to learn net‐
working and infrastructure with a helping hand on security and privacy built into the
usage of the platform.

For example, network engineers use firewalls to block out connections from unwan‐
ted networks and on unused ports—when requesting an AWS VPC and setting up
your subnets and route tables, these are all locked down by default and you specify
the ports and networks that need access (although let’s ignore the fact the default
networking resources in new AWS accounts don’t adhere to that).

The opportunities and avenues for a software engineer to grow and evolve their role
will continue to expand. New technologies will emerge every few years (currently
GenAI and prompt engineering) that lower the barrier for entry to other specialties

Interview with an Industry Expert | 209

(e.g., data science and creative industries) and can then add a new line into the
description of what a full stack engineer could be.

Q: You have played a crucial role in the serverless and DevOps adoption at large enterprises.
From your experience, how can teams and organizations foster a culture of security?

There are two things I have leveraged to foster a culture around security. First of
all, by building a strong engineering team culture and keeping security topics in the
day-to-day conversation to maintain security awareness.

High-performing engineering cultures tend to have transparency, fail fast, and no-
blame principles at their core. In addition to building trust this also allows teams to
learn collectively. No one person will be able to review an architecture and lock it
down 100% with no risks to accept. Everyone has unknown unknowns, and there
are just some attack vectors you can’t lock down. So when something does happen,
having a culture that has clear runbooks on what to do when a breach occurs and
doesn’t penalize someone for identifying and reporting a breach will become more
security-mature much faster than a team without these principles actively being
fostered.

The second is keeping security in the conversation and having enough support for
slack/innovation/curiosity time. Tooling and shift-left principles highlight security
concerns early on in the software development lifecycle, which generates the conver‐
sation when they are surfaced in a constructive way. Putting in requirements for
threat modeling as part of the design process brings the discussion about security
even further to the left. But in addition to those, what you really need is engineers
who are curious, who are constantly wondering what if, and then have enough slack
time to pursue those trains of thought. Regular lunch and learn sessions about the
latest breach that was reported in the industry or a security concept can trigger those
moments of “what if…?” That little prompt for an engineer to think about the thing
they are working on in the moment and realize that the vulnerability that allowed that
breach or that concept could also apply to the thing they are writing is what you’re
looking for—and then make sure they are supported if they go and try it out or play
through the “what if…?” scenario. They could actually add in a mitigation before that
feature gets to production!

It’s those lenses on the code from a high level (threat modeling) to a low level
(dependency and static analysis tools) that can supplement the secure design and
implementation of a system, but it’s engineers who will be able to secure the system
with the business logic and constraints in mind as each line of code is being written
and each part of the system is being configured. Give them the space and the
knowledge to trigger their curiosity and do so!

210 | Chapter 4: Serverless and Security

Q: There are several standards and best practices for security on AWS, including the principle
of least privilege, the shared responsibility model for cloud security, and the AWS Well-
Architected Framework. For an enterprise adopting serverless, where do you think they can
make a start in terms of security awareness?

The first thing to keep in mind is that security is everyone’s responsibility.

I would say start at the enterprise level and go with the assumption you’ll be breached
tomorrow. Do you have good security foundations in place in your company? Would
you know if and when you were breached, and do you know how to react and
remediate?

Prevention and mitigation measures are always needed but never reduce the risk of
a breach to 0%. As I’ve mentioned before, there are some attack vectors you cannot
close and can only mitigate as best you can to bring them down to an acceptable risk
level.

Some basic enterprise-level security capabilities include:

Detection
Security information and event management (SIEM) alerts that go to a respon‐
sive team

Response
Integrity assured evidence capturing system, sandboxes and isolated networks,
experience in security response

Prevention
Guardrails, training, golden paths, audits, penetration tests

Zooming in from looking at the enterprise level and into platform teams, platform
teams should build in security golden paths to their products that pipe everything
built on that platform into their company SIEM and surface prioritized alerts to the
teams. They can also support application teams by integrating security tooling into
their toolchain and deployment pipelines and surfacing the results in effective ways.

Application teams should be engaged in regular security education to stay up-to-date
with the latest threats out there—whether that’s joining presentations breaking down
the latest hack on a relevant application layer, completing company training, or being
curious and learning more about security best practices from the tools in use (AWS
Well-Architected Framework, GitHub Dependabot findings, static and/or dynamic
analysis tools, penetration tests, etc.).

Interview with an Industry Expert | 211

CHAPTER 5

Serverless Implementation Patterns

There are only patterns, patterns on top of patterns, patterns that affect other patterns.
Patterns hidden by patterns. Patterns within patterns.

—Chuck Palahniuk

There are patterns all around you. This book follows a pattern; every chapter has
a pattern. Nature is full of patterns. Chapter 3 mentioned the three elements of archi‐
tecture: art, structure, and technique. You’ll see patterns in each of these elements.
Though patterns in physical architecture show the influence of region, climate, cul‐
ture, etc., commonality still prevails in many cases. Patterns in software architecture
follow a similar trend: though there are underlying commonalities, many show the
influence of the business domain, programming language, operating environment,
and other factors.

Irrespective of the differences, patterns aim to provide solutions to recurring and
common problems related to the architecture, design, implementation, or operation
of software systems. Patterns can become opinionated, especially when influenced by
the abovementioned factors. Some patterns come and go quickly while others survive
for much longer, although their implementations may differ over time. The circuit
breaker pattern (discussed later in this chapter) is a good example; its name might not
be obviously related to software, but adaptations and applications of this pattern are
visible across different eras and technology stacks. Some patterns become so popular
that after a while they’re taken for granted. The API Gateway pattern, for example,
was discussed a lot in tech media when it first appeared, but soon modern technolo‐
gies and development practices made it a common, everyday implementation that no
one specifically thinks about as a pattern.

213

In this chapter, we’ll explore some of the common patterns in event-driven architec‐
ture, such as choreography, orchestration, and the strangler fig pattern (useful for
migrating legacy applications to serverless). We’ll also take a detailed look at the
circuit breaker pattern and its implementation styles, and introduce you to newer
patterns such as functionless, gatekeeper event bus, etc.

AWS Service Icons in Architectural Drawings
As you know, the diagrammatic representation of your solution architecture reso‐
nates with just about everyone. Though everything can be depicted with boxes, lines,
and labels, the simplicity and visual appeal of an architecture diagram enables viewers
to grasp the design quickly. Using AWS service icons in diagrams brings them closer
to you as an engineer or architect, and you’ll see that we’ve used them in many of the
diagrams in this chapter and others in this book. Thus, familiarity with the icons of
some of the common and popular services will be useful going forward.

As with technology, AWS evolves these icons over time. For instance, the icon of SQS
you might have used a few years ago is not the version you’ll see today. The best way
to keep up-to-date is to check the AWS icon library.

An Overview of Software Patterns
No conversation on software patterns can happen without reference to the venera‐
ble Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley
Professional) by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
famously referred to as the Gang of Four (GoF). As the title suggests, this work (orig‐
inally published in 1994) was mainly influenced by OO principles, but it presents
several patterns that have outlived popular programming languages of the day.

Evolving from the OO-dominated ’90s, web services and enterprise application inte‐
grations started to take shape. Ten years after the publication of Design Patterns,
another classic was released: Enterprise Integration Patterns by Gregor Hohpe and
Bobby Woolf (Addison-Wesley Professional), with its collection of 65 patterns. A
decade later, Sam Newman’s Building Microservices: Designing Fine-Grained Systems
(O’Reilly) brought fresh thinking to architecting business applications. A few years
after this, influenced by the popularity of microservices, Microservices Patterns by
Chris Richardson (Manning) was released, presenting over 40 different patterns and
their implementation details. Several other books on patterns are still being published
with newer content.

214 | Chapter 5: Serverless Implementation Patterns

https://oreil.ly/bqOmr

Like the myriad types of patterns you might observe in your daily life, there are many
categories of patterns in software. Here is an incomplete list:

• Software architecture patterns•
• Software design patterns•
• Programming patterns•
• Application integration patterns•
• Enterprise integration patterns•
• Domain-driven design patterns•

• Microservices patterns•
• Messaging patterns•
• Storage patterns•
• Event-driven architecture patterns•
• Sustainability patterns•
• Cloud computing patterns•

Within each of these categories, you’ll find subcategories and groups based on differ‐
ent criteria. For example, the Design Patterns book divides its 23 patterns into 3
categories: creational patterns, structural patterns, and behavioral patterns.

What Is a Pattern?
In simple terms, a pattern is a proven solution to a recurring problem. A design
pattern helps software designers get the software design right faster. An implementa‐
tion pattern, on the other hand, enables a developer to build an application quickly.
Most software patterns you will encounter have the following common elements, as
reflected in Design Patterns:

• The name of the pattern•
• The problem it helps solve•
• The abstract solution the pattern offers•
• The consequences, side effects, and trade-offs of using the pattern•

Like API patterns, messaging patterns, and storage patterns, some consider serverless
itself as a cloud development pattern, describing it as a way of building and operating
highly scalable cloud solutions faster.

How Do Patterns Accelerate Serverless Development?
Whether you consider serverless a pattern or not, it certainly offers a new technology
ecosystem for building cloud applications. As an evolution of cloud computing,
serverless is influenced by several popular patterns you likely already use. As shown
in Figure 5-1, these include patterns for everything from architecture to design,
integration, storage, implementation, and operation. At the same time, serverless also
introduces entirely new patterns.

An Overview of Software Patterns | 215

Figure 5-1. Serverless is influenced by several existing software patterns, while defining
its own

Chapter 3 presented several common architectural patterns. Take, for instance, the
API request/response pattern. Though this is a software pattern, without you realiz‐
ing it, it is also part of your everyday serverless development. Point-to-point messag‐
ing patterns with queues and publish/subscribe patterns with topics do not have a
big learning curve, because AWS services such as Amazon SQS and SNS provide
you with those capabilities out of the box as standard. You then build advanced
patterns and specialty use cases on top by using AWS services. Even when you use
the Java language to implement your Lambda functions, you no longer handcode
publish or subscribe messages using the Java Messaging Service (JMS) API. This
exemplifies how serverless acts as a stepping stone to accelerate your cloud journey.
The challenge, however, is knowing or deciding which service to use in a given
circumstance.

While several books discuss the full breadth of software patterns,
the earliest collection of patterns specifically centered around
building serverless solutions on AWS was published by Jeremy
Daly, CEO of Ampt and an AWS Serverless Hero, during the early
days of serverless evolution in 2018. Jeremy’s updated collection of
patterns is still helping many engineers accelerate their serverless
adoption.

216 | Chapter 5: Serverless Implementation Patterns

https://oreil.ly/Scffv
https://oreil.ly/Scffv
https://getampt.com
https://oreil.ly/YMcB2
https://oreil.ly/YMcB2

Patterns are there, to be discovered
Though a pattern with a catchy name gets everyone’s attention, as a developer you’ll
also come across many anonymous patterns that you’ll apply repeatedly, enabling
you to solve problems and develop solutions faster. You’re more likely to find these
patterns when you’re experimenting with newer technologies than when you’re work‐
ing with legacy systems. As you try out different service combinations in serverless,
for example, you have a good chance of identifying design constructs that will turn
into new patterns. Once you have proved that a pattern fits well with a particular use
case, you gain confidence and start applying it in similar situations. At this stage, your
pattern may not have a name or wider visibility.

Figure 5-2 shows a simple serverless data pipeline where certain data feeds get
dropped into an S3 bucket that triggers data processing and transformation activities
before updating a target system. Though this simple architecture already makes use
of a few patterns—event triggers, messaging, a dead letter queue, etc.—it’s still just a
design at this stage.

Figure 5-2. A data processing architecture to ingest data feeds, transform them, and
update a target system

Say you experiment with the data processing pipeline shown here and optimize the
Lambda functions and SQS queues for different types of data feeds. Soon, you hear
there’s a need for a similar data processing flow for different datasets. You now have
the possibility of repeating the construct several times for different use cases (as
shown in Figure 5-3) and across several teams. You may well be in the early discovery
stages of a new pattern.

An Overview of Software Patterns | 217

Figure 5-3. A repeatable data processing pattern that is specific to a certain use case

Serverless patterns are guides, not silver bullets
Not every pattern you come across is relevant to serverless, or can be shown with its
equivalent serverless representation. Consider the patterns and examples covered in
this chapter as guides to inspire you to build better serverless solutions, not as simple
lift-and-shift architecture or design constructs that you can apply to every problem.

We’re all amazed by snowflakes and their intricate structures.
Though they look similar to the naked eye, scientists say that
snowflakes can be sorted into about 40 categories, with an almost
infinite number of possible shapes. Similarly (though to a much
more modest extent!), patterns used across the software industry
can have several variations and distinct implementation styles. As
new technologies evolve, they bring even more possibilities. The
circuit breaker pattern that we’ll look at later in this chapter is one
example that has several implementation flavors, from legacy to
serverless.

218 | Chapter 5: Serverless Implementation Patterns

https://oreil.ly/qCroB

Serverless Migration: The Strangler Fig Pattern
Strangler fig is the common name for a variety of tropical and subtropical plant
species that begin their lives on a host tree and grow long vines that, over the years,
gradually strangle (and in many cases kill) the host. When you migrate legacy enter‐
prise applications to serverless, the incremental and iterative approach of shifting
functionality in small parts from the old application to a modern serverless stack is
often compared with the lifestyle of a strangler fig.

The strangler fig pattern, introduced by Martin Fowler and inspired by the behavior
of this plant, is the most reliable migration pattern to move workloads to serverless.
Its benefits include:

• Lowering the risk involved in the migration process•
• Providing visibility on the progress of the migration•
• Allowing course correction without much disruption•
• Reducing or even avoiding service disruptions and system downtime•

Implementation Approaches
The most important aspect of applying this pattern is clearly knowing the end goal.
In-depth knowledge of the system you are migrating and how the migrated system
will take shape is essential to succeed.

When applying the strangler fig pattern, you can take inspiration from the set piece
microservices development analogy discussed in Chapter 3. You take the whole sys‐
tem, and you identify the parts or pieces that you can gradually migrate toward your
end target, ultimately “strangling” the source by moving all of its pieces to the target.

Most examples of the strangler fig pattern talk about the migration of APIs from the
old to the new with some form of façade layer (as the strangler) to shift traffic or
route requests. However, in enterprises, you will encounter varied use cases and vary‐
ing implementations of this pattern. In addition, different areas of a given system may
require different strangling approaches. You’ll find that some parts can be migrated
by applying the strangler pattern at a high level, and others at a lower level.

Serverless Migration: The Strangler Fig Pattern | 219

https://oreil.ly/cjtgB
https://oreil.ly/kjMl7

With a high-level strangler approach, you identify the frontend and backend services
and APIs, data processing jobs, business report generation tasks, data analytics and
insights, data stores, event flows, etc. At this level, your focus is on tactical migration,
considering the dependencies, business criticalities, risks, regulatory compliances,
complexities, etc. To apply the strangler pattern at a low level, you take each system
part and implement the needed steps to progressively move it to the target serverless
architecture.

Strangling Data Processing Flows
It is common in a functioning organization to have several data flows and data
processing flows that span multiple domains, departments, and teams. Many of
these flows are vital for the functioning of critical applications of the organization.
Diverting these as you move from the existing legacy systems to serverless requires a
well-planned, coordinated approach.

Figure 5-4 depicts a common data sharing approach with many legacy applications.
Data files get placed in certain network file folders for consuming applications to
fetch them at desired intervals using some form of file transfer protocol.

Figure 5-4. A legacy data sharing system that uses data files stored in folders and fetched
by consuming applications at desired intervals

220 | Chapter 5: Serverless Implementation Patterns

Before you embark on the serverless migration of such a system, you must create a
vision of your end goal and what your migrated architecture will look like. It may not
be perfect when you start, but it’s important to at least sketch out a first draft that you
can refine as you progress through the journey. The target architecture for this system
is shown in Figure 5-5: it has newly implemented serverless microservices alongside
in-house or external applications.

Figure 5-5. The target serverless architecture of the legacy data processing pipeline

You now have a vision, and your challenge is, as you learned in Chapter 3, to identify
the set pieces and incrementally migrate those parts of the system by applying the
strangler fig approach.

Figure 5-6 illustrates the initial evolution of the new data flow. Your goal is to
gradually strangle the data feeds going into different network folders by directing all
of them into a common place—an S3 product feeds bucket, in this case. Depending
on the capabilities of your legacy system, you may have an intermediary phase before
switching to a new backend. Figure 5-6 shows the rerouting of the new products data
feed to the legacy branding system (assuming it has an API to receive data from the
Lambda function). This will be followed by rerouting the price updates and stock
data feeds. The new serverless pipeline improves efficiency by processing the feeds as
soon as they arrive.

Serverless Migration: The Strangler Fig Pattern | 221

Figure 5-6. The first phase of the data pipeline migration: strangling a legacy data flow
route

Strangling API Routes to Backend Services
The strategy to migrate API routes is similar to the data pipeline migration strategy
you saw in the previous section: you take the existing legacy application, identify a
piece of functionality—often a “low-hanging fruit” feature to start with—and build
a newer replacement version in serverless. When it’s ready, you gradually shift the
traffic from the old endpoint to the new one. While doing so, you will run both the
old and new endpoints in parallel, allowing you to observe and improve on the new
service before strangling the old one. You then start with the next piece, and iterate
until you have strangled everything from the legacy system.

Often, when you migrate legacy monolithic applications to server‐
less, you will uncover opportunities to abandon synchronous end‐
points and rebuild those parts as asynchronous services in the
target serverless architecture. You may not need to build like-for-
like endpoints.

While you’re migrating your monolithic backend application to serverless microser‐
vices, you need a layer that acts as the “switchboard” to route incoming requests to
the right backend endpoints. Two common implementation patterns that provide a
façade layer to achieve this are the API gateway and BFF patterns, described in the
following sections.

222 | Chapter 5: Serverless Implementation Patterns

API gateway as the façade layer
Several API gateway products provide the capability to route requests to both the
old and new endpoints. However, as you migrate your applications to serverless and
operate them on the AWS cloud, Amazon API Gateway is the appropriate service.
It offers several service integrations and can be used as a proxy to invoke HTTP
endpoints.

Figure 5-7 shows the initial architecture, with a legacy API gateway acting as the
façade layer. The target serverless architecture requires an improved solution.

Figure 5-7. The original architecture, with a legacy gateway routing requests to backend
application endpoints

Figure 5-8 shows the first phase of strangling the API route. While the new Amazon
API Gateway becomes the target for one of the client applications, it in turn routes
the requests to the legacy gateway while the new microservice is being developed.
Note that introducing the new API gateway will require an update of the client
application as well, as it will have a different hostname from the legacy gateway.

Figure 5-8. First phase of API strangling with the introduction of Amazon API Gateway
as the target for an existing client application

Serverless Migration: The Strangler Fig Pattern | 223

When the new microservice—the products microservice, in this case—becomes
available, you switch the routing and continue strangling the legacy system as you
progress with the migration, as shown in Figure 5-9.

Figure 5-9. Switching from a legacy API gateway to Amazon API Gateway and migrat‐
ing the legacy monolith to new serverless microservices

When you route traffic from one API gateway to another during
the legacy to serverless migration phase, the extra network route
will add latency to the overall call. The added latency may be small,
but it’s still worth keeping in mind.

Backend for Frontend as the façade layer
The original intention of the BFF pattern was to have different backend services to
serve the different types of frontend client applications, such as web browsers, mobile
devices, tablets, etc. However, it is popular as a middle layer between the frontend
applications and the backend microservices layer, as shown in Figure 5-10.

As with the API strangling approach, the BFF pattern offers the flexibility to shift
from legacy to serverless services. It allows running both legacy and migrated applica‐
tions in parallel before completely switching over to the new implementation.

224 | Chapter 5: Serverless Implementation Patterns

Figure 5-10. Typical Backend for Frontend architecture that enables managing routes to
both legacy and serverless backend services

The Storage-First Pattern
The storage-first pattern is one of the newer patterns. According to Eric Johnson,
Principal Developer Advocate at AWS, who introduced the name, the main concept
of this pattern is to store first and process after.

In an event-driven architecture, when you handle requests asynchronously by decou‐
pling the receipt of a request from its processing, it is crucial that you don’t lose
the data. With the storage-first pattern, you first store the incoming data in an SQS
queue, Kinesis stream, S3 bucket, or DynamoDB table, and then start the computa‐
tion part.

Which service you use to store the data and for how long depends on the business
case. For example, if there is a need to keep the data longer than a few days or weeks,
you may consider DynamoDB or S3 over SQS and set the TTL or data retention
policy to automatically remove the data after the desired period.

For business scenarios that handle sensitive data, there are restrictions regarding the
details you can add to logs. In such situations, the storage-first pattern can also allow
you to implement an audit log for the data.

The concept of the storage-first pattern is similar to that of the inbox pattern, but
the implementation of that pattern mainly focuses on storing incoming messages in
a database, whereas the storage-first pattern covers a variety of storage services. One
of the key benefits of the storage-first and inbox patterns is the ability to enforce
idempotency by checking the uniqueness of the incoming message against the storage
to avoid duplication.

Serverless Migration: The Strangler Fig Pattern | 225

https://oreil.ly/CaB7z

Resilient Architecture: The Circuit Breaker Pattern
The circuit breaker pattern is one of the most important and widely adopted architec‐
tural patterns in software engineering. Its part in a distributed services environment
is crucial for resilient and highly available applications. The concept of circuit breakers
comes from the electrical switches that are useful to open a circuit either manually or
automatically to protect the electrical circuit from overload or outage.

Why Is the Circuit Breaker Pattern Relevant in Serverless?
It is common in a business environment to have heavily used and highly critical
applications such as payment systems, order services, etc. A network issue that
impacts the connection to such a system, a scheduled downtime, or an unexpected
system outage can have severe consequences for applications that consume their
services and impact millions of end users/customers.

During peak network traffic times, if one of your serverless microservices invokes an
unresponsive remote application, you face the risk of:

• Cloud resources quickly reaching their allocated quotas or concurrency limits•
• Lambda functions running longer, waiting for responses that cost more•
• A delay in one service triggering a domino effect of application-wide gridlock•

In addition, if yours is a user-facing service, your disgruntled users will likely send
more requests while impatiently waiting for a response, adding to the chaos and
exhausting your service resources.

In situations like these, you need a way to assess the unhealthy status of the service
provider and fail fast rather than waiting—and implementing a circuit breaker pat‐
tern helps you limit the damage.

Core Concepts of Circuit Breaker Implementation
Understanding the core concepts of circuit breakers is important. They include:

A closed circuit
Figure 5-11 shows a simple service that fetches customer order details from a
SaaS platform, using a synchronous request/response invocation from the user’s
app to the third-party system and back. The diagram shows the connection
between the Lambda function and the third-party system working as expected—
it is a closed circuit.

226 | Chapter 5: Serverless Implementation Patterns

Figure 5-11. An example of a synchronous request/response communication pattern
where the circuit is closed, indicating normal functioning

An open circuit
When a circuit is marked as open, the connection from one system to the other
does not happen. In Figure 5-12, the Lambda function cannot successfully handle
its requests if the third-party system is down or extremely slow to respond. In
this situation, as the circuit is open, the function does not invoke the third-party
SaaS platform but fails immediately and responds with an error.

Figure 5-12. An example of a synchronous request/response communication pattern
where the circuit is open, preventing a connection between two systems

The circuit breaker
The circuit breaker (or manager) is an object that wraps a protected function call
and monitors for errors, using its defined logic to determine whether to declare
a circuit (connection) as open or closed. This determination typically depends
on threshold conditions: for example, five consecutive failures to reach the third
party within two minutes could cause the circuit breaker to mark the circuit as
open.

A half-open circuit
The circuit breaker needs a way to determine when it’s safe to declare the
circuit as closed again. As it has no way of knowing whether or not the external
application has recovered, the typical approach is to wait for some duration and
then let a few invocations through. Based on the success or failure of these calls
and the circuit breaker logic, it then either marks the circuit as closed or keeps it
open with a fresh timeout value to check again. This half-open circuit allows the
circuit breaker to test the waters, as it were.

Resilient Architecture: The Circuit Breaker Pattern | 227

As of now, the Lambda service does not offer a built-in circuit breaking functionality.
Hence, it is important to understand the pattern and its implementation. The exact
implementation logic of a circuit breaker will depend on your use case. In general,
you require a place to store the current status of the circuit as a bare minimum.
In addition, you may want to store the threshold counter, timeout value, number
of attempts, etc. Depending on the importance of the external system and its wider
impact on the business, you may opt for a simple circuit status check mechanism or a
dedicated service, as the following sections explain.

A simple status-checking function
If just one application is interacting with the third-party or external service, as in the
example shown in Figure 5-12, you may use a Lambda function to check the status of
the third party and store the status in a parameter in AWS Systems Manager (SSM)
Parameter Store, as shown in Figure 5-13.

Figure 5-13. A simple status-checking implementation that uses SSM Parameter Store to
store the circuit’s current status

Now that you have a way to determine the status of the circuit, the order-fetching
service can incorporate the status check before invoking the third-party system. This
is shown in Figure 5-14.

The example shown here uses the SSM Parameter Store to store the current status
of the circuit. You might also consider storing this information in DynamoDB, espe‐
cially if your circuit breaker logic involves maintaining threshold counts, timestamps
of the status changes, etc.

228 | Chapter 5: Serverless Implementation Patterns

Figure 5-14. A Lambda function that checks the status of the circuit by reading a
parameter value in the SSM Parameter Store before invoking an external system

This solution may be all you need for your use case. However, in an enterprise
environment, you could have an application or service being consumed by several
business units. In such situations, rather than having each consumer duplicate the
status check, you might instead want to consider implementing a common service
that every consumer can access to check the circuit’s status. The next section dis‐
cusses this approach.

A dedicated event-driven status-checking service
When you have a critical microservice or an external third-party application that
serves several applications, you might want to implement a dedicated health check
service, as shown in Figure 5-15.

Resilient Architecture: The Circuit Breaker Pattern | 229

Figure 5-15. A dedicated status-checking service that provides the current status of a
third-party system

As indicated in Figure 5-15, there are several implementation options for the status
check functionality; you can choose whichever one is appropriate for your use cases
and purpose. Here are a few thoughts on choosing the right one:

• If service consumers are in the same AWS account, the easy option is to store the•
current status in an SSM parameter to check before invoking the target service.

• A more sophisticated option is to provide status checking as a service via an API•
endpoint.

• Though not ideal, a simpler approach is to grant all consumers read access to the•
status item in a DynamoDB table.

• An event-driven approach benefits from the push notification of service status as•
an operational event. Example 5-1 shows what such an event might look like.

Example 5-1. An operational event that indicates the status of a third-party system

{
 "metadata": {
 "version": "1.0",
 "trace_id": "skdj834sd3-j3ns-cmass23",
 "created_at": "2023-12-30T10:15:03Z",
 "domain": "retail",
 "subdomain": "orders",
 "service": "status-checker",

230 | Chapter 5: Serverless Implementation Patterns

 "category": "operational_event",
 "type": "status",
 "status": "down"
 },
 "data": {
 "system": "anytime-third-party",
 "current_status": "down",
 "previous_status": "up",
 "current_status_since": "2023-12-30T09:55:00Z",
 "last_checked_at": "2023-12-30T10:15:00Z"
 }
}

If an application does not provide a dedicated status-check end‐
point, invoking an endpoint to fetch some test data without causing
any side effects is an alternative option.

If you decide to implement a dedicated status monitoring service, there are few
considerations you need to be aware of:

Availability of a dedicated status-checking endpoint
The periodical status check of the third-party application relies on a dedicated
health check API. Though most SaaS platforms offer this, you may find some
legacy applications without this capability.

Potential benefits to your monitoring system
Having a dedicated service allows you to track the health of the external system
on dashboards for monitoring purposes, providing continuous visibility. Plus, it
enables you to raise alarms and send alerts to your on-call support engineers
when necessary.

API quota and invocation limits
Make sure the status check calls do not eat into your API quota or overall
invocation limit (depending on the cost model or the charging policy of the
application provider).

Figure 5-15 illustrates the implementation of a dedicated service
status check pattern where multiple applications that interact with
the same external system can query the status via an endpoint.
In a decentralized approach, rather than having a dedicated status-
checking service, individual applications that experience connec‐
tion issues with the external system can post status updates. The
circuit manager can monitor these to determine the circuit status
and send out updates when appropriate.

Resilient Architecture: The Circuit Breaker Pattern | 231

Failing Faster When the Circuit Is Open
Now that you understand the basics of the circuit breaker pattern, let’s take a look
at the most common use of the pattern: failing fast. As the name indicates, the goal
here is that when an application or service that your application depends on in order
to serve its clients cannot fulfill the requests within an expected time window, your
application swiftly returns an error response. This has a few key benefits:

Increased end-user satisfaction
Users of modern digital systems prefer fast responses from the apps they interact
with. Dissatisfied customers leave and look elsewhere. In a highly competitive
business world, that benefits your competitors.

Lower costs
Computing resources cost money when in use. In a synchronous flow, when an
external system takes a long time to respond to your Lambda function, it awaits
a response up to its timeout. This adds to the Lambda cost. When you multiply
that by thousands or millions of invocations, it can cause a substantial increase in
your overall cloud costs.

Less risk of overburdening the already stressed system
When users experience slowness in an application, the human instinct is to retry
the request repeatedly. This behavior initiates more requests and overloads the
already crippled service, with a high risk of resource exhaustion and hitting
service quotas and concurrency limits.

Storing Requests When the Circuit Is Open
and Replaying Them When Closed
Depending on the criticality of the application, another common use of the circuit
breaker pattern that you might want to consider is storing requests when the circuit
is open and replaying them when it’s closed. Often, you can classify services as non-
critical, critical, or highly critical. For example, a service that provides next week’s
weather forecast for a given location is probably not critical. In contrast, services
that accept holiday reservations or take payments for orders, batch jobs that transfer
money between accounts, and event notifications that inform you of the redemption
of discount codes are critical. If such services are caught in an open circuit situation,
you need a way to receive the requests, store them until the circuit closes, and then
replay them eventually.

There are a variety of serverless services you can use for this purpose, depending on
factors such as the volume of requests, the required speed/immediacy of replay, etc.
The following sections describe some of the options.

232 | Chapter 5: Serverless Implementation Patterns

Using a dedicated SQS queue for storage and replay
Storing requests in a queue and replaying them is probably the most popular
option for ensuring the resiliency of an application. The concept is simple and
straightforward:

• When the circuit is closed, the requests get processed as normal.•
• When the circuit is open, the requests get pushed into a queue to be replayed•

later.
• When the circuit closes again, the requests from the queue are processed.•

How you trigger the replay and reprocess the requests depends on your implementa‐
tion logic. For example, you might:

• Retrieve the buffered requests into a processing queue that acts as the event•
source for a Lambda function.

• Start a scheduler when the circuit closes to periodically trigger a Lambda func‐•
tion to pull messages from the queue to process. During this operation, if the
circuit becomes open, you must stop the process.

To choose the apt replay approach, you must know the capabilities of the target
system. After all, you don’t want to open the floodgate too soon and cause further
degradation. You must also be mindful of existing rate limits and quotas as you replay
requests.

Using DynamoDB to store the requests and fetch them to replay
It’s a recommended practice in event-driven architecture for an application to store
incoming requests or events before processing them (see “The Storage-First Pattern”
on page 225). This ensures that, in the event of a service interruption or open circuit,
you have the data to resubmit.

If you use DynamoDB to store requests, make sure you have devised the appropriate
data query patterns and indexes for efficient data operation. A crucial attribute you
should store for every data item in the table is status, indicating whether the request
has been processed or requires resubmission. A sample list of values it can take
includes:

RECEIVED

Data has been received. Set as part of the storage-first implementation.

PROCESSING

Data is being processed.

Resilient Architecture: The Circuit Breaker Pattern | 233

PROCESSED, RESPONDED, or SUCCESS
Indicates the successful completion of the request.

ERROR

Indicates a data processing error not related to the open circuit.

RETRY

Indicates the request must be resubmitted. This is the status you set if the circuit
is open.

With DynamoDB, to capture the different stages of processing a
request, you can consider keeping each stage separate rather than
modifying the original data. You create appropriate partition key
(PK) and sort key (SK) patterns to achieve this.
Say you received an order with the ID 123-987-546-23. The order
ID is your PK, but you may also keep SK values such as SOURCE,
TRANSFORMED, SUBMITTED, etc. This allows a clear separation of data
items and helps trace the data flow, among other benefits.

The main drawback of this approach is that when the circuit becomes closed, you
will need to trigger a Lambda function or a Step Functions workflow to query the
table for items to replay. In high-volume request flow use cases, due to DynamoDB’s
query result size limit of 1 MB, you might need to call this function repeatedly, and
the clearing option can take a long time.

To reduce costs and keep the table size optimal, set appropriate
TTL values for the items in your DynamoDB table that have no
business importance.

Using EventBridge’s archive and replay feature
A relatively new approach to implementing the circuit breaker pattern is to use
EventBridge’s event archiving and replay capabilities. As you learned in Chapter 3, an
event archive is a collection of events that satisfy a filter pattern. Events remain in
the archive until they reach their expiry period or the archive is deleted. Figure 5-16
shows the high-level logic of this approach. When the circuit is in an open state, an
event with a retry identity is created and sent to the custom event bus. A rule filters
retry events and routes them to an EventBridge archive.

234 | Chapter 5: Serverless Implementation Patterns

Figure 5-16. Routing retry events to an EventBridge event archive

When the circuit becomes closed again, you initiate the replay of events from the
archive within a specified time frame (corresponding to the duration of the down‐
time). EventBridge will then put those events from the archive onto the bus. You
set up a rule to filter these replayed events from the archive and process them for
resubmission, as depicted in Figure 5-17.

Figure 5-17. Replaying archived events

Using EventBridge archive and replay has its benefits. There is no limit on how many
events you can store in an archive, making it possible to deal with lengthy downtimes
and high-volume request flows. Also, as EventBridge replays the events within a
requested time frame, it eliminates the need to implement extra logic for fetching
events at frequent intervals.

When it replays an event from the archive, EventBridge assigns it
a new event id (refer to Example 3-3 in “How do you represent an
event?” on page 142 for a refresher on what an EventBridge event
looks like). If you have your idempotency check based on the event
id, then you need a different way of identifying the event. One
option is to use a trace_id that you add in the metadata section of
your event, as shown in Example 3-5.

Resilient Architecture: The Circuit Breaker Pattern | 235

There are a few limitations that you must be aware of too. EventBridge does not
guarantee the order of the events, and you cannot control the speed of events during
replay. In addition, there is currently no option to delete the replayed events from
the archive, so you need to maintain a journal of every replay time frame to avoid
replaying events more than once.

Another issue is that there may be a delay of several minutes
between the time when an event is published to an event bus and
the time at which it arrives in the archive and is available for
replaying. In situations where the circuit breaker status fluctuates
frequently within short time spans and you have a requirement to
replay the requests immediately, EventBridge archive and replay
may not be ideal.

The Outbox Pattern
“The Storage-First Pattern” on page 225 briefly mentioned the inbox pattern, which
focuses on storing incoming messages in a database for later processing. The outbox
pattern, on the other hand, is about an application persisting data in an “outbox” table
so that another application can read and process the data or relay the data to a queue,
for example.

In serverless, you often hear about the transactional outbox pattern. The common use
case is when a Lambda function that handles the incoming data performs two actions:
writing to a DynamoDB table and also emitting an event to the event bus or adding
a message to a queue. Both actions must succeed to fulfill the functionality. To reduce
the risk of this not happening, you can streamline the process by enabling streams
in DynamoDB and having a Lambda function to handle the stream events and then
send the data to downstream applications.

This is a common pattern that you will encounter frequently in serverless develop‐
ment. You may already be using this pattern in your applications without even
realizing it.

The Functionless Integration Pattern
The terms functionless, codeless, Lambda-less, etc., express a common theme: reducing
the use of Lambda functions in your serverless architecture. Though as an engineer
you’ll often hear the phrase “code is a liability,” you know that you cannot build an
application without code. As described in Chapter 1, in serverless, you compose your
applications using managed cloud services. In this context, functionless integration
means you no longer handcode your Lambda functions to connect or integrate

236 | Chapter 5: Serverless Implementation Patterns

two or more services; instead, you knit these services together using out-of-the-box
features and IaC.

Figure 5-18 shows a simple architecture that receives data—say, product reviews—
from customers via an API endpoint. It is an asynchronous operation, where the
incoming reviews are pushed into a queue before downstream services process and
publish them. Here, the engineer decided to use a Lambda function behind the API
endpoint to shift the data from the API to the queue.

Figure 5-18. A simple architecture where a Lambda function transports the request data
from the API to a queue

Figure 5-19 improves on this by applying functionless thinking. As the first Lambda
function in Figure 5-18 performs data transport and has no business logic, you can
eliminate it by using the native service integration feature of Amazon API Gateway, as
shown here.

Figure 5-19. A serverless architecture that uses a native service integration between API
Gateway and SQS

Though you can’t eliminate the use of Lambda functions everywhere, the ambition of
the functionless integration pattern is to apply this approach where it suits. Avoiding
writing Lambda functions where possible has several benefits:

• You write, test, deploy, and operate less code.•
• There are fewer points of failure and debugging hassles.•
• You configure fewer IAM policies and permissions, meaning less security worry.•

The Functionless Integration Pattern | 237

• You reduce the danger of exceeding your Lambda concurrent execution quota.•
• You lower the monthly cost of your Lambda functions.•

If you only have a handful of Lambda functions in your application you may not find
the pattern appealing, but when you consider the potential benefits across your entire
organization, it’s easy to see that it can have quite a positive impact.

Use Cases for Functionless Integration
There are several parts of a serverless architecture where you have the possibility of
reducing the Lambda footprint. However, the implementation details depend on your
business domain and the types of AWS services you use for your workload. Let’s take
a look at some examples of how you can reduce the amount of custom code you need
to write by using native service integrations.

Common AWS service integrations
Here are a few popular AWS services that aid in the reduction of the number of
Lambda functions in a serverless application:

Amazon API Gateway
API Gateway supports over a hundred AWS services as the backend for an API
endpoint. The part of the implementation that replaces the need for a Lambda
function is a brief integration script written in Velocity Template Language
(VTL) that provides the plumbing between API Gateway and the target service.

The following is a sample VTL script that takes the incoming API request
payload, adds it as the EventBridge event payload body under the Detail section,
and puts the event to the event bus your-custom-bus:

{
 "Entries": [
 {
 "DetailType": "customer-registered",
 "Source": "service-customers",
 "EventBusName": "your-custom-bus",
 "Detail": "$util.escapeJavaScript($input.json('$'))"
 }
]
}

AWS Step Functions
AWS Step Functions has direct integrations with services such as Amazon Dyna‐
moDB, SQS, SNS, EventBridge, etc. In addition, using the AWS SDK, you can
integrate with hundreds of AWS services from your workflow without writing a
Lambda function.

238 | Chapter 5: Serverless Implementation Patterns

Here’s a sample VTL script that takes the request payload body and provides it as
input to a Step Functions workflow:

#set($body = $util.escapeJavaScript($input.json('$')))
{
 "input": "{\"body\": $body}",
 "name": "$context.requestId",
 "stateMachineArn": "<arn-of-your-step-function>"
}

AWS Step Functions supports two types of workflows: standard and express.
While the standard workflows are asynchronous and can run for a year, the
express workflows support both synchronous and asynchronous invocations and
can run for up to five minutes. Due to their support for synchronous invocations,
express workflows have become a popular option to integrate with API Gateway
endpoints that provide a request/response-style invocation pattern—a key area
for functionless integration.

Amazon EventBridge
As an event bus or a choreographer of microservices, EventBridge provides
several ways to reduce the need to write function code. Several AWS services
can send events directly to EventBridge, and several services can be targets to
receive events directly from EventBridge. Though you may have scenarios where
you need Lambda functions to perform some logic before putting an event
onto EventBridge, the motivation with the functionless approach is to assess the
possibility of integrating without a function—the functionless-first principle!

The sample Amazon States Language (ASL) script in Example 5-2, is for publish‐
ing an event from Step Functions to a custom event bus in EventBridge.

ASL is a JSON-based structured language used to define a state
machine (a collection of states, tasks, state transitions, etc.).

Example 5-2. An ASL script to publish a custom event from Step Functions to
EventBridge

{
 "Put SNS topic subscription event to event bus": {
 "Next": "Create EventBridge Rule",
 "Type": "Task",
 "ResultPath": null,
 "Resource": "arn:aws:states:::events:putEvents",
 "Parameters": {
 "Entries": [

The Functionless Integration Pattern | 239

https://oreil.ly/AharQ

 {
 "Detail": {
 "metadata": {
 "version": "1.0",
 "trace_id.$": "your_unique_event_id",
 "created_at": "2023-12-05T14:46:12.536Z",
 "domain": "YOUR-DOMAIN",
 "service": "your-service",
 "category": "internal",
 "type": "status",
 "name": "api-client-subscribed"
 },
 "data": {
 "client_name.$": "api-client",
 "topic_name.$": "client-sns-topic"
 }
 },
 "DetailType": "event",
 "EventBusName": "arn-of-your-event-bus",
 "Source": "create-subscription"
 }
]
 }
 }
}

There are several other services and features that allow you to reduce the need for
function code in your architecture. To give just a few examples, services such as Ama‐
zon DynamoDB and S3 offer automated data cleanup features via TTL values and
lifecycle policies, respectively; AWS AppSync simplifies development with GraphQL;
and Amazon SNS allows you to send notifications to millions of subscribers without
having to write a Lambda function.

Sequence number generation using DynamoDB
Many traditional relational database systems provide sequence number generation
as a feature that guarantees you a unique incremental number to use for several
everyday use cases, such as order numbers, candidate roll numbers, visitor counts
to a website, etc. You can set lower and upper limits for the number range and the
increment, as shown in the following SQL script:

CREATE SEQUENCE ORDER_CATALOG
INCREMENT BY 1
MAXVALUE 900000000
MINVALUE 600000000

When you work with serverless services, especially with NoSQL data stores such as
DynamoDB, you don’t have an out-of-the-box solution that offers you such function‐
ality. However, you can use the concept of atomic counters in DynamoDB for this

240 | Chapter 5: Serverless Implementation Patterns

purpose. The atomic counter is a number attribute that can be used to update a value
atomically via the UpdateItem operation.

Once you know how to do this, it’s just a matter of integrating with API Gateway to
offer it as a service, as shown in Figure 5-20.

Figure 5-20. A functionless architecture to generate sequence numbers using DynamoDB
and offer it as a service via API Gateway

The example shown here has a DynamoDB table that stores three different sequence
values. The API will receive the type of the sequence number—order, candidate, or
visitor—as a query parameter and return the respective incremented value.

An example VTL script that you could supply while configuring the API request
mapping template is shown in Example 5-3.

Example 5-3. A VTL script to increment a value in a DynamoDB table

{
 "TableName": "sequence-numbers",
 "Key": {
 "id": {
 "S": "visitor"
 }
 },
 "ExpressionAttributeValues": {
 ":val": {
 "N": "1"
 }
 },
 "UpdateExpression": "ADD sequence :val",
 "ReturnValues": "UPDATED_NEW"
}

The ExpressionAttributeValues parameter specifies the increment; in this case, 1.

Invoking external HTTP APIs
Imagine you have a service that registers new customers to your business. As part of
the registration, it requests the customer’s consent to receive newsletters, promotional

The Functionless Integration Pattern | 241

emails, updates on new product launches, etc., and records their preferences. Modern
businesses might either store this data internally or use a dedicated external third-
party application. Figure 5-21 is a high-level representation of the registration service
communicating with a consent service provider.

Figure 5-21. A customer microservice invokes a third-party API to store consent
preferences

Storing a customer’s preferences is a business requirement and happens at the end of
every successful registration. As this is a decoupled event-driven activity, your initial
architecture might look something like Figure 5-22.

Figure 5-22. An event-driven serverless architecture that eventually sends data to an
external application

This is a common serverless pattern where the synchronous API that receives the
details is decoupled from the asynchronous backend that eventually sends the data
to the external system. When you look at the customer preferences handler Lambda
function, you likely expect it to be responsible for fetching one or more messages
from the queue and invoking the third-party API. Now, consider the following
additional tasks this function has to perform:

• Suppose the consent management platform uses OAuth to authenticate and•
authorize each request. The Lambda function must fetch the OAuth client cre‐
dentials, request an access token by calling a different endpoint, store and reuse

242 | Chapter 5: Serverless Implementation Patterns

the access token until it expires, and fetch a new token when the current one
expires.

• The SLA allows you to send only a certain number of requests per second. The•
Lambda function needs the logic to keep track of this and to adjust the message
flow rate of the queue accordingly.

• If the third-party service is unavailable due to downtime or interruptions, the•
Lambda function should have the circuit breaker logic to buffer the requests and
resubmit them once the service is healthy.

A simple Lambda function to send requests to an external HTTP endpoint has
now become responsible for many critical operational tasks. In such scenarios, a
proven pattern, service, or feature could become useful if it can abstract away the
complexity to give you the needed development velocity. Amazon EventBridge offers
an extremely powerful and highly secure feature that fits perfectly in these scenarios:
API destinations!

API destinations are HTTP endpoints that can be configured as targets for event
routing rules on EventBridge. They help you natively integrate with applications
using RESTful API calls, eliminating the need for Lambda functions.

Figure 5-23 shows the result if you rearchitect the solution in Figure 5-22 with an API
destination.

Figure 5-23. An event-driven serverless architecture that uses an API destination to
invoke an external HTTP endpoint

With API destinations, you benefit from the following important features:

• The credentials you provide for the API connection are stored in AWS Secrets•
Manager. EventBridge handles the management and absorbs the cost, so you are
not charged for using Secrets Manager.

The Functionless Integration Pattern | 243

https://oreil.ly/I-c89

• If the target endpoint uses OAuth for authorization, EventBridge manages the•
access token on your behalf.

• API destinations can retry sending the requests for a maximum of 24 hours or•
185 times.

• You can attach a DLQ to catch the failed invocations.•
• You can control the invocation rate, scaling it from 1 to 300 invocations per•

second.

There are, however, a few trade-offs you need to be aware of with API destinations:

• At the time of writing, there is no option to handle the responses from a target•
endpoint. API destinations do not publish the response payload onto the event
bus.

• Calls to an API destination endpoint will time out after 5 seconds, and the•
request will be retried. Make sure the destination service has idempotency meas‐
ures to handle duplicate requests.

Figure 5-24 shows the main components of an API destination, which you must
configure when you create it. The connection manages the access permissions, and
the endpoint defines the characteristics of the target endpoint.

Figure 5-24. API destination components

244 | Chapter 5: Serverless Implementation Patterns

EventBridge Pipes is another feature that can eliminate the need for Lambda func‐
tions in many use cases. With EventBridge Pipes, you can create point-to-point inte‐
grations with optional event filtering, transformation, and enrichment, as Figure 5-25
depicts.

Figure 5-25. The main parts of an EventBridge Pipe to configure a point-to-point
integration from a source service to a target (source: adapted from an image on the
Amazon EventBridge Pipes web page)

Things to Be Aware of with Native Service Integrations
Just as microservices can have no APIs, you will come across microservices that do
not require Lambda functions. While the functionless pattern has its advantages,
there will be situations where you find it does not fit with your business and opera‐
tional goals. Following are a few points to remember while designing your solutions:

A native service integration is like a black box with low visibility.
You saw earlier how the VTL script sits at the integration request part of API
Gateway. Though it works well, you do not get to see any logs or execution details
of the integration code. Automated testing poses challenges, and you rely mainly
on integration tests that can often add more complexity.

Debugging the integration code is nearly impossible.
Investigating problems by debugging the integration code is practically impos‐
sible. Most AWS services publish execution logs to CloudWatch logs, but for
services like EventBridge there is a need for better visibility.

EventBridge does not provide you with the response from the API destination’s target.
At the time of writing, when you provide native integrations via API destinations,
you don’t get the response payload from the target. In business cases where this is
essential, you’ll need to implement a polling mechanism to retrieve the details.

The Functionless Integration Pattern | 245

https://oreil.ly/gZTut
https://oreil.ly/v3ZvB

Apply the pattern only where appropriate.
As described earlier, you should apply the functionless pattern only in situations
where it fits well with your architecture and business needs. For example, you
may have critical business scenarios that demand detailed or censored log data,
where you prefer having greater control.

The Event Triage Pattern
Alongside those finely crafted domain events that your microservices publish and
consume, modern applications produce, capture, and process several categories of
events, often in huge volumes. Data stream events from IoT devices, click events from
websites, trajectory and altitude events from satellites and aircraft, email feedback
events from mail servers, etc., are just a few examples. The Amazon Kinesis family
of services, such as Kinesis Data Streams and Kinesis Data Firehose, efficiently ingest
and deliver data to downstream consumers.

Think of a situation where your application acts as the processing hub for these
events and distributes them to the appropriate targets in near real time to deliver
business value. For example, the clickstream events of a user who is browsing prod‐
ucts on an ecommerce website will be of interest to a product recommendation
engine that can analyze the event data and recommend related products for that user.
In another example, a service that ingests feedback events about emails dispatched
from a domain might batch them and send them to different business units for
insights.

Figure 5-26 shows a high-level view of clickstream event ingestion from a website via
Amazon Kinesis Data Firehose, and distribution of those events.

Figure 5-26. High-level view of an event ingestion and dispatch pipeline

What Is Event Triage?
In the software industry, the term triage is typically used to describe the process of
categorizing and assigning priority levels to defects or bugs. In general, it refers to any
process for classifying tasks or items and assigning them to the appropriate team or
engineer for action. Event triage involves identifying each event by its type, grouping

246 | Chapter 5: Serverless Implementation Patterns

them by type, and dispatching them to interested targets. However, the processing
application that triages the events need not have knowledge of all the consumers and
how they receive these events (think single responsibility). So, it will just send the
events to the respective dispatcher proxy for each consumer.

An event triage application should have the following capabilities:

• Drop events that are of no business interest.•
• Know the types of events that are of interest to each consumer.•
• Onboard new event consumers without disrupting the existing event flow.•
• Remove existing event consumers.•
• Adjust (add and remove) the types of events flowing to a target.•

The functionality of the event processor in Figure 5-26 can be implemented as a
Lambda function. This is shown in Figure 5-27.

Figure 5-27. Events ingestion with an event triage function dispatching events to respec‐
tive consumers

Implementation Details
Now that you have an overall understanding of the event ingestion pipeline shown in
Figure 5-27, let’s take a closer look at the characteristics of the triage function. This
function is the main element of this pattern. It gets invoked when Firehose places a
new event data file in the S3 bucket. Your Firehose data buffering parameters help
optimize the function. For example, if your buffer size is 1 MB or an interval of 60

The Event Triage Pattern | 247

seconds, you can be certain that every file will be 1 MB or less. The triage function is
responsible for:

Mapping event types to consumers via configuration
The logic to send the relevant event types to different consumers dynamically
is the heart of the triage function. As not all event types will be of interest to
every consumer, you need a simple but extendable mechanism to achieve this. A
JSON data object, as shown in Example 5-4, that lists the name of the dispatcher
function for every event type can be used here.

Example 5-4. JSON representation of the event type and consumer configuration

{
 "product_clicked_event": [
 "dispatcher-A-lambda-function",
 "dispatcher-B-lambda-function",
 "dispatcher-C-lambda-function"
],
 "page_loaded_event": [
 "dispatcher-B-lambda-function",
 "dispatcher-C-lambda-function"
],
 "item_added_event": [
 "dispatcher-B-lambda-function"
],
 "basket_updated_event": [
 "dispatcher-A-lambda-function"
],
 "payment_selected_event": [
 "dispatcher-A-lambda-function",
 "dispatcher-B-lambda-function",
 "dispatcher-C-lambda-function"
],
 "wishlist_updated_event": [
 "dispatcher-C-lambda-function"
]
}

You can store the configuration data in an SSM Parameter Store, and the triage
function will be able to use this to dynamically triage events as needed.

Invoking the dispatcher functions
The data flow here is one way. The triage function is responsible for sending the
relevant events to each dispatcher. What the dispatcher does with the events and
how it delivers them to its consumer(s) is the dispatcher’s responsibility. Because
of this, the triage function can invoke each dispatcher asynchronously.

248 | Chapter 5: Serverless Implementation Patterns

Controlling the event batch size
How the triage function processes the raw events depends on the business logic,
and it can set the maximum batch size. Note that the asynchronous invocation
of a Lambda function can accept a maximum payload size of 256 KB. As part
of the configuration shown in Example 5-4, you can even specify the batching
characteristics of each consumer.

Figure 5-28 expands the design with more event ingestion options to show the
applicability of this pattern in different cases.

Figure 5-28. Event ingestion and triage pattern with important design aspects
highlighted

Using a Lambda function to transport data from one place to
another is an antipattern in serverless development. In such sce‐
narios, you would use services that provide data transport or
support data streams rather than a Lambda function. However,
in the event triage pattern, there is business logic and processing
involved, and the function is not just shifting data from one service
to the other.

Frequently Asked Questions
Here are a few questions that frequently come up with regard to the event triage
pattern:

The Event Triage Pattern | 249

Isn’t Amazon EventBridge apt for triage?
There are a few points to make here:

• The Amazon Kinesis family of services is purpose-built for high-volume•
event ingestion, whereas EventBridge is an event broker or bus for routing
events to targets.

• The throughput of Kinesis Data Firehose can be hundreds of thousands of•
events per second, whereas it is tens of thousands for EventBridge.

• EventBridge does not offer event batching (at the time of writing), and its•
built-in event transformation capabilities are minimal. You often need to use
an SQS queue as the target of an EventBridge rule and then have a Lambda
function to read messages from the queue in batches and process them.

Can the triage function work without S3 being the data provider?
Yes, it can. The sample architecture shown in Figure 5-27 is a high-volume
clickstream event ingestion pipeline where S3 fits perfectly to store the events
before processing them in near real time. However, other services can also act
as the event source or data provider, and the triage functionality can remain the
same.

