
Learning Modern Linux

A Handbook for the Cloud Native Practitioner

Michael Hausenblas

 Learning Modern Linux

 by
 Michael
 Hausenblas

 Copyright © 2022 Michael Hausenblas. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor:
 John Devins

 	
 Development Editor:
 Jeff Bleiel

 	
 Production Editor:
 Gregory Hyman

 	
 Copyeditor:
 Piper Editorial Consulting, LLC

 	
 Proofreader:
 Amnet Systems, LLC

 	
 Indexer:
 WordCo Indexing Services, Inc.

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 	
 May 2022:
 First Edition

 Revision History for the First Edition

 	
 2022-04-15:
 First Release

 	
 2024-02-16:
 Second Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098108946
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 Learning Modern Linux, the cover image, and related trade dress are
 trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the author and do not
 represent the publisher’s views. While the publisher and the
 author have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 author disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-098-10894-6

 [LSI]

Preface

A warm welcome to Learning Modern Linux! I’m glad that we will walk this
journey together for a bit. This book is for you if you’ve already been using Linux
and are looking for a structured, hands-on approach to dive in deeper,
or if you already have experience and want to get some
tips and tricks to improve your flow when working with Linux—for example, in
a professional setup, such as development or operations.

We’ll focus on using Linux for your everyday needs, from development to
office-related tasks, rather than on the system administration side of things.
Also, we’ll focus on the command line, not visual UIs.
So, while 2022 might be the year of Linux on the desktop after all, we’ll use the terminal as the main way to interact with Linux. This has the
additional advantage that you can equally apply your knowledge in many different
setups, from a Raspberry Pi to the virtual machine of your cloud provider of
choice.

Before we start, I’d like to provide some context by sharing my own journey:
my first hands-on experience with an operating system was not with Linux. The
first operating system I used was AmigaOS (in the late 80s), and after that, in technical
high school, I mainly used Microsoft DOS and the then-new Microsoft Windows,
specifically around the event system and user interface–related development.
Then, in the mid- to late 1990s, during my studies at university, I mainly
used Unix-based Solaris and Silicon Graphics machines in the university labs. I really only got into Linux in
the mid-2000s in the context of big data and then when I started working with containers,
first in 2015 in the context of Apache Mesos (working at Mesosphere), and then
with Kubernetes (initially at Red Hat on the OpenShift team and then at AWS on
the container service team). That’s where I realized that one needs to master Linux to be effective in this space. Linux is different. Its background, worldwide community of users, and versatility and flexibility make it unique.

Linux is an interesting, ever-growing ecosystem of open source individuals and
vendors. It runs on pretty much anything under the sun, from the $50
Raspberry Pi to the virtual machines of your favorite cloud provider to a Mars vehicle.
After 30 years in the making, Linux will likely stick around
for some time, so now is a good time to get into Linux a bit deeper.

Let’s first set some ground rules and expectations. In the preface, I’ll
share how you can get the most out of this book as well as some administrative things,
like where and how you can try out the topics we’ll work through together.

About You

This book is for those who want or need to use Linux in a professional
setup, such as software developers, software architects, QA testing engineers,
DevOps and SRE roles, and similar roles. I’ll assume that if you’re a hobbyist encountering
Linux when pursuing an activity such as 3D printing or home improvement, you have very little to no knowledge about operating systems in general or
Linux/UNIX in particular. You will get the most out of the book if you work through
it from beginning to end, as the chapters tend to build on one another; however,
you can also use it as a reference if you’re already familiar with Linux.

How to Use the Book

The focus of this book is enabling you to use Linux, not administer it. There are
plenty of great books about Linux administration out there.

By the end of this book, you will understand what Linux is (Chapter 1)
and what its critical components are (Chapters 2 and 3). You’ll be able to enumerate and use essential access control mechanisms (Chapter 4).
You’ll also understand the role of filesystems (Chapter 5) as a fundamental
building block in Linux as well as know what apps (Chapter 6) are.

Then, you’ll get some hands-on experience with the Linux networking
stack and tooling (Chapter 7). Further, you’ll
learn about modern operating system observability (Chapter 8) and how
to apply it to manage your workloads.

You’ll understand how to run Linux applications in modern ways by using
containers as well as immutable distros such as Bottlerocket and also how to
securely communicate (download files, etc.) and share data using Secure Shell (SSH) and
advanced tooling like peer-to-peer and cloud sync mechanisms (Chapter 9).

Following are suggestions for ways you can try things out and follow along (and I
strongly recommend you do; learning Linux is like learning a language—you want to practice
a lot):

	
Get a Linux desktop or laptop. For example, I have a very
nice machine called StarBook from Star Labs.
Alternatively, you could use a desktop or laptop that no longer runs a recent
Windows version and install Linux on it.

	
If you want to experiment on a different (host) operating system—say, your
MacBook or iMac—you could use a virtual machine (VM). For example, on macOS
you could use the excellent Linux-on-Mac.

	
Use your cloud provider of choice to spin up a Linux-based VM.

	
If you’re into tinkering and want to try out a non-Intel processor
architecture such as ARM, you could buy a single-board computer such as the
wonderful Raspberry Pi.

In any case, you should have an environment at hand and practice a lot. Don’t just read: try out commands and experiment. Try to
“break” things, for example, by providing nonsensical or deliberately strange
inputs. Before you execute the command, form a hypothesis about the outcome.

Another tip: always ask why. When you see a command or a certain output, try
to figure out where it came from and what the underlying component responsible
for
it is.

Conventions

The following typographical conventions are used in this book:

	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.

	Constant width

	
Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

	Constant width italic

	
Shows text that should be replaced with
user-supplied values or by values determined by context.

Tip

This element signifies a tip or suggestion.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for
download at https://oreil.ly/learning-modern-linux-code.

If you have a technical question or a problem using the code examples,
please send an email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example
code is offered with this book, you may use it in your programs and documentation.
You do not need to contact us for permission unless you’re reproducing a
significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or
distributing examples from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does not require permission.
Incorporating a significant amount of example code from this book into your
product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Learning Modern Linux by
Michael Hausenblas (O’Reilly). Copyright 2022 Michael Hausenblas, 978-1-098-10894-6.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us
at permissions@oreilly.com.

O’Reilly Online Learning

Note

For more than 40 years, O’Reilly Media
has provided technology and business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online
learning platform gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, visit
http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-998-9938 (in the United States or Canada)

 	707-829-0515 (international or local)

 	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/learning-modern-linux.

Email bookquestions@oreilly.com
to comment or ask technical questions about this book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments

First off, I’d like to thank the fabulous reviewers of the book: Chris Negus,
John Bonesio, and Pawel Krupa. Without their feedback, this book wouldn’t be
half as good or useful.

I want to thank my parents, who enabled my education and laid the foundations
for who I am and what I do today. Big kudos to my big sister, Monika,
who was my inspiration to get into tech in the first place.

I would like to express my deepest gratitude to my very awesome and supportive family:
my kids, Saphira, Ranya, and Iannis; my wicked smart and fun wife, Anneliese; our bestest of all dogs, Snoopy; and our newest family member, Charlie
the
tomcat.

In the context of my Unix and Linux journey, there are way too many people who
influenced my thinking and from whom I learned a lot. I had the
pleasure and privilege of working with or interacting with many of them, including but not limited to Jérôme Petazzoni, Jessie Frazelle,
Brendan Gregg, Justin Garrison, Michael Kerrisk, and Douglas McIlroy.

Last, but most certainly not least, I’d like to thank the O’Reilly team,
especially my development editor, Jeff Bleiel, for shepherding me through
the process of writing this book.

Chapter 1. Introduction to Linux

Linux is the most widely used operating system, used in everything from mobile
devices to the cloud.

You might not be familiar with the concept of an operating system. Or you
might be using an operating system such as Microsoft Windows without giving
it too much thought. Or maybe you are new to Linux. To set the scene and
get you in the right mindset, we’ll take a bird’s-eye view of operating systems
and Linux in this chapter.

We’ll first discuss what modern means in the context
of the book. Then we’ll review a high-level Linux backstory, looking at important
events and phases over the past 30 years. Further, in this chapter you’ll learn what
the role of an operating system is in general and how Linux fills this role.
We also take a quick look at what Linux distributions are and what resource
visibility means.

If you’re new to operating systems and Linux, you’ll want to read the entire
chapter. If you’re already experienced with Linux, you might want to jump to
“A Ten-Thousand-Foot View of Linux”, which provides a visual overview as well as mapping to the book’s chapters.

But before we get into the technicalities, let’s first step back a bit and focus
on what we mean when we say “modern Linux.” This is, surprisingly, a nontrivial matter.

What Are Modern Environments?

The book title specifies modern, but what does that really mean? Well, in the
context of this book, it can mean anything from cloud computing to a Raspberry Pi.
In addition, the recent rise of Docker and related innovations in infrastructure
has dramatically changed the landscape for developers and infrastructure
operators alike.

Let’s take a closer look at some of these modern environments
and the prominent role Linux plays in them:

	Mobile devices

	
When I say “mobile phone” to our kids, they say, “In contrast to what?”
In all fairness and seriousness, these days many phones—depending on who you ask, up to 80%
or more—as well as tablets run Android, which is a
Linux variant. These
environments have aggressive requirements around power consumption and
robustness, as we depend on them on a daily basis. If you’re interested in
developing Android apps, consider visiting the
Android developer site for more information.

	Cloud computing

	
With the cloud, we see at scale a similar pattern
as in the mobile and micro space. There are new, powerful, secure, and
energy-saving CPU architectures such as the successful ARM-based
AWS Graviton offerings, as well as
the established heavy-lifting outsourcing to cloud providers, especially in
the context of open source software.

	Internet of (Smart) Things

	
I’m sure you’ve seen a lot of Internet of Things (IoT)–related projects and products, from sensors
to drones. Many of us have already been exposed to smart appliances and smart cars.
These environments have even more challenging requirements around power consumption
than mobile devices. In addition, they might not even be
running all the time but, for example, only wake up once a day to transmit some data.
Another important aspect of these environments is
real-time
capabilities. If you’re interested in getting started with Linux in the IoT
context, consider the AWS IoT EduKit.

	Diversity of processor architectures

	
For the past 30 years or so, Intel has been the leading CPU manufacturer, dominating
the microcomputer and personal computer space. Intel’s x86 architecture was
considered the gold standard. The open approach that IBM took (publishing the
specifications and enabling others to offer compatible devices) was promising,
resulting in x86 clones that also used Intel chips, at least initially.

While Intel is still widely used in desktop and laptop systems, with the
rise of mobile devices we’ve seen the increasing uptake of the
ARM
architecture and recently RISC-V.
At the same time, multi-arch programming languages and tooling, such as Go or
Rust, are becoming more and more widespread, creating a perfect storm.

All of these environments are examples of what I consider modern environments.
And most, if not all of them, run on or use Linux in one form or another.

Now that we know about the modern (hardware) systems, you might wonder how
we got here and how Linux came into being.

The Linux Story (So Far)

Linux celebrated its 30th birthday
in 2021. With billions of users and thousands of developers, the Linux project
is, without doubt, a worldwide (open source) success story. But how did it all
this start, and how did we get here?

	1990s

	
We can consider Linus Torvalds’s email on August 25, 1991, to the
comp.os.minix newsgroup as the birth of the Linux project, at least in terms of the public record. This hobby project soon took off, both in terms of lines of code
(LOC) and in terms of adoption. For example, after less than three years, Linux 1.0.0
was released with over 176,000 LOCs. By that time, the original goal of being able
to run most Unix/GNU software was already well reached. Also, the first
commercial offering appeared in the 1990s: Red Hat Linux.

	2000 to 2010

	
As a “teenager,” Linux was not only maturing in terms of features and supported
hardware but was also growing beyond what UNIX could do. In this time period, we also
witnessed a huge and ever-increasing buy-in of Linux by the big players, that
is, adoption by Google, Amazon, IBM, and so on. It was also the peak of the
distro wars,
resulting in businesses changing their
directions.

	2010s to now

	
Linux established itself as the workhorse in data centers and the cloud, as
well as for any types of IoT devices and phones. In a sense, one can consider
the distro wars as being over (nowadays, most commercial systems are either Red Hat
or Debian based), and in a sense, the rise of containers (from 2014/15 on)
is responsible for this development.

With this super-quick historic review, necessary to set the context and
understand the motivation for the scope of this book, we move on to a seemingly
innocent question: Why does anyone need Linux, or an operating system at all?

Why an Operating System at All?

Let’s say you do not have an operating system (OS) available or cannot use one
for whatever reason. You would then end up doing pretty much everything yourself:
memory management, interrupt handling, talking with I/O devices, managing files,
configuring and managing the network stack—the list goes on.

Note

Technically speaking, an OS is not strictly needed. There are systems out
there that do not have an OS. These are usually embedded systems with a tiny
footprint: think of an IoT beacon. They simply do not have the resources available
to keep anything else around other than one application. For example, with Rust
you can use its Core and Standard Library to run any app on
bare metal.

An operating system takes on all this undifferentiated heavy lifting, abstracting
away the different hardware components and providing you with a (usually) clean
and nicely designed Application Programming Interface (API), such as is the case
with the Linux kernel that we will have a closer look at in Chapter 2. We usually
call these APIs that an OS exposes system calls, or syscalls for short. Higher-level programming languages such as Go, Rust, Python, or Java build on top of
those syscalls, potentially wrapping them in libraries.

All of this allows you to focus on the business logic rather than having
to manage the resources yourself, and also takes care of the different hardware
you want to run your app on.

Let’s have a look at a concrete example of a syscall. Let’s say we want to
identify (and print) the ID of the current user.

First, we look at the Linux syscall
getuid(2):

...
getuid() returns the real user ID of the calling process.
...

OK, so this getuid syscall is what we could use programmatically,
from a library. We will discuss Linux syscalls in greater detail in
“syscalls”.

Note

You might be wondering what the (2) means in getuid(2). It’s a terminology
that the man utility (think built-in help pages) uses to indicate the section
of the command assigned in man, akin to a postal or country code. This is one
example where the Unix legacy is apparent; you can find its origin in the
Unix Programmer’s Manual,
seventh edition, volume 1 from 1979.

On the command line (shell), we would be using the equivalent id command that
in turn uses the getuid syscall:

$ id --user
638114

Now that you have a basic idea of why using an operating system, in most cases, makes
sense, let’s move on to the topic of Linux distributions.

Linux Distributions

When we say “Linux,” it might not be immediately clear what we mean. In this book,
we will say “Linux kernel,” or just “kernel,” when we mean the set of syscalls and
device drivers. Further, when we refer to
Linux distributions
(or distros, for short), we mean a concrete bundling of kernel and related
components, including package management, file system layout, init system, and a shell, preselected for you.

Of course, you could do all of this yourself: you could download and compile the
kernel, choose a package manager, and so on, and create (or roll) your own distro.
And that’s what many folks did in the beginning. Over the years, people figured
out that it is a better use of their time to leave this packaging
(and also security patching) to experts, private or commercial, and simply
use the resulting Linux distro.

Tip

If you are inclined to build your own distribution, maybe because you are a
tinkerer or because you have to due to certain business restrictions, I recommend
you take a closer look at Arch Linux, which puts you
in control and, with a little effort, allows you to create a very customized Linux
distro.

To get a feeling for the vastness of the distro space, including traditional distros
(Ubuntu, Red Hat Enterprise Linux [RHEL], CentOS, etc., as discussed in Chapter 6) and modern distros
(such as Bottlerocket and Flatcar; see Chapter 9),
take a look at DistroWatch.

With the distro topic out of the way, let’s move on to a totally different
topic: resources and their visibility and isolation.

Resource Visibility

Linux has had, in good UNIX tradition, a by-default global view on resources.
This leads us to the question: what does global view mean (in contrast to what?),
and what are said resources?

Note

Why are we talking about resource visibility here in the first place? The main
reason is to raise awareness about this topic and to get you in
the right state of mind for one of the important themes in the context of
modern Linux: containers. Don’t worry if you don’t get all of the details now;
we will come back to this topic throughout the book and specifically in Chapter 6, in which we discuss containers and their building blocks in greater detail.

You might have heard the saying that in Unix, and by extension Linux,
everything is a file. In the context of this book, we consider resources to be
anything that can be used to aid the execution of software. This includes
hardware and its abstractions (such as CPU and RAM, files), filesystems, hard disk
drives, solid-state drives (SSDs), processes, networking-related stuff like devices or routing tables,
and credentials representing users.

Warning

Not all resources in Linux are
files or represented through a file interface. However, there are systems out
there, such as Plan 9, that take this much further.

Let’s have a look at a concrete example of some Linux resources. First, we want
to query a global property (the Linux version) and then specific hardware information
about the CPUs in use (output edited to fit space):

$ cat /proc/version [image: 1]
Linux version 5.4.0-81-generic (buildd@lgw01-amd64-051)
(gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04))
#91~18.04.1-Ubuntu SMP Fri Jul 23 13:36:29 UTC 2021

$ cat /proc/cpuinfo | grep "model name" [image: 2]
model name : Intel Core Processor (Haswell, no TSX, IBRS)
model name : Intel Core Processor (Haswell, no TSX, IBRS)
model name : Intel Core Processor (Haswell, no TSX, IBRS)
model name : Intel Core Processor (Haswell, no TSX, IBRS)

	[image: 1]

	Print the Linux version.

	[image: 2]

	Print CPU-related information, filtering for model.

With the preceding commands, we learned that this system has four Intel i7 cores at its
disposal. When you log in with a different user, would you expect to see the
same number of CPUs?

Let’s consider a different type of resource: files. For example, if the user troy
creates a file under /tmp/myfile with permission to do so
(“Permissions”), would another user, worf, see the file or
even be able to write to it?

Or, take the case of a process, that is, a program in memory that has all the
necessary resources available to run, such as CPU and memory. Linux identifies
a process using its process ID, or PID for short (“Process Management”):

$ cat /proc/$$/status | head -n6 [image: 1]
Name: bash
Umask: 0002
State: S (sleeping)
Tgid: 2056
Ngid: 0
Pid: 2056

	[image: 1]

	Print process status—that is, details about the current process—and limit
output to show only the first six lines.

What Is $$?

You might have noticed the $$ and wondered what this means. This is a special
variable that is referring to the current process (see “Variables” for
details). Note that in the context of a shell, $$ is the process ID of
the shell (such as bash) in which you typed the command.

Can there be multiple processes with the same PID in Linux? What may sound
like a silly or useless question turns out to be the basis for containers
(see “Containers”). The answer is yes, there can be multiple processes
with the same PID, in different contexts called namespaces (see “Linux Namespaces”).
This happens, for example, in a containerized setup, such as when you’re running
your app in Docker or Kubernetes.

Every single process might think that it is special, having PID 1, which
in a more traditional setup is reserved for the root of the user space process
tree (see “The Linux Startup Process” for more details).

What we can learn from these observations is that there can be a global view
on a given resource (two users see a file at the exact same location) as well
as a local or virtualized view, such as the process example. This raises the
question: is everything in Linux by default global? Spoiler: it’s not. Let’s
have a closer look.

Part of the illusion of having multiple users or processes running in parallel
is the (restricted) visibility onto resources. The way to provide a local
view on (certain supported) resources in Linux is via namespaces (see “Linux Namespaces”).

A second, independent dimension is that of isolation. When I use the term
isolation here, I don’t necessarily qualify it—that is, I make no assumptions
about how well things are isolated. For example, one way to think about process
isolation is to restrict the memory consumption so that one process cannot
starve other processes. For example, I give your app 1 GB of RAM to use. If
it uses more, it gets
out-of-memory
killed. This provides a certain level of protection. In Linux we use a kernel
feature called cgroups to provide this kind of isolation, and in
“Linux cgroups” you will learn more about it.

On the other hand, a fully isolated environment gives the appearance that the
app is entirely on its own. For example, a virtual machine (VM; see also
“Virtual Machines”) can be used to provide you with full isolation.

A Ten-Thousand-Foot View of Linux

Whoa, we went quite deep into the weeds already. Time to take a deep breath and
re-focus. In Figure 1-1, I’ve tried to provide you with a high-level
overview of the Linux operating system, mapping it to the book chapters.

[image: lmlx 0101]
Figure 1-1. Mapping the Linux operating system to book chapters

At its core, any Linux distro has the kernel, providing the API that everything else
builds on. The three core topics of files, networking, and observability follow
you everywhere, and you can consider them the most basic building blocks above
the kernel. From a pure usage perspective, you will soon learn that you will most often be dealing with the shell
(Where is the output file for this app?) and things related to access control (Why
does this app crash? Ah, the directory is read-only, doh!).

As an aside: I’ve collected some interesting topics, from virtual machines
to modern distros, in Chapter 9. I call these topics “advanced” mainly because I consider
them optional. That is, you could get away
without learning them. But if you really, really, really want to benefit
from the full power that modern Linux can provide you, I strongly recommend
that you read Chapter 9. I suppose it goes without saying that, by design,
the rest of the book—that is Chapter 2 to Chapter 8—are essential chapters
you should most definitely study and apply the content as you go.

Portable Operating System Interface

We will come across the term POSIX, short for Portable Operating System Interface,
every now and then in this book. Formally, POSIX is an IEEE standard to
define service interfaces for UNIX operating systems. The motivation was to
provide portability between different implementations. So, if you read things
like “POSIX-compliant,” think of a set of formal specifications that are especially
relevant in official procurement context and less so in everyday usage.

Linux was built to be POSIX-compliant as well as to be compliant with
the UNIX System V Interface Definition (SVID), which gave it the flavor of
old-time AT&T UNIX systems, as opposed to Berkeley Software Distribution
(BSD)-style systems.

If you want to learn more about POSIX, check out
“POSIX Abstractions
in Modern Operating Systems: The Old, the New, and the Missing”, which provides
a great introduction and comments on uptake and challenges around this topic.

Conclusion

When we call something “modern” in the context of this book, we mean using
Linux in modern environments, including phones, data centers (of public cloud providers),
and embedded systems such as a Raspberry Pi.

In this chapter, I shared a high-level version of the Linux backstory. We
discussed the role of an operating system in general—to abstract the underlying
hardware and provide a set of basic functions
such as process, memory, file, and network management to applications—and
how Linux goes about this task, specifically regarding visibility of resources.

The following resources will help you continue getting up to speed as well as dive deeper
into concepts discussed in this chapter:

	O’Reilly titles

	

	
Linux Cookbook by Carla Schroder

	
Understanding the Linux Kernel by Daniel P. Bovet and Marco Cesati

	
Efficient Linux at the Command Line by Daniel J. Barrett

	
Linux System Programming by Robert Love

	Other resources

	

	
Advanced Programming in the UNIX Environment
is a complete course that offers introductory material and
hands-on exercises.

	
“The Birth of UNIX”
with Brian Kernighan is a great resource for learning about Linux’s legacy and provides
context for a lot of the original UNIX concepts.

And now, without further ado: let’s start our journey into modern Linux with the
core, erm, kernel, of the matter!

Chapter 2. The Linux Kernel

In “Why an Operating System at All?”, we learned that the main function of an operating system
is to abstract over different hardware and provide us with an
API. Programming against this API allows
us to write applications without having to worry about where and how they are
executed. In a nutshell, the kernel provides such an API to programs.

In this chapter, we discuss what the Linux kernel is and how you should be
thinking about it as a whole as well as about its components. You will learn
about the overall Linux architecture and the essential role the Linux kernel
plays. One main takeaway of this chapter is that while the kernel
provides all the core functionality, on its own it is not the operating
system but only a very central part of it.

First, we take a bird’s-eye view, looking at how
the kernel fits in and interacts with the underlying hardware.
Then, we review the computational core, discussing
different CPU architectures and how they relate to the kernel.
Next, we zoom in on the individual kernel components and discuss the API
the kernel provides to programs you can run.
Finally, we look at how to customize and extend the Linux kernel.

The purpose of this chapter is to equip you with the necessary terminology,
make you aware of the interfacing between programs and the kernel, and give
you a basic idea what the functionality is. The chapter does not aim to turn
you into a kernel developer or even a sysadmin configuring and compiling
kernels. If, however, you want to dive into that, I’ve put together some
pointers at the end of the chapter.

Now, let’s jump into the deep end: the Linux architecture and the central
role the kernel plays in this context.

Linux Architecture

At a high level, the Linux architecture looks as depicted in Figure 2-1.
There are three distinct layers you can group things into:

	Hardware

	
From CPUs and main memory to disk drives, network interfaces, and peripheral devices such as keyboards and monitors.

	The kernel

	
The focus of the rest of this chapter. Note that there are
 a number of components that sit between the kernel and user land, such as
 the init system and system services (networking, etc.), but that are, strictly
 speaking, not part of the kernel.

	User land

	
Where the majority of apps are running, including operating
 system components such as shells (discussed in Chapter 3),
 utilities like ps or ssh, and graphical user interfaces such
 as X Window System–based desktops.

We focus in this book on the upper two layers of Figure 2-1, that
is, the kernel and user land. We only touch on the hardware layer in this and a few other chapters, where relevant.

The interfaces between the different layers are well defined and part of the
Linux operating system package. Between the kernel and user land is the interface called system calls (syscalls for short). We will explore this in
detail in “syscalls”.

The interface between the hardware and the kernel is, unlike the syscalls,
not a single one. It consists of a collection of individual interfaces,
usually grouped by hardware:

	
The CPU interface (see “CPU Architectures”)

	
The interface with the main memory, covered in “Memory Management”

	
Network interfaces and drivers (wired and wireless; see “Networking”)

	
Filesystem and block devices driver interfaces (see “Filesystems”)

	
Character devices, hardware interrupts, and device drivers,
for input devices like keyboards, terminals, and other I/O (see “Device Drivers”)

[image: lmlx 0201]
Figure 2-1. A high-level view of the Linux architecture

As you can see, many of the things we usually consider part of the Linux
operating system, such as shell or utilities such as grep, find, and
ping, are in fact not part of the kernel but, very much like an app you download,
part of user land.

On the topic of user land, you will often read or hear about
user versus kernel mode. This effectively refers to how privileged the access to hardware
is and how restricted the abstractions available are.

In general, kernel mode means fast execution with limited abstraction, whereas user mode means comparatively slower but safer and more convenient abstractions.
Unless you are a kernel developer,
you can almost always ignore kernel mode, since all your apps will run in user land.
Knowing how to interact with the kernel (“syscalls”), on the other
hand, is vital and part of our considerations.

With this Linux architecture overview out of the way, let’s work our way up
from the hardware.

CPU Architectures

Before we discuss the kernel components, let’s review
a basic concept: computer architectures or CPU families, which we will
use interchangeably. The fact that Linux runs on a large number of different
CPU architectures is arguably one of the reasons it is so popular.

Next to generic code and drivers, the Linux kernel contains
architecture-specific code. This separation allows it to port Linux and make
it available on new hardware quickly.

There are a number of ways to figure out what CPU your Linux is running. Let’s
have a look at a few in turn.

The BIOS and UEFI

Traditionally, UNIX and Linux used the Basic I/O System (BIOS) for bootstrapping itself.
When you power on your Linux laptop, it is entirely hardware-controlled.
First off, the hardware is wired to run the Power On Self Test
(POST), part of the BIOS. POST makes sure that the hardware (RAM, etc.) function
as specified. We will get into the details of the mechanics in “The Linux Startup Process”.

In modern environments, the BIOS functions have been effectively replaced by the
Unified Extensible
Firmware Interface (UEFI), a public specification that defines a software
interface between an operating system and platform firmware. You will still come
across the term BIOS in documentation and articles, so I suggest
you simply replace it with UEFI in your head and move on.

One way is a dedicated tool called dmidecode that interacts with the BIOS. If this doesn’t yield results, you could try the following (output shortened):

$ lscpu
Architecture: x86_64 [image: 1]
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 40 bits physical, 48 bits virtual
CPU(s): 4 [image: 2]
On-line CPU(s) list: 0-3
Thread(s) per core: 1
Core(s) per socket: 4
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 60
Model name: Intel Core Processor (Haswell, no TSX, IBRS) [image: 3]
Stepping: 1
CPU MHz: 2592.094
...

	[image: 1]

	The architecture we’re looking at here is x86_64.

	[image: 2]

	It looks like there are four CPUs available.

	[image: 3]

	The CPU model name is Intel Core Processor (Haswell).

In the previous command, we saw that the CPU architecture was reported to
be x86_64, and the model was reported as “Intel Core Processor (Haswell).”
We will learn more about how to decode this in a moment.

Another way to glean similar architecture information is by using
cat /proc/cpuinfo, or, if you’re only interested in the architecture,
by simply calling uname -m.

Now that we have a handle on querying the architecture information on Linux,
let’s see how to decode it.

x86 Architecture

x86 is an instruction set family originally
developed by Intel and later licensed to Advanced Micro Devices (AMD). Within the kernel, x64
refers to the Intel 64-bit processors, and x86 stands for Intel 32-bit.
Further, amd64 refers to AMD 64-bit processors.

Today, you’ll mostly find the x86 CPU family in desktops and laptops,
but it’s also widely used in servers. Specifically, x86 forms the basis
of the public cloud. It is a powerful and widely available architecture but isn’t very energy efficient. Partially due to its heavy reliance on
out-of-order execution, it recently received a lot of attention around security
issues such as Meltdown.

For further details, for example the Linux/x86 boot protocol or Intel and AMD
specific background, see the x86-specific
kernel documentation.

ARM Architecture

More than 30 years old, ARM is a
family of Reduced Instruction Set Computing (RISC) architectures.
RISC usually consists of many generic CPU registers along
with a small set of instructions that can be executed faster.

Because the designers at Acorn—the original company behind ARM—focused from the
get-go on minimal power consumption, you find ARM-based chips in a number of
portable devices such as iPhones. They are also in most Android-based phones and
in embedded systems found in IoT, such as in the Raspberry Pi.

Given that they are fast, cheap, and produce less heat than x86 chips, you shouldn’t be surprised to increasingly find ARM-based CPUs—such as AWS Graviton—in the data center.
While simpler than x86, ARM is not immune to vulnerabilities, such as
Spectre. For further details, see the ARM-specific
kernel documentation.

RISC-V Architecture

An up-and-coming player, RISC-V (pronounced risk five)
is an open RISC standard that was originally developed by the University of California, Berkeley. As of 2021, a number of implementations exist, ranging from Alibaba Group and Nvidia
to start-ups such as SiFive. While exciting, this is a relatively new
and not widely used (yet) CPU family, and to get an idea how it look and feels,
you may want to research it a little—a good start is
Shae Erisson’s article “Linux on RISC-V”.

For further details, see the RISC-V
kernel documentation.

Kernel Components

Now that you know the basics of CPU architectures, it’s time to dive into the kernel. While the Linux kernel is a
monolithic one—that is, all the components discussed are part of a single
binary—there are functional areas in the code base that we can identify and
ascribe dedicated responsibilities.

As we’ve discussed in “Linux Architecture”, the kernel sits between the
hardware and the apps you want to run. The main functional blocks you find in
the kernel code base are as follows:

	
Process management, such as starting a process based on an executable file

	
Memory management, such as allocating memory for a process or map
a file into memory

	
Networking, like managing network interfaces or providing the network stack

	
Filesystems providing file management and supporting the creation and deletion
of files

	
Management of character devices and device drivers

These functional components often come with interdependencies, and it’s
a truly challenging task to make sure that the kernel developer
motto “Kernel
never breaks user land” holds true.

With that, let’s have a closer look at the kernel components.

Process Management

There are a number of process management–related parts in the kernel. Some
of them deal with CPU architecture–specific things, such as interrupts,
and others focus on the launching and scheduling of programs.

Before we get to Linux specifics, let’s note that commonly, a process is the user-facing
unit, based on an executable program (or binary). A thread, on the other hand,
is a unit of execution in the context of a process. You might have come across
the term multithreading, which means that a process has a number of parallel
executions going on, potentially running on different CPUs.

With this general view out of the way, let’s see how Linux goes about it. From
most granular to smallest unit, Linux has the following:

	Sessions

	
Contain one or more process groups and represent a high-level user-facing
unit with optional tty attached. The kernel identifies a session via
a number called session ID (SID).

	Process groups

	
Contain one or more processes, with at most one process group in a session
as the foreground process group. The kernel identifies a process group via
a number called process group ID (PGID).

	Processes

	
Abstractions that group multiple resources (address space,
one or more threads, sockets, etc.), which the kernel exposes to you via
/proc/self for the current process. The kernel identifies a process via
a number called process ID (PID).

	Threads

	
Implemented by the kernel as processes. That is, there are no dedicated
data structures representing threads. Rather, a thread is a process that shares
certain resources (such as memory or signal handlers) with other processes.
The kernel identifies a thread via thread IDs (TID) and thread group IDs (TGID),
with the semantics that a shared TGID value means a multithreaded process
(in user land; there are also kernel threads, but that’s beyond our scope).

	Tasks

	
In the kernel there is a data structure called task_struct—defined in
sched.h—that forms the basis of implementing processes and threads alike. This data
structure captures scheduling-related information, identifiers
(such as PID and TGID), and signal handlers, as well as other information, such as that related to
performance and security. In a nutshell, all of the aforementioned
units are derived and/or anchored in tasks; however, tasks are not
exposed as such outside of the kernel.

We will see sessions, process groups, and processes in action and learn how to manage
them in Chapter 6, and they’ll appear again in the context of containers
in
Chapter 9.

Let’s see some of these concepts in action:

$ ps -j
PID PGID SID TTY TIME CMD
6756 6756 6756 pts/0 00:00:00 bash [image: 1]
6790 6790 6756 pts/0 00:00:00 ps [image: 2]

	[image: 1]

	The bash shell process has PID, PGID, and SID of 6756. From
ls -al /proc/6756/task/6756/, we can glean the task-level information.

	[image: 2]

	The ps process has PID/PGID 6790 and the same SID as the shell.

We mentioned earlier on that in Linux the task data structure has some
scheduling-related information at the ready. This means that at any given time a process
is in a certain state, as shown in Figure 2-2.

[image: lmlx 0202]
Figure 2-2. Linux process states

Note

Strictly speaking, the process states are a little more complicated; for example,
Linux distinguishes between interruptible and uninterruptible sleep, and there
is also the zombie state (in which it has lost its parent process). If you’re interested in
the details, check out the article
“Process States in Linux”.

Different events cause state transitions. For example, a running process
might transition to the waiting state when it carries out some I/O operation
(such as reading from a file) and can’t proceed with execution (off CPU).

Having taken a quick look at process management, let’s examine a
related topic: memory.

Memory Management

Virtual memory makes your system appear as if it has more memory than it physically
has. In fact, every process gets a lot of (virtual) memory. This is how it works: both physical memory and virtual memory are divided into fixed-length chunks
we call pages.

Figure 2-3 shows the virtual address spaces of two processes,
each with its own page table. These page tables map virtual pages of the
process into physical pages in main memory (aka RAM).

[image: lmlx 0203]
Figure 2-3. Virtual memory management overview

Multiple virtual pages can point to the same physical page via their respective
process-level page tables. This is, in a sense, the core of memory management:
how to effectively provide each process with the illusion that its page actually
exists in RAM while using the existing space optimally.

Every time the CPU accesses a process’s virtual page, the CPU would in principle
have to translate the virtual address a process uses to the corresponding physical address.
To speed up this process—which can be multilevel and hence slow—modern CPU architectures
support a lookup on-chip called translation lookaside buffer
(TLB). The TLB is effectively a small cache that, in case of a miss, causes the
CPU to go via the process page table(s) to calculate the physical address of a page
and update the TLB with it.

Traditionally, Linux had a default page size of 4 KB, but since kernel v2.6.3,
it supports huge pages, to better support
modern architectures and workloads. For example, 64-bit Linux allows you to use
up to 128 TB of virtual address space (with virtual being the theoretical
addressable number of memory addresses) per process, with an approximate 64 TB
of physical memory (with physical being the amount of RAM you have in your
machine) in total.

OK, that was a lot of theoretical information. Let’s have
a look at it from a more practical point of view. A very useful tool to figure
out memory-related information such as how much RAM is available to you is the
/proc/meminfo interface:

$ grep MemTotal /proc/meminfo [image: 1]
MemTotal: 4014636 kB

$ grep VmallocTotal /proc/meminfo [image: 2]
VmallocTotal: 34359738367 kB

$ grep Huge /proc/meminfo [image: 3]
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 0 kB

	[image: 1]

	List details on physical memory (RAM); that’s 4 GB there.

	[image: 2]

	List details on virtual memory; that’s a bit more than 34 TB there.

	[image: 3]

	List huge pages information; apparently here the page size is 2 MB.

With that, we move on to the next kernel function: networking.

Networking

One important function of the kernel is to provide networking functionality.
Whether you want to browse the web or copy data to a
remote system, you depend on the network.

The Linux network stack follows a layered architecture:

	Sockets

	
For abstracting communication

	Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)

	
For connection-oriented communication and connectionless communication, respectively

	Internet Protocol (IP)

	
For addressing machines

These three actions are all that the kernel takes care of. The application layer
protocols such as HTTP or SSH are, usually, implemented in user land.

You can get an overview of your network interfaces using (output edited):

$ ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode
 DEFAULT group default qlen 1000 link/loopback 00:00:00:00:00:00
 brd 00:00:00:00:00:00
2: enp0s1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state
 UP mode DEFAULT group default qlen 1000 link/ether 52:54:00:12:34:56
 brd ff:ff:ff:ff:ff:ff

Further, ip route provides you with routing information. Since we have a dedicated
networking chapter (Chapter 7) where we will dive deep into the networking stack,
the supported protocols, and typical operations, we keep it at this and move on to
the next kernel component, block devices and filesystems.

Filesystems

Linux uses filesystems to organize files and directories on storage devices
such as hard disk drives (HDDs) and solid-state drives (SSDs) or flash memory.
There are many types of filesystems, such as ext4 and btrfs or NTFS,
and you can have multiple instances of the same filesystem in use.

Virtual File System (VFS) was originally introduced to support multiple
filesystem types and instances. The highest layer in VFS provides a common API
abstraction of functions such as open, close, read, and write.
At the bottom of VFS are filesystem abstractions called plug-ins for the given
filesystem.

We will go into greater detail on filesystems and file operations in
Chapter 5.

Device Drivers

A driver is a bit of code that runs in the kernel. Its job is to manage a device,
which can be actual hardware—like a keyboard, a mouse, or hard disk drives—or
it can be a pseudo-device such as a pseudo-terminal under /dev/pts/ (which is
not a physical device but can be treated like one).

Another interesting class of hardware are
graphics processing units
(GPUs), which traditionally were used to accelerate graphics output and ease the load on the CPU. In recent years, GPUs have found a new use case
in the context of machine learning, and
hence they are not exclusively relevant in desktop environments.

The driver may be built statically into the kernel, or it
can be built as a kernel module (see “Modules”) so that it can be
dynamically loaded when needed.

Tip

If you’re interested in an interactive way to explore device drivers
and how kernel components interact, check out the
Linux kernel map.