How does event triage differ from the fan-out pattern?
There are similarities and subtle differences between the event triage and fan-out
patterns:

• The triage function has processing and business logic, which is not always•
the case in fan-out patterns where the goal is to send the data concur‐
rently to many recipients of different types—Lambda functions, SQS queues,
APIs, etc.

• A simplistic fan-out pattern often uses a single target Lambda function with•
concurrent executions, whereas with event triage there are various dispatcher
functions.

• A popular use of the fan-out pattern is for ETL jobs. In ETL, due to the limi‐•
ted resources and execution time of a Lambda function, the main function
splits the batch into smaller parts and concurrently invokes worker functions
of the same type for each part. With the event triage pattern, each dispatcher
has a specific purpose and is associated with a consumer.

• Fan-out patterns often include the corresponding fan-in implementation to•
consolidate the results, which is not the case with event triage.

In Chapter 2, you learned about the importance of domains and bounded contexts
while developing serverless applications. When you share domain events, you require
measures to ensure compliance, prevent data leaks, and so on. The gatekeeper event

250 | Chapter 5: Serverless Implementation Patterns

bus pattern discussed in the following section offers an extra layer of control when
sharing events outside of your application boundary.

The Gatekeeper Event Bus Pattern
Every API you develop has a contract defining the request and response schemas,
protocol, authentication and authorization methods, invocation quota and throttling
limits, etc. But how do you apply these to your domain events as they flow into
and out of your bounded context? As a start, you ensure that your domain events
conform to an established schema, and you can secure events by encrypting them.
But who controls which events from your bounded context can flow out of your
application boundary into a different domain? As you learned in Chapter 3, your
event-driven application architecture has one or more custom event buses that ingest
and route all your custom events from and to the microservices within your domain
—but who prevents the myriad internal and operational events from within your
service boundary from being leaked?

Figure 5-29 shows some of the custom events within the user payments bounded
context (introduced back in Figure 2-3, in “Domain-first” on page 40). Though
the diagram shows a handful of events, in reality, there will be many more types
produced and consumed by the microservices within this bounded context.

Figure 5-29. A sample view of different categories of events published onto an internal
custom event bus within the user payments bounded context

The Gatekeeper Event Bus Pattern | 251

The Need for a Gatekeeper Event Bus
Not all the events shown in Figure 5-29 are domain events useful to consumers
outside of the user payments system. For example, whereas payment authorized is
a domain event important to the checkout service to confirm a user’s order and
the payment captured event (which occurs at a later point, after authorization) is of
significance to the finance domain, provider healthy is an internal operational event
useful for circuit breaker implementation, discussed earlier in this chapter.

In environments with several categories and types of custom events and many event
routing rules to send these events to multiple targets, you need fine-grained control
and a streamlined approach to separate the concerns of onboarding external event
consumers and producers, data encryption needs, and cross-account management.
In such situations, rather than risking overloading the internal event bus, you can
isolate these tasks to a dedicated event bus—a gatekeeper event bus for your bounded
context. This is depicted in Figure 5-30.

Figure 5-30. The user payments gatekeeper event bus interacts with the external systems
to share and ingest domain events

252 | Chapter 5: Serverless Implementation Patterns

The gatekeeper bus is a custom event bus that acts as the guarded event gate at your
application boundary. While all the categories and types of events flow through the
internal custom bus, only the domain events get to the gatekeeper event bus to be
routed to consumers outside. Conversely, all events sent from other domains, applica‐
tions, and third-party services to your applications flow through the gatekeeper bus,
which routes only the required ones to the internal bus. In other words, it controls
both the outflow and the inflow of events.

Implementation Approach
Along with established software practices such as separation of concerns, the “set
piece” microservices architectural thinking you learned about in Chapter 3 suggests
that it is beneficial to package the gatekeeper EventBridge custom bus and its related
resources as an independent microservice. This helps isolate the event routing rules,
cross-account event sharing configurations, event delivery failure DLQs, encryption,
and other security measures from the internal event bus and the rest of the services,
as shown in Figure 5-31.

Figure 5-31. The microservices view of internal and gatekeeper custom event buses
within the user payments bounded context

The Gatekeeper Event Bus Pattern | 253

Use Cases for the Gatekeeper Event Bus Pattern
The gatekeeper event bus pattern works well in many situations and reduces the com‐
plexity of event-driven architecture. The following are just a few of several possible
use cases:

Push notifications to API clients
As you saw in Figure 3-26 (in “Synchronous Communication” on page 112),
push notifications are an efficient communication mechanism. As the name
implies, with this approach your application sends (pushes) events to one or
more client applications or service consumers to notify them when something
relevant happens.

An important aspect of push notifications is that this is a one-way information
flow where you notify a client by calling an API endpoint. The API destination
feature of EventBridge is ideal for push notifications. Not all events go to every
registered client, and you need strict rules to ensure this. In addition, the security
and encryption requirements of each client can be different. Separating these
concerns into a dedicated microservice that works with a gatekeeper event bus
gives you better control.

Domain data sharing
Figure 2-3 in “Domain-first” on page 40 shows some of the domains and boun‐
ded contexts of an ecommerce application. With event-driven architecture, cross-
domain event sharing becomes an essential part of the functioning of enterprise
applications. When you share domain events from your application with other
domains, you are likely to route the events from your custom event bus to
the event buses in other domains, often in different AWS cloud accounts. You
configure the cross-account permissions and related security measures before
routing the specific events.

A dedicated gatekeeper event bus isolates the complexities and offers a clean
way to perform necessary event transformations to comply with formats such as
CloudEvents, AsyncAPI, etc., where required.

Cross-domain business orchestration
In “Service Orchestration” on page 259, you will see how events carry tokens and
instructions to coordinate with multiple services to perform a business function.
A gatekeeper bus can handle the task-request and task-response events between
business domains efficiently.

254 | Chapter 5: Serverless Implementation Patterns

https://cloudevents.io
https://www.asyncapi.com

Things to Be Aware of with the Gatekeeper Event Bus Pattern
Though this is a simple pattern to implement, there are a few essential points that you
need to be mindful of. These include:

Breaking event schema changes
Though this is not a problem that’s specific to the gatekeeper event bus pattern,
introducing breaking event schema changes will have severe consequences in
event-driven architectures. As mentioned in Chapter 3, versioning your events is
crucial to avoid impacting downstream systems.

Handling of sensitive data and PII
When events leave your bounded context, you lose control and visibility of
the downstream event flow and the destinations they reach. You need to have
adequate measures in place to identify and protect PII and sensitive data. You
cannot always remove such data from the events, as your consumers may require
it. In such situations, employ the required event encryption measures to mitigate
the risk.

Knowing the event payload limits of consumers
The maximum accepted event payload size of Amazon EventBridge is 256 KB,
at the time of writing. If a downstream consumer has a lower limit for data
payloads, or if a microservice transforms or enriches events it receives in a way
that makes them larger than this size, you need to find a way to handle this
situation.

Handling duplicate events
Many business domains are sensitive to duplicate events—financial account
updates, online payments, etc., for example. In certain cases, the idempotency
check gets pushed upstream to the event producer. Though duplicate events can‐
not be completely avoided due to the dependency on cloud services, networks,
and factors that are beyond your control, the gatekeeper service can perform
first-phase checks before sending events to consumers.

Microservices Choreography
Choreography is the process of creating sequences of movements. In dance, for exam‐
ple, the participants (dancers) learn a specific set of choreographed movements and
perform them individually or as a group to the music. Importantly, no one person is
instructing the troupe.

Microservices Choreography | 255

Event choreography is one of the most common and widely adopted event-driven
patterns. You can relate the dancers to the various microservices, each with a specific
contribution, that come together to complete a business process. There is no control‐
ler to instruct the services of their tasks; instead, services receive events and know
how to react and what to do.

You’ve already seen several examples of service choreography in Chapter 3, but let’s
consider another one here. Figure 5-32 is a simple workflow of customers registering
an electronic item that they’ve purchased.

Figure 5-32. A business process flow for new product registration

As you can see, several applications take part in the product registration process. As
the services belong to different domains of the organization, it would not be ideal to
create unnecessary dependencies in a long and synchronous call chain. Instead, once
a customer successfully registers a product, the product registration service emits an
event that triggers several independent services to perform their actions. Figure 5-33
represents the solution as a choreographed event-driven pattern.

256 | Chapter 5: Serverless Implementation Patterns

Figure 5-33. Several microservices participate in the choreography of a business process

Things to Be Aware of While Choreographing Services
Microservices choreography is a common pattern in serverless development, but
there are various things you need to be aware of and consider during implementa‐
tion. These include:

Loss of events
In any networked system, there is a possibility of interruptions and data loss.
Hence, it is essential that you incorporate measures to minimize their impact.
EventBridge has a built-in capability to retry the delivery of events to a target for
up to 24 hours. You can attach a DLQ to catch those events after their delivery
attempts are exhausted.

Duplicate events
As you learned in Chapter 3, handling duplicate events and implementing idem‐
potency is the responsibility of every microservice. Failures in this area can cause
serious issues in critical business processes.

Maintaining the sequence of actions
Typical business processes in an enterprise comprise multiple steps, involve sev‐
eral applications, and can take a long time to complete—minutes, hours, days, or
even months. There may be situations where you need to perform certain steps in
a sequence. For example, in Figure 5-33, the service that emails the discount code
to the customer may receive the product_registered event at the same time the
promotions service receives it. However, it depends on the promotions service

Microservices Choreography | 257

to calculate the correct discount based on the product, value, market, etc., before
emailing the customer.

In this case, the email service must wait until it receives another event—say,
discount_generated—from the promotions service before acting. The promo‐
tions service will initially store the product_registered event details (the
storage-first pattern) and will take action when the discount_generated event
arrives.

Application resiliency is distributed
When you choreograph distributed microservices, there’s no central controller
keeping track of the success or failure of each service. Amazon EventBridge
acts as the coordinator, but it is not an orchestrator like AWS Step Functions
(discussed in the next section). Each microservice that is part of the business
process choreography is expected to independently handle failures, third-party
downtime, and retries and to implement circuit breakers (as discussed earlier in
this chapter) to contribute to the overall resiliency.

Complexity increases with the increase in the number of services and events
Building microservices that are loosely coupled and self-contained is essential to
a successful event-driven architecture. The structure and schemas of the events
are also critical. In Chapter 3, you learned how to classify events and structure
them with the necessary details. Adding the right classification levels to your
events with the appropriate attributes and values allows you to configure suitable
event filter patterns to target specific events.

The gatekeeper event bus pattern that you learned about ear‐
lier is a way of managing the influx of several types of events.

Visibility/traceability challenges
In a distributed event-driven microservices architecture, you must incorporate
the required measures to enhance the end-to-end traceability of the overall
application. A common approach is to use an immutable, unique event_id or
trace_id attribute in every event.

There are tools and services, such as AWS X-Ray, that can help
improve the observability of your system.

258 | Chapter 5: Serverless Implementation Patterns

https://oreil.ly/HHIaj

Enterprises have several domains and functions that incorporate different business
logic for different business use cases. Often, business processes require one or more
services owned and operated by different teams. The microservices choreography
pattern discussed in this section is one of the two most common patterns you will
employ to implement the business processes. The other is service orchestration. As
you will see in the next section, this is an important pattern that you will apply often
in serverless development.

Service Orchestration
The flowchart is arguably the oldest modeling tool in software engineering. Its sim‐
plicity, with a handful of symbols, makes it adaptable enough to illustrate the logic of
the first program you wrote at school or a complex workflow at your organization.
A workflow captures the different steps or processes involved in fulfilling a business
functionality, often mixed with business processes. For example, onboarding a new
employee in your organization is a process, and the workflow involves several steps,
both manual and automated. The advantage of capturing a business process as a
sequence of input, output, actions, tasks, decisions, etc., is that you can automate the
entire process to improve efficiency.

Whether you use a workflow system or a business process management tool, there
is an engine that has the knowledge of the overall workflow required to handle
the input and output of each step, send commands to perform tasks, branch off to
subflows based on certain decisions, collate results from multiple branches, and so
on. This engine acts like a controller or conductor, instructing the different parts of
the process to perform. Hence, this pattern is commonly referred to as orchestration
of services, as in an orchestra where the conductor is the orchestrator.

AWS Step Functions is a serverless AWS service that offers orchestration capabilities.

What Do You Orchestrate?
Let’s look at a simple example to illustrate business process orchestration. Imagine
you are placing an order at a local take-out restaurant. You’re at the point where
you need to decide whether to collect the food you’ve ordered or get it delivered.
Figure 5-34 shows a simple flowchart depicting the actions involved in each process
behind the scenes.

Service Orchestration | 259

https://oreil.ly/ABat-

Figure 5-34. A flowchart depicting the flow of food delivery and collection activities

260 | Chapter 5: Serverless Implementation Patterns

On the company’s side, if you implement this logic with Lambda functions, you will
have a function to receive the customer’s choice and some if-else logic that branches
off into collection and delivery paths and invokes other Lambda functions or external
APIs. You may implement the main function as a monolith and create single-purpose
functions for other tasks. Nevertheless, you must somehow chain these functions
together to make the end-to-end flow work. Figure 5-35 shows the main Lambda
function that acts as the controller of the logic.

Figure 5-35. An unsustainable and unrecommended way of chaining Lambda functions
to perform business logic

Creating hard dependencies between Lambda functions or making synchronous
invocations between Lambda functions is not a best practice. In addition, as you
learned earlier with the functionless integration pattern, there will be situations where
you do not use Lambda functions to perform parts of your business logic. You
need a way of capturing the business process as a whole and having a controller to
coordinate with services that perform the different parts of the overall logic. Service
orchestration is the architectural pattern that helps you achieve this.

Service Orchestration | 261

In a distributed event-driven microservices architecture, you’ll find three types of
orchestration:

• In-service orchestration•
• Cross-service orchestration•
• Distributed orchestration•

We’ll dive into each of these in the sections that follow.

In-Service Orchestration
The most common and simplest form of orchestration is the one that happens within
a microservice boundary. With in-service orchestration, all the AWS resources that
are part of the orchestration logic belong to the microservice responsible for orches‐
tration. This pattern avoids cross-resource usage from other microservices within or
outside the same bounded context.

Figure 5-36 shows the workflow of a customer registration process that signs up a
user to the business and issues them a unique identifier. Notice that it is part of the
customer registration service within the customers bounded context.

The primary benefit of in-service orchestration is that it enables microservices to be
self-contained. There is no dependency graph beyond the deployment boundaries of
the microservice, with the possible exception of when events are published to the
custom event bus within the bounded context.

262 | Chapter 5: Serverless Implementation Patterns

Figure 5-36. Customer registration orchestration as part of the customer registration
microservice, which does not interact with outside resources

Service Orchestration | 263

Cross-Service Orchestration
Cross-service orchestration opens up borders to communicate with services within
or outside of the orchestrator’s bounded context, which includes other domains,
custom-built applications, and third-party systems.

The distributed orchestration model discussed in the following section is similar to
cross-service orchestration, but with an essential difference. In cross-service orches‐
tration, the external communication is mostly via synchronous API calls. Distributed
orchestration, on the other hand, covers asynchronous interaction.

Let’s say there is a dedicated team responsible for customer satisfaction, feedback,
etc. As shown in Figure 5-36, this team engages with a customer to get feedback on
the quality of the service soon after their registration. To enable this, the customer
registration service passes some details to a customer feedback service, as illustrated
in Figure 5-37.

As mentioned earlier, in cross-service orchestration, the communication between the
orchestrator and the external service is via synchronous API calls. How the external
service performs is not of interest to the orchestrator. With AWS Step Functions as
the orchestrator, you can directly integrate and invoke external HTTPS endpoints.

264 | Chapter 5: Serverless Implementation Patterns

Figure 5-37. A customer registration business flow interacting with a service from a
different bounded context to the orchestrating service

Service Orchestration | 265

Distributed Orchestration
Avoiding hard dependencies between microservices allows you to build services that
are modular and extendable. Hence, you are encouraged to use APIs or events as
the mode of communication. APIs, however, have limitations with their underlying
protocols and implementation, and most API connections last for only a brief period
before timing out. If a service takes longer—minutes, hours, or even days—to com‐
plete and you depend on its outcome to proceed further in your workflow, you do not
know how long to wait before progressing to the next step.

Imagine your business logic incorporates multiple long-running tasks offered by
several microservices from different domains, as shown in Figure 5-37. How do you
successfully accomplish this? The distributed orchestration pattern can help in such
scenarios.

In Figure 5-38, the primary orchestrator inside microservice A requires the services
of microservices B and C. Both of those services may have their own orchestrators
to complete their tasks, but that is not the concern of microservice A. The respective
steps in the primary orchestration will wait until B and C report completing their
tasks.

266 | Chapter 5: Serverless Implementation Patterns

Figure 5-38. A primary orchestration flow asynchronously distributes tasks to other
microservices

Service Orchestration | 267

Coordinating the distribution with choreography
The primary orchestrator that distributes the tasks is agnostic of how the remote
services complete those tasks. They could be implemented as simple Lambda func‐
tions or involve the orchestration of several services. Two important elements make
distributed orchestration work seamlessly:

Events
The communication mechanism to coordinate (choreograph) the microservices
with Amazon EventBridge.

Task tokens
Unique tokens (string values) that represent tasks. In a callback task, a service
requester sends a task token to a service provider; the workflow is paused until
the same token is returned by the service provider.

Let’s go through a use case to explain the functioning of callbacks with task tokens. In
the example shown in Figure 5-39, the customer accounts microservice is responsible
for creating the customer’s account details and requires the finance team’s services to
run a few checks on the customer. This is an asynchronous activity that takes minutes
or hours, depending on the status of the external systems it interacts with.

Figure 5-39 shows how the distributed orchestration flow works. The numbered steps
mark the end-to-end journey of one task token, where the Get finance clearance step
emits a task token X and waits until the same token X is returned.

268 | Chapter 5: Serverless Implementation Patterns

Figure 5-39. A primary orchestration workflow asynchronously requests another micro‐
service to perform a task and resumes on notification of completion

Service Orchestration | 269

Generating and sending task tokens
You can easily generate a task token by writing a couple of lines of ASL. Example 5-5
shows an example script.

Example 5-5. Step Functions ASL script to publish an event onto a custom event bus
that will wait for the callback with a task token

{
 "StartAt": "Get finance clearance",
 "States": {
 "Finance clearance": {
 "Type": "Task",
 "Resource": "arn:aws:states:::events:putEvents.waitForTaskToken",
 "HeartbeatSeconds": 6000,
 "Parameters": {
 "Entries": [
 {
 "Detail": {
 "metadata": {
 "version": "1.0",
 "trace_id": "djsf34hgsad8ndc2",
 "created_at": "2023-12-21T11:10:54.000Z",
 "customer_accounts_request_id.$": "$$.Task.Token",
 "domain": "Customers",
 "service": "customer-accounts",
 "category": "operational_event",
 "type": "task",
 "name": "account_requested"
 },
 "data": {
 "customer_id.$": "$.customer_id",
 "other": "details go here"
 }
 },
 "DetailType": "event",
 "EventBusName": "customers-event-bus",
 "Source": "customer-account-process"
 }
]
 },
 "Next": "Another Step"
 }
 }
}

The HeartbeatSeconds value in Example 5-5 indicates the timeout
period for this task. The task will fail, timing out, once this value is
met. You can, however, request a heartbeat extension to have Step
Functions reset the timer.

270 | Chapter 5: Serverless Implementation Patterns

The two important attributes in this script are Resource and customer

_accounts_request_id. waitForTaskToken instructs the Step Functions workflow
to wait at this step until the task token generated by $$.Task.Token is returned.

You can attach the task token to any custom attribute of yours
by assigning the token generated by $$.Task.Token. It’s a good
practice to use an attribute that is part of the custom event schema
that the consuming service understands.

Things to be aware of while using callbacks with a task token
Here are a few important points you must be familiar with when working with
callback task tokens in Step Functions:

Task token carriers need not be EventBridge events.
Example 5-5 uses a custom EventBridge event to carry the task token to the
consuming application as it demonstrates event choreography between microser‐
vices, but this is not required. You can wrap the task token in an SQS message
and have it handled by a Lambda function, for example.

Be flexible on the custom event category that contains the task token.
Depending on how you classify your events, the custom event that contains the
task token can be a domain event, or you may use an operational event category
for this purpose.

You can use multiple task tokens in a workflow.
For brevity, our example used a single task token. You can use multiple task
tokens at different parts of your workflow to pause and resume the different arms
of the flow. Step Functions manages the tasks and their tokens.

Task providers (token-consuming targets) have a responsibility.
Though event consumers are viewed as being agnostic of producers, in dis‐
tributed orchestration, the consumers have an extra role to play. The primary
orchestrator that sends the task token needs to know the consumers who fulfill
each task. Only those consumers are expected to return the task tokens, and the
primary orchestrator’s service will have special event filters for this purpose.

Avoid task timeouts by extending the heartbeat interval.
Step Functions provides three options when resubmitting task tokens:

• SendTaskSuccess resumes the workflow from the paused step.•
• SendTaskFailure fails the execution.•
• SendTaskHeartbeat makes the workflow step wait longer.•

Service Orchestration | 271

When a task needs to wait longer, it’s important that you extend the heartbeat
interval to prevent it from timing out and making the workflow fail.

The code snippet in Example 5-6 demonstrates how you notify Step Functions of
success.

Example 5-6. Sample code to send task success information along with the token to a
Step Functions workflow

...
const taskToken = event.metadata.customer_accounts_request_id;
const output = JSON.stringify(event);

// Check the task completion status in the event data

const params = {
 output: output,
 taskToken: taskToken
};

const result = await sfn.sendTaskSuccess(params).promise()
...

The Saga Pattern
A saga is a long story recounting a series of events. In software, the term is used
to refer to a business process or workflow comprising a series of steps. Each step
can be a self-contained task known as a transaction. A local transaction can itself
have multiple steps/operations, but as a whole, all of those steps/operations must
succeed—the transaction is atomic.

Enterprise business processes can be complex, involving the services of several inter‐
nal and external applications, and often human interactions as well. In most cases, if
a step (i.e., a transaction) fails, the preceding steps can be reverted through a series of
compensating transactions that bring them back to their initial state. If the saga and
its steps are not time-critical, it may be possible to retry a step that fails, allowing it
(and the saga as a whole) to succeed. The circuit breaker pattern discussed earlier in
this chapter is common in those situations. An additional complication is that some
critical business processes go through different stages and mark some of the steps
or transactions as pivot transactions. In this case, successful completion of a pivot
transaction might disallow reversal of the whole saga; once a certain point has been
reached, there’s no other option but to carry on until the entire saga is complete.

In distributed transaction scenarios, the saga pattern provides a useful way to
maintain consistency across microservices. Both choreography and orchestration
are popular implementation choices. As you learned in the previous sections, in
choreography each step or transaction is performed by a microservice, and it emits

272 | Chapter 5: Serverless Implementation Patterns

an event that becomes the indicator for progressing, retrying, or rolling back the saga.
With orchestration, the orchestrator (i.e., the Step Functions workflow) controls the
series of steps and will have the necessary paths to handle the failures and retries.

Many business use cases of the saga pattern will use both approaches. While archi‐
tecting, you must study the business requirements thoroughly to determine whether
choreography, orchestration, or a combination of the two suits you better.

Summary
Evolutions in technology and the needs of modern systems are influencing engineers
to develop new software patterns all the time. It’s important that you be aware of these
developments and use these new patterns where appropriate in your applications,
regardless of where they’re published. While textbooks like the ones mentioned
earlier in this chapter can teach you the fundamentals and intricacies of many useful
patterns, you must also be in a position to take your learnings and devise new ones as
needed for your development.

The goal of this chapter was to inspire you by introducing a selection of patterns
that cover some of the core areas of everyday serverless development. Be open
to accepting new ideas from the people around you and engage in discussions to
transform those ideas into adoptable patterns. The event triage, distributed orchestra‐
tion, and gatekeeper event bus patterns, as well as some of the functionless pattern
examples described in this chapter, all originated from simple conversations among
engineers in serverless teams. There are also many other useful patterns that we didn’t
have room to discuss in this chapter, like conversational event-driven patterns and
microservices data collector patterns. If you’d like to learn more, we recommend
taking a look at Serverless Land, an online portal full of patterns with various
implementation-specific resources.

Your understanding of the various patterns described here will help you as you
journey through the subsequent chapters, which provide guidance on solution
design, implementation, testing, and operating your serverless applications in a
sustainable way.

Interview with an Industry Expert
Jeremy Daly, CEO, Ampt, AWS Serverless Hero
Jeremy Daly is an AWS Serverless Hero who has been managing the development of
complex web and mobile applications for over 25 years. He is currently the CEO of
Ampt, a developer productivity platform reinventing how we build applications in
the cloud with Infrastructure from Code (IfC). Jeremy writes about serverless and

Interview with an Industry Expert | 273

https://oreil.ly/bIj-G
https://oreil.ly/RRGpY
https://getampt.com
https://oreil.ly/FQPQu

shares thoughts about programming, product management, entrepreneurship, and
productivity; he publishes the popular weekly serverless newsletter Off-by-none and
hosts the Serverless Chats podcast.

Q: Jeremy, for many years, you’ve inspired engineers and been an instrument to teams
adopting serverless. Has convincing CTOs about serverless adoption become easier now?

Serverless has certainly become more mainstream as it’s matured over the years, and
as we’ve seen an abundance of success stories and case studies, it’s become a less
risky choice for organizations. Many of the services we consider “serverless” have
already been widely adopted by organizations, even if only as part of their larger
cloud technology stacks.

For start-ups and greenfield projects, I think a “serverless-first” approach has become
the clear choice for most. However, there are a number of reasons why serverless still
faces scrutiny from CTOs and other technology leaders, especially among established
companies. There is a lot of technological inertia within organizations that have
already begun their cloud journey. Containerization is still the standard, especially for
larger organizations that have adopted Kubernetes as their platform of choice. We’ve
recently seen a trend toward hybrid strategies that combine serverless and other more
traditional approaches. While this is a step in the right direction, it often prevents
companies from taking full advantage of the benefits of serverless architectures.

Serverless implementations let organizations focus on their core business rather than
technology, but it’s also very developer-centric, which requires both upskilling devel‐
opers and cooperation with existing operations and security teams. So while I think
the robust ecosystem, widening vendor support, cost optimizations, and reduced
time to market make serverless a clear technology choice for CTOs, the skills gap and
complexity of migration still create friction that can complicate the decision-making
process.

Q: Patterns in software engineering have a long history and tradition, and many engineers
have an emotional attachment to some of the foundational patterns. How much do you think
the cloud and serverless adoption have disrupted the status quo of traditional patterns?

Most of the fundamental patterns we’ve been using for years are still highly relevant
in today’s cloud architectures. The main difference is that many of those patterns
have become more explicit, requiring a deeper understanding of how they need to be
implemented in distributed cloud systems. The vast majority of serverless primitives
are rock solid and for the most part have removed the undifferentiated heavy lifting
of managing their complexity. However, configuring the plumbing between these
primitives (event mappings, IAM permissions, failover behavior, etc.) falls on the
implementer, and with a plethora of options to choose from, this can dramatically
affect the success of any given pattern.

274 | Chapter 5: Serverless Implementation Patterns

https://offbynone.io
https://oreil.ly/-W7lk

We’ve also seen a major resurgence of event-driven applications thanks to serverless
and the patterns it enables. I think this is a good thing, but most developers grew
up in a synchronous world of request/response. Asynchronous events and eventual
consistency are core to distributed workloads, which often adds more cognitive
overhead to understanding how modern cloud patterns work.

Q: As the CEO of Ampt and promoter of IfC that offers a certain level of abstraction, how do you
see the future need and awareness of patterns and their use in serverless?

Awareness of patterns will be just as important in the future as it is today, but the
hope is that we can find the right level of abstraction to avoid reinventing the wheel
every time we need to implement one. There are hundreds of published patterns and
Cloud Development Kit (CDK) constructs available; however, choosing the right one
isn’t always straightforward. Even highly experienced architects need to experiment to
find the combinations and configurations that best suit their workloads.

Also, off-the-shelf patterns may be easy to publish, but they’re not always easy to
manage and maintain. Patterns need to evolve as throughput increases, and different
patterns have very real trade-offs when it comes to cost and performance. Static
architectures produced by traditional IaC require manual optimizations, updates to
business logic, and multistep migrations. This is inefficient, adds complexity, and
introduces significant technical debt.

Abstractions have eliminated managing memory and setting up physical servers.
It seems like removing the need to write low-level machine code for the cloud
is the next logical step. IfC is a step toward autonomous software delivery and
management that automatically selects, deploys, and upgrades productized patterns
on the developer’s behalf. This doesn’t necessarily negate the need to be aware of
the underlying patterns, but it does democratize them and dramatically reduces
operational complexity.

Q: Managed cloud services from AWS and other cloud providers encapsulate many primitive
patterns. AWS services such as API Gateway, SQS, SNS, EventBridge, etc., are good examples.
What is your advice to a new serverless engineer wanting to learn and apply patterns?

There is a massive library of predefined patterns and CDK constructs available across
the internet. Though some are better than others, they can be extremely helpful
starting points that get you up and running very quickly. However, my advice is that
before you blindly trust them with production workloads, you should take the time
to learn what each pattern does, what primitives it interacts with, its security config‐
urations, and what it will cost to run. This includes understanding the underlying
managed services, their limitations, and their supported use cases.

Interview with an Industry Expert | 275

Learning from others’ work is great, but patterns generally need to be adapted to your
specific situations. Run a lot of tests, ask for help when you need it, and gather the
experience for yourself to successfully implement and operate your workloads.

Q: Your contribution to the serverless community is immeasurable. Your talks, blogs, Off-by-
none serverless newsletter, Serverless Chats podcast, and creative and thought-provoking
musical productions like LAMBDA and Goin’ Serverless continue to inspire many. If there is one
avenue that we are missing as part of serverless community engagement, what would that be?

Diversity of ideas, diversity of opinions, and diversity of perspective. One of the
reasons why I started the Off-by-none newsletter was to amplify the voices of others,
even if I didn’t agree with them. Communities can quickly become echo chambers
that too easily drown out differences of opinion that would otherwise lead to healthy
debate and further innovation. The serverless community is one of the greatest I’ve
had the privilege to be part of, and over the years I’ve seen it continue to grow and
diversify. This only happened because dedicated people did the necessary work to
reach out, educate, and inspire. More needs to be done, and I hope others will keep
up the amazing work they are doing to create an inclusive environment for everyone.

276 | Chapter 5: Serverless Implementation Patterns

CHAPTER 6

Implementing Serverless Applications

Don’t try to create and analyze at the same time. They’re different processes.
—Sister Corita Kent, “10 Rules for Students, Teachers, and Life”

The first five chapters of this book introduced serverless for the enterprise and
explored architectural design, security, and implementation patterns. The next five
chapters focus on how to develop, test, operate, budget, and sustain an enterprise-
scale serverless workload on AWS.

This chapter discusses the aspects that make serverless software engineering unique
and shows you how to approach developing and delivering a serverless application.

This chapter is not a how-to guide for building serverless appli‐
cations, nor does it make any recommendations for the tools or
programming languages that you should use.

Although the code you write in your preferred programming language for serverless
will likely be very similar to code you’ve contributed to websites, backends, and
programs in the past, you’ll need to adapt your development process to unlock the
full potential of serverless.

Tread Lightly
I (Luke) introduced the concept of treading lightly back in early 2017, and it still holds
true in 2023, at the time of writing. The idea is to accept change as a constant and
optimize your application and development process accordingly: “Treading lightly
describes an approach to product development whereby implementations are made

277

https://oreil.ly/Xws9b

on the smallest possible scale without over-commitment to a single technology or
methodology in order to facilitate future enhancement.”

Although serverless compute on AWS Lambda had been launched a few years before
I wrote that article, in 2014, serverless in its current form (with myriad managed
services and event-driven application integration options) didn’t exist back then.
Nowadays, however, it provides one of the best platforms for a constantly changing
application.

Serverless engineers must optimize for change and experimentation: “For product
innovation to thrive implementations must be kept basic and minimal. This doesn’t
translate to a lack of features, quite the opposite: by maintaining lightness progress
becomes constant.”

Software delivery is key to serverless. Serverless applications can be completely
defined in code, deployed to any AWS account within minutes, and sit idle without
costing a penny. Yet as teams adopt cloud native and by extension serverless tech‐
nologies, they often bring their existing process and practices with them. This is
understandable; ways of working and collective mindsets are naturally embedded in
teams and cultures and are the hardest things to change.

But as teams migrate to serverless, they realize sooner or later that their sociotechni‐
cal habits must adapt in order for them to reap the maximum benefits of the shift. Put
simply: there is no value in having an application that can constantly change if you
cannot change it quickly and predictably.

The nascent practice of serverless software engineering has also begun to morph.
AWS Lambda was the quintessential launchpad for serverless, and following its
release engineering teams eagerly began packaging and deploying their business logic
as functions that didn’t run on servers they managed. At the time of writing, Lambda
has evolved far beyond its original “function as a service” label to become a compre‐
hensive event-driven programming platform. In recent years AWS has released new
products like EventBridge and retrofitted classic services such as S3, SQS, and SNS
with event-oriented features.

As the number of ways in which components in an application can be glued together
has increased, the production code authored by engineers began to be viewed as a
liability. Every line of code written and deployed is more real estate that must be
tested, maintained, documented, and operated. There is a clear preference to delegate
the undifferentiated heavy lifting to AWS and focus on solving domain-specific prob‐
lems. This means serverless engineers find they begin to write far more infrastructure
code than business logic as they define and configure the various managed services
that comprise their applications.

278 | Chapter 6: Implementing Serverless Applications

When you first start designing and implementing a serverless application, it’s impor‐
tant to keep in mind that the business logic of your application is at the core of a
much wider set of components (see Figure 6-1). The pipeline to deliver code into
production should be built on day 1 and run frequently after that. Cost and security
concerns should be considered at every phase of software development. Application
and infrastructure code should be automatically tested and optimized for sustainabil‐
ity. And the whole system must be operated primarily by the team of engineers who
designed and implemented it.

Figure 6-1. Concentric serverless objects

In this chapter we will explore the serverless computing model, defining infrastruc‐
ture as code, and how to optimize software delivery. First, let’s take a closer look at the
most prominent serverless service on AWS: Lambda.

Serverless Compute with AWS Lambda
Serverless computing is based on the provision of machine resources, shared across
many disparate clients, on demand. This shared resource model only works if the
users of the servers are not allowed to greedily consume or hog the resources.
Therefore, providers of serverless compute platforms must put usage constraints in
place. As Figure 6-2 shows, in the case of AWS Lambda, the primary constraint is the
number of concurrently executing functions.

Serverless Compute with AWS Lambda | 279

https://oreil.ly/jtTt-

Figure 6-2. Lambda lifecycle and concurrent executions model

Be sure to read Julian Wood’s article “Understanding AWS Lambda
Scaling and Throughput” as you begin to leverage the Lambda
service for your business-critical applications.

One of the most important lessons to instill in your team when getting started with
serverless is that your unit of scale is concurrency. While memory consumption
and execution duration are indicative metrics at the function level, the number of
concurrent Lambda function executions is the ultimate metric to track when your
application’s compute needs begin to scale under exceptional traffic. If the number
of concurrent function executions exceeds your account’s limit, your functions will
begin to be throttled. This essentially means requests to your Lambda functions will
not be accepted.

Each AWS account has a default Lambda concurrency limit of
1,000 executions across all functions in a Region. This limit can be
increased to tens of thousands by raising a support ticket to AWS
with a valid use case. There is a different upper limit in each AWS
Region.
Whenever you consider increasing the concurrency limit, keep in
mind that throttling is a safety measure that AWS enforces to pro‐
tect your resources from unexpected spikes in consumption—and
therefore cost—and prevent any downstream resources from being
overwhelmed. In this way, function throttling is, paradoxically, a
crucial aspect of serverless autoscaling.

280 | Chapter 6: Implementing Serverless Applications

https://oreil.ly/NBhFh
https://oreil.ly/NBhFh
https://oreil.ly/VXuoH

The astute serverless team always works within the constraints of the cloud. In
Chapter 8, we’ll dive into the subject of operating your serverless workload and how
to understand the units of scale across various AWS services.

How to Write Lambda Functions
Although writing infrastructure code is becoming the prevalent model for developing
serverless applications (as discussed in “Most of the Code You Write Will Be Infra‐
structure” on page 291), the now ubiquitous Lambda function is still an incredibly
useful tool for executing isolated pieces of business logic, for example to process
events, handle external API requests and responses, and authorize incoming API
requests (see Chapter 4).

This section provides some guidelines to follow early in your team’s adoption of
serverless that can help contain the complexity of your codebase as your application
scales.

The AWS Lambda documentation includes an extensive set of best
practices to consider when developing and operating your func‐
tions.

Structure your codebase for serverless
If you are starting a brand-new serverless project, one of the first things you’ll
consider is how to structure your codebase and source control repositories. This is
of course an age-old debate in the software industry, with many different opinions
depending on developers’ preferred languages, tools, and platforms. Ultimately, you
should establish a folder structure and file naming convention that support your use
case and feel right for your team.

In general, serverless applications with many microservices fit the monorepo model.
A monorepo (or single repository) allows you to standardize tooling for installing,
building, linting, formatting, and testing your application’s code across distinct serv‐
ices. This enables your engineers to easily work across multiple services without the
need to switch repositories or manage different toolchains.

Another technique that will help your codebase scale is colocating your infrastructure
stacks (see “Infrastructure as Code” on page 291) and Lambda function source code
in the same top-level directory, rather than grouping your service infrastructure
definitions together and keeping the business logic code separate (see Figure 6-3).

Serverless Compute with AWS Lambda | 281

https://oreil.ly/u7Uu4
https://oreil.ly/u7Uu4
https://oreil.ly/iQt0h

Figure 6-3. Serverless directory structure

If you ever begin to feel constrained by your folder structure, do not be afraid to
evolve it where necessary. Your team must feel comfortable and productive when
working with the codebase (see the final section in this chapter for the importance of
productivity when it comes to continuous delivery).

Apply the single-responsibility principle
The single-responsibility principle (SRP) can be distilled to the following: do one
thing and do it well. In the context of Lambda functions, this encourages you to
keep your functions concise and performant. As you’ve seen, serverless compute is
designed to be stateless and ephemeral and the constraints enforced in the Lambda
environment force you to prioritize computational efficiency. Restricting the logic,
network requests, and I/O in your functions to a single task will go a long way to
ensuring you are operating a fleet of efficient functions. Single-responsibility Lambda
functions also support your application of the principle of least privilege (covered in
detail in Chapter 4), as each function can be given tightly scoped IAM permissions.

Strict adherence to the SRP inevitably leads to the tasks of a serverless microservice
being split across many functions. In this situation, you may need to chain functions
together. Jump to “Orchestrate complex business logic with workflows” on page 283
to explore the recommended approach to this challenge.

282 | Chapter 6: Implementing Serverless Applications

https://oreil.ly/EtYxg

Stay in a single file
There are many reasons to abstract code into multiple files. You may feel it makes the
code more readable and more organized, or less repetitive and more reusable. These
are all valid reasons for code abstraction and often make sense when building a large,
monolithic application where the logical and operational boundaries are much wider.
But when it comes to Lambda functions, keeping the code in a single file can be an
invaluable technique.

As illustrated in the previous recommendation to apply the SRP, Lambda functions
should be as minimal as possible. Abstraction will still be necessary, but in an archi‐
tectural sense rather than a code or file sense. Striving to keep your function code in
a single file can be used as a measure of increasing complexity. If the file containing
your function grows beyond a reasonable limit and you feel yourself considering
abstraction to multiple files, this is the point at which to reevaluate your architecture.
Ask yourself the following questions:

• Should this function now be split into multiple functions?•
• Should the steps or tasks in this function be abstracted to a workflow?•

Code abstraction within your single file is still perfectly acceptable
and indeed necessary when it comes to writing testable functions.
See Chapter 7 for examples of abstraction for the purpose of
testing.

Keeping function code in a single file will make your applications more testable,
evolvable, observable, and resilient. Engineers responsible for understanding and
maintaining the functions will be able to follow the control flow more easily, as they
won’t need to flick back and forth between files. In addition, the dependency tree
of your functions will be linearized and obvious rather than spread across files and
folders.

Orchestrate complex business logic with workflows
Workflow orchestration is an increasingly common pattern in serverless applications
that allows you to chain multiple tasks across a single process or service (see Chap‐
ter 5 for a full overview of the concept of orchestration). Orchestration is often
used to model complex business processes that involve multiple steps across many
different AWS services.

Serverless Compute with AWS Lambda | 283

As you apply the SRP and decompose your larger Lambda functions into separate
pieces of business logic, AWS Step Functions can be used to execute tasks in a state
machine–based workflow, as shown in Figure 6-4.

Figure 6-4. A Step Functions workflow can be used to orchestrate the tasks of a microser‐
vice, allowing you to decouple tasks across your single-responsibility Lambda functions

Workflows offer a number of benefits: complex business process
mapping, applying business rules and conditional processing, visu‐
alization of state machines via state charts, intrinsics (e.g., hashing,
UUIDs, value interpolation, native application integration patterns,
and SDK operations), waiting for events to complete (task call‐
backs, etc.), and fault tolerance.

As well as using workflow orchestration as a strategy for refactoring Lambda func‐
tions as requirements evolve, adopting an orchestration-first approach will help you
to contain the complexity of the business logic in your application as it grows and
scales (see Figure 6-5). An orchestration-first approach to your serverless architecture
involves wrapping Lambda functions in Step Functions workflows (state machines)
as a default. Rather than invoking the functions directly, your events will execute the
parent workflow. Orchestration-first allows you to evolve your architecture beyond
a single function to multiple functions, or even to replace parts of your function
with direct service integrations and intrinsic functions, by simply iterating on the
workflow without requiring any major rearchitecting.

284 | Chapter 6: Implementing Serverless Applications

https://oreil.ly/vsUK0
https://oreil.ly/vsUK0

Figure 6-5. Function-first versus orchestration-first architecture

Leveraging workflow orchestration to react to the result of a
Lambda function invocation is different from using Lambda des‐
tinations. A destination will only receive an event in response to
invocation failures, not failures in your logic. For example, if an
invocation of your function was unable to correctly process its
input and returned a 400 Bad Request response, this would trigger
the success destination rather than the failure destination.

Use Lambda Powertools
The open source Lambda Powertools initiative provides an indispensable set of tools
to use when developing Lambda functions. There are implementations in a variety of
languages, including Python, Node.js/TypeScript, Java, and .NET.

The libraries are predominantly focused on observability and provide three core
utilities: a logger, a tracer, and a custom metrics collector. However, more features are
continually being added to the various libraries, such as tools to support idempotency
and integration with parameter stores like AWS SSM Parameter Store and AWS
AppConfig.

Minimize deploy-time dependencies
As your serverless application grows, so will the number of microservices it is com‐
posed of. During this period of growth there will inevitably come a point where
two or more services require access to a single resource. Without properly planning
for the sharing of resources, you can inadvertently introduce tight coupling between
resources and make it difficult to iterate on the connected components or introduce
new connections.

Serverless Compute with AWS Lambda | 285

https://oreil.ly/Cm0Se
https://oreil.ly/Cm0Se
https://oreil.ly/-tVPU
https://oreil.ly/caP16
https://oreil.ly/7SmFn
https://oreil.ly/LfI7v

In a serverless architecture it is common to have components such as S3 buckets,
DynamoDB tables, or EventBridge event buses with multiple actors reading from or
writing to these resources across distinct microservices. These can be referred to as
shared resources, as they are used by more than one microservice.

The key to maintaining relationships between shared resources and the actors inter‐
acting with them is to avoid coupling them in delivery pipelines at deployment time.
Interdependent resources should not be coupled between CloudFormation stacks that
describe separate services. For example, let’s say you have two microservices: Service
A defines an EventBridge event bus that Service B consumes events from. Service
B defines the EventBridge rule that matches event patterns and triggers a target. To
attach the rule to the bus defined in Service A, Service B must make reference to the
bus (e.g., via an ARN). For Service B’s reference to Service A’s bus to be resolvable to a
resource deployed to AWS, Service A’s CloudFormation stack must be deployed. This
creates a deployment dependency in Service B on Service A.

Amazon Resource Names (ARNs) are unique identifi‐
ers for your AWS resources. They use a format
similar to this: arn:<partition>:<service>:<region>:<account-
id>:<resource-type>/<resource-id>. For example, the event
bus my-bus in the Frankfurt region would have the
ARN arn:aws:events:eu-central-1:012345678901:event-bus/

my-bus. ARNs can be used to obtain references to your resources
and used in CloudFormation templates.
Whenever a CloudFormation stack depends on a resource defined
in another stack, you will need to consider how to discover and
reference the resource. A common approach to service discovery
is to broadcast the ARNs of shared resources via CloudFormation
outputs or SSM parameters so that they can be imported by any
consuming stacks.

That single dependency may not seem too problematic, but as more services begin to
depend on the central event bus in Service A it becomes harder and harder to main‐
tain, evolve, or even decommission Service A. Deployment of Service B could also
now be blocked unnecessarily by any issues with Service A (see Figure 6-6). The two
services have now become tightly coupled and must be aware—and considerate—of
each other.

Generally, it is advisable to keep shared resources to a minimum. When the need to
share a resource across multiple microservices arises, a best practice is to place the
shared resource in a separate stack; not a single stack for all shared resources but a
stack per shared resource.

286 | Chapter 6: Implementing Serverless Applications

https://oreil.ly/-FReQ
https://oreil.ly/-FReQ
https://oreil.ly/jOZZ5

Figure 6-6. Sharing resources across decoupled microservices

Optimizing Lambda Functions
As a result of Lambda’s computing model, functions that execute as fast as possible
are always preferable. Following the preceding suggestions for writing Lambda code
will get you a long way to building a fleet of efficient functions, but there are some
additional things to be aware of when optimizing performance. This section presents
some optimization tips.

Managing cold starts
A cold start (initially covered in Chapter 1) occurs when the Lambda service must
initialize a function, which involves loading the function’s code, booting the runtime,
and running the function’s init phase, described in the next section. Once initialized,
the function’s environment remains available to subsequent invocation requests for
a short period of time after the first invocation is completed. These functions are
sometimes referred to as “warm” and avoid the need for a cold start.

The impact of cold starts on your application will completely depend on your use
case and business process. Ultra time-sensitive functions, for example, may not
tolerate any cold starts at all, whereas a background process may be able to operate
happily with unpredictable variance in execution times.

You should be able to observe your functions and measure the impact a cold start has
on your application. Identify a performance threshold that you feel is acceptable and
decide where to make the trade-off. We’ll talk more about the importance of running
your functions in production as soon as possible to understand behavior, including
usage patterns and cold starts, later in this chapter.

It is vital that serverless engineers are aware of the fact that cold starts always decrease
as traffic increases. This can seem counterintuitive at first, but it is a serverless truism:
the more your application is used, the better it will perform.

Serverless Compute with AWS Lambda | 287

AWS Lambda provides the provisioned concurrency feature as a
strategy for mitigating cold starts. Generally, you will not need
to configure provisioned concurrency for most serverless applica‐
tions, but it is nonetheless important to be aware of it in case it
suits a particular use case.
AWS also provides Lambda SnapStart to optimize your functions
and reduce cold starts. Lambda SnapStart is only available for the
Java runtime at the time of writing.

Optimizing function initialization
Each time a new Lambda execution environment is created (in other words, at each
cold start), the function’s static initialization code is run. This is part of what is known
as the “init” phase in the execution environment’s lifecycle, as shown in Figure 6-7.
The init phase is run once per environment on start-up and is not run again if an
invocation uses a warm execution environment.

Figure 6-7. Lambda execution environment lifecycle (source: adapted from an image on
the Amazon Lamba Execution Environment web page)

You can think of the init phase as running the code outside of your handler and the
invoke phase as running the code inside your handler:

// init phase
import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

const dynamoDBClient = new DynamoDBClient();

export const handler = async () => {
 // invoke phase
};

You should keep the init code of your functions to an absolute minimum to optimize
cold start times as far as possible. That said, there are tasks that are more efficient
to perform during the init phase than the invoke phase. Typically these are tasks
that produce objects that can be reused over multiple function invocations in the
same execution environment. This could include importing dependencies, opening
database connections, initializing AWS clients, or instrumenting AWS SDK calls for
X-Ray tracing, for example.

288 | Chapter 6: Implementing Serverless Applications

https://oreil.ly/M5_fe
https://oreil.ly/zZaKX
https://oreil.ly/N5qDx
https://oreil.ly/TijBr
https://oreil.ly/TijBr

Optimizing compute performance
The compute performance of your functions can be optimized by making use of the
AWS Graviton2 processor. Functions that use the Graviton2 processor will typically
perform better and cost less. They will also consume up to 60% less energy compared
to the alternative x86-based processors. For more on sustainability, see Chapter 10.

Analyzing performance
Lambda Insights is a performance monitoring feature of Amazon CloudWatch. You
can use Lambda Insights to understand the performance of your Lambda functions
by analyzing key metrics such as maximum memory consumption, average execution
duration, and average cost (see Figure 6-8).

Figure 6-8. Lambda Insights performance monitoring dashboard for a single
Lambda function (source: Amazon’s Using Lambda Insights in Amazon CloudWatch
web page)

The Lambda Insights data can help you to decide on the best configuration for your
function. For example, if your function is allocated 512 MB of memory and routinely
consumes 95% or more of this allocation, you may decide to increase it to avoid
the possibility of exceeding the limit. Without surfacing the performance data via
Lambda Insights, you might only discover this issue if it impacts your application’s
performance or your function fails at runtime.

Serverless Compute with AWS Lambda | 289

https://oreil.ly/Jp0PI
https://oreil.ly/TS4JU
https://oreil.ly/GBHZ8
https://oreil.ly/quWGQ
https://oreil.ly/quWGQ
https://oreil.ly/hui3o

There is no specific charge for the Lambda Insights service.
Instead, when you enable Lambda Insights for your function,
you will be charged for the metrics and logs sent to CloudWatch
whenever your function is invoked. For more details on the costs
associated with using Lambda Insights, see the CloudWatch pricing
page.

In addition to the Lambda Insights service, you can use the open source tool AWS
Lambda Power Tuning. Power Tuning invokes your Lambda function with various
memory configurations (from 128 MB to 10 GB) and suggests the optimum configu‐
ration to minimize cost and/or maximize performance, as shown in Figure 6-9.

Figure 6-9. AWS Lambda Power Tuning visualization of the average cost and speed for
each memory configuration (source: AWS Lambda Power Tuning GitHub repo)

This chart demonstrates how the allocation of more memory can result in faster
execution times at no additional cost. When the function is permitted to use a
maximum of 128 MB of memory, it will take more than 2 seconds to execute. If
the same function is allocated 1 GB of memory it will take substantially less time to
execute, for the exact same cost.

You can use Power Tuning to obtain a baseline for the memory and timeout con‐
figuration for your function. However, as Power Tuning is typically executed in
non-production environments or under test conditions, it should not be used as a
substitute for analyzing the behavior of your functions under production usage levels.
You should always go back and retroactively apply performance optimizations as you
gain a greater understanding of production behavior.

290 | Chapter 6: Implementing Serverless Applications

https://oreil.ly/fOag9
https://oreil.ly/fOag9
https://oreil.ly/JElQ3
https://oreil.ly/JElQ3
https://oreil.ly/-9mQ1

Most of the Code You Write Will Be Infrastructure
Regardless of your team’s domain and use case, it is likely your serverless architecture
will consist of a variety of managed services interspersed with Lambda functions.
Your business logic will reside in these Lambda functions. The functions will be trig‐
gered in response to events emitted by the managed services: an event is published
to an EventBridge event bus, a record is written to a DynamoDB table, an object is
added to an S3 bucket, and so on.

The configurations for the Lambda functions, the triggers, and the managed services
can all be created and updated using the AWS console. However, any team operating
at enterprise scale will quickly see the limitations of using the console for purposes
beyond exploration and familiarization. Modern software engineering teams define
their infrastructure as code and automate all aspects of software delivery and resource
provisioning.

Infrastructure as Code
The core benefit of defining your infrastructure as code is automation. Automating
the creation, modification, and deletion of your application allows you to deliver
software safely and efficiently. The days of haphazardly deploying an application with
various custom shell scripts over many perilous hours are gone.

Automation provides several advantages when running serverless applications in the
cloud, such as:

Replication
Infrastructure templates can be used to reliability and comprehensively replicate
applications across AWS accounts and production and non-production environ‐
ments. Replicas of an application can support automated testing pipelines, accu‐
rate sandbox environments for your consumers, and recovery from disasters
such as accidental account or resource deletion.

Separation
Infrastructure management of complex, distributed applications can be simpli‐
fied by grouping and managing resources with logical separations, such as by
microservice or resource characteristic (stateful and stateless, critical and non‐
critical, etc.).

Versioning
Changes to infrastructure resources can be individually tracked and applications
can be automatically rolled back to previous versions.

Defining your cloud infrastructure as code typically involves writing a set of declara‐
tive instructions that are translated to various AWS API calls. Next, we’ll take a look at
one of the IaC services available to you: AWS CloudFormation.

Most of the Code You Write Will Be Infrastructure | 291

AWS CloudFormation
The primary tool for infrastructure management on AWS is AWS CloudFormation.
With CloudFormation, you write your infrastructure in templates using JSON or
YAML. You upload these templates to the CloudFormation service when deploying
your microservices, and CloudFormation will then make API calls to the correspond‐
ing AWS services to create, modify, or delete the required resources.

Here’s an example YAML template:

AWSTemplateFormatVersion: 2010-09-09
Description: A custom event bus
Resources:
 SampleCustomEventBus:
 Type: AWS::Events::EventBus
 Properties:
 Name: "MyCustomEventBus"

There are many frameworks and tools available that support defin‐
ing cloud infrastructure as code. These range from tools native
to cloud providers—AWS has the AWS Cloud Development Kit
(CDK) and the Serverless Application Model (SAM)—to vendor-
agnostic, proprietary frameworks (such as the Serverless Frame‐
work, Terraform, and Pulumi).
As with any tooling choice, select the option that works best for
your team. Infrastructure tooling is a highly active area and things
are changing all the time; keep this in mind and tread lightly rather
than going all-in on a single tool. Using multiple IaC tools is also
an acceptable strategy, as long as you isolate the microservices and
their infrastructure definitions during development and delivery.

The resources defined in a CloudFormation template are deployed and managed as a
single unit, called a stack. Typically you will have a single CloudFormation stack per
microservice in your application, but you might also choose to split the resources in a
service across multiple stacks.

Robust cloud infrastructure
Incorrectly configuring your cloud infrastructure can lead to security vulnerabilities,
application performance issues, and total service outages. Defining your infrastruc‐
ture as code can help guard against these risks.

For your infrastructure to be resilient to change it must be verifiable (will it deploy
successfully?), testable (does it behave as expected?), adaptable (can it be updated
safely and quickly?), and portable (can it be deployed anywhere at any time?).

292 | Chapter 6: Implementing Serverless Applications

https://oreil.ly/gslGE
https://oreil.ly/AC-hW

Infrastructure that has these attributes can also support several trends that can be
observed in the serverless engineering community:

Writing less business logic
Every line of code you write can be considered a liability, and that can be
extrapolated to the Lambda functions that encapsulate those lines of code. As the
concept of application integration gains traction, Lambda functions are increas‐
ingly being used for transforming data, not transporting it. Entire functionless
architectures (see Chapter 5 for details) are being deployed to production work‐
loads. This code is being replaced by infrastructure code.

Rapid cloud development
Cloud providers (AWS CodeCatalyst) and start-ups (SST, Wing) are discovering
new ways to improve the ergonomics of developing cloud native software. Engi‐
neers are demanding tighter feedback loops to understand whether their code
is working correctly and want to work as close to the cloud as possible with
zero emulation. Infrastructure as code is often at the core of these efforts, where
deployment workflows are automated and patterns are shared between engineers
via reusable collections of cloud components.

Infrastructure and configuration testing
Managed services shift the operational responsibility from engineering teams
to AWS. Engineers are responsible for configuring those managed services and
need a way to test the configurations without deploying and executing their
applications. Defining the infrastructure configuration as code means it can be
statically verified and tested just like any other piece of code in your application.

Principle of least privilege
The principle of least privilege is the gold standard for granting permissions in
the cloud (see Chapter 4 for more on this topic). But the granularity and syntax
of AWS IAM can often make applying it a tedious task. Modern IaC tools, like
the AWS CDK, are able to automatically generate least privilege policies and
per-resource execution roles in most scenarios. For example, if you define a
Step Functions workflow that makes an AWS SDK request to DynamoDB, the
workflow will be assigned a unique IAM execution role with a policy that has the
least permissions required to perform this task.

Everything as code
The infrastructure as code movement has expanded to encompass defining many
other operational aspects of software, including delivery pipelines, monitoring
dashboards, alarms, synthetic canaries, and access control policies. Embracing
the * as code paradigm will help you build your applications quickly and safely.

Most of the Code You Write Will Be Infrastructure | 293

https://oreil.ly/NFaD0
https://oreil.ly/6VnEU
https://oreil.ly/INA_Q
https://oreil.ly/dGp51

Environments and stages
The ephemeral, stateless nature of serverless resources and the pay-per-use pricing
model allow for a strategy of treating instances of applications as disposable com‐
modities. Instances of your application can be spun up and torn down effortlessly
and cheaply.

Pets Versus Cattle
In the past, IT and operations teams were responsible for managing the entire lifecy‐
cle of a server, or fleet of servers, in a data center. These physical machines were
known to the team and were dedicated to serving its applications; they were not
shared with teams in another company or even another department in their organi‐
zation. Given that the teams were very invested in the health and performance of
individual servers, they were often anthropomorphized with names and personalities.

Way back in 2012, I (Luke) was working for a company with a server called Rodney.
He was extremely temperamental and often needed a lot of encouragement to wake
up in the mornings!

With the emergence of cloud computing, treating servers as “pets” began to be viewed
as antiquated and inefficient. Businesses could now run their software on ephemeral
virtual machines, and engineers were urged to treat these on-demand servers more
like cattle, anonymously going about their business among a large homogeneous
herd.

One of the superpowers infrastructure as code gives you is the ability to template your
applications. In this way, IaC supports the disposable commodity model. Applications
are transformed into cookie cutters that can be used to create an infinite number
of replicas (see Figure 6-10). A common employment of this superpower is the
provisioning of microservices in pre-production environments.

Figure 6-10. A single application with multiple instances labeled by environment or stage

The popular approach to distinguishing between these replicas is to use the construct
of a stage. A stage usually maps to an environment, such as production, staging,

294 | Chapter 6: Implementing Serverless Applications

https://oreil.ly/XG31e
https://oreil.ly/XG31e

or performance. This can be observed in CloudFormation stacks with names like
order-service-stack-staging and Lambda functions called things like process-
order-function-prod.

If this works for your team and helps engineers form a mental model of your applica‐
tion, then by all means adopt this practice. However, explicitly associating application
instances with stages is usually a remnant of deploying monolithic applications to
dedicated servers and becomes a constraint on velocity and adaptability at scale. You
end up with a STAGE environment variable littered across your infrastructure and
application code. This ties you into the existence of those named environments and
makes your code harder to reason about.

The alternative to using a system of stage labels is to isolate environments by account
(see Figure 6-11). This way, each account only ever contains a single version of your
application. Accounts can still have names like Production, Development, and Luke.

Figure 6-11. A single application with multiple instances deployed to separate AWS
accounts

Direct Service Integrations and Delegating to the Experts
When AWS launched the Lambda service in November 2014 it was billed as a
“zero-administration compute platform,” integrated with three other AWS services:
S3, DynamoDB, and Kinesis. Lambda functions could be triggered by objects created
in S3 buckets, messages sent to Kinesis streams, and items updated in DynamoDB.

In the launch post for Lambda, Jeff Barr (Chief Evangelist for AWS) teased the
roadmap for Lambda: “We have a great roadmap for Lambda! While I won’t spill
all of the beans today, I will tell you that we expect to add support for additional
AWS services.” This roadmap proved to be the catalyst for what AWS calls application
integration—“a suite of services that enable communication between decoupled com‐
ponents within microservices, distributed systems, and serverless applications”—and
Lambda now integrates with around 30 services. This explosion of integrations has
turned Lambda from a FaaS into a complete event-driven programming platform.

Most of the Code You Write Will Be Infrastructure | 295

https://oreil.ly/tnvcW
https://oreil.ly/ThiqG
https://oreil.ly/ThiqG
https://oreil.ly/cPrPd

Lambda played a pivotal role in popularizing the concept of fully managed services,
where AWS takes care of the underlying operating system and runtime and manages
resource scaling and fault tolerance. A key milestone in this journey was the Step
Functions SDK integration release, which gave serverless engineers the ability to
perform AWS SDK operations (such as getting an item from a DynamoDB table
or putting a message onto an SQS queue) directly from a Step Functions workflow.
These tasks would have previously needed to be performed in a Lambda function.

All of the aforementioned AWS service enhancements and feature releases have
culminated in the evolution of serverless architectures from purely Lambda-based
to a powerful mix of business logic and microservice integrations. Nowadays, the
true power of serverless is the ability to blend compute on Lambda with AWS-native
service integrations. You can delegate computing, storage, workflow orchestration,
and event streaming to the experts and concentrate your energy on building the best
application for your users.

Let’s dive into how you can unlock the power of serverless through the use of
managed services.

Benefits of managed services
A managed service (introduced in Chapter 1) encapsulates event consumption, event
production, and metric emission (as illustrated in Figure 6-12). The internal logic of
a managed service is exposed to you via an API. API requests can be made directly
or via the various SDKs. Managed services can also be triggered by events from other
managed services.

Figure 6-12. Anatomy of a managed service

Managed services provide the following key benefits:

Default metrics
Every managed service continually emits metrics about usage and performance.
These metrics can be used to build alerts and dashboards. Crucially, no addi‐
tional configuration is required to activate these metrics beyond deployment of a
particular resource. (For more about service metrics, see Chapter 8.)

296 | Chapter 6: Implementing Serverless Applications

https://oreil.ly/41SVr
https://oreil.ly/41SVr
https://oreil.ly/4TMnl

Events
Managed services typically execute in response to an inbound event. Each man‐
aged service will also produce outbound events that are triggered by actions on
resources. Most events will be consumable via EventBridge, allowing you to fully
integrate managed services with the rest of your system.

Shared responsibility
The product and operations teams at AWS are responsible for designing, build‐
ing, and operating the code that powers every managed service. The separation
of responsibility between you and AWS reduces the undifferentiated heavy lifting
you need to perform and impacts application security (see Chapter 4), testing
(see Chapter 7), operations (see Chapter 8), and the total cost of ownership (see
Chapter 9).

Functions calling functions
While the application integration options provided by managed services will usually
be the glue between the components in your serverless application, it may be tempt‐
ing, in certain cases, to call one Lambda function from another. Although this is
technically possible, you should be aware that invoking a Lambda function from
another function is generally considered an antipattern.

Calling functions from other functions tightly couples the execution of your business
logic, which makes it difficult to handle failures and refactor at a later time. If the
calling function must also wait for a response from the called function, this ultimately
goes against the pay-per-use nature of serverless compute, as you will now effectively
pay for this idle wait period. Functions waiting for other functions to respond will
also unnecessarily count toward the maximum concurrent executions of Lambda
functions in your account.

Function or functionless?
In addition to facilitating the integration between your Lambda functions, managed
services can entirely replace a Lambda function in some scenarios. Indeed, as dis‐
cussed in “The Functionless Integration Pattern” on page 236, a growing trend
among serverless engineers is to only use Lambda functions to perform tasks when
absolutely necessary and instead leverage various managed services to delegate work
to AWS.

Writing and deploying a Lambda function comes with an obvious labor cost. The
function’s code must be tested, operated, and maintained for as long as it is in use. Of
course, there will always be valid use cases for leveraging Lambda functions in your
architecture, but it’s important to consider whether a native service integration can be
used instead.

Most of the Code You Write Will Be Infrastructure | 297

https://oreil.ly/LBii1

Let’s consider some common tasks and compare the utilization of Lambda functions
and managed services:

Event data enrichment
As events flow through your system you will inevitably need to transform and
enrich their payloads with additional fields. Managed services such as Step Func‐
tions (via input and output processing) and EventBridge (via input transforma‐
tion) support static data operations using JSONPath. JSONPath operations can
be considered static as they can only use the data provided as input and cannot
generate new values, such as timestamps or calculated values. For dynamic data
enrichment, you may be able to utilize Step Functions intrinsic functions or
implement custom business logic in a Lambda function as part of your event
processing pipeline.

Event communication and routing
Using Lambda functions to transport data is usually unnecessary. In the vast
majority of cases you should rely on a managed service, such as Amazon Event‐
Bridge, SNS, Kinesis, or SQS, to transmit messages between producers and con‐
sumers and trigger activity in your serverless application. As Ajay Nair, General
Manager for AWS Lambda, once said: “Use Lambda functions to transform, not
transport.”

Event batching
Many managed services support some form of batching or buffering, including
Amazon Kinesis and SQS. Using a managed service should generally be preferred
over implementing your own batch mechanism.

HTTP requests
When making network requests to third-party APIs, you can use the Step Func‐
tions HTTP task or EventBridge API destinations (as described in Chapter 5) if
you do not need to handle the response.

Intensive compute
When you need to coordinate large-scale parallel data processing you can use a
Step Functions map (for up to 40 parallel executions) or distributed map (for up
to 10,000 parallel executions) to invoke a single Lambda function concurrently,
rather than managing the map in the function itself.

Production Is Just a Name
The concept of environments has long been ubiquitous in software engineering. Soft‐
ware is deployed to various pre-production environments, tested, and then promoted
to production. However, this status quo is beginning to creak as teams push the limits

298 | Chapter 6: Implementing Serverless Applications

https://oreil.ly/1COeB
https://oreil.ly/_FtQ5
https://oreil.ly/_FtQ5
https://oreil.ly/kprWy
https://oreil.ly/0OI1e
https://oreil.ly/PmqQ0
https://oreil.ly/o6iaK
https://oreil.ly/o6iaK
https://oreil.ly/lG0Ry

of working in the cloud. Indeed, AWS knows nothing about your environments.
Accounts are just accounts. There is nothing special about your production account,
other than the fact that you choose to expose it to your users. Figure 6-13 shows a
production and non-production account, both with identical applications deployed
to them. As this demonstrates, environments are purely constructs with little mean‐
ing outside of your development workflow.

Figure 6-13. Spot the difference: production is just another version of your application!

To empower your serverless engineers to work creatively and collaboratively, it is
important to remove the ceremony and fear traditionally associated with deploying
code to production. Whether you choose to deploy on a Friday or not, identify hesi‐
tation and reluctance to deploy changes and decide how that can be addressed. The
absence of habitual deployments can usually be traced back to a lack of confidence
derived from tests, poor visibility into application behavior, historic failures, or even
deeper cultural issues around incident postmortems.

Engineers must have their own sandbox accounts, or at least a shared “development”
account. Engineers new to serverless and the cloud need to feel their code; they
need to observe their code running in the cloud and have tangible evidence of the
behavior and outcome of their applications. The best way to build serverless is to get
something running in AWS and iterate on it.

Ship on Day 1, and Every Day After
Let’s take a quick walkthrough of a greenfield scenario in order to illustrate the
importance of prioritizing the delivery of your serverless application above anything
else.

Production Is Just a Name | 299

https://oreil.ly/NKnXv

So, you’ve decided to build a brand-new serverless application. The first thing you
should do is build an automated delivery pipeline. The first time it runs it will
not deploy anything; it might even fail completely. Then, your next step can be to
add a skeleton CloudFormation template and deploy that. Finally, begin layering
in resources for functions, queues, buses, workflows, and tables. While you iterate
on your business logic and infrastructure, your application will be continuously
deploying. Delivery will become a habit that everyone in your team is comfortable
with.

From Keyboard to Production
Software delivery is all about providing stable updates to the users of an application.
Optimizing software delivery is all about removing barriers: helping engineers to
move at a sustainable pace, feel productive, and be excited to get started on a code
change, not daunted by the thought of getting something released.

According to the 2022 Accelerate State of DevOps Report by Google Cloud’s DevOps
Research and Assessment (DORA) team, it takes high-performing engineering teams
between one day and one week to go from code committed to code successfully
running in production.

Your software delivery lifecycle starts with an engineer’s keyboard and finishes in
production. The stability of your software depends on the optimization of the path
from keyboard to production.

The case for continuous serverless delivery
It may seem counterintuitive to deploy an application or feature to your production
and non-production accounts before any of it is built or even functioning. However,
there is technically no simpler time to deliver something than before it exists; there
are no potentially missing permissions, no tests to fail, no resources or environments
to bootstrap.

Leaving pipelines and delivery to the end of your development cycles not only
makes it more difficult to get the deployments working but also means you miss the
opportunity to make software delivery a habit. To maximize the benefits of serverless,
it is crucial to deliver your application continuously rather than at the end of large
feature work.

300 | Chapter 6: Implementing Serverless Applications

https://oreil.ly/rUnkh

One of the key differences with serverless applications is the use of managed services.
With so many managed services, application integrations, and quotas in play, your
serverless application is most definitely unique and cannot be easily compared to ref‐
erence architectures or other applications in the wild. You need to deploy and operate
your application before you can understand its behavior and begin to harden it.

Continuous delivery mandates that every single change to your
application, be it a new feature, a bug fix, or a dependency
upgrade, is deployed individually. To understand the benefits of
this approach, you can consider the introduction of a bug into your
application, caught either by tests in your pipeline or by an alert in
production.
In a continuous delivery pipeline it will be trivial to precisely
associate the bug’s genesis with a specific commit. In a pipeline
that requires manual intervention or approval and where multiple
changes can be batched into a single deployment, it can become
an arduous task to track down the root cause of the issue among
all of the disparate code changes. This can cause blockages in your
pipeline as your team spends time diagnosing problems and will
reduce your ability to integrate time-sensitive patch changes.

Adopting continuous serverless delivery
You can use the following set of guidelines to help your team adopt the practice of
continuous serverless delivery:

Practice GitOps.
Put as much of your application, infrastructure, and configuration into your
codebase as possible, and treat your Git repository as the single source of truth
about the current version of the software deployed to production. Always trigger
deployments to your cloud environments on code pushes to your trunk branch.

Optimize for experimentation.
Serverless allows you to decouple components in your application and iterate
on them regularly. To ensure this platform for evolution is always available
to you, optimize your development workflows for experimentation. The full
requirements of your software are not usually known up front, and neither is
exactly how the application will behave in production (e.g., managed services,
traffic). Ship it and see!

Production Is Just a Name | 301

Ship on day 1 and every day after that!
Always deliver as soon as possible after a code change is committed to your
repository. Only delay in extreme circumstances. Remove the fear and ceremony
around deploying to production—normalize it.

Go direct from keyboard to production.
Give your engineers an efficient, direct pipeline from their local machines to
your remote cloud environments. Make deployment at every stage effortless,
from local code changes (for example, via CDK hotswap) to integrating with
other contributions and finally to production. Avoid emulation of the cloud on
your local machines, as this will take you out of the direct-to-cloud feedback
loop.

Automate everything.
Manual approvals in your pipelines indicate a lack of confidence in tests, fault
tolerance, or observability. Manual intervention should be removed entirely from
your pipelines and replaced with better tests, fault tolerance, and observability.

Deployment is not the same as release
When practicing continuous serverless delivery, the deployment and release of a
code change should be considered separate phases. The deployment phase involves
delivering the change to your AWS account, through the creation or modification of
your infrastructure or business logic. The release phase involves delivering the change
to your application’s users and making that version of your application publicly
available. In this way, many incremental deployments of individual changes could
add up to a feature release.

It can be particularly useful to distinguish between deployment of code and the
release of a feature to your users when facing doubts about continuously deploying a
business-critical application, such as a payments platform. Adding manual approval
processes and controls to the deployment of such applications is often suggested,
but this actually runs counter to the intention of maintaining stability as it leads to
queues of changes.

Instead, you can separate deployments from releases by adopting different release or
versioning strategies based on the feature being introduced:

Dark releases
If your users are unaware of a new feature or cannot easily access it, code changes
can be deployed to and tested in production without serving real traffic. This can
be your default option for entirely new and isolated services, as it will allow you
to release changes early and often, before the features are ready to be used.

302 | Chapter 6: Implementing Serverless Applications

Feature flags
Feature flags allow you to target groups of users with the release of new features.
For example, you could activate a feature for users in a smaller market before
rolling it out to larger markets. AWS AppConfig can be used to manage and
toggle feature flags in your environments.

Canaries
You can use a canary deployment strategy to achieve a gradual rollout of your
code changes, rather than deploying them to all users at once. For example,
you could choose to deploy a change to 10% of your users and then, if every‐
thing is scaling and working as expected, deploy it to the remaining 90% five
minutes later. AWS CodeDeploy can be used to apply a blue/green deployment
configuration to the release of Lambda functions. Failed deployments can also be
automatically rolled back when using CodeDeploy.

Boring Delivery Pipelines—Safety, Speed, and Predictability
The highest barrier to adopting a practice of continuous delivery is typically a social
one, rather than technological. Most engineers on your team will have worked in
environments where releasing to production is someone else’s responsibility and
approached with maximum caution.

To foster a culture of accepting failure and turning delivery into a habit, it is vital to
remove the ceremony and fear that go along with shipping to production. Automat‐
ing all aspects of your pipelines, from execution to monitoring, is key to normalizing
delivery into a safe, fast, and predictable activity.

Jidoka
Jidoka is one of the 12 pillars of the Toyota Production System, the now-famous lean
manufacturing system that has been honed over many years to construct vehicles in
the quickest and most efficient way and deliver them as fast as possible to customers.

Toyota describes Jidoka as “the principle of designing equipment to stop automat‐
ically and to detect and call attention to problems immediately whenever they
occur…. It also liberates operators from controlling machines, leaving them free
to concentrate on tasks that enable them to exercise skill and judgment instead of
monitoring each machine continuously.”

In simpler terms, Jidoka dictates that should a malfunction occur on the production
line, operators have the power to cease production to resolve the issue.

The Jidoka principle can be translated to a software delivery pipeline: your pipelines
should be observable, issues that prevent or degrade delivery of your application
should trigger alerts, and these issues should be fixed as your highest priority. This

Production Is Just a Name | 303

https://oreil.ly/jooC6
https://oreil.ly/ijlNv
https://oreil.ly/CAnUF

means that all feature work should be paused in favor of focusing your team on fixing
the pipeline. This prioritization can also be extended to incorporating the fix in other
pipelines if necessary. Figure 6-14 shows the continuous improvement lifecycle of the
Jidoka principle.

Figure 6-14. Continuous improvement of delivery pipelines

Continuous integration
Continuous integration (CI) is the practice of applying code changes to the releasable
version of your application’s source code on a regular basis. You can think of continu‐
ous delivery (as described in the previous section) as the overall aim for your software
delivery lifecycle and continuous integration as the actual process of merging code
changes with the deployed version of your codebase (see Figure 6-15).

Figure 6-15. Continuous delivery, integration, and deployment

In a version control system such as Git, CI would typically involve merging feature
branches via pull requests or committing local changes directly to your trunk branch
(also known as trunk-based development). If you use a branching strategy like feature
branching, branches should be short-lived and it should take no more than a day for
pull requests to be reviewed and merged after they are opened.

304 | Chapter 6: Implementing Serverless Applications

https://oreil.ly/DXs0q

It is not necessary to be dogmatic when it comes to continuous
integration and delivery. There is a lot of advice on best practice
in this area, but the most important thing is to do what works for
your team. Whether you choose to use feature branches and pull
requests or trunk-based development and pair programming, the
most vital aspect of software delivery is to mandate automation
at every stage of your pipeline. Pipeline automation ensures that
you can ship as often and as rapidly as possible while maintaining
safety and stability.

Serverless architectures work well with CI, as loosely coupled microservices, infra‐
structure, and Lambda functions can be worked on in tiny increments and deployed
in isolation. With a team of engineers constantly iterating on disparate parts of the
same codebase, it is crucial to integrate code changes as often and as quickly as
possible. CI will help you catch conflicts between multiple changes to the same file
and any bugs that emerge from distinct updates.

CI is a vital part of your serverless engineering workflow. The more time you take to
integrate changes, the longer you must wait to understand your users’ experience of
the features you ship.

Contrary to popular opinion and best practices often promoted in the serverless
community, ephemeral environments provisioned to test code changes in feature
branches can be considered the antithesis of continuous integration. In addition to
non-production environments creating additional overhead for your team to man‐
age, they promote a culture of slowing the progression of changes to production.
After the introduction of pull request–based environments, teams become tempted
to add more and more pre-production, whole-system tests. See Chapter 7 for more
details about devising the optimum test strategy for your serverless application and
how to balance testing with delivery to integrate as quickly and as regularly as
possible.

The perfect pipeline
The optimal delivery pipeline is one that takes the most direct route from keyboard
to production while providing full confidence to engineers about the validity and
integrity of the changes being released.

Production Is Just a Name | 305

When building your delivery pipelines, try to prioritize the following properties:

Atomic
Give each service or stack in your application its own isolated delivery pipeline.
Avoid batching changes to a service and deploy each change individually.

Automated
Adopt a GitOps approach to delivery. This involves triggering atomic delivery
pipelines based on changes to distinct directories in your codebase being merged
to your trunk branch. Automate all steps, including tests and changelog genera‐
tion and publication. Any manual intervention, such as final approvals, usually
indicates a lack of confidence or fear of deployment.

Observable
Any pipeline issues should trigger alerts to chat applications or ticket systems and
be diagnosable.

Rapid
You should define a maximum acceptable execution time for your pipelines, con‐
tinuously monitor average durations, and optimize regularly to ensure pipelines
are always as efficient as possible.

Using a third-party continuous integration and deployment
(CI/CD) platform to run delivery pipelines will typically involve
storing AWS access credentials on the platform. If this is necessary,
credentials should always be stored securely with encryption and
should only be readable by the pipeline while it is running.
Some CI/CD platforms, including GitHub Actions, support the
use of OpenID Connect (OIDC). OIDC allows your pipelines to
authenticate directly to AWS without the need to store long-lived
access credentials outside of your account.

Now that you have an understanding of how to implement and deliver your server‐
less application, let’s finally cover one of the less glamorous but equally important
aspects of serverless implementation: documentation.

Documentation: Quality, Not Quantity
Although unlikely to be anybody’s favorite task, generating clear, accurate, and rele‐
vant artifacts during the lifecycle of your software project or product is crucial to
continued success, especially as contributors, requirements, and technologies change
over time. There are many artifacts that will be useful to your team, but we’ll focus
here on technical documentation.

306 | Chapter 6: Implementing Serverless Applications

https://oreil.ly/gDKp0

Given their distributed and decoupled nature, serverless, microservice-based, event-
driven architectures are notoriously difficult to document. There are just so many
components and interactions to describe; trying to document everything will rarely
be a sustainable strategy. Instead, you should focus on documenting the most crucial
aspects of your architecture—the parts you will need to understand when debugging
production issues or making large-scale changes to the architecture.

It can be useful to treat documentation the same way you would a feature of your
application, by prioritizing gaps according to demand and criticality. With this
strategy, you wait until there is enough demand for a particular document before
investing the time to create and maintain it. You may also find that half-written or
outdated documentation is detrimental to efforts to understand the current state of
the system, so don’t hesitate to archive documents when they are no longer serving a
purpose.

Serverless Solution Design
Being faced with researching, analyzing, and designing a solution to a set of business
or user requirements can be daunting. A blank canvas is both exhilarating and
terrifying!

Serverless solution design is no different. Structuring the solution design process
around a common framework is crucial to ensuring you design robust, scalable
features, services, and systems that are fit for purpose.

The discoveries, discussions, and decisions should be recorded throughout the entire
process in a solution design document. A comprehensive solution design document
should cover requirements gathering, data flows, architecture diagrams, data model‐
ing, event design, threat modeling (covered in Chapter 4), reliability (see Chapter 8),
cost estimation (see Chapter 9), and sustainability (see Chapter 10). You’ll find a
template to help you get started with solution design in Appendix C.

The solution design document and process will help you maintain the scope of a
project and establish guardrails that direct efforts toward the best outcome. It can
always be tempting to reach for the immediate and obvious answer to a problem
statement, but through a thorough, collaborative approach you can surface and com‐
pare alternatives.

It is also important to treat your solution designs as living documents. This is the
time to let ideas flow and encourage healthy discourse, so make sure you embrace
the messiness within the structure! The formal documentation of a service can evolve
from the solution design but should ultimately be distinct (the following section
describes these artifacts in more detail).

For a deep dive into the solution design process, take a look at Sheen’s two-part blog
series.

Documentation: Quality, Not Quantity | 307

https://oreil.ly/6gvwj
https://oreil.ly/6gvwj

Here is a set of the most important pieces of documentation you can create for your
application. Think of it as a place to start (the minimum viable documentation),
rather than an exhaustive list:

Contributing guidelines
Establish clear guidelines for how to build, run, test, and deploy a service.
Engineers should be able to get started on their first day. Make your contribu‐
ting guidelines and onboarding process as succinct and simple as possible, and
encourage engineers to incorporate changes based on their experience.

Solution designs
A pre-implementation design phase is crucial to the effectiveness of your applica‐
tion and can help you to understand how services will integrate in terms of data
contracts and vendor quotas. See Appendix C for a solution design document
template to help you get started. Solution designs can also include architectural
decision records (ADRs) if you use those (see the Architecture Decision Log
repository for more information and a template).

Architecture diagrams
Architecture diagrams are a valuable resource for understanding your system’s
architecture and data flow. You can include key configuration details, such as
SQS timeouts or batch size and EventBridge rule patterns. These diagrams are
usually presented as part of a solution design or a microservice’s README file.

API documentation
Any APIs, both synchronous (for example, API Gateway REST APIs) and asyn‐
chronous (such as EventBridge events) should be fully documented to facilitate
frictionless and robust integration with your services. Human-readable docs can
be automatically generated from standard schema specifications, such as JSON
Schema, OpenAPI, and AsyncAPI. While useful for internal, inter-service APIs,
API documentation is obviously crucial if you expose a public API to external
consumers of your service.

State charts
The steps and transitions of a Step Functions workflow can be visualized as
a state chart. These can be included as images in your solution designs and
embedded in README files using Mermaid.

Event schemas
Every event in your system should be documented, including a description of the
state change that the event captures and descriptions of each field in the event’s
payload, incorporating the field’s semantics and syntax.

308 | Chapter 6: Implementing Serverless Applications

https://oreil.ly/Q4069
https://oreil.ly/Q4069
https://oreil.ly/Y1bLk

Summary
The adoption of serverless demands a novel approach to software engineering, and
there are several layers that must be considered when implementing a serverless
application. From cost optimization to security and testing to operations, enterprise
teams must take a holistic approach. Rather than enforcing the traditional separation
of concerns, these layers should be blended by considering them all at each phase
of your software’s lifecycle, particularly as you design, implement, and deliver your
application.

As you design and implement with serverless, you will find that your work is focused
on software delivery and infrastructure code as much as your business logic. You
must understand this early and balance your team’s education, planning, and practice
across these key areas.

Serverless implementation is an exciting, collaborative, and creative process that you
and your team will enjoy. But wait—before you put this book down and get building,
make sure you establish your path to production first and build your delivery pipe‐
line on day 1. You will be glad you did!

Interview with an Industry Expert
Sara Gerion, Senior Solutions Architect, Amazon Web Services
Sara helps companies follow architectural best practices by providing guidance and
recommendations to develop cloud solutions that are resilient, cost effective, per‐
formant, secure, sustainable, and managed with operational excellence. As a Senior
Solutions Architect at AWS, Sara works closely with companies to ensure their busi‐
ness ambitions are met. She is the former lead of the Powertools for AWS Lambda
(TypeScript) team and author of the first Logger utility.

Q: Before becoming a Senior Solutions Architect at AWS you were a backend engineer at DAZN,
one of the very early adopters of serverless. How has backend engineering evolved since the
emergence of serverless and the move toward event-driven architectures?

I still remember vividly the first time I used an AWS Lambda function in production.
It was 2018. Before then, I was already familiar with Amazon S3, but it was only when
I learned about FaaS that I discovered the concept of serverless computing. At the
time, AWS Lambda was nothing like what I had seen before and I was immediately
intrigued by its simplicity and capabilities. That moment marked what I consider my
first step into the serverless space. Shortly after, I intentionally joined a fast-paced
company which was one of the early adopters of the serverless-first mindset, and
learned firsthand how enterprises can leverage serverless in production to quickly
deliver business value and differentiate themselves.

Interview with an Industry Expert | 309

Anecdotally, I observed that by nature of its simplicity serverless made the entrance
to the world of cloud more accessible to backend engineers who did not have much
cloud experience beforehand. There is no need to learn how to manage servers at
scale. Great, right?

Because of the monitoring solutions like logging or metrics provided out of the box
by using serverless, I also observed that engineers got closer to the observability
space and best practices. In my experience, backend engineers who ship code running
on AWS Lambda functions tend to own and maintain not only the code of the
business logic, but also the infrastructure as code codebase and the observability
of the architecture and backend application. Taking ownership of the operational
aspects contributes to a culture of shared responsibility, a “you build it, you run it”
mindset, and a shift toward a wider adoption of DevOps practices. As a backend
engineer, I remember I felt empowered to build anything: the sky is the limit.

A decade ago, designing and maintaining event-driven architectures that included,
for example, a queuing system was a task mainly owned by system administrators. At
a big scale, ownership of that task was not accessible to most backend engineers. Ser‐
verless made it easier to adopt and leverage event-driven architectures by removing
the need to manage much of the underlying infrastructure.

I expect that the positive impact on the backend engineering community will con‐
tinue with the introduction of new serverless services and integrations.

Q: You wrote a brilliant Twitter thread in December 2020 that included the statement “You’d
want to get to a point when a production deployment is not a celebration, but a very boring,
frequent occurrence.” How can enterprise teams make their serverless releases as boring as
possible?

The word “boring” can have a positive connotation when talking about software
releases.

When serverless releases are rare, include many changes at once, have unpredictable
outcomes, and are treated as extraordinary events, they are often followed by big
celebrations or frustrations depending on the outcome of each release and may
become a source of additional stress for the team.

Conversely, when serverless releases are frequent, uneventful, and predictable, teams
responsible for those releases are empowered to deliver business value quickly and
continuously.

Teams who want to make their serverless releases as boring as possible can do so
by adopting certain strategies and best practices. I had the privilege of working in
high-performing engineering teams in the past, and based on that experience I can
say that this is a journey: changes do not happen from one day to another, but the
results can be rewarding.

310 | Chapter 6: Implementing Serverless Applications

Enterprise teams need to pay particular attention to their feature release strategy and
CI/CD pipelines. In each environment, the minimum viable product should include
monitoring solutions that help teams understand the health of their workload at any
time, without the need to guess or ship new code. Examples of such solutions are
tracing, logging, together with a monitoring dashboard and alerts based on metrics.

Implementing automated tests as part of CI/CD pipelines will improve software
quality, reduce manual effort, and accelerate the development lifecycle. Teams should
of course implement the types of tests that make the most sense for their use case.

Planning a release strategy from the very beginning to make it incremental and with
fast iterations will also accelerate the software development lifecycle. Additionally,
when implementing a new code functionality, teams don’t need to wait for it to be
ready to get user traffic before deploying it in the production environment. Teams
can already deploy it “turned off ” and enable it when the time is right by using
feature flags.

Resilience also plays an important role. Teams should design their MVP for fault
tolerance and implement automated error handling by proactively asking themselves
about the failure modes of their serverless architecture.

In general, automation is key to keep things boring.

From a more human perspective, I personally believe that empowering everyone in
the engineering team to get used to deploying to production without fear will be
beneficial to the whole team in the long term. To achieve this, each team member
should learn what steps to do before, during, and after a deployment or release. Team
members less used to deploying should be the ones who need to practice the most.
Every person in the team should feel equally empowered.

Q: As a well-known member of the serverless community for a number of years, how important
is the community when it comes to defining serverless best practices and how can teams tap
into the power of the community to begin learning from other users and advocates?

I cannot stress enough how important the community is when it comes to defining
serverless best practices. Serverless is a fast-paced, ever-evolving space and the com‐
munity plays an important role in this ecosystem. Gaining insights about the perspec‐
tives of people from diverse backgrounds and roles had a huge positive impact on my
own growth and skill development, and I am sure that applies to many others. People
with different levels of proficiency in serverless technologies can equally contribute to
this flourishing community by sharing their unique perspectives and experiences.

The community’s strength can be harnessed in both digital and physical settings.
The community is responsible for the creation of an incredible variety of tech
content, such as blog posts and open source projects, together with different kinds

Interview with an Industry Expert | 311

of initiatives and resources, many of which are free. This makes learning about
serverless accessible and inclusive of everyone.

Last but not least, attending in-person events organized by local community chapters
and connecting with community members on social media platforms are both power‐
ful ways to network, learn from each other, and find mentorship opportunities.

I am grateful to be a part of this community.

Q: You were a big influence in bringing the indispensable AWS Lambda Powertools developer
toolkit to Node.js and TypeScript functions. What advice would you give to enterprise teams
when it comes to writing and operating Lambda functions?

As a former member of the Powertools for AWS Lambda maintainers team, I had the
privilege of working alongside incredible AWS employees and community members.
During that time, I contributed to the library as the lead of the Powertools for AWS
Lambda (TypeScript) maintainers team and author of its Logger utility, but I want
to highlight the fact that the library and the impact it had on the community are
the result of many brilliant and talented people who all worked together to make it
happen.

Enterprise teams responsible for writing and operating AWS Lambda functions can
adopt Powertools for AWS Lambda to implement serverless best practices without
the need to write much custom code. The library, which includes utilities for logging,
tracing, metrics, and idempotency together with many others, relieves the operational
burden needed to implement these functionalities. This means that teams are free to
focus on features that matter the most for their business. The library helps enterprises
standardize their organizational best practices, but it’s important to add that start-ups
can also benefit from leveraging this library because its utilities are designed to be
incrementally adoptable for companies of different sizes and at any stage of their
serverless journey.

Q: Writing documentation is usually one thing engineers know they could do more of, but
it can be a difficult task. How have the teams you’ve worked with approached creating and
maintaining documentation about their serverless applications?

Writing documentation can sometimes be perceived as a chore and a task that is not
as important compared to writing code. I myself used to think this way years ago.
With time and experience, I learned how important documentation is and what value
it can bring to a team.

Up-to-date, easy-to-understand documentation can accelerate the onboarding of a
new team member, helping them quickly and efficiently familiarize themselves with
a particular codebase in a self-service mode. It can also help retain knowledge within
the team and clarify past decisions or design choices when a team member responsi‐
ble for those decisions leaves.

312 | Chapter 6: Implementing Serverless Applications

Documentation does not only come in the form of text, but also of cloud architecture
designs. A serverless architecture design is a living document owned by the team
responsible for that architecture.

Engineering teams should consider creating an architecture design of their appli‐
cation before they start with the implementation. This can be an opportunity to
brainstorm, validate the architecture against best practices, avoid painful rewrites,
and seek feedback from other stakeholders in their organization.

Interview with an Industry Expert | 313

CHAPTER 7

Testing Serverless Applications

You hear that Mr. Anderson? That is the sound of inevitability.
—Agent Smith, The Matrix

In this chapter, you will explore the attributes and failure modes of serverless applica‐
tions that influence a novel approach to testing. You will learn how to devise a test
strategy for your team, and how to apply this strategy to your tests. The result will
be a vastly simpler approach to testing that doesn’t fixate on test categorization or
aim for maximum code coverage but instead meets the goals of rapid delivery, fault
tolerance, and observability.

Efforts to promote software quality have traditionally been focused on identifying
and eradicating bugs. The perceived quality of a piece of software was often measured
by what went wrong with it. If bugs appeared in production, gaps in test suites were
found and filled with more tests.

But software has evolved, and at the same time user demands have skyrocketed.
Software must now be highly available, low-latency, and in a constant state of itera‐
tion. The way engineers build software has changed to meet these demands. Modern
applications are cloud native, geographically and logically distributed, and a mixture
of first-party, third-party, and open source code. To be able to build and operate
software like this, while enforcing quality, engineering teams need to run tests that
give maximum confidence in minimum time, deploy changes rapidly, understand
application behavior instantly, and recover from failures automatically.

315

Bugs Are Inevitable
It’s March 2016 in Seoul, South Korea. The greatest Go player of the past decade and
winner of 18 world titles, Lee Sedol, sits down to play a new challenger. But there’s
one key difference to this opponent: it’s a computer program. AlphaGo has been built
and trained by its creator DeepMind with tree search algorithms, neural networks,
and reinforcement learning.

Some 200 million people tuned in to watch AlphaGo defeat Lee Sedol 4–1; an
emphatic, unexpected victory. This was a triumph for software engineering. But
AlphaGo wasn’t entirely void of performance blips, and at one point, midway through
the match, it seemingly experienced a glitch. This prompted Andrew Jackson of
the American Go Association to remark while commentating on the match: “If
DeepMind has figured out how to write code that doesn’t have bugs, that is a bigger
news story than AlphaGo.”

Even in the face of an incredible feat of artificial intelligence, the presence of bugs in
software seems inevitable. Indeed, bugs are so synonymous with software that it can
seem like a hopeless task to rid your applications of them entirely. Should you instead
learn to live with, and even embrace, the bugs in your software?

In the pursuit of a development model that can support the required level of delivery,
observability, resiliency, and scalability, software engineers have been on a constant
quest to decouple components in their systems over the last decade. Several patterns
and techniques have been devised to support decoupling, from domain-driven design
to microservices, event-driven architecture to serverless itself. But approaches to
testing software have not kept up. You can go to great lengths to decouple the
development and operation of your software only to couple it again during testing
(see Figure 7-1).

Figure 7-1. Coupling decoupled services during testing

316 | Chapter 7: Testing Serverless Applications

https://oreil.ly/YxMMb
https://oreil.ly/mGFzS

Testing strategies are still rigid and heavily reliant on deploying applications in order
to test them as whole systems. Once deployed, APIs are called, functions are invoked,
database tables are written to and read from, events are produced, and messages are
sent. Applications are tested from one end to another, and each step in the flow is
asserted and verified. In reality, does a distributed, event-driven system even have two
distinct ends?

In an event-driven serverless application, microservices (each a logical collection of
resources scoped to a particular function of a domain) are decoupled by design.
Serverless services can be iterated on independently from other services in the appli‐
cation’s source code. Services are operated independently and can be scaled according
to where demand is in the system. Crucially, services can also continue to operate
normally even while other services are suffering from throttling or outages.

Ultimately, if your services are decoupled in development and at runtime, you must
avoid coupling them in your tests. This chapter will help you to understand why
serverless testing can be challenging and how to devise your own serverless testing
strategy.

How Can Serverless Applications Be Tested?
Serverless is an entirely new software engineering paradigm. The low-cost, ephemeral
nature of serverless technology provides benefits such as increased product delivery
speed, abundant freedom to experiment and iterate, and bolstered confidence in the
team’s ability to ship scalable, resilient applications.

Of course, with these benefits come unique challenges—and testing serverless appli‐
cations always takes the top spot when someone writes a list of “things that are hard
about serverless.”

Why Serverless Requires a Novel Approach to Testing
There are several attributes of typical serverless applications that make them difficult
to test and force us to devise a different approach:

Latency
Requests to microservices and APIs can vary in latency, with high or unpredicta‐
ble latency common in services that consist of multistep workflows or require
the use of third-party webhooks to complete processing (see “Understanding the
performance measures of distributed serverless applications” on page 48). Tests
with highly variable execution times can often time out unexpectedly and can be
difficult to comprehend and debug.

How Can Serverless Applications Be Tested? | 317

Event-driven communication
Aside from request/response API endpoints, the majority of components in a
serverless application will be logically decoupled and triggered into action by
events from other components. These could include asynchronous APIs, which
implement mechanisms that only return an acknowledgment to the consumer
rather than a full response. Event-driven architectures can be notoriously diffi‐
cult to test when applying strategies not fit for purpose.

Managed services
Managed services are the defining feature of serverless applications deployed to
AWS. The code that powers these services is developed and operated by AWS.
This makes them opaque boxes dotted around your architecture; components
you do not own, control, or fully understand. The key question here is what parts
of these managed services you should be testing, if any.

Distribution
Whole applications and even distinct microservices can be distributed across
networked computers, cloud resources, regions, and accounts. Backups, replicas,
shards, and eventually consistent database tables can make systems under test
moving targets.

Cloud native
At its core, serverless is a modern evolution of cloud native technology. Server‐
less was born in the cloud and designed to fully leverage the benefits of the
cloud. This is incredibly powerful when operating your workloads in production
but has presented challenges to engineering teams that are used to running and
testing their code locally before pushing it to a production, or production-like,
environment. Numerous tools and techniques exist to make emulating AWS
resources on your machine possible. But the fact remains: it is inordinately
difficult to run traditional integration and functional tests without deploying
resources to the cloud. This results in a longer feedback loop and development
cycle and can severely slow test execution.

A distributed, event-driven, serverless application with all of these attributes becomes
very difficult to build, test, deploy, and operate as a whole—treating a serverless
application as a single application simply does not scale as the codebase grows.

You should instead view your serverless system as a collection of distinct applications.
And, by extension, you can only ensure the quality of the whole system by applying
quality controls to its components. Each component is intentionally decoupled and
operates with minimal interfacing with or dependencies on other components. If you
attempt to control the quality of the system as a whole you will negate many of the
benefits of serverless and, ultimately, fail to properly or efficiently enforce quality.

318 | Chapter 7: Testing Serverless Applications

You will most likely be able to see this already in the your engineering practices:
you may have begun to split services into directories so they can be worked on inde‐
pendently, you may deploy these services in isolation via their own dedicated delivery
pipelines and CloudFormation stacks, and you may have pinpointed service-level
metrics to trigger alerts rather than generic application or API-level ones.

The Serverless Square of Balance: The Trade-off Between
Delivery and Stability
It is time to introduce the serverless square of balance (Figure 7-2). The square of bal‐
ance illustrates the four key activities that must be undertaken to achieve a resilient,
high-quality serverless application: test, deliver, observe, and recover. Crucially, it is
not enough to simply conduct these activities; they must be designed and undertaken
in the most efficient way possible. In addition, they must all be balanced against one
another, without overly relying on one or two techniques. Achieving this balance of
focus in your microservices is the key to serverless harmony.

Figure 7-2. The serverless square of balance

The authors of Google’s book Site Reliability Engineering (O’Reilly) assert that soft‐
ware can be too stable, to the point that stability can be detrimental to quality:
“maximizing stability limits how fast new features can be developed and how quickly
products can be delivered to users, and dramatically increases their cost, which in
turn reduces the number of features a team can afford to offer.” They encourage you
to take calculated risks when verifying your software before shipping it: “Our goal is
to explicitly align the risk taken by a given service with the risk the business is willing
to bear. We strive to make a service reliable enough, but no more reliable than it
needs to be.”

The risks you take to increase delivery speed by reducing test coverage must always
be counteracted with useful alerts, automated recovery from failure, and effective
debugging of root causes.

Move fast and make things
Chapter 6 discussed the importance of establishing and maintaining a rapid develop‐
ment and delivery workflow, as well as preparing for everything to fail by making
operations tolerant of faults and able to recover automatically.

How Can Serverless Applications Be Tested? | 319

https://oreil.ly/wp58L

The quality of a serverless application relies on delivery speed and application stabil‐
ity. In most cases, speed should always be preferred to stability. Stability is a product
of speed; without speed there is no stability.

Optimizing for speed is often seen as a decision to sacrifice quality. Take the old
Facebook engineering adage: “move fast and break things.” This implies your appli‐
cations must be broken if you are to develop them quickly. Research by DORA
found the opposite to be true among high-performing software product teams. First
published in the book Accelerate, by Nicole Forsgren, Jez Humble, and Gene Kim
(IT Revolution), the Google Cloud team’s research found that high-performing teams
delivered code into production (from commit to deployment) 440 times faster than
low-performing teams while having a change failure rate 5 times lower.

In serverless applications, maintaining the quickest possible delivery speed underpins
your entire strategy for promoting quality and a great user experience. It’s no use
budgeting for errors and fine-tuning your alerts to identify bugs as soon as possible if
you cannot remove the bugs from your production environment rapidly.

Balancing test coverage with observability and recovery
As your serverless application grows, exponentially adding tests for new features
and regressions will prove to be the biggest drag on delivery speed. Excessive test
suites will drastically slow down your engineers and your pipelines. Instead, you
need to find a way to balance between pre-deployment testing and observability and
resiliency in production.

As Cindy Sridharan says in her seminal post “Testing Microservices, the Sane Way”:
“When it comes to testing...microservices, most organizations seem to be quite
attached to an antediluvian model of testing all components in unison. Elaborate
testing pipeline infrastructures are considered mandatory to enable this form of
end-to-end testing where the test suite of every service is executed to confirm there
aren’t any regressions or breaking changes being introduced.” She goes on to suggest:
“to be able to craft a holistic strategy for understanding how our services function
and gain confidence in their correctness, it becomes salient to be able to pick and
choose the right subset of testing techniques given the availability, reliability and
correctness requirements of the service.”

By far the most effective strategy to improve delivery speed is to reduce pre-
deployment test coverage. This may seem counterintuitive to preserving quality
at first, but only when this action is assessed in isolation. Reducing test coverage
without introducing any other quality assurance (QA) methods is never going to be a
good idea.

Any perceived drop in pre-deployment test coverage made to preserve delivery
speed should be balanced with other forms of QA, including alerting of degraded
performance of critical user experiences and the ability to recover from any bugs that

320 | Chapter 7: Testing Serverless Applications

https://oreil.ly/S429w
https://oreil.ly/YMl1P

may be introduced. You can read more about the emergent practice of observability
in Chapter 8 and more about fault tolerance in Chapter 6.

The key to a scalable, effective set of tests is defining a clear test strategy to help engi‐
neers understand what to test and when to test it. Without this strategy, test suites
and staging environments can quickly balloon out of control and grind development
and delivery to a halt.

Serverless Failure Modes and Effects Analysis
To decide on an appropriate test strategy for your serverless application you first need
to understand what can go wrong. Given the extensive use of managed services in
serverless applications, it is also important to understand the division of responsibil‐
ity between you and AWS.

This chapter primarily covers the aspects of software testing that
are unique to serverless and how your mindset needs to shift.
However, it’s important to note that your fundamental approach to
testing will largely remain the same, and the majority of the tests
you usually write will still need to be written and executed. This
is particularly true for the business logic you implement in your
language of choice and run in Lambda functions. You should use
unit tests to maintain the quality of this code in the exact same way
as when you ran it on servers.

What can go wrong?
Failure modes will largely depend on the architecture and logic of the application.
When designing or implementing a new serverless application or feature, you should
analyze the architecture and explore the things that could fail in production.

To help frame your analysis, let’s review some common serverless failures:

• Insufficient IAM permissions is a very common issue. It typically manifests in•
“unauthorized operation” or “access denied” errors when a resource attempts
to perform an operation not permitted by its IAM role. Wherever possible,
IAM policies should be automated with an IaC tool (see Chapter 6 for more
information).

• Requests to API Gateway endpoints can fail due to misconfigured integrations•
with Lambda function handlers or responses that exceed the maximum timeout,
which at the time of writing is 30 seconds for HTTP APIs and 29 seconds for
REST APIs.

How Can Serverless Applications Be Tested? | 321

https://oreil.ly/nvUzR

• Lambda function invocations can time out or exceed their memory allocations.•
Function invocations can also be throttled if the maximum number of account-
wide concurrent executions is exceeded.

• DynamoDB operations made via the AWS SDK could fail due to incorrect syntax•
or document paths. Read and write operations could also be throttled if the
associated capacity units are exceeded during spikes in traffic.

• EventBridge rule invocations could fail if the target is incorrectly configured. An•
event bus could also fail to ingest an event if the maximum payload size of 256
KB (at the time of writing) is exceeded. Such a failure can easily occur at runtime
if you have a property with a potentially large value.

• A Step Functions workflow may not execute to completion if a step with a direct•
service integration fails. A workflow could also fail to execute if the maximum
input size of 256 KB (at the time of writing) is exceeded. Again, such a failure can
easily occur at runtime if you have a property with a potentially large value.

• SQS queues with dead letter queues and automatic redrive policies are suscep‐•
tible to “poison-pill” messages that will continue to fail whenever delivery
is retried. If these build up, it can disrupt the queue and any downstream
consumers.

• Kinesis streams can fail if delivery targets are misconfigured.•

Failure Modes and Effects Analysis worksheet
The Failure Modes and Effects Analysis (FMEA) worksheet in Appendix C can be
used to determine and categorize potential failure modes for the services in your
application. As you analyze the types of failures that could occur when operating your
application in a production environment, use the FMEA worksheet to guide your
analysis, recording the details of possible failures along with their causes and effects.

For each failure, you should rate the probability of it occurring, the severity of the
failure’s effects if it does occur, and the likelihood of the fault being detected by a test
suite before deployment to production (for example, using a five-point scale). Each
failure can then be assigned a risk level by multiplying the probability by the severity
and adding the detection rating. The risk levels can be used to prioritize test coverage
or work on observability and fault tolerance.

Designing a Serverless Test Strategy
The test-driven development (TDD) movement that was popularized in the early
2000s made testing a primary concern for software engineers and championed auto‐
mation over human toil. Automated testing has since become the status quo. Manual
testing still has a role to play, but it should only be applied in appropriate scenarios,

322 | Chapter 7: Testing Serverless Applications

never as the default. Predictability is of course a key feature of automated tests, and
this will be explored later in this chapter.

Beyond the sociotechnical behaviors TDD encourages, the core practice of TDD
involves first writing tests that will fail based on a feature’s requirements and then
implementing that feature until the tests pass. In reality, with cloud native serverless
applications you will find you rarely run tests locally, aside perhaps from directly
before committing the code changes to source control. This is mainly due to the
difficulties associated with emulation.

With web applications or monolithic backends, it is trivial to spin up local instances
and continually run full end-to-end test suites in response to every code change you
make in your IDE. Testing can be a part of the development cycle. Testing cloud
native software involves a different approach in order to integrate it into a rapid
development feedback loop; this has forced engineering teams to rethink the role
testing plays in developer workflows.

When you’re getting started with serverless, it can seem like a dis‐
advantage to not be able to trivally run your code locally. However,
if you can find an ergonomic, quick-enough workflow that suits you
(see Chapter 6 for more on this topic), exclusively running and
testing your code in the cloud will provide the most accurate (if not
the fastest) feedback. You certainly won’t have any “it works on my
machine” debates anymore.

Serverless engineers work best when contributing tightly scoped changes and fre‐
quently integrating these changes with the rest of the codebase. The changes can
be deployed in isolation to the cloud and tested in full. The difference is that the
feedback an engineer receives is obtained remotely, in a delivery pipeline running on
a continuous integration platform, rather than locally in a terminal on their machine.

Any serverless test strategy must be designed with the unique attributes of serverless
applications in mind and optimized to support the serverless engineering workflow,
as described in Chapter 6. Devising a test strategy as early as possible in the lifetime
of your application is absolutely crucial to the scalability of its development and its
stability. Applying an ill-conceived or organically evolving test strategy will eventually
catch up with you and drastically slow down delivery, which in turn will impact
stability and quality.