The kernel driver model
is complicated and out of scope for this book. However, following are a few hints for interacting with it, just enough so that you know where to
find what.

To get an overview of the devices on your Linux system, you can use the following:

$ ls -al /sys/devices/
total 0
drwxr-xr-x 15 root root 0 Aug 17 15:53 .
dr-xr-xr-x 13 root root 0 Aug 17 15:53 ..
drwxr-xr-x 6 root root 0 Aug 17 15:53 LNXSYSTM:00
drwxr-xr-x 3 root root 0 Aug 17 15:53 breakpoint
drwxr-xr-x 3 root root 0 Aug 17 17:41 isa
drwxr-xr-x 4 root root 0 Aug 17 15:53 kprobe
drwxr-xr-x 5 root root 0 Aug 17 15:53 msr
drwxr-xr-x 15 root root 0 Aug 17 15:53 pci0000:00
drwxr-xr-x 14 root root 0 Aug 17 15:53 platform
drwxr-xr-x 8 root root 0 Aug 17 15:53 pnp0
drwxr-xr-x 3 root root 0 Aug 17 15:53 software
drwxr-xr-x 10 root root 0 Aug 17 15:53 system
drwxr-xr-x 3 root root 0 Aug 17 15:53 tracepoint
drwxr-xr-x 4 root root 0 Aug 17 15:53 uprobe
drwxr-xr-x 18 root root 0 Aug 17 15:53 virtual

Further, you can use the following to list mounted devices:

$ mount
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,gid=5,mode=620, \
ptmxmode=000)
...
tmpfs on /run/snapd/ns type tmpfs (rw,nosuid,nodev,noexec,relatime,\
size=401464k,mode=755,inode64)
nsfs on /run/snapd/ns/lxd.mnt type nsfs (rw)

With this, we have covered the Linux kernel components and move to the
interface between the kernel and user land.

syscalls

Whether you sit in front of a terminal and type touch test.txt or
whether one of your apps wants to download the content of a file from a
remote system, at the end of the day you ask Linux to turn the high-level instruction,
such as “create a file” or “read all bytes from address so and so,” into a
set of concrete, architecture-dependent steps. In other words, the service
interface the kernel exposes and that user land entities call is the set
of system calls, or syscalls
for short.

Linux has hundreds of syscalls: around three hundred or more, depending on the CPU family.
However, you and your programs don’t usually invoke these syscalls directly but
via what we call the C standard library. The standard library provides wrapper
functions and is available in various implementations, such as
glibc or musl.

These wrapper libraries perform an important task. They take care
of the repetitive low-level handling of the execution of a syscall. System
calls are implemented as software interrupts, causing an exception that
transfers the control to an exception handler. There are a number of steps to
take care of every time a syscall is invoked, as depicted in
Figure 2-4:

[image: lmlx 0204]
Figure 2-4. syscall execution steps in Linux

	
Defined in syscall.h and architecture-dependent files, the kernel uses
a so-called syscall table, effectively an array of function pointers in memory
(stored in a variable called sys_call_table) to keep track of syscalls
and their corresponding handlers.

	
With the system_call() function acting like a syscall multiplexer,
it first saves the hardware context on the stack, then performs checks (like
if tracing is performed), and then jumps to the function pointed to by the
respective syscall number index in the sys_call_table.

	
After the syscall is completed with sysexit, the wrapper library restores the
hardware context, and the program execution resumes in user land.

Notable in the previous steps is the switching between kernel mode and user
land mode, an operation that costs time.

OK, that was a little dry and theoretical, so to better appreciate how syscalls
look and feel in practice, let’s have a look at a concrete example. We will
use strace to look behind the curtain, a tool
useful for troubleshooting, for example, if you don’t have the source code
of an app but want to learn what it does.

Let’s assume you wonder what syscalls are involved when you execute the
innocent-looking ls command. Here’s how you can find it out using strace:

$ strace ls [image: 1]
execve("/usr/bin/ls", ["ls"], 0x7ffe29254910 /* 24 vars */) = 0 [image: 2]
brk(NULL) = 0x5596e5a3c000 [image: 3]
...
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory) [image: 4]
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3 [image: 5]
...
read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0 p\0\0\0\0\0\0"..., \
832) = 832 [image: 6]
...

	[image: 1]

	With strace ls, we ask strace to capture the syscall that ls uses. Note
that I edited the output since strace generates some 162 lines on my
system (this number varies between different distros, architectures, and
other factors). Further, the output you see there comes via stderr, so if
you want to redirect it, you have to use 2> here. You’ll learn more about this in Chapter 3.

	[image: 2]

	The syscall execve
executes /usr/bin/ls, causing the shell process to be replaced.

	[image: 3]

	The brk syscall
is an outdated way to allocate memory; it’s safer and more portable to
use malloc. Note that malloc is not a syscall but a function that in
turn uses mallocopt to decide if it needs to use the brk syscall or
the mmap syscall based on the amount of memory accessed.

	[image: 4]

	The access syscall checks if the process is allowed to access a certain
file.

	[image: 5]

	Syscall openat opens the file /etc/ld.so.cache relative to a directory
file descriptor (here the first argument, AT_FDCWD, which stands for the
current directory) and using flags O_RDONLY|O_CLOEXEC (last argument).

	[image: 6]

	The read syscall reads from a file descriptor (first argument, 3)
832 bytes (last argument) into a buffer (second argument).

strace is useful to see exactly what syscalls have been called—in which order
and with which arguments—effectively hooking into the live stream of events between
user land and kernel. It’s also good for performance diagnostics. Let’s see
where a curl command spends most of its time (output shortened):

$ strace -c \ [image: 1]
 curl -s https://mhausenblas.info > /dev/null [image: 2]
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 26.75 0.031965 148 215 mmap
 17.52 0.020935 136 153 3 read
 10.15 0.012124 175 69 rt_sigaction
 8.00 0.009561 147 65 1 openat
 7.61 0.009098 126 72 close
 ...
 0.00 0.000000 0 1 prlimit64
------ ----------- ----------- --------- --------- ----------------
100.00 0.119476 141 843 11 total

	[image: 1]

	Use the -c option to generate overview stats of the syscalls used.

	[image: 2]

	Discard all output of curl.

Interestingly, the curl command here spends almost half of its time with
mmap and read syscalls, and the connect syscall takes 0.3 ms—not bad.

To help you get a feeling for the coverage, I’ve put together Table 2-1,
which lists examples of widely used syscalls across kernel components as
well as system-wide ones. You can look up details of syscalls, including
their parameters and return values, via
section 2 of the man
pages.

Table 2-1. Example syscalls

	Category
	Example syscalls

	Process management

	clone, fork, execve, wait, exit, getpid,
setuid, setns, getrusage, capset, ptrace

	Memory management

	brk, mmap, munmap, mremap, mlock, mincore

	Networking

	socket, setsockopt, getsockopt, bind, listen, accept,
connect, shutdown, recvfrom, recvmsg, sendto, sethostname, bpf

	Filesystems

	open, openat, close, mknod, rename, truncate, mkdir,
rmdir, getcwd, chdir, chroot, getdents, link, symlink, unlink,
umask, stat, chmod, utime, access, ioctl, flock, read, write,
lseek, sync, select, poll, mount,

	Time

	time, clock_settime, timer_create, alarm, nanosleep

	Signals

	kill, pause, signalfd, eventfd,

	Global

	uname, sysinfo, syslog, acct, _sysctl, iopl, reboot

Tip

There is a nice interactive syscall table
available online with source code references.

Now that you have a basic idea of the Linux kernel, its main
components, and interface, let’s move on to the question of how to extend it.

Kernel Extensions

In this section, we will focus on how to extend the kernel. In a sense, the
content here is advanced and optional. You won’t need it for your
day-to-day work, in general.

Note

Configuring and compiling your own Linux kernel is out of scope for
this book. For information on how to do it, I recommend Linux Kernel in a Nutshell (O’Reilly)
by Greg Kroah-Hartman, one of the main Linux maintainers and project lead.
He covers the entire range of tasks, from downloading the source code to
configuration and installation steps, to kernel options at runtime.

Let’s start with something easy: how do you know what kernel version you’re using?
You can use the following command to determine this:

$ uname -srm
Linux 5.11.0-25-generic x86_64 [image: 1]

	[image: 1]

	From the uname output here, you can tell that at the time of writing,
I’m using a 5.11 kernel
on an x86_64 machine (see also “x86 Architecture”).

Now that we know the kernel version, we can address the question of how to extend the
kernel out-of-tree—that is, without having to add features to the kernel source
code and then build it. For this extension we can use modules, so let’s
have a look at that.

Modules

In a nutshell, a module is a program that you can load into a kernel on demand.
That is, you do not necessarily have to recompile the kernel and/or reboot the
machine. Nowadays, Linux detects most of the hardware automatically, and with it
Linux loads its modules automatically. But there are cases where you want to
manually load a module. Consider the following case: the kernel detects a video
card and loads a generic module. However, the video card manufacturer offers a better
third-party module (not available in the Linux kernel) that you may choose to
use instead.

To list available modules, run the following command (output has been edited down, as there
are over one thousand lines on my system):

$ find /lib/modules/$(uname -r) -type f -name '*.ko*'
/lib/modules/5.11.0-25-generic/kernel/ubuntu/ubuntu-host/ubuntu-host.ko
/lib/modules/5.11.0-25-generic/kernel/fs/nls/nls_iso8859-1.ko
/lib/modules/5.11.0-25-generic/kernel/fs/ceph/ceph.ko
/lib/modules/5.11.0-25-generic/kernel/fs/nfsd/nfsd.ko
...
/lib/modules/5.11.0-25-generic/kernel/net/ipv6/esp6.ko
/lib/modules/5.11.0-25-generic/kernel/net/ipv6/ip6_vti.ko
/lib/modules/5.11.0-25-generic/kernel/net/sctp/sctp_diag.ko
/lib/modules/5.11.0-25-generic/kernel/net/sctp/sctp.ko
/lib/modules/5.11.0-25-generic/kernel/net/netrom/netrom.ko

That’s great! But which modules did the kernel actually load? Let’s take a look
(output shortened):

$ lsmod
Module Size Used by
...
linear 20480 0
crct10dif_pclmul 16384 1
crc32_pclmul 16384 0
ghash_clmulni_intel 16384 0
virtio_net 57344 0
net_failover 20480 1 virtio_net
ahci 40960 0
aesni_intel 372736 0
crypto_simd 16384 1 aesni_intel
cryptd 24576 2 crypto_simd,ghash_clmulni_intel
glue_helper 16384 1 aesni_intel

Note that the preceding information is available via /proc/modules. This is thanks to
the kernel exposing this information via a pseudo-filesystem interface;
more on this topic is presented in Chapter 6.

Want to learn more about a module or have a nice way to manipulate kernel
modules? Then modprobe is your friend. For example, to list the dependencies:

$ modprobe --show-depends async_memcpy
insmod /lib/modules/5.11.0-25-generic/kernel/crypto/async_tx/async_tx.ko
insmod /lib/modules/5.11.0-25-generic/kernel/crypto/async_tx/async_memcpy.ko

Next up: an alternative, modern way to extend the kernel.

A Modern Way to Extend the Kernel: eBPF

An increasingly popular way to extend kernel functionality is eBPF. Originally
known as Berkeley Packet Filter (BPF), nowadays the kernel project and technology
is commonly known as eBPF (a term that does not stand for anything).

Technically, eBPF is a feature of the Linux kernel, and you’ll need the Linux kernel
version 3.15 or above to benefit from it. It enables you to safely and efficiently extend
the Linux kernel functions by using the bpf
syscall. eBPF is implemented as an in-kernel virtual machine using a custom 64-bit
RISC instruction set.

Tip

If you want to learn more about what is enabled in which kernel version for eBPF,
you can use the iovisor/bcc
docs on GitHub.

In Figure 2-5 you see a high-level overview taken from Brendan Gregg’s book
BPF Performance Tools: Linux System and Application Observability (Addison Wesley).

[image: lmlx 0205]
Figure 2-5. eBPF overview in the Linux kernel

eBPF is already used in a number of places and for use cases such as the following:

	As a CNI plug-in to enable pod networking in Kubernetes

	
For example, in
 Cilium and Project Calico. Also,
 for service scalability.

	For observability

	
For Linux kernel tracing, such as with
 iovisor/bpftrace, as well as in a clustered
 setup with Hubble (see Chapter 8).

	As a security control

	
For example, to perform container runtime scanning as
 you can use with projects such as CNCF Falco.

	For network load balancing

	
Such as in Facebook’s L4 katran
 library.

In mid-2021, the Linux Foundation announced that Facebook, Google, Isovalent,
Microsoft, and Netflix joined together to
create the eBPF Foundation,
and with it giving the eBPF project a vendor-neutral home. Stay tuned!

If you want to stay on top of things, have a look at ebpf.io.

Conclusion

The Linux kernel is the core of the Linux operating system, and no matter
what distribution or environment you are using
Linux in—be it on your desktop or in the cloud—you should have a basic idea
of its components and functionality.

In this chapter, we reviewed the overall Linux architecture, the role of the
kernel, and its interfaces. Most importantly, the kernel abstracts
away the differences of the hardware—CPU architectures and peripheral devices—and
makes Linux very portable. The most important interface is the syscall
interface, through which the kernel exposes its functionality—be it opening a
file, allocating memory, or listing network
interfaces.

We have also looked a bit at the inner workings of the kernel, including modules and
eBPF. If you want to extend the kernel functionality or implement performant
tasks in the kernel (controlled from the user space), then eBPF is definitely worth
taking a closer look at.

If you want to learn more about certain aspects of the kernel, the following resources
should provide you with some starting points:

	General

	

	
The Linux Programming Interface by Michael Kerrisk (No Starch Press).

	
Linux Kernel Teaching
provides a nice introduction with deep dives across the board.

	
“Anatomy of the Linux Kernel” gives
a quick high-level intro.

	
“Operating System Kernels”
has a nice overview and comparison of kernel design approaches.

	
KernelNewbies is a great resource if you want to
dive deeper into hands-on topics.

	
kernelstats shows some interesting
distributions over time.

	
The Linux Kernel Map is a
visual representation of kernel components and dependencies.

	Memory management

	

	
Understanding the Linux Virtual Memory Manager

	
“The Slab Allocator in the Linux Kernel”

	
Kernel docs

	Device drivers

	

	
Linux Device Drivers by Jonathan Corbet

	
“How to Install a Device Driver on Linux”

	
Character Device Drivers

	
Linux Device Drivers: Tutorial for Linux Driver Development

	syscalls

	

	
“Linux Interrupts: The Basic Concepts”

	
The Linux Kernel: System Calls

	
Linux System Call Table

	
syscalls.h source code

	
syscall lookup for x86 and x86_64

	eBPF

	

	
“Introduction to eBPF” by Matt Oswalt

	
eBPF maps documentation

Equipped with this knowledge, we’re now ready to climb up the abstraction ladder
a bit and move to the primary user interface we consider in this book: the shell,
both in manual usage as well as automation through scripts.

Chapter 3. Shells and Scripting

In this chapter, we’ll focus on interacting with Linux on the terminal,
that is, via the shell that exposes a command-line interface (CLI).
It is vitally important to be able to use the shell effectively to
accomplish everyday tasks, and to that end we focus on usability here.

First, we review some terminology and provide a gentle and concise introduction
to shell basics. Then we have a look at modern, human-friendly shells, such as
the Fish shell. We’ll also look at configuration and common tasks in the shell.
Then, we move on to the topic of how to effectively work on the CLI using a
terminal multiplexer, enabling you to work with multiple sessions, local or
remote. In the last part of this chapter, we switch gears and focus on
automating tasks in the shell using scripts, including best practices for writing scripts in a safe, secure, and portable manner and also how to lint and
test scripts.

There are two major ways to interact with Linux, from a CLI perspective.
The first way is manually—that is, a human user sits in front of the terminal,
interactively typing commands and consuming the output. This ad-hoc interaction
works for most of the things you want to do in the shell on a day-to-day basis, including the following:

	
Listing directories, finding files, or looking for content in files

	
Copying files between directories or to remote machines

	
Reading emails or the news or sending a Tweet from the terminal

Further, we’ll learn how to conveniently and efficiently work with
multiple shell sessions at the same time.

The other mode of operation is the automated processing of a series of
commands in a special kind of file that the shell interprets for you and in
turn executes. This mode is usually called shell scripting or just scripting.
You typically want to use a script rather than manually repeating certain tasks.
Also, scripts are the basis of many config and install systems.
Scripts are indeed very convenient. However, they can also pose a danger
if used without precautions. So, whenever you think about writing a script,
keep the XKCD web comic shown in Figure 3-1
in mind.

[image: lmlx 0301]
Figure 3-1. XKCD on automation. Credit: Randall Munroe (shared under CC BY-NC 2.5 license)

I strongly recommend that you have a Linux environment available and try out the
examples shown here right away. With that, are you ready for some (inter)action?
If so, then let’s start with some terminology and basic shell usage.

Basics

Before we get into different options and configurations, let’s focus on some
basic terms such as terminal and shell. In this section I’ll define
the terminology and show you how to accomplish everyday tasks in the shell.
We’ll also review modern commands and see them in action.

Terminals

We start with the terminal, or terminal emulator, or soft terminal,
all of which refer to the same thing: a terminal is a program that provides
a textual user interface. That is, a terminal supports reading characters
from the keyboard and displaying them on the screen. Many years ago, these
used to be integrated devices (keyboard and screen together), but nowadays
terminals are simply apps.

In addition to the basic character-oriented input and output, terminals support
so-called escape sequences, or
escape codes, for cursor and screen handling and potentially support for colors.
For example, pressing Ctrl+H causes a backspace, which deletes
the character to the left of the cursor.

The environment variable TERM has the terminal emulator in use, and its
configuration is available via infocmp as follows (note that the output
has been shortened):

$ infocmp [image: 1]
Reconstructed via infocmp from file: /lib/terminfo/s/screen-256color
screen-256color|GNU Screen with 256 colors,
 am, km, mir, msgr, xenl,
 colors#0x100, cols#80, it#8, lines#24, pairs#0x10000,
 acsc=++\,\,--..00``aaffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~,
 bel=^G, blink=\E[5m, bold=\E[1m, cbt=\E[Z, civis=\E[?25l,
 clear=\E[H\E[J, cnorm=\E[34h\E[?25h, cr=\r,
 ...

	[image: 1]

	The output of infocmp is not easy to digest. If you want to learn about
the capabilities in detail, consult the
terminfo
database. For example, in my concrete output, the terminal supports 80
columns (cols#80) and 24 lines (lines#24) for output as well as 256
colors (colors#0x100, in hexadecimal notation).

Examples of terminals include not only xterm, rxvt, and the Gnome terminator
but also new generation ones that utilize the GPU, such as
Alacritty,
kitty, and
warp.

In “Terminal Multiplexer”, we will come back to the topic of the terminal.

Shells

Next up is the shell, a program that runs inside the terminal and acts as
a command interpreter. The shell offers input and output handling via streams,
supports variables, has some built-in commands you can use, deals with
command execution and status, and usually supports both interactive usage as
well as scripted usage (“Scripting”).

The shell is formally defined in sh,
and we often come across the term POSIX shell,
which will become more important in the context of scripts and portability.

Originally, we had the Bourne shell sh, named after the author, but nowadays
it’s usually replaced with the
bash shell—a wordplay on
the original version, short for “Bourne Again Shell”—which is widely used as the
default.

If you are curious about what you’re using, use the file -h /bin/sh
command to find out, or if that fails, try echo $0 or echo $SHELL.

Note

In this section, we assume the bash shell (bash),
unless we call it out explicitly.

There are many more implementations of sh as well as other variants, such as
the Korn shell, ksh, and C shell, csh, which are not widely used today. We will,
however, review modern bash replacements in “Human-Friendly Shells”.

Let’s start our shell basics with two fundamental features: streams and
variables.

Streams

Let’s start with the topic of input (streams) and output (streams), or I/O for
short. How can you feed a program some input? How do you control where the output
of a program lands, say, on the terminal or in a file?

First off, the shell equips every process with three default file descriptors (FDs)
for input and output:

	
stdin (FD 0)

	
stdout (FD 1)

	
stderr (FD 2)

These FDs are, as depicted in Figure 3-2, by default
connected to your screen and keyboard, respectively. In other words, unless you
specify something else, a command you enter in the shell will take its input
(stdin) from your keyboard, and it will deliver its output (stdout) to your
screen.

The following shell interaction demonstrates this default behavior:

$ cat
This is some input I type on the keyboard and read on the screen^C

In the preceding example using cat, you see the defaults in action. Note
that I used Ctrl+C (shown as ^C) to terminate the command.

[image: lmlx 0302]
Figure 3-2. Shell I/O default streams

If you don’t want to use the defaults the shell gives you—for example,
you don’t want stderr to be outputted on the screen but want to save it
in a file—you can redirect
the streams.

You redirect the output stream of a process using $FD> and <$FD, with $FD
being the file descriptor—for example, 2> means redirect the stderr stream.
Note that 1> and > are the same since stdout is the default. If you want
to redirect both stdout and stderr, use &>, and when you
want to get rid of a stream, you can use /dev/null.

Let’s see how that works in the context of a concrete example, downloading
some HTML content via curl:

$ curl https://example.com &> /dev/null [image: 1]

$ curl https://example.com > /tmp/content.txt 2> /tmp/curl-status [image: 2]
$ head -3 /tmp/content.txt
<!doctype html>
<html>
<head>
$ cat /tmp/curl-status
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 1256 100 1256 0 0 3187 0 --:--:-- --:--:-- --:--:-- 3195

$ cat > /tmp/interactive-input.txt [image: 3]

$ tr < /tmp/curl-status [A-Z] [a-z] [image: 4]
 % total % received % xferd average speed time time time current
 dload upload total spent left speed
100 1256 100 1256 0 0 3187 0 --:--:-- --:--:-- --:--:-- 3195

	[image: 1]

	Discard all output by redirecting both stdout and stderr to /dev/null.

	[image: 2]

	Redirect the output and status to different files.

	[image: 3]

	Interactively enter input and save to file; use Ctrl+D to stop capturing
and store the content.

	[image: 4]

	Lowercase all words, using the tr command that reads from stdin.

Shells usually understand a number of special characters, such as:

	Ampersand (&)

	
Placed at the end of a command, executes the command in the background (see also “Job control”)

	Backslash (\)

	
Used to continue a command on the next line, for better readability of
 long
commands

	Pipe (|)

	
Connects stdout of one process with the stdin of the next
 process, allowing you to pass data without having to store it in files as a
 temporary place

Pipes and the UNIX Philosophy

While pipes might seem not too exciting at first glance, there’s much more to them.
I once had a nice interaction with Doug McIlroy, the inventor of pipes.
I wrote an article,
“Revisiting the Unix Philosophy in 2018”,
in which I drew parallels between UNIX and microservices. Someone commented on the
article, and that comment led to Doug sending me an email (very
unexpectedly, and I had to verify to believe it) to clarify things.

Again, let’s see some of the theoretical content in action. Let’s try to figure
out how many lines an HTML file contains by downloading it using curl and then
piping the content to the wc tool:

$ curl https://example.com 2> /dev/null | \ [image: 1]
 wc -l [image: 2]
46

	[image: 1]

	Use curl to download the content from the URL, and discard the status that
it outputs on stderr. (Note: in practice, you’d use the -s option of
curl, but we want to learn how to apply our hard-gained knowledge, right?)

	[image: 2]

	The stdout of curl is fed to stdin of wc, which counts the number
of lines with the -l option.

Now that you have a basic understanding of commands, streams, and redirection,
let’s move on to another core shell feature, the handling of variables.

Variables

A term you will come across often in the context of shells is variables.
Whenever you don’t want to or cannot hardcode a value, you can use a variable
to store and change a value. Use cases include the following:

	
When you want to handle configuration items that Linux exposes—for example, the place where the
shell looks for executables captured in the $PATH variable. This is kind
of an interface where a variable might be read/write.

	
When you want to interactively query the user for a value, say, in the context of
a script.

	
When you want to shorten input by defining a long value once—for example,
the URL of an HTTP API. This use case roughly corresponds to a const value
in a program language since you don’t change the value after you have
declared the variable.

We distinguish between two kinds of variables:

	Environment variables

	
Shell-wide settings; list them with env.

	Shell variables

	
Valid in the context of the current execution; list with
 set in bash. Shell variables are not inherited by subprocesses.

You can, in bash, use export to create an environment variable. When you want
to access the value of a variable, put a $ in front of it,
and when you want to get rid of it, use unset.

OK, that was a lot of information. Let’s see how that looks in practice (in bash):

$ set MY_VAR=42 [image: 1]
$ set | grep MY_VAR [image: 2]
_=MY_VAR=42

$ export MY_GLOBAL_VAR="fun with vars" [image: 3]

$ set | grep 'MY_*' [image: 4]
MY_GLOBAL_VAR='fun with vars'
_=MY_VAR=42

$ env | grep 'MY_*' [image: 5]
MY_GLOBAL_VAR=fun with vars

$ bash [image: 6]
$ echo $MY_GLOBAL_VAR [image: 7]
fun with vars

$ set | grep 'MY_*' [image: 8]
MY_GLOBAL_VAR='fun with vars'

$ exit [image: 9]
$ unset $MY_VAR
$ set | grep 'MY_*'
MY_GLOBAL_VAR='fun with vars'

	[image: 1]

	Create a shell variable called MY_VAR, and assign a value of 42.

	[image: 2]

	List shell variables and filter out MY_VAR. Note the _=, indicating it’s
not exported.

	[image: 3]

	Create a new environment variable called MY_GLOBAL_VAR.

	[image: 4]

	List shell variables and filter out all that start with MY_. We see,
as expected, both of the variables we created in the previous steps.

	[image: 5]

	List environment variables. We see MY_GLOBAL_VAR, as we would hope.

	[image: 6]

	Create a new shell session—that is, a child process of the current shell session
that doesn’t inherit MY_VAR.

	[image: 7]

	Access the environment variable MY_GLOBAL_VAR.

	[image: 8]

	List the shell variables, which gives us only MY_GLOBAL_VAR since we’re in a
child
process.

	[image: 9]

	Exit the child process, remove the MY_VAR shell variable, and list our shell
variables. As expected, MY_VAR is gone.

In Table 3-1 I put together common shell and environment variables.
You will find those variables almost everywhere, and they are important to understand
and to use. For any of the variables, you can have a look at the respective value
using echo $XXX, with XXX being the variable name.

Table 3-1. Common shell and environment variables

	Variable
	Type
	Semantics

	EDITOR

	Environment

	The path to program used by default to edit files

	HOME

	POSIX

	The path of the home directory of the current user

	HOSTNAME

	bash shell

	The name of the current host

	IFS

	POSIX

	List of characters to separate fields; used when the shell splits words on expansion

	PATH

	POSIX

	Contains a list of directories in which the shell looks for executable programs (binaries or scripts)

	PS1

	Environment

	The primary prompt string in use

	PWD

	Environment

	The full path of the working directory

	OLDPWD

	bash shell

	The full path of the directory before the last cd command

	RANDOM

	bash shell

	A random integer between 0 and 32767

	SHELL

	Environment

	Contains the currently used shell

	TERM

	Environment

	The terminal emulator used

	UID

	Environment

	Current user unique ID (integer value)

	USER

	Environment

	Current user name

	_

	bash shell

	Last argument to the previous command executed in the foreground

	?

	bash shell

	Exit status; see “Exit status”

	$

	bash shell

	The ID of the current process (integer value)

	0

	bash shell

	The name of the current process

Further, check out the full list of
bash-specific
variables, and also note that the variables from Table 3-1 will
come in handy again in the context of “Scripting”.

Exit status

The shell communicates the completion of a command execution to the caller
using what is called the exit status. In general, it is expected that a
Linux command returns a status when it terminates. This can either be a normal
termination (happy path) or an abnormal termination (something went wrong).
A 0 exit status means that the command was successfully run, without any errors,
whereas a nonzero value between 1 and 255 signals a failure. To query the
exit status, use echo $?.

Be careful with exit status handling in a pipeline, since some shells
make only the last status available. You can work around that limitation
by using $PIPESTATUS.

Built-in commands

Shells come with a number of built-in commands. Some useful examples are
yes, echo, cat, or read (depending on the Linux distro, some of those
commands might not be built-ins but located in /usr/bin). You can use the
help command to list built-ins. Do remember, however, that everything else is
a shell-external program that you usually can find in /usr/bin (for user
commands) or in /usr/sbin (for administrative commands).

How do you know where to find an executable? Here are some ways:

$ which ls
/usr/bin/ls

$ type ls
ls is aliased to `ls --color=auto'

Note

One of the technical reviewers of this book rightfully pointed out that which
is a non-POSIX, external program that may not always be available. Also, they
suggested using command -v rather than which to get the program path
and or shell alias/function. See also the shellcheck
docs for further details on the matter.

Job control

A feature most shells support is called
job control.
By default, when you enter a command, it takes control of the screen and the keyboard,
which we usually call running in the foreground. But what if you don’t want to run something
interactively, or, in case of a server, what if there is no input from stdin at
all? Enter job control and background jobs: to launch a process in the background,
put an & at the end, or to send a foreground process to the background, press
Ctrl+Z.

The following example shows this in action, giving you a rough idea:

$ watch -n 5 "ls" & [image: 1]

$ jobs [image: 2]
Job Group CPU State Command
1 3021 0% stopped watch -n 5 "ls" &

$ fg [image: 3]
Every 5.0s: ls Sat Aug 28 11:34:32 2021

Dockerfile
app.yaml
example.json
main.go
script.sh
test

	[image: 1]

	By putting the & at the end, we launch the command in the background.

	[image: 2]

	List all jobs.

	[image: 3]

	With the fg command, we can bring a process to the foreground. If you want
to quit the watch command, use Ctrl+C.

If you want to keep a background process running, even after you close
the shell you can prepend the nohup command. Further, for a process that is
already running and wasn’t prepended with nohup, you can use disown after the
fact to achieve the same effect. Finally, if you want to get rid of a running
process, you can use the kill command with various levels of forcefulness
(see “Signals” for more details).

Rather than job control, I recommend using terminal multiplexer, as discussed
in “Terminal Multiplexer”. These programs take care of the most common use cases
(shell closes, multiple processes running and need coordination, etc.) and
also support working with remote systems.

Let’s move on to discuss modern replacements for frequently
used core commands that have been around forever.

Modern Commands

There are a handful of commands you will find yourself using over and over again
on a daily basis. These include commands for navigating directories (cd), listing the content
of a directory (ls), finding files (find), and displaying the content of files
(cat, less). Given that you are using these commands so often, you want
to be as efficient as possible—every keystroke counts.

Modern variations exist for some of these often-used commands. Some
of them are drop-in replacements, and others extend the functionality. All of them
offer somewhat sane default values for common operations and rich output that is
generally easier to comprehend, and they usually lead to you typing less
to accomplish the same task. This reduces the friction when you work with the shell,
making it more enjoyable and improving the flow. If you want to learn more about
modern tooling, check out Appendix B. In this context, a word of
caution, especially if you’re applying this knowledge in an
enterprise environment: I have no stake in any of these tools and purely
recommend them because I have found them useful myself. A good way to go about
installing and using any of these tools is to use a version of the tool
that has been vetted by your Linux distro of choice.

Listing directory contents with exa

Whenever you want to know what a directory contains, you use ls or one of
its variants with parameters. For example, in bash I used to have l aliased
to ls -GAhltr. But there’s a better way: exa, a
modern replacement for ls, written in Rust, with built-in support for Git
and tree rendering. In this context, what would you guess is the most often
used command after you’ve listed the directory content? In my experience it’s
to clear the screen, and very often people use clear. That’s typing five
characters and then hitting ENTER. You can have the same effect much faster—simply use Ctrl+L.

Viewing file contents with bat

Let’s assume that you listed a directory’s contents and found a file you want
to inspect. You’d use cat, maybe? There’s something better I recommend you
have a look at: bat. The bat command,
shown in Figure 3-3, comes with syntax highlighting, shows nonprintable
characters, supports Git, and has an integrated pager (the page-wise viewing of files longer
than what can be displayed on the screen).

Finding content in files with rg

Traditionally, you would use grep to find something in a file. However,
there’s a modern command, rg,
that is fast and powerful.

We’re going to compare rg to a find and grep combination in this example,
where we want to find YAML files that contain the string “sample”:

$ find . -type f -name "*.yaml" -exec grep "sample" '{}' \; -print [image: 1]
 app: sample
 app: sample
./app.yaml

$ rg -t "yaml" sample [image: 2]
app.yaml
9: app: sample
14: app: sample

	[image: 1]

	Use find and grep together to find a string in YAML files.

	[image: 2]

	Use rg for the same task.

If you compare the commands and the results in the previous example, you see
that not only is rg easier to use but the results are more informative
(providing context, in this case the line number).

[image: lmlx 0303]
Figure 3-3. Rendering of a Go file (top) and a YAML file (bottom) by bat

JSON data processing with jq

And now for a bonus command. This one, jq, is not an actual replacement but
more like a specialized tool for JSON, a popular textual data format. You find
JSON in HTTP APIs and configuration files alike.

So, use jq rather than awk or sed to pick
out certain values. For example, by using a
JSON generator to generate some random data,
I have a 2.4 kB JSON file
example.json that looks something like this
(only showing the first record here):

[
 {
 "_id": "612297a64a057a3fa3a56fcf",
 "latitude": -25.750679,
 "longitude": 130.044327,
 "friends": [
 {
 "id": 0,
 "name": "Tara Holland"
 },
 {
 "id": 1,
 "name": "Giles Glover"
 },
 {
 "id": 2,
 "name": "Pennington Shannon"
 }
],
 "favoriteFruit": "strawberry"
 },
...

Let’s say we’re interested in all “first” friends—that is, entry 0 in the
friends array—of people whose favorite fruit is “strawberry.” With jq
you would do the following:

$ jq 'select(.[].favoriteFruit=="strawberry") | .[].friends[0].name' example.json
"Tara Holland"
"Christy Mullins"
"Snider Thornton"
"Jana Clay"
"Wilma King"

That was some CLI fun, right? If you’re interested in finding out more about
the topic of modern commands and what other candidates there might be for you
to replace, check out the modern-unix
repo, which lists suggestions. Let’s now move our focus to some common tasks
beyond directory navigation and file content viewing and how to go about them.

Common Tasks

There are a number of things you likely find yourself doing often, and there are certain tricks you can use to speed up your tasks in the shell.
Let’s review these common tasks and see how we can be more efficient.

Shorten often-used commands

One fundamental insight with interfaces is that commands that you are using
very often should take the least effort—they should be quick to enter. Now apply this
idea to the shell: rather than git diff --color-moved, I type d (a single
character), since I’m viewing changes in my repositories many hundreds of times
per day. Depending on the shell, there are different ways to achieve this:
in bash this is called an alias, and in
Fish (“Fish Shell”) there are abbreviations
you can use.

Navigating

When you enter commands on the shell prompt, there are a number of things
you might want to do, such as navigating the line (for example, moving the cursor to the
start) or manipulating the line (say, deleting everything left of the
cursor). Table 3-2 lists common shell shortcuts.

Table 3-2. Shell navigation and editing shortcuts

	Action
	Command
	Note

	Move cursor to start of line

	Ctrl+a

	-

	Move cursor to end of line

	Ctrl+e

	-

	Move cursor forward one character

	Ctrl+f

	-

	Move cursor back one character

	Ctrl+b

	-

	Move cursor forward one word

	Alt+f

	Works only with left Alt

	Move cursor back one word

	Alt+b

	-

	Delete current character

	Ctrl+d

	-

	Delete character left of cursor

	Ctrl+h

	-

	Delete word left of cursor

	Ctrl+w

	-

	Delete everything right of cursor

	Ctrl+k

	-

	Delete everything left of cursor

	Ctrl+u

	-

	Clear screen

	Ctrl+l

	-

	Cancel command

	Ctrl+c

	-

	Undo

	Ctrl+_

	bash only

	Search history

	Ctrl+r

	Some shells

	Cancel search

	Ctrl+g

	Some shells

Note that not all shortcuts may be supported in all shells, and
certain actions such as history management may be implemented differently
in certain shells. In addition, you might want to know that these shortcuts
are based on Emacs editing keystrokes. Should you prefer vi, you can use
set -o vi in your .bashrc file, for example, to perform command-line editing
based on vi keystrokes. Finally, taking Table 3-2
as a starting point, try out what your shell supports and see how you can
configure it to suit your needs.

File content management

You don’t always want to fire up an editor such as vi to add a single
line of text. And sometimes you can’t do it—for example,
in the context of writing a shell script (“Scripting”).

So, how can you manipulate textual content? Let’s have a look at a few examples:

$ echo "First line" > /tmp/something [image: 1]

$ cat /tmp/something [image: 2]
First line

$ echo "Second line" >> /tmp/something && \ [image: 3]
 cat /tmp/something
First line
Second line

$ sed 's/line/LINE/' /tmp/something [image: 4]
First LINE
Second LINE

$ cat << 'EOF' > /tmp/another [image: 5]
First line
Second line
Third line
EOF

$ diff -y /tmp/something /tmp/another [image: 6]
First line First line
Second line Second line
 > Third line

	[image: 1]

	Create a file by redirecting the echo output.

	[image: 2]

	View content of file.

	[image: 3]

	Append a line to file using the >> operator and then view content.

	[image: 4]

	Replace content from file using sed and output to stdout.

	[image: 5]

	Create a file using the here document.

	[image: 6]

	Show differences between the files we created.

Now that you know the basic file content manipulation techniques, let’s have a
look at the advanced viewing of file contents.

Viewing long files

For long files—that is, files that have more lines than the shell can display
on your screen—you can use pagers like less or bat (bat comes with a built-in
pager). With paging, a program splits the output into pages where
each page fits into what the screen can display and some commands to navigate
the pages (view next page, previous page, etc.).

Another way to deal with long files is to display only a select region of
the file, like the first few lines. There are two handy commands for this:
head and tail.

For example, to display the beginning of a file:

$ for i in {1..100} ; do echo $i >> /tmp/longfile ; done [image: 1]

$ head -5 /tmp/longfile [image: 2]
1
2
3
4
5

	[image: 1]

	Create a long file (100 lines here).

	[image: 2]

	Display the first five lines of the long file.

Or, to get live updates of a file that is constantly growing,
we could use:

$ sudo tail -f /var/log/Xorg.0.log [image: 1]
[36065.898] (II) event14 - ALPS01:00 0911:5288 Mouse: device is a pointer
[36065.900] (II) event15 - ALPS01:00 0911:5288 Touchpad: device is a touchpad
[36065.901] (II) event4 - Intel HID events: is tagged by udev as: Keyboard
[36065.901] (II) event4 - Intel HID events: device is a keyboard
...

	[image: 1]

	Display the end of a log file using tail, with the -f option
meaning to follow, or to update automatically.

Lastly, in this section we look at dealing with date and time.