Identifying the Critical Paths
A critical path is typically a user experience that is critical to the operation of your
business. Examples of user requests that follow critical paths include ordering a taco,
making a payment for your child’s Christmas present, donating to a charitable cause,

Designing a Serverless Test Strategy | 323

or tracking a parcel. If these requests go wrong or don’t work as expected, it can be
considered detrimental to the service your business offers to its consumers.

Identifying the critical paths in your application can help you decide how to apply the
serverless square of balance and focus your engineering resources.

Critical paths
Your users are usually present at some stage of a request’s journey along a critical
path. These requests are typically time-sensitive and expect a synchronous response.
When it comes to critical paths, recovery from failure (or fault tolerance) is a less
viable strategy for supporting the quality of your application. Retrying requests could
increase latency to an unacceptable level, and your ability to retry these operations
will be diminished when the user is no longer present or available to give explicit
permission.

The operational quality of critical paths should be primarily supported through
extensive test coverage and alerting. You must ship as few bugs as possible to these
microservices.

The topic of load testing may seem redundant when it comes
to serverless workloads. After all, you have chosen serverless for
scalability. Yet, while your APIs and Lambda functions will usually
surprise you with their effortless ability to scale to your spikiest
traffic, it is still very worthwhile to conduct a series of tests that
put your application under various load profiles. Load testing your
critical paths in particular is essential before any user events of
significant scale.
You should analyze your predicted traffic and usage patterns
and design performance test scenarios based on these predictions
and historical data. Pay particular attention to integration points
between different AWS managed services where usage volume
quotas apply (see Chapter 8) and any connections between your
application and third-party APIs or internal downstream systems
that may not be capable of the same scalability as your application.

Noncritical paths
The noncritical paths in your application will usually be background processes. These
will not be time-sensitive and will be fully recoverable in the event of performance
degradation or outages resulting from transient bugs or persistent errors, or following
a code fix or rollback.

The operational quality of noncritical paths should be primarily supported through
alerting and fault tolerance. You can afford to ship a higher percentage of bugs that

324 | Chapter 7: Testing Serverless Applications

disrupt these paths, within your error budgets (see Chapter 8 for more information
about error budgets).

Is it a critical path?
Here are some questions you can pose about your microservices to understand
whether they include critical paths:

• Is someone or something relying on the request being served in a timely•
manner; either near-immediate (synchronous responses) or as-soon-as-possible
(asynchronous responses)?

• Can the request be idempotently retried at a later date?•
• Does handling the request involve storing or updating application or business-•

critical data?

Just Enough and Just-in-Time Testing
As you have seen so far in this chapter, with serverless your test coverage should
be kept to a minimum and be focused on your critical user experiences. You should
test just enough of your application to provide the confidence required to release a
change into production—serverless testing is not about catching all possible bugs, it’s
about catching the bugs that will wreak the most havoc on the user experience.

Per the serverless square of balance, testing cannot restrict your ability to deliver.
If you have more than “just enough” tests and they take too long to execute (or
even worse, are flaky and require multiple runs to pass), this will harm engineering
productivity. In some cases, an inefficient test strategy can deter engineers from
making frequent releases due to the burden and frustration associated with deploying
changes.

Just enough testing
Adopting a test strategy of “test everything all the time” simply does not scale.
As your application’s codebase grows and becomes increasingly fragmented across
microservices and infrastructure stacks, this all-encompassing test strategy will
require you to continually add more tests, spreading those tests across more service
boundaries. No matter how much you optimize the performance and parallelization
of these tests, they will inevitably take longer and longer to run and become more
complex to orchestrate.

Test coverage can be limited to the minimum level by adapting it according to
production stability and risk of bugs: reduce tests for highly stable user experiences
and temporarily increase coverage for unstable ones until they stabilize. Remove tests
that rarely or never fail, as they are probably not testing anything that is likely to
break in production. Also remove flaky tests that often fail initially and pass when

Designing a Serverless Test Strategy | 325

retried. Flaky tests will promote a culture of easily ignoring test results and quickly
erode confidence in your test strategy, similar to an alert that is always ignored.

While removing tests that provide little or no value is a sensible
strategy for achieving an efficient balance between delivery and
stability, this approach should always be used with caution. You
must fully understand the purpose of a test and be sure of its lack
of value before removing it. You can also consider running the test
less frequently before removing it altogether.
Mutation testing is a technique that involves deliberately introduc‐
ing bugs and seeing which tests catch them. As your application
matures and grows, you can use mutation testing as a method for
identifying useless tests.

Your test suites can also be limited by the types of tests that you write and execute.
A sound strategy to apply to serverless applications is to prefer static testing as far as
possible. Static testing does not require deployment of microservices to the cloud and
can be implemented via unit tests and static analysis. These static tests can be further
limited by primarily focusing them on your critical paths.

Just-in-time testing
To efficiently test and deliver your serverless applications, it is not enough to limit
your test coverage; you must also limit the number of times those tests are run.

Serverless and infrastructure as code make it possible and inexpensive to replicate
your production environment. However, if a test passes in one non-production envi‐
ronment, it is likely to pass in any others. What really matters is that the code runs
as expected in production. This means it is crucial to deliver that code as quickly as
possible to your production environment and leverage observability to learn about
your application’s behavior under real traffic.

The practice of continuous integration encourages teams to integrate code changes
as regularly as possible and is a prerequisite for continuous delivery. The Minimum
Viable CD manifesto recommends that “work integrates to the trunk at a minimum
daily.”

For a deep dive into continuous integration, be sure to read Martin
Fowler’s canonical article from 2006.

326 | Chapter 7: Testing Serverless Applications

https://oreil.ly/nqjKy
https://oreil.ly/yUmcQ
https://oreil.ly/yUmcQ
https://oreil.ly/YO-Nk

Prior to releasing your code, the most important thing is iteration speed and integra‐
tion. The closer you test your code to production, the more valuable the results
of these tests will be. You need to shift right on testing and make it later in your
software’s delivery lifecycle. In general, you should perform the bulk of testing just
before deploying to production; this is when it matters most as the code is closest to
being released to your users.

The best time to catch a bug is before it has the chance to impact a large percentage
of your users—just in time. This could be in a pre-production staging environment or
in production itself, through post-deployment tests like synthetic canaries or efficient,
finely tuned alerts.

Environments
The traditional approach to software testing involves the use of multiple pre-
production, or staging, environments. A snapshot of the application is deployed to the
first environment in the chain and then promoted to the next environment as soon as
all the tests pass, until this version of the application finally reaches production.

The common perception here is that testing the application multiple times provides
a greater guarantee of quality. While this may be true for monolithic applications,
the opposite is true for distributed, serverless applications. Simulating the variables
and emergent complexity of your serverless application’s production environment is
impossible. You should instead run tests in as few environments as you are comforta‐
ble with; ideally no more than one or two. The further away a code change is from
production, the less confidence (and therefore value) a test can provide.

One of the conundrums of serverless is the proliferation of non-production environ‐
ments. The ability to provision and replicate applications across AWS accounts with
speed and integrity is definitely a major benefit of serverless. However, this has been
misused in an attempt to provide temporary environments to run automated tests for
every single pull request. This is ultimately the antithesis of continuous integration.
Many serverless teams that have adopted this practice have seen their pull request
integration times exponentially increase as their codebases grow.

These ephemeral pull request environments can still be useful, but they should
be used sparingly for specific scenarios. In general, you should use pull request
environments with caution and only run tests against deployed resources when you
absolutely need to. Instead, you should leverage instant environments if you need to
run integration tests on deployed resources. Instant environments are provisioned
just for tests and are isolated to the system under test, which is usually two or three
integrated components.

Designing a Serverless Test Strategy | 327

Upholding Standards with a Definition of Done
You may have encountered different forms of a “definition of done” or seen various
implementations of such a document. The Scrum.org Scrum Glossary defines this as:

A formal description of the state of the Increment when it meets the quality measures
required for the product. The moment a Product Backlog item meets the Definition
of Done, an Increment is born. The Definition of Done creates transparency by
providing everyone a shared understanding of what work was completed as part of the
Increment. If a Product Backlog item does not meet the Definition of Done, it cannot
be released.

The core intent of a definition of done is simple: if a change “meets the quality
measures,” it can be released. A definition of done can be used to provide a very
simple indicator of whether a change to your application can be shipped to your
users. That moment of merging a change to the trunk and triggering an automated
deployment can be tense and fraught. To counteract these feelings, it can be useful to
remind yourself of what “done” really means.

Defining Done
Nothing is ever truly done. Software is never perfect. Bugs are inevitable.

The Cult of Done Manifesto is a motivational resource for getting things done,
whatever your task may be. Point 12 rings particularly true for serverless software
engineering: “If you have an idea and publish it on the internet, that counts as a ghost
of done.” This can be interpreted as defining “done” as getting something in front of
your users. It doesn’t matter if that thing is complete and polished; what matters most
is that it is now gathering usage data that can be used to inform improvements.

Shipping imperfect features should never be confused with promoting unilateral,
careless engineering. Software engineering should always be a social activity and the
needs of your users held in the highest regard. But the best software is always software
that is being used.

If you don’t ship your software you will never know if it really works in production,
under real traffic and with all the other code and variables out there in the wild. A
definition of done checklist will give you the right confidence to ship: not so much in
whether your change will work but in that you’ll know if it isn’t working.

Go forth and release the ghosts of done!

Answering the following questions will allow you to pragmatically decide whether
a change can be released or not. Document them somewhere accessible to your
engineers and attach this document to any artifacts associated with the work being
undertaken, such as pull requests or task tickets:

328 | Chapter 7: Testing Serverless Applications

https://oreil.ly/bvvIu
https://oreil.ly/urUhZ

How will the quality of this code be measured?
This will be down to your team to decide. You could link quality to service level
objectives (explored in Chapter 8), application performance metrics, or business
metrics.

How will this code be released to production users?
It might be released immediately upon deployment, rolled out with a blue/green
strategy, or constitute a dark release where it is available in production but not
publicized to users.

How will you know if this code is broken before production?
What pre-deployment tests are in place, and what aspects or failure modes of the
code do they cover?

How will you know if this code is broken in production?
What alerts are in place, and under what conditions will these alerts be triggered?

How will you be able to debug this code if it breaks in production?
Is distributed tracing enabled for this component? What logs are available? Is
there a runbook for triaging potential or known failures?

How will this code recover from failure in production?
How is this code tolerant of faults, either its own or others? What recovery
mechanisms are in place (for example, dead letter queues and retries)?

Hands-on Serverless Testing
From the previous sections of this chapter, you should have started to form a mental
model of how to approach testing a serverless application. Now it’s time to look at
applying this model to an example architecture.

Before testing any application, it is important to understand exactly what you are
testing. As you’ve seen in this chapter, serverless applications will most likely be sub‐
stantially different from other types of applications you and your team have tested in
the past, such as monolithic server-based backends or client-centric web applications.
The two attributes of serverless that most impact testing are the extensive use of
managed services and the event-driven interaction between these services as data
flows through the system.

Event-Driven Testing
If you look beyond the purpose of your software product and the myriad AWS
services available to you and instead scrutinize the patterns and actors in a serverless
application, you will notice a group of recurring elements (see Figure 7-3). When
dissected, an event-driven serverless application consists purely of business logic,

Hands-on Serverless Testing | 329

managed services, and the integration points between them. Effective testing relies on
a clear delineation of the responsibilities between you and AWS. You are responsible
for testing the business logic and integration configuration that you own. Take care
not to test the managed services, events, integrations, and APIs that AWS owns.

Figure 7-3. What to test and what not to test in a serverless application

Let’s take a closer look at where you should focus your testing efforts.

Business logic, integration points, and data contracts
These are the three fundamental building blocks to event-driven, serverless applica‐
tions that are crucial to understand in order to test such applications:

Business logic
The code that you write and deploy to AWS for execution is the business logic
of your application; the parts of your software that encode the functional require‐
ments and business rules of the application’s domain. The business logic is the
internal mechanics of your system that you own. You are responsible for author‐
ing, maintaining, deploying, and operating this code. You are also responsible for
testing this code.

Integration points
The distributed components of a serverless application operate in isolation and
communicate their independent activity to each other through asynchronous
events or synchronous requests. Architecturally speaking, these events and
requests reside in a zone between the source and target that can be referred
to as an integration point. The integration point between two components rep‐
resents the method of communication and the format and structure of the
messages passed between them. The integration points in your system will
almost exclusively be owned and operated by AWS, but you will be responsible
for configuring these integration points and defining the rules that govern the
communication.

330 | Chapter 7: Testing Serverless Applications

Data contracts
A data contract is an encoded ruleset to facilitate communication between logi‐
cally decoupled services. These contracts are applied between two components
in your system, at their point of integration, and enforce the target’s expectations
of a source. As well as facilitating verifiable communication at runtime, data
contracts are crucial to enabling a scalable and efficient test strategy.

Figure 7-4 shows how these elements map to a simple serverless architecture: the
EventBridge managed service is used alongside business logic in a Lambda function,
and you can see two integration points and the types of data contracts that can exist
between the components. The following sections introduce the types of tests that can
be used to test this architecture.

Figure 7-4. Reference architecture of a simple event-driven flow showing a common
serverless pattern

Integration points testing checklist
For each integration point you should capture the failure modes for the categories
listed in Table 7-1 and decide whether to cover them with tests.

Table 7-1. Integration points testing checklist

Failure
category

Description Recommended tests

Configuration You are responsible for configuring the integration points between managed
services, such as event buses and rules. You should verify that the integration
exists and is configured according to AWS rules and your business requirements.

Infrastructure tests,
unit tests

Permissions You are responsible for granting the necessary permissions for integrated
components to interact with each other. You should verify that the source
component has permission to publish events or messages and the target has
permission to consume them.

Infrastructure tests

Payloads The communication channel and message payload used by integrated
components should be verified to ensure that an event producer is sending
messages according to the contract and the consumer is handling input according
to the contract.

Unit tests, contract
tests, static analysis

Hands-on Serverless Testing | 331

Remember not to couple decoupled components in your tests.
Whenever possible, test the source and target of an integration
point separately.

Unit Testing Business Logic in Lambda Functions
The business logic of a serverless application is written and executed in Lambda
functions. The bulk of business logic testing can thus be achieved through unit
tests that assert the various operations of a Lambda function. You will usually test
the individual operations of a Lambda function in isolation rather than testing the
function as a whole, by calling the handler method, for instance.

Making your Lambda functions testable will usually involve abstracting and isolating
your business logic and sharing the methods with test files. In this simple example
of a testable Node.js Lambda function, the greeting method can easily be called and
verified:

export const greeting = (name) => {
 return `hello ${name}`;
}

export const handler = async (event) => {
 return greeting(event.name)
};

The corresponding unit test can import the abstracted method and verify it in
isolation:

import { greeting } from "./";

test("Should say hello world", () => {
 const actual = greeting("world");
 const expected = "hello world";
 expect(actual).toEqual(expected);
});

332 | Chapter 7: Testing Serverless Applications

Mocking
Unit tests should be predictable. In other words, a unit test should produce the same
result every time it is executed with the same input.

Take the addNumbers method shown here:

export const addNumbers = (numbers) => {
 return numbers.reduce((a, b) => {
 return a + b;
 });
};

export const handler = async (event) => {
 return addNumbers(event.numbers);
};

This method can be unit tested, as any assertions will always produce the same
results:

import { addNumbers } from "./";

test("Should calculate 1+2+3+4=10", () => {
 const actual = addNumbers([1, 2, 3, 4]);
 const expected = 10;
 expect(actual).toEqual(expected);
});

Any nontrivial Lambda function will usually contain side effects, such as network
requests to third-party vendors or AWS SDK calls. These side effects are inherently
unpredictable—a side effect could rely on a network connection to the public inter‐
net, for example. The computed result of a side effect may also depend upon a
third-party implementation that is subject to change.

To keep unit tests predictable (and fast), side effects must be mocked.

A popular criticism of mocking (or “stubbing”) parts of a system
under test is that it is not a true test of the system. This is certainly
a valid criticism, but only if your aim is to properly replicate the
whole system in order to verify its quality and adherence to its
requirements.
You have already begun to see why testing a serverless system as
a whole may not be the optimum strategy. Identifying the parts of
your Lambda functions to mock is usually a byproduct of drawing
the boundaries of responsibility between you and your vendors. It
is a sensible strategy to mock any code that you are not responsible
for testing or fixing.

Hands-on Serverless Testing | 333

Mocking is an essential tool when testing serverless microservices, but it is not
without its pitfalls. The problem with mocking comes at scale. Your tests will scale
with a lot less friction if you isolate mocks to individual tests and units under test
rather than mocking once on a global level.

The following example uses the JavaScript AWS SDK to put an event on an Event‐
Bridge event bus:

import { EventBridgeClient, PutEventsCommand } from
 "@aws-sdk/client-eventbridge";

export const eventbridgeClient = new EventBridgeClient();

export const handler = async () => {
 const putEventsCommand = new PutEventsCommand({
 Entries: [
 {
 Detail: JSON.stringify({ "order": "1234" }),
 DetailType: "OrderCreated",
 EventBusName: "order-bus",
 Source: "service.order",
 },
],
 });

 await eventbridgeClient.send(putEventsCommand);

 return;
};

The send method on the EventBridge client can be mocked in the unit test. When the
Lambda function handler is called, the SDK request won’t be made. Instead, a spy can
be attached to the mock, allowing you to assert that the SDK request will be made
with specific parameters:

test("Should put event", async () => {
 const putEventsCommandSpy = jest
 .spyOn(eventbridgeClient, "send")
 .mockImplementation(() => {});

 await handler();

 expect(putEventsCommandSpy).toHaveBeenCalledTimes(1);

 expect(putEventsCommandSpy).toHaveBeenCalledWith(
 expect.objectContaining({
 input: {
 Entries: [
 {

334 | Chapter 7: Testing Serverless Applications

 Detail: '{"orderId":"1234"}',
 DetailType: "OrderCreated",
 Source: "service.order",
 },
],
 },
 })
);
});

Static analysis
If you are using a language and runtime that support static typing, you can leverage
static analysis as a method to verify the requests sent to a third party and your
handling of their responses.

Static analysis is the process of verifying software without execut‐
ing it.

Third parties will often provide official type definitions in various programming
languages. These type definitions should be applied to operations in your Lambda
functions that involve sending API requests and handling responses. Provided the
type definitions are correct and synchronized with the version of the API you are
using, you can assume that the request you send will be accepted and produce the
expected result:

import { PaymentRequest, PaymentResponse } from "@payment/api"

const handler = async () => {
 const response: PaymentResponse = await fetch("https://pay.co/api/payment", {
 body: JSON.stringify({ "amount": 100 } as PaymentRequest),
 method: "POST",
 });

 return response.paymentId;
};

Aside from some specific scenarios, there is usually no need to make the API request
to verify your integration with a third party. The type definitions represent your data
contract with the third-party vendor. Figure 7-5 shows how this might look as a
conversation.

Hands-on Serverless Testing | 335

Figure 7-5. Contracts can be established between you and your third-party providers
through request and response schemas and enforced in your codebase with type defini‐
tions and static analysis

Contract Testing Integration Points
The typical approach to testing the integration between two or more components
(or microservices) in a system involves deploying the components, making a request
to an entry point, such as an API endpoint, to trigger the integrated process, and
asserting on the intermediate and ultimate state of the components.

This integration testing strategy usually requires the creation and maintenance of a
complex delivery pipeline and produces brittle test suites that couple the decoupled
components under test. While there may be scenarios where this approach makes
sense, it will probably generate far too much overhead to be valuable.

Testing of the Cloud
One additional consideration for serverless applications is the role of managed serv‐
ices. The business logic components in your application will most likely be integra‐
ted with a managed service. Where integration points involve managed services, it
becomes necessary to consider the remit of your operational and, by extension, your
testing responsibility. You should only be testing the code you are responsible for and
make sure you are not testing AWS. It can be useful to keep in mind the mantra, “If
you can’t fix it you shouldn’t test it.”

The shared responsibility model (covered in Chapter 4) for cloud security can be
extended to provide guidance on where to draw the boundaries of application testing.
The responsibility of AWS can broadly be described as testing of the cloud. Take the
example of an EventBridge rule. It is your responsibility to configure the custom
event bus that will receive events (unless you’re using the default event bus), the event
pattern to match against incoming events, and the target to trigger when matching
events are received by the bus. AWS will operate the event bus, accept incoming
events, analyze events for matching patterns, and trigger the corresponding targets.

336 | Chapter 7: Testing Serverless Applications

You are responsible for the configuration of managed services and AWS is responsible
for their operation. To preserve this boundary in your tests, you should be able to test
this configuration without the need to invoke the underlying services.

Instead of testing integration points by deploying and invoking the integrated micro‐
services and managed services, you can use data contracts to verify the correctness of
integrations.

You may have encountered contract testing before. The prevalent
approach to contract testing involves the use of the Pact frame‐
work. While you may choose to use such a framework, it is
important to distinguish between the principle of contract testing
(statically testing requests and responses against agreed data types)
and the implementation of contract testing via frameworks such as
Pact.
This chapter explores contract testing as a form of unit testing,
without the use of any additional frameworks beyond standard
primitives like JSON Schema.

In the context of a serverless application on AWS, a data contract can exist between
any distinct resources that are connected by an asynchronous (e.g., event or mes‐
sage) or synchronous (e.g., API request) communication. A data contract could be
enforced to verify the correctness of an integration for SQS messages, API Gateway
integrations, Step Functions inputs, DynamoDB operation payloads, and so on.

As highlighted earlier in this section, for each integration point there are usually three
elements to test: permissions, payloads, and configuration. Let’s look at an example
for each of these elements based on the reference architecture described in Figure 7-4.

Testing integration configuration
In our example architecture, you are responsible for the configuration of the custom
EventBridge event bus and the EventBridge rule, which includes the event pattern
and the target.

Using an IaC framework such as the AWS Cloud Development Kit allows you to
make assertions about the resources in the underlying CloudFormation template.

This example demonstrates a strategy for testing EventBridge event patterns to ensure
the rule will match events as expected:

import { Capture, Template } from "aws-cdk-lib/assertions";
import { EventBridgeClient, TestEventPatternCommand } from
 "@aws-sdk/client-eventbridge";
import OrderCreated from "./schema/service.order@OrderCreated-v1.json";

Hands-on Serverless Testing | 337

https://pact.io
https://pact.io

const eventbridge = new EventBridgeClient({});

test("OrderCreated rule event pattern matches OrderCreated events", async () => {
 const eventPatternCapture = new Capture();

 template.hasResourceProperties("AWS::Events::Rule", {
 EventPattern: eventPatternCapture,
 });

 const testOrderCreatedPatternCommand = new TestEventPatternCommand({
 Event: JSON.stringify({
 account: stack.account,
 "detail-type": OrderCreated["x-amazon-events-detail-type"],
 source: OrderCreated["x-amazon-events-source"],
 time: new Date(),
 region: stack.region,
 }),
 EventPattern: JSON.stringify(eventPatternCapture.asObject()),
 });

 const testOrderCreatedPattern = await eventbridge.send(
 testOrderCreatedPatternCommand
);

 expect(testOrderCreatedPattern.Result).toEqual(true);
});

Testing integration permissions
In the example architecture, you are responsible for applying the necessary permis‐
sions for the event producer function to put events on the event bus and the rule to
invoke the target function:

test("EventProducer function has permission to put events on OrdersBus", () => {
 template.hasResourceProperties("AWS::IAM::Policy", {
 PolicyDocument: {
 Statement: [
 {
 Action: "events:PutEvents",
 Effect: "Allow",
 Resource: {
 "Fn::GetAtt": [getLogicalId(stack, stack.eventBus), "Arn"],
 },
 },
],
 Version: "2012-10-17",
 },
 Roles: [
 {
 Ref: getLogicalId(stack, stack.eventProducer.role),
 },
],

338 | Chapter 7: Testing Serverless Applications

 });
});

test("OrderCreated rule has permission to invoke EventConsumer function", () => {
 template.hasResourceProperties("AWS::Lambda::Permission", {
 Action: "lambda:InvokeFunction",
 FunctionName: {
 "Fn::GetAtt": [getLogicalId(stack, stack.eventConsumer), "Arn"],
 },
 SourceArn: {
 "Fn::GetAtt": [getLogicalId(stack, stack.orderCreatedRule), "Arn"],
 },
 });
});

Testing integration payloads
In the example architecture, you can test the payload sent to EventBridge by the event
producer Lambda function by verifying it against a schema definition of the event.

In JavaScript, you could use a JSON schema validation library, such as Ajv:

import Ajv from "ajv";
import { generateOrder } from "./producer";
import OrderCreated from "../schema/service.order@OrderCreated-v1.json";

test("Should generate valid order", () => {
 const actual = generateOrder();
 const ajv = new Ajv();
 const validate = ajv.compile(OrderCreated);
 expect(validate(actual)).toEqual(true);
});

Summary
Testing serverless applications is generally considered a difficult task, but this is often
because it’s being viewed from the perspective of a traditional approach to testing.
The reality is that there are attributes of a serverless application that can make certain
testing strategies difficult to practice. So, you must reassess the way you test, as well as
reconsidering your overall aims for testing and quality assurance.

Rather than battling with your serverless system under test, use its unique properties,
such as its event-driven architecture and integration with managed services, to design
a tailored testing strategy. Serverless testing provides maximum confidence with
minimum coverage and should always be balanced with the needs of delivery, obser‐
vation, and recovery. Understand what can go wrong with serverless, but recognize
that bugs are inevitable. Focus on critical paths and use static unit tests and type
analysis as far as possible.

Summary | 339

https://oreil.ly/RAxG5

Your first step should be to use the serverless square of balance to guide the process
of defining your serverless test strategy. The earlier you do this in your project the
better. Once you have identified your critical paths and agreed upon the components
and integrations you need to cover with tests, you can begin to get an idea of how it
feels to write and run these tests and gauge the confidence they give you to deliver
code into production at speed.

You must be brave enough to learn about your application’s behavior and layer in
tests over time to account for emerging quirks and failures. As the serverless square
of balance shows us, the key to a reliable application is leveraging observability
and recovery alongside testing to maintain stability and speed. Armed with this
understanding, it’s time for you to explore serverless software operations!

Interview with an Industry Expert
Sarah Hamilton, AWS Community Builder
and Senior Software Engineer
Sarah Hamilton is a Senior Software Engineer and an AWS Community Builder.
During her career she’s been a huge supporter of serverless technology, and she
takes great pride in contributing to the entire development cycle, from designing
architectures to the hands-on process of building and deploying solutions. Sarah
enjoys sharing her knowledge by speaking at conferences and writing blog posts.

Q: Serverless has matured as a technology in the last couple of years, and best practices
continue to evolve. However, testing still seems to be something teams find difficult to get
right with serverless. How do you see the current state and best practice of serverless testing?

Undoubtedly, the testing of serverless applications is frequently overlooked or seen as
an afterthought. Whilst I believe that our overall understanding of testing serverless
applications is improving, there is still a lot of work to do. There are a few reasons
why I believe we haven’t progressed at a faster rate.

Firstly, whilst testing strategies for frontend applications are generally well under‐
stood and well documented, with unit tests for business logic and end-to-end
browser tests, there is a lack of understanding over exactly what to test in the back‐
end. A lot of my testing knowledge comes from speaking to others in the community
and asking what they do. I will outline my current strategy toward testing:

1. Write unit tests for business logic before writing the logic itself. This is in line1.
with traditional test-driven development. However, I find it to be far more
important in serverless development as it speeds up your development feedback
loop. You can simply develop while running your tests rather than deploying to
test that your business logic works.

340 | Chapter 7: Testing Serverless Applications

2. End-to-end tests are crucial, and the real infrastructure should be tested upon.2.
When we build tests, we want to ensure that the testing environment mimics the
production environment, and the best way to do this is to test on a deployed
copy of the production environment. One caveat is that end-to-end tests tend to
require more development time and creativity, and take longer to run in your
CI/CD pipeline. That is why I would advocate choosing business-critical flows
to test and investing in those. As an example, take a payment system comprising
a few different services. An end-to-end test may simply be “Given an order is
placed, then the orders table is updated.” Whilst many different processes may
have taken place in the services in between, the end-to-end test is capturing that
a particular input produces a particular output. This is a useful test, as it indicates
the overall health of the system. If the test fails, then we can assert that something
is wrong. But how do we diagnose the exact service that is broken?

3. Integration tests! To have a better view of the system and diagnose a fault, it is3.
important to have integration tests that test a narrower part of the system. You
may have several integration tests which break down the overall end-to-end test.
The following would be examples of integration tests:
a. “Given an order is placed, then an orderCreated event arrives on the eventa.

bus.”
b. “Given an event arrives on the event bus, then the orders table is updated.”b.
You can see that the end-to-end test has been broken into two. If a fails and b
passes, then we can assume there is a fault at the beginning of the flow—but the
end-to-end test does not give you that level of detail.

Another issue that arises for developers writing tests is how to deal with the asyn‐
chronous nature of serverless applications. When testing on real infrastructure, you
must handle the time taken to complete a process—after all, you designed your archi‐
tecture to be decoupled and asynchronous. Unfortunately, there is no particularly
smart way of handling this at the time of writing. I would opt for implementing
retries on the assertions you are making and, after a reasonable amount of time,
failing the test if your expected result doesn’t come back. Of course, these timings and
the number of retries can be tweaked as you get to know how your system performs.

In addition to this, some serverless services cannot be inspected easily with the cloud
SDK you are using. Storage services can often be easily asserted, as you can usually
get the object with the SDK and check the result you are expecting. Other tests can be
trickier. Recently, I wanted to test that “Given an object is placed in storage, then the
output of the subsequent function is X.” I soon realized that I had no way of inspect‐
ing the output of the actual function using the SDK. I found myself writing unwieldy
tests to inspect the logs to find the output which had been logged in the function.
The test required many retries of various SDK calls. In the end, the test worked, but
I decided to abandon it because it was not robust and would be confusing to any

Interview with an Industry Expert | 341

other developer who came across it. I decided that the end-to-end test would suffice.
The lesson I learned from this is that integration testing is sometimes difficult and
overcomplicated, but invaluable when done properly.

Q: As a serverless consultant you worked with many start-ups building diverse serverless
applications. How did the test strategies differ between these teams and projects?

Given the context of collaborating with start-ups aiming to swiftly deliver applica‐
tions to customers, a strategic decision must be made regarding the extent to which
testing should be undertaken, with the ultimate goal of achieving a high-quality
application.

During my time as a consultant, it was clear that some stakeholders, possessing
a background in development, understood the significance of writing tests and
upholding quality. Conversely, other stakeholders, with a background in business,
emphasized speed over quality to meet deadlines. Consequently, the scope of testing
could vary somewhat between projects.

With the passage of time, my perspective has evolved, highlighting the necessity
of personally advocating for quality assurance. I now ensure that I withhold the
label of “completion” until a satisfactory level of testing accompanies the code being
deployed. That’s not to say that you shouldn’t have some flexibility, because “satisfac‐
tory” really does vary depending on the scale of the application being developed.

My definition of “satisfactory” (in terms of testing) for a start-up looking to quickly
deliver to market would look something like the following:

1. Unit testing is done to a high standard—which means that there is high coverage.1.
Any business logic should be well tested. Whether this is a start-up or a larger
enterprise, this is nonnegotiable. It’s a quick win and delivers a lot of confidence
in your code and business logic. They also have a low overhead—unit tests tend
to run extremely quickly, and therefore don’t take up a large amount of time
and resources in your CI/CD pipeline. In addition to this, artificial intelligence
pair programmers are very effective at writing unit tests for code, making them
extremely quick to produce (of course, these should be used with caution and
should only be used as a guide). Code changes should not be merged without
unit tests accompanying business logic.

2. An end-to-end/integration testing strategy is put together for business-critical2.
paths. End-to-end/integration testing can be somewhat time-consuming, so it’s
understandable that a vast amount of time spent on this may not be welcomed by
stakeholders pushing to get a product out. This is where it’s about compromise.
Identify your business-critical paths—the paths that must work for the applica‐
tion to be functional. For an ecommerce website, this may be the “modifying
cart” flow and the “payments” flow. Once you have identified these, think of a

342 | Chapter 7: Testing Serverless Applications

testing strategy that will be effective, but also efficient. Usually, a simple end-to-
end test will be a good fit, testing that an input produces a certain output. This
will give you the confidence that your overall system is working as expected.

Q: As well as working with start-ups on greenfield projects, you have also seen how mature,
enterprise-scale workloads operate in production. How do the enterprise teams you’ve worked
with approach testing event-driven serverless systems, and what role do quality assurance
engineers play?

At the enterprise level, the impact associated with defects on an application can be
very high (in terms of revenue loss, brand reputation, etc.). Consequently, as compa‐
nies expand and evolve, more money is invested in upholding quality standards.

Whilst application engineers continue to write their own unit tests and integration
tests where they see fit, QA engineers are designing and implementing clever end-
to-end tests, regression testing, and ensuring quality is upheld within teams. Of
course, application engineers would likely have the skill set to do this; however,
many of the more complex tests and overall upkeep of the test suite can be very
time-consuming and distract from features those engineers are building. In my view,
a notable distinction between start-ups and larger enterprises concerning testing lies
in the pronounced emphasis on test coverage, balanced with the efficiency of the
CI/CD pipeline to maintain productivity.

One challenge in enterprises is the mindset shift from manual QA work to writing
effective automated tests for serverless applications. Since writing tests for serverless
applications will likely require the use of an SDK to interrogate cloud resources, it
can be a steep learning curve. It is important that this learning curve is taken, as I
believe that automated testing is the only way a business can scale with confidence in
the increased number of deployments. I believe that QA engineers can get more job
satisfaction by owning and maintaining a comprehensive test suite. I have also found
that this shift in mindset helps QA engineers and application engineers work more
closely together and thus achieve higher-quality products.

Q: You are an outstanding member of the AWS and serverless community, notably as an AWS
Community Builder, speaker, podcast guest, and open source contributor. What role can the
community play in improving the state of affairs when it comes to serverless testing?

I’ve spoken to many developers about their thoughts on how to test serverless appli‐
cations, and it is clear to me that there is currently no “golden path” regarded by
serverless engineers. I think that the best way to develop best practices for testing
serverless applications is to share our knowledge with each other. Therefore, I think
it is very much the community that can drive innovation in our approach to testing
serverless applications. Approaches can be very opinionated, and therefore it is bene‐
ficial that we have increasing content so that developers can form their own opinions
on how best to test their applications.

Interview with an Industry Expert | 343

Back in 2021, I wrote a blog article about an integration testing strategy for
EventBridge-based serverless architectures. I didn’t anticipate a wide readership, but
I believed it was worthwhile to share the strategy my colleagues and I had devised. I
consider the blog post a success as it continues to attract a substantial readership even
today. However, I believe a contributing factor to its sustained reader interest is the
relatively limited amount of content available on this subject—there is a clear need
for more opinions on this topic!

I think many people are worried about putting the “wrong” opinion out there for
all to see. However, we can all only speak from our own experiences, and those
experiences are not “right” or “wrong.” Personally, I’d love to see more blog posts
delving into the challenges and setbacks developers have encountered. At times I
think of something to try out, only to discover a lack of related content. Yet, after
investing time working on it, I realize it doesn’t work in the way I’d like. It’s possible
that many others have tried the same thing as me, but chose not to share their
unsuccessful experiences, as we generally refrain from publicizing our failed attempts.
However, I firmly believe that expanding our collective knowledge base empowers
us all.

Q: What advice would you give to enterprise software teams starting out with
serverless testing?

First and foremost, ensure that you have good coverage on your unit tests and
end-to-end tests written for your business-critical paths—those are the basics. Once
you have those covered, you can begin to think about integration testing, which can
help developers to diagnose issues more efficiently.

During this Q&A I’ve purposefully avoided discussing mocking and so-called “offline
testing.” As a rule of thumb, I’d always opt for testing on the real infrastructure (for
integration and end-to-end testing). However, that isn’t to say there isn’t a place for
mocking. Mocking third parties can be especially useful. Your tests should test the
code that you can control, not the third-party code. Third parties go down often,
which will cause tests to fail. When the tests are integrated into the CI/CD pipeline,
the engineers will be blocked from pushing code into production. However, this
shouldn’t be the case if the fault isn’t due to the codebase you can control. Therefore,
large enterprises may want to think about a strategy to mock third parties—if you do
this and your test fails, then you know that it’s down to something under your control
and not a third-party error. If you do choose to mock your third parties, then the
response should be identical to what you would expect from the third party so that it
mimics what should happen.

344 | Chapter 7: Testing Serverless Applications

Therefore, if you have the basics covered and are looking to improve your integra‐
tion/end-to-end tests, I’d suggest setting up a way of mocking the third parties that
you use. I advise this for enterprises, as the initial investment is worth it when you
have many engineers working on a codebase that could be blocked by the unneces‐
sary failure of the tests.

Interview with an Industry Expert | 345

CHAPTER 8

Operating Serverless

Revolution is not a one time event.
—Audre Lorde

In the previous two chapters you explored how to develop, test, and deploy a ser‐
verless application. In this chapter you will learn how to operate your serverless
application in production. The fundamentals of operating serverless are similar to
those of non-serverless software: ensuring the application is performing as expected,
receiving alerts when performance degrades, recovering from incidents, and using
logs and traces to debug issues. However, the key characteristics of serverless require
some adjustments to the traditional approach to operations.

Perhaps the most important aspect of serverless when it comes to operations is
scalability. Serverless technology and managed services offer automatic scaling of
compute, storage, and communication from zero to your spikiest peaks. This is
obviously a huge advantage to an engineering team with a business or product that
experiences regular spikes in demand, such as an ecommerce website with seasonal
and promotional sales events. But it is crucial that serverless engineers know their
units of scale and understand the impact of scale on their pay-per-use billing. When
you deploy a serverless application on AWS, you are entering into a cloud contract:
AWS provides the autoscaling and high availability, but you must operate within
service limits and make informed decisions about scale when designing your archi‐
tecture. Even if the underlying services scale, your application may not.

Chapter 6 discussed the importance of deploying your application to production
from day 1 and every day after so that you are immediately and continuously ana‐
lyzing its behavior. This has well-documented benefits for building a product that
meets business and user needs, but it is also crucial for optimizing your architecture
for serverless scale. Once your application is deployed, the practice of observability
becomes your most valuable tool for understanding how your system is performing.

347

There Is No Substitute for Production
Moments after he saw his Manchester United team beat Bayern Munich 2–1 in the
Champions League final in Barcelona in 1999, Sir Alex Ferguson was asked for his
reaction in a touchline interview. In a state of shock and disbelief, he simply said:
“Football. Bloody hell.”

With the full 90 minutes of the game played, 3 additional minutes were added on
to account for pauses in play. United went on to score in the first and third minutes
to win the cup. No wonder Sir Alex was shocked. Union of European Football
Associations (UEFA) President Lennart Johansson also later said: “I can’t believe it.
The winners are crying and the losers are dancing.”

Football (or soccer, if you prefer) teams train regularly and plan meticulously, but
the 1999 final shows that the environment of a stadium on match day cannot be
replicated and the outcome of a crucial game can rarely be accurately predicted. The
thousands of fans in the stands, the weather, the lighting, the grass; there are so many
variables. Every game of football is played within the same rules and constraints, but
the outcome is always different and difficult to guess.

Manchester United and Bayern Munich could have played that game 100 times and
produced a different result each time. It is certain that neither team could have
planned for or predicted the two late goals that won the game.

Believe it or not, the same unpredictability applies to serverless! The lesson here
is to continuously deploy to production (see Chapter 6) and continuously observe
behavior to understand your application. There is no substitute for operating your
serverless application in production. You cannot replicate all of the variables and you
cannot account for every eventuality.

Using serverless managed services all but eliminates the need for infrastructure
monitoring, allowing you to focus on monitoring the application itself. Of course,
you still need to monitor your usage of the managed services, but not the underlying
servers, hardware, or network. Fully leveraging the serverless approach to operating
your application results in only worrying about system health when you are alerted
to a critical issue. Serverless engineers should not be watching dashboards, trawling
through logs, or searching for the alerting needle in a haystack.

In Chapter 7 you made peace with a serverless software fact: bugs are inevitable.
As the CTO of Amazon, Dr. Werner Vogels, famously said, “everything fails all the
time.” In a distributed system some parts will always be functioning unexpectedly.
To compound this fact, most bugs often appear over time as components interact in
unexpected ways through the combination of their isolated iterations, as they morph
further and further away from initial implementations, with additional edge case
solutions and adjustments. This is known as emergent complexity.

348 | Chapter 8: Operating Serverless

https://oreil.ly/92g6B

A key serverless trend is the shift from business logic to application integration; away
from custom code executed in Lambda functions to connecting services, like SQS
and EventBridge, and workflow orchestration with Step Functions (see Chapter 6).
With this shift, bugs move from code to operations. You should keep trying to catch
functional bugs pre-production (as shown in Chapter 7), but you’ve got to ship and
run to catch operational problems, such as service request throttling, poison-pill
messages, and exceeding service limits. We’ll begin this chapter by exploring the
importance of understanding AWS service limits to ensure your application operates
smoothly at scale.

Identifying the Units of Scale
Most of the serverless managed services you will use in your architecture will provide
automatic scaling and pay-per-use billing. This means you will be able to scale your
application to respond to any level of demand while only paying for the resources you
use, when you use them. For example, if one of your Lambda functions is invoked
once in an hour, you will only pay for that single invocation. Likewise, if the function
is not invoked at all during the month it will not appear on your bill at all. Conversely,
if that function suddenly becomes very popular and is invoked thousands of times
in a day, you will not have to change the configuration or code and will be billed
accordingly.

Non-serverless scaling involves monitoring the CPU and bandwidth utilization of
resources or the remaining disk space available and adding additional servers or
clusters to cope with demand. While these concerns are alleviated by serverless,
there are still units of scale in an autoscaling application; they are simply different
units. With serverless, the units of scale will depend on the type of resource (e.g.,
compute, storage, application integration) and the quota stipulated by the managed
service. For example, Lambda scales in terms of function execution concurrency (see
Chapter 6 for more information), Kinesis streams have input and delivery buffer
limits, DynamoDB restricts read and write capacity, and API Gateway tracks response
latency.

Each AWS managed service enforces an implicit contract of usage: the service pro‐
vides features and performance guarantees in line with acceptable usage within doc‐
umented quotas. These constraints force you to be creative with your architectural
decisions and designs and can, in many cases, promote sensible and optimal use of
managed services.

Identifying the Units of Scale | 349

Scaling Communication
Non-serverless scaling efforts typically involve monitoring and optimizing public API
requests and responses. These APIs need to be available to continually accept requests
at peak scale and respond with minimum latency.

A serverless application will leverage managed services such as API Gateway and
Lambda to form a similar architecture. Lambda functions will still need to be opti‐
mized and API resources will still need to be monitored for availability and latency,
but the focus shifts.

As seen in Chapter 6, serverless applications are increasingly becoming a mix of
business logic and application integration infrastructure. In an architecture where
managed services are used to transport messages, transform data, and emit events, the
scalability of the system depends on its ability to handle this throughput efficiently.
Serverless shifts scale away from APIs and compute to events and messages—that is,
to communication.

You should become very familiar with the quota pages in the documentation for the
managed services you are using—for example, the Step Functions quota page—and
pay particular attention to whether a limit is soft or hard (i.e., whether it can be
increased or not). Understanding service limits should be a part of your solution
design process and cost estimation (see Chapter 9). Architecture diagrams can be
annotated with expected usage and limits to be mindful of. Analysis of bills or
production incidents must include inspection of related service limits and pricing,
and any consequent optimizations can be driven by quotas.

Promoting Serverless Observability
The primary goal of observability is to provide engineers with maximum visibility
of their software. Observability is all about optimizing your software engineering
practice with a view toward building observable systems—that is, systems that can be
inspected and analyzed to understand their behavior, performance, and health.

For a deep dive into observability, we highly recommend the book
Observability Engineering by Charity Majors, Liz Fong-Jones, and
George Miranda (O’Reilly). One resource that can be helpful when
getting started with observability is the Observability Maturity
Model (OMM) introduced in Chapter 21 of that book. The OMM
should give you an idea of where you are now and how you can
improve your general observability practice.

350 | Chapter 8: Operating Serverless

https://oreil.ly/3yO_t
https://oreil.ly/lThxn

Observability is more a sociotechnical concept than a matter of deploying a particular
tool or using only open source standards. It’s about ensuring the data is there when
you need to answer questions about your application’s behavior. Whereas monitoring
can be seen as an active pursuit that involves engineers watching dashboards and
trying to spot anomalies, observability is very much a passive process. After releasing
a feature to users, your engineers should get back to building the next feature and
improving the product, rather than worrying about supporting issues or analyzing
performance. You should have confidence in your alarms to alert you to potential
problems and in your metrics, logs, and traces to support efficient debugging when
required.

With serverless, monitoring of infrastructure (such as network and hardware per‐
formance and failures) is delegated to the cloud vendor. Application monitoring
becomes your sole focus. However, the application is now a highly distributed,
ephemeral, event-driven mix of your business logic and the vendor’s managed serv‐
ices. This can make failure modes difficult to predict and comprehend. In turn,
this means it is more important than ever to be able to view and understand your
application’s behavior in production. The issue here is that traditional monitoring and
alerting tools and strategies are inadequate for the task.

Adopting a culture and practice of observability in your team is crucial to the smooth
operation of your serverless application. As you saw in Chapter 7, the distributed,
asynchronous, decoupled, and event-driven nature of serverless applications raises
special challenges with regard to testing. These same properties make serverless
systems and microservices inherently difficult to monitor using traditional methods,
such as “monitor all the things,” dashboards, and logs. You are no longer monitoring
a single process running on a few machines, and operational status can no longer be
understood via a few key metrics on a dashboard.

Observability cannot be a post-deployment afterthought or the responsibility of
operations teams. Effective observability relies on the data and information about
the system under observation being readily available. This means you cannot simply
observe a system; you must first build a system that is capable of being observed. You
must make observability a concern at every stage in your software delivery lifecycle,
from design and development to operation and monitoring.

Observing the Health of Critical Paths
Monitoring the performance of a distributed, serverless application at a given point in
time can be challenging. The sheer number of parts operating independently across
services, stacks, regions, and accounts can be overwhelming. Rather than trying to
monitor everything, focus on the most critical parts of your application; the parts that
must be working at all times. Dig into anomalies on noncritical paths over time (refer
to Chapter 7 for guidance on identifying your critical and noncritical paths).

Promoting Serverless Observability | 351

Be mindful that a complex software system is never completely
healthy. Distributed systems are unpredictable and prone to partial
failures. That is the trade-off you make for the benefits. Sometimes
this can even be viewed as a positive aspect. After all, you will
always prefer part of your system to fail than all of it!

The documentation for each AWS service will usually have a monitoring section that
will include hints about the key health metrics to track. The following is an overview
of some core serverless services and their key metrics of scale and performance:

Lambda
The total count of account-level concurrent function executions is the key to
determining whether your Lambda usage is scaling to meet your application’s
traffic (see Chapter 6 for more details on account-level concurrency). Other
function-level invocation metrics, like the counts of errors or throttles, are useful
to understand your application’s behavior and the possibility of bugs. You should
also monitor memory usage and duration to understand the performance of
your functions (see Chapter 6 for information about how the Lambda Insights
service can help you to analyze this data). For more information, see the Lambda
documentation.

API Gateway
The core metrics for your APIs are the total count of requests received by your
API and the total number of 400- and 500-series errors returned. Always use a
percentage of 400 and 500 errors when configuring alarm thresholds to ensure
you account for spikes in API requests. You should also monitor whether latency
levels are remaining within the integration response limits. By default metrics
are emitted per API stage, but they can be emitted per API method if you
enable the detailed metrics setting. For more information, see the API Gateway
documentation.

Step Functions
You can use the ExecutionsStarted and ExecutionsSucceeded metrics to
monitor the expected behavior of your workflows and the ExecutionAborted,
ExecutionFailed, ExecutionThrottled, and ExecutionTimedOut metrics to
detect issues with workflow execution. The ExecutionTime metric can be used
to monitor the overall latency of your workflows. For more information, see the
Step Functions documentation.

DynamoDB
You should consider setting alarms based on the ConsumedReadCapacityUnits,
ConsumedWriteCapacityUnits, and ThrottledRequests metrics to be alerted to
issues at scale. The UserErrors metric is also useful for indicating bugs with

352 | Chapter 8: Operating Serverless

https://oreil.ly/gd1lI
https://oreil.ly/gd1lI
https://oreil.ly/DAF-1
https://oreil.ly/DAF-1
https://oreil.ly/Pay2S

DynamoDB SDK client requests, such as invalid parameters. For more informa‐
tion, see the DynamoDB documentation.

SQS
One of the key SQS metrics is ApproximateAgeOfOldestMessage. You should
consider configuring an alarm for this metric with a threshold that allows you
to take action before the message exceeds the maximum retention period of the
queue. For more information, see the SQS documentation.

Kinesis Firehose
You can monitor the expected volume of data being processed by a stream
using the IncomingBytes and IncomingRecords metrics. To ensure data is mov‐
ing through your stream efficiently, you should monitor the DataFreshness
and Success metrics. Stream processing errors can be monitored using the
ThrottledRecords metric. For more information, see the Kinesis Firehose
documentation.

EventBridge
EventBridge emits various metrics that can be used to determine the perfor‐
mance of your rules and the delivery of events to targets. For example, you can
keep track of the TriggeredRules metric to understand whether your rules are
being triggered to expected levels based on the volume of upstream requests
in your application. And the DeadLetterInvocations and FailedInvocations
metrics can be used to understand whether your targets are failing to receive
events.

Synthetic Monitoring for Low-Traffic Critical Paths
Synthetic monitoring involves sending artificial traffic to your application in a pro‐
duction environment. It is a form of what is known as testing in production, where the
functionality of the system under test is verified post-deployment, under production
conditions and against production services and databases. Synthetic monitoring can
be used to implement a simple “heartbeat” check or to simulate full user journeys.
Scripts are usually executed periodically. For example, a synthetic monitor might
make an HTTP request to an API endpoint every 15 minutes to check if a 200
response is received.

The predominant use case for synthetic monitoring is low-traffic critical paths. For
example, you may have an API resource that is only used between certain times or
irregularly throughout the day that you want to ensure is operating correctly when it
is eventually required. Or perhaps you have a daily or nightly batch process, such as
an Amazon Macie pipeline or data lake export job, that you cannot afford to have fail
when the time comes.

Promoting Serverless Observability | 353

https://oreil.ly/U-Cc-
https://oreil.ly/4Ygd_
https://oreil.ly/Ixrg2
https://oreil.ly/Ixrg2
https://oreil.ly/Cnc_k

Typically, you would not use a synthetic monitor to track the health of your high-
traffic critical paths as it is unlikely the synthetic traffic would surface any problems
that real user traffic would not.

If you have a good use case for synthetic monitoring you should consider implement‐
ing and executing your test scripts with Amazon CloudWatch Synthetics, a fully
managed synthetic monitoring solution.

Metrics, Alarms, and Alerts
Metrics are the data that provides insights into the performance and health of your
system. The metrics emitted by managed services give you a window into your
utilization of the provided resources. You can also emit custom metrics from
your Lambda functions (see Chapter 6 for information on using the open source
Lambda Powertools toolkit for custom metrics). In AWS, all native and custom
metrics are sent to CloudWatch. These metrics can then be forwarded to other AWS
services or third parties for further analysis and aggregation.

An alarm is a combination of a metric and a threshold. If the metric breaches a
certain threshold, the alarm will be triggered. For example, you could configure an
alarm to trigger if the number of 400 errors returned by your API exceeded 27% of
the total number of requests in the last 5 minutes (see Figure 8-1).

Figure 8-1. Anatomy of a CloudWatch alarm

Alerts are the actions performed when an alarm is triggered, such as sending a mes‐
sage to your team’s chat channel or creating a bug report in your ticketing platform

354 | Chapter 8: Operating Serverless

https://oreil.ly/LkKbs

(see Figure 8-2). Alert configuration is important—after all, if an alarm sounds but
nothing is listening, will it be heard? That said, you should keep in mind that not
all alarms need to trigger an alert. Alarms can be used in operational dashboards to
indicate potential issues for delayed investigation or even in retrospective analysis of
historical patterns.

Figure 8-2. Alerting pipeline

Combining metrics, alarms, and alerts is key to surfacing issues with your serverless
application. If you don’t make use of these tools, your users are going to be the first
to find out about problems and will be your main source of bug reporting. However,
without a structured approach, alert noise can quickly overwhelm your team. Alarms
that are too granular or sensitive will fast become dismissable and contribute to
overall distrust of your alerting pipeline. It can become impossible to filter the signal
from the noise. Alerts should be used sparingly and only for the aspects of your
application’s performance that are absolutely critical to your users and business.

A useful alert has the following properties:

Obvious
The impact on the user experience or critical path should be clear.

Actionable
The alert should be associated with a clear action.

Promoting Serverless Observability | 355

Singular
The alert should be unique. Problems shouldn’t be reflected by multiple triggers
of the same alarm. You should receive one alert per distinct issue.

Refer to Google’s Site Reliability Engineering book for more
information about the desired attributes of an alert.

Later in this section you will be introduced to the concept of service level objectives
and capability alerting, which can help you to decide on the metrics and indicators to
use for your alarms and keep noise to a minimum.

Critical Health Dashboard
Just as you saw with testing in Chapter 7, operations can benefit from a focus on your
critical paths. But even your critical paths will have aspects that are more important
than others when it comes to assessing operational health and performance at scale.

You can apply the RED method to ascertain the critical health of your system and
services:

Rate
The rate of requests being received

Errors
The number of requests that are failing

Duration
The time taken to respond to requests

When launching a new feature, service, or product, it can be useful to create a critical
health dashboard with charts showing the rates, errors, and durations for your core
components (see Figure 8-3). This dashboard should collect all of the key metrics
across your application or microservice to provide a single view of system health. At
a glance, you can then immediately answer the question, “Is everything working?” Of
course, in a distributed serverless application there will always be plenty of nuance
and hidden elements to overall health, but this can at least provide a place to start
your assessment of critical health.