Date and time handling

The date command can be a useful way to generate unique file names. It allows
you to generate dates in various formats, including the
Unix time stamp,
as well as to convert between different date and time formats.

$ date +%s [image: 1]
1629582883

$ date -d @1629742883 '+%m/%d/%Y:%H:%M:%S' [image: 2]
08/21/2021:21:54:43

	[image: 1]

	Create a UNIX time stamp.

	[image: 2]

	Convert a UNIX time stamp to a human-readable date.

On the UNIX Epoch Time

The UNIX epoch time (or simply UNIX time) is the number of seconds elapsed since
1970-01-01T00:00:00Z. UNIX time treats every day as exactly 86,400 seconds long.

If you’re dealing with software that stores UNIX time as a signed 32-bit integer,
you might want to pay attention since this will cause issues on 2038-01-19, as
then the counter will overflow, which is also known as the
Year 2038 problem.

You can use online converters for more advanced
operations, supporting microseconds and milliseconds resolutions.

With that we wrap up the shell basics section. By now you should have a good
understanding of what terminals and shells are and how to use them to do basic
tasks such as navigating the filesystem, finding files, and more. We now move
on to the topic of human-friendly shells.

Human-Friendly Shells

While the bash shell is
likely still the most widely used shell, it is not necessarily the most
human-friendly one. It has been around since the late 1980s, and its age
sometimes shows. There are a number of modern, human-friendly shells I strongly
recommend you evaluate and use instead of bash.

We’ll first examine in detail one concrete example of a
modern, human-friendly shell called the Fish shell and then briefly discuss
others, just to make sure you have an idea about the range of choices.
We wrap up this section with a quick recommendation and conclusion
in “Which Shell Should I Use?”.

Fish Shell

The Fish shell describes itself as a smart and
user-friendly command-line shell. Let’s have a look at some basic usage
first and then move on to configuration topics.

Basic usage

For many daily tasks, you won’t notice a big difference from bash in
terms of input; most of the commands provided in Table 3-2 are
valid. However, there are two areas where fish is different from and much more convenient
than bash:

	There is no explicit history management.

	
You simply type and you get previous
executions of a command shown. You can use the up and down key to select one (see Figure 3-4).

	Autosuggestions are available for many commands.

	
This is shown in Figure 3-5.
In addition, when you press Tab, the Fish shell will try to complete the
command, argument, or path, giving you visual hints such as coloring your
input red if it doesn’t recognize the command.

[image: lmlx 0304]
Figure 3-4. Fish history handling in action

[image: lmlx 0305]
Figure 3-5. Fish autosuggestion in action

Table 3-3 lists some common fish commands. In this context, note specifically the handling of environment variables.

Table 3-3. Fish shell reference

	Task
	Command

	Export environment variable KEY with value VAL

	set -x KEY VAL

	Delete environment variable KEY

	set -e KEY

	Inline env var KEY for command cmd

	env KEY=VAL cmd

	Change path length to 1

	set -g fish_prompt_pwd_dir_length 1

	Manage abbreviations

	abbr

	Manage functions

	functions and funcd

Unlike other shells, fish stores the exit status of the last command in a
variable called $status instead of in $?.

If you’re coming from bash, you may also want to consult the Fish
FAQ, which addresses most of the
gotchas.

Configuration

To configure
the Fish shell, you simply enter the fish_config command (you might need to
add the browse subcommand, depending on your distro), and fish will
launch a server via http://localhost:8000 and automatically open
your default browser with a fancy UI, shown in Figure 3-6, which
allows you to view and change settings.

[image: lmlx 0306]
Figure 3-6. Fish shell configuration via browser

Tip

To switch between vi and Emacs (default) key bindings for
command-line navigation, use the fish_vi_key_bindings to start vi mode,
and use fish_default_key_bindings to reset it to Emacs. Note that the
changes will take place in all active shell sessions immediately.

Let’s now see how I have configured my environment. In fact, my config is
rather short; in config.fish I have the following:

set -x FZF_DEFAULT_OPTS "-m --bind='ctrl-o:execute(nvim {})+abort'"
set -x FZF_DEFAULT_COMMAND 'rg --files'
set -x EDITOR nvim
set -x KUBE_EDITOR nvim
set -ga fish_user_paths /usr/local/bin

My prompt, defined in fish_prompt.fish, looks as follows:

function fish_prompt
 set -l retc red
 test $status = 0; and set retc blue

 set -q __fish_git_prompt_showupstream
 or set -g __fish_git_prompt_showupstream auto

 function _nim_prompt_wrapper
 set retc $argv[1]
 set field_name $argv[2]
 set field_value $argv[3]

 set_color normal
 set_color $retc
 echo -n '─'
 set_color -o blue
 echo -n '['
 set_color normal
 test -n $field_name
 and echo -n $field_name:
 set_color $retc
 echo -n $field_value
 set_color -o blue
 echo -n ']'
 end

 set_color $retc
 echo -n '┬─'
 set_color -o blue
 echo -n [
 set_color normal
 set_color c07933
 echo -n (prompt_pwd)
 set_color -o blue
 echo -n ']'
 # Virtual Environment
 set -q VIRTUAL_ENV_DISABLE_PROMPT
 or set -g VIRTUAL_ENV_DISABLE_PROMPT true
 set -q VIRTUAL_ENV
 and _nim_prompt_wrapper $retc V (basename "$VIRTUAL_ENV")

 # git
 set prompt_git (fish_git_prompt | string trim -c ' ()')
 test -n "$prompt_git"
 and _nim_prompt_wrapper $retc G $prompt_git

 # New line
 echo

 # Background jobs
 set_color normal
 for job in (jobs)
 set_color $retc
 echo -n '│ '
 set_color brown
 echo $job
 end
 set_color blue
 echo -n '╰─> '
 set_color -o blue
 echo -n '$ '
 set_color normal
end

The preceding prompt definition yields the prompt shown in Figure 3-7; note the difference between a directory that contains a Git repo and one
that does not, a built-in visual cue to speed up
your flow. Also, notice the current time on the righthand side.

[image: lmlx 0307]
Figure 3-7. Fish shell prompt

My abbreviations—think of these as alias replacements, as found in other shells—look as
follows:

$ abbr
abbr -a -U -- :q exit
abbr -a -U -- cat bat
abbr -a -U -- d 'git diff --color-moved'
abbr -a -U -- g git
abbr -a -U -- grep 'grep --color=auto'
abbr -a -U -- k kubectl
abbr -a -U -- l 'exa --long --all --git'
abbr -a -U -- ll 'ls -GAhltr'
abbr -a -U -- m make
abbr -a -U -- p 'git push'
abbr -a -U -- pu 'git pull'
abbr -a -U -- s 'git status'
abbr -a -U -- stat 'stat -x'
abbr -a -U -- vi nvim
abbr -a -U -- wget 'wget -c'

To add a new abbreviation, use abbr --add. Abbreviations are handy for simple
commands that take no arguments. What if you have a more complicated construct
you want to shorten? Say you want to shorten a sequence involving git that
also takes an argument. Meet functions in Fish.

Let’s now take a look at an example function, which is defined in the file
named c.fish. We can use the functions command to list all defined functions,
the
function command to create a new function, and in this case the command
function c to edit it as follows:

function c
 git add --all
 git commit -m "$argv"
end

With that we have reached the end of the Fish section, in which we walked through a usage
tutorial and configuration tips. Now let’s have a quick look at other modern shells.

Z-shell

Z-shell, or zsh, is a Bourne-like shell
with a powerful completion system and
rich theming support. With Oh My Zsh, you can pretty much
configure and use zsh in the way you’ve seen earlier on with fish while
retaining wide backward compatibility with bash.

zsh uses five startup files, as shown in the following example (note that if
$ZDOTDIR is not set, zsh uses $HOME instead):

$ZDOTDIR/.zshenv [image: 1]
$ZDOTDIR/.zprofile [image: 2]
$ZDOTDIR/.zshrc [image: 3]
$ZDOTDIR/.zlogin [image: 4]
$ZDOTDIR/.zlogout [image: 5]

	[image: 1]

	Sourced on all invocations of the shell. It should contain commands to set the
search path, plus other important environment variables. But it should not
contain commands that produce output or assume the shell is attached to a tty.

	[image: 2]

	Meant as an alternative to .zlogin for ksh fans (these two are not intended to be used together);
similar to .zlogin, except that it is sourced before .zshrc.

	[image: 3]

	Sourced in interactive shells. It should contain commands to set up aliases,
functions, options, key bindings, and so on.

	[image: 4]

	Sourced in login shells. It should contain commands that should be executed only in login shells.
Note that .zlogin is not the place for alias definitions, options, environment variable settings, and the like.

	[image: 5]

	Sourced when login shells exit.

For more zsh plug-ins, see also the
awesome-zsh-plugins repo on
GitHub. If you want to learn zsh, consider reading
“An Introduction to the Z Shell”
by Paul Falstad and Bas de Bakker.

Other Modern Shells

In addition to fish and zsh, there are a number of other interesting—but
not necessarily always bash-compatible—shells available out there. When you
have a look at those, ask yourself what the focus of the respective shell is
(interactive usage vs. scripting) and how active the community around it is.

Some examples of modern shells for Linux I came across and can recommend you
have a look at include the following:

	Oil shell

	
Targets Python and JavaScript users.
 Put in other words, the focus is less on interactive use but more on
 scripting.

	murex

	
A POSIX shell that sports interesting features
 such as an integrated testing framework, typed pipelines, and event-driven
 programming.

	Nushell

	
An experimental new shell paradigm,
 featuring tabular output with a powerful query language. Learn more via the
 detailed Nu Book.

	PowerShell

	
A cross-platform shell
 that started off as a fork of the Windows PowerShell and offers a different
 set of semantics and interactions than POSIX shells.

There are many more options out there. Keep looking and see what works best for you.
Try thinking beyond bash and optimize for your use case.

Which Shell Should I Use?

At this point in time, every modern shell—other than bash—seems like a
good choice, from a human-centric perspective. Smooth auto-complete, easy
config, and smart environments are no luxury in 2022, and given the time you
usually spend on the command line, you should try out different shells and pick
the one you like most. I personally use the Fish shell, but many of my peers
are super happy with the Z-shell.

You may have issues that make you hesitant to move away from bash, such as the
following:

	
You work in remote systems and/or cannot install your own shell.

	
You’ve stayed with bash due to compatibility and/or muscle memory. It can be hard to get rid of certain habits.

	
Almost all instructions (implicitly) assume bash. For example, you’ll
see instructions like export FOO=BAR, which is bash specific.

It turns out that these issues are by and large not relevant to most users.
While you may have to temporarily use bash in a remote
system, most of the time you will be working in an environment that you
control. There is a learning curve, but the investment pays off in the long run.

With that, let’s focus on another way to boost your productivity in the
terminal:
multiplexer.

Terminal Multiplexer

We came across terminals at the beginning of this chapter, in
“Terminals”. Now let’s dive deeper into the topic of how to improve your
terminal usage, building on a concept that is both simple and powerful:
multiplexing.

Think of it in this way: you usually work on different things that
can be grouped together. For example, you may work on an open source project,
author a blog post or docs, access a server remotely, interact with an
HTTP API to test things, and so forth. These tasks may each require one or more
terminal windows, and often you want or need to do potentially
interdependent tasks in two windows at the same time. For example:

	
You are using the watch command to periodically execute a directory listing
and at the same time edit a file.

	
You start a server process (a web server or application server) and want to
have it running in the foreground (see also “Job control”) to keep an eye
on the logs.

	
You want to edit a file using vi and at the same time use git to query
the status and commit changes.

	
You have a VM running in the public cloud and want to ssh into it while
having the possibility to manage files locally.

Think of all these examples as things that logically belong together
and that in terms of time duration can range from short term (a few minutes) to
long term (days and weeks). The grouping of those tasks is usually called a
session.

Now, there are a number of challenges if you want to achieve this grouping:

	
You need multiple windows, so one solution is to launch multiple terminals
or, if the UI supports it, multiple instances (tabs).

	
You would like to have all the windows and paths around, even if you
close the terminal or the remote side closes down.

	
You want to expand or zoom in and out to focus on certain tasks
while keeping an overview of all your sessions and being able to navigate
between them.

To enable these tasks, people came up with the idea of overlaying a terminal
with multiple windows (and sessions, to group windows)—in other words,
multiplexing the terminal I/O.

Let’s have a brief look at the original implementation of terminal multiplexing,
called screen. Then we’ll focus in-depth on a widely used implement called tmux
and wrap up with other options in this space.

screen

screen is the original terminal
multiplexer and is still used. Unless you’re in a remote environment
where nothing else is available and/or you can’t install another multiplexer,
you should probably not be using screen. One reason is that it’s
not actively maintained anymore, and another is that it’s not very flexible and
lacks a number of features modern terminal multiplexers have.

tmux

tmux is a flexible and rich terminal multiplexer
that you can bend to your needs. As you can see in Figure 3-8, there
are three core elements you’re interacting with in tmux, from coarse-grained
to fine-grained units:

[image:]
Figure 3-8. The tmux elements: sessions, windows, and panes

	Sessions

	
A logical unit that you can think of as a working environment
 dedicated to a specific task such as “working on project X” or “writing
 blog post Y.” It’s the container for all other units.

	Windows

	
You can think of a window as a tab in a browser, belonging to a
 session. It’s optional to use, and often you only have one window per session.

	Panes

	
These are your workhorses, effectively a single shell instance running.
 A pane is part of a window, and you can easily split it vertically or
 horizontally, as well as expand/collapse it (think: zoom) and close panes
 as you need them.

Just like screen, in tmux you have the ability to attach and detach a session. Let’s assume we start from scratch, let’s launch it with a session
called test:

$ tmux new -s test

With the preceding command, tmux is running as a server, and you find yourself in a
shell you’ve configured in tmux, running as the client. This client/server
model allows you to create, enter, leave, and destroy sessions and use the shells
running in it without having to think of the processes running (or failing)
in it.

tmux uses Ctrl+b as the default keyboard shortcut, also called prefix or trigger.
So for example, to list all windows, you would press Ctrl+b and then w, or to
expand the current (active) pane, you would use Ctrl+b and then z.

Tip

In tmux the default trigger is Ctrl+b. To improve the flow, I mapped the
trigger to an unused key, so a single keystroke is sufficient. I did this by first mapping the trigger to the Home key in tmux and

then mapping that Home key to the Caps Lock key by changing
its mapping in
/usr/share/X11/xkb/symbols/pc to key <CAPS> { [Home] };.

This double-mapping was a workaround I needed to do. Depending
on your target key or terminal, you might not have to do this, but I
encourage you to map Ctrl+b to an unused key you can easily reach since
you will press it many times a day.

You can now use any of the commands listed in Table 3-4 to manage
further sessions, windows, and panes. Also, when pressing Ctrl+b+d, you can
detach sessions. This means effectively that you put tmux into the background.

When you then start a new terminal instance or, say, you ssh to your machine
from a remote place, you can then attach to an existing session, so let’s do
that with the test session we created earlier:

$ tmux attach -t test [image: 1]

	[image: 1]

	Attach to existing session called test. Note that if you want to detach
the session from its previous terminal, you would also supply the -d parameter.

Table 3-4 lists common tmux commands grouped by the units
discussed, from widest scope (session) to narrowest (pane).

Table 3-4. tmux reference

	Target
	Task
	Command

	Session

	Create new

	:new -s NAME

	Session

	Rename

	trigger + $

	Session

	List all

	trigger + s

	Session

	Close

	trigger

	Window

	Create new

	trigger + c

	Window

	Rename

	trigger + ,

	Window

	Switch to

	trigger + 1 …​ 9

	Window

	List all

	trigger + w

	Window

	Close

	trigger + &

	Pane

	Split horizontal

	trigger + "

	Pane

	Split vertical

	trigger + %

	Pane

	Toggle

	trigger + z

	Pane

	Close

	trigger + x

Now that you have a basic idea of how to use tmux, let’s turn our attention to configuring and customizing it. My .tmux.conf looks as follows:

unbind C-b [image: 1]
set -g prefix Home
bind Home send-prefix
bind r source-file ~/.tmux.conf \; display "tmux config reloaded :)" [image: 2]
bind \\ split-window -h -c "#{pane_current_path}" [image: 3]
bind - split-window -v -c "#{pane_current_path}"
bind X confirm-before kill-session [image: 4]
set -s escape-time 1 [image: 5]
set-option -g mouse on [image: 6]
set -g default-terminal "screen-256color" [image: 7]
set-option -g status-position top [image: 8]
set -g status-bg colour103
set -g status-fg colour215
set -g status-right-length 120
set -g status-left-length 50
set -g window-status-style fg=colour215
set -g pane-active-border-style fg=colour215
set -g @plugin 'tmux-plugins/tmux-resurrect' [image: 9]
set -g @plugin 'tmux-plugins/tmux-continuum'
set -g @continuum-restore 'on'
run '~/.tmux/plugins/tpm/tpm'

	[image: 1]

	This line and the next two lines change the trigger to Home.

	[image: 2]

	Reload config via trigger + r.

	[image: 3]

	This line and the next redefine pane splitting; retain current directory of existing pane.

	[image: 4]

	Adds shortcuts for new and kill sessions.

	[image: 5]

	No delays.

	[image: 6]

	Enable mouse selections.

	[image: 7]

	Set the default terminal mode to 256-color mode.

	[image: 8]

	Theme settings (next six lines).

	[image: 9]

	From here to the end: plug-in management.

First install tpm, the tmux plug-in manager,
and then trigger
+ I for the plug-ins. The plug-ins used here are the following:

	tmux-resurrect

	
Allows you to restore
 sessions with Ctrl+s (save) and Ctrl+r (restore)

	tmux-continuum

	
Automatically
 saves/restores a session (15-minute interval)

Figure 3-9 shows my Alacritty terminal running tmux. You can see the
sessions with the shortcuts 0 to 9, located in the left upper corner.

[image: lmlx 0309]
Figure 3-9. An example tmux instance in action, showing available sessions

While tmux certainly is an excellent choice, there are indeed other options
than tmux, so let’s have a peek.

Other Multiplexers

Other terminal multiplexers you can have a look at and try out include the following:

	tmuxinator

	
A meta-tool allowing
 you to manage tmux sessions

	Byobu

	
A wrapper around either screen or tmux;
 it’s especially interesting if you’re using the Ubuntu- or Debian-based Linux distros

	Zellij

	
Calls itself a terminal workspace, is
 written in Rust, and goes beyond what tmux offers, including a layout engine
 and a powerful plug-in system

	dvtm

	
Brings the concept of tiling window management
 to the terminal; it’s powerful but has a learning curve like tmux

	3mux

	
A simple terminal multiplexer
 written in Go; it’s easy to use but not as powerful as tmux

With this quick review of multiplexer options out of the way, let’s talk about
selecting one.

Bringing It All Together: Terminal, tmux, and shell

I’m using Alacritty as my terminal. It’s fast, and best of all, to configure it
I’m using a YAML configuration file that I can version in Git, allowing me to
use it on any target system in seconds. This config file called alacritty.yml
defines all my settings for the terminal, from colors to key bindings to font sizes.

Most of the settings apply right away (hot-reload), others when I save the file.
One setting, called shell, defines the integration between the terminal multiplexer
I use (tmux) and the shell I use (fish) and looks as follows:

...
shell:
 program: /usr/local/bin/fish
 args:
 - -l
 - -i
 - -c
 - "tmux new-session -A -s zzz"
...

In the preceding snippet, I configure Alacritty to use fish as the default shell,
but also, when I launch the terminal, it automatically attaches
to a specific session. Together with the tmux-continuum plug-in, this gives me
peace of mind. Even if I switch off the computer, once I restart I find my
terminal with all its sessions, windows, and panes (almost) exactly in the
state it was in before a crash, besides the shell variables.

Which Multiplexer Should I Use?

Unlike with shells for human users, I do have a concrete preference here in the
context of terminal multiplexer: use tmux. The reasons are manifold: it is mature,
stable, rich (has many available plug-ins), and flexible. Many folks are using it, so there’s
plenty of material out there to read up on as well as help available. The other
multiplexers
are exciting but relatively new or are, as is the case with screen, no longer in their prime.

With that, I hope I was able to convince you to consider using a terminal
multiplexer to improve your terminal and shell experience, speed up your
tasks, and make the overall flow smoother.

Now, we turn our attention to the last topic in this chapter, automating
tasks with shell scripts.

Scripting

In the previous sections of this chapter, we focused on the manual, interactive
usage of the shell. Once you’ve done a certain task over and over again manually
on the prompt, it’s likely time to automate the task. This is where scripts come
in.

Here we focus on writing scripts in bash. This is due to two reasons:

	
Most of the scripts out there are written in bash, and hence you
will find a lot of examples and help available for bash scripts.

	
The likelihood of finding bash available on a target system is high,
making your potential user base bigger than if you used a
(potentially more powerful but esoteric or not widely used) alternative to bash.

Just to provide you with some context before we start, there are shell
scripts out there that clock in at
several
thousands of lines of code. Not that I encourage you to aim for this—quite
the opposite: if you find yourself writing long scripts, ask yourself if
a proper scripting language such as Python or Ruby is the better choice.

Let’s step back now and develop a short but useful example,
applying good practices along the way. Let’s assume we want to automate the task
of displaying a single statement on the screen that, given a user’s GitHub
handle, shows when the user joined, using their full name, something along
the lines of the following:

XXXX XXXXX joined GitHub in YYYY

How do we go about automating this task with a script? Let’s start with the
basics, then review portability, and work our way up to the “business logic”
of the script.

Scripting Basics

The good news is that by interactively using a shell, you already know most
of the relevant terms and techniques. In addition to variables, streams
and redirection, and common commands, there are a few specific things
you want to be familiar with in the context of scripts, so let’s review them.

Advanced data types

While shells usually treat everything as strings (if you want to
perform some more complicated numerical tasks, you should probably not use
a shell script), they do support some advanced data types such as arrays.

Let’s have a look at arrays in action:

os=('Linux' 'macOS' 'Windows') [image: 1]
echo "${os[0]}" [image: 2]
numberofos="${#os[@]}" [image: 3]

	[image: 1]

	Define an array with three elements.

	[image: 2]

	Access the first element; this would print Linux.

	[image: 3]

	Get the length of the array, resulting in numberofos being 3.

Flow control

Flow control allows you to branch (if) or repeat (for and while) in your
script, making the execution dependent on a certain condition.

Some usage examples of flow control:

for afile in /tmp/* ; do [image: 1]
 echo "$afile"
done

for i in {1..10}; do [image: 2]
 echo "$i"
done

while true; do
 ...
done [image: 3]

	[image: 1]

	Basic loop iterating over a directory, printing each file name

	[image: 2]

	Range loop

	[image: 3]

	Forever loop; break out with Ctrl+C

Functions

Functions allow you to write more modular and reusable scripts. You have
to define the function before you use it since the shell interprets the
script from top to bottom.

A simple function example:

sayhi() { [image: 1]
 echo "Hi $1 hope you are well!"
}

sayhi "Michael" [image: 2]

	[image: 1]

	Function definition; parameters implicitly passed via $n

	[image: 2]

	Function invocation; the output is “Hi Michael hope you are well!”

Advanced I/O

With read you can read user input from stdin that you can use
to elicit runtime input—for example, with a menu of options. Further, rather
than using echo, consider printf, which allows you fine-grained control
over the output, including colors. printf is also more portable than echo.

Following is an example usage of the advanced I/O in action:

read name [image: 1]
printf "Hello %s" "$name" [image: 2]

	[image: 1]

	Read value from user input.

	[image: 2]

	Output value read in the previous step.

There are other, more advanced concepts available for you, such as
signals
and traps. Given that we want to provide only an overview and introduction to the scripting
topic here, I will refer you to the excellent bash Scripting Cheatsheet
for a comprehensive reference of all the relevant constructs. If you are
serious about writing shell scripts, I recommend you read
bash
Cookbook by Carl Albing, JP Vossen, and Cameron Newham, which contains lots
and lots of great snippets you can use as a starting point.

Writing Portable bash Scripts

We’ll now look at what it means to write portable scripts in bash. But wait.
What does portable mean, and why should you care?

At the beginning of “Shells”, we defined what POSIX means, so let’s build on
that. When I say “portable,” I mean that we are not making too many
assumptions—implicitly or explicitly—about the environment a script will
be executed in. If a script is portable, it runs on many different systems
(shells, Linux distros, etc.).

But remember that, even if you pin down the type of shell, in our case to bash,
not all features work the same way across different versions of a shell.
At the end of the day, it boils down to the number of different
environments you can test your script in.

Executing portable scripts

How are scripts executed? First, let’s state that scripts really are simply
text files; the extension doesn’t matter, although often you find .sh used as a
convention. But there are two things that turn a text file into a script
that is executable and able to be run by the shell:

	
The text file needs to declare the interpreter in the first line, using what is
called shebang (or hashbang), which is written
as #! (see also the first line of the template that follows).

	
Then, you need to make the script executable using, for example, chmod +x,
which allows everyone to run it, or, even better, chmod 750, which is more
along the lines of the least privileges principle, as it allows only the user and group
associated with the script to run it. We’ll dive deep into this topic in
Chapter 4.

Now that you know the basics, let’s have a look at a concrete template
we can use as a starting point.

A skeleton template

A skeleton template for a portable bash shell script that you can use as a seed
looks as follows:

#!/usr/bin/env bash [image: 1]
set -o errexit [image: 2]
set -o nounset [image: 3]
set -o pipefail [image: 4]

firstargument="${1:-somedefaultvalue}" [image: 5]

echo "$firstargument"

	[image: 1]

	The hashbang instructs the
program loader that we want it to use bash to interpret this script.

	[image: 2]

	Define that we want to stop the script execution if an error happens.

	[image: 3]

	Define that we treat unset variables as an error (so the script is less
likely to fail silently).

	[image: 4]

	Define that when one part of a pipe fails, the whole pipe should be
considered failed. This helps to avoid silent failures.

	[image: 5]

	An example command-line parameter with a default value.

We will use this template later in this section to implement our GitHub
info script.

Good practices

I’m using good practices instead of best practices because what you should
do depends on the situation and how far you want to go. There is a difference
between a script you write for yourself and one that you ship to thousands of
users, but in general, high-level good practices writing scripts are as follows:

	Fail fast and loud

	
Avoid silent fails, and fail fast; things like errexit and pipefail do that
for you. Since bash tends to fail silently by default, failing fast is almost always
a good idea.

	Sensitive information

	
Don’t hardcode any sensitive information such as passwords into the script.
Such information should be provided at runtime, via user input or calling
out to an API. Also, consider that a ps reveals program parameters and more, which is another way that sensitive information can be leaked.

	Input sanitization

	
Set and provide sane defaults for variables where possible,
and sanitize the input you receive from users or other sources.
For example, launch parameters provided or interactively ingested via the
read command to avoid situations where an innocent-looking
rm -rf "$PROJECTHOME/"* wipes your drive because the variable wasn’t set.

	Check dependencies

	
Don’t assume that a certain tool or command is available, unless it’s a build-in
or you know your target environment. Just because your machine has curl installed
doesn’t mean the target machine has. If possible, provide fallbacks—for example,
if no curl is available, use wget.

	Error handling

	
When your script fails (and it’s not a matter of if but when and where), provide
actionable instructions for your users. For example, rather than Error 123,
say what has failed and how your user can fix the situation, such as
Tried to write to /project/xyz/ but seems this is read-only for me.

	Documentation

	
Document your scripts inline (using # Some doc here) for main blocks,
and try to stick to 80-column width for readability and diffing.

	Versioning

	
Consider versioning your scripts using Git.

	Testing

	
Lint and test the scripts. Since this is such an important practice, we will
discuss it in greater detail in the next section.

Let’s now move on to making scripts safe(r) by linting them while developing
and testing them before you distribute them.

Linting and Testing Scripts

While you’re developing, you want to check and lint your scripts, making
sure that you’re using commands and instructions correctly. There’s a nice
way to do that, depicted in Figure 3-10, with the program
ShellCheck;
you can download and install it locally, or you can also use the online
version via shell​​check.net.
Also, consider formatting your script with shfmt.
It automatically fixes issues that can be reported later by
shellcheck.

[image: lmlx 0310]
Figure 3-10. A screenshot of the online ShellCheck tool

And further, before you check your script into a repo, consider using bats
to test it. bats, short for Bash Automated Testing System,
allows you to define test files as a bash script with special syntax for
test cases. Each test case is simply a bash function with a description, and
you would typically invoke these scripts as part of a CI pipeline—for example,
as a GitHub action.

Now we’ll put our good practices for script writing, linting, and testing into use.
Let’s implement the example script we specified in the beginning of this section.

End-to-End Example: GitHub User Info Script

In this end-to-end example, we bring all of the preceding tips and tooling together to
implement our example script that is supposed to take a GitHub user handle and
print out a message that contains what year the user joined, along with their full name.

This is how one implementation looks, taking the good practices into
account. Store the following in a file called gh-user-info.sh, and make it
executable:

#!/usr/bin/env bash

set -o errexit
set -o errtrace
set -o nounset
set -o pipefail

Command line parameter:
targetuser="${1:-mhausenblas}" [image: 1]

Check if our dependencies are met:
if ! [-x "$(command -v jq)"]
then
 echo "jq is not installed" >&2
 exit 1
fi

Main:
githubapi="https://api.github.com/users/"
tmpuserdump="/tmp/ghuserdump_$targetuser.json"

result=$(curl -s $githubapi$targetuser) [image: 2]
echo $result > $tmpuserdump

name=$(jq .name $tmpuserdump -r) [image: 3]
created_at=$(jq .created_at $tmpuserdump -r)

joinyear=$(echo $created_at | cut -f1 -d"-") [image: 4]
echo $name joined GitHub in $joinyear [image: 5]

	[image: 1]

	Provide a default value to use if user doesn’t supply one.

	[image: 2]

	Using curl, access the GitHub API
to download the user information as a JSON file, and store it in a temporary file (next line).

	[image: 3]

	Using jq, pull out the fields we need. Note that the created_at field
has a value that looks something like "2009-02-07T16:07:32Z".

	[image: 4]

	Using cut, extract the year from the created_at field in the JSON file.

	[image: 5]

	Assemble the output message and print to screen.

Now let’s run it with the defaults:

$./gh-user-info.sh
Michael Hausenblas joined GitHub in 2009

Congratulations, you now have everything at your disposal to use the shell,
both interactively on the prompt and for scripting. Before we wrap up,
take a moment to think about the following concerning our gh-user-info.sh
script:

	
What if the JSON blob the GitHub API returns is not valid? What if we
encounter a 500 HTTP error? Maybe adding a message along the lines of “try later”
is more useful if there’s nothing the user can do themselves.

	
For the script to work, you need network access, otherwise the curl call will
fail. What could you do about a lack of network access? Informing the user
about it and suggesting what they can do to check networking may be an option.

	
Think about improvements around dependency checks—for example, we
implicitly assume here that curl is installed. Can you maybe add a check
that makes the binary variable and falls back to wget?

	
How about adding some usage help? If the script is called with
an -h or --help parameter, perhaps show a concrete usage example and the options
that users can use to influence the execution (ideally, including defining
default values used).

You see now that, although this script looks good and works in most cases, there’s
always something you can improve, such as making the script more robust and providing actionable error messages. In this context, consider using frameworks such as
bashing, rerun,
or rr to improve modularity.

Conclusion

In this chapter, we focused on working with Linux in the terminal, a textual user interface.
We discussed shell terminology, provided a hands-on introduction to using the shell
basics, and reviewed common tasks and how you can improve your shell productivity
using modern variants of certain commands (such as exa rather than ls).

Then, we looked at modern, human-friendly shells, specifically at fish, and how to
configure and use them. Further, we covered the terminal multiplexer by using tmux as
the hands-on example, enabling you to work with multiple local or remote sessions.
Using modern shells and multiplexers can dramatically improve your efficiency
on the command line, and I strongly recommend you consider adopting them.

Lastly, we discussed automating tasks by writing safe and portable shell scripts,
including linting and testing said scripts. Remember that shells are effectively
command interpreters, and as with any kind of language, you have to practice to
get fluent. Having said this, now that you’re equipped with the basics of using
Linux from the command line, you can already work with the majority of
Linux-based systems out there, be it an embedded system or a cloud VM. In any
case, you’ll find a way to get hold of a terminal and issue commands
interactively or via executing scripts.

If you want to dive deeper into the topics discussed in this chapter, here are
some additional resources:

	Terminals

	

	
“Anatomy of a Terminal Emulator”

	
“The TTY Demystified”

	
“The Terminal, the Console and the Shell—What Are They?”

	
“What Is a TTY on Linux? (and How to Use the tty Command)”

	
“Your Terminal Is Not a Terminal: An Introduction to Streams”

	Shells

	

	
“Unix Shells: bash, Fish, ksh, tcsh, zsh”

	
“Comparison of Command Shells”

	
“bash vs zsh” thread on reddit

	
“Ghost in the Shell—Part 7—ZSH Setup”

	Terminal multiplexer

	

	
“A tmux Crash Course”

	
“A Quick and Easy Guide to tmux”

	
“How to Use tmux on Linux (and Why It’s Better Than screen)”

	
The Tao of tmux

	
tmux 2: Productive Mouse-Free Development

	
Tmux Cheat Sheet & Quick Reference website

	Shell scripts

	

	
“Shell Style Guide”

	
“bash Style Guide”

	
“bash Best Practices”

	
“bash Scripting Cheatsheet”

	
“Writing
bash Scripts That Are Not Only bash: Checking for bashisms and Testing with Dash”

With the shell basics at our disposal, we now turn our focus to access control
and enforcement in Linux.

Chapter 4. Access Control

After the wide scope in the previous chapter on all things shell and
scripting, we now focus on one specific and crucial security aspect in Linux.
In this chapter, we discuss the topic of users and controlling access to
resources in general and files in particular.

One question that immediately comes to mind in such a multiuser setup is ownership.
A user may own, for example, a file. They are allowed to read from the file,
write to the file, and also, say, delete it. Given that there are other users
on the system as well, what are those users allowed to do, and how is this defined and
enforced? There are also activities that you might not necessarily associate
with files in the first place. For example, a user may (or may not) be allowed to change
networking-related
settings.

To get a handle on this topic, we’ll first take a look at the fundamental
relationship between users, processes, and files, from an access perspective.
We’ll also review sandboxing and access control types.
Next, we’ll focus on the definition of a Linux user, what users can do,
and how to manage users either locally or alternatively from a central place.

Then, we’ll move on to the topic of permissions, where
we’ll look at how to control access to files and how processes are impacted
by such restrictions.

We’ll wrap up this chapter covering a range of advanced
Linux features in the access control space, including capabilities, seccomp profiles,
and ACLs. To round things off, we’ll provide some security good practices around
permissions and access
control.

With that, let’s jump right into the topic of users and resource ownership,
laying the basis for the rest of the chapter.

Basics

Before we get into access control mechanisms, let’s step back a little and
take a bird’s-eye view on the topic. This will help us to establish
some terminology and clarify relationships between the main concepts.

Resources and Ownership

Linux is a multiuser operating system and as such has inherited the concept of
a user (see “Users”) from UNIX.
Each user account is associated with a user ID that can be given access to
executables, files, devices, and other Linux assets. A human user can log in
with a user account, and a process can run as a user account.
Then, there are resources (which we will simply refer to as files), which are
any hardware or software components available to the user. In the general case,
we will refer to resources as files, unless we explicitly talk about access to
other kinds of resources, such as with syscalls. In Figure 4-1
and the passage that follows, you see the high-level relationships between users, processes, and files in Linux.

[image: lmlx 0401]
Figure 4-1. Users, processes, and files in Linux

	Users

	
Launch processes and own files. A process is a program (executable file)
 that the kernel has loaded into main memory and runs.

	Files

	
Have owners; by default, the user who creates the file owns it.

	Processes

	
Use files for communication and persistency. Of course, users
 indirectly also use files, but they need to do so via processes.

This depiction of the relationships between users, processes, and files is of
course a very simplistic view, but it allows us to understand the
actors and their relationships and will come in handy later on when we discuss
the interaction between these different players in greater detail.

Let’s first look at the execution context of a process, addressing the question
of how restricted the process is. A term that we often come across when talking
about access to resources is sandboxing.

Sandboxing

Sandboxing is a vaguely defined term and can refer to a range of different methods,
from jails to containers to virtual machines, which can be managed either in the
kernel or in user land. Usually there is something that runs in the
sandbox—typically some application—and the supervising mechanism
enforces a certain degree of isolation between the sandboxed process and the
hosting environment. If all of that sounds rather theoretical, I ask you for a
little bit of patience. We will see sandboxing in action later in this
chapter, in “seccomp Profiles”, and then again in Chapter 9 when we talk about VMs and
containers.

With a basic understanding of resources, ownership, and access to said
resources in your mind, let’s talk briefly about some conceptual ways
to go about access control.

Types of Access Control

One aspect of access control is the nature of the access itself. Does a user or
process directly access a resource, maybe in an unrestricted manner? Or maybe there
is a clear set of rules about what kind of resources (files or syscalls) a process can access,
under what circumstances. Or maybe the access itself is even recorded.

Conceptually, there are different access control types. The two
most important and relevant to our discussion in the context of Linux are
discretionary and mandatory access control:

	Discretionary access control

	
With discretionary access control (DAC), the idea is to restrict access to resources based on the identity of
the user. It’s discretionary in the sense that a user with certain permissions
can pass them on to other users.

	Mandatory access control

	
Mandatory access control is based on a hierarchical model representing security levels. Users are assigned a
clearance level, and resources are assigned a security label.
Users can only access resources corresponding to a clearance level equal to
(or lower than) their own. In a mandatory access control model, an admin strictly and exclusively
controls access, setting all permissions. In other words, users cannot set
permissions themselves, even when they own the resource.

In addition, Linux traditionally has an all-or-nothing attitude—that is,
you are either a superuser who has the power to change everything or you are a normal user
with limited access. Initially, there was no easy and flexible way to assign a
user or process certain privileges. For example, in the general case, to enable
that “process X is allowed to change networking settings,” you
had to give it root access. This, naturally, has a concrete impact on a system
that is breached: an attacker can misuse these wide privileges easily.

Note

To qualify the “all-or-nothing attitude” in Linux a bit: the defaults in most
Linux systems allow read access to almost every file and executable by “others”—that is, all users on the system. For example, with SELinux
enabled, mandatory access control restricts access to only those assets that are explicitly given
permission. So, for example, a web server can only use ports 80 and 443,
only share files and scripts from specific directories, only write logs to
specific places, and so on.

We’ll revisit this topic in “Advanced Permission Management” and
see how modern Linux features can help overcome this binary worldview, allowing
for more fine-grained management of privileges.

Probably the best-known implementation of mandatory access control for Linux is
SELinux. It was developed to meet
the high security requirements of government agencies and is usually
used in these environments since the usability suffers from the strict
rules. Another option for mandatory access control, included in the Linux kernel since version 2.6.36
and rather popular in the Ubuntu family of Linux distributions, is
AppArmor.