356 | Chapter 8: Operating Serverless

https://oreil.ly/YEBra
https://oreil.ly/o6WFN

Figure 8-3. A critical health dashboard

After releasing a code change into production, you can use your
dashboards to monitor the impact of the change and spot any
immediate bugs—but you should rely on your alerts to catch
emerging bugs and transient faults over time, rather than con‐
stantly watching your dashboards.
Use your critical health dashboard to spot potential anomalous
performance. Look for spikes and curves in the charts, alarms that
are being triggered, and status reports from third parties.

A critical health dashboard can also include information about the services in use, the
key metrics being monitored, and links (or even dynamic data if there is a suitable
API provided) to third-party status pages. Building out a comprehensive dashboard
in this way will enable a wide pool of people in your organization to use it to make
assessments, without needing deep working knowledge or experience of the system
being observed.

Although a critical health dashboard can provide instant reassur‐
ance in certain high-pressure scenarios, like product launches and
sales events, you should keep in mind that it is more useful (and
accurate) to operate and observe your serverless application as a set
of distinct applications.
If you follow the guidance provided throughout this book, you
will take the utmost care to decouple your serverless microservices.
This deliberate isolation should continue into operation, and you
should resist trying to monitor decoupled services as one whole
system.

Promoting Serverless Observability | 357

Capability Alerting
Take a moment to imagine the following scenario. The day has finally arrived: you
have spent weeks designing and building your beautiful serverless architecture, and
now it is time to release it to your expectant users. But you recognize that a diligent
serverless engineer never operates an application in production without alerts. How
else will you know if your users are seeing errors without them telling you? You take
a step back and look at all the components in your system: an API Gateway REST
API, multiple microservices consisting of Lambda functions and Step Functions
workflows, a DynamoDB table to store application state, and several EventBridge
rules connecting all the services together. You wonder which metrics are important
and when you should trigger alarms. Which parts do you need to know are broken,
and when? You select the obvious, key parts: API 5xx errors, Lambda function errors,
DynamoDB write throttles, and EventBridge delivery failures.

What follows is an all-too-common experience. With a large set of alarms for very
specific metrics and thresholds, your engineers will quickly become overwhelmed by
a barrage of alerts, many of which will be false positives (the threshold was too low
or the selected metric was incorrect) or deemed acceptable (“this usually fails”) or
expected (“that’s a known error”).

While this is a perfectly acceptable start to introducing alerting to your observability
practice (and is much better than having no alerts at all), you should be aware of an
alternative approach. Capability-based alerting involves assessing the overall health of
a critical component or service in your system. Let’s say one of the critical capabilities
of your system is to generate a PDF and store it in S3. In this instance, you would
combine metrics across the components in this workflow to form an overall idea
of the health of this service and establish a baseline of acceptable performance in a
CloudWatch composite alarm. You would then receive an alert when this threshold
was breached and would know the performance of this capability had degraded
enough to warrant your immediate attention. Without capability-based alerting, you
would have instead received multiple alerts tied to specific resource metrics, which
would have created a lot of noise and been ineffective at pinpointing the area on
which to focus your initial debugging efforts.

Ideally, you want to receive alerts based on the health of your system’s capabilities (see
Figure 8-4). Monitoring the health of your entire system is far too broad to provide
actionable insights, while monitoring the health of your system’s components is much
too granular to give any useful indications.

358 | Chapter 8: Operating Serverless

https://oreil.ly/5Yabc

Figure 8-4. The layers of alerting

Service level objectives can also be used to answer the question
“How will the quality of this code be measured?” from “Upholding
Standards with a Definition of Done” on page 328.

Service level objectives
Service level objectives (SLOs) are targets for performance that provide an indication
of how often your service can fail before the experience of your users is significantly
degraded. SLOs are based on the realization that you cannot operate your product at
100% success all the time, and at some point, your users will encounter issues. The
goal is to determine the amount of unreliability they will tolerate and, rather than
striving for the impossible goal of perfection, to ensure the service operates at least at
that level at all times.

SLOs are informed by service level indicators (SLIs). An SLI is essentially a binary
measure of whether your service is performing well or not. For example, you could
establish an SLI for your API’s response time of 6 seconds. All requests that are
responded to within 6 seconds are considered “good” and any outside this limit
are “bad.” You could then set an SLO of 99.98%, meaning that your objective is to
respond to 99.98% of API requests within 6 seconds.

For a comprehensive guide to SLOs, we recommend Alex Hidalgo’s
book Implementing Service Level Objectives (O’Reilly).

Promoting Serverless Observability | 359

https://oreil.ly/SjGFN

When establishing an SLO for a service or feature, you should set the threshold
slightly lower than the level at which a user may begin to experience unacceptable
levels of frustration or discontent. In this way, you can normalize a certain level of
failure (among users and engineers alike) without reaching a point where confidence
or trust is negatively impacted.

Decoupling what from why
In Observability Engineering, the authors state: “Decoupling ‘what’ from ‘why’ is one
of the most important distinctions in writing good monitoring with maximum signal
and minimum noise.” Your alerts should only tell you what is wrong. After receiving
an alert, it is then up to you to discover why something went wrong, using your logs,
traces, metrics, and dashboards.

If you attempt to use your alerts to tell you why something went wrong, you are likely
to end up with a barrage of meaningless, unactionable alerts. This is usually the case
when using system-level metrics and thresholds to trigger alarms.

Consider one of the metrics used to indicate the health of a Kinesis Firehose stream
with an S3 target: DeliveryToS3.Success (the percentage of the total number of put
requests to S3 that succeeded). An alarm based on this metric could indicate that
something is wrong with data delivery to S3 from the Firehose stream. This could be
due to issues with the target S3 bucket, the stream’s permissions, the S3 or Kinesis
services themselves, and so on. However, it could also be an external issue, such as
excessive demand on the stream. It also doesn’t tell you if there is an unintended drop
in the number of records being put on the stream.

SLOs can be used to configure alarms and determine when you should receive an
alert instead of specific, system-level metrics. An SLO-based alert will simply tell you
that the critical service or capability being monitored is not working as expected. You
can then utilize the core analysis loop (described later in this chapter) to debug from
first principles and form a holistic view of the potential root causes.

Event-Driven Logging
Application logs, combined with traces (see the next section), are essential for debug‐
ging and troubleshooting issues, either in real time or retrospectively. However, logs
are easily overused and overly relied upon in serverless applications. This can result
in an exponential increase in the time and knowledge it takes to debug an issue, as
well as high costs (see Chapter 9) and security concerns (see Chapter 4), such as
leaking sensitive data and secrets.

In an event-driven system, a log should ideally be a record of the occurrence of an
event and its payload. These logs are very useful and can be used as an accessible,
short-lived mirror of your application’s event store, allowing you to see the events

360 | Chapter 8: Operating Serverless

https://oreil.ly/4M7B2

that have occurred for a particular user journey or transaction. If you are also using
a standard event envelope, like CloudEvents, this ensures log data is consistent and
queryable. Here’s an example of an event payload that adheres to the CloudEvents
specification:

{
 "data": {
 "countryCode": "DK",
 "orderNumber": "1234"
 },
 "datacontenttype": "application/json",
 "id": "5x6y7z8",
 "source": "/myapp/public",
 "specversion": "1.0",
 "subject": "Order.Created",
 "time": "2020-07-28T12:04:00Z",
 "type": "com.myapp.order.created"
}

Efficiently aggregating and analyzing vast amounts of logs across
multiple service contexts and Lambda functions requires consis‐
tency in the format and properties of a log. You can use Lambda
Powertools (see Chapter 6) to enforce standard log metadata and
can consider providing type definitions to engineers to restrict the
attributes that can be included in log data.

Beyond these event-based logs, you should only use logging as a last resort in your
observability stack. Whenever you feel the need to add a log to record activity or
state, consider whether the same information can be captured in a custom metric or a
trace. Generally, tracing is a much more powerful and useful method for understand‐
ing the behavior of your system.

Using Distributed Tracing to Understand the Whole System
The most common challenge with understanding the health of a serverless system
is the inherent distribution of compute across microservices and managed services.
This is also true when that health is diminished and the system is experiencing an
issue that requires debugging and remediation. The traditional means of determining
the root cause of an issue is to analyze application logs. In non-serverless applica‐
tions, logs are typically emitted from a single process and tell a linear, chronological
story of a transaction in one stream, without needing to be augmented by any other
information to provide an understanding of the complete picture.

In contrast, logs from disparate services can be difficult to correlate and order
chronologically. Logs are also only as useful as the data they contain, and missing
or incomplete logs may mean you only see part of the problem. In a serverless

Promoting Serverless Observability | 361

application, there are logs that you control—primarily from Lambda functions—and
logs from managed services. Some managed services allow you to customize the logs
they emit (such as API Gateway access logs) but most do not.

Prefer traces to logs
A robust tracing setup will always tell the full story across entire distributed systems,
through owned and managed services. Logs can tell you what went wrong, but you
first have to know where to look. Traces can tell you where something went wrong,
and then you can dig deeper.

To achieve an effective level of serverless observability, you must move from a
reactive approach to monitoring that relies on logs and dashboards to a proactive
approach that fully leverages traces.

You should be aware that your application’s observability can be
impacted by your architectural decisions. For example, you cannot
initialize traces when using API Gateway HTTP APIs.

AWS X-Ray
X-Ray is the native AWS solution for distributed tracing. It is a key component in
the AWS observability stack and is fully integrated with the Amazon CloudWatch
console. X-Ray provides tools to configure your application to collect trace data
across owned and managed services. You can use the X-Ray console to analyze
your traces and comprehensively understand the behavior and performance of your
distributed services and system as a whole. You can also use the CloudWatch Service‐
Lens dashboard to get an overview of your trace data and the services that have been
traced through (see Figure 8-5).

Figure 8-5. The Amazon CloudWatch ServiceLens dashboard

362 | Chapter 8: Operating Serverless

https://oreil.ly/QagUx
https://oreil.ly/XZD4_

The ServiceLens dashboard is often a good place to start when trying to pinpoint
performance issues before diving deeper into an individual trace or group of traces to
identify patterns that point to a root cause (later, we’ll talk more about using the core
analysis loop to debug issues).

It’s important to note that trace data is only retained for a maxi‐
mum of 30 days. Traces can also only be retrieved via the X-Ray
console for periods of up to 6 hours. This means that if you need
to analyze traces over, say, a 12-hour period, you’ll need to perform
two searches and aggregate the results yourself. Traces are therefore
primarily useful for debugging immediate and recent production
issues. Metrics, logs, and other application data should be used to
build up a retrospective picture of your system’s behavior beyond
30 days in the past or across longer continuous periods of time.

The following is a list of the high-level components of a trace:

Segments
A trace is a collection of segments that are generated by a single request, such
as calling an API Gateway REST endpoint or invoking a Lambda function. The
trace data in a segment will include details such as the request URL and method
and the HTTP response code, as well as the total duration of the request (see
Figure 8-6).

Figure 8-6. X-Ray segments timeline

Promoting Serverless Observability | 363

Subsegments
The work performed during a segment is split into subsegments. For example, for
a segment generated by a Step Functions state machine execution, each step or
task would be represented by a subsegment. The same information is available as
for a segment, just at a more granular level.

Annotations
Annotations are key/value pairs that can be added to your traces to augment
the default data that is included by the X-Ray SDK. Annotations are indexed by
X-Ray, allowing you to filter and group traces based on the annotation data. You
can add up to 50 annotations per trace. For more information about annotations,
see “Annotation” on page 365.

Metadata
Metadata can be attached to your traces to provide additional context when
analyzing trace data. Use metadata to record data you want to store in the trace
but don’t need to use for searching traces.

Exceptions
An exception is recorded in a trace if an error occurs during an instrumented
request. In this case, the trace will include details about the exception, including
the error message and stack trace if available.

To begin collecting traces of transactions across your serverless application, you must
focus on two things: instrumentation and annotation. We’ll dive into these building
blocks in the following sections.

Usage of the X-Ray service is priced based on the number of traces
recorded and retrieved (via the AWS Console, CLI, or SDK). The
Free Tier includes 100,000 traces and 1,000,000 retrievals for free,
at the time of writing (see Chapter 9 for more details on the AWS
Free Tier).
If you are generating and analyzing a greater volume of traces
than this, you should set a sampling rate based on the cost you
are willing to incur. X-Ray uses your sampling rate to decide what
percentage of requests to record. For example, you might consider
a sampling rate of 100% when launching a new service to capture
as much data as possible. This rate can then be reduced over time
as you begin to fully understand the service’s behavior and can
better anticipate its failure modes.

Instrumentation
Instrumentation is the process of configuring the microservices and managed services
in your system to emit trace data when making API calls and performing tasks. For

364 | Chapter 8: Operating Serverless

https://oreil.ly/BS87S
https://oreil.ly/ZXp_g

managed services, API calls are instrumented via the configuration of the resources
you create. For example, to enable tracing for a Step Functions workflow you would
include this configuration in your CloudFormation template (see Chapter 6 for more
information about CloudFormation):

{
 "Type": "AWS::StepFunctions::StateMachine",
 "Properties": {
 "TracingConfiguration": {
 "Enabled": true
 }
 }
}

You will also need to attach an IAM policy to the role used by the resource to allow it
to write to X-Ray. This is generally the same policy regardless of the managed service
or resource. For example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:PutTraceSegments",
 "xray:PutTelemetryRecords",
 "xray:GetSamplingRules",
 "xray:GetSamplingTargets"
],
 "Resource": [
 "*"
]
 }
]
}

Instrumenting your serverless microservices will typically involve using the X-Ray
SDK from your Lambda functions. The AWS Powertools toolkits are the best way to
do this (see Chapter 6 for full details). By instrumenting your Lambda functions, you
can collect trace data about operations such as AWS SDK calls and third-party HTTP
requests.

Annotation
Annotations are the key to building an effective collection of traces that can be used
for rapid debugging of production issues. The X-Ray SDK will collect core data
about the requests and responses your application makes, such as the name of the
service or managed resource and the duration of the request, but annotations allow
you to augment the default trace data with application state and transaction-specific
information.

Promoting Serverless Observability | 365

Annotations can be added to the segments and subsegments of your traces as your
application code is executed. All annotations are indexed by X-Ray and can then be
used to filter your traces when trying to understand how your application is currently
behaving. See Figure 8-7 for an example.

Distinct traces can be correlated across services, including across
first- and third-party systems, by using a common correlation ID.
You can use a dedicated correlation ID, but the primary identifier
of transactions in your application will typically suffice, as this is
likely to be present in most of the events that occur. For example, in
an order management service this might be the order ID.
Your correlation ID should be added to the annotations of every
segment of your trace to ensure it can be used to accurately group
and filter traces across your system.

Figure 8-7. X-Ray segment with annotations

You can create trace groups to store a common set of queries your
team may need to run to filter traces. You can create up to 25 trace
groups per account.

366 | Chapter 8: Operating Serverless

https://oreil.ly/ztdfE
https://oreil.ly/ZIhWD

In the event of a critical error occurring in your production workload, you can
combine the default trace data and your custom annotations to filter traces that point
to the root cause via the X-Ray console. Figure 8-8 shows an example of how this can
be achieved.

Figure 8-8. Using the X-Ray console to filter traces with erroneous HTTP response codes
on a specific node

Figure 8-9 shows how exceptions can then be surfaced from trace data to facilitate
rapid debugging and accurately pinpoint the root cause of a production issue.

Figure 8-9. X-Ray segments timeline with exception

Next, let’s look into what happens when an error occurs in your application and how
you can write code that is tolerant of faults.

When Things Go Wrong
The sheer volume of variables and emergent complexity in the operation of a produc‐
tion serverless workload mean things will go wrong. This does not mean you should
be complacent and resist trying to minimize the number of things that could go
wrong, of course. You should optimize your development practices, testing strategy,
delivery pipelines, and observability culture to ensure you eliminate bugs before they
reach production if possible, but can catch and fix them rapidly if they do.

When Things Go Wrong | 367

Alongside testing, delivery, and observability, the fourth quadrant of the serverless
square of balance (first presented in Chapter 7) is recovery. Recovering from failures
in production involves making your services and workflows fault tolerant. Fortu‐
nately, fault tolerance is usually a key feature of serverless managed services on
AWS—and it’s one that you must leverage to get the most from serverless.

Accepting Failure and Budgeting for Errors
You were introduced to the application of service level objectives for targeting alerts
previously in this chapter. The other aspect of SLOs is the concept of an error budget.
Error budgets specify a threshold for the volume of errors that are permitted to occur
in a particular feature, service, or product. For example, a service exposed to users
via an API endpoint could have an error budget of 5% for a month. If the percentage
of 5xx errors returned exceeds 5% of all responses from that API endpoint, then the
error budget will be completely used up.

Error budgets can be used to give your engineering team the permission to release
bugs into production. As you’ve seen in Chapters 6 and 7, the balance between
stability and delivery speed is crucial to sustaining a resilient and useful application
in the long term. Your engineers must have the ability to deliver code safely without
being slowed down by excessive test suites. In this way, error budgets are a limiting
force and can be used to establish reasonable thresholds for shipping bugs to users.

A surplus in your error budget gives you the confidence to go ahead and deliver new
features or improvements to your users rather than trying to squash bugs. Conversely,
if you are regularly exceeding your error budget this provides a clear indication that
you need to shift your efforts to improving stability and performance.

Everything Fails All the Time: Fault Tolerance and Recovery
As you design your serverless architecture and build your functions, workflows, and
microservices, you should always code for failure. Coding for failure requires you
keep in mind the mechanisms and strategies available to you for recovering from
failures. This ranges from a try/catch in a Lambda function to retry and replication
configuration in your infrastructure code. By coding for failure, you ensure that the
execution and operation of your code in a production environment will be tolerant of
bugs.

Coding for failure involves writing clear, maintainable, and debug‐
gable code. In serverless, this includes careful separation of con‐
cerns between your business logic and AWS managed services,
keeping Lambda functions and Step Functions workflows simple,
and leveraging service integrations. For advice on how to write
better Lambda functions and infrastructure code, see Chapter 6.

368 | Chapter 8: Operating Serverless

There are two broad categories of failures:

Transient faults
These faults can be automatically retried and usually succeed in time. Examples
include third-party service downtime and network connection issues.

Permanent faults
A transient fault becomes a permanent fault after the retries are exhausted. These
faults are routed to dead letter queues for manual inspection or to trigger auto‐
mated reprocessing at a later time or after a known issue is resolved. Permanent
faults can also include processes and requests that cannot be retried, such as
synchronous processes like customer payments once the customer is no longer
actively sending a request. Lastly, permanent faults also incorporate data loss or
destruction of cloud resources where recovery is possible through a restoration
process, using a backup or replica.

Most AWS managed services and SDK libraries offer built-in mechanisms to help
your application recover from failures. The following list gives you some examples:

AWS SDK
You can configure the maximum number of retries to attempt and the backoff
rate for each AWS SDK client your application uses. See Mark Brooker’s AWS
blog post for more details about exponential backoff and jitter.

Step Functions
When using direct integrations with managed services, retries and backoff can
be configured in the same way as when using the AWS SDK in your application
code. See the Step Functions documentation for details.

EventBridge
Each EventBridge rule should be configured with an SQS dead letter queue to
store undeliverable events for automated or manual retry at a later time. You
should also consider attaching an event archive to allow for replaying events
across a certain period of time. Events can also be sent across Regions, from
sources in one AWS Region to destinations in another, to help synchronize
data in cross-Region data stores. See “Multi-Account, Multi-Region: Is It Worth
It?” on page 373 for more details on when to consider adopting multi-Region
architectures.

DynamoDB
Tables can be replicated across AWS Regions using global tables, and point-
in-time recovery can be used to restore tables after accidental operations are
performed. Enabling the deletion protection setting will prevent inadvertent
deletion of a table via the AWS Console or CloudFormation.

When Things Go Wrong | 369

https://oreil.ly/HskdF
https://oreil.ly/5GirX
https://oreil.ly/5GirX
https://oreil.ly/ww_bB
https://oreil.ly/BjRTW
https://oreil.ly/GvbBv
https://oreil.ly/GvbBv
https://oreil.ly/rZnc9

No matter how fault tolerant your application is, persistent errors will always occur
with any application of significant complexity and business criticality. If you cannot
prevent these errors with testing or recovery, you must rely on your ability to observe
your system and to effectively identify (and remediate) the root cause. Next, you will
be introduced to a useful strategy for debugging production issues.

Debugging with the Core Analysis Loop
When you receive a notification, either from an alert or directly from a user, that
something in your application is not working correctly, you know that something is
wrong but you do not know why.

Following the core analysis loop, as introduced in the book Observability Engineering,
allows you to use telemetry “to form hypotheses and to validate or invalidate them
with data, and thereby systematically arrive at the answer to a complex problem” (see
Figure 8-10).

Figure 8-10. The core analysis loop

Start by verifying the problem that has been reported to you by analyzing the health
of the surrounding systems and services. Use your critical health dashboard to spot
curves, spikes, or dips in metric graphs. Find the outlying data points or events
causing this deviation from stable performance and identify patterns that could point
to a root cause. Next, go back to the wider observability data (traces, logs, metrics)
and filter by the pattern to validate your hypothesis. If you are confident the root
cause has been found, you can attempt to remedy it. Otherwise, if the problem
remains undiagnosed, start the analysis loop again to refocus your investigation.

370 | Chapter 8: Operating Serverless

Always try to resist reactionary conclusions like “That’s always breaking,” “You can’t
rely on third party X,” “We’ve seen this before,” and “It’s probably due to Y.” This can
result in missing root causes and general apathy toward operational tasks. The core
analysis loop helps your engineers to debug from first principles.

Disaster Recovery
Architecting and operating your serverless application to be tolerant of faults cannot
guard against all types of failures. You will have parts of your system that represent
a single point of failure that could cause entire critical paths to break in the event of
a fault. The uptime of your application is also subject to the status of the third-party
software services you depend on, including AWS.

Avoiding Single Points of Failure
Single points of failure can occur at integration points in your system, such as your
public API and authorization layer, workflows that depend on a third-party API, or
centralized resources like event buses and databases.

While certain single points of failure are very difficult to avoid, your aim should
always be to eliminate single points of failure over time. Any potential failure of these
components can also be mitigated through various strategies, including replication
and backups.

Any single point of failure should be developed, deployed, and operated in isolation
from the other parts of your architecture. For instance, you should define your
Cognito user pools or application state data stores in separate stacks from the micro‐
services that interact with them. This separation allows you to deploy these resources
only when they change, which is typically not often, and not when dependent compo‐
nents change. Chapter 6 provides more details on separating and sharing resources
across decoupled services.

Cognito user pools cannot natively be replicated or backed up.
This makes them very susceptible to catastrophic faults. Use syn‐
thetic monitoring and metric alarms to ensure you are alerted to
any issues with authorizing API requests against your user pool.
Define your Cognito user pool, app clients, and scopes and any
supporting infrastructure, like Route 53 custom domains, using
an infrastructure-as-code tool. Deploy the infrastructure via an
isolated, direct pipeline. This will allow you to rapidly iterate or
re-create your Cognito resources in the event of failure.

Disaster Recovery | 371

https://oreil.ly/bxtl2

Understanding AWS Availability
At a high level, the global cloud infrastructure of AWS consists of two primary
concepts: Regions and Availability Zones. A Region is a geographical area, such
as North Virginia (us-east-1), London (eu-west-2), or Tokyo (ap-northeast-1). Each
Region consists of at least three Availability Zones (see Figure 8-11).

Figure 8-11. AWS Regions and Availability Zones

An Availability Zone (AZ) is a physically isolated section of an AWS Region with one
or more data centers. Each AZ is designed to operate and fail independently. They are
physically separated by up to 100 km (60 miles) and connected by high-bandwidth,
low-latency networking that allows for synchronous replication between AZs. Practi‐
cally, this isolation protects your applications against issues such as power outages
and natural disasters.

It is this global infrastructure of Regions and AZs that enables you, as an AWS
customer, to build highly available, fault-tolerant, and scalable applications.

At the time of writing, there are 32 Regions and 102 Availability
Zones, with 15 more AZs and 5 more Regions planned in Canada,
Germany, Malaysia, New Zealand, and Thailand.

Choosing a Region to deploy your application to will usually depend on where the
majority of your users are located, as well as where your organization is legally
permitted to operate and process and store user data. However, many AWS services
also provide features that allow you to operate your workload across multiple AWS
Regions and AWS accounts.

372 | Chapter 8: Operating Serverless

https://oreil.ly/MeFpE

Multi-Account, Multi-Region: Is It Worth It?
The effort involved in designing, developing, and operating a cloud native application
across multiple AWS accounts or Regions is substantial. You will need an in-depth
understanding of all the implementation details. This means the answer to the ques‐
tion of whether it’s worth adopting a multi-account, multi-Region strategy to disaster
prevention and recovery has to be: it depends. It will depend on your use case,
your team’s ability to build and support this architecture, and, to a lesser extent, the
geographical location of your business and users.

In assessing this approach, you should consider the likelihood of a disaster, the time
to recover, and the potential impact on your business and users during this time.
These aspects must then be traded off against the overhead of operating across cloud
accounts and physical Regions.

The AWS Post-Event Summaries page states that when a service
outage incident “has broad and significant customer impact that
results in the failure of a significant percentage of control plane
API calls, impacts a significant percentage of a service’s infrastruc‐
ture, resources or APIs or is the result of total power failure or
significant network failure, AWS is committed to providing a pub‐
lic Post-Event Summary (PES) following the closure of the issue.”
You can also view the previous 12 months of service and Region
health data via the AWS Health Dashboard.

Perhaps in the future cross-account and cross-Region application development and
operation will become abstracted away from engineers. But until then, this strategy
will always be a trade-off with the overhead involved.

Summary
In this chapter, you have learned about your role in operating your serverless appli‐
cation at scale in production. While AWS is responsible for the availability and
resiliency of the managed services in your architecture, you are responsible for the
configuration and usage of these services. It is crucial that you are aware of the service
limits in place and how to monitor that your usage stays within these limits.

You have also seen how the observability of your system is key to understanding
its behavior, especially considering the distributed nature of serverless, event-driven
architectures. Just like your testing strategy, your observability strategy must be
concentrated around your critical paths. You should adopt critical health dashboards
and capability-based alerts to enable your team to immediately detect issues with
your serverless application, and tracing should be preferred to logs to support your
team’s debugging efforts when errors occur.

Summary | 373

https://oreil.ly/MxyD4
https://oreil.ly/Kyz4i

Finally, you saw that fault tolerance is a key attribute of serverless and how you
can begin to leverage AWS to introduce automated recovery from failure to your
microservices.

Interview with an Industry Expert
Yan Cui, AWS Serverless Hero
Yan is an experienced engineer who has run production workloads at scale on AWS
since 2010. He has been an architect and principal engineer in a variety of industries,
ranging from banking, ecommerce, and sports streaming to mobile gaming. He has
worked extensively with AWS Lambda in production since 2015. Nowadays, Yan
splits his time between advancing the state of serverless observability as a Developer
Advocate at Lumigo and helping companies around the world adopt serverless as an
independent consultant.

Yan is also an AWS Serverless Hero and a regular speaker at user groups and confer‐
ences internationally. He is the author of Production-Ready Serverless and coauthor of
Serverless Architectures on AWS, 2nd edition (Manning). Yan keeps an active blog at
The Burning Monk and hosts the popular Real-World Serverless podcast.

Q: You’ve been running production workloads on AWS since 2010 and were one of the
first AWS Heroes for Serverless in 2018. How does operating serverless software differ
from traditional ops?

For starters, there is a lot less for you to do, so it frees you up to focus on things that
actually differentiate your business. I used to spend ~70% of my time on configuring,
maintaining, patching, and troubleshooting the infrastructure that runs my code—
the EC2 instances, load balancers, VPCs, security groups, you name it. There is a lot
to do, and there is a lot of toil on a small team. It was tough to do all that and still
deliver the features the customers were demanding. On a personal level, it was very
stressful and it often meant sacrificing myself and working long hours.

With serverless, there’s far less demand on you as the engineer because most of the
operational concerns are taken care of by the cloud provider. That means you can
focus more of your time on the things that matter, not the infrastructure beneath
them. On the personal level it means less stress, less things that can go wrong, and
in general a much happier and more productive team. For the business, it also means
you get more out of your engineers. There are fewer problems, so you have a more
stable product, which means happier customers. It also means, for a start-up, you can
defer the point at which you need to hire full-time specialists to help you manage
your infrastructure and ease the operational burden on the application teams.

374 | Chapter 8: Operating Serverless

https://oreil.ly/iV0S5
https://oreil.ly/Hgdow
https://oreil.ly/HW-xL

Q: The practice of observability has become integral to modern engineering teams, as they
operate software that is increasingly distributed and event-driven. How would you define
observability in a nutshell and why is it a good fit for serverless?

My favorite definition for observability is that it’s a measure of how well you’re able
to infer the internal state of a system just from its external outputs. Put it another
way: do you know what’s going on inside your system without attaching a debugger
and stepping through every line of code, one at a time? In a live system, it’s just not
feasible. So you have to be able to go by the breadcrumbs and clues that your system
leaves behind.

Observability is not so much a good fit for serverless, but a mandatory requirement
for operating any system in the real world, serverless or otherwise. If you don’t know
what the system is doing then you have no business running it in production.

Q: You have worked on lots of serverless and event-driven architectures through your
consultancy work and helped tell the stories of many serverless teams on your Real-World
Serverless podcast. What are some of the common issues that teams encounter when
operating serverless applications in production?

Some common issues include:

• They don’t know how to effectively test their application, so they only discover•
problems in production.

• Cold starts still affect many teams. Maybe they have a Lambdalith and need to•
load too many dependencies, or maybe they’re using JVM or .NET and don’t
know how to optimize cold start performance for JVM and .NET functions.

• They run into throughput limits because they’re working with services they’re•
unfamiliar with and didn’t know what limits would affect them.

• They don’t have good observability into the system, so they can’t troubleshoot•
problems easily.

• They have a poorly designed system, such as a “ball-of-mud” event-driven archi‐•
tecture, or the system boundaries are wrong or not clearly defined. Or maybe
they just chose the wrong service to use, for example.

Interview with an Industry Expert | 375

Q: Over the last few years, you have established The Burning Monk as one of the most
prominent serverless blogs. In August 2020, you wrote an indispensable article about
choreography and orchestration in serverless. How can engineers optimize these architectures
for resiliency and recovery from failure?

If resiliency is your main concern and you’re happy to pay extra to get that resiliency,
then Step Functions is the way to go. Moving the retries and the exponential backoff
out of your Lambda functions and into the state machine alleviates the tension
between 1) having a good security posture and have short timeouts so you’re less
vulnerable to denial of wallet attacks, and 2) having a long timeout so you allow
sufficient time for retrying failures and exponential backoff and jitters (to avoid retry
storms).

It’s one reason why you often see Step Functions in order and payment processing
systems—because these are business-critical workflows, and most people would be
happy to pay a premium to make them more robust and resilient. So the extra cost of
Step Functions is more than justified. And it’s much easier to troubleshoot failed Step
Functions executions because of the built-in visualization and audit history!

Q: Through your dedication to contributing a treasure trove of content to the community, you
have helped so many engineers and teams get started with serverless. What advice would
you give to enterprise teams on their way to operating their first serverless workload in
production?

It depends on where your team is coming from, if they’re already familiar with
building and running microservices and the challenges that come with that, and their
level of AWS experience. But for most enterprises, I would recommend having a
platform team—not as gatekeepers to decide what gets deployed to production, but as
a team of enablers to ease the burden on the feature teams.

Most enterprises have a myriad of organization-specific requirements, maybe for
compliance reasons or maybe down to legacy reasons. Instead of every team needing
to find a solution to meet these compliance requirements, it’s much better to invest in
a common set of tools, libraries, and approaches that everyone can follow; a golden
path, if you will. That’s where the platform team comes in, to create and maintain a
thin layer of organization-specific guardrails. For example, this platform can include
account templates so every AWS account comes with CloudTrail enabled and all of
its CloudTrail logs are centralized in an audit account. And it can include service
control policies (SCPs) that prevent any tampering with CloudTrail settings and logs.
And this platform might include organization-specific CLI tools that can automate
many of the day-to-day tasks, such as onboarding a new developer, or initiating a
break-glass request to acquire write permissions in production.

376 | Chapter 8: Operating Serverless

It’s important to also make sure that the platform team does not build in a silo.
They should be treated as partners and equals to the application teams they support.
In fact, they should work with the application teams to identify cross-cutting require‐
ments and challenges and provide the extra bandwidth and expertise to tackle them.

Interview with an Industry Expert | 377

CHAPTER 9

Cost of Serverless Operation

We are prone to overestimate how much we understand about the world and to underesti‐
mate the role of chance in events.

—Daniel Kahneman, Thinking, Fast and Slow

One of the key innovations that serverless has brought to software operations in the
cloud is the pay-as-you-go pricing model. In this chapter, you will explore the pay-
per-use model that is characteristic of the predominant serverless services, including
AWS Lambda, Amazon DynamoDB, and AWS Step Functions. You will learn about
the intrinsic link between your monthly bill and the efficiency of your serverless
architecture and how to estimate the cost of your architecture before implementing
and releasing it. You will also be equipped with a comprehensive set of best practices
when it comes to monitoring and reducing the cost of your serverless application
over time.

In Chapter 8, you saw the importance of designing and operating a serverless applica‐
tion with service quotas and pricing in mind. Next, you will see how to use these
quotas and prices to effectively estimate production costs to ensure your bill does
not spike disproportionately to your traffic. Of course, with the pay-per-use model,
you should expect costs to rise and fall with the volume of requests sent to your appli‐
cation. However, there have been plenty of instances of architectural inefficiencies
causing teams to experience unexpectedly high costs.

This is why the serverless pay-per-use model should be approached with caution as
well as optimism. Running serverless at scale can mean inefficient usage is penalized
with huge bills.

379

Understanding Serverless Cost Models
When evaluating your options for hosting and operating your software, cost is usu‐
ally a key consideration. In recent years, serverless has emerged as a sound choice
for teams and organizations looking for simplicity and cost-efficiency. With the com‐
bination of managed services and a pay-per-use pricing model, there is huge potential
for serverless to allow you to focus on building software to meet your business and
user needs without breaking the bank.

Serverless allows teams to scale usage of their applications from zero, paying very
little or nothing at all, to peak demand, with rising costs (see Figure 9-1).

Figure 9-1. On-demand usage versus cost

There are three core contributing factors to the cost of running a workload on AWS:

Compute
The cost of compute will depend on the managed service you choose, but the
crucial aspect of serverless compute is that you will only pay for what you use.
We’ll take a closer look at the pricing models for AWS Lambda and AWS Step
Functions in “Compute Costs” on page 383.

Storage
The cost of storing data is based on the amount of data written to and read from
your chosen data store. You will also be charged for storing the data over time.
Additional charges may be incurred for encryption and replication, depending
on your architecture. Keeping storage costs low is all about optimizing your
data model and access patterns, using compression strategies to reduce the space
your data consumes, and efficient usage of caches. Keep in mind that you will
likely store both application state and operational data, such as traces, logs, and
metrics. You will see examples of the pricing models for two popular storage
options, Amazon S3 and Amazon DynamoDB, in “Storage Costs” on page 385.

380 | Chapter 9: Cost of Serverless Operation

https://oreil.ly/szT5C

Outbound data transfer
The cost of outbound data transfer is mostly associated with sending data outside
of containers or managed services running on the EC2 service to the public
internet. For serverless applications, outbound data transfer costs could include
sending CloudWatch metrics to a third-party application monitoring platform,
leveraging S3 object replication, or using DynamoDB global tables. For more
information and examples see the AWS blog post “Overview of Data Transfer
Costs for Common Architectures”.

While you will incur costs for outbound data transfer, for a serverless application,
your costs will mostly concentrate around compute and storage. We’ll look at the
pricing models for the primary serverless compute and storage services shortly, but
first, let’s go beyond the monthly bill for a moment and take a broader look at cost.

Total Cost of Ownership in the Cloud
Your monthly bill shows you the obvious, regular cost of running your serverless
application in the cloud. There is, however, another cost: the cost of ownership.

Total cost of ownership (TCO) is an established concept that helps organizations
understand the cost of software over time, not just at the point of acquisition or
creation. TCO can be significantly diminished when using serverless technology,
primarily through leveraging managed services with a pay-per-use pricing model. But
there are still key costs beyond your monthly bill that should be incorporated into
your estimates and budgets.

When assessing your serverless TCO, you should consider the following costs:

Engineering
The cost of the humans who design, build, and operate the application. This will
in all likelihood be your most significant cost. Optimize your tools, process, and
delivery to ensure your team spends time working on the things that generate
value (see Chapter 6 for tips on optimizing your implementation, Chapter 7 for
testing, and Chapter 8 for delivery and operations).

Delivery
The cost of delivering code iterations to your users. The longer delivery pipelines
run, the more they cost. The longer your fixes take to deploy, the longer your
bugs live in production and potentially adversely affect your business.

Operations
This is the cost you’ll see on your monthly bill. Every piece of code you deploy
will have an operational cost: storage, compute, data transfer, and so on. This
cost will scale with your traffic due to the serverless pay-per-use model, but there
will be other constant costs, such as monitoring (see “Avoiding Serverless Cost
Gotchas” on page 388) and security.

Understanding Serverless Cost Models | 381

https://oreil.ly/RAhFm
https://oreil.ly/RAhFm

Maintenance
The cost of maintaining the application over time. The amount of hours dedica‐
ted to maintenance, as opposed to new feature development, will depend on
factors such as complexity of the codebase, collective knowledge of the codebase
among the team, and stability of the application. Software is maintained for
much longer than the time it takes to create it.

Ownership of software is essentially ownership of the lines of code that have been
contributed to the source code. It is commonplace in the software industry to view
lines of code and the number of contributions to a codebase as measures of success
and productivity. Many think the more code, the better. In fact, running software in
production for a long period of time has proven the opposite to be true: code is a
liability.

As you have seen, TCO can attribute a cost to every line of code in your codebase: the
cost of creating it, deploying it, operating it, and maintaining it. Reducing your total
cost of ownership is all about reducing the amount of code you own and simplifying
what is left. As the authors of The Value Flywheel Effect put it: “not unlike poetry,
extraordinary code is elegant and precise.”

There will be broadly three types of code in your software inventory:

Production code
Code that runs in production. This is the code you want to own and keep as
simple as possible. This code delivers features to your users and generates value
for your organization.

Non-production code
Code that does not run in production. If code is not being executed by the
actions of your users it is not generating value. This code should be kept to
an absolute minimum and be purely dedicated to ensuring the stability of your
application.

Third-party code
Code that runs in production but is written by someone outside your organiza‐
tion. This is also code that you want to minimize (see “Think before you install”
on page 186). Integrating this code, especially after major or minor updates to the
library, can often demand a high investment of time and energy. Bugs introduced
by third-party code can also be fiendishly difficult to isolate and usually depend
on someone else to fix and release.

382 | Chapter 9: Cost of Serverless Operation

https://oreil.ly/42R46

Now that you’ve taken a zoomed-out look at your total costs, let’s focus on the two
pillars of serverless cost on AWS: compute and storage.

Compute Costs
Serverless compute using AWS Lambda will typically be widespread in your server‐
less architecture. It is one of the most important cost models to understand when you
are getting started, as it probably differs the most from what you are familiar with.

Compute Will Cost Less Than You Expect
What may surprise you if you have not yet operated a serverless workload in produc‐
tion is that Lambda is rarely the most expensive line in your monthly bill. If you have
previously operated containerized applications, on Amazon EC2 or AWS Fargate for
example, the cost of compute on your servers will have been a primary concern and
high on your bill. But compute costs do not translate from containers to functions
and cannot be compared like-for-like.

As you design and implement your serverless architecture, you will begin to spread
your business logic and compute across many distinct managed services, including
Step Functions, EventBridge, and SQS in addition to Lambda. You may not even
have a single Lambda function in your application (see “The Functionless Integration
Pattern” on page 236).

So, your serverless compute bill may be less than you expect, but it will also be spread
across various services and not just concentrated around your Lambda functions. The
following sections discuss the cost implications of using other serverless services as
well as operational tools, such as CloudWatch. As you’ll see, these costs can actually
be much higher than your compute bill.

AWS Lambda pricing
AWS Lambda has always been the serverless trailblazer, and its pricing model is no
exception. Lambda pioneered the serverless pay-per-use model when it launched in
2014, with teams quickly realizing the immense potential of only paying for compute
that your application actually uses. No more paying for servers while they sat idle!

Lambda pricing is split into two areas: requests and duration. You are charged for
each request made to the Lambda service to invoke a function and for the time it
takes to complete each invocation.

The invocation duration is calculated from the time your code begins executing until
it returns, throws an error, or exceeds the amount of time allocated to it. (Refer to
Chapter 6 for tips on optimizing the request duration of your Lambda functions by
fine-tuning the memory allocation and timeout configuration.)

Understanding Serverless Cost Models | 383

There are various tiers of duration billing, depending on the memory allocated to the
function. For more information, see the AWS Lambda pricing page.

The cheapest Lambda function is one that is never invoked! You
can use the request validation feature of API Gateway to pre‐
vent Lambda function invocations when invalid API requests are
received.

The AWS Free Tier (covered later in this chapter) allocates 1 million requests per
month for free. After that initial 1 million, you are charged $0.20 per 1 million
requests (or $0.0000002 per request).

Free tier allocations are offered per AWS account.

Here’s an example: if you make 3 million function invocation requests to Lambda
per month, you will incur a cost of $0.40. If each of those function requests was
allocated 1,024 MB of memory, the cost would be $0.0000000167 per 1 ms. So, if each
invocation took 4 seconds to execute, the total duration bill would be $0.0000668.
The combined request and duration bill would be $0.4000668.

AWS Step Functions pricing
In addition to AWS Lambda, you may use AWS Step Functions to execute your
business logic code. Step Functions also uses a pay-per-use pricing model, so you
only pay for the resources you consume.

There are two types of Step Functions workflows: standard and express. Standard
and express workflows differ in several ways, including billing. For more details
on the differences between the two types of workflows, see the Step Functions
documentation.

For standard workflows, you are charged based on the number of state transitions.
The AWS Free Tier offers 4,000 free state transitions per month. Beyond this, you are
charged $0.025 per 1,000 state transitions (or $0.000025 per state transition).

If your workflow includes a retry mechanism for handling step
errors, such as AWS SDK requests, each retry will be charged as an
additional state transition.

384 | Chapter 9: Cost of Serverless Operation

https://oreil.ly/gzdbc
https://oreil.ly/OzxRM
https://oreil.ly/2iS1l
https://oreil.ly/2iS1l

For express workflows, you are charged based on the number of requests for your
workflow (at a rate of $1.00 per 1 million requests, or $0.000001 per request) and
its duration. Workflow duration is calculated from the time it starts executing until
it completes successfully or is terminated. The price per 100 ms for the duration of
your workflow depends on the amount of memory consumed during execution. See
the Step Functions pricing page for full details of the various pricing tiers for express
workflows.

The memory consumption of an express workflow execution is
based on various attributes: the size of the workflow’s definition,
the use of map or parallel states, and the size of the initial payload
provided as input to each execution.

Storage Costs
In the previous section, you learned that serverless compute costs can be significantly
lower than you might expect. Conversely, the cost of storing operational data and
application state will most likely be similar to the non-serverless applications you
have operated in the past.

Let’s take a look at the pricing models of the common storage services found in
serverless architectures: S3 and DynamoDB.

Amazon S3 pricing
There are two primary costs to be aware of when using Amazon S3: storage and
requests. You are charged for the amount of data stored in a bucket, based on the
size of the objects, how long the objects have been stored during the month, and the
storage class.

You can apply a compression algorithm to your data before storing
it in S3 to save on storage costs. If you are using Kinesis Firehose to
stream data into an S3 bucket, you can use the built-in support for
file compression.

S3 provides a number of storage classes, each optimized to store specific categories
of data under different use cases. See the AWS documentation for a full list of
the storage classes. Table 9-1 shows a comparison of storage costs between storage
classes.

Understanding Serverless Cost Models | 385

https://oreil.ly/8gZ2G
https://oreil.ly/BlA8o

Table 9-1. Comparison of pricing across S3 storage classes

Storage class Storage pricing (per GB)
Standard First 50 TB/month: $0.023

Next 450 TB/month: $0.022
Over 500 TB/month: $0.021

Standard-IA $0.0125
One Zone-IA $0.01
Glacier Instant Retrieval $0.004
Glacier Flexible Retrieval $0.0036
Glacier Deep Archive $0.00099

A very useful feature of S3 is the ability to move objects across storage classes in
the same bucket. For example, an object could be initially stored in the Standard
class while it is frequently accessed by your application’s processes, then moved to
an archival storage class—such as Standard-IA (Infrequent Access) or Glacier Instant
Retrieval—once it will only need to be retrieved as part of an ad hoc process, such as
an audit.

Objects can also be automatically expired and removed from a bucket once they are
no longer required by your application. You can use the S3 storage analytics tool to
analyze data access patterns and help you decide on your object lifecycle policy (see
Figure 9-2).

When determining your lifecycle policy, you should be aware of the
minimum duration charges when expiring or transitioning objects
in certain storage classes. Refer to the S3 documentation for details.

Figure 9-2. Object lifecycle policy

386 | Chapter 9: Cost of Serverless Operation

https://oreil.ly/6eCAN
https://oreil.ly/ephO8
https://oreil.ly/VQIhk

In addition to the storage of objects in your buckets, you will also incur costs when
making requests to S3 buckets and objects, for example to store and encrypt new
objects, or to retrieve and decrypt existing objects.

If you are encrypting (and decrypting) S3 objects with AWS KMS,
you should use bucket keys. Bucket keys are reused over a limited
period of time to reduce the requests from S3 to KMS. This can
result in a cost reduction of up to 99%.

Amazon DynamoDB pricing
Your DynamoDB tables will be charged based on the number of read and write
requests to the table and the amount of data stored in the table. Storage is billed per
GB per month.

Read and write requests can be handled with two billing modes: provisioned or
on-demand. With the on-demand capacity mode you pay per read and write request
to the table. With the provisioned capacity mode you specify the projected number of
read and write requests that your application requires and pay based on the amount
of capacity that you provision, whether you use it or not.

The capacity mode that is most cost-effective for a table will depend on the expected
usage. In general, on-demand mode is suited to tables with unknown, unpredictable,
or bursty traffic that scales rapidly. Provisioned mode is ideal for consistent or
predictable traffic that scales gradually.

Consider the cost implications of your DynamoDB tables when
designing your data models and analyzing access patterns. Alex
DeBrie provides a lot of great content in The DynamoDB Book and
his blog post on estimating DynamoDB costs.

Similar to S3, you have different storage class options for your DynamoDB tables:
Standard and Standard-IA. The Standard-IA table class is ideal for long-term storage
of data that is accessed infrequently and can reduce storage costs by up to 60%. If
storage is your dominant cost factor, then you should use the Standard-IA table class;
otherwise, you should go with Standard.

You can use the Time to Live (TTL) attribute in your table to auto‐
matically remove expired data. See the DynamoDB documentation
for more details.

Understanding Serverless Cost Models | 387

https://oreil.ly/RdYnf
https://oreil.ly/pI5Cs
https://oreil.ly/4eDbY
https://oreil.ly/LsvuD
https://oreil.ly/K7wJw
https://oreil.ly/9mGZC
https://oreil.ly/h4DHt
https://oreil.ly/T9ihq
https://oreil.ly/8zUdW

Read and write requests can be reduced by enabling DynamoDB’s in-memory cache,
DynamoDB Accelerator (DAX). DAX can reduce the operational cost of DynamoDB,
particularly if your table is read-intensive or is subject to sporadic bursts of read
requests. DAX is charged per hour based on the size of the cache, so make sure you
will achieve enough of a cost saving to make it worthwhile.

You will incur additional charges related to storage and read and
write requests if you enable any extra features, including backups,
replication via global tables, and change data capture via streams.

Avoiding Serverless Cost Gotchas
In the next section, we’ll explore the tools and techniques available for estimating
serverless costs. However, the cost of a serverless application that is distributed across
many managed services, interacting constantly as traffic flows into and through your
system, can be difficult to predict.

These more obscure costs can be seen as secondary costs of an application. Primary
costs are incurred by usage of services that are core to your application, such as
Lambda function invocations or DynamoDB storage. Secondary costs are typically
incurred by service integrations. For example, services may perform API requests to
facilitate integration with other services, such as retrieving KMS encryption keys to
encrypt or decrypt data at rest or in transit, or operational tasks, such as sending logs
to CloudWatch.

In Chapter 6, we recommended that you deploy to production as soon as possible to
truly understand the behavior of your application. The same applies for monitoring
costs, covered in the last section of this chapter—cost estimation will only get you so
far, and for an accurate picture you’ll need to run your application in production. But
not everything needs to be learned the hard way with billing surprises!

The following list describes some of the most common billing gotchas to be aware of
when designing and operating your serverless application:

CloudWatch costs
CloudWatch is usually at or near the top of any serverless bill. You will be
charged per GB of data ingested by CloudWatch Logs and per GB of data stored.
Keep logging to a minimum (see Chapter 4 for how this can also improve
security and reduce the risk of logging sensitive data) and prefer tracing with
X-Ray where viable (see Chapter 8 for more information about tracing). Always
set a retention period for your log groups (logs are kept indefinitely by default)

388 | Chapter 9: Cost of Serverless Operation

https://oreil.ly/D5WNg
https://oreil.ly/ut-A7

and only retain log data for as long as it is useful. Consider moving log data
to a cheaper alternative, such as S3 Glacier, if you require a long-term archive.
CloudWatch alarms can also become expensive, as you are charged per metric
listed in the alarm for every hour that the alarm is active during the month. Per
the advice in Chapter 8, any alarms without a clear purpose should be removed.

Transfer-out costs
A common operations strategy is to transfer logs and metrics from CloudWatch
to other systems for aggregation and analysis. If you do this for logs, you will
be charged per GB of data transferred out from AWS to the internet. When
transferring metrics out of CloudWatch, you should understand your options. Be
aware of third parties that use the CloudWatch API to poll for metrics, as this will
incur a high cost at scale. Prefer to use metric streams where possible.

Expensive caching
Caching is often viewed as a cost-saving technique: less requests means less
compute and less cost. However, this may not always be true with serverless
compute on Lambda, and you should always estimate costs based on volume
with and without a cache. For example, in some high-volume scenarios applying
API Gateway caching in front of your Lambda functions can get very expensive,
as you are billed per GB of cache size per hour. Consider applying a caching
strategy in future iterations once you have validated the need for it in production
and confirmed it will reduce costs. In addition to API Gateway caching, you
should also evaluate the other caching options available for your architecture,
including Amazon Elastic File System (EFS), Amazon ElastiCache, Amazon Elas‐
tiCache Serverless, and Amazon CloudFront.

Services calling other services
Many AWS services make use of other services. The associated costs of these
underlying operations can always be found in the pricing page for a service, but
they’re not always obvious when making architectural choices, especially without
applying the context of volume to your estimates. For example, Amazon Athena
can be a very inexpensive service for medium-volume SQL queries when taken
at face value ($5.00 per 1 TB of data scanned, at the time of writing). However,
Athena will incur costs for other services, such as when making requests to
the Amazon S3 API to query data, using the AWS Glue Data Catalog to model
data, and retrieving encryption keys from AWS KMS if the source data in S3
is encrypted. Be careful with estimates and always monitor costs in production
when releasing new pieces of infrastructure.

Understanding Serverless Cost Models | 389

https://oreil.ly/1Ccvx
https://oreil.ly/ay_ka
https://oreil.ly/gTYEw
https://oreil.ly/c3IP3
https://oreil.ly/6YvpQ
https://oreil.ly/crSyt
https://oreil.ly/crSyt
https://oreil.ly/0zVFc
https://oreil.ly/e1uP_

Infinite Lambda loops
It is possible to create an infinite loop of Lambda function invocations when the
function outputs to the same service that triggered it. For example, a function
may be recursively executed if it puts a message on the SQS queue that invoked it.
You can use Lambda’s recursive loop detection feature to automatically detect and
break recursive invocations.

Non-production costs
Be careful of pay-per-use in non-production environments. If you have serv‐
ices that are continually called, for example via scheduled jobs, continuous
integration pipelines, or third-party webhooks, the costs could add up. As rec‐
ommended in Chapter 6, keep pre-production environments to an absolute
minimum. Reducing non-production costs is also closely associated with the first
point in this list: CloudWatch costs. CloudWatch alarms will usually only be
useful in your production environment, and you can also reduce the amount of
log data ingested through the use of logging levels depending on your needs in
non-production environments.

Serverless Cost Estimation
Now that you know how much some of the popular serverless services cost, it’s
time to figure out how to estimate costs for your own operations. Cost estimation
can be a very useful exercise, especially when designing new serverless applications
or microservices and evaluating architectural options. However, it can be difficult
to accurately predict operational costs for an application that is distributed across
myriad managed services, all with pay-per-use pricing models.

Before attempting to estimate the total cost of your application, you need to under‐
stand the parts of your architecture—the integrations, operations, and resources—
that will generate cost. Figure 9-3 shows an example architecture, consisting of an
API Gateway API integrated with a Step Functions state machine that makes a read
request to DynamoDB and puts events onto an EventBridge event bus. CloudWatch is
used to collect logs and metrics across all the services and maintain alarms based on
the metrics. Each point that will generate cost is shown with a $.

Precise cost estimates also rely on fairly accurate knowledge of expected traffic. You
should encourage estimation within your team, but keep in mind that your estimates
are just estimates. For this reason, estimation should always be balanced with cost
monitoring and continuous optimization, which we’ll discuss in the next section.