Let’s now move on to the topic of users and how to manage them in Linux.

Users

In Linux we often distinguish between two types of user accounts,
from a purpose or intended usage point of view:

	So-called system users, or system accounts

	
Typically, programs (sometimes
 called daemons) use these types of accounts to run background
 processes. The services provided by these programs can be part of the
 operating system, such as networking (sshd, for example), or on the application
 layer (for example, mysql, in the case of a popular relational database).

	Regular users

	
For example, a human user that interactively uses Linux via the
 shell.

The distinction between system and regular users is less of a technical one and
more an organizational construct. To understand that, we first have to
introduce the concept of a user ID (UID), a 32-bit numerical value managed by Linux.

Linux identifies users via a UID, with a user belonging to one or more groups
identified via a group ID (GID). There is a special kind of user with the UID 0,
usually called root. This “superuser” is allowed to do anything,
that is, no restriction apply. Usually, you want to avoid working as the
root user, because it’s just too much power to have. You can easily destroy
a system if you’re not careful (believe me, I’ve done this). We’ll get back to this
later in the chapter.

Different Linux distributions have their own ways to decide how to manage the
UID range. For example, systemd-powered distributions (see “systemd”),
have the following convention
(simplified here):

	UID 0

	
Is root

	UID 1 to 999

	
Are reserved for system users

	UID 65534

	
Is user nobody—used, for example, for mapping remote users to some
 well-known ID, as is the case with “Network File System”

	UID 1000 to 65533 and 65536 to 4294967294

	
Are regular users

To figure out your own UIDs, you can use the (surprise!) id command like so:

$ id -u
2016796723

Now that you know the basics about Linux users, let’s see how you can manage
users.

Managing Users Locally

The first option, and traditionally the only one available, is managing
users locally. That is, only information local to the machine is used, and
user-related information is not shared across a network of machines.

For local user management, Linux uses a simple file-based interface with a
somewhat confusing naming scheme that is a historic artifact we have to
live with, unfortunately. Table 4-1 lists the four files
that, together, implement user management.

Table 4-1. Reference of local user management files

	Purpose
	File

	User database

	/etc/passwd

	Group database

	/etc/group

	User passwords

	/etc/shadow

	Group passwords

	/etc/gshadow

Think of /etc/passwd as a kind of mini user database keeping track of
user names, UIDs, group membership, and other data, such as home directory
and login shell used, for regular users. Let’s have a look at a concrete example:

$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash [image: 1]
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin [image: 2]
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin
syslog:x:104:110::/home/syslog:/usr/sbin/nologin
mh9:x:1000:1001::/home/mh9:/usr/bin/fish [image: 3]

	[image: 1]

	The root user has UID 0.

	[image: 2]

	A system account (the nologin gives it away; see more below).

	[image: 3]

	My user account.

Let’s have a closer look at one of the lines in /etc/passwd to understand the
structure of a user entry in detail:

root:x:0:0:root:/root:/bin/bash
^ ^ ^ ^ ^ ^ ^
| | | | | | └── [image: 1]
| | | | | └── [image: 2]
| | | | └── [image: 3]
| | | └── [image: 4]
| | └── [image: 5]
| └── [image: 6]
└── [image: 7]

	[image: 1]

	The login shell to use. To prevent interactive logins, use /sbin/nologin.

	[image: 2]

	The user’s home directory; this defaults to /.

	[image: 3]

	User information such as full name or contact data like phone number. Often
also known as GECOS field.
Note that GECOS formatting is not used, but rather the field itself is used
typically for the full name of the person associated with the account.

	[image: 4]

	The user’s primary group (GID); see also /etc/group.

	[image: 5]

	The UID. Note that Linux reserves UIDs below 1000 for system usage.

	[image: 6]

	The user’s password, with the x character meaning that the (encrypted)
password is stored in /etc/shadow, which is the default these days.

	[image: 7]

	The username, which must be 32 characters or fewer.

One thing we notice is absent in /etc/passwd is the one thing we would expect
to find there, based on its name: the password. Passwords are, for historic
reasons, stored in a file called /etc/shadow. While every user can read
/etc/passwd, you usually need root privileges to read for /etc/shadow.

To add a user, you can use the adduser
command as follows:

$ sudo adduser mh9
Adding user `mh9' ...
Adding new group `mh9' (1001) ...
Adding new user `mh9' (1000) with group `mh9' ...
Creating home directory `/home/mh9' ... [image: 1]
Copying files from `/etc/skel' ... [image: 2]
New password: [image: 3]
Retype new password:
passwd: password updated successfully
Changing the user information for mh9
Enter the new value, or press ENTER for the default [image: 4]
 Full Name []: Michael Hausenblas
 Room Number []:
 Work Phone []:
 Home Phone []:
 Other []:
Is the information correct? [Y/n] Y

	[image: 1]

	The adduser command creates a home directory.

	[image: 2]

	It also copies a bunch of default config files into the home directory.

	[image: 3]

	Need to define a password.

	[image: 4]

	Provide optional GECOS information.

If you want to create a system account, pass in the -r option. This will
disable the ability to use a login shell and also avoid home directory creation.
For configuration details, see also /etc/adduser.conf, including options
such as the UID/GID range to be used.

In addition to users, Linux also has the concept of groups, which in a sense
is just a collection of one or more users. Any regular user belongs to one
default group but can be a member of additional groups. You can find out
about groups and mappings via the /etc/group file:

$ cat /etc/group [image: 1]
root:x:0:
daemon:x:1:
bin:x:2:
sys:x:3:
adm:x:4:syslog
...
ssh:x:114:
landscape:x:115:
admin:x:116:
netdev:x:117:
lxd:x:118:
systemd-coredump:x:999:
mh9:x:1001: [image: 2]

	[image: 1]

	Display the content of the group mapping file.

	[image: 2]

	An example group of my user with the GID 1001. Note that you can add a
comma-separated list of user names after the last colon to allow multiple
users to have that group permission.

With this basic user concept and management under our belt, we move on to
a potentially better way to manage users in a professional setup, allowing
for scale.

Centralized User Management

If you have more than one machine or server for which you have to
manage users—say, in a professional setup—then managing users locally
quickly becomes old. You want a centralized way to manage users that you can
apply locally, to one specific machine. There are a few approaches
available to you, depending on your requirements and (time) budget:

	Directory based

	
Lightweight
Directory Access Protocol (LDAP), a decades-old suite of protocols now
formalized by IETF, defines how to access and maintain a distributed directory
over Internet Protocol (IP). You can run an LDAP server yourself—for example,
using projects like Keycloak—or outsource this to
a cloud provider, such as Azure Active Directory.

	Via a network

	
Users can be authenticated in this manner with Kerberos. We’ll look at Kerberos in detail in “Kerberos”.

	Using config management systems

	
These systems, which include Ansible, Chef, Puppet, or SaltStack, can be used to consistently create users across machines.

The actual implementation is often dictated by the environment. That is, a
company might already be using LDAP, and hence the choices might be limited.
The details of the different approaches and pros and cons are, however,
beyond the scope of this book.

Permissions

In this section, we first go into detail concerning Linux file permissions,
which are central to how access control works, and then we look at permissions
around processes. That is, we review runtime permissions and how they are
derived from file permissions.

File Permissions

File permissions are core to Linux’s concept of access to resources,
since everything is a file in Linux, more or less. Let’s first review some
terminology and then discuss the representation of the metadata around
file access and permissions in detail.

There are three types or scopes of permissions, from narrow to wide:

	User

	
The owner of the file

	Group

	
Has one or more members

	Other

	
The category for everyone else

Further, there are three types of access:

	Read (r)

	
For a normal file, this allows a user to view the contents of the file. For a
 directory, it allows a user to view the names of files in the directory.

	Write (w)

	
For a normal file, this allows a user to modify and delete the file.
 For a directory, it allows a user to create, rename, and delete files in the directory.

	Execute (x)

	
For a normal file, this allows a user to execute the file if the user
 also has read permissions on it. For a directory, it allows a user to access file information in the directory, effectively permitting them to change into
 it (cd) or list its content (ls).

Other File Access Bits

I listed r/w/x as the three file access types, but in practice you will
find others as well when you do an ls:

	
s is the setuid/setgid permission applied to an executable file. A user
running it inherits the effective privileges of the owner or group of the file.

	
t is the sticky bit, which is only relevant for directories. If set, it
prevents nonroot users from deleting files in it, unless said user owns the directory/file.

There are also special settings in Linux available via the chattr (change attribute)
command, but this is beyond the scope of this chapter.

Let’s see file permissions in action (note that the spaces you see here in the output of the
ls command have been expanded for better readability):

$ ls -al
total 0
-rw-r--r-- 1 mh9 devs 9 Apr 12 11:42 test
^ ^ ^ ^ ^ ^ ^
| | | | | | └── [image: 1]
| | | | | └── [image: 2]
| | | | └── [image: 3]
| | | └── [image: 4]
| | └── [image: 5]
| └── [image: 6]
└── [image: 7]

	[image: 1]

	File name

	[image: 2]

	Last modified time stamp

	[image: 3]

	File size in bytes

	[image: 4]

	Group the file belongs to

	[image: 5]

	File owner

	[image: 6]

	Number of hard links

	[image: 7]

	File mode

When zooming in on the file mode—that is, the file type and permissions
referred to as [image: 7] in the preceding snippet—we have fields with the following
meaning:

. rwx rwx rwx
^ ^ ^ ^
| | | └── [image: 1]
| | └── [image: 2]
| └── [image: 3]
└── [image: 4]

	[image: 1]

	Permissions for others

	[image: 2]

	Permissions for the group

	[image: 3]

	Permissions for the file owner

	[image: 4]

	The file type (Table 4-2)

The first field in the file mode represents the file type; see Table 4-2
for details. The remainder of the file mode encodes the permissions set
for various targets, from owner to everyone, as listed in Table 4-3.

Table 4-2. File types used in mode

	Symbol
	Semantics

	-

	A regular file (such as when you do touch abc)

	b

	Block special file

	c

	Character special file

	C

	High-performance (contiguous data) file

	d

	A directory

	l

	A symbolic link

	p

	A named pipe (create with mkfifo)

	s

	A socket

	?

	Some other (unknown) file type

There are some other (older or obsolete) characters such as M or
P used in the position 0, which you can by and large ignore. If you’re
interested in what they mean, run info ls -n "What information is listed".

In combination, these permissions in the file mode define what is allowed
for each element of the target set (user, group, everyone else), as shown in
Table 4-3, checked and enforced through
access.

Table 4-3. File permissions

	Pattern
	Effective permission
	Decimal representation

	None

	0

	--x

	Execute

	1

	-w-

	Write

	2

	-wx

	Write and execute

	3

	r--

	Read

	4

	r-x

	Read and execute

	5

	rw-

	Read and write

	6

	rwx

	Read, write, execute

	7

Let’s have a look at a few examples:

	755

	
Full access for its owner; read and execute for everyone else

	700

	
Full access by its owner; none for everyone else

	664

	
Read/write access for owner and group; read-only for others

	644

	
Read/write for owner; read-only for everyone else

	400

	
Read-only by its owner

The 664 has a special meaning on my system. When I create a file, that’s
the default permission it gets assigned. You can check that with the
umask command, which in my
case gives me 0002.

The setuid permissions are used to tell the system to run an executable as
the owner, with the owner’s permissions. If a file is owned by root, that can cause issues.

You can change the permissions of a file using chmod. Either you specify the
desired permission settings explicitly (such as 644) or you use shortcuts (for
example, +x to make it executable). But how does that look in practice?

Let’s make a file executable with chmod:

$ ls -al /tmp/masktest
-rw-r--r-- 1 mh9 dev 0 Aug 28 13:07 /tmp/masktest [image: 1]

$ chmod +x /tmp/masktest [image: 2]

$ ls -al /tmp/masktest
-rwxr-xr-x 1 mh9 dev 0 Aug 28 13:07 /tmp/masktest [image: 3]

	[image: 1]

	Initially the file permissions are r/w for the owner and read-only for
everyone else, aka 644.

	[image: 2]

	Make the file executable.

	[image: 3]

	Now the file permissions are r/w/x for the owner and r/x for everyone
else, aka 755.

In Figure 4-2 you see what is going on under the hood. Note
that you might not want to give everyone the right to execute the file,
so a chmod 744 might have been better here, giving only the owner the
correct permissions while not changing it for the rest. We will
discuss this topic further in “Good Practices”.

[image: lmlx 0402]
Figure 4-2. Making a file executable and how the file permissions change with it

You can also change the ownership using chown (and chgrp for the group):

$ touch myfile
$ ls -al myfile
-rw-rw-r-- 1 mh9 mh9 0 Sep 4 09:26 myfile [image: 1]

$ sudo chown root myfile [image: 2]
-rw-rw-r-- 1 root mh9 0 Sep 4 09:26 myfile

	[image: 1]

	The file myfile, which I created and own.

	[image: 2]

	After chown, root owns that file.

Having discussed basic permission management, let’s take a look at some more
advanced techniques in this space.

Process Permissions

So far we’ve focused on how human users access files and what the respective
permissions in play are. Now we shift the focus to processes. In “Resources and Ownership”,
we talked about how users own files as well as how processes use files. This raises
the question: what are the relevant permissions, from a process point of view?

As documented on the credentials(7) manual page,
there are different user IDs relevant in the context of runtime permissions:

	Real UID

	
The real UID is the UID of the user that launched the process. It
represents process ownership in terms of human user. The process itself can obtain its real UID via
getuid(2), and you can
query it via the shell using stat -c "%u %g" /proc/$pid/.

	Effective UID

	
The Linux kernel uses the effective UID to determine permissions the process
has when accessing shared resources such as message queues. On traditional
UNIX systems, they are also used for file access. Linux, however, previously
used a dedicated filesystem UID (see the following discussion) for file access permissions.
This is still supported for compatibility reasons. A process can obtain its effective UID
via geteuid(2).

	Saved set-user-ID

	
Saved set-user-IDs are used in suid cases where a process can
assume privileges by switching its effective UID between the real UID and the saved set-user-ID.
For example, in order for a process to be allowed to use certain network ports
(see “Ports”), it needs elevated privileges, such as being run as root.
A process can get its
saved set-user-IDs via getresuid(2).

	Filesystem UID

	
These Linux-specific IDs are used to determine permissions for file access.
This UID was initially introduced to support use cases where a file server would act
on behalf of a regular user while isolating the process from signals by said
user. Programs don’t usually directly manipulate this UID. The kernel keeps
track of when the effective UID is changed and automatically
changes the filesystem UID with it. This means that usually the filesystem
UID is the same as the effective UID but can be changed via
setfsuid(2). Note that
technically this UID is no longer necessary since kernel v2.0 but is still
supported, for
compatibility.

Initially, when a child process is created via fork(2), it inherits copies of its
parent’s UIDs, and during an execve(2) syscall, the process’s real UID is preserved,
whereas the effective UID and saved set-user-ID may change.

For example, when you run the passwd command, your effective UID is your UID,
let’s say 1000. Now, passwd has suid set enabled, which means when you run it,
your effective UID is 0 (aka root). There are also other ways to influence
the effective UID—for example, using chroot and other sandboxing techniques.

Note

POSIX threads require that credentials
are shared by all threads in a process. However, at the kernel level, Linux maintains
separate user and group credentials for each thread.

In addition to file access permissions, the kernel uses process UIDs
for other things, including but not limited to the following:

	
Establishing permissions for sending signals—for example, to determine what
happens when you do a kill -9 for a certain process ID. We’ll get back to
this in Chapter 6.

	
Permission handling for scheduling and priorities (for example, nice).

	
Checking resource limits, which we’ll discuss in detail in the context
of containers in Chapter 9.

While it can be straightforward to reason with effective UID in the
context of suid, once capabilities come into play it can be more challenging.

Advanced Permission Management

While so far we’ve focused on widely used mechanisms, the topics in this
section are in a sense advanced and not necessarily something you would
consider in a casual or hobby setup. For professional usage—that is, production
use cases where business critical workloads are deployed—you should definitely
be at least aware of the following advanced permission management approaches.

Capabilities

In Linux, as is traditionally the case in UNIX systems, the root user has
no restrictions when running processes. In other words, the kernel only
distinguishes between two cases:

	
Privileged processes, bypassing the kernel permission checks, with an
effective UID of 0 (aka root)

	
Unprivileged processes, with a nonzero effective UID, for which the kernel
does permission checks, as discussed in “Process Permissions”

With the introduction of the
capabilities syscall in
kernel v2.2, this binary worldview has changed: the privileges traditionally
associated with root are now broken down into distinct units that can be
independently assigned on a per-thread level.

In practice, the idea is that a normal process has zero capabilities, controlled
by the permissions discussed in the previous section. You can assign
capabilities to executables (binaries and shell scripts) as well as processes to
gradually add privileges necessary to carry out a task (see the discussion
in “Good Practices”).

Now, a word of caution: capabilities are generally relevant only for system-level
tasks. In other words: most of the time you won’t necessarily depend on them.

In Table 4-4 you can see some of the more widely used capabilities.

Table 4-4. Examples of useful capabilities

	Capability
	Semantics

	CAP_CHOWN

	Allows user to make arbitrary changes to files’ UIDs/GIDs

	CAP_KILL

	Allows sending of signals to processes belonging to other users

	CAP_SETUID

	Allows changing the UID

	CAP_SETPCAP

	Allows setting the capabilities of a running process

	CAP_NET_ADMIN

	Allows various network-related actions, such as interface config

	CAP_NET_RAW

	Allows using RAW and PACKET sockets

	CAP_SYS_CHROOT

	Allows calling chroot

	CAP_SYS_ADMIN

	Allows system admin operations, including mounting filesystems

	CAP_SYS_PTRACE

	Allows using strace to debug processes

	CAP_SYS_MODULE

	Allows loading kernel modules

Let’s now see the capabilities in action. For starters, to view the capabilities, you can
use commands as shown in the following (output edited to fit):

$ capsh --print [image: 1]
Current: =
Bounding set =cap_chown,cap_dac_override,cap_dac_read_search,
cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,
...

$ grep Cap /proc/$$/status [image: 2]
CapInh: 0000000000000000
CapPrm: 0000000000000000
CapEff: 0000000000000000
CapBnd: 000001ffffffffff
CapAmb: 0000000000000000

	[image: 1]

	Overview of all capabilities on the system

	[image: 2]

	Capabilities for the current process (the shell)

You can manage capabilities in a fine-grained manner—that is, on a per-file
basis—with
getcap and
setcap (the details
and good practices are beyond the scope of this chapter).

Capabilities help to transition from an all-or-nothing approach to
finer-grained privileges on a file basis. Let’s now move on to a different
advanced access control topic: the sandboxing technique of seccomp.

seccomp Profiles

Secure computing mode (seccomp)
is a Linux kernel feature available since 2005. The basic idea behind this
sandboxing technique is that, using a dedicated syscall called seccomp(2),
you can restrict the syscalls a process can use.

While you might find it inconvenient to manage seccomp yourself directly, there
are ways to use it without too much hassle. For example, in the context of containers
(see “Containers”), both
Docker and
Kubernetes support seccomp.

Let’s now have a look at an extension of the traditional, granular file permission.

Access Control Lists

With access control lists (ACLs), we have a flexible permission mechanism in Linux
that you can use on top of or in addition to the more “traditional” permissions
discussed in “File Permissions”. ACLs address a shortcoming of
traditional permissions in that they allow you to grant permissions for a user or
a group not in the group list of a user.

To check if your distribution supports ACLs, you can use
grep -i acl /boot/config* where you’d hope to find a POSIX_ACL=Y somewhere
in the output to confirm it. In order to use ACL for a filesystem, it must be enabled
at mount time, using the acl option. The docs reference on
acl has a lot of useful
details.

We won’t go into greater detail here on ACLs since they’re slightly outside
the scope of this book; however, being aware of them and knowing where to start
can be beneficial, should you come across them in the wild.

With that, let’s review some good practices for access control.

Good Practices

Here are some security “good practices” in the wider context of access control.
While some of them might be more applicable in professional environments,
everyone should at least be aware of them.

	Least privileges

	
The least privileges principle says, in a nutshell, that a person or
process should only have the necessary permissions to achieve a given task.
For example, if an app doesn’t write to a file, then it only needs read access.
In the context of access control, you can practice least privileges in two
ways:

	
In “File Permissions”, we saw what happens when using chmod +x. In
addition to the permissions you intended, it also assigns some additional
permissions to other users.
Using explicit permissions via the numeral mode is better than symbolic
mode. In other words: while the latter is more convenient, it’s less strict.

	
Avoid running as root as much as you can. For example, when you need to
install something, you should be using sudo rather than logging in as
root.

Note that if you’re writing an application, you can use an SELinux policy to
restrict access to only selected files, directories, and other features.
In contrast, the default Linux model could potentially give the application
access to any files left open on the system.

	Avoid setuid

	
Take advantage of capabilities rather than relying on setuid, which is like
a sledgehammer and offers attackers a great way to take over your system.

	Auditing

	
Auditing is the idea that you record actions (along with who carried them out)
in a way that the resulting log can’t be tampered with. You can then use this
read-only log to verify who did what, when. We’ll dive into
this topic in Chapter 8.

Conclusion

Now that you know how Linux manages users, files, and
access to resources, you have everything at your disposal to carry out
routine tasks safely and securely.

For any practical work with Linux, remember the relationship between users,
processes, and files. This is crucial, in the context of the multiuser operating
system that Linux is, for a safe and secure operation and to avoid damages.

We reviewed access control types, defined what users in Linux are,
what they can do, and how to manage them both locally and centrally. The topic of
file permissions and how to manage them can be tricky, and mastering it is mostly a matter of
practice.

Advanced permissions techniques including capabilities and seccomp profiles
are super relevant in the context of containers.

In the last section, we discussed good practices around access control–related
security, especially applying least privileges.

If you want to dive deeper into the topics discussed in this chapter, here are some
resources:

	General

	

	
“A Survey of Access Control Policies” by Amanda Crowell

	
Lynis, an auditing and compliance testing tool

	Capabilities

	

	
“Linux Capabilities in Practice”

	
“Linux Capabilities: Making Them Work”

	seccomp

	

	
“A seccomp Overview”

	
“Sandboxing in Linux with Zero Lines of Code”

	Access Control Lists

	

	
“POSIX Access Control Lists on Linux”

	
“Access Control Lists” via ArchLinux

	
“An Introduction to Linux Access Control Lists (ACLs)” via Red Hat

Remember that security is an ongoing process, so you want to make sure to
keep an eye on users and files, something we’ll go into greater detail on in
Chapters 8 and 9, but for now let’s move on to the topic
of filesystems.

Chapter 5. Filesystems

In this chapter, we focus on files and filesystems. The UNIX concept of
“everything is a file” lives on in Linux, and while that’s not
true 100% of the time, most resources in Linux are indeed files.
Files can be everything from the content of the letter you write to
your school to the funny GIF you download (from an obviously safe and trusted site).

There are other things that are also exposed as files in Linux—for example,
devices and pseudo-devices such as in echo "Hello modern Linux users" > /dev/pts/0,
which prints “Hello modern Linux users” to the screen.
While you may not associate these resources with files, you can access them with the same
methods and tools you know from regular files. For example, the kernel exposes
certain runtime information (as discussed in “Process Management”)
about a process, such as its PID or the binary used to run the process.

What all these things have in common is a standardized, uniform interface: opening a
file, gathering information about a file, writing to a file, and so forth.
In Linux, filesystems
provide this uniform interface. This interface, together with the fact that Linux
treats files as a stream of bytes, without any expectations about the structure,
enables us to build tools that work with a range of different file types.

In addition, the uniform interface that filesystems provide reduces your
cognitive load, making it faster for you to learn how to use Linux.

In this chapter, we first define some relevant terms. Then, we look at how Linux
implements the “everything is a file” abstraction. Next, we review special-purpose
filesystems the kernel uses to expose information about processes or devices.
We then move on to regular files and filesystems, something you would typically
associate with documents, data, and programs. We compare filesystem options
and discuss common operations.

Basics

Before we get into the filesystem terminology, let’s first make some implicit
assumptions and expectations about filesystems more explicit:

	
While there are exceptions, most of the widely used filesystems today
are hierarchical. That is, they provide the user with a single filesystem tree,
starting at the root (/).

	
In the filesystem tree, you find two different types of objects: directories and files.
Think of directories as an organizational unit, allowing you to group files.
If you’d like to apply the tree analogy, directories are the nodes in the tree,
whereas the leaves are either files or directories.

	
You can navigate a filesystem by listing the content of a directory (ls),
changing into that directory (cd), and printing the current working directory
(pwd).

	
Permissions are built-in: as discussed in “Permissions”, one of the
attributes a filesystem captures is ownership. Consequently, ownership enforces
access to files and directories via the assigned permissions.

	
Generally, filesystems are implemented in the kernel.

Note

While filesystems are usually, for performance reasons, implemented in the kernel
space, there’s also an option to implement them in user land. See
the Filesystem in Userspace (FUSE) documentation
 and the libfuse project site.

With this informal high-level explanation out of the way, we now focus on some
more crisp definitions of terms that you’ll need to understand:

	Drive

	
A (physical) block device such as a hard disk drive (HDD) or a
solid-state drive (SSD). In the context of virtual machines, a drive also can be
emulated—for example, /dev/sda (SCSI device) or /dev/sdb (SATA device) or
/dev/hda (IDE device).

	Partition

	
You can logically split up drives into partitions, a set of storage sectors.
For example, you may decide to create two partitions on your HDD, which then
would show up as /dev/sdb1 and /dev/sdb2.

	Volume

	
A volume is somewhat similar to a partition, but it is more flexible, and it is
also formatted for a specific filesystem. We’ll discuss volumes in detail in “Logical Volume Manager”.

	Super block

	
When formatted, filesystems have a special section in the beginning that
captures the metadata of the filesystem. This includes things like
filesystem type, blocks, state, and how many inodes per block.

	Inodes

	
In a filesystem, inodes store metadata about files, such as size, owner, location,
date, and permissions. However, inodes do not store the filename and the actual
data. This is kept in directories, which really are just a special kind
of regular file, mapping inodes to filenames.

That was a lot of theory, so let’s see these concepts in action.
First, here’s how to see what drives, partitions, and volumes are present
in your system:

$ lsblk --exclude 7 [image: 1]
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
sda 8:0 0 223.6G 0 disk [image: 2]
├─sda1 8:1 0 512M 0 part /boot/efi [image: 3]
└─sda2 8:2 0 223.1G 0 part [image: 4]
 ├─elementary--vg-root 253:0 0 222.1G 0 lvm /
 └─elementary--vg-swap_1 253:1 0 976M 0 lvm [SWAP]

	[image: 1]

	List all block devices but exclude pseudo (loop) devices.

	[image: 2]

	We have a disk drive called sda with some 223 GB overall.

	[image: 3]

	There are two partitions here, with sda1 being the boot partition.

	[image: 4]

	The second partition, called sda2, contains two volumes (see “Logical Volume Manager” for
details).

Now that we have an overall idea of the physical and logical setup, let’s have
a closer look at the filesystems in use:

$ findmnt -D -t nosquashfs [image: 1]
SOURCE FSTYPE SIZE USED AVAIL USE% TARGET
udev devtmpfs 3.8G 0 3.8G 0% /dev
tmpfs tmpfs 778.9M 1.6M 777.3M 0% /run
/dev/mapper/elementary--vg-root ext4 217.6G 13.8G 192.7G 6% /
tmpfs tmpfs 3.8G 19.2M 3.8G 0% /dev/shm
tmpfs tmpfs 5M 4K 5M 0% /run/lock
tmpfs tmpfs 3.8G 0 3.8G 0% /sys/fs/cgroup
/dev/sda1 vfat 511M 6M 504.9M 1% /boot/efi
tmpfs tmpfs 778.9M 76K 778.8M 0% /run/user/1000

	[image: 1]

	List filesystems but exclude
squashfs types
 (specialized read-only compressed filesystem originally developed for CDs,
 now also for snapshots).

We can go a step further and look at individual filesystem objects such
as directories or files:

$ stat myfile
 File: myfile
 Size: 0 Blocks: 0 IO Block: 4096 regular empty file [image: 1]
Device: fc01h/64513d Inode: 555036 Links: 1 [image: 2]
Access: (0664/-rw-rw-r--) Uid: (1000/ mh9) Gid: (1001/ mh9)
Access: 2021-08-29 09:26:36.638447261 +0000
Modify: 2021-08-29 09:26:36.638447261 +0000
Change: 2021-08-29 09:26:36.638447261 +0000
 Birth: 2021-08-29 09:26:36.638447261 +0000

	[image: 1]

	File type information

	[image: 2]

	Information about device and inode

In the previous command, if we used stat . (note the dot), we
would have gotten the respective directory file information, including its inode,
number of blocks used, and so forth.

Table 5-1 lists some basic filesystem commands that allow you to
explore the concepts we introduced earlier.

Table 5-1. Selection of low-level filesystem and block device commands

	Command
	Use case

	lsblk

	List all block devices

	fdisk, parted

	Manage disk partitions

	blkid

	Show block device attributes such as UUID

	hwinfo

	Show hardware information

	file -s

	Show filesystem and partition information

	stat, df -i, ls -i

	Show and list inode-related information

Another term you’ll come across in the context of filesystems is that of links.
Sometimes you want to refer to files with different names or provide shortcuts.
There are two types of links in Linux:

	Hard links

	
Reference inodes and can’t refer to directories. They also do not
 work across filesystems.

	Symbolic links, or symlinks

	
Special files with their content being a string representing the path
 of another file.

Now let’s see links in action (some outputs shortened):

$ ln myfile somealias [image: 1]
$ ln -s myfile somesoftalias [image: 2]

$ ls -al *alias [image: 3]
-rw-rw-r-- 2 mh9 mh9 0 Sep 5 12:15 somealias
lrwxrwxrwx 1 mh9 mh9 6 Sep 5 12:45 somesoftalias -> myfile

$ stat somealias [image: 4]
 File: somealias
 Size: 0 Blocks: 0 IO Block: 4096 regular empty file
Device: fd00h/64768d Inode: 6302071 Links: 2
...
$ stat somesoftalias [image: 5]
 File: somesoftalias -> myfile
 Size: 6 Blocks: 0 IO Block: 4096 symbolic link
Device: fd00h/64768d Inode: 6303540 Links: 1
...

	[image: 1]

	Create a hard link to myfile.

	[image: 2]

	Create a soft link to the same file (notice the -s option).

	[image: 3]

	List the files. Notice the different file types and the rendering of the name. We could also have used ls -ali *alias, which would show that the inodes
were the same on the two names associated with the hard link.

	[image: 4]

	Show the file details of the hard link.

	[image: 5]

	Show the file details of the soft link.

Now that you’re familiar with filesystem terminology let’s explore how Linux
makes it possible to treat any kind of resource as a file.

The Virtual File System

Linux manages to provide a file-like access to many sorts of resources
(in-memory, locally attached, or networked storage) through an abstraction called the
virtual file system
(VFS). The basic idea is to introduce a layer of
indirection
between the clients (syscalls) and the individual filesystems implementing
operations for a concrete device or other kind of resource. This means that VFS
separates the generic operation (open, read, seek) from the actual
implementation details.

VFS is an abstraction layer in the kernel that provides clients a common
way to access resources, based on the file paradigm. A file, in Linux, doesn’t
have any prescribed structure; it’s just a stream of bytes. It’s up to the
client to decide what the bytes mean. As shown in Figure 5-1,
VFS abstracts access to different kinds of filesystems:

	Local filesystems, such as ext3, XFS, FAT, and NTFS

	
These filesystems use
 drivers to access local block devices such as HDDs or SSDs.

	In-memory filesystems, such as tmpfs, that are not backed by long-term storage devices but live in main memory (RAM)

	
We’ll cover these and the
 previous category in “Regular Files”.

	Pseudo filesystems like procfs, as discussed in “Pseudo Filesystems”

	
These filesystems are also in-memory in nature. They’re used for kernel
 interfacing and device abstractions.

	Networked filesystems, such as NFS, Samba, Netware (nee Novell), and others

	
These filesystems also use a driver; however, the storage devices
 where the actual data resides is not locally attached but remote. This
 means that the driver involves network operations. For this reason, we’ll cover them in Chapter 7.

[image: lmlx 0501]
Figure 5-1. Linux VFS overview

Describing the makeup of the VFS isn’t easy.
There are over 100 syscalls related to files; however, in its core, the
operations can be grouped into a handful of categories, as listed in
Table 5-2.

Table 5-2. Select syscalls making up the VFS interface

	Category
	Example syscalls

	Inodes

	chmod, chown, stat

	Files

	open, close, seek, truncate, read, write

	Directories

	chdir, getcwd, link, unlink, rename, symlink

	Filesystems

	mount, flush, chroot

	Others

	mmap, poll, sync, flock

Many VFS syscalls dispatch to the filesystem-specific implementation. For other syscalls,
there are VFS default implementations. Further, the Linux kernel
defines relevant VFS data structures—see
include/linux/fs.h—such as the following:

	inode

	
The core filesystem object, capturing type, ownership, permissions, links,
 pointers to blocks containing the file data, creation and access statistics, and more

	file

	
Representing an open file (including path, current position, and inode)

	dentry (directory entry)

	
Stores its parent and children

	super_block

	
Representing a filesystem including mount information

	Others

	
Including vfsmount and file_system_type

With the VFS overview done, let’s have a closer look at the details, including
volume management, filesystem operations, and common file system layouts.

Logical Volume Manager

We previously talked about carving up drives using partitions. While doing this
is possible, partitions are hard to use, especially when resizing
(changing the amount of storage space) is necessary.

Logical volume manager (LVM) uses a layer of
indirection between physical entities
(such as drives or partitions) and the file system. This yields a setup that
allows for risk-free, zero-downtime expanding and automatic storage extension
through the pooling of resources. The way LVM works is depicted in Figure 5-2, with key concepts explained in the passage that follows.

[image: lmlx 0502]
Figure 5-2. Linux LVM overview

	Physical volumes (PV)

	
Can be a disk partition, an entire disk drive, and other devices.

	Logical volumes (LV)

	
Are block devices created from VGs. These are
 conceptually comparable to partitions. You have to create a filesystem on
 an LV before you can use it. You can easily resize LVs while in use.

	Volume groups (VG)

	
Are a go-between between a set of PVs and LVs. Think of a VG as
 pools of PVs collectively providing resources.

To manage volumes with LVM,
a number of tools are required; however, they are consistently named and relatively
easy to use:

	PV management tools

	

	
lvmdiskscan

	
pvdisplay

	
pvcreate

	
pvscan

	VG management tools

	

	
vgs

	
vgdisplay

	
vgcreate

	
vgextend

	LV management tools

	

	
lvs

	
lvscan

	
lvcreate

Let’s see some LVM commands in action, using a concrete setup:

$ sudo lvscan [image: 1]
 ACTIVE '/dev/elementary-vg/root' [<222.10 GiB] inherit
 ACTIVE '/dev/elementary-vg/swap_1' [976.00 MiB] inherit

$ sudo vgs [image: 2]
 VG #PV #LV #SN Attr VSize VFree
 elementary-vg 1 2 0 wz--n- <223.07g 16.00m

$ sudo pvdisplay [image: 3]
 --- Physical volume ---
 PV Name /dev/sda2
 VG Name elementary-vg
 PV Size <223.07 GiB / not usable 3.00 MiB
 Allocatable yes
 PE Size 4.00 MiB
 Total PE 57105
 Free PE 4
 Allocated PE 57101
 PV UUID 2OrEfB-77zU-jun3-a0XC-QiJH-erDP-1ujfAM

	[image: 1]

	List logical volumes; we have two here (root and swap_1) using
volume group elementary-vg.

	[image: 2]

	Display volume groups; we have one here called elementary-vg.

	[image: 3]

	Display physical volumes; we have one here (/dev/sda2) that’s assigned
to the volume group elementary-vg.

Whether you use a partition or an LV, two more steps, which we’ll cover next,
are necessary to use a filesystem.

Filesystem Operations

In the following section, we’ll discuss how to create a filesystem, given
a partition or a logical volume (created using LVM). There are two steps
involved: creating the filesystem—in other non-Linux operating systems, this step is
sometimes called formatting—and then mounting it, or inserting it
into the filesystem tree.

Creating filesystems

In order to use a filesystem, the first step is to create one. This means that
you’re setting up the management pieces that make up a filesystem, taking
a partition or a volume as the input. Consult Table 5-1 if you’re unsure
how to gather the necessary information about the input, and once you have
everything together, use mkfs
to create a filesystem.

mkfs takes two primary inputs: the type of filesystem you want to create
(see one of the options we discuss in “Common Filesystems”) and the device you
want to create the filesystem on (for example, a logical volume):

mkfs -t ext4 \ [image: 1]
 /dev/some_vg/some_lv [image: 2]

	[image: 1]

	Create a filesystem of type ext4.

	[image: 2]

	Create the filesystem on the logical volume /dev/some_vg/some_lv.

As you can see from the previous command, there’s not much to it to create
a filesystem, so the main work for you is to figure out what filesystem type
to use.

Once you have created the filesystem with mkfs, you can then make it
available in the filesystem tree.

Mounting filesystems

Mounting a filesystem means attaching it to the filesystem tree (which starts
at /). Use the mount command to attach a
filesystem. mount takes two main inputs: the device you want to attach and the
place in the filesystem tree. In addition, you can provide other inputs, including mount options (via -o) such as read-only, and bind mounts—via --bind—for mounting
directories into the filesystem tree. We’ll revisit this latter option in the context of
containers.

You can use mount on its own as well. Here’s how to list existing mounts:

$ mount -t ext4,tmpfs [image: 1]
tmpfs on /run type tmpfs (rw,nosuid,noexec,relatime,size=797596k,mode=755)
/dev/mapper/elementary--vg-root on / type ext4 (rw,relatime,errors=remount-ro) [image: 2]
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev)
tmpfs on /run/lock type tmpfs (rw,nosuid,nodev,noexec,relatime,size=5120k)
tmpfs on /sys/fs/cgroup type tmpfs (ro,nosuid,nodev,noexec,mode=755)

	[image: 1]

	List mounts but only show certain filesystem types (ext4 and tmpfs
here).

	[image: 2]

	An example mount: the LVM VG /dev/mapper/elementary--vg-root of type
ext4 is mounted at the root.

You must make sure that you mount a filesystem using the type it has been
created with. For example, if you’re trying to mount an SD card using
mount -t vfat /dev/sdX2 /media, you have to know the SD card is formatted
using vfat. You can let mount try all filesystems until one works using
the -a option.

Further, the mounts are valid only for as long as the system is running, so in
order to make it permanent, you need to use the
fstab file (/etc/fstab). For example,
here is mine (output slightly edited to fit):

$ cat /etc/fstab
/etc/fstab: static file system information.
#
Use 'blkid' to print the universally unique identifier for a
device; this may be used with UUID= as a more robust way to name devices
that works even if disks are added and removed. See fstab(5).
#
<file system> <mount point> <type> <options> <dump> <pass>
/dev/mapper/elementary--vg-root / ext4 errors=remount-ro 0 1
/boot/efi was on /dev/sda1 during installation
UUID=2A11-27C0 /boot/efi vfat umask=0077 0 1
/dev/mapper/elementary--vg-swap_1 none swap sw 0 0

Now you know how to manage partitions, volumes, and filesystems. Next up, we
review common ways to organize filesystems.

Common Filesystem Layouts

Once you have a filesystem in place, an obvious challenge is to come up
with a way to organize its content. You may want to organize things like
where programs are stored, configuration data, system data, and user data.
We will refer to this organization of directories and their content as
the filesystem layout. Formally, the layout is called the
Filesystem Hierarchy Standard (FHS).
It defines directories, including their structure and recommended content. The
Linux Foundation maintains the FHS, and it’s a good starting point
for Linux distributions to follow.

The idea behind FHS is laudable. However, in practice you will find that the
filesystem layout very much depends on the Linux distribution you’re using.
Thus, I strongly recommend you use the man hier command to learn
about your concrete setup.

To provide you with a high-level idea of what you can expect when you see certain
top-level directories, I compiled a list of common ones in Table 5-3.

Table 5-3. Common top-level directories

	Directory
	Semantics

	bin, sbin

	System programs and commands (usually links to /usr/bin and /usr/sbin)

	boot

	Kernel images and related components

	dev

	Devices (terminals, drives, etc.)

	etc

	System configuration files

	home

	User home directories

	lib

	Shared system libraries

	mnt, media

	Mount points for removable media (e.g., USB sticks)

	opt

	Distro specific; can host package manager files

	proc, sys

	Kernel interfaces; see also “Pseudo Filesystems”

	tmp

	For temporary files

	usr

	User programs (usually read-only)

	var

	User programs (logs, backups, network caches, etc.)

With that, let’s move on to some special kinds of filesystems.

Pseudo Filesystems

Filesystems are a great way to structure and access information. By now you have
likely already internalized the Linux motto that “everything is a file.”
We looked at how Linux provides a uniform interface
via VFS in “The Virtual File System”. Now, let’s take a closer look at how an interface is provided
in cases where the VFS implementor is not a block device (such as an SD card or an SSD drive).

Meet pseudo filesystems: they only pretend to be filesystems so
that we can interact with them in the usual manner (ls, cd, cat), but
really they are wrapping some kernel interface. The interface can be a range of
things, including the following:

	
Information about a process

	
An interaction with devices such as keyboards

	
Utilities such as special devices you can use as data sources or sinks

Let’s have a closer look at the three major pseudo filesystems Linux has,
starting with the oldest.

procfs

Linux inherited the /proc
filesystem (procfs) from UNIX. The original intention was to publish process-related
information from the kernel, to make it consumable for system commands such as
ps or free. It has very few rules around structure, allows read-write
access, and over time many things found their way into it. In general, you
find two types of information there:

	
Per-process information in /proc/PID/. This is process-relevant information
that the kernel exposes via directories with the PID as the directory name.
Details concerning the information available there are listed in
Table 5-4.

	
Other information such as mounts, networking-related information, TTY drivers, memory information,
system version, and uptime.

You can glean per-process information as listed in Table 5-4 simply
by using commands like cat. Note that most are read-only; the write semantics
depend on the underlying resource.

Table 5-4. Per-process information in procfs (most notable)

	Entry
	Type
	Information

	attr

	Directory

	Security attributes

	cgroup

	File

	Control groups

	cmdline

	File

	Command line

	cwd

	Link

	Current working directory

	environ

	File

	Environment variables

	exe

	Link

	Executable of the process

	fd

	Directory

	File descriptors

	io

	File

	Storage I/O (bytes/char read and written)

	limits

	File

	Resource limits

	mem

	File

	Memory used

	mounts

	File

	Mounts used

	net

	Directory

	Network stats

	stat

	File

	Process status

	syscall

	File

	Syscall usage

	task

	Directory

	Per-task (thread) information

	timers

	File

	Timers information

To see this in action, let’s inspect the process status.
We’re using status here rather than stat, which doesn’t come with
human-readable labels:

$ cat /proc/self/status | head -10 [image: 1]
Name: cat
Umask: 0002
State: R (running) [image: 2]
Tgid: 12011
Ngid: 0
Pid: 12011 [image: 3]
PPid: 3421 [image: 4]
TracerPid: 0
Uid: 1000 1000 1000 1000
Gid: 1000 1000 1000 1000

	[image: 1]

	Get the process status about the currently running command, showing only the
first 10 lines.

	[image: 2]

	The current state (running, on-CPU).

	[image: 3]

	The PID of the current process.

	[image: 4]

	The process ID of the parent process of the command; in this case, it’s
the shell where I ran the cat command in.

Here is one more example of using procfs to glean information, this time from
the networking space:

$ cat /proc/self/net/arp
IP address HW type Flags HW address Mask Device
192.168.178.1 0x1 0x2 3c:a6:2f:8e:66:b3 * wlp1s0
192.168.178.37 0x1 0x2 dc:54:d7:ef:90:9e * wlp1s0

As shown in the previous command, we can glean ARP information about the
current process from this special /proc/self/net/arp.

procfs is very useful if you’re
low-level debugging
or developing system tooling. It is relatively messy, so you’ll need
the kernel docs or, even better, the kernel source code at hand to understand
what each file represents and how to interpret the information in it.

Let’s move on to a more recent, more orderly way the kernel exposes information.

sysfs

Where procfs is pretty Wild West, the
/sys filesystem (sysfs)
is a Linux-specific, structured way for the kernel to expose select information
(such as about devices) using a standardized layout.

Here are the directories in sysfs:

	block/

	
This directory symbolic links to discovered block devices.

	bus/

	
In this directory, you find one subdirectory for each physical bus type
 supported in the kernel.

	class/

	
This directory contains device classes.

	dev/

	
This directory contains two subdirectories: block/ for block devices and
 char/ for character devices on the system, structured with major-ID:minor-ID.

	devices/

	
In this directory, the kernel provides a representation of the device tree.

	firmware/

	
Via these directories, you can manage firmware-specific attributes.

	fs/

	
This directory contains subdirectories for some filesystems.

	module/

	
In these directories you find subdirectories for each module loaded in the kernel.

There are more subdirectories in sysfs, but some are newish and/or would
benefit from better documentation. You’ll find certain information duplicated
in sysfs that is also available in procfs, but other information (such as
memory information) is only available in procfs.

Let’s see sysfs in action (output edited to fit):

$ ls -al /sys/block/sda/ | head -7 [image: 1]
total 0
drwxr-xr-x 11 root root 0 Sep 7 11:49 .
drwxr-xr-x 3 root root 0 Sep 7 11:49 ..
-r--r--r-- 1 root root 4096 Sep 8 16:22 alignment_offset
lrwxrwxrwx 1 root root 0 Sep 7 11:51 bdi -> ../../../virtual/bdi/8:0 [image: 2]
-r--r--r-- 1 root root 4096 Sep 8 16:22 capability [image: 3]
-r--r--r-- 1 root root 4096 Sep 7 11:49 dev [image: 4]

	[image: 1]

	List information about block device sda, showing only the first seven lines.

	[image: 2]

	The backing_dev_info link using MAJOR:MINOR format.

	[image: 3]

	Captures device
capabilities, such
as if it is removable.

	[image: 4]

	Contains the device major and minor number (8:0); see also the
block
device drivers reference for what the numbers mean.

Next up in our little pseudo filesystem review are devices.

devfs

The /dev filesystem
(devfs) hosts device special files, representing devices ranging from physical
devices to things like a random number generator or a write-only data sink.

The devices available and managed via devfs are:

	Block devices

	
Handle data in blocks—for example, storage devices (drives)

	Character devices

	
Handle things character by character, such as a
 terminal, a keyboard, or a mouse

	Special devices

	
Generate data or allow you to manipulate it, including
 the famous /dev/null or /dev/random

Let’s now see devfs in action. For example, assume you want to get a random
string. You could do something like the following:

tr -dc A-Za-z0-9 < /dev/urandom | head -c 42

The previous command generates a 42-character random sequence containing uppercase
and lowercase as well as numerical characters. And while /dev/urandom
looks like a file and can be used like one, it indeed is a special
file that, using a number of sources, generates (more or less) random
output.

What do you think about the following command:

echo "something" > /dev/tty

That’s right! The string “something” appeared on your display, and that is by
design. /dev/tty stands for the terminal, and with that command
we sent something (quite literally) to it.

With a good understanding of filesystems and their features,
let’s now turn our attention to filesystems that you want to use to manage
regular files such as documents and data files.

Regular Files

In this section, we focus on regular files and
filesystems
for such file types. Most of the day-to-day files we’re dealing with
when working fall into this category: office documents, YAML and JSON
configuration files, images (PNG, JPEG, etc.), source code, plain text files, and so on.

Linux comes with a wealth of options. We’ll focus on local filesystems, both
those native for Linux as well as those in other operating systems
(such as Windows/DOS) that Linux allows you to use. First, let’s have a
look at some common filesystems.

Common Filesystems

The term common filesystem doesn’t have a formal definition. It’s simply
an umbrella term for filesystems that are either the defaults used in Linux
distributions or widely used in storage devices such as removable devices
(USB sticks and SD cards) or read-only devices, like CDs and DVDs.

In Table 5-5 I provide a quick overview and comparison
of some common filesystems that enjoy in-kernel support. Later in this section,
we’ll review some popular filesystems in greater detail.

Table 5-5. Common filesystems for regular files

	Filesystem
	Linux support since
	File size
	Volume size
	Number of files
	Filename length

	ext2

	1993

	2 TB

	32 TB

	1018

	255 characters

	ext3

	2001

	2 TB

	32 TB

	variable

	255 characters

	ext4

	2008

	16 TB

	1 EB

	4 billion

	255 characters

	btrfs

	2009

	16 EB

	16 EB

	218

	255 characters

	XFS

	2001

	8 EB

	8 EB

	264

	255 characters

	ZFS

	2006

	16 EB

	2128 Bytes

	1014 files per directory

	255 characters

	NTFS

	1997

	16 TB

	256 TB

	232

	255 characters

	vfat

	1995

	2 GB

	N/A

	216 per directory

	255 characters

Note

The information provided in Table 5-5 is meant to give you a
rough idea about the filesystems. Sometimes it’s hard to pinpoint the exact
time a filesystem would be officially considered part of Linux; sometimes
the numbers make sense only with the relevant context applied. For example,
there are differences between theoretical limits and implementation.

Now let’s take a closer look at some widely used filesystems for regular files:

	ext4

	
A widely used filesystem,
used by default in many distributions nowadays. It’s a backward-compatible
evolution of ext3. Like ext3, it offers journaling—that is, changes
are recorded in a log so that in the worst-case scenario (think: power outage),
the recovery is fast. It’s a great general-purpose choice. See the
ext4 manual for usage.

	XFS

	
A journaling filesystem that
was originally designed by Silicon Graphics (SGI) for their workstations
in the early 1990s. Offering support for large files and high-speed I/O,
it’s now used, for example, in the Red Hat distributions family.

	ZFS

	
Originally developed by Sun Microsystems
in 2001, ZFS combines filesystem and volume manager functionality. While now there
is the OpenZFS project,
offering a path forward in an open source context, there are some concerns about
ZFS’s integration with Linux.

	FAT

	
This is really a family of
FAT filesystems for
Linux, with vfat being used most often. The main use case is
interoperability with Windows systems, as well as removable media that uses
FAT. Many of the native considerations around volumes do not apply.

Drives are not the only place one can store data, so let’s have a look at
in-memory options.

In-Memory Filesystems

There are a number of in-memory filesystems available; some are general
purpose and others have very specific use cases. In the following, we list
some widely used in-memory filesystems (in alphabetical order):

	debugfs

	
A special-purpose filesystem used for debugging; usually mounted with
 mount -t debugfs none /sys/kernel/debug.

	loopfs

	
Allows mapping
 a filesystem to blocks rather than devices. See also a mail
 thread on the background.

	pipefs

	
A special (pseudo) filesystem mounted on pipe: that enables pipes.

	sockfs

	
Another special (pseudo) filesystem that makes network sockets
 look like files, sitting between the syscalls and the
 sockets.

	swapfs

	
Used to realize swapping
 (not mountable).

	tmpfs

	
A general-purpose filesystem that keeps file data in kernel caches.
 It’s fast but nonpersistent (power off means data is lost).

Let’s move on to a special category of filesystems, specifically relevant in the
context of “Containers”.

Copy-on-Write Filesystems

Copy-on-write (CoW) is a nifty concept to increase I/O speed and at the same time
use less space. The way it works is depicted in Figure 5-3, with further explanation in the passage that follows.

[image: lmlx 0503]
Figure 5-3. The CoW principle in action

	
The original file, File 1, consisting of blocks A, B, and C, is copied
to a file called File 2. Rather than copying the actual blocks, only the
metadata (pointers to the blocks) is copied. This is fast and doesn’t use
up much space since only metadata is created.

	
When File 2 is modified (let’s say something in block C is changed),
only then is block C copied: a new block called C′ is created, and
while File 2 still points to (uses) the unmodified blocks A and B,
it now uses a new block (C′) to capture new data.

Before we get to implementations, we need to understand a second concept relevant
in this context:
union mounts. This is the idea that
you can combine (mount) multiple directories into one location so that, to the user
of the resulting directory, it appears that said directory contains the combined
content (or: union) of all the participating directories. With union mounts, you
often come across the terms upper filesystem and lower filesystem, hinting at the
layering order of the mounts. You’ll find more details in the article
“Unifying Filesystems with Union Mounts”.

With union mounts, the devil is in the details. You have to come up with rules
around what happens when a file exists in multiple places or what writing to or removing files means.

Let’s have a quick look at implementations of CoW in the context of Linux filesystems.
We’ll have a closer look at some of these in the context of Chapter 6,
when we discuss their use as a building block for container images.

	Unionfs

	
Originally developed at Stony Brook University,
Unionfs implements a union mount for CoW filesystems. It allows you to
transparently overlay files and directories from different filesystems using
priorities at mount time. It was widely popular and used in the context of
CD-ROMs and DVDs.

	OverlayFS

	
A union mount filesystem implementation for Linux introduced in
2009 and added to the kernel in 2014. With OverlayFS, once a file is opened,
all operations are directly handled by the underlying (lower or upper) filesystems.

	AUFS

	
Another attempt to implement an in-kernel union mount, AUFS (short for advanced multilayered unification
filesystem; originally AnotherUnionFS) has not been merged into
the kernel yet. It is used to default in Docker (see “Docker”; nowadays Docker
defaults to OverlayFS with storage driver
overlay2).

	btrfs

	
Short for b-tree
filesystem (and pronounced butterFS or betterFS), btrfs is a CoW initially
designed by Oracle Corporation. Today, a number of companies contribute to
the btrfs development, including Facebook, Intel, SUSE, and Red Hat.

It comes with a number of features such as snapshots (for software-based RAID)
and automatic detection of silent data corruptions. This makes btrfs very
suitable for professional environments—for example, on a server.

Conclusion

In this chapter, we discussed files and filesystems in Linux. Filesystems
are a great and flexible way to organize access to information in a
hierarchical manner. Linux has many technologies and projects around filesystems.
Some are open source based, but there is also a range of commercial offerings.

We discussed the basic building blocks, from drives to partitions and volumes.
Linux realizes the “everything is a file” abstraction using VFS, supporting
virtually any kind of filesystem, local or remote.

The kernel uses pseudo filesystems such as /proc and /sys to expose information
about processes or devices. You can interact with these (in-memory) filesystems
that represent kernel APIs just like with filesystems such as ext4 (that you use
to store files).

We then moved on to regular files and filesystems, where we compared common local
filesystem options, as well as in-memory and CoW filesystem basics. Linux’s
filesystem support is comprehensive, allowing you to use (at least read) a
range of fil⁠e­systems, including those originating from other operating systems
such as Windows.

You can dive deeper into the topics covered in this chapter with the following resources:

	Basics

	

	
“UNIX File Systems: How UNIX Organizes and Accesses Files on Disk”

	
“KHB: A Filesystems Reading List”

	VFS

	

	
“Overview of the Linux Virtual File System”

	
“Introduction to the Linux Virtual Filesystem (VFS)”

	
“LVM” on ArchWiki

	
“LVM2 Resource Page”

	
“How to Use GUI LVM Tools”

	
“Linux Filesystem Hierarchy”

	
“Persistent BPF Objects”

	Regular files

	

	
“Filesystem Efficiency—Comparison of EXT4, XFS, BTRFS, and ZFS” thread on reddit

	
“Linux Filesystem Performance Tests”

	
“Comparison of File Systems for an SSD” thread on Linux.org

	
“Kernel Korner—Unionfs: Bringing Filesystems Together”

	
“Getting Started with btrfs for Linux”

Equipped with knowledge around filesystems, we’re now ready to
bring things together and focus on how to manage and launch applications.

Chapter 6. Applications, Package Management,
and Containers

In this chapter, we talk about applications in Linux. Sometimes, the term
application (or simply app) is used interchangeably with program, binary,
or executable. We’ll explain the differences between these terms and
initially will be focusing on terminology, including the definition of applications
and packages.

We discuss how Linux starts up and brings all the services we depend on into being.
This is also known as the boot process. We will focus on init systems,
specifically on the de-facto standard, the systemd ecosystem.

We then move on to package management, where we first review the application
supply chain in general terms and see what the different moving parts are about.
Then, to give you some context about existing mechanisms
and challenges, we focus on how apps were traditionally distributed and installed.
We discuss package management in traditional Linux distros,
from Red Hat to Debian-based systems, and also have a peek at
programming language–specific package managers such as Python or Rust.

In the next part of the chapter, we focus on containers: what they are and
how they work. We’ll review the building blocks of containers, what
tooling you have available, and good practices around using containers.

To round off this chapter, we look at modern ways to manage Linux apps,
especially in desktop environments. Most of those modern package manager
solutions are also making use of containers in some form or another.

Running Example: greeter

To demonstrate certain technologies in this chapter, we’ll use a running example
called greeter. It’s a simple shell script that echoes the name provided or
a fallback greeting if nothing is provided.

If you want to follow along, now is a good time to paste the following bash
script into a file called greeter.sh. Make it executable using chmod 750 greeter.sh
(and if you don’t recall what this means, read up on it in “File Permissions”):

#!/usr/bin/env bash

set -o errexit
set -o errtrace
set -o pipefail

name="${1}"

if [-z "$name"]
then
 printf "You are awesome!\n"
else
 printf "Hello %s, you are awesome!\n" ${name}
fi

And now, without further ado, let’s see what an application is and what
other related terms there are.

Basics

Before we get into the nitty-gritty details of application management, init systems,
and containers, let’s start with relevant definitions for this chapter and beyond.
The reason why we only now go into details concerning apps is that there are a
number of prerequisites (such as the Linux kernel, shell, filesystems, and security aspects)
that you need to fully understand apps, and now that we’re in a position to
build on what we’ve learned so far, we can tackle apps:

	Program

	
This is usually either a binary file or a shell script that Linux can load
into memory and execute. Another way to refer to this entity is executable.
The type of the executable determines what exactly takes care of running it—for example, a shell (see “Shells”) would interpret and execute a shell script.

	Process

	
A running entity based on a program, loaded into main memory and either
using the CPU or I/O, when not sleeping. See also “Process Management”
and Chapter 3.

	Daemon

	
Short for daemon process, sometimes called service, this is a background process
that provides a certain function to other processes. For example, a printer
daemon allows you to print. There are also daemons for web services, logging,
time, and many more utilities you rely on on a daily basis.

	Application

	
A program including its dependencies. Usually a substantial program, including
a user interface. We usually associate the term application with the
entire life cycle of a program, its configuration, and its data: from finding
and installing to upgrading to removing it.

	Package

	
A file that contains programs and configurations; used to distribute software
applications.

	Package manager

	
A program that takes a package as an input and, based on its content and
the user instruction, installs it, upgrades it, or removes it from a Linux
environment.

	Supply Chain

	
A collection of software producers and distributors that enable you to
find and use applications based on packages; see “Linux Application Supply Chains” for details.

	Booting

	
The startup sequence in Linux that involves hardware and operating system
initialization steps, including loading the kernel and launching service (or
daemon) programs with the goal to bring Linux into a state that it can be used;
see “The Linux Startup Process” for details.

Equipped with these high-level definitions, we quite literally start at the
beginning: let’s have a look at how Linux starts up and how all the daemons
get launched so that we can use Linux to do our work.

The Linux Startup Process

The Linux boot process is
typically a multiphase effort in which hardware and the kernel work together.

In Figure 6-1, you can see the boot process end to end, with the
following five steps:

[image: lmlx 0601]
Figure 6-1. The Linux startup process

	
In modern environments, the Unified Extensible Firmware Interface
(UEFI) spec defines the boot configuration (stored in NVRAM) and the boot
loader. In older systems, in this step, after the Power On Self Test (POST) is
completed, the Basic I/O System (BIOS; see “The BIOS and UEFI”) would initialize hardware
(managing I/O ports and interrupts) and hand over control to the boot loader.

	
The boot loader has one goal: to bootstrap the kernel. Depending on the boot
medium, the details may differ slightly. There are a range of boot
loader options, both current (e.g., GRUB 2, systemd-boot, SYSLINUX, rEFInd) and legacy (e.g., LILO, GRUB 1).

	
The kernel is usually located in the /boot directory in a compressed form.
That means the first step is to extract and load the kernel into main memory.
After the initialization of its subsystems, filesystems, and drivers
(as discussed in Chapter 2 and “Mounting filesystems”), the kernel hands over control to the
init system, and with that the boot process proper ends.

	
The init system is responsible for launching daemons (service processes) system-wide.
This init process is the root of the process hierarchy and
with it has the process ID (PID) 1. In other words, the process with PID 1 runs
until you power off the system. Besides being responsible for launching other daemons,
the PID 1 process traditionally also takes care of orphaned processes (processes
that don’t have a parent process anymore).

	
Usually, some other user-space-level initialization takes place after this,
depending on the environment:

	
There is usually a terminal, environment, and shell initialization going on,
as discussed in Chapter 3.

	
Display manager, graphical server, and the like, for desktop environments with a GUI
are launched, taking user preferences and configurations into account.

With this high-level overview of the Linux startup process, we conclude our
introductory section and focus on a vital, user-facing component: the init systems.
This part (the preceding steps 4 and 5) is the most relevant for you, in the
context of this book, allowing you to customize and extend your Linux
installation.

There is a good comparison
of init systems available via the Gentoo wiki. We’ll restrict our discussion
to systemd, which almost all current Linux distributions are using.

System V Init

System V–style init programs
(or SysV init for short) were the traditional init system in Linux. Linux
inherited SysV from Unix, which defines so-called runlevels (think: system
states such as halt, single-user, multi-user mode, or GUI mode) with the
configuration usually stored in /etc/init.d. However, the sequential
way of starting up daemons and the distro-specific handling of the
configuration made this a not-very-portable option.

Here’s a fun fact: one of the book reviewers, Chris, was the first person to
document SysV init in about 1984 (which an engineer designed over a weekend,
reportedly).

systemd

systemd was initially an init system, a replacement for
initd, but today it’s a powerful supervisor that includes functions such
as logging, network configuration, and network time synchronization. It provides
for a flexible, portable way to define daemons and their dependencies, and
a uniform interface to control the configuration.

Almost all current Linux distributions are using systemd, including
Fedora since May 2011, openSUSE since September 2012, CentOS since April 2014, RHEL since
June 2014, SUSE Linux since October 2014, Debian since April 2015, and Ubuntu since
April 2015.

In particular, systemd addresses the shortcomings of previous init systems
by doing the following:

	
Providing a uniform way to manage startup across distros

	
Implementing a faster, more comprehensible service configuration

	
Offering a modern management suite including monitoring, resource usage control
(via cgroups), and built-in auditing

Additionally, init starts services at initialization time in sequence (that
is, in alphanumeric order), while systemd can start any service that has
had its dependencies met, potentially speeding up the startup time.

The way you tell systemd what to run, when to run, and how to run is via units.

Units

A unit in systemd is a logical grouping with different semantics depending
on its function and/or the resource it targets. systemd distinguishes a number of
units, depending on the target resource:

	service units

	
Describe how to manage a service or application

	target units

	
Capture dependencies

	mount units

	
Define a mountpoint

	timer units

	
Define timers for cron jobs and the like

Other, less important unit types include the following:

	socket

	
Describes a network or IPC socket

	device

	
For udev or sysfs filesystems

	automount

	
Configures automatic mountpoints

	swap

	
Describes swap space

	path

	
For path-based activation

	snapshot

	
Allows for reconstructing the current state of the system after changes

	slice

	
Associated with cgroups (see “Linux cgroups”)

	scope

	
Manages sets of system processes created externally

To be known to systemd, a unit needs to be serialized into a file.
systemd looks for unit files in multiple locations. The three most important filepaths are the following:

	/lib/systemd/system

	
Package-installed units

	/etc/systemd/system

	
System admin–configured units

	/run/systemd/system

	
Nonpersistent runtime modifications

With the basic unit of work (no pun intended) in systemd defined, let’s move on
to how you control it via the command line.

Management with systemctl

The tool you use to interact with systemd to manage services is
systemctl.

In Table 6-1 I’ve compiled a list of often-used systemctl
commands.

Table 6-1. Useful systemd commands

	Command
	Use case

	systemctl enable XXXXX.service

	Enable the service; ready to be started

	systemctl daemon-reload

	Reload all unit files and re-create entire dependency tree

	systemctl start XXXXX.service

	Start the service

	systemctl stop XXXXX.service

	Stop the service

	systemctl restart XXXXX.service

	Stop and then start the service

	systemctl reload XXXXX.service

	Issue reload command to service; falls back to restart

	systemctl kill XXXXX.service

	Stop service execution

	systemctl status XXXXX.service

	Get a short summary of service state including some log lines

Note that there are many more commands that systemctl offers, from
dependency management and query to controlling the overall system (reboot,
for example).

The systemd ecosystem has a number of other command-line tools you may
find handy and that you should at least be aware of. This includes but is not
limited to the following:

	bootctl

	
Allows you to check the boot loader status and manage available boot loaders.

	timedatectl

	
Allows you to set and view time- and date-related
 information.

	coredumpctl

	
Enables you to process saved core dumps. Consider this tool when you’re
troubleshooting.

Monitoring with journalctl

The journal is a component of systemd; technically it is a binary file managed
by the systemd-journald daemon, providing a centralized location for all
messages logged by systemd components. We’ll cover it in detail in
“journalctl”. All you need to know for now is that this is the tool that
allows you to view systemd-managed logs.

Example: scheduling greeter

After all that theory, let’s see systemd in action. As a simple use case
example, let’s assume we want to launch our greeter app (see “Running Example: greeter”) every
hour.

First, we define a systemd unit file of type service. This tells systemd
how to start the greeter app; store the following in a file called greeter.service
(in any directory, could be a temporary one):

[Unit]
Description=My Greeting Service [image: 1]

[Service]
Type=oneshot
ExecStart=/home/mh9/greeter.sh [image: 2]

	[image: 1]

	The description of our services, shown when we use systemctl status

	[image: 2]

	The location of our app

Next, we define a timer unit
to launch the greeter service every hour. Store the following in a file called
greeter.timer:

[Unit]
Description=Runs Greeting service at the top of the hour

[Timer]
OnCalendar=hourly [image: 1]

	[image: 1]

	Defines the schedule using the
systemd time and date format

Now we copy both unit files to /run/systemd/system so that systemd recognizes
them:

$ sudo ls -al /run/systemd/system/
total 8
drwxr-xr-x 2 root root 80 Sep 12 13:08 .
drwxr-xr-x 21 root root 500 Sep 12 13:09 ..
-rw-r--r-- 1 root root 117 Sep 12 13:08 greeter.service
-rw-r--r-- 1 root root 107 Sep 12 13:08 greeter.timer

We’re now in a position to use the greeter timer, since systemd automatically
picked it up when we copied it into the respective directory.

Note

Debian-based systems such as Ubuntu enable and start service units by default.
Red Hat family systems won’t start the service without an explicit
systemctl start greeter.timer. This is also true for enabling services on boot,
where Debian-based distros enable services by default, whereas Red Hat distros
require an explicit confirmation in the form of systemctl enable.

Let’s check the status of our greeter timer:

$ sudo systemctl status greeter.timer
● greeter.timer - Runs Greeting service at the top of the hour
 Loaded: loaded (/run/systemd/system/greeter.timer; static; \
 vendor preset: enabled)
 Active: active (waiting) since Sun 2021-09-12 13:10:35 IST; 2s ago
 Trigger: Sun 2021-09-12 14:00:00 IST; 49min left
Sep 12 13:10:35 starlite systemd[1]: \
Started Runs Greeting service at the top of the hour.

So systemd confirms that it knows about our greeter and that it’s
scheduled to run. But how do you know if it worked? Let’s check the logs (note that the output was edited and that the stdout output is going directly
to the logs):

$ journalctl -f -u greeter.service [image: 1]
-- Logs begin at Sun 2021-01-24 14:36:30 GMT. --
Sep 12 14:00:01 starlite systemd[1]: Starting My Greeting Service...
Sep 12 14:00:01 starlite greeter.sh[21071]: You are awesome!
...

	[image: 1]

	Using journalctl to look at and follow (-f) the logs of the greeter.service
unit (selected with -u)

With this high-level systemd overview, let’s move on to how to manage
applications the traditional way, with general-purpose package managers.
But before we get into the technicalities of packages, let’s step back a bit
and discuss apps, packages, and package managers in the context of a broader
concept: supply chains.

Linux Application Supply Chains

Let’s start with what we mean by supply chain:
a system of organizations and individuals supplying a product to a consumer.
While you may not think about supply chains a lot, you’re dealing with them on a daily
basis—for example, when you buy food or fuel your car. In our discussion, the products are
applications made up of software artifacts, and you can think of the consumer
as either yourself as the person using an app or as a tool that manages the apps
for you.

On a conceptual level, Figure 6-2 shows the main actors and phases of a
typical Linux application supply chain.

[image: lmlx 0602]
Figure 6-2. Linux app supply chain

The three distinct areas in a Linux application supply are as follows:

	Software maintainers

	
These include individual developers, open source projects,
 and companies, such as independent software vendors (ISVs), that produce software
 artifacts and publish them, for example, as packages to a repository (repo).

	Repository

	
This lists the package that contains all or part of an app together with metadata.
 The package usually captures the dependencies of an app. Dependencies are
 other packages that an app needs in order to function. This can be a library,
 some kind of exporters or importers, or other service programs. Keeping these
 dependencies up to date is hard.

	Tooling (a package manager)

	
On the target-system side, this can look up packages in the repository and install, update, and remove apps
 as instructed by the human user. Note that one or more packages can represent
 the app and its dependencies.

While the details may differ from distribution to distribution and depend on
the environment (server, desktop, etc.), the app supply chains all
have the elements shown in Figure 6-2 in common.

There are many options available for package and dependency management,
such as traditional package managers, container-based solutions, and more
recent approaches.

In Figure 6-3, I’ve tried to give you a high-level overview, without
claiming this is a complete picture.

[image: lmlx 0603]
Figure 6-3. The Linux package management and application dependency management universe

A few notes on the three primary categories of options for package and dependency management:

	Traditional package managers

	
Within this category, we
 usually differentiate between low-level and high-level tooling. If a package
 manager can resolve dependencies and provides a high-level interface (install,
 update, remove), we call it a high-level package manager.

	Container-based solutions

	
These initially came out of the server
 and cloud computing realm. Given their capabilities, one use case, but not
 necessarily their primary one, is application management. In other words,
 as a developer you’ll love containers since they enable you to easily
 test things and make it straightforward to ship your production-ready app. See also “Containers”.

	Modern package managers

	
These have their roots in
 desktop environments, and the main goal here is to make it as easy as possible
 for the end user to consume apps. See also “Modern Package Managers”.

Packages and Package Managers

In this section, we discuss package formats and package managers that have
been in use for a long time, in some cases decades. These usually stem
from two major Linux distribution families: Red Hat (RHEL, Fedora, CentOS,
etc.) and Debian-based systems (Debian, Ubuntu, etc.).

The two concepts relevant to our discussions here are the following:

	The packages themselves

	
Technically a file that usually is zipped and may contain metadata.

	The tooling (called package managers)

	
Deals with those packages on the target system,
 to install and maintain apps. A package manager usually interacts with the
 repo on your behalf and maintains a local cache of packages.

The target system may be a desktop environment on your laptop or a server VM
instance in the cloud, for example. Depending on the environment, packages
may be more or less applicable—for example, a GUI app on a server is not
necessarily something that makes sense.

RPM Package Manager

RPM Package Manager (for which the recursive acronym RPM is used)
was originally created by Red Hat but is now widely
used in various distros. The .rpm file format is used in Linux Standard Base
and can contain binary or source files. The packages can be cryptographically
verified and support delta updates via patch files.

Package managers that use RPM include the following:

	yum

	
In Amazon Linux, CentOS, Fedora, and RHEL

	DNF

	
In CentOS, Fedora, and RHEL

	Zypper

	
In openSUSE and SUSE Linux Enterprise

Let’s see RPM in action: let’s say we have a fresh developer environment and
want to install the Go programming language tool chain using yum.

Note that the output in the following shell sessions has been edited and shortened to fit
the space (there are many lines in the output that
are not relevant to understanding the usage).

First off, we need to find the package for Go:

yum search golang [image: 1]
Loaded plugins: ovl, priorities
================= N/S matched: golang =================
golang-bin.x86_64 : Golang core compiler tools
golang-docs.noarch : Golang compiler docs
...
golang-googlecode-net-devel.noarch : Supplementary Go networking libraries
golang-googlecode-sqlite-devel.x86_64 : Trivial sqlite3 binding for Go

	[image: 1]

	Search for the Go package. Note the # prompt, suggesting we’re logged in
as root. Perhaps a better way would be to use sudo yum.

Equipped with this info about the package, we can now install it using the following:

yum install golang [image: 1]
Loaded plugins: ovl, priorities
Resolving Dependencies [image: 2]
--> Running transaction check
---> Package golang.x86_64 0:1.15.14-1.amzn2.0.1 will be installed
--> Processing Dependency: golang-src = 1.15.14-1.amzn2.0.1 for package:
 golang-1.15.14-1.amzn2.0.1.x86_64
...
Transaction Summary
===
Install 1 Package (+101 Dependent packages)

Total download size: 183 M
Installed size: 624 M
Is this ok [y/d/N]: y [image: 3]
Dependencies Resolved

===
 Package Arch Version Repository Size
===
Installing:
 golang x86_64 1.15.14-1.amzn2.0.1 amzn2-core 705 k
Installing for dependencies:
 acl x86_64 2.2.51-14.amzn2 amzn2-core 82 k
 apr x86_64 1.6.3-5.amzn2.0.2 amzn2-core 118 k
 ...

 Verifying : groff-base-1.22.2-8.amzn2.0.2.x86_64 101/102
 Verifying : perl-Text-ParseWords-3.29-4.amzn2.noarch 102/102

Installed: [image: 4]
 golang.x86_64 0:1.15.14-1.amzn2.0.1

Dependency Installed:
 acl.x86_64 0:2.2.51-14.amzn2 apr.x86_64 0:1.6.3-5.amzn2.0.2
 ...

Complete!

	[image: 1]

	Install the Go package.

	[image: 2]

	yum’s first step is to determine Go’s dependencies.

	[image: 3]

	Here yum provides us with a summary of what it found in terms of
dependencies and tells us what it plans to do. I need to confirm here
interactively by entering a y. However, in a script I would use the
yum install golang -y form of the command to automatically accept this.

	[image: 4]

	After verifying that all dependencies and the main package are installed, yum reports success.

Last but not least, we want to verify the package, checking exactly what we have installed
and where:

yum info golang
Loaded plugins: ovl, priorities
Installed Packages
Name : golang
Arch : x86_64
Version : 1.15.14
Release : 1.amzn2.0.1
Size : 7.8 M
Repo : installed
From repo : amzn2-core
Summary : The Go Programming Language
URL : http://golang.org/
License : BSD and Public Domain
Description : The Go Programming Language.

Next, let’s have a look at the other widely used package manager using Debian

packages.

Debian deb

deb packages and the .deb file format originate
from the Debian distro. The deb packages can also contain binary or source files.
Multiple package managers use deb, including low-level, no-dependency-management ones
such as dpkg, and high-level ones such as apt-get, apt, and aptitude.
Given that Ubuntu is a Debian-based distro, deb packages are widely
used, on the desktop and server alike.

To see deb packages in action, let’s assume we want to install the
curl utility with apt. This is a useful tool to interact with HTTP APIs
and to download files from a range of locations. Note that we again edited the
output to make it fit.

First, we search for the curl package:

apt search curl [image: 1]
Sorting... Done
Full Text Search... Done
curl/focal-updates,focal-security 7.68.0-1ubuntu2.6 amd64
 command line tool for transferring data with URL syntax

curlftpfs/focal 0.9.2-9build1 amd64
 filesystem to access FTP hosts based on FUSE and cURL

flickcurl-doc/focal 1.26-5 all
 utilities to call the Flickr API from command line - documentation

flickcurl-utils/focal 1.26-5 amd64
 utilities to call the Flickr API from command line

gambas3-gb-net-curl/focal 3.14.3-2ubuntu3.1 amd64
 Gambas advanced networking component
...

	[image: 1]

	Search for the curl package with apt. Note that there were overall
dozens of more search results shown, most of them libraries
and language-specific bindings (Python, Ruby, Go, Rust, etc.).

Next, we install the curl package like so:

apt install curl [image: 1]
Reading package lists... Done
Building dependency tree [image: 2]
Reading state information... Done
The following additional packages will be installed:
 ca-certificates krb5-locales libasn1-8-heimdal libbrotli1 ...

Suggested packages:
 krb5-doc krb5-user libsasl2-modules-gssapi-mit ...

The following NEW packages will be installed:
 ca-certificates curl krb5-locales libasn1-8-heimdal ...

0 upgraded, 32 newly installed, 0 to remove and 2 not upgraded.
Need to get 5447 kB of archives.
After this operation, 16.7 MB of additional disk space will be used.
Do you want to continue? [Y/n] [image: 3]

Get:1 http://archive.ubuntu.com/ubuntu focal-updates/main amd64
 libssl1.1 amd64 1.1.1f-1ubuntu2.8 [1320 kB]
Get:2 http://archive.ubuntu.com/ubuntu focal-updates/main amd64
 openssl amd64 1.1.1f-1ubuntu2.8 [620 kB]
...
Fetched 5447 kB in 1s (3882 kB/s)
Selecting previously unselected package libssl1.1:amd64.
(Reading database ... 4127 files and directories currently installed.)
Preparing to unpack .../00-libssl1.1_1.1.1f-1ubuntu2.8_amd64.deb ...
Unpacking libssl1.1:amd64 (1.1.1f-1ubuntu2.8) ...
...
Setting up libkeyutils1:amd64 (1.6-6ubuntu1) ...
...
Processing triggers for ca-certificates (20210119~20.04.1) ...
Updating certificates in /etc/ssl/certs...
1 added, 0 removed; done. [image: 4]
Running hooks in /etc/ca-certificates/update.d...
Done.