390 | Chapter 9: Cost of Serverless Operation

https://oreil.ly/THrD6

Figure 9-3. Serverless cost generation

If you are improving an existing service running in production,
historic cost analysis can also help inform future cost estimation.

How to Estimate Costs
You can follow these steps to get started with serverless cost estimation:

1. Gather data on the expected volume of requests to your application, including1.
normal levels and peak periods.

2. Identify the areas of your architecture that will generate cost (see Figure 9-3).2.
3. Extract the relevant costs from the pricing pages of the AWS services in your3.

architecture.
4. Use your preferred tool to capture cost estimates based on pricing and expected4.

volume. This could be a spreadsheet, a FinOps platform, or the AWS Pricing
Calculator.

Serverless Cost Estimation | 391

https://oreil.ly/hqVQD
https://calculator.aws
https://calculator.aws

Your organization may have an AWS support team consisting of
one or more solution architects. You should always consult these
experts when designing your architecture and estimating the cost
of new features and applications, as they can offer valuable insights
into managed service pricing models and functionality.

The More You Use, the Less You Spend
Earlier we discussed some gotchas to avoid, but there are also several more direct
ways to save costs. Tiered pricing is one such strategy, where the cost of certain
resources becomes cheaper as your consumption increases.

There are various AWS pricing models that include tiered pricing. Your usage of a
managed service or particular resource will determine the pricing tier your applica‐
tion is subject to. As your consumption increases and you move up tiers, the cost
per resource will decrease. For example, CloudWatch metrics and S3 Standard storage
class buckets both have tiered pricing. Tables 9-2 and 9-3 show the pricing schedules
at the time of writing.

Table 9-2. CloudWatch metrics tiered pricing

Tiers Cost (metric/month)
First 10,000 metrics $0.30
Next 240,000 metrics $0.10
Next 750,000 metrics $0.05
Over 1,000,000 metrics $0.02

Table 9-3. S3 Standard tiered pricing

Tiers Cost (metric/month)
First 50 TB/month $0.0245 per GB
Next 450 TB/month $0.0235 per GB
Over 500 TB/month $0.0225 per GB

It is important to be aware of tiered pricing when estimating costs and making
architectural decisions.

392 | Chapter 9: Cost of Serverless Operation

https://oreil.ly/PU04Q
https://oreil.ly/dy3Cl
https://oreil.ly/dy3Cl

How Much Can Be Done with the AWS Free Tier?
The AWS Free Tier is an indispensable tool to be aware of when planning and
calculating your serverless operation costs. The free tier is primarily aimed at teams
who are just starting out with deploying new applications to the cloud and allows
for exploration without a monetary commitment. It’s great for teams that are finding
their feet with serverless or want to evaluate particular services before fully commit‐
ting to an architecture.

Whenever you try things out, remember to clean up. Not only
is this good practice from a security perspective (see Chapter 4),
but it will help you avoid unexpected costs from non-pay-per-use
resources, such as secrets in AWS Secrets Manager, notebooks in
Amazon Neptune, or Amazon Managed Streaming for Apache
Kafka (MSK) clusters.

There are three categories of offers in the free tier:

Free trials
Short-term trial periods for individual AWS services, such as free usage for the
first two months of Amazon SageMaker or 30 days of Amazon Macie. Free trials
are great for experimenting with a new service or running prototypes.

12 months free
Free usage of services activated when you create an AWS account; expires after a
year.

Always free
A free allocation of resource consumption that never expires. This free pricing
tier is excellent for low-scale applications and for reducing costs during low
traffic periods. Offers include 1 million free Lambda requests per month and 25
GB of free storage in DynamoDB per month.

Most AWS services provide offers in one or more of the free tier categories, giving
you the opportunity to experiment with new features or apply cost-saving strategies
based on your traffic.

Serverless Cost Estimation | 393

https://oreil.ly/EHMId

Serverless Cost Monitoring Best Practices
In this section you will learn how to monitor the cost of your serverless application
and how to reduce that cost over time as your application evolves. Like serverless
security, discussed in Chapter 4, optimizing serverless cost is not a one-time, pre-
production activity. Cost optimization must be a continuous process that is part of
the fabric of your team.

Creating Cost Awareness in a Serverless Team
The foundation for continuously optimizing cost over the lifetime of your serverless
application is to make operational costs a primary concern of the team responsible
for building and operating it. Cost should be discussed and considered at every stage
of your application’s delivery lifecycle, from the design of its components to operation
in production and retrospective analysis of billing (see Figure 9-4).

Figure 9-4. Serverless cost lifecycle

Cost-driven design
Cost estimates should be included in your solution designs (see the solution design
template in Appendix C) when designing new features and applications. The engi‐
neers in your team should be aware of the pricing models of the services they use and
the cost implications of their architectural decisions and trade-offs.

The architecture diagrams you draw as part of your solution design can be annotated
with information pertaining to a cost estimate of the solution. This could include
the configuration of a Lambda function or SQS queue and the prices of AWS API
requests or resources. You can also include service quotas and resource limits that
will support your operations (see Chapter 8). Figure 9-5 shows an example architec‐
ture diagram with cost and operations annotations.

394 | Chapter 9: Cost of Serverless Operation

Figure 9-5. Architecture diagram with cost estimates, pricing, and quotas

You build it, you pay for it
The DevOps movement was neatly captured in a phrase coined by Amazon CTO Dr.
Werner Vogels in 2006: “You build it, you run it.” The same approach is now being
applied to the financial operations related to software engineering. The emergent
practice of FinOps is crucial to continued operational and cost efficiency. The cost of
operating your application should be monitored in the same way as its performance
and health.

Conducting regular AWS Well-Architected Framework reviews as a team, with a
focus on the Cost Optimization pillar, can be an effective way of establishing cost
awareness in your serverless team.

Serverless Cost Monitoring Best Practices | 395

https://oreil.ly/_UOnk
https://oreil.ly/bInk_
https://oreil.ly/kPsn8

Billing analysis
To create cost awareness in your team, it is absolutely essential to provide access to
your AWS bills. The AWS Billing console and Cost Explorer are both integral tools
for analyzing the cost of your serverless application and should be made available to
all engineers in each of your AWS accounts, including production.

You should establish a monthly billing analysis process in your team to identify
consistently high costs. Start by using the Cost Explorer to group costs by service, as
shown in the screenshot in Figure 9-6.

Billing analysis should happen immediately if a critical billing alert
is triggered. Your monthly analysis should cover expectedly high
costs, whereas your alerts should catch unexpected and sudden
increases in costs.

Figure 9-6. Grouping costs by service in AWS Cost Explorer

Identify the three services with the highest costs and ask each other whether the cost
of each seems reasonable, or if it has significantly increased since the previous month.

If something doesn’t look right and needs further exploration, you can then drill
down into the individual line items in your monthly bill via the Billing console, as
shown in the screenshot in Figure 9-7.

396 | Chapter 9: Cost of Serverless Operation

https://oreil.ly/D0M4K
https://oreil.ly/5571W

Figure 9-7. Inspecting lines in a bill in the AWS Billing console

Compare the costs to the previous month, discuss the possible reasons for any cost
increases (such as recent code changes or increased traffic), and finally decide on the
potential cost-reduction options to explore.

Monitoring Costs with Budget Alerts
You can use AWS Budgets to proactively monitor your monthly expenditure, setting
budgets for your application and receiving alerts when those budgets are exceeded.

Monitoring costs is all about being proactive. You don’t want to be alerted to spiraling
costs after they have been accrued; you want to detect a monthly bill that is increasing
at a faster rate than usual so you can take action immediately.

Serverless Cost Monitoring Best Practices | 397

https://oreil.ly/PdafR

You can set budgets to alert against either actual values or forecas‐
ted values.

A sensible strategy for setting budget alerts is to first establish a baseline by calcu‐
lating your average bill over the past few months. If your expected traffic can be
unpredictable or susceptible to bursts, you can add a reasonable amount of buffer to
this baseline. For example, if your average bill is $1,100, you might want to set your
budget as $1,500 to account for fluctuations in traffic. You can then set alerts at 80%,
90%, and 100% (see Figure 9-8).

Figure 9-8. Configuring budget alerts

The AWS Cost Management console includes a cost anomaly
detection feature that uses machine learning models to alert you
to anomalies in your spending.

Reducing the Operational Cost of Serverless
Due to the use of multiple interconnected managed services in a serverless applica‐
tion, cost is intrinsically linked to architecture. Excessive and expensive usage of a
service or direct integration usually indicates architectural inefficiencies. If you’re
doing something expensive, there is probably a better way to do it!

398 | Chapter 9: Cost of Serverless Operation

https://oreil.ly/AdLsP
https://oreil.ly/AdLsP

A drive toward cost reduction can also provide data-driven motivation for paying off
technical debt. Rather than refactoring for the sake of refactoring, you can target your
refactoring to specific areas of your architecture and business logic (see Chapter 11
for information about continuous refactoring). The impact of these refactors can also
be accurately measured by the change in cost.

The following is a high-level list of strategies for reducing the cost of your application
during its lifetime:

Continually monitor application costs.
As mentioned previously, look for anomalies in your bill over time in order to
identify potential optimizations.

Architect for cost.
Make architectural decisions informed by the pricing of the managed services
in your infrastructure. This includes the recommendations made earlier in this
chapter, such as using S3 object lifecycle management, choosing on-demand
mode for your DynamoDB tables, and preferring express Step Functions
workflows.

Minimize Lambda functions.
Understand the alternatives to running your code in a Lambda function, such
as direct integrations (refer to “The Functionless Integration Pattern” on page
236 for more details), and apply them as much as possible to reduce operational
and ownership costs. Functions should not be minimized by combining business
logic or tasks into single, monolithic functions, though (see Chapter 6 for details
about applying the single-responsibility principle to your functions).

Batch events and requests.
Consider batching events and data processing activity in your system to reduce
costs. A lot of managed service pricing models are linked to AWS API requests,
and batching can be an effective strategy for reducing the number of requests
and, in turn, cost. For example, if you are encrypting objects in an S3 bucket,
each PutObject request would have an associated Encrypt request to KMS.
Instead of putting each object into S3 individually, you could batch objects using
Kinesis Firehose and make the request to KMS per batch rather than per object.

Use caching.
Utilize the caching functionality of managed services such as Amazon API Gate‐
way, CloudFront, and DynamoDB, where viable and cost-efficient. An efficient
cache can significantly decrease your API request handling and storage retrieval
costs.

Serverless Cost Monitoring Best Practices | 399

https://oreil.ly/6LWkA
https://oreil.ly/4KZLj

Only deploy operational resources where needed.
Only deploy operational resources, such as CloudTrail events and CloudWatch
alarms, in public environments (i.e., in production, and potentially a public
sandbox environment if applicable).

Architect sustainably.
Many of the patterns and recommendations presented in the Well-Architected
Framework’s Sustainability pillar correlate to resource consumption and, there‐
fore, cost efficiency. Refer to Chapter 10 for serverless sustainability best practi‐
ces.

Consider savings plans.
If you can predict your application will use a consistent amount of compute over
a one- or three-year term, a compute savings plan could save you up to 17% on
your AWS Lambda bill.

Summary
The potential to reduce the costs of developing and running your software is likely to
be one of the primary reasons you are considering, or actively adopting, serverless.
There is obvious appeal in only paying for the resources your application consumes—
no more servers costing you money while sitting idle—and this is definitely a good
reason to go serverless.

However, you shouldn’t stop there. Your ability to take full advantage of the cost
efficiency that serverless offers depends on cultivating a cost-aware team. While it is
true that you will not incur any costs if your application is not in use, the opposite
is also true: if your application begins to receive a significant amount of traffic your
costs will increase at the same rate. In this way, the pay-per-use cost model can be
both a huge benefit and a significant risk.

In this chapter, you have learned that cost should be a primary concern for your team
as you design, build, and operate your serverless application. Cost estimation should
always be conducted as you design your architecture. Depending on the complexity
of your architecture and predictability of your traffic, it can be difficult to precisely
estimate costs, so it is also crucial to balance this with billing alerts and monitoring
in production. One of your first tasks should be to establish budget alerts to avoid
sudden, unexpected spikes in costs.

400 | Chapter 9: Cost of Serverless Operation

https://oreil.ly/q5Hmd
https://oreil.ly/i3Onw

Interview with an Industry Expert
Ben Ellerby, Founder, aleios, AWS Serverless Hero
Ben Ellerby is the founder of aleios and a dedicated member of the serverless com‐
munity. In 2020 AWS named him a Serverless Hero, recognizing his outstanding
work and innovation in cloud and serverless. He is the editor of Serverless Transfor‐
mation: a blog, newsletter, and podcast that share tools, techniques, and use cases for
all things serverless. He co-organizes the Serverless User Group in London, is part
of the ServerlessDays London organizing team, and regularly speaks about serverless
around the world. At aleios, Ben helps start-ups disrupt and large organizations
remain competitive by building with serverless.

Q: As an AWS Serverless Hero and the head of aleios, you have been involved with several
serverless implementations. How has serverless changed the way teams pay to deliver and
operate their software?

Serverless provides an optimal total cost of ownership by removing complexity and
providing a unique pay-per-use billing model that allows us to match cost with
demand, all while enabling high levels of scalability. Done correctly, this lowers the
cost of delivering and operating software, reducing the cost of building, running, and
maintaining it. However, there is a shift from CapEx (fixed assets) to OpEx (ongoing)
and the potential for surprises in costs.

Teams need to work to develop their FinOps maturity to ensure they maintain low
costs while creating predictability. This is not just a change for the technology team,
but a change in budget ownership and in the interaction mode between finance and
technology.

Q: You’ve been a great thought leader in the serverless community, delivering talks, publishing
the Serverless Transformation newsletter, and sharing innovative ideas through your blog
posts. Are we getting the most out of serverless, or could teams still generate more business
value and reduce costs even further?

Serverless is a good step, but it’s always part of a larger vision. Whether that vision is
reducing time to value or creating an optimal TCO, teams need to be driven by their
North Star and leverage serverless to reach it. Serverless can remove complexity, yet
when done in a naive way it can create additional cost and get in the way of business
value. Serverless is a technology that works well when combined with event-driven
and domain-driven design patterns, and when an organization moves to think in a
“serverless-first” way.

Interview with an Industry Expert | 401

https://oreil.ly/yiWQl
https://oreil.ly/N4fpr
https://oreil.ly/euIDa
https://oreil.ly/wyRz-

Q: You have worked on diverse projects with many enterprises over the last few years. How
have you estimated the total cost of ownership with serverless, and how effective has that
process been?

TCO is typically the core driver for enterprises in their adoption of serverless, be
that from a cost perspective or as an enabler for reduced time to value. TCO covers
the infrastructure cost (the charge for resources consumed), development cost (the
up-front cost to build), and of course the maintenance cost (operational running of
the application).

Several organizations have publicly referenceable figures on their achieved TCO
results with variation based on the use case, industry, and method of measuring.

When working with enterprises on their adoption of serverless we use our Serverless
Staircase framework to structure the modernization program. The first stage, Vision,
works to set a North Star Metric as well as lagging and leading indicators. The IDC
2018 study is a useful reference in baselining targets during this phase.

It’s difficult to compare TCO results between different organizations and even differ‐
ent divisions of a large enterprise, but it is possible to demonstrate reduction and tie
this down to an ROI figure. In practice this means finding a way to baseline your
current TCO and finding relevant data points to reality-check your target.

Q: The combination of a pay-per-use billing model and highly scalable serverless operation can
result in surprises and unpleasant bills. From your experience, which are the potential billing
mistakes teams should watch out for?

Indeed, serverless can scale to large levels, and the pay-per-use model can lead to
less predictability. Firstly, service limits/quotas should be raised to levels that enable
your application to function well, but they should not be raised blindly—they are a
protection. Secondly, analysis should be made of your application architecture, and
coupled with load testing, this allows you to model expected costs. Costs should be
monitored, and alarms and alerts configured to spot issues early. Some cost spikes
will come from natural traffic, others from application errors or from malicious
actors. Security should be at the core of your application design to prevent denial of
wallet attacks, and protections against common antipatterns like recursive Lambda
functions should be in place.

Finally, the ability for serverless to scale, especially in reaction to downstream errors,
makes the design of integrations with third parties a key element to get correct.
For instance, leveraging a circuit breaker pattern (see “Resilient Architecture: The
Circuit Breaker Pattern” on page 226) between your application and a third party not
only protects both applications, but also protects against generating large amounts of
expensive calls to a paid API.

402 | Chapter 9: Cost of Serverless Operation

https://oreil.ly/ZpExT
https://oreil.ly/ZpExT

Q: Through your consultancy work with aleios and Theodo, you have firsthand experience
witnessing organizations benefit from migrating their workloads to serverless. What advice
would you give to enterprise teams on cost awareness as they design, implement, and operate
their first serverless applications?

The key is to recognize that the model of IT procurement has changed. It’s no longer
provisioning large resources with a predictable and forecasted approach, but instead
is a completely dynamic cost, embodied in the move from CapEx to OpEx. This is not
just a change in accounting but a change in how costs are managed and evolve.

While the engineering team needs to design and manage costs, it should work closely
with finance as a joint team, sharing responsibility. The FinOps movement is a good
example of this and can be put into practice with shared cost dashboards, FinOps
retros (involving both the engineering and finance teams), and a holistic cost strategy
that is able to measure TCO, enabling the right short-term and long-term cost
trade-offs to be made.

Interview with an Industry Expert | 403

CHAPTER 10

Sustainability in Serverless

Let everything you do be done as if it makes a difference.
—William James

Before you start reading this chapter, think about or write down three things related
to your understanding of sustainability.

While speaking at a serverless conference in Europe, I (Sheen) asked the audience
what sustainability meant to them. Their answers were:

• Having a green environment•
• Reducing carbon footprint to ensure a sustainable future for our planet•
• Using natural resources sensibly so that they can be replenished•

A university researcher was traveling to developing countries to collect data for her
work, which required visiting remote villages and interacting with various people
from local communities. Here is what some of them said to her about their under‐
standing of sustainability:

• Fetching drinking water from afar is a daily struggle. Every day will be good if•
there is a sustainable way to bring water close to our dwellings.

• Access to hospitals and medical facilities to lead a healthy life for human families•
and livestock.

• We need support to run our local school, so our children and future generations•
have better life choices.

405

A news reporter was making a documentary on how the COVID-19 pandemic had
affected people’s family lives and what sustainability measures they thought were
necessary. Their responses were varied. For example:

• A mother of three young children said the pandemic lockdown taught her to•
consider financial sustainability for her children’s education, holidays, and future.

• A teenager completing her high school education said she wanted people•
to adopt a healthy lifestyle with respect to food, commuting, recycling, and
activities.

• A young software engineer who worked from home for almost three years during•
the pandemic said he would like to reduce the number of days he drives to work.
He thought it would help him lower his carbon emissions, be financially better
off, live a healthier life, and be more environmentally responsible.

Compare your thoughts on sustainability with those of these fellow humans—are
they aligned, or different?

One theme you might have noticed is that although many of us relate sustainability
to the environment we live in—the green energy initiatives and other similar meas‐
ures—when you get closer to people from different socioeconomic backgrounds, the
answers vary.

All answers are correct and related to each person’s lived experience. Chapter 1 dis‐
cussed how the Earth’s surface can be considered as a series of connected ecosystems.
We are all interconnected in one way or another on our planet, and our ideas about
sustainability, however varied they may be, have a common goal.

This chapter looks at sustainability from the serverless technology point of view. It
examines how sustainability connects with the serverless ecosystem and its impact on
how we build serverless applications and operate them in the cloud.

So, What Is Sustainability?
Let’s start with a generic definition of sustainability, not associated with any particular
context:

The ability to keep something going for a prolonged period by nurturing it with a
continuous provision of nourishment to ensure its growth and existence.

It gets specialized definitions and meanings when associated with our planet, society,
economics, industrial processes, technology, transportation systems, and so on.

406 | Chapter 10: Sustainability in Serverless

The Three Pillars of Sustainability
In 1983, the Brundtland Commission was formed to unite countries on sustainable
development. In 1987, it published its report, “Our Common Future,” and gave a
standard and easily relatable definition of sustainable development:

Sustainable development is the development that meets the needs of the present
without compromising the ability of future generations to meet their own needs.

The commission also identified three pillars or dimensions of sustainable develop‐
ment, as shown in Figure 10-1: social equality, environmental protection, and eco‐
nomic growth.

Figure 10-1. The three pillars of sustainable development

Though they are shown here as distinct components, they overlap with dependencies
between them—environmental limits, for example, are the primary constraint for
social and economic growth.

The Brundtland Commission was previously known as the World
Commission on Environment and Development, a suborganization
of the United Nations. It was named after its chairperson, Gro
Harlem Brundtland, the former Prime Minister of Norway and a
champion of public health.

The UN Sustainable Development Goals
In 2015, the United Nations General Assembly (UNGA) formulated its set of 17 Sus‐
tainable Development Goals (SDGs) as “A shared blueprint for peace and prosperity
for people and the planet, now and into the future.” These goals are interlinked and
touch every aspect of human life and the environment on this planet. For each one,

So, What Is Sustainability? | 407

https://oreil.ly/L4Cur
https://sdgs.un.org
https://sdgs.un.org

8 to 12 targets were identified and up to 4 indicators were defined to measure the
progress of reaching each target.

The 17 SDGs are:

1. No poverty1.
2. Zero hunger2.
3. Good health and well-being3.
4. Quality education4.
5. Gender equality5.
6. Clean water and sanitation6.
7. Affordable and clean energy7.
8. Decent work and economic growth8.
9. Industry, innovation, and infrastruc‐9.

ture

10. Reduced inequalities10.
11. Sustainable cities and communities11.
12. Responsible consumption and pro‐12.

duction
13. Climate action13.
14. Life below water14.
15. Life on land15.
16. Peace, justice, and strong institutions16.
17. Partnerships for the goals17.

That’s a rather big-picture view of sustainability. So how does serverless fit in? Let’s
take a look.

Why Is Sustainability Thinking Necessary in Serverless?
The scale of cloud operation is beyond most of our imagination. When consuming
cloud services, as an end user or value-added reseller, you only see the face of those
services: APIs, functionality, service limits, etc. Most of us never get to take a deeper
look at their operation.

Take, for instance, the hugely popular, highly successful, and exceptionally efficient
Amazon DynamoDB—the NoSQL data store as a service from AWS. In any given
Region, thousands of organizations and software engineers work with millions of
DynamoDB tables to store anywhere from a single data item to trillions of items.
You may work with its APIs to create, read, update, and delete items in a table—the
popular CRUD operations. Beyond that, you may configure its various options for
scaling, data retention, streams, replication, etc. But have you ever stopped to imagine
the sheer scale of computer resources that must be available to continuously provide
such a mammoth service?

Now, multiply that by the number of AWS Regions around the world (at the time
of writing, there are 32, with 102 Availability Zones). Add to that other data store
services available from AWS—S3, Redshift, Aurora, RDS, etc. Then, add the resources
that are in operation to support the functionality of all the other services from
AWS across all of those Regions—Lambda functions, message queues, event streams,
machine learning, AI, logs, reporting, and so on.

408 | Chapter 10: Sustainability in Serverless

And that’s just AWS. Now picture the same for every other cloud provider and the
hundreds of services each one operates. That gives you a glimpse of the scale of
the cloud operation that supports and influences our daily lives in so many ways.
Because it’s so vast, to understand its impact on the environment and equip you to
think sustainably in serverless, we’ll start by breaking it down into its three main
components.

The Three Elements of the Cloud
Chapter 1 briefly mentioned the three main elements of the cloud:

Compute resources
The computing power behind the machines that execute the program instruc‐
tions

Storage resources
The myriad data stores and different storage media types where near-infinite
volumes of data are stored as bits

Network resources
The cables that wrap the Earth to take those bits, transport them, and deliver
them to your fingertips

When you look at an AWS cloud data center, located in a specific Region and
Availability Zone, the racks of equipment spread across acres of enclosed buildings
primarily provide these three elements. We consume their interplay as cloud services,
including managed services for our serverless applications.

A key element of the sustainability of the cloud is that the cloud infrastructure is
securely shared across users, which enables the cloud providers to make very efficient
use of it in a way that individual users or organizations cannot. Nevertheless, it takes
energy to move data across the network, store data on and retrieve it from disks,
or get your Lambda function to perform what it’s programmed to do. Every action
requires electric power. If you stop to think about this, you can begin to understand
why environmental sustainability is hugely significant to cloud operation, and thus to
serverless.

The Serverless Sustainability Triangle
As is always the case with software development, building applications using server‐
less technologies goes through certain phases, such as the inception of an idea,
analysis, design, implementation, and operation in the cloud. The techniques you
apply and the processes you follow in each phase may be different in serverless, but
the underlying ideas are the same.

Why Is Sustainability Thinking Necessary in Serverless? | 409

In a similar way to how we broke down the three main elements of the cloud, if you
partition serverless development, you have the products you build, the processes you
follow during the development lifecycle, and the cloud where you deploy and operate
your applications. When you place sustainability at the center of your serverless
development, you can relate its meaning to all of these. Figure 10-2 depicts these
three areas as a sustainability triangle. It shows how sustainability adoption is central
to serverless solution development.

Figure 10-2. The serverless sustainability triangle

In the sustainability triangle:

• Sustainable products (serverless applications) are long-lived, garnering maxi‐•
mum benefits over a long period.

• Sustainable processes are the principles and practices that guide you in develop‐•
ing sustainable products.

• The cloud (the operating platform where your application runs) implements•
environmental sustainability measures.

The subsequent sections expand on the parts of the serverless sustainability triangle
with guidelines and best practices to equip you for your sustainability journey in
serverless.

410 | Chapter 10: Sustainability in Serverless

Building Sustainable Serverless Applications
In this section we’ll explore what it means to build a sustainable serverless applica‐
tion. The first point to make is that a distinction can be drawn between maintaining
and sustaining an application. Maintaining an application as what you do when it’s
nearing the end of its life, and you’re just making the essential fixes and patches
needed to keep the lights on (KTLO). This corresponds roughly to what legacy
applications of the past went through with the waterfall development process, as
shown in Figure 10-3: products would get released after being in development for
months or years, and once released, most of their development activities would cease.
Often, a dedicated team would then be responsible for basic KTLO maintenance
tasks.

Figure 10-3. The different phases in the waterfall software development lifecycle

With the modern agile, incremental, and iterative development model of serverless
applications, you do not spend months developing the product’s first iteration.
Instead, a stream-aligned engineering team quickly delivers a minimum viable prod‐
uct to customers, then iterates fast to add more features. The same team carries out
any necessary fixes while adding new functionality. Rather than KTLO, the team’s
motivation is to nourish the product to sustain it to last longer, as illustrated in
Figure 10-4—the longevity of the application is the ultimate goal.

Figure 10-4. The modern agile and incremental way of developing serverless applications

Sustainability in the context of serverless applications refers to building the applica‐
tion in such a way that it has a long lifespan and is continuously nourished with new
features to cater to unique and evolving customer needs and business demands. This
maximizes the value of the resources used, and avoids wasting resources on obsolete
products.

Building Sustainable Serverless Applications | 411

How Do You Identify Unsustainable Serverless Applications?
There is no simple, single measure to easily categorize an application as sustainable
or not. Growth-oriented organizations are constantly changing, adopting new tech‐
nologies, development patterns, and practices; launching new products; and reaching
new markets. The pace of technical advancements in cloud and serverless computing,
APIs, machine learning, and other fields disrupts the status quo of many enterprises.
Keeping up requires a radical rethinking of business domains, boundaries, team
structures, and application ownership.

When a team of engineers become the new custodians of an application and begin to
understand its architecture and implementation, if you witness any of the emotions
shown in Figure 10-5, you know it is a challenging product to sustain.

Figure 10-5. Emotions when engineers analyze or start working with an unsustainable
application

Unsustainable applications are not always characterized by the use of legacy technol‐
ogies. In most cases, it is about how the technology has been used to architect and
develop the applications.

The following terms are common in the industry when describing unsustainable
software:

Big ball of mud (BBoM)
This is a system that lacks any coherent, understandable architecture; growth is
unregulated, dependencies abound, and there is no clear separation of concerns.
Many legacy monolithic applications fall into this category, due to years of
negligence and a large number of accumulated fixes and hacks.

Lasagne architecture
As briefly mentioned in Chapter 3, this is an antipattern of layered architecture
where there are too many layers, each depending on the one beneath it in the
stack.

412 | Chapter 10: Sustainability in Serverless

Spaghetti code
Spaghetti code refers to unstructured and tangled code with a high degree of
hardwired dependencies, making it difficult to modify or extend the software.

Ball of serverless mud (BoSM)
The BoSM is proof that even using modern technology, you can still build
unsustainable applications, as shown back in Figure 2-2 (see “Serverless is not a
silver bullet” on page 39).

Characteristics of a Sustainable Application
Once, someone asked Dr. Werner Vogels, CTO of Amazon.com, how we should
think differently about software development. He replied, “Your software needs to be
operated for decades longer than it took you to write it. Keep that in mind.”

As you have learned in this book, a serverless application has many characteristics—
security, scalability, and high availability, among other things. But the three most
important aspects of a sustainable serverless application are:

• Modularity•
• Extensibility•
• Observability•

These characteristics are vital to the architecture, design, development, and operation
of serverless applications, as described in the following sections.

Modularity
The concept of modularity in software is not new. Engineers have been thinking in
modules for decades, grouping program code as packages, modules, and libraries
in a way that promotes code sharing and building layered applications. Chapter 3 dis‐
cussed how to bring modularity into serverless applications and build microservices
as set pieces.

To build modular serverless applications, you must think in terms of:

• Domains, subdomains, and bounded contexts, as explained in Chapter 2•
• Independent and loosely coupled smaller microservices, as you saw in Chapter 3•

The rewards system shown in Figure 3-34 (see “Applying set piece thinking in server‐
less development” on page 121) is an example of a modular event-driven application.

Building Sustainable Serverless Applications | 413

Extensibility
As highlighted in Chapter 1, incremental and iterative development is a winning way
of building modern applications, where teams start small with the minimum viable
product and evolve it into a maximum value product. To evolve a product, you need
to extend it from its current state into a feature-enriched future state. Extensibility is
thus a vital characteristic of a sustainable serverless application.

Chapter 3 demonstrated how asynchronous communication and event-driven com‐
puting enable microservices to remain loosely coupled and thus make a serverless
application extendable; Figure 3-35 depicts an extended version of the modular
application architecture shown in Figure 3-34.

Observability
You should start thinking about observability measures during the architecture and
design phases and continue into development and operation. If you cannot observe
your application, you do not know how to nourish it to enhance its longevity (i.e.,
make it sustainable).

As detailed in Chapter 8, the three main ingredients of an observable application
(often referred to as the three pillars of observability) are:

• Structured logs•
• Distributed traces•
• Measurable metrics•

Now that you’re familiar with the main characteristics of a sustainable serverless
application, you can apply the principles and practices described in Chapters 2, 3, 6,
and 8 in your serverless development. When you build serverless applications, think
of the engineers who will inherit your applications and nourish them in the future to
add more business value. It is your responsibility to make them sustainable.

Development Processes and Practices
That Promote Sustainability
When developing a sustainable serverless application, you must pay attention to the
following three key elements:

People
Both the producers and consumers of a product

Processes
The principles and practices that enable you to build the product

414 | Chapter 10: Sustainability in Serverless

Products
The cloud services you consume to build your product

Discussion of processes always creates some apprehension among engineers, due to
the fear of learning new things or disrupting existing practices. Engineers will also
need to shift their mindset to think about and accommodate new nonfunctional
requirements and consider sustainability measures.

Follow Lean Development Principles and Reduce Resource Waste
Value stream mapping is a popular lean exercise that allows software development
teams to optimize their delivery processes by identifying waste in the product lifecy‐
cle. A value-stream map visually represents the critical steps in a process, showing
the time taken at and between each stage and the outcome. Figure 10-6 shows a
simple value-stream map of the journey of a feature from the point of code commit to
release in production.

Figure 10-6. Value-stream map of a software change from development to release in the
production system

In this figure, the value-add time is the duration of each activity. For example, it
took three days for an engineer to make the code changes and commit them to the
repository. The waiting time is the duration between the phases. For example, the
release candidate was not created until two weeks after QA was completed. This
two-week period is wasted time for the business.

From a sustainability point of view, the waiting time between the phases is a concern.
Generally, the resources used for each phase (compute, storage, network) are kept
active until the pipeline moves to the next phase. This means the resources used for
QA will remain active for two weeks longer than necessary, while waiting for the
release candidate to be created. During this time, they will be consuming energy and
adding to the overall carbon footprint.

Development Processes and Practices That Promote Sustainability | 415

Lean Software Development
Lean software development is an adaptation of the lean manufacturing principles of
the Toyota Production System. As part of the Agile software development methodol‐
ogy, it is widely followed across the software industry. The seven principles of lean
development are:

1. Eliminate waste.
Complete just the required functionality, reuse artifacts, and reduce development
waste.

2. Amplify learning.
Create a continuous learning and knowledge-sharing environment.

3. Decide as late as possible.
Committing late enables you to gain more clarity on the problem and thus to
make better decisions.

4. Deliver as fast as possible.
Make a humble start, but quickly iterate incrementally to deliver features faster.

5. Empower the team.
Create a collaborative environment based on trust and ownership.

6. Build integrity in.
Follow appropriate architectural patterns and development practices, such as
continuous refactoring.

7. Optimize the whole.
Optimize the entire software system, not just its individual components; pay
attention to the interactions.

Start from a Simple Set of Requirements and Scale Fast
We’ve talked a fair bit about the benefits of the incremental development approach
in serverless. It’s a low-risk, “fail fast, learn faster” approach where you start simple
and make decisions late, allowing you to assess and improve in every iteration
(Figure 10-7).

Incremental development and delivery is a good fit with serverless because many of
the managed services you consume to compose your application are pay-per-use and
provisioned on-demand. You don’t need to make up-front resource commitments
beyond what is necessary for your application at each iteration. This is cost-effective
and benefits cloud sustainability due to optimal resource and energy consumption.

416 | Chapter 10: Sustainability in Serverless

https://oreil.ly/n5iBF

Figure 10-7. The Agile methodology of incremental, iterative development (source: adap‐
ted from an image by Pacific Research)

Automate Everything Possible
Automate everything you can, from testing to code deployment pipelines, observing
your application, and remediating issues. Automation is the core of serverless devel‐
opment and operation (DevOps). In addition to improving development velocity,
reducing resource waste is another crucial benefit of automation. Tasks that rely on
manual intervention add slack to the overall duration of your deployment pipeline,
as shown in Figure 10-6. Adding automation to your development process can help
improve the value stream by reducing waiting time.

Automation can also be used for provisioning the right-sized cloud resources at the
time of need and decommissioning them soon after they have served their purpose—
tasks like deleting stale data, cleaning up logs, and removing unneeded data stores
(even if they don’t cost you anything) all have sustainability benefits.

Rethink the Throwaway Prototypes of the Past
Every software engineer builds prototypes during their career. It’s a great way to
experiment with your ideas and prove the concept before making it real. In the past,
prototypes and proofs of concept (PoCs) tended to be quick and hacky, minimalistic
implementations intended just to showcase the suitability of technology or ideas.
They were used to get buy-in from stakeholders, then typically abandoned or deleted,
as they held no value beyond that unnecessarily specific purpose.

Development Processes and Practices That Promote Sustainability | 417

https://oreil.ly/6hUeX

You can develop a different mindset when working with cloud and serverless technol‐
ogies. As shown in Figure 10-8, the cloud resources you consume are the same across
your different environments or stages: dev, test, QA, UAT, sandbox, performance,
prod, etc., are simply logical separations. You work with the same cloud services in
your development account that serve customers in your production account.

Figure 10-8. Cloud accounts are logical separations and groupings of cloud resources
with the same physical characteristics

With some up-front thinking and planning (and depending on the nature of the
prototype), you can build your prototypes in a way that enables you to evolve them
from minimum viable products to maximum value products. This is known as evolu‐
tionary prototyping. With a throwaway prototype, you waste engineering hours and
increase the amount of service churn by repeatedly provisioning and removing cloud
resources. Evolutionary prototyping maximizes the efficiency of your resource use.

Nurture Your Serverless Engineers
To effectively implement sustainable serverless applications by following
sustainability-enabling processes, you need a pool of talented engineers who under‐
stand your enterprise’s goals and have the right attitude to accomplish them. In
Chapter 2, we discussed how to nurture serverless engineers with the necessary
support and encouragement.

Establishing a sustainable team of serverless engineers in your organization takes
time, requires much effort, and is a long-term investment. How quickly you can
grow serverless engineers and establish expert teams depends on your organizational
structure and culture. However, it’s well worth it, as by doing so you cultivate and
sustain talents that share your sustainability goals.

418 | Chapter 10: Sustainability in Serverless

Sustainability and the AWS Cloud
Chapter 2 stressed the importance of considering your cloud provider as a partner
and working together with them to optimize your consumption of their cloud serv‐
ices for the betterment of your business. AWS provides numerous services, tools, and
best practice guides that you can use to achieve your desired goals. It even offers
direct assistance in some areas, such as event management and architecture review.
However, in most cases it’s up to you to use these resources appropriately. Cloud and
serverless security is a good example: when you develop serverless applications, you
must use the provided services correctly and apply the required security measures in
your application. The responsibility here is shared between AWS and you. (Chapter 4
discussed this topic in detail.)

Like security, achieving your sustainability targets for the cloud is a shared responsi‐
bility between AWS and you. As a sustainability-conscious cloud consumer, your
goal is enabling your organization to fulfill its sustainability promises by reaching its
sustainability targets. As a sustainable cloud provider, AWS aims to equip you with
the tools you need to reach this goal.

While working for AWS, Adrian Cockroft, technology strategy advisor and a pioneer
in sustainability measures, proposed the shared sustainability responsibility model,
depicted in Figure 10-9:

• AWS is responsible for the sustainability of the cloud.•
• You are responsible for the sustainability in the cloud.•

Figure 10-9. The shared sustainability responsibility model recommended by AWS

Sustainability and the AWS Cloud | 419

https://oreil.ly/CkCKG

Depending on the nature of the business domain and the types of serverless applica‐
tions you develop and operate, there are various patterns and best practices covering
different areas that you can use as guides. For example, if your application processes
a high volume of data, sustainability patterns and practices specific to handling and
storing data will be significant to you. The following section presents implementation
patterns for different areas of the serverless development cycle.

Implementation Patterns and Best Practices
for Sustainability
In terms of patterns and practices, there are four distinct areas you can focus on for
sustainability as part of your daily consumption of cloud services:

1. User behavior1.
2. Software architecture2.
3. Data and storage3.
4. Development and deployment4.

The following sections discuss each of these in detail.

User Behavior
When you release a new feature, you assess how your consumers use it so that you
can identify issues and make enhancements quickly. With sustainability thinking, you
must add measures to align with your sustainability goals as well.

For example, suppose your customers use the application during regular office hours
in a particular region. In that case, you do not need to run all the cloud resources
during out-of-office hours. You plan to be efficient in resource consumption, which,
in turn, enables energy efficiency. This section presents you with best practices based
on the usage of your applications and the consumers’ behavior.

Serverless-first thinking is the first and foremost user behavior
pattern for sustainability in the cloud.

Understanding consumer demand
Observability is a key characteristic of a sustainable serverless application. The sur‐
vival of your application and the value it brings to your business depend on how
visible its functioning is. Knowledge of the usage of your application is a key factor

420 | Chapter 10: Sustainability in Serverless

that forms the basis of your contribution to sustainability in the cloud. Here are some
best practices surrounding consumer demand:

Use the minimum resources necessary to meet the demand.
The managed cloud services have built-in elasticity to scale on demand. You
do not need to overprovision resources as the platform will scale up and down
depending on the demand.

Remove expired customer content promptly.
In several situations, your application uses data for operational purposes and it
is not needed in the long term. To reduce your storage consumption, you should
remove any customer content that you’re storing when it is no longer needed for
business purposes.

“Data and Storage” on page 426 explains the sustainability best practices for
handling data in detail.

Scale as per the service level agreement, and not over.
Chapter 1 briefly mentioned optimizing your application for sustainability. Tra‐
ditionally, scaling and optimization techniques have focused on the cost and
performance of an application. With sustainability as the third element, you need
to balance the trade-offs between them carefully.

The general rule of thumb is that if you optimize for cost, you will likely favor
sustainability as your application will consume fewer resources. However, if you
scale to target the highest performance factor, you will likely consume more
resources than you need to meet your application’s SLA.

Planning for high-traffic events
A key area in which you will benefit from working with AWS as partners is in
preparing to face business-significant occasions such as high-sales events (like Black
Friday), new product launches, the opening of ticket sales for a popular event, the
release of a much-awaited movie trailer, and so on. Some events happen globally, and
others are regional. Either way, there is a huge amount riding on your organization’s
ability to handle these crucial events well—the implications are not only financial, but
extend to brand value and customer trust.

AWS Infrastructure Event Management (IEM) is a support option
included with the Enterprise Support plan and available as an extra
to Business Support customers. IEM “offers architecture and scal‐
ing guidance and operational support during the preparation and
execution of planned events, such as shopping holidays, product
launches, and migrations…. [It] will help you assess operational
readiness, identify and mitigate risks, and execute your event confi‐
dently with AWS experts by your side.”

Implementation Patterns and Best Practices for Sustainability | 421

https://oreil.ly/uDq9B

While the focus is primarily on the business, you must also consider the sustainability
impact of such high-impact events. You can share your organization’s sustainability
ambitions and goals during event preparations with your AWS technical account
manager (TAM) to get advice and actionable steps. Here are a few key points to keep
in mind:

Collect and study historical metrics.
For many enterprises, special events are a recurring thing. You may have a
monthly new product launch event, or seasonal sales. As you and your team gain
experience, you’ll be able to prepare for many of these events yourselves without
needing the support of AWS. A practice that builds confidence and equips you
to do so is the creation of a record of metric data from previous and historical
events. You can quickly extrapolate to identify new measures based on past data
and current business ambitions.

If your organization has multiple domains and teams, event planning may hap‐
pen within specific domains or product areas. As there will be several teams and
AWS accounts working separately, it becomes the task of a platform or enabling
team to coordinate with everyone to collect the relevant details and identify
representatives as necessary.

Provision extra resources just for the events.
A primary benefit of infrastructure event management is identifying the critical
applications and services that will bear the brunt of the event traffic. This in turn
enables you to identify the relevant cloud services and resources that require
attention.

For instance, the global pre-launch of a new product by an online retailer exclu‐
sively for account holders would require the customer account microservice to
handle a very high volume of user sign-in activity. If API Gateway, Lambda, and
Cognito are the primary AWS services used by that microservice, you can plan
for provisioning the resources where necessary. To meet the goal of sustainability,
you should aim to provide extra resources for the duration of the event but avoid
keeping them in a ready or running state for longer than necessary.

Taking services closer to the customers
As explained earlier, networking is a crucial element of the cloud, along with comput‐
ing and storage. As data moves from one application to another, one account to
another, or one region to another, all three main elements of the cloud must work
together. As you know, network resources consume energy and have a potential
environmental impact. Hence, the recommendation is to limit data movement where
possible as you serve your customers. Here are a few best practices to keep in mind:

422 | Chapter 10: Sustainability in Serverless

Deploy services close to customers to avoid network round trips.
The advice here is simple, but as you can imagine, the implementation of it is
more complex than it may sound. Analyzing and identifying the requests for data
that you receive and the types of data you can move closer to your users is vital.

Some of the challenges you may face include:

• There is a legal requirement to keep your customer or account data in one•
Region. However, you have neutral content, such as product details, that
has no restrictions and is ideal for keeping closer to the customers, in their
Regions.

• You want to store customer data in a Region close to your customers, but not•
all of the cloud services you use may be available in that Region.

Data ingestion and processing is an area that causes sustainability concerns due
to the sheer volume of data moving across the network. The best approach is to
process the data close to where you collect it so you can run data analytics and
capture business insights before transferring the results to your main account
after discarding the unneeded data.

Cache frequently accessed content at the edge.
Caching frequently accessed and static content, such as videos, images, reports,
etc., at edge locations worldwide to bring it closer to users is a common and
popular pattern.

AWS services such as CloudFront, ElastiCache, and Lambda@Edge suit this
purpose. You can also employ API response caching and database caching, such
as DynamoDB Accelerator.

While working to reduce the environmental impact of your
operations in the cloud, it’s important to also assess the cost
implications to your business. Some of the caching options are
expensive in comparison to others. For example, Amazon API
Gateway caching is charged by the hour, and for heavily used
and data-intensive API endpoints that require a large capacity,
the cost can be higher.

Operate your workloads in AWS Regions that run on green energy.
AWS has set a goal to power all its Regions with 100% renewable energy by
2025. At the time of writing, several AWS Regions, including many in the US and
Europe, already operate on 100% renewable energy.

While choosing a green AWS Region to operate your workloads sounds like
the right thing to do to promote a sustainable environment, other factors can
influence your decision. Depending on the types of applications you operate,

Implementation Patterns and Best Practices for Sustainability | 423

https://oreil.ly/mrvtn

the customer base you serve, and the location of your business, you may have
government and industry regulatory compliance measures to consider that affect
your choice of Region. For example, you may have a regulatory requirement
to keep customer data within a particular country or continent, and this may
preclude choosing a Region that runs on green energy.

Another factor is the availability of the AWS services and features you require
to develop your serverless applications and operate them in the Region of your
choice.

You can follow Amazon’s latest sustainability developments on
its dedicated sustainability site.

Software Architecture
You’ve already learned a great deal about serverless architectures, patterns, develop‐
ment, and operating practices in this book. In this section, we’ll explore how they are
relevant to promoting sustainability in the cloud by looking at some best practices.

A decoupled event-driven serverless application composed of man‐
aged cloud services is a step closer to being environmentally
friendly.

Prefer reactive and event-driven microservices
Chapters 3 and 5 discussed the microservices architecture and several implementa‐
tion patterns to consider while developing serverless applications. By using event-
driven architecture and push event notifications, you can design your system for
eventual consistency and avoid scheduled polling of services, reducing traffic and
optimizing the consumption of cloud resources.

Imagine an online shopping site that takes up to 10 seconds to
process your payment and successfully place your order. The front‐
end application repeatedly polls the backend every second to find
the status. An example architecture depicting this scenario was
shown in Figure 3-25, in “Synchronous Communication” on page
112. Every time it polls the API, the application makes a network
round trip call. You can eliminate this non-sustainability-friendly
operation with an event from the backend to notify the application
when it has the final status of the order.

424 | Chapter 10: Sustainability in Serverless

https://oreil.ly/sHz7K

Optimize data queries to fetch just the required data
There are various forms of data, and data stores cater to these diverse needs. Con‐
sequently, the data storage and access patterns differ. A common mistake many
serverless engineers make is not spending enough time understanding the data access
requirements and patterns of their applications. If you optimize your data operations
and prevent over-fetching of data, you will save on computing and network costs.

Use queues to buffer requests and smooth workloads
If your application experiences unpredictable traffic spikes, planning and provision‐
ing the required extra resources can be challenging. For example, if you set the
Lambda provisioned concurrency level too high, you’ll end up wasting resources
and incurring unnecessary costs. In such situations, you must identify and separate
synchronous and asynchronous operations.

To deal with a spike in an asynchronous operation, you can buffer the extra requests
into an SQS queue or Kinesis data stream and process them with the resources
already provisioned without demanding more from AWS. As AWS optimizes the
use of resources in a sustainable way, you are making your workload promote the
sustainability of the cloud.

Employ throttling with usage quotas to control traffic flow
In a synchronous request flow scenario, you can control the handling of unexpected
spikes by configuring the request quota and throttling limits to maintain a steady rate
of request flow.

With Amazon API Gateway, you can configure usage plans and quotas for each API
consumer. In addition to the sustainability benefits, this protects your application
from DoS attacks.

Before you set a throttling limit on an API, ensure the API clients
can resubmit the throttled requests to prevent losing critical data.
Alternatively, you can buffer the API requests into a queue and
process them steadily.

Delete unused services and resources
There are two main reasons why neglect of unused resources is common. First, as
many managed services are pay-per-use and cost you nothing when idle, you do
not see them impacting your monthly cloud bill. The second reason is the speed of
high-performing teams. As teams keep delivering new features, they don’t set aside
time to audit their serverless stack and cloud resources and weed out resources that
are no longer needed.

Implementation Patterns and Best Practices for Sustainability | 425

You may have more abandoned resources in your non-production environment than
in your production environment. Say you have a DynamoDB table created for a
PoC. As the table contains no data and is unused, it costs you nothing. However,
the DynamoDB service still maintains the details of your table and the disk space.
Multiply that by millions of such abandoned tables across different AWS Regions,
and you can gauge the scale and sustainability impact.

The use of serverless services such as Lambda functions makes your non-production
environments more sustainable when compared to running containers. These envi‐
ronments are mostly active only during the engineers’ working hours.

Run batch jobs during a low energy consumption period
Nightly batch jobs that perform data consolidation, engineering analysis, business
analytics, payment settlements, and other tasks are common in many organizations.
Working with AWS, identify the quieter periods in your cloud Region and schedule
your batch jobs during those hours. Batch jobs usually have a predictable load and are
ideal for provisioning resources in an efficient way.

Data and Storage
Data drives our lives in the modern digital world. Data-driven has become a common
term in boardrooms—data-driven decisions, data-driven marketing, data-driven
design, data-driven culture, data-driven thinking, data-driven mindset, etc., are some
of the many variants you may hear.

Every time you share data, you initiate countless data operations via the digital equip‐
ment you hold. Capturing, storing, and processing data requires cloud computing,
storage, and network capabilities, and these resources consume energy. As data trav‐
els through the vastness of the cloud, it leaves a carbon footprint in our environment.
Hence, for a sustainable serverless application, it’s essential to think about and care
for your data.

In many organizations and teams, data is commonly overlooked and forgotten once
it has served its purpose. Unless the storage services are expensive enough to make a
dent in your monthly cloud bill, engineers become casual with data.

426 | Chapter 10: Sustainability in Serverless

If the data you consume is not valuable or you do not need a piece
of data, don’t store it.

Propagating data retention requests
When you work with a distributed event-driven microservices architecture where
data ownership is isolated to individual microservices, aligning data lifetime across
the application is challenging. If you hold on to the data longer than is necessary,
it violates sustainability principles. If you delete it too soon, failures are likely when
the services coordinate to perform a distributed task. Word of mouth, email, chat
messages, and design documents are common approaches teams adopt to propagate
data retention dependencies. In an event-driven architecture, you can use events to
carry such information. When you emit a domain event, if the event has data signifi‐
cance, you can add data retention indicator attributes to reflect these details, as shown
in Example 10-1. The applications that subscribe and react to these events can use
these indicators to align their data retention policies. (Make sure the recommended
data retention value aligns with legal and regulatory requirements!)

Example 10-1. A sample event that contains attributes to specify the data retention
mandate

{
 "detail": {
 "metadata": {
 "version": "1.0",
 "domain": "PAYMENTS",
 "service": "payment-authorization",
 "category": "domain-event",
 "type": "data",
 "retention_period": 28,
 "retention_unit": "day"
 },
 "data": {
 // payment authorization data
 }
 }
}

Implementation Patterns and Best Practices for Sustainability | 427

Data lifecycle
The sheer volume data we produce and consume in the modern digital world is
beyond what our brains can imagine. Just imagine the working of the famous flight
tracking service Flightradar24. It maps every operating flight across the globe, as
shown in Figure 10-10, at any point in time and shows each one’s movement at
frequent intervals. To provide such a unique experience, it collects and processes data
from multiple satellites, radars, airlines, airports, etc.

Figure 10-10. A map of all aircraft in operation globally at a particular time (source:
Flightradar24)

As your applications are swamped by more than they can digest, you need policies
and adequate processes as part of the data lifecycle, as shown in Figure 10-11. You
often hear businesses equate digital data to gold. The key difference between the data
gold and the real gold is that not all digital data remains gold forever. Once the data
has been processed and the insights extracted, much of it turns into data dust that
is useless to anyone. If you neglect it and don’t deal with it in time, the dust settles
and slowly forms data-waste dunes that offer no value—but they do have a cost to the
business, and crucially, they pose a hazard to a sustainable environment.

428 | Chapter 10: Sustainability in Serverless

https://oreil.ly/P0Y-o
https://oreil.ly/sNoob

Figure 10-11. A typical data lifecycle, from creation to destruction (source: adapted from
an image on the Blancco website)

Sustainability patterns for data and storage
As data goes through its lifecycle, you can apply patterns and practices at every phase
to aid sustainability in the cloud. The following sections provide some tips.

Select a suitable data store for your data and access patterns. As mentioned in Chapter 1,
there are many types of databases available (object storage, key/value, relational,
document, graph, etc.). Each type has its purpose, and choosing the right one based
on its fitness for your purposes is key. By offering various data storage services, AWS
has already optimized operations on several factors, including sustainability. It is your
responsibility to choose the right one and avoid getting into a “square peg in a round
hole” situation.

Amazon S3 is a high-performing object store. It is not designed
to operate efficiently with structured data and perform the data
operations you normally do in a relational database.

Implementation Patterns and Best Practices for Sustainability | 429

https://www.blancco.com

Classification of data and tagging. As part of the solution design for your serverless
application, it is a good practice to recognize the data classifications and designate
appropriate tags. You can classify data in your enterprise in several ways, depending
on the context—sensitivity, shareability, secrecy, durability, etc. If you classify data
based on durability, for example, you can assign a retention period specific to each
category instead of keeping all the data for the same duration. Possible classifications
include:

Temporary cache data
Temporary data might include the ephemeral data associated with Lambda func‐
tions, API caching, caches in front of databases, ElastiCache, etc.

Example: A news website could serve a popular article from a cache to avoid
excessive operational load on its backend data store.

Short-term operational data
You may classify the data you store while handling an API request or when
reacting to a domain event in a microservice as short-term data. This data need
not be retained beyond a certain period—typically after the request processing
is completed. Most of the data you store when implementing the storage-first
pattern introduced in Chapter 5 is short-term.