	[image: 1]

	Install the curl package.

	[image: 2]

	apt’s first step is to determine the dependencies.

	[image: 3]

	Here apt provides us with a dependencies summary and tells us what it
will install. Interactive confirmation is needed here; in a script I would
use apt install curl -y to automatically accept it.

	[image: 4]

	After verifying that all dependencies and the main package are installed, apt reports success.

And finally we verify the curl package:

apt show curl
Package: curl
Version: 7.68.0-1ubuntu2.6
Priority: optional
Section: web
Origin: Ubuntu
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Original-Maintainer: Alessandro Ghedini <ghedo@debian.org>
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 411 kB
Depends: libc6 (>= 2.17), libcurl4 (= 7.68.0-1ubuntu2.6), zlib1g (>= 1:1.1.4)
Homepage: http://curl.haxx.se
Task: server, cloud-image, ubuntu-budgie-desktop
Download-Size: 161 kB
APT-Manual-Installed: yes
APT-Sources: http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages
Description: command line tool for transferring data with URL syntax

N: There is 1 additional record. Please use the '-a' switch to see it

Let’s now move on to programming language–specific package managers.

Language-Specific Package Managers

There are also programming language–specific package managers, such as the
following:

	C/C++

	
Have many different package managers, including Conan and vcpkg

	Go

	
Has package management built in (go get, go mod)

	Node.js

	
Has npm and others

	Java

	
Has maven and nuts and others

	Python

	
Has pip and PyPM

	Ruby

	
Has rubygems and Rails

	Rust

	
Has cargo

With that, let’s look at containers and how you can manage applications
with them.

Containers

In the context of this book, we understand a container as a Linux process group
that uses Linux namespaces, cgroups, and optionally CoW filesystems to provide
application-level dependency management. Use cases for containers range from
local testing and development
to working with distributed systems—for example, working with containerized
microservices in Kubernetes.

While containers are very useful for developers and sys admins, as an end user
you will more likely be comfortable using higher-level tooling to manage applications—for example, the ones discussed in “Modern Package Managers”.

If Only I Had Containers

In a previous job, I once had to put together a proof of concept that
involved a time series database called InfluxDB. The overall setup required
a number of prerequisites (directories created, data copied) as well as
dependencies installed. When it came to handing it over to a colleague for
demonstration to the customer, I ended up writing up a detailed document that
enumerated all the steps and checks to make sure everything worked as planned.

If only at that time container solutions such as Docker had been
available, I could have saved myself and my colleague a lot of time by
simply packaging up everything into a container. This would not only have made
it easy to use for my colleague, but I could also guarantee that it would run
in their environment exactly as it did on my laptop.

Containers are, per se, nothing new in Linux. However, they’ve enjoyed mainstream
adoption only due to Docker, starting in roughly 2014. Before that, we had a number
of attempts to introduce containers, often targeting system administrators
rather than developers, including the following:

	
Linux-VServer (2001)

	
OpenVZ (2005)

	
LXC (2008)

	
Let Me Contain That for You (lmctfy) (2013)

What all of these approaches have in common is that they use the basic building
blocks the Linux kernel provides, such as namespaces or cgroups, to allow users to
run applications.

Docker innovated on the concept and introduced two groundbreaking elements:
a standardized way to define the packaging via container images and a
human-friendly user interface (for example, docker run). The way container images
are defined and distributed, as well as how containers are executed, formed the basis
for what is now known as the Open Container Initiative (OCI)
core
specifications. When we talk about containers here, we focus on
OCI-compliant
implementations.

The three core OCI container specifications are as follows:

	Runtime specification

	
Defines what a runtime needs to support, including operations and life-cycle
 phases

	Image format specification

	
Defines how container images are constructed, based on metadata and layers

	Distribution specification

	
Defines how container images are shipped, effectively the way repositories
 work in the context of containers

Another idea associated with containers is immutability. This means
that once a configuration is put together, you cannot change it during its usage.
In other words, changes require creating a new (static) configuration and a new
resource (such as a process) with it. We will revisit this in the context of
container images.

Now that you’re aware of what containers are on a conceptual level,
let’s have a closer look at the building blocks of OCI-compliant containers.

Linux Namespaces

As we discussed in Chapter 1, Linux initially
had a global view on resources. To allow processes to have a local
view on a resource (such as a filesystem, networking, or even users), Linux
introduced namespaces.

In other words, Linux namespaces
are all about resource visibility and can be used to isolate different aspects of
the operating system resources. Isolation in this context is mostly
about what a process sees, not necessarily a hard boundary (from a security
perspective).

To create namespaces, you have three relevant syscalls at your disposal:

	clone

	
Used to create a
 child process that can share parts of its execution context with the parent process

	unshare

	
Used to remove a shared execution context from an existing process

	setns

	
Used to join an existing process to an existing namespace

The preceding syscalls take a range of flags as parameters, enabling you to
have fine-grained control over the namespaces you want to create, join, or leave:

	CLONE_NEWNS

	
Use for filesystem mount points. Visible via /proc/$PID/mounts. Supported since Linux 2.4.19.

	CLONE_NEWUTS

	
Use to create hostname and (NIS) domain name isolation. Visible via uname -n and hostname -f. Supported since Linux 2.6.19.

	CLONE_NEWIPC

	
Use to do interprocess communication (IPC) resource

isolation like System V IPC objects or POSIX message queues. Visible via
/proc/sys/fs/mqueue, /proc/sys/kernel,
 and /proc/sysvipc. Supported since Linux 2.6.19.

	CLONE_NEWPID

	
Use for PID number space isolation
 (PID inside/PID outside the namespace). You can gather details about it via /proc/$PID/status. Supported since Linux 2.6.24.

	CLONE_NEWNET

	
Use to control visibility of network system resources
 such as network devices, IP addresses, IP routing tables, and port numbers. You
 can view it via ip netns list, /proc/net, and /sys/class/net. Supported since Linux 2.6.29.

	CLONE_NEWUSER

	
Use to map UID+GIDs inside/outside the namespace. You can query
 UIDs and GIDs and their mappings via the
 id command and /proc/$PID/uid_map and
/proc/$PID/gid_map. Supported since Linux 3.8.

	CLONE_NEWCGROUP

	
Use to manage cgroups
 in a namespace. You can see
 it via /sys/fs/cgroup, /proc/cgroups, and /proc/$PID/cgroup. Supported since Linux 4.6.

One way to view namespaces in use on your system is as follows (output edited
to fit):

$ sudo lsns
 NS TYPE NPROCS PID USER COMMAND
4026531835 cgroup 251 1 root /sbin/init splash
4026531836 pid 245 1 root /sbin/init splash
4026531837 user 245 1 root /sbin/init splash
4026531838 uts 251 1 root /sbin/init splash
4026531839 ipc 251 1 root /sbin/init splash
4026531840 mnt 241 1 root /sbin/init splash
4026531860 mnt 1 33 root kdevtmpfs
4026531992 net 244 1 root /sbin/init splash
4026532233 mnt 1 432 root /lib/systemd/systemd-udevd
4026532250 user 1 5319 mh9 /opt/google/chrome/nacl_helper
4026532316 mnt 1 684 systemd-timesync /lib/systemd/systemd-timesyncd
4026532491 mnt 1 688 systemd-resolve /lib/systemd/systemd-resolved
...

The next container building block focuses on resource consumption limits and
reporting on resource usage.

Linux cgroups

Where namespaces are about visibility, cgroups
provide a different kind of functionality: they are a mechanism to organize process
groups. Along with the hierarchical organization, you can use cgroups to control
system resources usage. In addition, cgroups
provide resource usage tracking; for example, they show how much RAM or CPU seconds
a process (group) is using. Think of cgroups as the declarative unit and the controller
as a piece of kernel code that enforces a certain resource limitation or
reports on its usage.

At this time of writing, there are two versions of cgroups available in the kernel:
cgroups v1 and v2. cgroup v1 is still widely used, but v2 will eventually
replace v1, so you should focus on v2.

cgroup v1

With cgroup v1,
the community had an ad hoc approach, adding new cgroups and controllers
as needed. The following v1 cgroups and controllers exist (ordered from oldest to newest; note that
the docs are all over the place and inconsistent):

	CFS bandwidth control

	
Used via the cpu cgroup. Supported since Linux 2.6.24.

	CPU accounting controller

	
Used via the cpuacct cgroup. Supported since Linux 2.6.24.

	cpusets cgroup

	
Allows you to assign CPU and memory to a task. Supported since Linux 2.6.24.

	Memory resource controller

	
Allows you to isolate the memory behavior of tasks. Supported since Linux 2.6.25.

	Device whitelist controller

	
Allows you to control device file usage. Supported since Linux 2.6.26.

	freezer cgroup

	
Used for batch job management. Supported since Linux 2.6.28.

	Network classifier cgroup

	
Used to assign different priorities to packets. Supported since Linux 2.6.29.

	Block IO controller

	
Allows you to throttle block I/O. Supported since Linux 2.6.33.

	perf_event command

	
Allows you to collect performance data. Supported since Linux 2.6.39.

	Network priority cgroup

	
Allows you to dynamically set the priority of network traffic. Supported since Linux 3.3.

	HugeTLB controller

	
Allows you to limit HugeTLB usage. Supported since Linux 3.5.

	Process number controller

	
Used to allow a cgroup hierarchy to stop creating new processes after a certain limit is reached. Supported since Linux 4.3.

cgroup v2

cgroup v2
is a total rewrite of cgroups with the lessons learned from v1. This is true
both in terms of consistent configuration and use of the cgroups as well as the
(centralized and uniform) documentation. Unlike the per-process cgroup v1 design,
cgroup v2 has only single hierarchy, and all controllers are managed the same
way. Here are the v2 controllers:

	CPU controller

	
Regulates distribution of CPU cycles, supporting different
 models (weight, max) and includes usage reporting

	Memory controller

	
Regulates distribution of memory with a range
 of control parameters, supporting user-space memory, kernel data structures
 such as dentries and inodes, and TCP socket buffers

	I/O controller

	
Regulates the distribution of I/O resources with
 both weight-based and absolute bandwidth or I/O operations per second (IOPS) limits, reporting
 on bytes and IOPS read/writes

	Process number (PID) controller

	
Is similar to the v1 version

	cpuset controller

	
Is similar to the v1 version

	device controller

	
Manages access to device files, implemented on top of eBPF

	rdma controller

	
Regulates the distribution and accounting of
 remote direct memory access (RDMA) resources

	HugeTLB controller

	
Is similar to the v1 version

There are also miscellaneous cgroups in v2 that allow resource limits and
 tracking mechanisms for scalar resources (which can’t be abstracted like other
 cgroup resources).

You can view all of the v2 cgroups in your Linux system in a nice tree rendering
via the systemctl command, as shown in the following example (output shortened and
edited to fit):

$ systemctl status [image: 1]
starlite
 State: degraded
 Jobs: 0 queued
 Failed: 1 units
 Since: Tue 2021-09-07 11:49:08 IST; 1 weeks 1 days ago
 CGroup: /
 ├─22160 bpfilter_umh
 ├─user.slice
 │ └─user-1000.slice [image: 2]
 │ ├─user@1000.service
 │ │ ├─gvfs-goa-volume-monitor.service
 │ │ │ └─14497 /usr/lib/gvfs/gvfs-goa-volume-monitor
 ...

	[image: 1]

	Using the systemctl tool to render cgroups

	[image: 2]

	An example of a specific cgroup that systemd manages

Another useful view on cgroups is interactive resource usage, as shown in the
following (output edited to fit):

$ systemd-cgtop
Control Group Tasks %CPU Memory Input/s Output/s
/ 623 15.7 5.8G - -
/docker - - 48.3M - -
/system.slice 122 6.2 1.6G - -
/system.slice/ModemManager.service 3 - 748.0K - -
...
/system.slice/rsyslog.service 4 - 420.0K - -
/system.slice/snapd.service 17 - 5.1M - -

Going forward, you can expect that, as modern kernel versions are more widely used,
the cgroups v2 will become the standard. There are indeed certain distros, such as
Arch, Fedora 31+, and Ubuntu 21.10,
that already have v2 by default.

Copy-on-Write Filesystems

The third building block of containers are CoW filesystems, as discussed in
greater detail in “Copy-on-Write Filesystems”. These are used at build time. They package
the application and all of its dependencies into a single, self-contained file
that you can distribute. Usually the CoW filesystems are used in combination
with bind mounts to layer the
content of the different dependencies on top of each other in an efficient
manner.

Docker

Docker is a human-friendly container implementation developed and
popularized by Docker Inc. in 2014. With Docker, it’s easy
to package up programs and their dependencies and launch them in a range
of environments, from desktops to the cloud. What’s so unique about Docker
is not the building blocks (namespaces, cgroups, CoW filesystems, and bind
mounts). These existed a while before Docker came into being. What’s
so special is that Docker combined these building blocks in a way that
makes them easy to use by hiding the complexity of managing the low-level bits
like namespaces and cgroups.

As shown in Figure 6-4 and described in the passage that follows, there are two main concepts in Docker: the image
and the running container.

[image: lmlx 0604]
Figure 6-4. High-level Docker architecture

	The container image

	
A compressed archive file that contains metadata in JSON files
 and the layers, which are effectively directories. The Docker daemon pulls the
 container images as needed from a container registry.

	The container as the runtime artifact (for example, app A/B/C)

	
You can start,
 stop, kill, and remove it. You interact with the Docker daemon using a client
 CLI tool (docker). This CLI tool sends commands to the daemon, which in turn
 executes the respective operation, such as building or running a container.

Table 6-2 presents a short reference of often-used
Docker CLI commands, covering both the build-time and the runtime
phases. To get the full reference, including use cases, refer to the
Docker docs.

Table 6-2. Often-used Docker commands

	Command
	Description
	Example

	run

	Launch a container

	Run NGINX as a daemon and remove container on exit: docker run -d --rm nginx:1.21

	ps

	List containers

	List all containers (including nonrunning): docker ps -a

	inspect

	Display low-level info

	To query the container IP: docker inspect -f '{{.Network​Set⁠tings.IPAddress}}'

	build

	Generate a container image locally

	Build image based on current directory and tag: docker build -t some:tag .

	push

	Upload a container image to a registry

	Push to AWS registry: docker push public.ecr.aws/some:tag

	pull

	Download a container image from a registry

	Pull from AWS registry: docker pull public.ecr.aws/some:tag

	images

	List local container images

	List images from a certain registry: docker images ubuntu

	image

	Manage container images

	Remove all unused images: docker image prune -all

Let’s now have a closer look at the build-time artifact: the container image
that Docker uses.

Container Images

To define the instructions on how to build a container image, you use
a plain text file format called
Dockerfile.

There are different directives you can have in a Dockerfile:

	Base images

	
FROM; can be multiple for build/run phases

	Metadata

	
LABEL for lineage

	Arguments and environment variables

	
ARGS, ENV

	Build-time specifications

	
COPY, RUN, etc., which define how the image is
 constructed, layer for layer

	Runtime specifications

	
CMD and ENTRYPOINT, which define how the
 container can be run

Using the docker build command, you turn a collection of files that represent
your application (either as source or in binary format), along with the Dockerfile,
into a container image. This container image is the artifact that you can then
run or push to a registry, in order to distribute it for others to pull and
eventually run.

Running containers

You can run containers with interactive input (terminal attached) or as
daemons (background). The docker run
command takes a container image and a set of runtime inputs, such as environment
variables, ports to expose, and volumes to mount. With this information, Docker
creates the necessary namespaces and cgroups and launches the application
defined in the container image (CMD or ENTRYPOINT).

With the Docker theory out of the way, let’s see it in action.

Example: containerized greeter

Let’s now put our greeter app (see “Running Example: greeter”) into a container and run it.

First off, we need to define the Dockerfile, which contains the instructions
to build the container image:

FROM ubuntu:20.04 [image: 1]
LABEL org.opencontainers.image.authors="Michael Hausenblas" [image: 2]
COPY greeter.sh /app/ [image: 3]
WORKDIR /app [image: 4]
RUN chown -R 1001:1 /app [image: 5]
USER 1001
ENTRYPOINT ["/app/greeter.sh"] [image: 6]

	[image: 1]

	Define the base image using an explicit tag (20.04).

	[image: 2]

	Assign some metadata via a label.

	[image: 3]

	Copy shell script. This could be a binary, a JAR file, or a Python script.

	[image: 4]

	Set the working directory.

	[image: 5]

	This and the next line define the user running the app. If you don’t do this,
it will unnecessarily run as root.

	[image: 6]

	Define what to run, in our case the shell script. The way we defined it,
using ENTRYPOINT, it is possible to pass a parameter by running
docker run greeter:1 _SOME_PARAMETER_.

Next, we build the container image:

$ sudo docker build -t greeter:1 . [image: 1]
Sending build context to Docker daemon 3.072kB
Step 1/7 : FROM ubuntu:20.04 [image: 2]
20.04: Pulling from library/ubuntu
35807b77a593: Pull complete
Digest: sha256:9d6a8699fb5c9c39cf08a0871bd6219f0400981c570894cd8cbea30d3424a31f
Status: Downloaded newer image for ubuntu:20.04
 ---> fb52e22af1b0
Step 2/7 : LABEL org.opencontainers.image.authors="Michael Hausenblas"
 ---> Running in 6aa921276c3b
Removing intermediate container 6aa921276c3b
 ---> def717e3352b
Step 3/7 : COPY greeter.sh /app/
 ---> 5f3eb160fea3
Step 4/7 : WORKDIR /app
 ---> Running in 698c29938a96
Removing intermediate container 698c29938a96
 ---> d73572886c13
Step 5/7 : RUN chown -R 1001:1 /app
 ---> Running in 5b5eb5d1935a
Removing intermediate container 5b5eb5d1935a
 ---> 42c35a6db6e2
Step 6/7 : USER 1001
 ---> Running in bec92deaac6e
Removing intermediate container bec92deaac6e
 ---> b6e0e27f253b
Step 7/7 : CMD ["/app/greeter.sh"]
 ---> Running in 6d3b439f7e50
Removing intermediate container 6d3b439f7e50
 ---> 433a5f10d84e
Successfully built 433a5f10d84e
Successfully tagged greeter:1

	[image: 1]

	Build the container image and label it (with -t greeter:1). The . means that it uses the
current directory and assumes that a Dockerfile is present there.

	[image: 2]

	This and the next lines pull the base image and build it layer by layer.

Let’s check if the container image is there:

$ sudo docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
greeter 1 433a5f10d84e 35 seconds ago 72.8MB
ubuntu 20.04 fb52e22af1b0 2 weeks ago 72.8MB

Now we can run a container based on the greeter:1 image, like so:

 $ sudo docker run greeter:1
You are awesome!

That wraps up our Docker 101. We’ll now take a quick look at related tooling.

Other Container Tooling

You don’t have to use Docker to work with OCI containers; as an alternative, you can use a
Red Hat–led and –sponsored combo:
podman and buildah. These
daemon-less tools allow you to build OCI container images (buildah) and
run them (podman).

In addition, there are a number of tools that make working with OCI containers,
namespaces, and cgroups easier, including but not limited to the following:

	containerd

	
A daemon that manages the OCI container
 life cycle, from image transfer and storage to container runtime supervision

	skopeo

	
For container image manipulation
 (copying, inspecting manifest, etc.)

	systemd-cgtop

	
A kind of cgroups-aware variant of top that shows resource usage interactively

	nsenter

	
Allows you to
 execute a program in a specified, existing namespace

	unshare

	
Allows you to run a program with
 specific namespaces (opt in via flags)

	lsns

	
Lists information
 about Linux namespaces

	cinf

	
Lists information about Linux
 namespaces and cgroups associated with process IDs

With this we end our containers tour. Let’s now look at modern package managers
and how they utilize containers to isolate applications from each other.

Modern Package Managers

In addition to the more traditional package managers that often are
distribution-specific, there is a new sort of package manager. These
modern solutions often make use of containers and aim to be
cross-distribution or target specific environments. For example, they can make
it easy for Linux desktop users to install GUI apps.

	Snap

	
A Canonical Ltd.–designed and –promoted software packaging
and deployment system. It comes with a refined
sandboxing setup and
can be used in desktop, cloud, and IoT environments.

	Flatpak

	
Optimized for Linux desktop environments,
using cgroups, namespaces, bind mounts, and seccomp as its building blocks.
While initially from the Red Hat part of the Linux distro universe, it is
now available for dozens of distros, including Fedora, Mint, Ubuntu, Arch,
Debian, openSUSE, and Chrome OS.

	AppImage

	
Has been around for years and promotes the
idea that one app equals one file; that is, it requires no dependencies other
than what is included in the targeted Linux system. Over time, a number of
interesting features have found their way into AppImage, from efficient updates
to desktop integration to software
catalogs.

	Homebrew

	
Originally from the macOS world but available for Linux
and enjoying increasing popularity. It’s written in Ruby and has a powerful
yet intuitive user interface.

Conclusion

In this chapter, we covered a wide range of topics, all related to how to
install, maintain, and use applications on Linux.

We first defined basic application terms, then we looked at the Linux
startup process, discussing systemd, the now standard way of managing
startup and
components.

To distribute applications, Linux uses packages and package managers. We
discussed various managers in this context and how you can use containers
for development and testing as well as dependency management. Docker containers
use Linux primitives (cgroups, namespaces, CoW filesystems) to provide you
with application-level dependency management (via container images).

Finally, we looked at custom solutions for app management, including Snap and
others.

If you’re interested in further reading on the topics in this chapter,
have a look at the following resources:

	Startup process and init systems

	

	
“Analyzing the Linux Boot Process”

	
“Stages of Linux Booting Process”

	
“How to Configure a Linux Service to Start Automatically After a Crash or Reboot”

	Package management

	

	
“2021 State of the Software Supply Chain”

	
“Linux Package Management”

	
“Understanding RPM Package Management Tutorial”

	
Debian packages

	Containers

	

	
“A Practical Introduction to Container Terminology”

	
“From Docker to OCI: What Is a Container?”

	
“Building Containers Without Docker”

	
“Why Red Hat Is Investing in CRI-O and Podman”

	
“Demystifying Containers”

	
“Rootless Containers”

	
“Docker Storage Drivers Deep Dive”

	
“The Hunt for a Better Dockerfile”

Now that you know all the basics around applications let’s move on from the
scope of a single Linux system to an interconnected setup and its necessary
precondition:
networking.

Chapter 7. Networking

In this chapter, we go into detail about Linux networking. In modern environments,
the network stack that Linux provides is an essential component. Without it,
few things are possible. Whether you want to access an instance in your
cloud provider, browse the web, or install a new app, you need connectivity,
and you need a way to interact with it.

We’ll first have a look at common network terms, from the hardware level
all the way up to user-facing components such as HTTP and SSH. We’ll also
discuss the network stack, protocols, and interfaces. Specifically,
we’ll spend time on the naming center piece of the web and the wider internet,
the so-called Domain Name System (DNS). Interestingly, this system is found
not only in wide-area deployments but is also a central component used for
service discovery in container environments such as Kubernetes.

Next, we’ll look at application layer network protocols and tooling.
This includes file sharing, the web, networked filesystems,
and other methods to share data over the network.

In the last part of the chapter, we’ll review some advanced network topics,
from geomapping to managing time over the network.

To set the expectations for the content in this chapter: you can spend a lot
of time with the topic of Linux networking; in fact, entire books are dedicated
to the topic. We’ll take a pragmatic stance here, jumping into hands-on
topics from an end-user point of view. Admin topics around networking, such as
configuration and setup of network devices, are by and large out of scope here.

Now, let’s turn our attention to the networking basics.

Basics

Let’s first discuss why networking is relevant for a number of use cases and define some common network
terminology.

In modern environments, networking plays a central role. This ranges from
tasks such as installing apps, browsing the web,
and viewing mail or social media to working with remote machines (from the embedded
system you’re connecting to over a local network to servers that run in
data centers of your cloud providers). Given a network’s many moving parts and layers,
it can be difficult to figure out if a problem is hardware-related or
originates in the software stack.

Another challenge Linux networking addresses comes from abstractions: many of
the things we’ll cover in this chapter provide a high-level user interface,
making it appear that files or applications that in reality run on a remote machine are
accessible or can be manipulated on your local machine. While providing an
abstraction that makes remote resources seem to be local is a
useful feature, we should not forget that at the end of the day, all of this
boils down to bits traveling over the wire and through the air. Keep this in
mind when troubleshooting or testing.

Figure 7-1 shows how, on a high level, networking works
in Linux. There is some kind of networking hardware, such as Ethernet or
wireless cards; then a number of kernel-level components, such as the TCP/IP
stack; and finally, in the user space, a range of tools to configure, query, and use
networking.

[image: lmlx 0701]
Figure 7-1. An overview of Linux networking

Let’s now dive into the TCP/IP stack, the core of networking in Linux.

Tip

Unlike in other areas of Linux, where you need to either consult the source
code or hope for properly documented design assumptions behind interfaces
and protocols, in the networking space, almost every protocol and interface
is based on publicly available specifications. The Internet Engineering
Task Force (IETF) makes all of those requests for comments (RFCs) freely available via data​tracker.ietf.org.

Make a habit out of simply reading these RFCs before you get into the details
of implementations. Those RFCs are written by practitioners for practitioners
and document good practices and how to implement stuff. Don’t be afraid of
working through them; you’ll gain a much better understanding about the
motivation, use cases, and reasons why things are the way they are.

The TCP/IP Stack

The TCP/IP stack, shown in Figure 7-2, is a layered network model made of a number
of protocols and tools, mostly defined by IETF specs. Each layer must
be aware of and able to communicate with only the layers right above and below itself. The data is
encapsulated in packets, and each layer typically wraps the data in
a header that contains information relevant for its function. So, if an app
wants to send data, it would interact directly with the highest layer
that would add a header and so on down the stack (the send path). Conversely,
if an app wants to receive data, it would arrive at the lowest layer, and
each layer in turn would process it based on the header information it finds
and pass the payload on to the layer above (the receive path).

[image: lmlx 0702]
Figure 7-2. The TCP/IP layers working together to enable communication

Starting at the bottom of the stack, the four layers of the TCP/IP stack are the
following:

	The link layer

	
Lowest in the stack, this layer covers the hardware
 (Ethernet, WiFi) and kernel drivers and focuses on how packets are sent
 between physical devices. See “The Link Layer” for details.

	The internet layer

	
With the Internet Protocol (IP), this layer focuses on routing;
 that is, it supports sending packets between machines across networks. We’ll discuss it in “The Internet Layer”.

	The transport layer

	
This layer controls end-to-end communications between
 (virtual or physical) hosts, with the Transmission Control Protocol (TCP)
 for session-based, reliable communication and User Datagram Protocol (UDP)
 for connection-less communication. It mainly deals with how packets are transmitted,
 including addressing individual services on a machine via ports as well as
 data integrity. Further, Linux supports sockets as communication endpoints.
 See “The Transport Layer”.

	The application layer

	
This layer deals with user-facing tooling and apps, such as the web, SSH, and mail. We’ll discuss it in “DNS” and “Application Layer Networking”.

The Internet and OSI

The internet has its roots in a US Department of Defense project started in the 1960s that had the
goal to create a communication network that couldn’t easily be destroyed. The internet
is a network of networks—that is, many local networks hooked up with a backend
infrastructure enabling communication between different systems.

You’ll likely come across the Open Systems Interconnection
(OSI) model, a theoretical model of networking that uses seven layers,
with the seventh, the top-most layer, being the application layer. The
TCP/IP model has only four layers, but the TCP/IP stack is what is used
everywhere in practice.

Don’t get confused by the layer numbering. Usually, since the hardware
counts as layer 1, the link layer would be 2, the internet layer 3, the
transport layer 4, and (for historical reasons, to be OSI model-aligned),
the application layer would be 7.

The layering means that the header and the payload of a layer make up the
payload for the next layer. For example, looking at Figure 7-2, the
payload in the internet layer is the transport layer header HT and its payload.
In other words, the internet layer takes the packet it gets from the transport
layer, treats it as an opaque chunk of bytes, and can focus on its function, the
routing of the packet to the target machine.

Let’s now work our way up the TCP/IP stack, starting with the lowest layer, the
link layer.

The Link Layer

In the link layer of the TCP/IP stack, it’s all about hardware or near-hardware
stuff, such as bytes, wires, electromagnetic waves, device drivers, and network interfaces.
You’ll come across the following terms in this context:

	Ethernet

	
A family of networking technologies using wires to connect machines;
often used in local area networks (LANs).

	Wireless

	
Also known as WiFi, a class of communication protocols and methods that,
rather than using wires, uses some electromagnetic waves to transport data.

	MAC addresses

	
Short for media access control, MAC is a unique 48-bit identifier for hardware,
used to identify your machine (to be precise, the network interface; see
the following term). The MAC address encodes the manufacturer (of the interface) via
the organizationally unique identifier (OUI), usually occupying the first 24 bits.

	Interface

	
A network connection. It can be a physical interface (see “Network interface controller” for details)
or a virtual (software) interface, like the loopback interface lo.

Equipped with these basics, let’s have a closer look at the link layer.

Network interface controller

One essential piece of hardware equipment is the
network interface controller
(NIC), sometimes also called the network interface card.
The NIC provides the physical connectivity to a network through either
a wired standard—for example, the
IEEE 802.3-2018 standard
for Ethernet—or one of the many wireless standards from the
IEEE 802.11 family. Once part of a network, the NIC
turns the digital representation of the bytes you want to send into
electrical or electromagnetic signals. The reverse is true for the receive
path, where the NIC turns whatever physical signals it receives into
bits and bytes that the software can deal with.

Let’s have a look at NICs in action. Traditionally, one would use the (now
widely considered deprecated) ifconfig
command to query information on the NICs available on the system (we show it
here first for educational purposes; in practice, it’s better to use ip, as shown in the next
example):

$ ifconfig
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536 [image: 1]
 inet 127.0.0.1 netmask 255.0.0.0
 inet6 ::1 prefixlen 128 scopeid 0x10<host>
 loop txqueuelen 1000 (Local Loopback)
 RX packets 7218 bytes 677714 (677.7 KB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 7218 bytes 677714 (677.7 KB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

wlp1s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 [image: 2]
 inet 192.168.178.40 netmask 255.255.255.0 broadcast 192.168.178.255
 inet6 fe80::be87:e600:7de7:e08f prefixlen 64 scopeid 0x20<link>
 ether 38:de:ad:37:32:0f txqueuelen 1000 (Ethernet)
 RX packets 2398756 bytes 3003287387 (3.0 GB)
 RX errors 0 dropped 7 overruns 0 frame 0
 TX packets 504087 bytes 85467550 (85.4 MB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

	[image: 1]

	The first interface here is lo, the loopback interface with
the IP address 127.0.0.1 (see “IPv4”). The maximum transmission unit (MTU)
is the packet size, here 65,536 bytes (with larger sizes meaning higher throughput);
for historical reasons, the default for Ethernet was 1,500 bytes, but you can use
jumbo frames
that are 9,000 bytes in size.

	[image: 2]

	The second interface reported is wlp1s0, with an IPv4 address of
192.168.178.40 assigned. This interface is an NIC and has a MAC address
(ether is 38:de:ad:37:32:0f). When looking at the flags (<UP,BROADCAST,RUNNING,MULTICAST>),
it seems to be operational.

For a more modern approach of doing the same thing (querying interfaces and checking on their status),
use the ip command.
We’ll use this approach most often in this chapter (output edited to fit):

$ ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue [image: 1]
 state UNKNOWN mode DEFAULT group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: wlp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue [image: 2]
 state UP mode DORMANT group default qlen 1000
 link/ether 38:de:ad:37:32:0f brd ff:ff:ff:ff:ff:ff

	[image: 1]

	The loopback interface.

	[image: 2]

	My NIC, with a MAC address of 38:de:ad:37:32:0f. Note that the name
(wlp1s0) here tells you something about the interface: it’s a wireless
interface (wl) in PCI bus 1 (p1) and slot 0 (s0). This naming makes the interface names more predictable. In other words,
if you had two old-style interfaces (say, eth0 and eth1), there was
no guarantee that a reboot or adding a new card wouldn’t cause Linux to
rename those interfaces.

For both ifconfig and ip link, you might be interested in the meaning of flags
such as LOWER_UP or MULTICAST; these are documented in the
netdevice man pages.

Address Resolution Protocol

The Address Resolution Protocol (ARP) maps MAC addresses to IP addresses. In a sense, it bridges the link layer with
the layer above it, the internet layer.

Let’s see it in action:

$ arp [image: 1]
Address HWtype HWaddress Flags Mask Iface
mh9-imac.fritz.box ether 00:25:4b:9b:64:49 C wlp1s0
fritz.box ether 3c:a6:2f:8e:66:b3 C wlp1s0

	[image: 1]

	Use the arp command to show the cache of mapping MAC addresses to
hostnames or IP addresses. Note that you can use arp -n to prevent
hostname resolution and show IP addresses instead of DNS names.

Or, using a more modern approach with ip:

$ ip neigh [image: 1]
192.168.178.34 dev wlp1s0 lladdr 00:25:4b:9b:64:49 STALE
192.168.178.1 dev wlp1s0 lladdr 3c:a6:2f:8e:66:b3 REACHABLE

	[image: 1]

	Use the ip command to show the cache of mapping MAC addresses to IP addresses.

To display, configure, and troubleshoot wireless devices, you want to use the
iw command. For
example, I know that my wireless NIC is called wlp1s0, so I can query it:

$ iw dev wlp1s0 info [image: 1]
Interface wlp1s0
 ifindex 2
 wdev 0x1
 addr 38:de:ad:37:32:0f
 ssid FRITZ!Box 7530 QJ [image: 2]
 type managed
 wiphy 0
 channel 5 (2432 MHz), width: 20 MHz, center1: 2432 MHz [image: 3]
 txpower 20.00 dBm

	[image: 1]

	Show base information about wireless interface wlp1s0.

	[image: 2]

	The router the interface is connected to (see also the next example).

	[image: 3]

	The WiFi frequency band the interface is using.

Further, I can gather router- and traffic-related information like so:

$ iw dev wlp1s0 link [image: 1]
Connected to 74:42:7f:67:ca:b5 (on wlp1s0)
 SSID: FRITZ!Box 7530 QJ
 freq: 2432
 RX: 28003606 bytes (45821 packets) [image: 2]
 TX: 4993401 bytes (15605 packets)
 signal: -67 dBm
 tx bitrate: 65.0 MBit/s MCS 6 short GI

 bss flags: short-preamble short-slot-time
 dtim period: 1
 beacon int: 100

	[image: 1]

	Show connection information about wireless interface wlp1s0.

	[image: 2]

	This and the next line send (TX stands for “transmit”) and receive (RX)
statistics—that is, bytes and packets sent and received via this interface.

Now that we have a good handle on what’s going on in the lowest layer of the
TCP/IP stack, the (data) link layer, let’s move up the stack.

The Internet Layer

The second-lowest layer of the TCP/IP stack, the internet layer, is concerned
with routing packets from one machine on the network to another. The
design of the internet layer assumes that the available network infrastructure
is unreliable and that the participants (such as nodes in the network or the
connections between them) change frequently.

The internet layer provides best-effort delivery (that is, no guarantees
concerning performance) and treats every packet as independent. As a consequence,
higher layers, typically the transport layer,
take care of addressing reliability issues, including packet order, retries,
or delivery guarantees.

How Routing Is Like Surface Mail

Think of an internet layer address as similar to your postal address. This postal address
is made up of a number of parts, from the most coarse
grained (the country) down to the street-level information, including house number.

That postal address is all I need to know to make sure that I can
send, say, a postcard to you from anywhere in the world. Note also that I don’t
need to know the details of the transportation (such as when my postcard travels
via ship or plane, or what exact path is taken). The contract between
me and the post office is simple: if I put the correct address on it and
pay the correct amount (via the right stamp), the post office promises to deliver it.

Likewise, your machine is identified by the internet layer via a logical address.

In this layer, the dominating protocol for logically identifying machines
uniquely, worldwide, is the Internet Protocol (IP), which comes in two flavors,
IP version 4 (IPv4) and IP version 6 (IPv6).

IPv4

IPv4 defines unique 32-bit numbers identifying a host or process
acting as an endpoint in a TCP/IP communication.

One way to write IPv4 addresses is to split up the 32-bit into four 8-bit
segments separated by a period, each segment in the 0 to 255 range, called
an octet (hinting at that the segment covers 8 bits). Let’s have a look at
a concrete example:

 63.32.106.149
// _/ _/
 | | | └─ [image: 4]
 | | └───── [image: 3]
 | └───────── [image: 2]
 └──────────── [image: 1]

	[image: 1]

	First octet in binary form: 00111111

	[image: 2]

	Second octet in binary form: 00100000

	[image: 3]

	Third octet in binary form: 01101010

	[image: 4]

	Fourth octet in binary form: 10010101

The IP header (Figure 7-3), as defined in
RFC 791
and related IETF specs, has a number of fields, but the following are the most important
ones that you should be aware of:

	Source address (32 bits)

	
The IP address of the sender

	Destination address (32 bits)

	
The IP address of the receiver

	Protocol (8 bits)

	
The payload type (next-higher layer type),
 as per RFC 790—for example, TCP, UDP, or ICMP

	Time to live, aka TTL (8 bits)

	
The maximal time the packet is allowed to exist

	Type of service (8 bits)

	
Can be used for quality of service (QoS) purposes

[image: lmlx 0703]
Figure 7-3. The IP header format as per RFC 791

Given that the internet is a network of networks, it seems natural to distinguish
between networks and single machines (hosts) in the networks. IP address ranges
are assigned to networks and within those networks to individual hosts.

Today, the
Classless Inter-Domain
Routing (CIDR) is the only relevant method for assigning IP addresses.
The CIDR format consists of two parts:

	
The first part represents the network address.
This looks like a normal IP address—for example, 10.0.0.0.

	
The second part defines how many bits (and with that, IP addresses) fall within
the address range—for example, /24.

So, a complete CIDR range example looks like the following:

10.0.0.0/24

In the preceding example, the first 24 bits (or three octets) represent the
network, and the last 8 bits (32 bits overall minus the 24 bits for the network)
are the IP addresses available for the 256 hosts (28). The first
IP address in this CIDR range is 10.0.0.0, and the last IP address is
10.0.0.255. Strictly speaking, only the addresses 10.0.0.1 to 10.0.0.254
can be assigned to hosts since the .0 and .255 addresses are reserved for special
purposes. In addition, we can say that the netmask is 255.255.255.0 since
that’s the first 24 bits representing the network.

In practice, you don’t need to remember all the math here. If you’re
dealing with CIDR ranges on a daily basis, then you just know, and if you’re a casual user, you
may want to use some tooling. If you want to do CIDR range calculations, such
as determining how many IPs are in a range, the following are available:

	
Online tools such as those at https://cidr.xyz and
https://ipaddressguide.com/cidr

	
Command-line tools like mapcidr
and cidrchk (by yours truly)

There are also some notable reserved IPv4
addresses you should know:

	127.0.0.0

	
This subnet is reserved for local addresses, with the most prominent
 one being the loopback address 127.0.0.1.

	169.254.0.0/16 (169.254.0.0 to 169.254.255.255)

	
These are link local
 addresses, meaning packets sent there should not be forwarded to other parts
 of the network. Some cloud providers such as Amazon Web Services use this
 for special services (metadata).

	224.0.0.0/24 (224.0.0.0 to 239.255.255.255)

	
This range is reserved for multicast.

RFC 1918 defines private IP ranges.
A private IP range means that the IP addresses in it are not routable on the public
internet; hence, it is safe to assign them internally (for example, in the context
of your company):

	
10.0.0.0 to 10.255.255.255 (the 10/8 prefix)

	
172.16.0.0 to 172.31.255.255 (172.16/12 prefix)

	
192.168.0.0 to 192.168.255.255 (192.168/16 prefix)

Another interesting IPv4 address is 0.0.0.0. It is a nonroutable address
that has different use cases and different meanings depending on the context,
but the most important one, from a server perspective, is that 0.0.0.0 refers
to all IPv4 addresses present in the machine. That’s a great way to say “listen
on all available IP addresses” as a source until it turns into a known IP.

That was a lot of dry theory; let’s see it in action. We’ll start by querying the
machine for IP-related things (output edited):

$ ip addr show [image: 1]
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
 state UNKNOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo [image: 2]
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: wlp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
 noqueue state UP group default qlen 1000
 link/ether 38:de:ad:37:32:0f brd ff:ff:ff:ff:ff:ff
 inet 192.168.178.40/24 brd 192.168.178.255 scope global dynamic [image: 3]
 noprefixroute wlp1s0
 valid_lft 863625sec preferred_lft 863625sec
 inet6 fe80::be87:e600:7de7:e08f/64 scope link noprefixroute
 valid_lft forever preferred_lft forever

	[image: 1]

	List addresses of all interfaces.

	[image: 2]

	The IP address of the loopback interface (127.0.0.1, as expected).

	[image: 3]

	The (private) IP address of the wireless NIC. Note that this is the
LAN-local IP address of the machine, which isn’t publicly routable since
it falls in the 192.168/16 range.

The IPv4 address space is already exhausted, and given that there are many
more endpoints today than the internet designers thought there would be (for
example, due to mobile devices and IoT), a sustainable solution is needed.

Luckily, with IPv6 there is a solution for the address-exhaustion issue.
Unfortunately, at this time of writing, the ecosystem at large has still not made
the move to IPv6, partly for infrastructure reasons but also due to a lack of tooling that supports IPv6. This means that for the time being you’ll still have to deal with IPv4 and
its limitations and workarounds.

Let’s have a look at the (hopefully not-too-distant) future: IPv6.

IPv6

Internet Protocol version 6 (IPv6) is a
128-bit number identifying an endpoint in a TCP/IP communication. This means
that with IPv6 we can assign on the order of 1038 individual machines
(devices). In contrast to IPv4, IPv6 uses a hexadecimal representation,
eight groups of 16 bits each, separating the groups by a colon (:).

There are a few rules for shortening IPv6 addresses, such as removing leading
zeros or compressing consecutive sections of zeros by replacing them with two
colons (::). For example, the IPv6
loopback address can be
written abbreviated as ::1 (the IPv4 variant would be 127.0.0.1).

Just like IPv4, IPv6 has a number of special and reserved addresses;
see APNIC’s listing of IPv6 address types
for examples.

It’s important to note that IPv4 and IPv6 are not compatible. This means that
IPv6 support needs to be built into each and every network participant, from
edge devices (like your phone) to routers to server software. This IPv6 support
has, at least in the context of Linux, already shown to be pretty wide. For
example, the ip addr command we saw in the section “IPv4” would already by
default show us the IPv6 addresses.

Internet Control Message Protocol

The RFC 792 defines the
Internet Control Message Protocol (ICMP), which is used for lower-level
components to send error messages and operational information like availability.

Let’s see ICMP in action by testing the reachability of a website with ping:

$ ping mhausenblas.info
PING mhausenblas.info (185.199.109.153): 56 data bytes
64 bytes from 185.199.109.153: icmp_seq=0 ttl=38 time=23.140 ms
64 bytes from 185.199.109.153: icmp_seq=1 ttl=38 time=23.237 ms
64 bytes from 185.199.109.153: icmp_seq=2 ttl=38 time=23.989 ms
64 bytes from 185.199.109.153: icmp_seq=3 ttl=38 time=24.028 ms
64 bytes from 185.199.109.153: icmp_seq=4 ttl=38 time=24.826 ms
64 bytes from 185.199.109.153: icmp_seq=5 ttl=38 time=23.579 ms
64 bytes from 185.199.109.153: icmp_seq=6 ttl=38 time=22.984 ms
^C
--- mhausenblas.info ping statistics ---
7 packets transmitted, 7 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 22.984/23.683/24.826/0.599 ms

Alternatively, you can use gping, which
can ping multiple targets at the same time and plot a graph on the
command line (see Figure 7-4).

[image: lmlx 0704]
Figure 7-4. Pinging two websites with gping

Note that an equivalent tool is available for IPv6: the aptly named
ping6.

Routing

Part of the network stack in Linux is concerned with routing—that is,
deciding on a per-packet basis where to send a packet. The
destination could be a process on the same machine, or it could be an IP
address on a different machine.

While the exact implementation details of routing are beyond the
scope of this chapter, we’ll provide a high-level overview:
iptables, a widely used tool
that allows you to manipulate the routing tables—for example, to reroute packets
on certain conditions or implement a firewall—uses
netfilter to intercept and manipulate packets.

What you should know is how to query and display routing information, as follows:

$ sudo route -n [image: 1]
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.178.1 0.0.0.0 UG 600 0 0 wlp1s0
169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 wlp1s0
192.168.178.0 0.0.0.0 255.255.255.0 U 600 0 0 wlp1s0

	[image: 1]

	Use the route command with -n, forcing numerical IP addresses.

The detailed meaning of the tabular output in the previous route command is as
follows:

	Destination

	
The IP address of the destination; 0.0.0.0 means it’s unspecified or unknown, potentially sending it to the gateway.

	Gateway

	
For packets not on the same network, the gateway address.

	Genmask

	
The subnet mask used.

	Flags

	
UG means the network is up and is a gateway.

	Iface

	
The network interface the packet is going to use.

A modern way is using ip like so:

$ sudo ip route
default via 192.168.178.1 dev wlp1s0 proto dhcp metric 600
169.254.0.0/16 dev wlp1s0 scope link metric 1000
192.168.178.0/24 dev wlp1s0 proto kernel scope link src 192.168.178.40 metric 600

Is it down? We can check connectivity as follows:

$ traceroute mhausenblas.info
traceroute to mhausenblas.info (185.199.108.153), 30 hops max, 60 byte packets
 1 _gateway (192.168.5.2) 1.350 ms 1.306 ms 1.293 ms

Note that we will discuss a number of TCP/IP-related troubleshooting and
performance tools in “Monitoring”.

To round things off, I’ll also briefly mention the
Border Gateway Protocol (BGP)
as defined in RFC 4271 and other
IETF specs. While it’s unlikely that you’ll interact directly with BGP (unless you work
at a network provider or admin a network), it’s crucial to be aware of its
existence and understand at a high level what it does.

Facebook Disappears from the Internet

In late 2021, we saw the impact that BGP misconfiguration can have.
Read the backstory and lessons learned in
“Understanding How
Facebook Disappeared from the Internet”.

We said earlier on that the internet really is a network of networks. In BGP
terminology, a network is called an autonomous system (AS). For
IP routing to work, these ASs need to share their routing and reachability data,
announcing routes to deliver packets across the internet.

Now that you know the fundamental workings of the internet layer—how addresses
and routing work—let’s move up the stack.

The Transport Layer

In this layer, it’s all about the nature of the communication between
endpoints. There are connection-oriented protocols and connection-less
ones. Reliability, QoS, and in-order delivery may be a concern.

Note

There are attempts in modern protocol design—HTTP/3 is an example—to combine functionality, such as moving parts of TCP into higher-level protocols.

Ports

One core concept in this layer is that of ports. No matter which protocol
is used in this layer, each requires ports. A port is a unique 16-bit
number identifying a service available at an IP address. Think of it this
way: a single (virtual) machine may have a number of services
(see “Application Layer Networking”) running, and you need to be able to identify each
in the context of the machine’s IP.

We differentiate between the following:

	Well-known ports (from 0 to 1023)

	
These are for daemons such as an SSH server or a web server.
Using (binding to) one of them requires elevated privileges (root or CAP_NET_BIND_SERVICE
capability, as discussed in “Capabilities”).

	Registered ports (from 1024 to 49151)

	
These are managed by Internet Assigned Numbers Authority (IANA)
through a publicly documented process.

	Ephemeral ports (from 49152 to 65535)

	
These cannot be registered. They can be used
for automatically allocating a temporary port (for example, if your app
connects to a web server, it needs a port itself, as the other endpoint of
the communication) as well as for private (say, company-internal) services.

You can see the ports and mapping in /etc/services, and further, there is a
comprehensive list of
TCP and UDP
port numbers you might want to consult if you’re unsure.

If you want to see what’s in use on your local machine (do not do this on
someone else’s machine/against a nonlocal IP):

$ nmap -A localhost [image: 1]

Starting Nmap 7.60 (https://nmap.org) at 2021-09-19 14:53 IST
Nmap scan report for localhost (127.0.0.1)
Host is up (0.00025s latency).
Not shown: 999 closed ports
PORT STATE SERVICE VERSION
631/tcp open ipp CUPS 2.2 [image: 2]
| http-methods:
|_ Potentially risky methods: PUT
| http-robots.txt: 1 disallowed entry
|_/
|_http-server-header: CUPS/2.2 IPP/2.1
|_http-title: Home - CUPS 2.2.7

Service detection performed. Please report any incorrect results
at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 6.93 seconds

	[image: 1]

	Scan ports on local machine.

	[image: 2]

	Found one open port, 631, which is the Internet Printing Protocol (IPP).

With the general idea of ports explained, let’s now have a look how these ports
are used in different transport layer protocols.

Transmission Control Protocol

The Transmission Control Protocol (TCP) is a connection-oriented transport
layer protocol that is used by a number of higher-level protocols, including
HTTP and SSH (see “Application Layer Networking”). It is a session-based protocol that guarantees
delivery of the packets in order and supports retransmission in case of errors.

The TCP header (Figure 7-5),
as defined in RFC 793
and related IETF specs, has these most important fields:

	Source port (16 bits)

	
The port used by the sender.

	Destination port (16 bits)

	
The port used by the receiver.

	Sequence number (32 bits)

	
Used to manage in-order delivery.

	Acknowledgment number (32 bits)

	
This number and the SYN and ACK
 flags are the core of the so-called
 TCP/IP
 three-way handshake.

	Flags (9 bits)

	
Most important, the SYN (synchronize) and the ACK (acknowledgement) bits.

	Window (16 bits)

	
The receive window size.

	Checksum (16 bits)

	
A checksum of the TCP-header, used for error checking.

	Data

	
The payload to transport.

[image: lmlx 0705]
Figure 7-5. The TCP header format as per RFC 793

TCP tracks the state of the connection from establishment to termination, with
both the sender and the receiver having to negotiate certain things, from how much
data to send (TCP window size) to QoS.

From a security perspective, TCP is without any defense mechanisms. In other
words, the payload is sent in plain text, and anyone between the sender and the
receiver (and there are by design many hops) can inspect the packet; see “Wireshark and tshark” for details on using Wireshark and tshark to inspect the payload. To enable
encryption of the message, you need to use the Transport Layer Security (TLS)
protocol, ideally in version 1.3 as per
RFC 8446.

With that, let’s move on to the most important stateless transport layer protocol: UDP.

User Datagram Protocol

User Datagram Protocol (UDP) is a connection-less transport layer protocol allowing
you to send messages, called datagrams in UDP, without communication setups (such
as TCP does with the handshake). It does, however, support datagram checksums to ensure
integrity. There are a number of application-level protocols, such as NTP and
DHCP (see “Application Layer Networking”) as well as DNS (see “DNS”), that use UDP.

The RFC 768 defines the UDP header
format as shown in Figure 7-6. Its most important fields are the following:

	Source port (16 bits)

	
The port used by the sender; optional, and if not, use 0

	Destination port (16 bits)

	
The port used by the receiver

	Length (16 bits)

	
The total length of the UDP header and data

	Checksum (16 bits)

	
Can optionally be used for error checking

	Data

	
The payload of the datagram

[image: lmlx 0706]
Figure 7-6. The UDP header format as per RFC 768

UDP is a very simple protocol and requires the higher-level protocol that
works on top of it to take care of many of the things that TCP would handle
itself. On the other hand, UDP has very little overhead and can achieve
high throughput. It’s very simple to use; see also the
UDP manual page.

Sockets

A high-level communication interface that Linux provides are
sockets.
Think of them as endpoints in a communication, with their
distinct identity: a tuple made up of the TCP or UDP port and the IP address.

It’s likely that you’ll only use sockets if you want to develop
network-related tooling or apps, but you should at least be aware of how
to query them. For example, in the context of the
 Docker daemon, you
 at least need to know about the required permissions for the socket.

Let’s have a look at how to use the
ss command to display
socket-related information.

Let’s assume we want to get an overview of the TCP sockets in use on the system:

$ ss -s [image: 1]
Total: 913 (kernel 0)
TCP: 10 (estab 4, closed 1, orphaned 0, synrecv 0, timewait 1/0), ports 0 [image: 2]

Transport Total IP IPv6 [image: 3]
* 0 - -
RAW 1 0 1
UDP 10 8 2
TCP 9 8 1
INET 20 16 4
FRAG 0 0 0

	[image: 1]

	Use the ss command to query ports (with -s, we ask for a summary).

	[image: 2]

	The summary for TCP; overall, 10 sockets in use.

	[image: 3]

	A more detailed overview, breaking down by type and IP version.

Now, what about UDP? Can we get this information, maybe with some more details, such
as endpoint IP addresses? Turns out this is also possible with ss
(output edited):

$ ss -ulp [image: 1]
State Recv-Q Send-Q Local Address:Port Peer Address:Port
UNCONN 0 0 0.0.0.0:60360 0.0.0.0:*
UNCONN 0 0 127.0.0.53%lo:domain 0.0.0.0:*
UNCONN 0 0 0.0.0.0:bootpc 0.0.0.0:*
UNCONN 0 0 0.0.0.0:ipp 0.0.0.0:*
UNCONN 0 0 0.0.0.0:mdns 0.0.0.0:*
UNCONN 0 0 [::]:mdns [::]:*
UNCONN 0 0 [::]:38359 [::]:*

	[image: 1]

	Use ss: the -u parameter restricts to UDP sockets, -l is for selecting
listening sockets, and -p also shows the process information (none in our case).

Another tool you might find handy in this context (sockets and processes) is
lsof. For example, let’s see
what UDP sockets Chrome uses on my machine (output edited):

 $ lsof -c chrome -i udp | head -5 [image: 1]
COMMAND PID USER FD TYPE DEVICE NODE NAME
chrome 3131 mh9 cwd DIR 0,5 265463 /proc/5321/fdinfo
chrome 3131 mh9 rtd DIR 0,5 265463 /proc/5321/fdinfo
chrome 3131 mh9 txt REG 253,0 3673554 /opt/google/chrome/chrome
chrome 3131 mh9 mem REG 253,0 3673563 /opt/google/chrome/icudtl.dat
chrome 3131 mh9 mem REG 253,0 12986737 /usr/lib/locale/locale-archive

	[image: 1]

	Use lsof with -c to specifically select a process by name as well as
limit to UDP with -i. Note that the overall output would be many dozens
of lines; that’s why I cut it down to five with the head -5 command in the
pipe.

With that we’ve covered the three lower layers of the TCP/IP stack. Since the
application layer has so much going on, I’ve dedicated two sections
to it: first, we’re looking into the global-scale naming system, and then we’ll look into
a number of application layer (or layer 7) protocols and applications, such
as the web.

DNS

We learned that the internet layer of the TCP/IP stack defines so-called IP
addresses whose main function it is to identify machines, virtual or physical
alike. In the context of “Containers”, we go so far as to assign IP
addresses to individual containers. There are two challenges with numerical
IP addresses, no matter if IPv4 or IPv6:

	
As humans, we generally remember names better than we do (long) numbers. For
example, if you want to share a website with a friend, you can just say
it’s ietf.org they should check out rather than 4.31.198.44.

	
Due to the way the internet and its applications are built, IP addresses
often change. You might get a new server with a new IP address
in a more traditional setup. Or, in the context of containers, you may
be rescheduled onto a different host, in which case the container automatically
gets a new IP address assigned.

So, in a nutshell, IP addresses are hard to remember and can change, while a
name (for a server or a service) remains the same. This challenge has existed
since the beginning of the internet and since UNIX supported the TCP/IP
stack.

The way to address this was to locally (in the context of a single
machine) maintain a mapping between names and IP addresses via /etc/hosts.
The Network Information Center (NIC) would share a
single file called HOSTS.TXT via FTP with all participating hosts.

Very soon it became clear that this centralized approach could not keep up
with the growing internet, and in the early 1980s, a distributed system
was designed. Paul Mockapetris was the lead architect.

The DNS is a worldwide, hierarchical naming system
for hosts and services on the internet. While there are many related RFCs,
the original one, RFC 1034, and
its implementation guidance via RFC
1035 are still valid, and I strongly recommend you read them if you want to learn
more about the motivation and design.

The DNS uses a number of terms, but the following are the main concepts:

	Domain name space

	
A tree structure with . as the root and each tree node and leaf
containing information about a certain space. The labels (63 bytes maximum
length) along the path from a leaf to the root is what we call a fully qualified domain name (FQDN).
For example, demo.mhausenblas.info. is an FQDN with the so-called top-level
domain .info. Note that the right-most dot, the root, is often left off.

	Resource records

	
The payload in the nodes or leaves of the domain name space (see “DNS Records”).

	Name servers

	
Server programs that hold information about the domain tree’s structure.
If a name server has the complete information about a space, it’s called
an authoritative name server. Authoritative information is organized into zones.

	Resolvers

	
Programs that extract information from name servers in response to client
requests. They are machine local, and no explicit protocol is defined for the
interaction between a resolver and a client. Often there are library
calls supported for resolving the DNS.

Figure 7-7 shows a complete setup of a DNS system, including user
program, resolver, and name server(s), as described in RFC 1035. In the query
process, the resolver would iteratively query authoritative name servers (NS)
starting from the root or, if supported, using a recursive query where an NS
queries others on behalf of a resolver.

[image: lmlx 0707]
Figure 7-7. A complete DNS example setup

Note

Although they’re still around, we usually don’t use the DNS
resolver configuration
in /etc/resolv.conf in modern systems, especially when DHCP
(see “Dynamic Host Configuration Protocol”) is deployed.

The DNS is a hierarchical naming system, and at its root sit 13
root servers that manage the
records for the top-level domains. Directly beneath the root are the
top-level domains (TLD):

	Infrastructure top-level domain

	
Managed by IANA on behalf of the IETF and including, for example, example and localhost

	Generic top-level domains (gTLD)

	
Generic domains having three or more characters, such as .org
 or .com

	Country-code top-level domains (ccTLD)

	
For countries or territories
 assigned two-letter ISO country codes

	Sponsored top-level domains (sTLD)

	
For private agencies or organizations that
 establish and enforce rules restricting the eligibility to use the TLD—for
 example, .aero and .gov

Let’s have a closer look at some moving parts of the DNS and how to use it in
practice.

DNS Records

A name server manages records that capture the type, the payload, and other fields,
including things like the time to live (TTL), the time period after which the record
is supposed to be discarded. You can think of the FQDN as the address of the
node and the resource record (RR) as the payload, the data in the node.

DNS has a number of record types,
including the following most important ones (in alphabetical order):

	A records (RFC 1035) and AAAA records (RFC 3596)

	
IPv4 and IPv6 address records, respectively; usually used to map hostnames to an IP address of the host.

	CNAME records (RFC 1035)

	
Canonical name records providing an alias of one name to another.

	NS records (RFC 1035)

	
Name server records delegating a DNS zone to use
 the authoritative name servers.

	PTR records (RFC 1035)

	
Pointer records used for performing reverse DNS lookups;
 the opposite of A records.

	SRV records (RFC 2782)

	
Service locator records. They are a generalized discovery
 mechanism, rather than hardcoded (as traditionally was the case with the MX
 record type for mail exchange).

	TXT records (RFC 1035)

	
Text records. These were originally meant for
 arbitrary human-readable text but over time found a new use case. Today,
 these records often have machine-readable data in the context of security-related DNS extensions.

There are also wildcard
records starting with the asterisk label (*)—for example, *.mhausenblas.info—as a catch-all to match requests for nonexistent names.

Let’s see how these records look in practice. The DNS records are
represented in a textual form in a
zone file that a name server—such as bind—reads in and makes part of its database:

$ORIGIN example.com. [image: 1]
$TTL 3600 [image: 2]
@	SOA nse.example.com. nsmaster.example.com. (
		1234567890 ; serial number
		21600 ; refresh after 6 hours
		3600 ; retry after 1 hour
		604800 ; expire after 1 week
		3600) ; minimum TTL of 1 hour
example.com. IN NS nse [image: 3]
example.com. IN MX 10 mail.example.com. [image: 4]
example.com. IN A 1.2.3.4 [image: 5]
nse IN A 5.6.7.8 [image: 6]
www IN CNAME example.com. [image: 7]
mail IN A 9.0.0.9 [image: 8]

	[image: 1]

	The start of this zone file in the namespace.

	[image: 2]

	Default expiration time in seconds of all RRs that don’t define their own TTL.

	[image: 3]

	The nameserver for this domain.

	[image: 4]

	The mailserver for this domain.

	[image: 5]

	The IPv4 address for this domain.

	[image: 6]

	The IPv4 address for the nameserver.

	[image: 7]

	Make www.example.com an alias for this domain—that is, example.com.

	[image: 8]

	The IPv4 address for the mail server.

Putting all the concepts discussed together, we can now understand the
example shown in Figure 7-8. This shows a part of the
global domain name space and a concrete example FQDN, demo.mhausenblas.info:

	.info

	
A generic TLD managed by a company called Afilias.

	mhausenblas.info

	
A domain I bought. Within this zone I can assign subdomains as I please.

	demo.mhausenblas.info

	
The subdomain I assigned for demo purposes.

[image: lmlx 0708]
Figure 7-8. The domain name space and an example path (FQDN)

Consider how in the previous example each entity (Afilias or me) only looks
after its part, and no coordination is required. For example,
to create the demo subdomain, I only had to change my DNS settings
for the zone, without asking anyone at Afilias for support or permissions.
This seemingly simple fact is the core of the decentralized nature of DNS and is
what makes it so scalable.

Now that we know how the domain name space is structured and the information
in the nodes is represented, let’s see how you can query them.

DNS Lookups

With all the infrastructure in place, mainly nameservers and resolvers, we now
look at performing DNS queries. There is a lot of logic in the evaluation and
construction of the resolution (mostly covered in RFC 1034 and 1035), but this
is beyond the scope of the book. Let’s have a look at how you can do the query
without having to understand the internals.

You can use the host command to query local (and global) names to resolve them
to IP addresses and the other way around:

$ host -a localhost [image: 1]
Trying "localhost.fritz.box"
Trying "localhost"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 49150
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;localhost. IN ANY

;; ANSWER SECTION:
localhost. 0 IN A 127.0.0.1
localhost. 0 IN AAAA ::1

Received 71 bytes from 127.0.0.53#53 in 0 ms

$ host mhausenblas.info [image: 2]
mhausenblas.info has address 185.199.110.153
mhausenblas.info has address 185.199.109.153
mhausenblas.info has address 185.199.111.153
mhausenblas.info has address 185.199.108.153

$ host 185.199.110.153 [image: 3]
153.110.199.185.in-addr.arpa domain name pointer cdn-185-199-110-153.github.com.

	[image: 1]

	Look up local IP addresses.

	[image: 2]

	Look up FQDN.

	[image: 3]

	Reverse lookup of IP address to find an FQDN; looks like the GitHub CDN.

A more powerful way to look up the DNS records is using the dig command:

$ dig mhausenblas.info [image: 1]
; <<>> DiG 9.10.6 <<>> mhausenblas.info
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 43159
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 2, ADDITIONAL: 5

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
;; QUESTION SECTION:
;mhausenblas.info. IN A

;; ANSWER SECTION: [image: 2]
mhausenblas.info. 1799 IN A 185.199.111.153
mhausenblas.info. 1799 IN A 185.199.108.153
mhausenblas.info. 1799 IN A 185.199.109.153
mhausenblas.info. 1799 IN A 185.199.110.153

;; AUTHORITY SECTION: [image: 3]
mhausenblas.info. 1800 IN NS dns1.registrar-servers.com.
mhausenblas.info. 1800 IN NS dns2.registrar-servers.com.

;; ADDITIONAL SECTION:
dns1.registrar-servers.com. 47950 IN A 156.154.132.200
dns2.registrar-servers.com. 47950 IN A 156.154.133.200
dns1.registrar-servers.com. 28066 IN AAAA 2610:a1:1024::200
dns2.registrar-servers.com. 28066 IN AAAA 2610:a1:1025::200

;; Query time: 58 msec
;; SERVER: 172.16.173.64#53(172.16.173.64)
;; WHEN: Wed Sep 15 19:22:26 IST 2021
;; MSG SIZE rcvd: 256

	[image: 1]

	Using dig, look up the DNS records of the FQDN mhausenblas.info.

	[image: 2]

	The DNS A records.

	[image: 3]

	The authoritative nameserver.

There are alternatives to the dig command available, notably dog and
nslookup; see Appendix B.

Tip

One saying you will come across often is: “It’s always DNS.” But what does this
mean? It’s about troubleshooting and understanding that DNS is a distributed
database with many moving parts. When debugging DNS-related issues, consider
the TTL of records and that there are many caches, from local ones in your
app to resolver, to anything between you and the nameservers.

In “DNS Records”, we mentioned the SRV record type and that it serves as a
generic discovery mechanism. So, rather than defining a new record type for
a new service in an RFC, the community came up with a generic way to
address any upcoming service type. This mechanism, described in
RFC 2782, explains how SRV
records can be used to communicate the IP address and port of a service via DNS.

Let’s see that in practice. Say we want to know what chat services—more
specifically, Extensible Messaging and Presence
Protocol (XMPP) services—if any, are available:

$ dig +short _xmpp-client._tcp.gmail.com. SRV [image: 1]
20 0 5222 alt3.xmpp.l.google.com.
5 0 5222 xmpp.l.google.com. [image: 2]
20 0 5222 alt4.xmpp.l.google.com.
20 0 5222 alt2.xmpp.l.google.com.
20 0 5222 alt1.xmpp.l.google.com.

	[image: 1]

	Use the dig command with the +short option to display only the relevant
answer section. The _xmpp-client._tcp part is the format RFC 2782
prescribes, and the SRV at the end of this command specifies what record
type we’re interested in.

	[image: 2]

	Overall there are five answers. An example service instance is available
at xmpp.l.google.com:5222 with a TTL of 5 seconds. If you have an XMPP
such as Jabber, you could use this address for configuration input.

With this, we’ve reached the end of the DNS section. Now we’ll have a look
at other application layer protocols and tooling.

Application Layer Networking

In this section, we focus on user space or application layer network
protocols, tooling, and apps. As an end user, you’ll likely spend
most of your time here, using things such as web browsers or mail clients for your
daily tasks.

The Web

The web, originally developed by Sir Tim Berners-Lee in the early 1990s,
has three core components:

	Uniform Resource Locators (URL)

	
As per RFC 1738 originally
and a number of updates and related RFCs. A URL defines both the identity
and the location of a resource on the web. A resource could be a static
page or a process that generates content dynamically.

	Hypertext Transfer Protocol (HTTP)

	
HTTP defines an application layer protocol and how to interact with content
available via URLs. As per RFC 2616
for v1.1, but there are also more modern versions, such as HTTP/2, defined in
RFC 7540, and the
HTTP/3 draft
(which at the time of this writing was still in the works). Core HTTP concepts are:

	HTTP methods

	
Including GET for read operations and, among others, POST for write
operations, these define a CRUD-like interface.

	Resource naming

	
This dictates how to form URLs.

	HTTP status codes

	
With the 2xx range for success, 3xx for redirects, 4xx for client errors,
and 5xx for server errors.

	Hyper Text Markup Language (HTML)

	
Initially a W3C specification, HTML is now a living standard available
via WHATWG. A hypertext markup
allows you to define page elements such as headers or inputs.

W3C and standards

Technically neither IETF nor W3C (World Wide Web Consortium) do standards.
They create specifications through formal processes that the community accepts
as de facto standards. I strongly recommend that you read these specifications and
try to understand what’s going in there. For me, in 2006, after using
and building web sites and applications for almost a decade, I started
to take this seriously (when I got involved in W3C efforts), and the payoff
was enormous.

Let’s have a closer look at how URIs (the generic version of URLs)
are constructed (as per RFC 3986) and how that maps to HTTP URLs:

michaelh:12345678@http://example.com:4242/this/is/the/way?orisit=really#another
______/ ______/ __/ _____________/______________/ ___________/ _____/
 | | | | | | |
 v v v v v v v
user password scheme authority path query fragment

The components are as follows:

	user and password (both optional)

	
Initially used for basic authentication, these components should not be used
anymore. Instead, for HTTP, you should be using a proper
authentication
mechanism together with HTTPS for
encryption on the wire.

	scheme

	
Refers to the URL
 scheme, an IETF specification defining its meaning. For
 HTTP, that scheme is called http, which really is a family of HTTP specifications,
 such as RFC 2616.

	authority

	
The hierarchical naming part. For HTTP, this is:

	Hostname

	
Either as a DNS FQDN or an IP address.

	Port

	
With a default of 80 (so example.com:80 and example.com are the same).

	path

	
A scheme-specific part for further resource details.

	query and fragment (both optional)

	
The former appears after the ? for nonhierarchical
 data (for example, to express tags or form data), and the latter appears after the
 # for secondary resources (in the context of HTML, that could be a section).

Today, the web has advanced far beyond its humble 1990s roots, with a
number of technologies such as
JavaScript/ECMAScript and
Cascading Style Sheets (CSS)
considered core. Those additions, JavaScript for dynamic client-side content
and CSS for styling, have eventually led to
single-page web apps.
While this topic is beyond the scope of the book, it’s important to remember
that knowing the basics (URL, HTTP, and HTML) well goes a long way in terms of
understanding how things work and troubleshooting issues you may have.

Let’s now see web specifications in action by simulating the flow end to end,
starting at the HTTP server end.

You can rather easily run a simple HTTP server that only serves the content
of a directory in two ways: by using Python
or by using netcat (nc).

With Python, to serve the content of a directory, you would do the following:

$ python3 -m http.server [image: 1]
Serving HTTP on :: port 8000 (http://[::]:8000/) ... [image: 2]
::ffff:127.0.0.1 - - [21/Sep/2021 08:53:53] "GET / HTTP/1.1" 200 - [image: 3]

	[image: 1]

	Use the built-in Python module http.server to serve the content of the
current directory (that is, the directory from which you launched this command).

	[image: 2]

	It confirms that it’s ready to serve via port 8000. This means that you
could enter http://localhost:8000 into your browser and you would see the
content of your directory there.

	[image: 3]

	This shows that an HTTP request against the root (/) has been issued
and served successfully (the 200 HTTP response code).

Tip

If you want to do more advanced stuff, beyond serving a static directory,
consider using a proper web server such as NGINX.
You could, for example, run NGINX using Docker (see “Docker”) with the following
command:

$ docker run --name mywebserver \ [image: 1]
 --rm -d \ [image: 2]
 –v "$PWD":/usr/share/nginx/html:ro \ [image: 3]
 -p 8042:80 \ [image: 4]
 nginx:1.21 [image: 5]

	[image: 1]

	Call the running container mywebserver; you should see that when you issue
a docker ps command to list running
containers.

	[image: 2]

	The --rm removes the container on exit, and the -d turns it into a daemon
(detach from terminal, run in background).

	[image: 3]

	Mounts the current directory ($PWD) into the container as the NGINX source
content directory. Note that $PWD is a bash way to address the current
directory. In Fish you would use (pwd) instead.

	[image: 4]

	Makes the container-internal port 80 available on the host via 8042.
That means you would be able to access the web server via http://localhost:8042
on your machine.

	[image: 5]

	The container image to use (nginx:1.21), and implicitly using Docker Hub
since we didn’t specify the registry part.

Now let’s see how we can use curl, a powerful and popular
tool to interact with any kind of URLs, to get the content of the web server
we launched in the previous example (make sure it’s still running, or launch
it again in a separate session if you terminated it already):

$ curl localhost:8000
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Directory listing for /</title>
</head>
<body>
<h1>Directory listing for /</h1>
<hr>

app.yaml
Dockerfile
example.json
gh-user-info.sh
main.go
script.sh
test

<hr>
</body>

In Table 7-1 you see some common options for curl that you may find
useful. The selection is based on my usage history for a range of tasks, from
developing to system administration.

Table 7-1. Useful options for curl

	Option
	Long-form option
	Description and use case

	-v

	--verbose

	For verbose output, use for debugging.

	-s

	--silent

	Silence curl: do not show the progress meter or error messages.

	-L

	--location

	Follow page redirects (3XX HTTP response codes).

	-o

	--output

	By default, the content goes to stdout; if you want to directly store it in a file, specify it via this option.

	-m

	--max-time

	Maximum time (in seconds) you are willing to wait for the operation to take.

	-I

	--head

	Fetch the headers only (careful: not every HTTP server supports the HEAD method for a path).

	-k

	--insecure

	By default, HTTPS calls are verified. Use this option to ignore the errors for cases where that’s not possible.

If curl is not available, you can fall back to wget,
which is more limited but sufficient for simple HTTP-related interactions.

Secure Shell

Secure Shell (SSH)
is a cryptographic network protocol for securely offering network services
on an unsecured network. For example, as a replacement for telnet, you can
use ssh to log into a remote machine and also move data securely
between (virtual) machines.

Let’s see SSH in action. I’ve provisioned a virtual machine in the cloud with an IP address of 63.32.106.149, and the user name provided by
default is ec2-user. To log into the machine, I can do the
following (note that the output is edited and assumes that you or someone
else created credentials in ~/.ssh/lml.pem beforehand):

$ ssh \ [image: 1]
 -i ~/.ssh/lml.pem \ [image: 2]
 ec2-user@63.32.106.149 [image: 3]

...

https://aws.amazon.com/amazon-linux-2/
11 package(s) needed for security, out of 35 available
Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-26-8-138 ~]$ [image: 4]

	[image: 1]

	Use the ssh command to log into a remote machine.

	[image: 2]

	Use the identity file ~/.ssh/lml.pem rather than a password. Explicitly
providing that file is a good practice but in our case would strictly
speaking not be necessary as it resides in the default location ~/.ssh.

	[image: 3]

	The SSH target machine in the format username@host.

	[image: 4]

	Once the login process is completed, I can tell from the prompt that I’m on the
target machine and can use it just as if it were local.

Some general SSH usage tips:

	
If you run an SSH server, that is, allow others to ssh into your machine,
then you absolutely should disable
password authentication. This forces users to create a key pair and share
the public key with you that you then add to ~/.ssh/authorized_keys and
allow to log in via this mechanism.

	
Use ssh -tt to force pseudo-tty allocation.

	
Do export TERM=xterm when you ssh into a machine, in case you are having
display issues.

	
Configure timeouts for ssh sessions in your client. On a per-user basis,
this is usually via ~/.ssh/config, where you can
set ServerAliveInterval and Server​Ali⁠veCountMax options to keep your
connections alive.

	
If you’re having issues, and you’ve excluded local permission issues with
the key(s), then you can try launching ssh with the -v option, giving you
details about what’s going on under the hood (also, try multiple instances of v, like -vvv
for finer-grained debug info).

SSH is not only used directly by humans, but it is also used as a building block under the
hood—for example, in file-transfer tooling.

File Transfer

One very common task involving the network is transferring files. You can do
this from your local machine to a server in the cloud or from another
machine in the local network.

To copy to and from remote systems, you can use one basic tool.
scp (short for “secure copy”) works on
top of SSH. Given that scp defaults to ssh, we need to make sure that we
have the password (or even better, key-based authentication) in place for it to
work.

Let’s assume we have a remote machine with the IPv4 address
63.32.106.149, and we want to copy a file there from our local machine:

$ scp copyme \ [image: 1]
 ec2-user@63.32.106.149:/home/ec2-user/ [image: 2]
copyme 100% 0 0.0KB/s 00:00

	[image: 1]

	Source is the file copyme in the current directory.

	[image: 2]

	Destination is the /home/ec2-user/ directory on machine 63.32.106.149.

Synchronizing files with rsync
is much more convenient and faster than scp. Under the hood, rsync uses
SSH by default.

Let’s now see how we can use rsync to transfer files from the ~/data/ from
the local machine to the host at 63.32.106.149:

$ rsync -avz \ [image: 1]
 ~/data/ \ [image: 2]
 mh9@:63.32.106.149: [image: 3]
building file list ... done
./
example.txt

sent 155 bytes received 48 bytes 135.33 bytes/sec
total size is 10 speedup is 0.05

$ ssh ec2-user@63.32.106.149 -- ls [image: 4]
example.txt

	[image: 1]

	Options meaning -a for archive (incremental, preserve), -v for verbose
so that we see something, and -z for using compression.

	[image: 2]

	Source directories (since -a includes -r which is recursive).

	[image: 3]

	Destination in user@host format.

	[image: 4]

	Verify if the data has arrived by executing an ls on the remote machine.
The next line shows that it indeed worked—the data arrived in good order.

If you’re unsure what rsync will do, use the --dry-run option in addition
to the other ones. It will essentially tell you what it will do without actually
carrying out the operation, so it’s safe.

rsync is also a great tool to perform directory backups because it can be
set to copy only files that have been added or changed.

Warning

Don’t forget the : after the host! Without it, rsync
will happily go ahead and interpret the source or destination as a local directory.
That is, the command will work fine, but rather than copying the files to the remote
machine, it will end up on your local machine. For example, user@example.com
as the destination would be a subdirectory of the current directory called
user@example.com/.