Example: The browsing details of a customer who signs into their account to
purchase a product can be retained within the user session.

Long-term and active business data
This is data that is part of a business operation and holds significant value. Loss
of such data could have severe consequences, such as customer dissatisfaction,
legal problems, regulatory violations, etc.

Active data does not mean the data is constantly accessed and updated, but rather
that it is kept in a state that enables immediate access should a need arise.

Example: If a retail store allows the return of purchased items for a refund for up
to 60 days, the system must keep the order and payment details active for at least
60 days.

Archivable data
As the name implies, archivable data does not require immediate accessibility,
but it carries business and legal importance and warrants you to retain it for a
long period. The transition of a piece of data from its current state to archived
may happen rapidly or after a period of weeks, months, or even years, depending
on your business requirements. The duration for which the data should remain
archived can also vary.

Example: The land registry details of a property must be maintained indefinitely.

430 | Chapter 10: Sustainability in Serverless

Organizations that ingest data from many parts of their busi‐
ness into a data lake or big data platform and make it available
to consumers at the corporate level often operate with differ‐
ent data layers, such as bronze, silver, and gold. The bronze
layer is where all the data-producing product teams send their
data. The silver layer represents the first level of filtered data
from the bronze layer for consumers, and the gold layer is the
further purified data from the silver layer for select consumers.
Such classifications allow enterprises to apply the necessary
data protection and compliance and retention policies.

Removal of unwanted data. Deleting unwanted data is the fundamental activity you
can do as a best practice to aid with sustainable cloud operation—both of the cloud
and in the cloud. Following are some of the common ways to remove data in
serverless applications:

Simple TTL
The simplest way to remove unwanted data is by setting the data expiry period
and letting your managed services do the rest. For example:

• In DynamoDB, you can enable TTL capability on a table and add an expiry•
time value to every item.

• You can configure a lifecycle policy on an S3 bucket to automatically expire•
the data object.

• When you set up a log group in CloudWatch, you can specify the retention•
period.

• You can configure cache expiry at the optimal level for services such as API•
Gateway.

While the main focus is on the primary data stores, you must also consider the
lifetime of messages in SQS queues (including DLQs), Kinesis streams, Event‐
Bridge archives, etc.

TTL with data transition
When a piece of data is accessed frequently, it is considered warm. As the access
frequency drops over a period, it becomes cold. Eventually, it becomes archivable
data that you can transition to an infrequently accessed low-cost storage. For
example:

• When DynamoDB deletes an item via the TTL expiry, you can transition the•
data to a long-term data store such as S3 or Redshift, or to an infrequent
access (IA) table class in DynamoDB.

• You can use S3 lifecycle policies to transition data to infrequent access•
sections or archives.

Implementation Patterns and Best Practices for Sustainability | 431

Scheduled data cleanup
When data stores do not offer automated data removal or cannot be utilized
for some reason, scheduled data cleanup activities become helpful. You can use
EventBridge Scheduler to configure one-time or recurring data removal tasks
by invoking a Lambda function or a Step Functions state machine that initiates,
respectively, a single or a sequence of cleanup actions.

Data transition policies and use of apt storage. As described in the previous section
(under “TTL with data transition”), the transitioning of cold data to less accessed
and low-cost storage types is essential from a sustainability and cost point of view.
For example, an ecommerce application may transition retired product data to cold
storage after a certain period. The data classifications mentioned earlier form the
basis for most data transition actions.

S3 storage lifecycle policies are simple to configure and efficient in
operation.

Reducing high-volume data movements. Data transfer, whether between different appli‐
cations, services, business domains, or regions or across other boundaries, happens
constantly; no application or business operates without moving data from one place
to another. However, there are ways you can limit expensive data movements to aid
sustainability in the cloud. For example:

• You may not require replicating data from your DynamoDB tables to other AWS•
Regions as a global policy. Identify the tables that benefit from being global, and
enable this option only for those tables.

• Check if the DynamoDB tables on which you have replication (the global table•
option) enabled are update-heavy tables. If so, always use the correct data pat‐
terns to limit updates to large datasets.

• Frequently review your data replication policy and audit your data stores (S3,•
DynamoDB, etc.).

Development and Deployment
As you’ve seen, in addition to cost and performance, sustainability is an important
optimization factor for serverless applications. The following guidelines offer best
practices for sustainability in the area of development and deployment:

432 | Chapter 10: Sustainability in Serverless

Automate every possible development and deployment task.
Automation is a core part of modern software development, especially in cloud
and serverless development. It enables optimal use of cloud resources, automati‐
cally provisioning them when needed and deleting them once they’re no longer
required.

Take advantage of new and improved features and services.
AWS frequently introduces new services and improves existing services with new
features and performance updates. Make sure you have processes to evaluate new
features and services and establish their sustainability advantages quickly. One
such process is continuous refactoring, which you will learn more about in the
next chapter.

Vary resource allocation per need and optimization per resource.
You do not provision the same amount of RAM for all Lambda functions.
Instead, you watch the metrics on memory use and configure the resources
accordingly. Likewise, you should examine the tables, queues, streams, logs, etc.,
in each microservice and optimize for sustainability.

Introducing Sustainability in Your Engineering Teams
Corporate sustainability efforts typically start by defining a sustainability promise (to
the organization itself or its customers), setting targets, and devising strategies to
achieve those targets.

Adrian Cockroft (this chapter’s industry expert) classifies organizations into two cate‐
gories: those that operate primarily online—for example, banks and SaaS providers—
and those that operate mainly in the physical world, with warehouse operations,
office space, and large numbers of commuting employees. The former mainly move
electrons around, and have a relatively low carbon footprint. The latter move atoms
around, and their carbon footprint is comparatively high.

When they start thinking about sustainability, it’s common for these organizations
to concentrate their focus on the workplace, procurement, transportation, suppliers,
manufacturing, etc. Their IT departments often take a backseat. But with the scale
of digital operations in modern enterprises, it is of the utmost importance that you
bring sustainability measures to the digital teams. The two essential steps in this
process are:

Awareness
Creating sustainability awareness among the technology teams

Action
Identifying and implementing action items for teams to follow

The following sections present some ideas about how to approach both of these.

Introducing Sustainability in Your Engineering Teams | 433

Sustainability in Technology: Awareness Day
Depending on the working pattern and the spread of your team, you can organize an
in-person or remote workshop and dedicate a few hours or an entire day to bringing
sustainability awareness to the engineers.

In the workshop, you divide your time into four parts, as follows:

1. Introducing sustainability to the team1.
2. Sustainability in technology, the cloud, and serverless2.
3. Sustainability responsibilities in social life3.
4. Sustainability day outcomes, actions, and wrap4.

The outcomes of your sustainability awareness day might include:

• Identifying blockers to adopting sustainability measures in your team•
• Identifying opportunities for your team to engage with sustainability measures in•

development
• Setting up a support system so engineers have a place where they can raise their•

ideas and concerns
• Developing a sustainability community to engage the team, provide them with•

information, and share achievements

After the initial awareness day, it is beneficial to conduct regular sessions for the team
to assess its progress and address blockers. Such meetings are ideal opportunities to
discuss carbon footprint reports, as shown in Figure 10-12, and related sustainability
measures.

Figure 10-12. The AWS Customer Carbon Footprint Tool summarizes the carbon emis‐
sions generated by your use of AWS services

434 | Chapter 10: Sustainability in Serverless

https://oreil.ly/50b2c

Include a section in your solution design document recording all
your thoughts and recommendations about sustainability. This will
help ensure appropriate sustainability patterns and practices are
adopted during implementation.
Refer to Chapter 6 for more on the importance of solution design
and Appendix C for a solution design document template.

Sustainability Focus Areas for Your Team
Determining where a team should focus its sustainability efforts for maximum
impact will be dependent on its domain, type of workload, application specialty,
etc. You may be able to identify specific cloud services where you will be able to apply
sustainability practices.

For instance, suppose you work in a data processing domain where your services
handle petabytes of data flowing through several AWS services and data stores.
Here, your main sustainability focus will be adopting sustainability patterns for data
and storage. Your efforts will likely be concentrated on optimizing your usage of
DynamoDB, S3, and so on.

Alternatively, you might be part of a high-velocity team that performs multiple
daily releases to production. In such an environment several automated pull request,
integration, test, and deployment pipelines will be in progress. One focus area for
this team might be the optimal (and sustainable) use of build and cloud resources in
development, testing/QA, staging, etc.

Sustainability Audit Checklist
Chapter 1 discussed the AWS Well-Architected Framework, which includes sustaina‐
bility as one of its pillars. To apply the Framework’s principles to serverless applica‐
tions, AWS has a Serverless Application Lens that covers the details that are specific
to serverless development. Many teams building serverless applications compile a
checklist based on the best practice recommendations from the Serverless Applica‐
tion Lens and use it as an audit step as part of new service development.

You can create a similar sustainability-focused checklist based on the patterns
and practices described in this chapter. It will guide engineers to familiarize them‐
selves with and apply sustainability thinking as they design and build serverless
applications.

Summary
Sustainability is one of your responsibilities in modern software development.
This responsibility starts with understanding and acknowledging the need for

Summary | 435

https://oreil.ly/4xVds

sustainability thinking and stays with you as you build serverless solutions and
operate them in the cloud. It requires both awareness and action.

We began this chapter by exploring different views and interpretations of sustaina‐
bility, which as you saw are heavily influenced by context. While the sustainable
operation of the cloud has immediate relevance to our planet’s environment and
future, you also learned the importance of building sustainable serverless applications
that can evolve and exist for longer.

This chapter presented several sustainability patterns and practices that you can
apply at your enterprise. Remember, these are guidelines for you and your team to
consider, and they will need to be adapted to your specific circumstances. Many
organizations—big and small—do not consider sustainability principles in software
development as a priority. You can certainly make a difference here. Often, it is the
small things that you do that bring recognizable changes in your workplace.

Interview with an Industry Expert
Adrian Cockcroft, Partner, OrionX
Adrian Cockcroft is best known as the cloud architect for Netflix during its trailblaz‐
ing migration to AWS. He was a very early practitioner and advocate of DevOps,
microservices, and chaos engineering, helping bring these concepts to the wider
audience they have today. Before retiring from Amazon in the summer of 2022,
Adrian spent a few years as a VP at the company, deeply immersed in the dual
challenges of helping Amazon itself—one of the largest companies in the world—and
its enterprise and public sector customers (via AWS, one of the largest technology
suppliers in the world) become more sustainable. He currently works via OrionX.net
as an advisor, consultant, and analyst.

Q: Adrian, you had an illustrious career spanning many decades, contributing to
groundbreaking initiatives. At what point did sustainability awareness happen in
your career, and what was the trigger?

I have a degree in applied physics and electronics, and I’ve been tracking the science
of the climate crisis in detail since around 2006, when the Stern Report on the
potential economic impact of climate change was released. I wanted to help push
back on the orchestrated denial that is documented in the book The Merchants of
Doubt, by Naomi Oreskes and Erik Conway (Bloomsbury Press), and became active
on social media. We also wanted to lead by example; we added solar panels to our
house in 2009 and got our first electric car in 2011.

436 | Chapter 10: Sustainability in Serverless

http://OrionX.net

Q: Though many in the software industry are committed to having a sustainable world, there
is often a gap in adopting sustainability principles and practices as part of the development
process. Why do you think the progress is slow, and what measures do we need to improve
sustainability thinking among software teams?

Sustainability is one of those nonfunctional requirements that people tend to ignore
until it becomes an issue. Secure development practices become a priority after a
cyberattack, and sustainable practices are becoming a priority now that people are
breathing the smoke and fleeing the fires and hurricanes. Disclosure regulations are
spreading around the world, so that large companies will soon have to account for
their carbon and the risk to their business from the climate crisis. The end-to-end
supply chain carbon footprint of both hardware and software needs to be managed
and instrumented. There is a lot of advice out there for software teams to consider.
I contributed to the AWS Well-Architected Guide for Sustainability, and the Green
Software Foundation has published guidance and is developing useful standards like
the Software Carbon Intensity specification.

Q: You have been very vocal about better visibility of the cloud vendor’s carbon footprint and
proposed a real-time carbon footprint calculation standard. What new measures would you
like to see from AWS and other leading cloud providers?

All the cloud providers are doing an excellent job decarbonizing their energy supply
and supply chain. It’s one of the most forward-looking industries in the world, and
they have commissioned tens of gigawatts of renewable energy for their private use.
However, AWS is far behind in transparency, provides lower-resolution information
than other cloud providers, and still needs to disclose Scope 3 emissions and data
center power usage efficiency, which Azure shared in 2021. All the cloud providers
currently provide monthly data, several months in arrears, that is only useful for audit
reports. I made a proposal in March 2023 that led to a Green Software Foundation
project to develop a real-time standard that would be accurate enough to support
development of carbon monitoring and optimization tooling.

Q: The adoption of serverless and the use of managed services certainly promote the
sustainability of the cloud. Due to this, there is a misunderstanding in the industry that
achieving sustainability in cloud operations is solely the cloud provider’s responsibility.
In this regard, what would be your advice to organizations adopting serverless?

We’re already used to sharing responsibility for security, and the same is true for
sustainability. Cloud providers are responsible for the sustainability of the cloud, and
customers are responsible for using the cloud in a sustainable manner. Serverless
moves the maximum amount of responsibility to the cloud provider and dependent
services, but it’s still important to build and operate applications efficiently. Much of
the cost in serverless applications ends up in database backends and logging, so using

Interview with an Industry Expert | 437

good archiving processes and compression to reduce long-term storage capacity can
be helpful.

Q: AWS is on target to power all its Regions with 100% renewable energy by 2025 and reach
net-zero carbon emissions by 2040. In your opinion, what must be the next big focus areas for
AWS on its sustainability journey?

There are three aspects to sustainability. The first is to measure and reduce your
direct emissions and migrate to renewable energy sources, reporting on progress as
you go. AWS is doing well at this aspect. It released an update in mid-2023 that
included a long list of Regions that are now 100% renewable, meaning that AWS
generates and buys as much renewable energy as it uses. This is averaged over the
year using the “market method,” which is also used by Azure. It would also be useful
to report based on the 24/7 hourly “location method” that Google has adopted. Both
methods are needed.

The second aspect is all about supply chains, understanding how sustainable your
purchases are, putting pressure on suppliers to clean up their products, and disclos‐
ing information to your customers. AWS is doing well at working with its suppliers,
but it doesn’t provide the information that its customers need to correctly attribute
and allocate the carbon footprint of their use of AWS to individual products and
their own customers in turn. AWS is several years behind Azure and Google in
providing the level of detail required and needs to focus on catching up. Legislation
that mandates supply chain disclosures is in place in the European Union, and it’s
spreading to other countries.

The third aspect is climate risk measurement and reporting. This includes physical
risk to buildings and communications infrastructure from sea level rise, fire, extreme
weather, and impacted employees. It also includes market risk as high-carbon prod‐
ucts are replaced by sustainable products and stranded assets where insurance is
denied due to the risk. This is a big area that is going to need focus in the future
and has its own legislated reporting rules on the way. For example, AWS states that
it carefully makes sure that Zones in a Region are separated by enough distance
that they wouldn’t fail at the same time. But if a Region has Zones in a high-risk
flood plain or in a “tornado alley,” that is a risk that some customers might need
to understand as they model their own risks. None of the cloud providers have any
climate risk information at present (late 2023), and I think this area is going to need
attention over the next few years.

438 | Chapter 10: Sustainability in Serverless

CHAPTER 11

Preparing for the Future with Serverless

We are just getting started with serverless. It has decades of life in front of it.
—Jeff Barr

Cattle farmers go through calving season every year, when they welcome many newborn
calves. When a calf is born, it gets exposed to an entirely new ecosystem, outside the
comfort of its mother’s womb. Its new home is a vast, complex, crowded, and confusing
world. It needs a good cleanup (by its mother) before its eyes can sense the new
environment.

When you are new to serverless, your experience can be similar to that of a newborn
calf. Technology looks complex; you hear opinionated statements; people argue on
the definition of serverless; you see everything distributed; many things are man‐
aged for you; you get caught in asynchrony, and the world around you becomes
event-driven. You feel like you are drowning in serverless. Chapter 1 of this book
was an attempt to help you open your eyes and see this technology from a clearer
perspective.

Soon, the calf starts seeing things—notably its friends and family members standing on
four legs. Its desire to get up and struggle to stand on its own hooves begins. To overcome
the challenge and accomplish this tiring act, it must rewire its brain and shift its thinking
to see the world around it differently from the stillness of the womb.

The early chapters of the book enriched you with details needed to enable the shift
to a serverless mindset, helping you to see technology differently from legacy ways of
building software applications. From being a programmer siloed in a team churning
out code all day, you become a multiskilled engineer able to compose serverless
microservices using managed services. You learn how to build modular and extenda‐
ble serverless applications that live longer.

439

As the calf stumbles to get up and take its first steps, it learns a crucial life lesson—make
sure you can stand steadily before attempting to walk. Amidst its relentless trials, it
comes to understand that standing steady is more daunting than standing up.

Your initial understanding of serverless often creates a false sense of confidence; you
want to immediately start building everything serverless. To safeguard you from such
mistakes, in Chapter 2, you learned the vital principles of how to structure your
teams and draw service boundaries.

The mother cow is pleased to see its newborn can walk to places to find food and drink.
The calf observes and learns its daily routine. Within days, it becomes autonomous and
operates all by itself.

The foundational ideas around microservices, serverless patterns, and event-driven
architectures you learned in this book will guide you as you start developing, testing,
and operating applications in the cloud. As you build and operate serverless services,
your processes get refined, your optimization strategies become balanced, your cost
awareness gains clarity, and your sustainability thinking sees purpose.

Like the calf comfortably navigating its earthly surroundings, you have developed
the expertise to utilize the serverless technology ecosystem to bring value to your
business faster than before. Alongside this, you now have teams of engineers who
bring new possibilities to your organization with the help of serverless and modern
cloud services. Everyone is thrilled that you are now successfully running serverless!

The crucial question is, for how long and how far?

What do you do if you get tired? How do you recover from exhaustion? How do you
keep up with the evolution of serverless technology? And how do you plan to play the
long game for sustainable growth in your organization?

You will find answers to all these questions and more in this chapter.

Emerging Trends in Serverless
Technology is always evolving, with ceaseless efforts to develop new capabilities to
meet the changing needs of everyone and everything. Chapter 1 gave you the history
of how we got to serverless. But where is it heading? This section examines a few
potential future trends.

The Low-Code and Functionless Promise
The phrase “less is more” can confuse those new to the English language, but its
meaning is beautifully captured in this definition from Writing Explained:

440 | Chapter 11: Preparing for the Future with Serverless

https://oreil.ly/wqVwy

Simplicity is better than elaborate embellishment; Sometimes, something simple is
better than something advanced or complicated.

We all strive to make things simple. The entire serverless ecosystem is based on
that ethos—leave the undifferentiated heavy lifting of server management to the
cloud provider so you have a simplified approach to making sophisticated modern
applications.

During his keynote at the AWS re:Invent conference in 2017, Dr. Werner Vogels
made a bold claim: “All the code you will ever write is business logic.” This statement
baffled many pundits at the time, when serverless was still in its infancy. A few years
later, if you look at the developments in serverless technology, you will appreciate his
foresight.

The principle of enabling managed cloud services to work seamlessly with minimal
or no custom function code is becoming part of the cloud offering. Unlike in the
early days of serverless, you don’t need Lambda functions to act as glue code between
various services, as native integrations between these services fill the gap.

You learned about this in Chapter 5, which discussed the functionless integration pat‐
tern. With AWS adding ever more capabilities to its managed services to encourage
native integrations, the trend of using less function code, or the functionless promise
of serverless, will influence the way you architect and build distributed serverless
applications.

The Renaissance of Event-Driven Architecture
If you’ve read through the chapters on serverless architectures, patterns, and develop‐
ment practices, you should understand the significance of event-driven architecture.
As mentioned in Chapter 3, the event-driven concept is not new. The success of the
GUIs in the early versions of macOS and Microsoft Windows can be attributed to the
concept of event-driven computing and reacting to messages. The Java Swing API for
building user interfaces is also based on event-driven architecture.

So, event-driven computing and event-driven architecture have been with us for
decades. Perhaps their full potential was somewhat masked by how we built legacy
monolithic applications, or the past architectural ecosystems didn’t pay enough atten‐
tion to event-driven concepts. Regardless of what happened in the past, the promise
of event-driven architecture is central to serverless development. Its presence will be
stronger in the future, for the reasons described next.

The role of event-driven architecture in the data economy
Along with the wealth of data handled by modern applications, policies and reg‐
ulations have become stricter, with severe penalties for noncompliance and data
breaches. Chapters 2 and 3 taught you how in serverless, smaller, autonomous

Emerging Trends in Serverless | 441

https://oreil.ly/QY-7Q

teams own services and data within domain boundaries and develop smaller, loosely
coupled microservices. Modern enterprises favor federated data ownership with self-
service data publishing and consumption. Domain events therefore play a crucial role
in sharing data across the domains in your organization.

As you publish events onto your event buses or enterprise-wide event broker
platform, you can set checkpoints to audit your data and governance roles and
responsibilities:

• What data elements get added to an event?•
• Who can consume and have visibility of the data?•
• What data requires encryption, and what is the level of encryption?•
• Do you need encryption at rest, in transit, or both?•
• Based on sensitivity, do you classify events as red, amber, or green?•
• Do you classify data as bronze, silver, or gold based on value?•
• Do you tag PII and sensitive data attributes?•

The acceptance of eventual consistency in modern systems
As you migrate from monolithic systems or develop new applications, the use of
smaller, distributed, loosely coupled microservices enables you to discover asynchro‐
nous flows where it is acceptable to maintain eventual consistency. You identify
real-time versus near-real-time scenarios and strong versus eventually consistent data
operations. For many engineers and architects, it’s a paradigm shift from the legacy
ways of conceptualizing an application.

As you have seen in this book, the benefits of event-driven systems are aplenty—from
well-defined service boundaries, separation of concerns, modularity, and extensibil‐
ity to a reduced problem blast radius and many more. Though it may take time
for event-driven architecture to make inroads into some of the legacy engineering
mindsets, adopting serverless and modern developmental processes is transitioning
everyone’s thinking.

Event-driven architecture fuels functionless and low-code integrations
Several event-driven service integrations now follow a functionless or low-code pat‐
tern—for example, EventBridge API destinations, EventBridge Pipes, and the SDK
integration for Step Functions. This is a great motivation as it lets you focus more
on business logic than writing integration code. You saw the application of these
concepts in previous chapters (especially Chapter 5, which showcases some of the
advanced implementation patterns in serverless).

442 | Chapter 11: Preparing for the Future with Serverless

Connecting diverse systems and technology stacks
Event-driven communication is a common thread that can enable the collaboration
of many modern applications operating on multiple technology stacks. Emerging
standards such as CloudEvents and AsyncAPI help make communication seamless
across varied tech stacks.

Multicloud Orchestration
The operational needs of an enterprise depend on several software systems—legacy
and modern, on-premises and cloud, internal and external. In such a varied techno‐
logical landscape, you cannot always expect everything to align perfectly with the
offerings of one cloud provider. There are various reasons that might compel you to
operate in a multicloud environment. For example:

• The migration of applications from one cloud to another may be unfeasible.•
• You might want to leverage the best available cloud services from different•

providers to meet your business requirements.
• Your business processes may require the coordination of services from public,•

private, and gov clouds.

In such cases, the best approach is to have one primary provider orchestrate services
from others as necessary. This won’t be simple: you will face challenges when orches‐
trating your business processes and relying on custom APIs for cross-cloud interac‐
tions. At the time of writing, there are no common standards or open specifications
to seamlessly integrate with services of the same nature from different providers;
however, we will likely see new initiatives in the future that aim to ease these hurdles.

Leveraging the best services from multiple cloud providers is typ‐
ically a better option than attempting to develop portable and
cloud-agnostic solutions. While cloud agnosticism sounds great
as a concept, the complexities and high developmental and opera‐
tional costs can be detrimental to an enterprise. Similarly, operating
the same workloads on different cloud providers is not recom‐
mended without a strong business case. This can hamper business
velocity and requires a specialized skill set.

Infrastructure from Code
Infrastructure from code (IfC) is an abstraction of cloud and serverless development
where your IfC framework selects, creates, configures, deploys, and manages the
cloud resources for your application. To enable this, you avoid explicitly referencing
any specific cloud resources in your business logic code, and the tool makes the
decision behind the scenes about which services to use. For example, your code

Emerging Trends in Serverless | 443

https://cloudevents.io
https://www.asyncapi.com

specifies the need to store customer data, and the IfC framework decides which data
storage service to use for this purpose.

IfC providers such as Ampt, Nitric, Encore, Wing, and Darklang use three main
approaches:

• Embedding special IfC annotations in the code•
• A programming language with special constructs specific to IfC•
• An IfC SDK to use with code•

The industry is divided on whether or not this is a useful approach, and as yet it has
not gained wide adoption.

Motivations to use IfC
The advantages highlighted by the IfC providers include speed of development,
cloud-agnostic deployment without the need to change the code, and code coloca‐
tion. Due to the heavy abstraction, the cognitive load on engineers to learn and
understand the different cloud services is also low.

One area where IfC may be beneficial is when experimenting or prototyping a
complex system, as it allows you to focus on the outcome of your experiment rather
than learning the intricacies of cloud services.

In addition, in many organizations, the enabling teams or supporting domains pro‐
vide utility services such as service status information, static data, etc., for others to
consume. In most cases, the selection of infrastructure for such services is not as
critical as for those in your core business domain. IfC may be an option to bring up
the services quickly.

Drawbacks of IfC
Some of the benefits of IfC often turn into drawbacks. For example, the high degree
of abstraction and the lack of in-depth understanding of cloud services can make
investigating problems in a production environment much more complex.

As you have seen throughout this book, when you architect and develop a serverless
application, your choices with regard to cloud services—which managed services and
resources to use, how you configure permissions and policies, etc.—are driven by the
business requirements and logic. In this sense, you cannot isolate and hand over the
infrastructure choices to a tool. This is the basis for one of the strongest criticisms
of IfC.

As enterprises adopt cloud and serverless technologies, they invest in aligning their
enterprise architecture strategy with their chosen cloud provider, such as AWS.
Teams across business domains interact and share information via APIs, events, and

444 | Chapter 11: Preparing for the Future with Serverless

https://getampt.com
https://nitric.io
https://encore.dev
https://www.winglang.io
https://darklang.com

so on. Consider just the data operations of your enterprise—data ingestion, classifica‐
tion, tagging, storage, access, analytics, etc., are massive and complex operations. Due
to legislation and industry regulations, you cannot give away the responsibility to an
IfC tool that abstracts the related infrastructure from you.

Finally, while the reduction of the cognitive load on engineers may be seen as an
advantage of IfC due to its abstraction, the counterargument could be the lack
of transferable cloud skills. With limited or no exposure to the underlying cloud
infrastructure, engineers face a steep learning curve when they change roles or
organizations and are required to work with infrastructure as code.

Observability as code (OaC) is another new initiative, in the observ‐
ability space. The motivation behind OaC is often attributed to the
complexity of modern distributed and loosely coupled applications.
With OaC, your application’s tracing and monitoring capabilities
are considered during development and incorporated as part of the
implementation. Alerts are defined in code and embedded as best
practices alongside other code that is reviewed and tracked, rather
than in dashboards (as code for these can get very complex and
often needs to change often as services/metrics evolve).
Baselime is an observability tool in the serverless space that sup‐
ports defining alerts, dashboards, and log queries as code.

The Evolution and Influence of Generative AI
It’s fascinating to read about advancements in technology. Chapter 1 briefly walked
through the history of how we got to serverless, and you saw how certain tech
milestones influenced and accelerated further growth. The network protocols that
served as building blocks for the internet and virtualization leading to the cloud are
great examples.

The field of artificial intelligence is going through a tremendous amount of transfor‐
mation. In fact, it is a neural network architecture called the Transformer, introduced
in 2017, that has fueled this growth and made generative AI a possibility.

Generative AI
Generative AI (GenAI) refers to AI models that are able to create entirely new content
(text, images, code, music, etc.), learning in a self-supervised way. It’s an evolution
in the field of artificial intelligence. While AI and traditional machine learning (ML)
models have existed for many years, they typically performed a single task, such as
classifying images or predicting the next word in a sentence. The explosion of data
in modern systems brings different flavors of information from many sources. This
in turn has enabled the creation of advanced foundation models (FMs) that can be

Emerging Trends in Serverless | 445

https://baselime.io
https://oreil.ly/WyStx

adapted to a wide range of tasks. Organizations can use these FMs as base models
together with GenAI to create all sorts of specialized applications, training them with
their own data. This is much more efficient than the traditional process of building
models from the ground up, and opens up numerous exciting possibilities.

Here are a few GenAPI applications and services that you should be familiar with:

• ChatGPT, short for Generative Pre-trained Transformer, is a chatbot from•
OpenAI based on a large language model. As of early 2023, ChatGPT was the
fastest-growing consumer application in history. It accepts prompts (instructions
or questions) in natural language and replies in a conversational style, almost
instantaneously generating novel content ranging from whimsical poems and
bedtime stories to working Lambda function code.

• DALL-E and DALL-E 2, also from OpenAI, generate digital images from•
text descriptions. The text-to-image model uses deep learning to generate high-
quality realistic images based on the descriptive details in the prompt.

• Amazon Bedrock is a fully managed service that helps you build and scale gen‐•
erative AI applications with foundation models from Amazon and other model
providers.

Generative AI is certain to disrupt and revolutionize our lives. Enterprises are already
preparing to capitalize on the possibilities it enables. In the early days of serverless,
the use cases that attracted engineers were relatively simple (e.g., image upload,
transformation, and storage). Now, we have a much more mature ecosystem with
much more power and functionality to draw upon. If the initial goal of serverless
adoption was to move away from the undifferentiated heavy lifting of hardware
and infrastructure provisioning to allow teams to focus on the business logic and
guide organizations on a fast track of development and growth, imagine what the
combination of serverless and generative API can achieve!

You will soon start to see organizations with a modern serverless/tech stack moving
even faster, extending their lead as they combine these resources with GenAI to con‐
ceptualize, build, and monetize new ideas. As a serverless engineer, GenAI holds the
promise of relieving you of the burden of mundane and repetitive work and freeing
you up to focus on innovating for the next iteration of features and functionality.

446 | Chapter 11: Preparing for the Future with Serverless

https://oreil.ly/REYIV
https://openai.com
https://oreil.ly/c5Tem
https://oreil.ly/kzG0k

Keeping Up with the Evolution of Serverless
As you have seen in this book, adopting serverless brings about a technology trans‐
formation that fuels engineering and business efficiency. However, one of the biggest
differences between serverless and legacy technologies is that serverless is not a tech‐
nology that can be left unattended once successfully adopted in your organization.
Your motivation to adopt serverless should never be to migrate a system or build
a new application, put it into production, and not take care of or sustain it. If you
were to approach serverless with that mindset, because of the speed of changes and
improvements in modern technology, you would quickly run into trouble.

This section looks at some challenges faced by enterprise teams that adopt serverless
and approaches you can take to remain up-to-date on your serverless journey.

Challenges Facing Enterprise Teams
When an enterprise accelerates its serverless adoption, it faces two common types of
challenges:

• Organizational/cultural challenges (how to manage the growth of teams and•
maintain technical consistency across the teams)

• Technology challenges (how to keep up with the evolutionary changes in the•
serverless technology ecosystem)

Both require adequate measures to be put in place before they become a hindrance
to the business. Here we’ll focus on some of the cultural challenges, and shortly
we’ll discuss an approach called continuous refactoring that addresses the technology
challenges.

The adoption of serverless in an organization can transform it in different ways.
Many expect the process, the transformation it brings about, and the growth to
be organized and organic. However, if you approach serverless adoption without
sufficient forethought and care, the transition from a happy environment to a chaotic
one can be rapid. What’s more, some issues won’t be visible from the outside; you’ll
need to get into the engine room and observe how the different teams operate to
understand how to fix them.

The following are some common concerns enterprises face as they grow and expand
their serverless teams:

Siloed serverless teams
As you learned in Chapter 1, serverless promotes diverse teams with varied skills
to develop and operate its applications. However, as adoption accelerates and
the organization grows, teams may become busy chasing their individual goals,
objectives and key results (OKRs), targets, deadlines, etc. In such a fast-track

Keeping Up with the Evolution of Serverless | 447

environment, they find no time for cross-team collaboration and become siloed
within their service boundaries or bounded contexts.

Disparity in serverless skills across teams
When you’re part of a small start-up, there is a high degree of interaction, knowl‐
edge sharing, and togetherness that fuels high morale and levels up skills. As the
organization grows, new teams are established and more engineers are brought
into existing teams. With the speed of recruitment, you may lose uniformity
in the recruitment process, with each team onboarding engineers with different
levels of serverless skills.

Differences in development practices and design principles
One peril of fast growth is the dilution of established principles and practices.
Teams lose their shared understanding of best practices, well-architected princi‐
ples, and serverless development practices in general. Each team develops its own
rulebook, causing further divisions and silos.

Team autonomy without guardrails
Autonomy comes with responsibilities. But if teams become irresponsible and
deviate from common principles and guardrails, it causes friction, and product
quality suffers. For example, a team that decides to skip the solution design
phase and jump straight into implementation can end up building unsustainable
applications.

Though you can expect to have a certain level of difference between teams, it’s vital
that they have a shared awareness and understanding of the recommended best
practices, architectural principles, and design patterns. Chapter 2 discussed the role
of “serverless enablers” in an organization. A person in this role can be the common
thread that connects the teams and guides them through the early stages of a project
with regular check-ins to maintain consistency.

Sustaining a Serverless Knowledge Pool
Finding and retaining skillful engineers is one of an organization’s biggest challenges
when venturing into cloud and serverless technologies. While the initial success
of serverless adoption increases business opportunities and thereby accelerates the
growth of teams, it makes it even more difficult to onboard new talent and keep
meeting stakeholders’ expectations. As serverless itself is relatively new, you won’t
find a large pool of experienced serverless engineers to hire from. Most engineers are
still new to serverless and its technology ecosystem. They’ll require adequate support
and guidance to advance their learning and keep their enthusiasm high. There are
several strategies you can apply for this, depending on your organizational structure
and corporate policies.

448 | Chapter 11: Preparing for the Future with Serverless

Chapter 1 mentioned that becoming a successful serverless engineer often requires
developing a whole new set of skills. For this, you must provide sufficient training
and learning opportunities. Getting engineers involved in AWS community activities
is a good way to engage them in serverless activities inside and outside of the
organization. Later in this chapter, you will learn about serverless evangelism and the
ways to take part, and also the importance of a serverless guild or center of excellence.

There is no one specific way to form a talented pool of serverless engineers; it relies
on a combination of different factors, both technical and nontechnical.

Embracing Continuous Refactoring
Engineers have been refactoring code for decades. The practice is often related to the
painful ordeal of updating and improving legacy monolithic applications in a way
that avoids altering their functionality, and thus is not looked upon fondly. However,
it can be viewed in a more positive light, as a process of continuous improvement or
continuous renewal of your applications.

Continuous refactoring allows you to offer the best services to your customers, now
and in the future. Offering the best services requires building the best solutions, and
building the best solutions requires the best technologies—such as serverless. How‐
ever, technologies tend to mature over time, with increasing levels of stability and
feature richness. Continuous refactoring allows you to always be sure you’re getting
the best out of the technologies you use by constantly improving your solutions.

Why is serverless refactoring different?
It’s been more than two decades since the initial publication of Martin Fowler’s book
Refactoring: Improving the Design of Existing Code (Addison-Wesley Professional),
which discusses refactoring as a process of simplifying object-oriented code and
making it easier to maintain. Over that time, the influence of object-oriented princi‐
ples and programming languages has waned, and the meaning of refactoring in the
software industry has changed.

Serverless development, for example, is not just about writing functions in a particu‐
lar language. As you compose your serverless applications using various managed
services, serverless refactoring also involves rewiring services. One of the advantages
of refactoring in serverless is that you can refactor several parts of the ecosystem at
granular levels. Examples include:

• Refactoring the code of Lambda functions•
• Refactoring infrastructure code to upgrade or adopt new IaC tools•
• Refactoring to improve the overall performance of an application•
• Refactoring to lower the costs associated with an application•

Keeping Up with the Evolution of Serverless | 449

• Refactoring to improve the sustainability of the application•
• Refactoring to consume new features and managed services•
• Refactoring to introduce well-architected principles•

As you gain experience developing serverless applications, you may argue that every‐
thing is still code—Lambda function code, infrastructure code, integration code,
deployment pipeline code, and so on. However, the distinction between these code
constructs becomes increasingly blurry in serverless. For example, say you are refac‐
toring a Lambda function to increase its timeout due to a change in business logic.
Would you attribute the timeout change to the function or the infrastructure?

When you approach refactoring in serverless, you must have the
necessary automated integration tests and the confidence to test in
production, as you learned in Chapter 7.

Introducing serverless refactoring in your organization
High-performing serverless teams often face unrealistic expectations from business
stakeholders. As you follow an incremental and iterative development process, the
delivery cycles become shorter and bring continuous visibility of outcomes as the
team progresses toward its goal. If stakeholders become greedy and demand more,
your team will become a feature factory with no time for any refactoring work. This
can demoralize teams and cause a negative impact on productivity. Organizations
with a good rapport between engineering teams, product teams, and stakeholders
successfully balance new feature development and reduction of technical debt.

You can make refactoring a justifiable activity in a few ways:

Turn your technical needs into business goals.
Chapter 2 highlighted the significance of domain-driven design and the impor‐
tance of speaking a common (ubiquitous) language inside a domain to align
everyone’s interpretation. Similarly, you must translate the technological side of
your refactoring needs into business goals that are understandable to everyone,
especially stakeholders.

After completing your refactoring tasks, remember to share the improvement
metrics with the stakeholders. Here’s an example. For a very long time, the
maximum number of messages a Lambda function could poll from an SQS queue
was 10. AWS then increased the limit to 10,000 messages. Sensing that a few
queues in your application would benefit from this, you decided to do some
refactoring to take advantage of the higher limit. You can justify this work to the
business by saying your application will be able to handle double or triple the
number of customer queries or orders, resulting in improved performance.

450 | Chapter 11: Preparing for the Future with Serverless

As another example, say you’ve been thinking of changing your APIs to improve
latency by a couple of hundred milliseconds. You can justify this by explaining
that the performance gain will improve customer satisfaction and your organiza‐
tion’s Net Promoter Score (NPS).

Make refactoring a recurring part of your development process.
As you likely know, agile teams perform retrospectives to reflect on team moti‐
vations and challenges. Every team must pause regularly to dedicate time to
engineering activities such as refactoring, experimenting with new concepts, etc.
Taking inspiration from nature and how it renews with the change of seasons,
allocate time every quarter for your team’s refactoring needs. You might want to
maintain a team idea board or backlog where you capture refactoring needs to
discuss and prioritize.

Perform refactoring as a technology motivator for the team.
Frequent refactoring exercises clear tech debt regularly and avoid the trap of it
piling up into a mountain. Engineers prefer a cleaner codebase, and it lowers
their cognitive load. For many engineers, the chance to use new cloud services
or architectural patterns is a good motivator for performing refactoring. For
example, the distributed orchestration pattern you learned about in Chapter 5
was made possible by the introduction of the callback task token feature in
AWS Step Functions. Such enhancements inspire engineers to discover better
capabilities in the services they own.

As with life, technology never stands still. The more you iterate and innovate, the
better your services become. Today’s top technologies may be obsolete next year. As
the serverless ecosystem changes, you must keep up to prevent falling behind. In that
respect, continuous refactoring is essential to your serverless development cycle.

Playing the Long Game
An August 2023 survey by Datadog, a leader in the observability space, showed
that more than half of the companies that have moved to the cloud have adopted
serverless. The rate of adoption will almost certainly increase as more enterprises
benefit from serverless technology and others see that it enables them to deliver
new features faster than before, bringing better value to the business. However, to
sustain this momentum, adequate measures need to be taken to ensure success. This
section explores some of the practices organizations and team members can explore
to support the transition to serverless and keep everyone aligned on the mission.

Playing the Long Game | 451

https://oreil.ly/4JYwx

Establishing a Serverless Guild and Center of Excellence
As described in Chapter 2, people are the most valuable resource in an organiza‐
tion. When its people come together for a common purpose and feel valued and
supported, it makes the organization stronger. In addition, when there are common
themes across the teams in your organization, it is beneficial to have uniformity
in the way those themes are put into practice or implemented. The use of cloud
and serverless technologies, development of APIs, implementation of security, and
integration of external software systems are some examples of themes you might find
across an organization, or a division or department.

A center of excellence (CoE) is a group of people dedicated to establishing best prac‐
tices, guidelines, and policies and providing the required support and advice. When
enterprises move their workloads to the cloud and focus their new development
efforts there, they aim to gain the benefits of the cloud, such as increased agility
and velocity. Forming a cloud center of excellence (CCoE) is a great way to steer
the organization as a whole and the individual teams in the right direction, helping
everyone get up to speed quickly and maintain a high quality of cloud operation.

A serverless center of excellence (SCoE), or serverless guild, works similarly to a
CCoE. It’s a small team of four or five people with a collective skill set comprising, for
example:

• Good understanding of the serverless technology ecosystem•
• Familiarity with the AWS Well-Architected Framework and Serverless Lens•
• Knowledge of observability principles, including structured logs•
• Proficiency with the IaC framework or tools in use—CloudFormation, CDK,•

Serverless Framework, etc.
• Ability to guide teams on microservices principles, API guidelines, and data•

legislation
• Awareness of AWS and serverless resources•

These are just a few common areas, and they will vary depending on the serverless
operation of your organization.

One of the primary objectives of the SCoE is to address some of the issues mentioned
in the earlier section on the challenges facing enterprise teams. The SCoE should
work closely with the leadership teams to become enablers of the serverless teams
and help improve the developer experience and the quality of product outcomes.
Inconsistencies across the teams cause confusion and reduce efficiency.

The SCoE must play a careful balancing act. On one side, it establishes the guard‐
rails, principles, standards, etc., for serverless teams to adopt. On the other side, it
shouldn’t become an impediment where teams and engineers must wait to receive a

452 | Chapter 11: Preparing for the Future with Serverless

go-ahead for everything. One of the primary objectives of the SCoE is empowering
engineers and teams by providing direction.

Becoming a Serverless Evangelist
In our highly networked universe, we are fortunate to have several avenues by which
to share the threads of our different knowledge streams. You don’t need to be an
expert in everything, but if you possess one or more of the following skills, someone
will always benefit from your experience:

• You are a programming expert in the language runtimes supported by AWS•
Lambda.

• You have experience in and knowledge of architecting serverless applications.•
• You have set up and grown serverless teams with great success.•
• You deeply understand domain-driven design and have the know-how to•

apply it.
• You have broken down monoliths and built serverless microservices.•
• You have a wealth of knowledge about event-driven architecture.•
• You know how to implement observability for serverless applications.•
• You have hands-on experience with IaC tools and frameworks.•
• You have guided organizations to use serverless services on their data journeys.•
• You are a great teacher, reaching many via your blogs, vlogs, and other content.•
• You work with cutting-edge technologies such as GenAI, large language models•

(LLMs), and the like, combining them with serverless for futuristic innovations.

As a serverless enthusiast, you may have something new to add to that list based
on your unique experience. Chances are you have something to offer, and there are
many ways for you to become a serverless evangelist in the tech world. Sharing is
caring!

Joining a Serverless Community
Many of us are fortunate to have vibrant AWS and serverless communities within
reach—but our collective challenge is to take the benefits of serverless to the remote
corners of the tech world and grow serverless communities everywhere. Chapter 1
introduced the various AWS developer community support options. There are several
avenues you can explore to share your experience with a wider audience:

Playing the Long Game | 453

Become an AWS Community Builder.
At the time of writing, the application period to become an AWS Community
Builder opens every year, and there is a category for serverless. You can register
your name to get notified when the application window opens.

As an AWS Community Builder, you can interact with hundreds of other
builders and AWS members and participate in AWS product briefings and early-
release showcases. These are opportunities to share your experiences and feed
your ideas into the evolution of AWS services.

Get invited to be an AWS Hero.
Unlike the AWS Community Builder program, becoming an AWS Hero is by
invitation only. Again, there are several categories, including serverless. AWS
never reveals the selection criteria, but it is quite evident from the profiles of the
people who have become AWS Heroes that community contribution is a major
factor.

As an AWS Hero, you become part of an elite community with greater access
to the AWS products roadmap, ideation process, beta programs, etc., as well as
opportunities to participate and speak at conferences such as AWS re:Invent.

Publish a serverless newsletter.
Serverless newsletters are a great way to connect communities, providing a
medium for articles about serverless to reach a wider readership.

Some popular serverless newsletters circulating at the time of writing include
Off-by-none, Ready, Set, Cloud!, and The Serverless Terminal.

Share insights via podcasts.
Podcasts are a gateway to bring serverless expertise to everyone’s ears. As a host,
you can invite guests with practical knowledge and share varied case studies from
different industry sectors and business domains.

Serverless podcasts by AWS Serverless Heroes include the Real-World Serverless
podcast by Yan Cui, the Ready, Set, Cloud! podcast by Allen Helton, and Server‐
less Chats by Jeremy Daly.

Organize local serverless meetups and conferences.
Serverless meetups are a great way to unite tech communities and share knowl‐
edge. The serverless journey of one of the authors of this book (Sheen) began
when he started attending serverless meetups in London.

ServerlessDays conferences are another way of bringing a larger audience
together in one place. As an organizer of a serverless event, you are more likely to
become visible and a contender for the AWS Community Heroes program.

454 | Chapter 11: Preparing for the Future with Serverless

https://oreil.ly/ykVsy
https://oreil.ly/ykVsy
https://oreil.ly/1Vchc
https://oreil.ly/hJMYF
https://oreil.ly/7-7VE
https://oreil.ly/y-dU1
https://oreil.ly/y-dU1
https://oreil.ly/4DakB
https://oreil.ly/lGpZ9
https://oreil.ly/lGpZ9
https://oreil.ly/RgY_R

Contribute to open source projects.
Open source contribution is a great way to share your engine room experience
with the wider community. Serverless Land is one place to share utilities, pat‐
terns, code constructs, framework extensions, etc. Lambda Powertools is another
with community backing.

In addition to these opportunities, you can collaborate with publications to write
technical content, publish bite-sized videos on YouTube, author training courses, and
more. Every little contribution you make to the serverless community can go a long
way in shaping the future of engineers, teams, and organizations around the world.

Summary
It’s been an amazing experience sharing everything we’ve learned over the years about
serverless, including our experiences with the technology, its adoption at enterprises,
architecting and building solutions, guiding engineers and teams, learning from AWS
and tech community experts, and interacting with many of you. Thank you for
accompanying us on this journey.

A central theme of this book has been that technology evolution is happening all
the time, along various streams. While some streams are independent, others influ‐
ence each other and are interdependent. Needless to say, the evolution of serverless
depends on and is influenced by the cloud.

As technology evolves all around you, your aim is to identify the technological path
that will provide you with the easiest, fastest, and most straightforward way to reach
your destination. At the end of the day, your responsibility is to help your organiza‐
tion grow: grow faster, grow better, grow in feature richness, grow its customer base,
grow in wealth, grow in reputation and trust, and above all, grow its people.

With your newfound understanding of the serverless technology ecosystem, you
now have clarity on your technology choices. As you learned in Chapter 2, server‐
less fits well in most cases, but it’s not your only option. You will face situations
where a different technology choice may be a better way to reach your goal. Adopt
serverless-first thinking, but always assess the business needs and follow the first
principles of serverless. Choose the apt technology for the problem at hand to help
your organization offer the best to its customers.

Finally, take care of the technology you love. Help it evolve, spread, help others reach
new shores.

You are now part of the serverless ecosystem. Go forth and prosper!

Summary | 455

https://oreil.ly/IJxlP
https://oreil.ly/OvA9h

Interview with an Industry Expert
Farrah Campbell, Head of Modern Compute Community, AWS
Farrah operates with a team-first mentality. Her passions are technology and con‐
necting with people, and she personifies the openness and welcoming attitude of
the community. Farrah considers championing others and working with diverse
teams critical for success in an organization and with the teams she works with
cross-organizationally. She always tries to be thoughtful about how she impacts the
big picture and how the interconnected parts of the organization work together to
benefit everyone.

Q: During your career in the tech industry, you have traveled to several events and interacted
with many tech enthusiasts. Compared to previous decades, we are well connected and
informed, thanks to modern technology. Still, we strive to bring everyone in tech worldwide
closer via AWS and serverless communities. What significance do communities have in the
current tech world?

Community holds immense importance in my life. Without the support and connec‐
tions I’ve found through various communities, I wouldn’t be writing this, wouldn’t
have my job at AWS, and wouldn’t have the privilege of calling people from all cor‐
ners of the globe friends. The significance of communities, particularly in domains
such as AWS and serverless technologies, has grown significantly. Modern technol‐
ogy enables access to extensive information and communication, but the value of
personal interaction and the collective knowledge provided by communities remains
invaluable and cannot be substituted.

Communities are like vibrant hubs of knowledge where a multitude of experiences
converge. In AWS communities, individuals with varying levels of expertise can
collaborate to exchange knowledge, push boundaries, and learn from their collective
experiences. They engage in a wide range of discussions, covering everything from
basic problem solving to sophisticated architectural techniques. The accumulation of
knowledge in a shared and accessible space expedites the acquisition of new informa‐
tion and fosters innovation. While working in Berlin, a developer might encounter
a serverless architecture issue that has already been successfully resolved by a fellow
community member in Tokyo a few months back. Through active participation in
the community, these answers are readily shared, eliminating the need for redundant
efforts.

Communities foster a sense of belonging and collective identity. Through active
participation in the AWS or serverless communities, users can forge connections with
individuals who possess similar interests and encounter similar challenges, creating
a strong sense of camaraderie. The feeling of belonging can serve as a powerful
incentive and morale enhancer. For instance, local AWS meetups, Slack groups, and

456 | Chapter 11: Preparing for the Future with Serverless

Community Days offer social and professional support networks where participants
can seek guidance, encouragement, and recognition.

Furthermore, communities provide a space for individuals to express their creativity
and work together. They foster the sharing of ideas that may not emerge in solitude.
In the serverless community, I often witness people coming together to contribute
their own unique approaches to improving the efficiency of Lambda functions, or
sharing insights on optimizing serverless architecture costs or maintaining a GitHub
repository with a collection of useful AWS Lambda function templates. This not
only inspires others to expand upon these concepts, but also results in novel and
sometimes counterintuitive answers to problems. People with varying experience and
education levels and from diverse backgrounds and cultures collaborate to raise the
bar for everyone involved.

Communities also play a crucial role in advocating for and shaping services, features,
and upgrades that prioritize the needs of users. The valuable input from the commu‐
nity often drives organizations like AWS to make necessary adjustments or develop
innovative services that better cater to the needs of users. For instance, the AWS
community voiced a shared need for more precise control over cloud resources,
leading to the development of specific features in AWS Lambda. And luckily, this is
something I get to work on internally every day.

Online communities have a vital role in ensuring that knowledge is accessible to
all individuals. They remove barriers of distance and income, offering cutting-edge
information and resources to anyone with internet access. Regardless of their loca‐
tion, anyone with a laptop and internet [connection] can tap into a wealth of com‐
munal resources, attend webinars, and seek expert advice, just like professionals in
Silicon Valley and other technology industry hubs. Communities in the tech industry
are vital ecosystems that drive the exchange of knowledge, foster innovation, and
cultivate a strong sense of unity. They elevate individual voices and democratize
learning, making it more likely that technical advances are inclusive and complete,
going well beyond just technological improvement to include human collaboration
and advancement.

Q: Farrah, you are currently head of the Modern Compute Community at AWS. What challenges
do you face in this role that you would like to share with readers to make them aware and
motivate them to become part of the global AWS community?

I would like to think that I have more benefits than challenges in my line of work.
I get to work with so many people globally, helping to amplify their work, whether
it be internally or externally. I get to connect them with others who may be facing
the same challenges, and I get to learn so much about the world and how different
cultures/regions operate.

Interview with an Industry Expert | 457

Leading and overseeing a diverse team of individuals can be quite challenging. Coor‐
dinating schedules across different time zones can often hinder group work and lead
to team members feeling disconnected. Individuals who frequently have to adjust
their schedules may experience feelings of being overlooked and discouraged by this
disparity.

In a world where individuals come from diverse backgrounds, there may be a reluc‐
tance to express oneself openly due to concerns about being misunderstood or facing
criticism. This reluctance inhibits the unrestricted exchange of ideas and stifles the
creativity of the team as a whole. Various cultural perspectives and practices add to
the intricacies. It’s important to recognize that what may be considered normal in one
place might be unfamiliar or even offensive in another, which can lead to a lack of
understanding and respect. Some people may have reservations about adjusting their
communication style for others, seeing it as an unfair demand or a compromise of
their identity. That, however, is not the case. It is essential to embrace the diversity
of viewpoints and motivations while remaining genuine to your own personal style.
For instance, some individuals favor the use of tabs, whereas others favor the use of
spaces. Both viewpoints are correct, given that they originate from distinct experien‐
ces and motivations.

In some environments, competition is encouraged over collaboration, making it diffi‐
cult to prioritize community well-being over individual success. When individuals
perceive their involvement as a competition, it diverts attention away from the col‐
lective objectives toward their personal interests. Finding a middle ground between
personal goals and the greater good can be quite demanding, especially when both
seem equally significant.

To successfully navigate these challenges, I prioritize accomplishing the following: I
am committed to prioritizing everyone’s schedules and requirements to the best of
my ability and building a warm and inclusive atmosphere that recognizes and values
each individual, promoting a strong spirit of collaboration. I work to build a com‐
munity where every individual’s voice is highly valued and their contributions are
respected, and I believe that by encouraging a spirit of teamwork and togetherness
among community members, I can help create a path toward the advancement and
success of our community as a whole. I also attempt to offer many opportunities
for engagement, which I hope enhances the overall experience for all individuals
involved.

At AWS, we sincerely welcome and celebrate a wide range of perspectives, fostering
an atmosphere where individuals can openly express their thoughts and ideas. I find
great value in genuinely engaging with individuals from diverse backgrounds and
immersing myself in their communities. Through active listening and embracing
their life stories, I aim to cultivate a profound sense of understanding and challenge
any preconceived notions that might be present.

458 | Chapter 11: Preparing for the Future with Serverless

Q: You regularly speak at conferences on the importance of being inclusive, considerate,
sharing, and welcoming. Often, we avoid addressing these values but focus too much on the
technology itself. How can we instrument the shift in our thinking to make community and
human values a bigger part of tech journals, books, conferences, etc.?

I love this question, and I am glad that you asked it. We can start by doing just what
you did by asking me to contribute to a chapter in your book.

We must diligently change our collective perspective in order to bring community
and human values into the domains of technological journals, books, and conferen‐
ces. First, we need to widen our viewpoint when it comes to technology. Throughout
history, the foundation of technological discourse has been built upon the technical
and functional aspects of invention—the “how” and “what.” The “why” and “for
whom” need to be ingrained in these conversations and in marketing if we are to shift
in the direction of a more human-centric narrative. I personally would love to see
more talks at events or authored content that included this topic.

Facilitating a more inclusive discussion at conferences by inviting leaders and speak‐
ers from around the world and from different backgrounds on panels is a good
first step. By incorporating diverse perspectives and fostering a broader dialogue,
advancements in technology become more relevant and easily accessible to a wider
audience. Technology-related content, such as blogs, whitepapers, and tutorials, could
benefit from focusing on the human element, which would benefit readers on both
the professional and personal fronts.

Context and delivery are important. Using language that is inclusive and easy for
nontechnical individuals to understand can make tech ideas more relevant and less
intimidating. Storytelling is a highly successful strategy for humanizing and making
content relatable. It takes complicated ideas and converts them into engaging stories
that appeal to a wider audience.

Finally, it is important to emphasize the importance of fostering a conversational
style that recognizes, appreciates, and honors the unique qualities and values of
each individual. We should highlight and make space for content that highlights the
significance of individuals in the development process and encourages a progressive
mindset. This is a complex problem that will need time, persistence, and patience to
solve.

Interview with an Industry Expert | 459

Appendices

Appendix A: PostNL’s Serverless Journey
The content of this online-exclusive appendix can be downloaded by readers at
https://oreil.ly/riwzp.

Appendix B: Taco Bell’s Serverless Journey
The content of this online-exclusive appendix can be downloaded by readers at
https://oreil.ly/R325t.

Appendix C: Templates and Worksheets
The content of this online-exclusive appendix can be downloaded by readers at
https://oreil.ly/Nw9fs.

461

https://oreil.ly/riwzp
https://oreil.ly/R325t
https://oreil.ly/Nw9fs

Index

Symbols
* (wildcards), 177, 203
5 Rs model, 63
6 Rs strategy, 63
202 Accepted, HTTP status code, 114
400 Bad Request HTTP response, 196, 285
400-series errors, 352, 354
401 Unauthorized response, 195
429 Too Many Requests HTTP error responses,

196
500-series errors, 352

A
access credentials, 178
“access denied” errors, 321
ACL (anti-corruption layer), 108
Activate program, 29
active business data, 430
ADRs (architectural decision records), 308
agnosticism, 152, 443
AI (artificial intelligence), 445
Ajv schema validation library, 339
alarms, 203, 354, 358
alerts, 182, 203, 354-356, 358-360, 397
all-at-once service rewrite strategy, 66-69
Amazon API Gateway (see API Gateway)
Amazon Athena, 204, 389
Amazon Bedrock, 446
Amazon CloudFront, 389, 423
Amazon CloudWatch (see CloudWatch)
Amazon CloudWatch Synthetics, 354
Amazon Cognito, 191-193, 371
Amazon DynamoDB (see DynamoDB)
Amazon Elastic File System (EFS), 389

Amazon ElastiCache, 389, 423
Amazon EventBridge (see EventBridge)
Amazon Inspector, 204
Amazon Kinesis, 246, 249
Amazon Kinesis Data Firehose, 246, 353, 360
Amazon Kinesis Data Streams, 246, 425
Amazon Macie, 206
Amazon Resource Names (ARNs), 286
Amazon S3 (see S3)
Amazon Simple Email Service (SES), 130-132
Amazon Simple Notification Service (SNS),

199, 206
Amazon Simple Queue Service (SQS), 14, 54,

233, 353, 425
Amazon States Language (ASL), 239, 270
Amazon Virtual Private Cloud (VPC), 6
Amazon Web Services (see AWS)
Ampt, 444
Anderson, David, 82-87
annotations, 364, 365-367
anti-corruption layer (ACL), 108
antipatterns, 297
API destinations, 243-244
API Gateway, 10, 203, 238

access logs, 362
caching costs with, 423
Cognito and, 192
endpoints, 190, 321
as façade layer, 223-224
metrics of scale and performance, 352
offering sequence numbers, 241
pricing of, 389
request failures, 321
request protection and validation, 195, 384

463

scalability and, 350
timeout period of, 113

API request/response pattern, 216
API security (see serverless API security)
API-first thinking, 43
APIs (application programming interfaces), 44,

110, 195-197, 308
App Runner, 65
AppConfig, 285, 303
application clients, 192
application integration, 293, 295
application-based multitenancy, 192
architectural decision records (ADRs), 308
architectural patterns, 90-104

(see also names of specific architectural pat‐
terns)

architecture diagrams, 308, 394
archivable data, 430
archiving events, 234-236
ARNs (Amazon Resource Names), 286
artificial intelligence (AI), 445
ASL (Amazon States Language), 239, 270
AsyncAPI, 155, 254
asynchronous APIs, 197
asynchronous communication, 117, 126, 337
Athena, 204, 389
atomic counters, 240
atomic delivery pipelines, 306
attack vectors, 179
audits, 156, 187, 203, 435
authentication, 173, 180
authorization, 173
automated testing, 322
automation, 188, 291, 306, 417, 433
autoscaling, 11
Availability Zones (AZs), 6, 13, 372
AWS (Amazon Web Services), 24-30

developer community support, 28
global infrastructure, 372
icon library, 214
managed keys, 201
origin and development of, 4
popularity of serverless services from, 25
renewable energy goals of, 423
service icons, 214
shared responsibility model, 178
technical support plans, 27
viewing as partner versus as vendor, 62

AWS Activate program, 29

AWS App Runner, 65
AWS AppConfig, 285, 303
AWS Billing Console, 396
AWS Budgets, 397
AWS Cloud Clubs, 29
AWS Cloud Development Kit (CDK), 134, 292
AWS CloudFormation, 134, 189, 194, 286, 292
AWS CloudTrail, 204
AWS CodeDeploy, 303
AWS Community Builders, 29, 454
AWS Community Summits, 30
AWS Cost Anomaly Detection, 398
AWS Cost Explorer, 391, 396
AWS Countdown, 421
AWS Customer Carbon Footprint Tool, 434
AWS Educate program, 29
AWS events, 149
AWS Fargate, 65
AWS Free Tier, 364, 384, 393
AWS Health Dashboard, 373
AWS Heroes program, 29, 454
AWS Identity and Access Management (IAM),

17, 176-178, 203, 321
AWS Infrastructure Event Management (IEM),

421
AWS Key Management Service (KMS), 199,

201, 387
AWS Lambda (see Lambda)
AWS Lambda Power Tuning, 290
AWS Pricing Calculator, 391
AWS re:Invent conference, 29
AWS Regions, 6, 101, 280, 372, 423
AWS SDK, 369
AWS Secrets Manager, 50, 199
AWS Security Hub, 203, 204
AWS Security Token Service (STS), 177
AWS Serverless Application Model (SAM), 134,

292
AWS Serverless Heroes, 216, 401, 454
AWS Step Functions (see Step Functions)
AWS Summits, 30
AWS Systems Manager (SSM) Parameter Store,

202, 228, 285
AWS Web Application Firewall (WAF), 196
AWS Well-Architected Framework, 26-27, 435
AWS X-Ray, 362-364
AZs (Availability Zones), 6, 13, 372

464 | Index

B
Backend for Frontend (BFF) pattern, 224
ball of serverless mud (BoSM), 39, 66, 111, 413
Baselime, 445
batching, 249, 298, 399, 426
BBoM (big ball of mud), 412
Bedrock, 446
BFF (Backend for Frontend) pattern, 224
big ball of mud (BBoM), 412
big data, 67
billing analysis, 396-397
Billing Console, 396
BLOBs (binary large objects), 66
BoSM (ball of serverless mud), 39, 66, 111, 413
bounded contexts, 41, 44, 158
branching strategies, 304
breaking event schema changes, 255
broken access control, 190
bronze data layer, 431
Brundtland Commission, 407
bucket keys, 387
buckets, data, 8, 16
budget alerts, 182, 203, 397
Budgets, AWS, 397
buffer limits, 349
bugs, 348, 357, 363
business disruption, 52
business logic, 97

event-driven testing, 330
identifying set pieces by isolating, 129
importance of, 134
microservice representation of, 107
triage function processing events and, 249
unit testing, 332-335

butterfly effect, 2

C
cached authorizers, 195
caching, 389, 399, 423
callback tasks, 268
Campbell, Farrah, 456-459
canary deployment strategy, 303
capability alerting, 358-360
capture process, 114
castle-and-moat perimeter security, 173
CCoE (cloud center of excellence), 43, 452
CDK (Cloud Development Kit), 134, 292
centers of excellence (CoEs), 452-453

ChatGPT (Generative Pre-trained Trans‐
former), 446

CI (continuous integration), 304, 326
CI/CD pipelines, 127
circuit breaker pattern

core concepts of, 226-231
dedicated event-driven status-checking ser‐

vice, 229-231
failing faster when circuit open, 232
relevance of, 226
simple status-checking function, 228-229
storing requests when open and replaying

when closed, 232-236
clean architecture, 104
clickstream events, 67, 246, 250
client/server architecture, 95-98
clients, defined, 95
closed circuits, 226, 232-236
cloud center of excellence (CCoE), 43, 452
Cloud Clubs, 29
cloud computing

cloud contracts, 347
cloud platform, 23
cloud-first strategy, 46
data breaches, 180
deployment models, 4-5
elements of, 409
managed cloud services, 23
multicloud orchestration, 443
origin of term, 4
serverless application testing, 318
shared responsibility model for cloud secu‐

rity, 336
sustainability and, 419
testing of the cloud, 336
three-tier client/server architecture, 101

Cloud Development Kit (CDK), 134, 292
cloud security shared responsibility model, 178
CloudEvents, 155, 254, 361
CloudFormation, 134, 189, 194, 286, 292
CloudFront, 389, 423
CloudTrail, 204
CloudWatch, 159

billing gotchas with, 388
composite alarms, 358
data protection in, 206
high volume of metrics calls, 51
using Lambda Insights in, 289
monitoring metrics, 352-353

Index | 465

pricing of, 392
ServiceLens dashboard, 362
setting up budget alarms in, 203

CloudWatch Synthetics, 354
Cockcroft, Adrian, 436-438
code bindings, 141
code signing, 189-190, 203
CodeDeploy, 303
coding for failure, 368
CoEs (centers of excellence), 452-453
Cognito, 191-193, 371
cold data, 431
cold starts, 13, 287
Community Builders, 29, 454
Community Summits, 30
compensating transactions, 272
composite alarms, 358
compression algorithm, 385
compute as a service, 9
compute costs, 380, 383-385
concentric serverless objects, 279
concurrency limits, 66, 232, 280, 349
conferences, AWS, 29
confidential business, domain events as, 148
configurability, 171
configuration tests, 331
consistency, 442
consumers, 45, 93, 197
container image size limits, 66
containerization technologies, 111
continuous delivery, 299-306
continuous integration (CI), 304, 326
continuous refactoring, 449-451
contract testing, 331, 336-339
contractual efficiency, 49
control plane actions, 176
core analysis loop, 370
correlation IDs, 366
Cost Anomaly Detection, 398
cost awareness, 394-397
Cost Explorer, 391, 396
Cost Optimization pillar, 27, 395
cost-driven design, 394
costs, 15

(see also serverless operation costs)
cost-effectiveness, 48, 50-52
data storage, 380, 385-388
fail fast strategy, 232
Lambda Insights service, 290

optimizing, 15
Countdown, 421
Create, Read, Update, and Delete (CRUD)

operations, 8
credential reports, 203
critical health dashboard, 356-357, 370
critical paths, 323-325, 351-353
cross-domain event sharing, 254
cross-service orchestration, 264
CRUD (Create, Read, Update, and Delete)

operations, 8
Cui, Yan, 374-377
custom events, 150
Customer Carbon Footprint Tool, 434
customer managed keys, 201
customer reward system use case, 121-129,

130-132

D
DALL-E and DALL-E 2, 446
Daly, Jeremy, 273-276
dark releases, 302
Darklang, 444
DAs (Developer Advocates), 28
data

buckets, 8
classification and tagging of, 430
deleting unwanted, 431
encryption at rest and storing, 201
using event sourcing to analyze, 156
lifecycle of, 428
pay-per-use storage of, 11
retention policies, 16
sharing, 3, 254
storage of, 225, 380, 385-388, 421, 426-432

data contracts, 331, 335
data engineers, 80
data lakes, 67
data leak detection, 205-206
data plane actions, 176
data processing

cost-effectiveness of, 51
using distributed map for, 298
using patterns, 217
strangling data processing flows, 220-221
submitting bulk data processing tasks, 114
sustainability with, 423

data protection, 199-201
data retention requests, 427

466 | Index

data transformations, 139
data transition policies, 432
data-driven business decisions, 68
database as a service (DBaaS), 8
DAX (DynamoDB Accelerator), 388
DBaaS (database as a service), 8
DDD (domain-driven design), 111, 129
dead letter queues (DLQs), 154, 322, 369
debugging, 245, 363
definition of done, 328-329
deletion protection, 369
deliberate efficiency and inefficiency, 49
denial of service (DoS) attacks, 179, 182, 184,

195
denial of wallet attacks, 182, 195, 203
deny by default, 176
dependency supply chain security, 186-189
dependency tree, 187
Developer Advocates (DAs), 28
development and test tools, 24
DevOps, 20, 170, 417
DevSecOps, 183
direct service integrations, 295-298, 399
disaster recovery, 371-373
discount codes, 115
discoverability, API, 44
disposable commodity model, 294
disruption, 64, 70
distributed applications, 98
Distributed Computing Manifesto, 111
distributed map, 298
distributed orchestration, 266-272
distributed tracing, 361-367
DLQs (dead letter queues), 154, 322, 369
documentation, 306-308
domain events, 45, 148, 161, 254
domain experts, 161
domain-driven design (DDD), 111, 129
domain-first thinking, 40, 46
DoS (denial of service) attacks, 179, 182, 184,

195
downtime, 64, 226
duplicate events, 94, 140, 255, 257
DynamoDB, 8, 9

configuring TTL value, 16
explaining use case to stakeholders, 54
failing operations, 322
global tables, 369
metrics of scale and performance, 352

pay-per-use cost with, 11
pricing, 387
scale of operation of, 408
sequence number generation, 240-241
storage and replay, 233-234

DynamoDB Accelerator (DAX), 388

E
EC2 (Elastic Compute Cloud), 4, 6, 182
economic growth pillar, 407
EDA (see event-driven architecture)
Educate program, 29
efficiency, 48
EFS (Elastic File System), 389
Elastic Compute Cloud (EC2), 4, 6, 182
Elastic File System (EFS), 389
ElastiCache, 389, 423
elasticity, 421
elevation of privilege, 184
Ellerby, Ben, 401-403
emailing services, 130-132, 257
emergent complexity, 348
enabling teams, 43
Encore, 444
encryption, 199-201
end-to-end efficiency, 48
engineering leads, 80
engineering teams (see serverless engineering

teams)
enterprise readiness, 35-87

assessing workloads for suitability, 47-52
growing serverless talent, 72-81
migrating legacy applications, 63-71
organizational culture, 57-59
principles for successful adoption, 39-47
serverless awareness, 52-57
serverless mindset, 36-38
vendor lock-in, 60-63

environmental protection pillar, 407
error budgets, 325, 368
ETL (extract, transform, and load) tasks, 50,

250
event buses, 45
event driven–first thinking, 45
event relay pattern, 154
event sourcing, 155-161

application-level event store, 158
architectural considerations, 157

Index | 467

centralized event sourcing cloud account,
159

dedicated microservice for, 157
event store per bounded context, 158
uses for, 156

event triage pattern, 246-251
event-driven architecture, 20, 91-94, 135-163

AWS events, 149
data economy, 441
defined, 45
domain events, 147
event carriers, 93
event categories, 145
event consumers, 93, 153
event consumption best practices, 153-154
event producers, 92, 151
event publishing best practices, 151-153
event sourcing, 155-161
event types, 146
event-driven computing, 136
EventBridge, 137-142
events, defined, 91
EventStorming, 161-163
internal events, 150
message verification, 197-199
operational events, 148
reactive services, 136
relevancy to serverless, 94
Renaissance of, 441-443
representing events, 142-145
serverless application testing, 318
sustainability, 424
transformed events, 150

event-driven computing, 136
event-driven logging, 360-361
event-driven testing, 329-331
EventBridge, 137-142

archive and replay feature, 140, 234-236
capabilities of, 94
central event sourcing account, 160
event buses, 139
fields and attributes in, 143
input transformation, 298
Kinesis versus, 249
maximum payload size, 153, 255
metrics of scale and performance, 353
Pipes, 142, 245
recovering from failures, 369
reducing Lambda functions with, 239

retrying event delivery, 154
routing rules, 139
rule invocations failing, 322
Scheduler, 141, 432
schema registry, 141
transformed events, 150

events
defined, 45, 91
in distributed orchestration, 268
managed services responding to, 297
messages versus, 151
versioning, 152, 255

EventStorming, 46, 161-163
everything as code paradigm, 293
evolutionary prototyping, 417
exceptions, 364
execution environments, 12
execution roles, 177
expected efficiency, 49
experimentation, 58, 74, 301
expiration policies, 206
expiring objects, 386
explicit versions, 187
express workflows, AWS Step Functions, 384
extensibility, 414
external HTTP APIs, invoking, 241-245
external threats, 179
extract, transform, load (ETL) tasks, 50, 250

F
FaaS (function as a service), 9
factors, 22
fail fast strategy, 232, 416
failure mode analysis (FMA), 371
failure modes and effects analysis (FMEA),

321-322
failures and recovery, 367-371
false positives, 358
fan-out pattern, 250
Fargate, 65
fast-track build principle, 72-74
fault tolerance, 368-370
feature factory, 450
feature flags, 303
feedback events, 246
filter expressions, 366
filter patterns, 139, 234
FinOps, 395
Firecracker MicroVM, 12

468 | Index

first principles thinking, 40
5 Rs model, 63
500-series errors, 352
flaky tests, 325
flowcharts, 259

(see also service orchestration)
FMA (failure mode analysis), 371
FMEA (failure modes and effects analysis),

321-322
foundation models (FMs), 445
400 Bad Request HTTP response, 196, 285
400-series errors, 352, 354
401 Unauthorized response, 195
429 Too Many Requests HTTP error responses,

196
Free Tier, 364, 384
fully managed services, 9, 178
function as a service (FaaS), 9
function-first approach, 284
functionless integration pattern, 236-246, 297

common AWS service integrations, 238-240
invoking external HTTP APIs, 241-245
native service integration, 245
sequence number generation, 240-241

functionless promise, 440, 442

G
gatekeeper event bus pattern, 153, 251-255
generative AI, 445-446
Gerion, Sara, 309-313
GitHub repository, 186, 306
GitOps, 301
Glacier storage classes, 386, 389
gold data layer, 431
governance, API, 44
government cloud, 5
granularity, 14, 18, 44, 110, 134, 172
Graviton processors, 289

H
HA (high availability), 12
hacker mindset, 179-185
half-open circuits, 227
Hamilton, Sarah, 340-345
hardware-virtualized virtual machine

(MicroVM), 12
health check API, 231
Health Dashboard, 373
“heartbeat” check, 353

Heroes program, 29
hexagonal architecture, 101-104
high availability (HA), 12
High-Performance Computing (HPC), 50
historic cost analysis, 391
HPC (High-Performance Computing), 50
HTTP API security, 193-195
HTTP endpoints, 243
HTTP requests, 298
HTTPS endpoints, 200
hybrid cloud, 5

I
IaaS (infrastructure as a service), 4, 6
IaC (infrastructure as code), 23
IAM (Identity and Access Management), 17,

176-178, 203, 321
idempotency, 153, 225, 235, 285
identifiers, event, 153
Identity and Access Management (IAM), 17,

176-178, 203, 321
identity sources, 194
IEM (infrastructure event management), 63,

421
IfC (infrastructure from code), 443-445
image processing, 115
in-service orchestration, 262
inbox pattern, 225
incremental development approach, 416
independent software vendors (ISVs), 7
independently deployable microservices, 106
individuality, 14
industry expert interviews

Anderson, David, 82-87
Campbell, Farrah, 456-459
Cockcroft, Adrian, 436-438
Cui, Yan, 374-377
Daly, Jeremy, 273-276
Ellerby, Ben, 401-403
Gerion, Sara, 309-313
Hamilton, Sarah, 340-345
Lewis, Matt, 164-168
Poccia, Danilo, 30-33
Yip, Nicole, 207-211

infinite Lambda loops, 390
infinite scaling, 12
information disclosure, 184
infrastructure as a service (IaaS), 4, 6
infrastructure as code (IaC), 291-295

Index | 469

infrastructure event management (IEM), 63,
421

infrastructure from code (IfC), 443-445
infrastructure tests, 331
init phase, 288
Inspector, 204
instant environments, 327
instrumentation, 364
integration pipelines, 142
integration points, 330, 331
interfaces, 97, 98
internal events, 150
internal threats, 179
intrinsic functions, 298
inversion of control principle, 104
invocation duration, 383
invocation limits, 231
invoke phase, 288
ISVs (independent software vendors), 7
iterative development, 20

J
Java Messaging Service (JMS) API, 216
Java Swing API, 441
Jidoka principle, 303
JSON objects, events represented as, 143, 248
JSON schema validation library, 339
JSON Web Tokens (JWTs), 193, 198
JSONPath, 298
just enough testing, 325
just-in-time testing, 326
JWTs (JSON Web Tokens), 193, 198

K
keep the lights on (KTLO), 411
Key Management Service (KMS), 199, 201, 387
Kinesis, 246, 249
Kinesis Data Firehose, 246, 353, 360
Kinesis Data Streams, 246, 425
KMS (Key Management Service), 199, 201, 387
KTLO (keep the lights on), 411

L
Lambda, 10, 279-290

authorizers, 194
building microservices and functions, 134
code scanning with Amazon Inspector, 186
code signing, 189-190

codebase structuring, 281
cold starts, 13, 287
cost-effectiveness assessment, 51
destinations, 285
direct integrations, 399
environment variables, 203
execution environments, 12
execution roles, 177
FaaS and, 9
functionless integration pattern, 236-246
infinite loops, 390
initiating synchronous API call, 114
keeping code in single file, 283
Lambda Powertools initiative, 285
least privilege policy for, 175
metrics of scale and performance, 352
minimizing deploy-time dependencies,

285-286
minimizing Lambda functions, 399
.NET runtime for, 72
optimizing compute performance, 289
optimizing functions, 287-290
pay-per-use cost with, 11
performance analysis, 289-290
Power Tuning, 290
pricing, 383
runtime management controls, 188
scalability and, 350
scale to zero, 11
single-responsibility principle, 282
timeout period, 12
unit testing business logic, 332-335
workflow orchestration, 283-284
writing functions, 281

Lambda Insights, 289-290
Lambda Powertools, 285, 361, 455
Lambda SnapStart, 288
Lambda@Edge, 423
lasagne architecture, 100, 412
latency, 224, 317
layered architecture, 98-101
lean software development, 415
least privilege, principle of, 17, 175-176, 177,

202, 282, 293
less is more, 440
Lewis, Matt, 164-168
lifecycle policies, 386
lifecycle, of keys, 202
lift-and-shift migration strategy, 65-66

470 | Index

load testing, 324
local events, 150
log data retention, 388
logging failures, security, 182, 204
logging libraries, 187
logical separation, 98, 101
long-term data, 430
loose coupling, 101, 110
low-code environment, 440, 442
low-traffic critical paths, 353

M
MACH (Microservices-based, API-first, Cloud-

native, and Headless) architecture, 105
machine learning (ML) models, 445
Macie, 206
mainframe computing, 2
maintaining applications, 411
managed IAM policies, 178
managed services

benefits of, 296
cloud computing, 23
efficiency with, 52
fully managed services versus, 9
integration points involving, 336
security, 171
serverless application testing, 318

memory, 66, 385
mental lock-in, 62
message queuing services, 14
message verification, 197-199
messages

data protection for, 206
events versus, 151
making set pieces work together with, 126

messaging systems, 45
metadata, 364
metadata section, of events, 144, 146, 153, 235
metric streams, 389
microservices

characteristics of, 105-112
communication strategies, 112-117
considerations for building, 133-135
identity of, 109

microservices choreography, 255-259, 268
Microservices-based, API-first, Cloud-native,

and Headless (MACH) architecture, 105
microservices-first thinking, 44

MicroVM (hardware-virtualized virtual
machine), 12

migration strategies, 63-71
all-at-once service rewrite, 66-69
comparison of, 71
lift-and-shift, 65-66
phased migration, 69-70
strangling API routes, 222-224
strangling data processing flows, 221

minimum viable product (MVP), 130
ML (machine learning) models, 445
mocking, 333-334
modular systems, 98
modularity, 413
monitoring failures, security, 182, 204
monorepo model, 281
multicloud environment, 6
multicloud orchestration, 443
multitenancy, 5, 192
mutation testing, 326
MVP (minimum viable product), 130

N
native service integrations, 245
nested JWTs, 198
.NET runtime, 72
network traffic, peak, 226
networking, origin and development of, 3
neural network architecture, 445
newsletters, 454
nicknames, microservice, 109
Nitric, 444
non-production code, 382
non-production costs, 390
non-production environments, 327
NPM package manager, 187

O
OaC (observability as code), 445
OAuth, 242
Obidos, 111
observability

alarms, 354
alerts, 354-356
capability alerting, 358-360
critical health dashboard, 356-357
critical path health, 351-353
distributed tracing, 361-367
event-driven logging, 360-361

Index | 471

granularity and, 110, 134
metrics, 354
sustainability and, 414
tools for, 24

observability as code (OaC), 445
Observability Maturity Model (OMM), 350
official package repositories, 187
OIDC (OpenID Connect), 306
OMM (Observability Maturity Model), 350
on-demand capacity mode, 387
One Zone-IA storage class, 386
one-to-one mapping, 44
onion architecture, 104
open circuits, 227, 232-236
open source software, 61, 186, 455
Open Web Application Security Project

(OWASP) Top 10, 180-182
OpenAI, 446
OpenID Connect (OIDC), 306
operational events, 148
Operational Excellence pillar, 26
operations (see serverless operations)
orchestration-first approach, 284
ordering, of events, 154
organizational culture, 57-59
outbound data transfer, 381
outbox pattern, 236
OWASP (Open Web Application Security

Project) Top 10, 180-182
ownership culture, 42, 74
ownership, microservices, 112

P
PaaS (platform as a service), 7
Pact framework, 337
Parameters utility, 285
part efficiency, 49
partition key (PK) pattern, 234
partner event bus, 139
patch versions, 188
patterns (see serverless implementation pat‐

terns)
pay-per-use, 11, 55, 182
payloads, 66, 153, 255, 331
Performance Efficiency pillar, 27
performance optimization, 15
permanent faults, 369
permissions tests, 331
Personally Identifiable Information (PII), 255

PES (Post-Event Summary), 373
phased migration strategy, 69-70
physical tiers, 100
PII (Personally Identifiable Information), 255
pilot engineers, 75
pipelines, 24, 189, 221, 305-306
pivot transactions, 272
PK (partition key) pattern, 234
platform as a service (PaaS), 7
Poccia, Danilo, 30-33
PoCs (proofs of concept), 417
podcasts, 454
point-in-time recovery, 369
point-to-point messaging patterns, 216
“poison-pill” messages, 322
policies, IAM, 17, 176, 365
polling, 115-116
port connection with proprietary protocols, 50
ports and adapters pattern, 102
Post-Event Summary (PES), 373
Powertools for AWS Lambda, 285, 361, 455
pre-deployment test coverage, 320
Pricing Calculator, 391
privacy, 17-20
private cloud, 5
private encryption key pairs, 199
producers, 45, 92, 197
product managers, 80
product owners, 80
Product Update Post-Processor (PUPPy)

microservice, 109
production code, 382
production, security in, 202-206
proofs of concept (PoCs), 417
prototypes, 417
provisioned capacity mode, 387
provisioned concurrency value, 12, 288
public cloud, 5
public encryption key pairs, 199
publish-and-forget model, 152
pull request environments, 327
PUPPy (Product Update Post-Processor)

microservice, 109
push notifications, 116, 129, 230, 254

Q
QA (quality assurance), 320
QA engineers, 80
query optimization, 425

472 | Index

querying status, via endpoint, 231
queues, 425
quota pages, 349
quotas, Lambda, 280

R
rate limiting API requests, 195
RDS (Relational Database Service), 9
re:Invent conference, 29
reactive services, 136, 424
recursive loop detection, 390
RED method, 356
redrive policies, 322
redundancy, 12
Regions, 6, 101, 280, 372, 423
rehosting, 65
Relational Database Service (RDS), 9
Reliability pillar, 26
renewable energy, 423
replaying events, 234-236
replication, 291
repository, 24
repudiation attacks, 184
request validation, 196, 384
requests, Lambda, 383
REST API security, 191-193
retention policies, 16, 206, 225, 427
retry behavior, 369
retry events, 234, 257, 384
rewiring services, 449
roles, IAM, 176
rules, EventBridge, 353
runtime updates, 188

S
S3 (Simple Storage Service), 429

for binary large objects, 66
capability of, 8
cloud data breaches with, 180
event example, 149
pay-per-use with, 11
per-bucket data retention policies, 16
pricing of, 385, 392
security with, 203
triage function working without, 250

SaaS (software as a service), 7, 192
saga pattern, 272
SAM (Serverless Application Model), 134, 292
sampling rules, 364

savings plans, 400
scalability, 347
scale to zero, 11
scheduled tasks, all-at-once service rewrite for,

67
schema registries, 141
SCoEs (serverless centers of excellence),

452-453
scopes, 192
SDGs (Sustainable Development Goals), 407
Secrets Manager, 50, 199
secrets, managing, 202
security, 17-20, 169-211

AWS IAM, 176-178
challenges of, 171
data protection, 199-201
function-level permissions, 17
hacker mindset, 179-185
least privilege, 175-176
in production, 202-206
record-level permissions, 18
serverless API security, 190-199
shared responsibility model, 178
supply chain, 185-190
zero trust, 173-174

Security Hub, 203, 204
Security pillar, 26
Security Token Service (STS), 177
segments, 363
sensitive data, 153, 201, 205, 225, 255
separation, 291
sequence numbering, 154, 240-241
serverless, 1-33

AWS as great platform for, 24-30
benefits of, 14-22
characteristics of, 10-13
communities, 453-455
continuous refactoring, 449-451
cultural challenges to adoption of, 447-448
as ecosystem, 22-24
emerging trends in, 440-446
enterprise readiness for, 35-87
future of, 439-459
keeping up with evolution of, 447-451
knowledge pools, 448
long-term practices, 451-455
migrating legacy applications to, 63-71
origin and development of, 2-10
security, 169-211

Index | 473

serverless adoption, 39-47
API-first thinking, 43
camps of, 58
domain-first thinking, 40
event driven–first thinking, 45
magic quadrant for, 59
microservices-first thinking, 44
not a silver bullet, 39
serverless-first thinking, 46
team-first thinking, 42

serverless API security, 190-199
HTTP APIs, 193-195
message verification, 197-199
REST APIs, 191-193
validating and verifying API requests,

195-197
serverless application implementation, 277-313

computing with AWS Lambda, 279-290
documentation, 306-308
infrastructure code, 291-298
production, 298-306

Serverless Application Model (SAM), 134, 292
serverless application parts, 22-24
serverless application performance measures,

48-50
serverless application testing, 315-345

contract testing, 336-339
event-driven testing, 329-331
failure modes and effects analysis, 321-322
need for novel approach to, 317-319
serverless square of balance, 319-321
test strategy design, 322-329
unit testing, 332-335

Serverless Applications Lens, 435
serverless centers of excellence (SCoEs),

452-453
serverless enablers, 76
serverless engineering teams, 20-22, 72-81

DevOps approach, 20
dispersing “superstar” teams, 38
evolution of, 22
key ingredients of, 74-78
structure of, 78-81
sustainability, 418, 433-435

serverless evangelism, 453
serverless guilds, 452-453
Serverless Heroes, 216, 401, 454
serverless implementation patterns, 213-276

accelerating development, 215-218

circuit breaker pattern, 226-236
defined, 215
discovering, 217
event triage pattern, 246-251
functionless integration pattern, 236-246
gatekeeper event bus pattern, 251-255
as guides, 218
microservices choreography, 255-259
service orchestration, 259-272
strangler fig pattern, 219-224

serverless language, avoiding, 53
serverless microservices architecture, 89-168

architectural patterns, 90-104
communication strategies, 112-117
considerations for building microservices,

133-135
event-driven architecture, 135-163
microservice characteristics, 105-112
set piece thinking, 117-132

serverless mindset, 36-38
serverless operation costs, 379-403

estimating, 390-393
models for, 380-390
monitoring, 394-400

serverless operations, 347-377
disaster recovery, 371-373
failures and recovery, 367-371
promoting observability, 350-367
units of scale, 349

serverless square of balance, 319-321
serverless sustainability (see sustainability)
serverless test strategy design, 322-329
serverless-first thinking, 39, 46
servers, defined, 95
service icons, 214
service isolation, 187
service level agreements (SLAs), 12, 421
service level indicators (SLIs), 359
service level objectives (SLOs), 359
service metrics, managed services providing,

296
service orchestration, 259-272

cross-service orchestration, 264
distributed orchestration, 266-272
example of, 259-262
in-service orchestration, 262

service-based architecture, 111
ServiceLens dashboard, CloudWatch, 362
services, 6-9

474 | Index

DBaaS, 8
FaaS, 9
IaaS, 6
managed versus fully managed, 9
PaaS, 7
SaaS, 7

SES (Simple Email Service), 131-132
set piece thinking, 117, 118-132

applying to serverless development, 121
completing rewards system vision, 128
gatekeeper event bus pattern and, 253
identifying set pieces, 124-126, 129-130
incorporating new set pieces, 130-132
individuality of set pieces, 127
initial rewards system vision, 121-123
making set pieces work together, 126
modularity and, 413
set pieces, defined, 120
strangler fig pattern and, 219

settlement process, 115
shareable data, 153
shared code, limiting, 187
shared responsibility model, 178, 297, 336, 419
shared secrets, 199
sharing data, 3, 254
shift-left approach, 170, 183
shift-right approach, 327
shipping software, 328
short-term data, 430
side effects, 333
Signature Version 4, 200
signed packages, 187
signing profiles, 189
silver data layer, 431
Simple Email Service (SES), 131-132
Simple Notification Service (SNS), 199, 206
Simple Queue Service (SQS), 14, 54, 233, 353,

425
simple response, 195
Simple Storage Service (see S3)
single point of failure, 12
single-responsibility Lambda functions, 187
single-responsibility principle (SRP), 108, 282
single-tenant environment, 5, 192
6 Rs strategy, 63
SK (sort key) pattern, 234
SLAs (service level agreements), 12, 421
SLIs (service level indicators), 359
SLOs (service level objectives), 359

SLSA (Supply chain Levels for Software Arti‐
facts) security framework, 189

SnapStart, 288
SNS (Simple Notification Service), 199, 206
social equality pillar, 407
software architectural patterns, 61
software as a service (SaaS), 7, 192
software development lifecycle, 170
software patterns, 214
solution design document, 307
solution designs, 308
sort key (SK) pattern, 234
spaghetti code, 413
spies, 334
spoofing, 183, 200
SQS (Simple Queue Service), 14, 54, 233, 353,

425
SRP (single-responsibility principle), 108, 282
SSM (Systems Manager) Parameter Store, 202,

228, 285
stacks, CloudFormation, 292
staging environments, 327
stakeholders, 24, 52-57, 78, 450
Standard storage class, 386
standard workflows, AWS Step Functions, 384
Standard-IA storage class, 386
start-left approach, 183
state charts, 308
static analysis, 331, 335
static credentials, 178
static initialization, 288
static testing, 326
Step Functions, 238

distributed map, 298
enabling tracing for workflow in, 365
executing tasks in state machine-based

workflow, 284
input and output processing in, 298
metrics of scale and performance, 352
pricing, 384
quotas, 350
retrying after error, 369
SDK integration release, 296
workflows failing, 322

Storage Class Analysis, S3, 386
storage classes, S3, 385
storage, data, 11, 201

best practices for sustainability, 421,
426-432

Index | 475

cost of, 380, 385-388
optimizing, 16
selecting suitable store for, 429
storage-first pattern, 154, 225

strangler fig pattern, 219-224
stream-aligned teams, 42
STRIDE acronym, 183
STRIDE-per-element (STRIDE/element), 184
STS (Security Token Service), 177
stubbing, 333

(see also mocking)
subdomains, 41
subsegments, 364
Summits, AWS, 30
“superstar” teams, 38
Supply chain Levels for Software Artifacts

(SLSA) security framework, 189
supply chain security, 185
sustainability, 15, 405-438

audit checklist, 435
awareness day, 434
best practices for, 420-433
building sustainable applications, 411-414
characteristics of sustainable applications,

413-414
characteristics of unsustainable applications,

412-413
cloud and, 419
defined, 406-408
development and deployment, 432
development processes and practices that

promote, 414-418
engineering teams, 433-435
implementation patterns for, 420-433
need for, 408-410
pillars of, 407
serverless sustainability triangle, 409
software architecture, 424-426
UN Sustainable Development Goals, 407
user behavior, 420-424

Sustainability pillar, 27, 400
Sustainable Development Goals (SDGs), 407
Swing API, 441
synchronous communication, 112-116

with closed circuit, 226
data contracts between resources connected

by, 337
making set pieces work together with, 126
with open circuit, 227

synthetic monitoring, 353
Systems Manager (SSM) Parameter Store, 202,

228, 285

T
table classes, DynamoDB, 387
tagging, 430
TAM (Technical Account Manager), 28, 422
tampering, 183
task providers, 271
task tokens, 268, 270-272
TCO (total cost of ownership), 381-383
TDD (test-driven development), 322
team-first thinking, 42
Technical Account Manager (TAM), 28, 422
technical purity, 62
technical support plans, 27
templates, CloudFormation, 292
temporary cache data, 430
test-driven development (TDD), 322
testing in production, 353
testing of the cloud, 336
third-party code, 182, 382
Threat Composer, 183
threat modeling, 170, 182-185
three-tier client/server architecture, 97
throttling, 425
throwaway prototypes, 417
tiered architecture, 96-97, 100-101
Time to Live (TTL) value, 16, 54, 145, 206, 387,

431
time-sensitive functions, 287
timeboxed sessions, 156
timeout period, 12, 50

with API destinations, 244
avoiding task timeouts, 271
exploiting to cause DoS attack, 180
lift-and-shift migration, 66
with synchronous request/response, 113
task token indicating, 270

TLS (Transport Layer Security), 200, 203
total cost of ownership (TCO), 381-383
trace groups, 366
traceability, 258
transactional outbox pattern, 236
transactions, 272
transferring logs and metrics, 389
Transformer (machine learning model), 445
transient faults, 369

476 | Index

Transport Layer Security (TLS), 200, 203
treading lightly concept, 277, 292
triage, defined, 246
trunk-based development, 304
trust, 63, 74, 186
TTL (Time to Live) value, 16, 54, 145, 206, 387,

431
202 Accepted, HTTP status code, 114
two-tier client/server architecture, 96
type definitions, 335
TypeScript, 134

U
UN Sustainable Development Goals, 407
“unauthorized operation” errors, 321
UNGA (United Nations General Assembly),

407
uniformity, 145, 152
uninstalling unused packages, 187
unit testing, 331-335
United Nations General Assembly (UNGA),

407
unpredictability, 348, 352
unused services and resources, deleting, 425
usage plans, 195
usage quotas, 425
user behavior, 420-424
user pools, 191, 371
UX (user experience) designers, 80

V
value stream mapping, 415
value-add time, 415
vaults, storing encryption keys and secrets in,

202
Velocity Template Language (VTL), 238
vendor lock-in, 60-63

versioning, 152, 255, 291
video processing, 115
virtual private clouds (VPCs), 6, 9
virtualization, origin and development of, 4
visibility, 258
VPCs (virtual private clouds), 6, 9
VTL (Velocity Template Language), 238
vulnerability scanning, 187, 203, 204

W
WAF (Web Application Firewall), 196
waiting time, 415
warm data, 431
warm function containers, 12
waterfall software development lifecycle, 411
Web Application Firewall (WAF), 196
webhooks, 116, 197
Well-Architected Framework, 26-27, 435
wildcards (*), 177, 203
Wing Cloud, 444
workflow orchestration, 283-284
workload assessment, 47-52
World Commission on Environment and

Development, 407

X
X-Ray, 362-364

Y
Yip, Nicole, 207-211
“You build it, you pay for it” approach, 395

Z
zero trust security, 173-174, 192, 197
.zip archive, 66

Index | 477

About the Authors
Sheen Brisals is an AWS Serverless Hero and guides enterprise teams in architecting
and building serverless solutions. He has held several positions at leading software
organizations over his long career. He is very passionate about serverless and loves
sharing knowledge with the community. His writings and thoughts on serverless
adoption have successfully helped several engineers and organizations on their
serverless journey. Sheen is an international speaker who talks about serverless at
conferences around the world.

Luke Hedger is a seasoned software engineer and AWS Community Builder. He has
worked at all layers of the software stack, building backend applications and state-of-
the-art React apps, blockchain networks and viral marketing websites, open source
tools and a pineapple delivery system. Luke has been leading serverless engineering
teams since 2019 and believes we are only just beginning to unlock the full potential
of serverless technology.

Colophon
The animal on the cover of Serverless Development on AWS is the South African
ostrich (Struthio camelus australis), or southern ostrich, a subspecies of the common
ostrich (Struthio camelus).

Ostriches can reach up to 9 feet in height and weigh over 300 pounds, though
most individuals are smaller, and South African ostriches typically weigh less than
200 pounds. They are sexually dimorphic, with males and females of the species
exhibiting differences in size or appearance. As depicted on the cover of this book,
female ostriches (left) are grayish-brown and white, whereas males (right) are mostly
black.

Despite being the largest living birds, ostriches have a reputation for hiding their
heads in the sand when threatened. Indeed, in the face of threat, ostriches typically
flee—reaching speeds of up to 40 miles per hour!—or hide by lying flat against the
ground, though they can deliver a powerful, even fatal, kick when cornered.

Ostriches are heavily farmed for eggs, meat, and feathers. In the wild, their greatest
threat is habitat loss, but they remain fairly abundant throughout their range and, as
such, have been listed by the IUCN as being a species of least concern. Many of the
animals on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique line engrav‐
ing from The Pictorial Museum of Animated Nature. The series design is by Edie
Freedman, Ellie Volckhausen, and Karen Montgomery. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

 7
x9

.19
75

https://oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	Who We Wrote This Book For
	Conventions Used in This Book
	Supplemental Material
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Serverless on AWS
	The Road to Serverless
	From Mainframe Computing to the Modern Cloud
	The Influence of Running Everything as a Service
	Managed Versus Fully Managed Services

	The Characteristics of Serverless Technology
	Pay-per-Use
	Autoscaling and Scale to Zero
	High Availability
	Cold Start

	The Unique Benefits of Serverless
	Individuality and Granularity of Resources
	Ability to Optimize Services for Cost, Performance, and Sustainability
	Support for Deeper Security and Data Privacy Measures
	Incremental and Iterative Development
	Multiskilled, Diverse Engineering Teams

	The Parts of a Serverless Application and Its Ecosystem
	Why Is AWS a Great Platform for Serverless?
	The Popularity of Serverless Services from AWS
	The AWS Well-Architected Framework
	AWS Technical Support Plans
	AWS Developer Community Support

	Summary
	Interview with an Industry Expert
	Danilo Poccia, Chief Evangelist (EMEA), Amazon Web Services

	Chapter 2. Enterprise Readiness for Serverless
	Preparing for “Thinking in Serverless”
	Creating a Serverless Mindset
	First Principles for Successful Serverless Adoption
	Assessing Workloads for Serverless Suitability
	How Do You Bring Serverless Awareness to Business Stakeholders?
	The Role of Organizational Culture

	Vendor Lock-in Demystified
	Why Is Vendor Lock-in Seen as So Critical?
	Is It Possible to Avoid Getting Locked In?
	Should You Be Worried About Vendor Lock-in in Serverless?
	Consider the Cloud Provider (AWS) as Your Partner, Not a Vendor

	Strategies for Migrating Legacy Applications to Serverless
	Lift-and-Shift
	All-at-Once Service Rewrite
	Phased Migration
	Comparing Migration Strategies

	Growing Serverless Talent
	Growing Versus Building
	Essential Ingredients for Growing a Serverless Team
	The Structure of a Multidisciplinary Serverless Team

	Summary
	Interview with an Industry Expert
	David Anderson, Architect, G-P Globalization Partners

	Chapter 3. Software Architecture for Building Serverless Microservices
	Popular Architectural Patterns
	Event-Driven Architecture
	Client/Server Architecture
	Layered Versus Tiered Architecture
	Hexagonal Architecture

	Characteristics of a Microservice
	Independently Deployable
	Represents Part of a Business Domain
	Single Purpose
	Well-Defined Communication Boundary
	Loosely Coupled
	Observable at a Granular Level
	Owned by a Single Team

	Microservice Communication Strategies
	Synchronous Communication
	Asynchronous Event-Driven Communication

	Breaking Down a Problem to Identify Its Parts
	Using a Set Piece Analogy to Identify the Parts
	Building Microservices to Serverless’s Strengths

	Event-Driven Architecture for Microservices Development
	Event-Driven Computing and Reactive Services
	Is My Microservice a Reactive Service?
	An Introduction to Amazon EventBridge
	Domain Events, Event Categories, and Types
	The Importance of Event Sourcing in Serverless Development
	EventStorming

	Summary
	Interview with an Industry Expert
	Matt Lewis, Chief AWS Architect, IBM UK, AWS Data Hero

	Chapter 4. Serverless and Security
	Security Can Be Simple
	Security Challenges
	Getting Started
	Combining the Zero Trust Security Model with Least Privilege Permissions
	The Power of AWS IAM
	The AWS Shared Responsibility Model

	Think Like a Hacker
	Meet the OWASP Top 10
	Serverless Threat Modeling

	Securing the Serverless Supply Chain
	Securing the Dependency Supply Chain
	Going Further with SLSA
	Lambda Code Signing

	Protecting Serverless APIs
	Securing REST APIs with Amazon Cognito
	Securing HTTP APIs
	Validating and Verifying API Requests
	Message Verification in Event-Driven Architectures

	Protecting Data
	Data Encryption Everywhere
	AWS KMS

	Security in Production
	Go-Live Security Checklist for Serverless Applications
	Maintaining Security in Production
	Detecting Sensitive Data Leaks

	Summary
	Interview with an Industry Expert
	Nicole Yip, Principal Engineer

	Chapter 5. Serverless Implementation Patterns
	An Overview of Software Patterns
	What Is a Pattern?
	How Do Patterns Accelerate Serverless Development?

	Serverless Migration: The Strangler Fig Pattern
	Implementation Approaches
	Strangling Data Processing Flows
	Strangling API Routes to Backend Services

	Resilient Architecture: The Circuit Breaker Pattern
	Why Is the Circuit Breaker Pattern Relevant in Serverless?
	Core Concepts of Circuit Breaker Implementation
	Failing Faster When the Circuit Is Open
	Storing Requests When the Circuit Is Open and Replaying Them When Closed

	The Functionless Integration Pattern
	Use Cases for Functionless Integration
	Things to Be Aware of with Native Service Integrations

	The Event Triage Pattern
	What Is Event Triage?
	Implementation Details
	Frequently Asked Questions

	The Gatekeeper Event Bus Pattern
	The Need for a Gatekeeper Event Bus
	Implementation Approach
	Use Cases for the Gatekeeper Event Bus Pattern
	Things to Be Aware of with the Gatekeeper Event Bus Pattern

	Microservices Choreography
	Things to Be Aware of While Choreographing Services

	Service Orchestration
	What Do You Orchestrate?
	In-Service Orchestration
	Cross-Service Orchestration
	Distributed Orchestration

	Summary
	Interview with an Industry Expert
	Jeremy Daly, CEO, Ampt, AWS Serverless Hero

	Chapter 6. Implementing Serverless Applications
	Serverless Compute with AWS Lambda
	How to Write Lambda Functions
	Optimizing Lambda Functions

	Most of the Code You Write Will Be Infrastructure
	Infrastructure as Code
	Direct Service Integrations and Delegating to the Experts

	Production Is Just a Name
	Ship on Day 1, and Every Day After
	Boring Delivery Pipelines—Safety, Speed, and Predictability

	Documentation: Quality, Not Quantity
	Summary
	Interview with an Industry Expert
	Sara Gerion, Senior Solutions Architect, Amazon Web Services

	Chapter 7. Testing Serverless Applications
	How Can Serverless Applications Be Tested?
	Why Serverless Requires a Novel Approach to Testing
	The Serverless Square of Balance: The Trade-off Between Delivery and Stability
	Serverless Failure Modes and Effects Analysis

	Designing a Serverless Test Strategy
	Identifying the Critical Paths
	Just Enough and Just-in-Time Testing
	Upholding Standards with a Definition of Done

	Hands-on Serverless Testing
	Event-Driven Testing
	Unit Testing Business Logic in Lambda Functions
	Contract Testing Integration Points

	Summary
	Interview with an Industry Expert
	Sarah Hamilton, AWS Community Builder and Senior Software Engineer

	Chapter 8. Operating Serverless
	Identifying the Units of Scale
	Promoting Serverless Observability
	Observing the Health of Critical Paths
	Metrics, Alarms, and Alerts
	Critical Health Dashboard
	Capability Alerting
	Event-Driven Logging
	Using Distributed Tracing to Understand the Whole System

	When Things Go Wrong
	Accepting Failure and Budgeting for Errors
	Everything Fails All the Time: Fault Tolerance and Recovery
	Debugging with the Core Analysis Loop

	Disaster Recovery
	Avoiding Single Points of Failure
	Understanding AWS Availability
	Multi-Account, Multi-Region: Is It Worth It?

	Summary
	Interview with an Industry Expert
	Yan Cui, AWS Serverless Hero

	Chapter 9. Cost of Serverless Operation
	Understanding Serverless Cost Models
	Total Cost of Ownership in the Cloud
	Compute Costs
	Storage Costs
	Avoiding Serverless Cost Gotchas

	Serverless Cost Estimation
	How to Estimate Costs
	The More You Use, the Less You Spend
	How Much Can Be Done with the AWS Free Tier?

	Serverless Cost Monitoring Best Practices
	Creating Cost Awareness in a Serverless Team
	Monitoring Costs with Budget Alerts
	Reducing the Operational Cost of Serverless

	Summary
	Interview with an Industry Expert
	Ben Ellerby, Founder, aleios, AWS Serverless Hero

	Chapter 10. Sustainability in Serverless
	So, What Is Sustainability?
	The Three Pillars of Sustainability
	The UN Sustainable Development Goals

	Why Is Sustainability Thinking Necessary in Serverless?
	The Three Elements of the Cloud
	The Serverless Sustainability Triangle

	Building Sustainable Serverless Applications
	How Do You Identify Unsustainable Serverless Applications?
	Characteristics of a Sustainable Application

	Development Processes and Practices That Promote Sustainability
	Follow Lean Development Principles and Reduce Resource Waste
	Start from a Simple Set of Requirements and Scale Fast
	Automate Everything Possible
	Rethink the Throwaway Prototypes of the Past
	Nurture Your Serverless Engineers

	Sustainability and the AWS Cloud
	Implementation Patterns and Best Practices for Sustainability
	User Behavior
	Software Architecture
	Data and Storage
	Development and Deployment

	Introducing Sustainability in Your Engineering Teams
	Sustainability in Technology: Awareness Day
	Sustainability Focus Areas for Your Team
	Sustainability Audit Checklist

	Summary
	Interview with an Industry Expert
	Adrian Cockcroft, Partner, OrionX

	Chapter 11. Preparing for the Future with Serverless
	Emerging Trends in Serverless
	The Low-Code and Functionless Promise
	The Renaissance of Event-Driven Architecture
	Multicloud Orchestration
	Infrastructure from Code
	The Evolution and Influence of Generative AI

	Keeping Up with the Evolution of Serverless
	Challenges Facing Enterprise Teams
	Sustaining a Serverless Knowledge Pool
	Embracing Continuous Refactoring

	Playing the Long Game
	Establishing a Serverless Guild and Center of Excellence
	Becoming a Serverless Evangelist
	Joining a Serverless Community

	Summary
	Interview with an Industry Expert
	Farrah Campbell, Head of Modern Compute Community, AWS

	Appendix A. PostNL’s Serverless Journey
	Appendix B. Taco Bell’s Serverless Journey
	Appendix C. Templates and Worksheets
	Index
	About the Authors
	Colophon