Last but not least, one use case you often come across is when someone provides
files in an Amazon S3 bucket. To download those files, you can use the
AWS CLI with the s3 subcommand as follows. We’re using a dataset from the Open Data
registry in a public S3 bucket (output edited to fit):

$ aws s3 sync \ [image: 1]
 s3://commoncrawl/contrib/c4corpus/CC-MAIN-2016-07/ \ [image: 2]
 .\ [image: 3]
 --no-sign-request [image: 4]
download: s3://commoncrawl/contrib/c4corpus/CC-MAIN-2016-07/
Lic_by-nc-nd_Lang_af_NoBoilerplate_true_MinHtml_true-r-00009.seg-00000.warc.gz to
./Lic_by-nc-nd_Lang_af_NoBoilerplate_true_MinHtml_true-r-00009.seg-00000.warc.gz
download: s3://commoncrawl/contrib/c4corpus/CC-MAIN-2016-07/
Lic_by-nc-nd_Lang_bn_NoBoilerplate_true_MinHtml_true-r-00017.seg-00000.warc.gz to
./Lic_by-nc-nd_Lang_bn_NoBoilerplate_true_MinHtml_true-r-00017.seg-00000.warc.gz
download: s3://commoncrawl/contrib/c4corpus/CC-MAIN-2016-07/
Lic_by-nc-nd_Lang_da_NoBoilerplate_true_MinHtml_true-r-00004.seg-00000.warc.gz to
./Lic_by-nc-nd_Lang_da_NoBoilerplate_true_MinHtml_true-r-00004.seg-00000.warc.gz
...

	[image: 1]

	Use the AWS S3 command to synchronize files from a public bucket.

	[image: 2]

	This is the source bucket, s3://commoncrawl, and the exact path of the source we
want to sync. Warning: there are more than 8 GB of data in that directory,
so try this only if you don’t mind the bandwidth.

	[image: 3]

	The destination is the current directory, signaled by a single period (.).

	[image: 4]

	Ignore/skip authentication since this is a publicly available bucket
(and thus the data in it).

The File Transfer Protocol (FTP) as per RFC 959
is still in use, but we don’t recommend using it anymore. Not only are these insecure,
but there are also many better alternatives, such as the ones we discussed in this section.
So, there’s no actual need for FTP anymore.

Network File System

A widely supported and used way to share files from a central location over the network
is via network file system (NFS), originally developed by Sun Microsystems in the
early 1980s. It saw multiple iterations as per RFC 7530
and other related IETF specs and is very stable.

You would usually have an NFS server maintained by a cloud provider or central IT
in a professional setup. All you would need to do is install the client
(usually through a package called nfs-common). Then, you
can mount a source directory from the NFS server as follows:

$ sudo mount nfs.example.com:/source_dir /opt/target_mount_dir

Many cloud providers, such as AWS and Azure, now offer NFS as a service.
It’s a nice way to provide your storage-hungry application with a lot of
space in a way that looks and feels almost like local attached storage. For
media applications, however, a
network-attached storage (NAS)
setup is likely the better choice.

Sharing with Windows

If you have Windows machines in your local network and want to share it, you can use the
Server Message Block (SMB),
a protocol initially developed at IBM in the 1980s, or its Microsoft-owned successor,
Common Internet File System (CIFS).

You would typically use Samba, the standard Windows
interoperability suite of programs for Linux, to achieve the file sharing.

Advanced Network Topics

In this section, we discuss some advanced network protocols and tooling across
the TCP/IP stack. Their usage is normally beyond the scope of a casual user.
However, if you’re a developer or sys admin, you probably will want to be at
least aware of them.

whois

whois is a client for the whois directory
service that you can use to look up registration and user information. For example,
if I want to find out who is behind the ietf.org domain (note that you
can pay your domain registrar to keep that information private), I would do the following:

$ whois ietf.org [image: 1]
% IANA WHOIS server
% for more information on IANA, visit http://www.iana.org
% This query returned 1 object

refer: whois.pir.org

domain: ORG

organisation: Public Interest Registry (PIR)
address: 11911 Freedom Drive 10th Floor,
address: Suite 1000
address: Reston, VA 20190
address: United States

contact: administrative
name: Director of Operations, Compliance and Customer Support
organisation: Public Interest Registry (PIR)
address: 11911 Freedom Drive 10th Floor,
address: Suite 1000
address: Reston, VA 20190
address: United States
phone: +1 703 889 5778
fax-no: +1 703 889 5779
e-mail: ops@pir.org
...

	[image: 1]

	Use whois to look up registration information about domain.

Dynamic Host Configuration Protocol

The Dynamic
Host Configuration Protocol (DHCP) is a network protocol that enables
automatic assignment of an IP address to a host. It’s a cli⁠ent​/server
setup that removes the need for manually configuring network devices.

Setting up and managing a DHCP server is outside our scope, but you can use
dhcpdump to scan for DHCP packets.
For this, a device in your local network needs to join, trying to acquire
an IP address, so you may need to be a bit patient to see something here
(output shortened):

$ sudo dhcpdump -i wlp1s0 [image: 1]
 TIME: 2021-09-19 17:26:24.115
 IP: 0.0.0.0 (88:cb:87:c9:19:92) > 255.255.255.255 (ff:ff:ff:ff:ff:ff)
 OP: 1 (BOOTPREQUEST)
 HTYPE: 1 (Ethernet)
 HLEN: 6
 HOPS: 0
 XID: 7533fb70
 ...
OPTION: 57 (2) Maximum DHCP message size 1500
OPTION: 61 (7) Client-identifier 01:88:cb:87:c9:19:92
OPTION: 50 (4) Request IP address 192.168.178.42
OPTION: 51 (4) IP address leasetime 7776000 (12w6d)
OPTION: 12 (15) Host name MichaelminiiPad
...

	[image: 1]

	Using dhcpdump, sniff DHCP packets on interface wlp1s0.

Network Time Protocol

The Network Time Protocol (NTP) is for synchronizing
clocks of computers over a network. For example, using
the ntpq command, a standard NTP query program,
you could make an explicit time server query like so:

 $ ntpq -p [image: 1]
 remote refid st t when poll reach delay offset jitter
==
 0.ubuntu.pool.n .POOL. 16 p - 64 0 0.000 0.000 0.000
 1.ubuntu.pool.n .POOL. 16 p - 64 0 0.000 0.000 0.000
 2.ubuntu.pool.n .POOL. 16 p - 64 0 0.000 0.000 0.000
 3.ubuntu.pool.n .POOL. 16 p - 64 0 0.000 0.000 0.000
 ntp.ubuntu.com .POOL. 16 p - 64 0 0.000 0.000 0.000
 ...
 ntp17.kashra-se 90.187.148.77 2 u 7 64 1 27.482 -3.451 2.285
 golem.canonical 17.253.34.123 2 u 13 64 1 20.338 0.057 0.000
 chilipepper.can 17.253.34.123 2 u 12 64 1 19.117 -0.439 0.000
 alphyn.canonica 140.203.204.77 2 u 14 64 1 91.462 -0.356 0.000
 pugot.canonical 145.238.203.14 2 u 13 64 1 20.788 0.226 0.000

	[image: 1]

	With the -p option, show a list of peers known to the machine, including
their state.

Usually, NTP works in the background, managed by systemd and other daemons,
so you are unlikely to need to manually query it.

Wireshark and tshark

If you want to do low-level network traffic analysis—that is, you want
to see exactly the packets across the stack—you can use either
the command-line tool
tshark
or its GUI-based version,
wireshark.

For example, after finding out via ip link that I have a network interface
called wlp1s0, I capture traffic there (output edited to fit):

$ sudo tshark -i wlp1s0 tcp [image: 1]
Running as user "root" and group "root". This could be dangerous.
Capturing on 'wlp1s0'
 1 0.000000000 192.168.178.40 → 34.196.251.55 TCP 66 47618 → 443
 [ACK] Seq=1 Ack=1 Win=501 Len=0 TSval=3796364053 TSecr=153122458
 2 0.111215098 34.196.251.55 → 192.168.178.40 TCP 66
 [TCP ACKed unseen segment] 443 → 47618 [ACK] Seq=1 Ack=2 Win=283
 Len=0 TSval=153167579 TSecr=3796227866
 ...
 8 7.712741925 192.168.178.40 → 185.199.109.153 HTTP 146 GET / HTTP/1.1 [image: 2]
 9 7.776535946 185.199.109.153 → 192.168.178.40 TCP 66 80 → 42000 [ACK]
 Seq=1 Ack=81 Win=144896 Len=0 TSval=2759410860 TSecr=4258870662
 10 7.878721682 185.199.109.153 → 192.168.178.40 TCP 2946 HTTP/1.1 200 OK
 [TCP segment of a reassembled PDU]
 11 7.878722366 185.199.109.153 → 192.168.178.40 TCP 2946 80 → 42000
 [PSH, ACK] Seq=2881 Ack=81 Win=144896 Len=2880 TSval=2759410966 \
 TSecr=4258870662
 [TCP segment of a reassembled PDU]
 ...

	[image: 1]

	Use tshark to capture network traffic on network interface wlp1s0 and
only look at TCP traffic.

	[image: 2]

	In another session, I issued a curl command to trigger an HTTP session,
 in which application layer interaction starts.
You could also use the less powerful but on the other hand more widely available
tcpdump for this task.

Other Advanced Tooling

There are a number of advanced network-related tools out there you may find
useful, including but not limited to the following:

	socat

	
Establishes two bidirectional
 byte streams and enables the transferring of data between the endpoint.

	geoiplookup

	
Allows you to
 map an IP to a geographic region.

	Tunnels

	
An
 easy-to-use alternative to VPNs and other site-to-site networking solutions. Enabled by such tools as inlets.

	BitTorrent

	
A peer-to-peer system that groups files into a package called
 a torrent. Check out some clients
 to decide if this is something for your
toolbox.

Conclusion

In this chapter, we defined common network terms, from the hardware level, such
as NICs, to the TCP/IP stack, to application-layer, user-facing components, such as HTTP.

Linux provides a powerful, standards-based implementation of the TCP/IP stack that
you can use programmatically (for example, sockets) and in the context of setting up
and querying (usually with the ip command).

We further discussed application-layer protocols and interfaces that make up
most of the daily (network-related) flows. Your command-line friends here include curl for transfer and dig for DNS lookups.

If you want to dive deeper into networking topics, check out the following resources:

	The TCP/IP stack

	

	
Understanding Linux Network Internals by Christian Benvenuti (O’Reilly)

	
“A Protocol for Packet Network Intercommunication”

	
DHCP server setup webpage

	
“Hello IPv6: A Minimal Tutorial for IPv4 Users”

	
“Understanding IPv6—7 Part Series”

	
Collection of IPv6 articles by Johannes Weber

	
Iljitsch van Beijnum’s BGP Expert website

	
“Everything You Ever Wanted to Know About UDP Sockets but Were Afraid to Ask”

	DNS

	

	
“An Introduction to DNS Terminology, Components, and Concepts”

	
“How to Install and Configure DNS Server in Linux”

	
“Anatomy of a Linux DNS Lookup”

	
“TLDs—Putting the .fun in the Top of the DNS”

	Application layer and advanced networking

	

	
“SSH Tunneling Explained”

	
Everything curl

	
“What Is DHCP and How to Configure DHCP Server in Linux”

	
“How to Install and Configure Linux NTP Server and Client”

	
NFS wiki

	
“Use Wireshark at the Linux Command Line with TShark”

	
“Getting Started with socat”

	
“Geomapping Network Traffic”

With that, we’re ready to move on to the next topic in the book: using observability to avoid flying blind.

Chapter 8. Observability

You need visibility into what’s going on across the stack—from the kernel to
user-facing parts. Often, you get that visibility by knowing the right tool
for the task.

This chapter is all about gathering and using different signals that Linux and
its applications generate so that you can make informed decisions. For example,
you’ll see how you can do the following:

	
Figure out how much memory a process consumes

	
Understand how soon you will run out of disk space

	
Get an alert on custom events for security reasons

To establish a common vocabulary, we’ll first review different signal types you
might come across, such as system or application logs, metrics, and process traces.
We’ll also have a look at how to go about troubleshooting and measuring performance.
Next, we’ll focus on logs specifically, reviewing different options and semantics. Then, we’ll cover monitoring for different resource types, such as
CPU cycles, memory, or I/O traffic. We’ll review different tools that you can use
and show certain end-to-end setup you may wish to adopt.

You’ll learn that observability is often reactionary. That is, something crashes
or runs slowly, and you start looking at processes and their CPU or memory usage, or
dig into the logs. But there are also times when observability has more of an investigative
nature—for example, when you want to figure out how long certain algorithms
take. Last but not least, you can use predictive (rather than reactive) observability.
For example, you can be alerted on a condition in the future, extrapolating the current
behavior (disk usage for a predictable load is a good example where that might
work well).

Likely the best visual overview on observability comes from performance maestro
Brendan Gregg. Figure 8-1, taken from his
Linux Performance site, gives you a feeling for the wealth of
moving parts and tooling available.

[image: lmlx 0801]
Figure 8-1. Linux observability overview. Credit: Brendan Gregg (shared under CC BY-SA 4.0 license)

Observability is an exciting topic with many use cases and
lots of (open source) tooling available, so let’s first establish a strategy
and look at some common terms used.

Basics

Before we get into the observability terminology, let’s step back a bit and
look at how you turn the information provided into actionable insights and
use it to fix an issue or optimize an app in a structured manner.

Observability Strategy

One widely established strategy in the observability context is the
OODA loop (observe–orient–decide–act).
It offers a structured way to test a hypothesis based on observed data and act upon it—that is, a way to get actionable insights from signals.

For example, let’s say an application is slow. Let’s further assume there are
multiple possible reasons for this (not enough memory,
too few CPU cycles, network I/O insufficient, etc.). First, you want to be able
to measure each resource consumption. Then you would change each resource
allocation individually (keeping the others unchanged) and measure the
outcome.

Does the performance improve after you provided more RAM to the app?
If so, you may have found the reason. If not, you continue with a different
resource, always measuring the consumption and trying to relate to the observed
impact on the
situation.

Terminology

There are a range of terms in the observability
space,1 and not all have formal definitions. In addition, the
meanings might slightly differ if you’re looking at a single machine or
are in a networked (distributed) setup:

	Observability

	
Assessing the internal state of a system (such as Linux) by measuring external
information, usually with the goal of acting upon it. For example, if you notice
that your system reacts sluggishly, and measure how much main memory is available,
you might find that a particular app hogs all the memory, and you may decide to
terminate it to remedy the situation.

	Signal types

	
Different ways to represent and emit information about the state of a system,
either via symbolic means (payload is text, such as the case with logs) or
numerical values (as with metrics) or combinations thereof. See also “Signal Types”.

	Source

	
Generates signals, potentially of different types. Sources can be the Linux
operating system or an application.

	Destination

	
Where you consume, store, and further process signals. We call a destination
that exposes a user interface (GUI, TUI, or CLI) a frontend. For example, a log viewer
or a dashboard plotting time series is a frontend, whereas an S3 bucket is not
(but can still act as a destination for, say, logs).

	Telemetry

	
The process of extracting signals from sources and transporting (or routing,
shipping) the signals to destinations, often employing agents that collect
and/or preprocess signals (for example, filter or downsample).

Signal Types

Signals are how we communicate the state of a system for further processing
or interpretation. By and large we distinguish between text payload (which is
most suited for a human to search and interpret) and numerical payload (good
for both machines and, in processed form, for humans). The three basic and
common signal types relevant to our discussion in this chapter are: logs,
metrics, and traces.

Logs

Logs are a fundamental signal type that every system, to some extent, generates.
Logs are discrete events with a textual payload, meant for human consumption.
Typically, these events are timestamped. Ideally, the logs are structured so that
there is a clear meaning defined for each part of the log message. This meaning is
potentially expressed through a formal schema so that validation can be
automatically
performed.

Interestingly, while every log has some structure (even if it’s not well defined
and parsing is hard, potentially due to delimiter or edge cases), you will often
hear the term structured logging. When people say that, they actually mean
that the log is structured using JSON.

While automating log content is hard (given its textual nature), logs are still
very useful for humans, and thus they will likely stay the dominating signal
type for some time. We’ll dig deeper into handling logs in “Logging”.
Logs are the most important signal type (for our considerations), and that’s
why we’ll spend most of the time in this chapter dealing with them.

Metrics

Metrics are (usually regularly) sampled numerical data points, forming a time
series. The individual data points can have additional context in the form
of dimensions or identifying metadata. Normally, you don’t directly consume
the raw metrics; instead, you use some sort of aggregation or graphical representation,
or you get notified if a certain condition is met. Metrics can be useful both for
operational tasks and for troubleshooting to answer questions like
how many transactions an app completed or how long a certain operation took
(in the past X minutes).

We distinguish between different types of metrics:

	Counter

	
The value of a counter can only ever go up (besides resetting a
 counter to zero). An example of a counter metric is the total number of
 requests handled by a service or the bytes sent via an interface over a time period.

	Gauges

	
A gauge value can go up or down. For example, you gauge the currently
 available overall main memory or the number of processes running.

	Histograms

	
A sophisticated way to build a distribution of values. Using
 buckets, histograms allow you to assess how the data overall is structured.
 They also enable you to make flexible statements (such as 50% or 90% of the
 values fall into a certain range).

In “Monitoring”, we have a look at a range of tools that you can use for
simple use cases, and in “Prometheus and Grafana”, you see an advanced example
setup for metrics.

Traces

Traces are a dynamic collection of runtime information (for example,
information about what syscalls a process uses, or the sequence of events
in the kernel, for a given cause). Traces are often used not only for debugging
but also for performance assessments. We have a look at this advanced topic in “Tracing and Profiling”.

Logging

As mentioned before, logs are (a collection of) discrete events with a
textual payload, optimized for human consumption. Let’s decompose this
statement to understand it better:

	Discrete events

	
Think of a discrete event in the context of the codebase. You want to share
information about what is going on in the code using an (atomic) log item. For
example, you emit a log line that a database connection has been established
successfully. Another log item might be to flag an error because a file is missing.
Keep the scope of the log message small and specific, so it’s easier for someone consuming the
message to find the respective location in the code.

	Textual payload

	
The payload of a log message is of textual nature. The default consumers are humans.
In other words, no matter if you’re using a log viewer on the command line, or a fancy
log-processing system with visual UI, a human reads and interprets the content
of the log message and decides on an action based on it.

From a structural perspective, overall, a log comprises the following:

	A collection of log items, messages, or lines

	
Captures information
 about a discrete event.

	Metadata or context

	
Can be present on a per-message basis as well as on a global
 scope (the entire log file, for example).

	A format for how an individual log message is to be interpreted

	
Defines the log’s
 parts and meanings. Examples are line-oriented, space-separated messages or a
 JSON schema.

In Table 8-1, you can see some common log formats. There are
many (more-specific, narrower-scoped) formats and frameworks—for example,
for database or programming languages.

Table 8-1. Common log formats

	Format
	Note

	Common event format

	Developed by ArcSight; used for devices, security use cases

	Common log format

	For web servers; see also extended log format

	Graylog extended log format

	Developed by Graylog; improves Syslog

	Syslog

	For operating systems, apps, devices; see “Syslog”

	Embedded metric format

	Developed by Amazon (both logs and metrics)

As a good practice, you want to avoid overhead with logs (enabling fast lookups
and a small footprint—that is, not taking up too much disk space). In this context,
log rotation, for example, via logrotate, is used.
An advanced concept called data temperature may also be useful, moving older
log files to cheaper and slower storage (attached disk, S3 bucket, Glacier).

Warning

There’s one case where you need to be careful about logging information,
especially in production environments. Whenever you decide to emit a log
line in your app, ask yourself if you could potentially leak sensitive information.
This sensitive information could be a password, an API key, or even
simply user-identifying information (email, account ID).

The problem is that the logs are usually stored in a persistent form (say, on
local disk or even in an S3 bucket). This means that even long after the process has
terminated, someone could get access to the sensitive information and use it
for an attack.

To signal the importance or intended target consumer of a log item, logs
often define levels (for example DEBUG for development, INFO for normal
status, or ERROR for unexpected situations that may require human
intervention).

Now it’s time to get our hands dirty: let’s start with
something simple and, as an overview, have a look at Linux’s central log
directory (output shortened for readability):

$ ls -al /var/log
drwxrwxr-x 8 root syslog 4096 Jul 13 06:16 .
drwxr-xr-x 13 root root 4096 Jun 3 07:52 ..
drwxr-xr-x 2 root root 4096 Jul 12 11:38 apt/ [image: 1]
-rw-r----- 1 syslog adm 7319 Jul 13 07:17 auth.log [image: 2]
-rw-rw---- 1 root utmp 1536 Sep 21 14:07 btmp [image: 3]
drwxr-xr-x 2 root root 4096 Sep 26 08:35 cups/ [image: 4]
-rw-r--r-- 1 root root 28896 Sep 21 16:59 dpkg.log [image: 5]
-rw-r----- 1 root adm 51166 Jul 13 06:16 dmesg [image: 6]
drwxrwxr-x 2 root root 4096 Jan 24 2021 installer/ [image: 7]
drwxr-sr-x+ 3 root systemd-journal 4096 Jan 24 2021 journal/ [image: 8]
-rw-r----- 1 syslog adm 4437 Sep 26 13:30 kern.log [image: 9]
-rw-rw-r-- 1 root utmp 292584 Sep 21 15:01 lastlog [image: 10]
drwxr-xr-x 2 ntp ntp 4096 Aug 18 2020 ntpstats/ [image: 11]
-rw-r----- 1 syslog adm 549081 Jul 13 07:57 syslog [image: 12]

	[image: 1]

	Logs of the apt package manager

	[image: 2]

	Logs of all login attempts (successful and failed) and authentication processes

	[image: 3]

	Failed login attempts

	[image: 4]

	Printing related logs

	[image: 5]

	Logs of the dpkg package manager

	[image: 6]

	Device driver logs; use dmesg to inspect

	[image: 7]

	System install logs (when the Linux distro was originally installed)

	[image: 8]

	The journalctl location; see “journalctl” for details

	[image: 9]

	The kernel logs

	[image: 10]

	All last logins of all users; use lastlog to inspect

	[image: 11]

	NTP-related logs (see also “Network Time Protocol”)

	[image: 12]

	The syslogd location; see “Syslog” for details

One common pattern for consuming logs live (that is, as it happens) is to
follow logs; that is, you watch the end of the log as new log lines are added
(edited to fit):

$ tail -f /var/log/syslog [image: 1]
Sep 26 15:06:41 starlite nm-applet[31555]: ... 'GTK_IS_WIDGET (widget)' failed
Sep 26 15:06:41 starlite nm-dispatcher: ... new request (3 scripts)
Sep 26 15:06:41 starlite systemd[1]: Starting PackageKit Daemon...
Sep 26 15:06:41 starlite nm-dispatcher: ... start running ordered scripts...
Sep 26 15:06:42 starlite PackageKit: daemon start [image: 2]
^C

	[image: 1]

	Follow the logs of the syslogd process with the -f option.

	[image: 2]

	An example log line; see “Syslog” for the format.

Tip

If you want to see the log output of a process and at the same time store it in a file, you can use the
tee command:

$ someprocess | tee -a some.log

Now you’d see the output of someprocess in your terminal, and the output would
at the same time be stored in some.log. Note that we’re using the -a option to append
to the log file, otherwise it would be truncated.

Let’s now have a look at the two most commonly used Linux logging systems.

Syslog

Syslog is a logging standard for a range of sources, from the kernel to daemons
to user space. It has its roots in networked environments, and today the
protocol comprises a textual format defined in RFC 5424,
along with deployment scenarios and security considerations.
Figure 8-2 shows the high-level format of Syslog, but be aware
that there are many seldom-used optional fields.

[image: lmlx 0802]
Figure 8-2. Syslog format as per RFC 5424

The Syslog format as defined in RFC 5424 has the following header fields (with TS
and HN the most often used):

	PRI

	
The message facility/severity

	VER

	
The Syslog protocol number (usually left out since it can only be 1)

	TS

	
Contains the time when the message was generated using ISO 8601 format

	HN

	
Identifies the machine that sent the message

	APP

	
Identifies the application (or a device) that sent the message

	PID

	
Identifies the process that sent the message

	MID

	
An optional message ID

The format also includes structured data, which is the payload in a structured (key/value-based) list where each
 element is bounded by [].

Usually, one would use the syslogd binary
to take care of the log management. Over time, other options have become available
that you should be aware of:

	syslog-ng

	
An
enhanced log daemon that you can use as a drop-in replacement for syslogd and
that in addition supports TLS, content-based filtering, and logging into
databases such as PostgreSQL and MongoDB. Available since late 1990.

	rsyslog

	
Extends the Syslog
 protocol and can also be used with systemd. Available since 2004.

Despite its age, the Syslog family of protocols and tools is still around and
widely available. With systemd becoming the de facto standard of init systems,
used in every major Linux distro, there is, however, a new way to go about logging:
meet the
systemd journal.

journalctl

In “systemd”, we briefly touched upon a component that is part of the systemd
ecosystem, responsible for log management:
journalctl.
In contrast to Syslog and the other systems we’ve used so far, journalctl uses a binary
format to store the log items. This allows faster access and better storage footprints.

The binary storage format did attract some criticism when it was introduced since
people are not able to continue to use the familiar tail, cat, and grep
commands to view and search logs. Having said that, while one has to learn a new way
to interact with logs when using journalctl, the learning curve is not
too bad.

Let’s have a look at some common tasks. If you launch journalctl without
parameters, it will present itself as an interactive pager (you can use the arrow keys or space
bar to scroll through it and exit with q) for all the logs.

To restrict the time range, you can, for example, use the following:

$ journalctl --since "3 hours ago" [image: 1]

$ journalctl --since "2021-09-26 15:30:00" --until "2021-09-26 18:30:00" [image: 2]

	[image: 1]

	Restrict the time range to what happened in the past three hours.

	[image: 2]

	Another way to restrict the time range, with explicit start and stop times.

You can limit the output to specific systemd units like so (assuming
there is a service called abc.service):

$ journalctl -u abc.service

Tip

The journalctl tool has a powerful way to format the output of the
log items. Using the --output (or -o for short) parameter, you
can optimize the output for a certain use case. Important values are the following:

	cat

	
Short form, without time stamp or source

	short

	
The default, emulating Syslog output

	json

	
One JSON-formatted entry per line (for automation)

You can have the same experience to follow the logs as you’d have with
tail -f using the following:

$ journalctl -f

Let’s put all the preceding information together into a concrete example. Assume
you want to relaunch a security component of the Linux distro, managed by
systemd: AppArmor. That is, in one terminal we
restart the service using systemctl restart apparmor, and in another we execute
the following command (output edited; the actual output is one log item per line):

$ journalctl -f -u apparmor.service [image: 1]
-- Logs begin at Sun 2021-01-24 14:36:30 GMT. --
Sep 26 17:10:02 starlite apparmor[13883]: All profile caches have been cleared,
 but no profiles have been unloaded.
Sep 26 17:10:02 starlite apparmor[13883]: Unloading profiles will leave already
 running processes permanently
...
Sep 26 17:10:02 starlite systemd[1]: Stopped AppArmor initialization.
Sep 26 17:10:02 starlite systemd[1]: Starting AppArmor initialization... [image: 2]
Sep 26 17:10:02 starlite apparmor[13904]: * Starting AppArmor profiles
Sep 26 17:10:03 starlite apparmor[13904]: Skipping profile in
 /etc/apparmor.d/disable: usr.sbin.rsyslogd
Sep 26 17:10:09 starlite apparmor[13904]: ...done.
Sep 26 17:10:09 starlite systemd[1]: Started AppArmor initialization.

	[image: 1]

	Follow the logs of the AppArmor service.

	[image: 2]

	After systemd has stopped the service, here it comes back up again.

With that we are at the end of the logging section and move on to numerical
values with metrics and the wider topic of monitoring.

Monitoring

Monitoring is the capturing of system and application metrics for a variety of reasons.
For example, you may be interested in how long something takes or how many resources
a process consumes (performance monitoring), or you may be troubleshooting an
unhealthy system. The two types of activities you’ll carry out most often in the
context of monitoring are as follows:

	
Tracking one or more metrics (over time)

	
Alerting on a condition

In this section, we first focus on some foundations and tools you should be aware of,
and as we move further into the section, we get into more advanced
techniques that may be relevant only in certain situations.

Let’s look at a simple example that displays some basic metrics, such as how
long a system is running, memory usage, and more, using the
uptime command:

$ uptime [image: 1]
08:48:29 up 21 days, 20:59, 1 user, load average: 0.76, 0.20, 0.09 [image: 2]

	[image: 1]

	Use the uptime command to display some basic system metrics.

	[image: 2]

	Separated by commas, the output tells us how long the system is running,
the number of users logged in, and then (in the load average section)
three gauges: the 1-minute, 5-minute, and 15-minute average.
These averages are the number of jobs in the run queue or waiting for disk I/O; the numbers are
normalized and indicate how busy the CPUs are. For example, here the load average
for the past 5 minutes was 0.2 (which in isolation doesn’t tell you much,
so you have to compare it with the other values and track it over time).

Next, let’s monitor some basic memory utilization, using the free command
(output compressed to fit):

$ free -h [image: 1]
 total used free shared buff/cache available
Mem: 7.6G 1.3G 355M 395M 6.0G 5.6G [image: 2]
Swap: 975M 1.2M 974M [image: 3]

	[image: 1]

	Show memory usage using a human-friendly output.

	[image: 2]

	The memory stats: total/used/free/shared memory, memory used in
buffers and used for caching (use -w if you don’t want the combined value),
and the available memory.

	[image: 3]

	The total/used/free amount of swap space—that is, physical memory moved out
to a swap disk space.

A more sophisticated way to look at memory usage is using the
vmstat (short for virtual memory stats) command.
The following example uses vmstat in a self-updating manner (output edited to fit):

$ vmstat 1 [image: 1]
procs -----------memory--------- ---swap-- ----io---- -system- -----cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st [image: 2]
4 0 1184 482116 682388 5447048 0 0 12 105 28 191 6 3 91 0 0
0 0 1184 483444 682388 5446600 0 0 0 0 369 522 1 0 99 0 0
0 0 1184 483696 682392 5446600 0 0 0 104 278 374 1 1 99 0 0
^C

	[image: 1]

	Show memory stats. The argument 1 means to print a new summary line every
second.

	[image: 2]

	Some important column headers: r is for the number of processes running
or waiting for CPU (should be less than or equal to the number of CPUs you have),
free is the free main memory in KB, in is the number of interrupts
per second, cs is the number of context switches per second, and us to
st are percentages of total CPU time across user space, kernel, idle, and the like.

To see how long a certain operation takes, you can use the time command:

$ time (ls -R /etc 2&> /dev/null) [image: 1]

real 0m0.022s [image: 2]
user 0m0.012s [image: 3]
sys 0m0.007s [image: 4]

	[image: 1]

	Measure how long recursively listing all /etc subdirectories takes
(we throw away all output, including errors, with 2&> /dev/null).

	[image: 2]

	The total (wall clock) time it took (not really useful other than for performance).

	[image: 3]

	How long ls itself spent on-CPU (user space).

	[image: 4]

	How long ls was waiting for Linux to do something (kernel space).

In the previous example, if you’re interested in how long an operation took,
taking the sum of user and sys is a good approximation, and the ratio
of the two gives you a good idea where it spends most of the execution time.

Now we focus on some more specific topics: network interfaces and block devices.

Device I/O and Network Interfaces

With iostat you can monitor I/O devices
(output edited):

$ iostat -z --human [image: 1]
Linux 5.4.0-81-generic (starlite) 09/26/21 _x86_64_ (4 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle
 5.8% 0.0% 2.7% 0.1% 0.0% 91.4%

Device tps kB_read/s kB_wrtn/s kB_read kB_wrtn
loop0 0.00 0.0k 0.0k 343.0k 0.0k
loop1 0.00 0.0k 0.0k 2.8M 0.0k
...
sda 0.38 1.4k 12.4k 2.5G 22.5G [image: 2]
dm-0 0.72 1.3k 12.5k 2.4G 22.7G
...
loop12 0.00 0.0k 0.0k 1.5M 0.0k

	[image: 1]

	Use iostat to show I/O device metrics. With -z, we tell it to
show only devices where there was some activity, and the --human
makes the output nicer (units are in human-readable form).

	[image: 2]

	Example row: tps is the number of transfers (I/O requests) per second for that
device, read is data volume, and wrtn is written data.

Next up: network interfaces with the
ss command that can
dump socket statistics (see also “Sockets”). The following command lists both
TCP and UDP sockets along with process IDs (output edited to fit):

$ ss -atup [image: 1]
Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
udp UNCONN 0 0 0.0.0.0:60360 0.0.0.0:*
...
udp UNCONN 0 0 0.0.0.0:ipp 0.0.0.0:*
udp UNCONN 0 0 0.0.0.0:789 0.0.0.0:*
udp UNCONN 0 0 224.0.0.251:mdns 0.0.0.0:*
udp UNCONN 0 0 0.0.0.0:mdns 0.0.0.0:*
udp ESTAB 0 0 192.168.178.40:51008 74.125.193.113:443
...
tcp LISTEN 0 128 0.0.0.0:sunrpc 0.0.0.0:*
tcp LISTEN 0 128 127.0.0.53%lo:domain 0.0.0.0:*
tcp LISTEN 0 5 127.0.0.1:ipp 0.0.0.0:*
tcp LISTEN 0 4096 127.0.0.1:45313 0.0.0.0:*
tcp ESTAB 0 0 192.168.178.40:57628 74.125.193.188:5228 [image: 2]
tcp LISTEN 0 128 [::]:sunrpc [::]:*
tcp LISTEN 0 5 [::1]:ipp [::]:*

	[image: 1]

	Use ss with the following options: with -a, we select all (that is,
both listening and nonlistening sockets); the -t and -u select TCP
and UDP, respectively; and
-p shows the processes using the sockets.

	[image: 2]

	An example socket in use. It’s an established TCP connection between local
IPv4 address 192.168.178.40 and remote 74.125.193.188 that seems idle:
both data queued for receive (Recv-Q) and transmit (Send-Q) report zero.

Note

An outdated way to gather and display interface stats is
using netstat.
For example, if you want to have a continuously updated view on
TCP and UDP, including process ID and using IP addresses rather than
FQDNs, you could use netstat -ctulpn.

lsof stands for
“list open files” and is a versatile tool with many use cases. The following example shows lsof
used in the context of network connections (output edited to fit):

$ sudo lsof -i TCP:1-1024 [image: 1]
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
...
rpcbind 26901 root 8u IPv4 615970 0t0 TCP *:sunrpc (LISTEN)
rpcbind 26901 root 11u IPv6 615973 0t0 TCP *:sunrpc (LISTEN)

	[image: 1]

	List privileged TCP ports (needs root privileges).

Another usage example for lsof is a process-centric view: if you know the
PID of a process (here, Chrome), you can use lsof to track file descriptors,
I/O, etc. (output edited to fit):

$ lsof -p 5299
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
chrome 5299 mh9 cwd DIR 253,0 4096 6291458 /home/mh9
chrome 5299 mh9 rtd DIR 253,0 4096 2 /
chrome 5299 mh9 txt REG 253,0 179093936 3673554 /opt/google/chrome/chrome
...

There are many more tools for (performance) monitoring available—for example,
sar (covering a range of counters, nice for
scripts) and perf—some of
which we will discuss in “Advanced Observability”.

Now that you have a handle on individual tools, let’s move on to integrated
tools that allow you to interactively monitor Linux.

Integrated Performance Monitors

Using the tooling we discussed in the previous section, such as lsof or vmstat,
is a good starting point and also useful in scripts. For more convenient
monitoring, you may prefer integrated solutions. These typically come with a
textual user interface (TUI), sometimes in color, and offer the following features:

	
Support for multiple resource types (CPU, RAM, I/O)

	
Interactive sorting and filtering (by process, user, resource)

	
Live updates and drill-down into details such as a process group or even
cgroups and namespaces

For example, the widely available top provides
an overview in the header—akin to what we saw in the uptime output—and then a
tabular rendering of CPU and memory details, followed by a list of
processes you can track (output edited):

top - 12:52:54 up 22 days, 1:04, 1 user, load average: 0.23, 0.26, 0.23 [image: 1]
Tasks: 263 total, 1 running, 205 sleeping, 0 stopped, 0 zombie [image: 2]
%Cpu(s): 0.2 us, 0.4 sy, 0.0 ni, 99.3 id, 0.0 wa, 0.0 hi, 0.0 si, \
 0.0 st% [image: 3]
KiB Mem : 7975928 total, 363608 free, 1360348 used, 6251972 buff/cache
KiB Swap: 999420 total, 998236 free, 1184 used. 5914992 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND [image: 4]
 1 root 20 0 225776 9580 6712 S 0.0 0.1 0:25.84 systemd
...
433 root 20 0 105908 1928 1700 S 0.0 0.0 0:00.05 `- lvmetad
...
775 root 20 0 36552 4240 3880 S 0.0 0.1 0:00.16 `- bluetoothd
789 syslog 20 0 263040 4384 3616 S 0.0 0.1 0:01.98 `- rsyslogd

	[image: 1]

	Summary of system (compare with uptime output)

	[image: 2]

	Task statistics

	[image: 3]

	CPU usage statistics (user, kernel, etc.; similar to vmstat output)

	[image: 4]

	The dynamic process list, including details on a per-process level;
comparable to ps aux output

Tip

The following are the most important keys to remember in top:

	?

	
To list the help (including key mappings)

	V

	
To toggle to and from process tree view

	m

	
To sort by memory usage

	P

	
To sort by CPU consumption

	k

	
To send a signal (like to kill)

	q

	
To quit

While top is available in virtually any environment, there are a number of
alternatives available, including the following:

	htop (Figure 8-3)

	
An incremental top
 improvement that is faster than top and has a nicer user interface.

	atop (Figure 8-4)

	
A powerful alternative to top.
 In addition to CPU and memory, it covers resources such as I/O and network stats
 in great detail.

	below

	
A relatively new tool
 that is notable especially because it is cgroups v2–aware (see “Linux cgroups”).
 Other tools do not understand cgroups and hence provide only a global resource view.

[image: lmlx 0803]
Figure 8-3. A screenshot of the htop tool

[image: lmlx 0804]
Figure 8-4. A screenshot of the atop tool

There are a number of other integrated monitoring tools available that go beyond
the basic sources or that specialize in certain use cases. These include but are not limited to the following:

	glances

	
A powerful hybrid that covers devices in addition to the usual resources

	guider

	
An integrated performance analyzer
 that allows you to display and graph a range of metrics

	neoss

	
For network traffic monitoring; an ss replacement that offers a
 nice TUI

	mtr

	
For network traffic monitoring; a more powerful alternative to traceroute (see “Routing” for details on traceroute)

Now that you have a broad understanding of the tooling to consume system metrics,
let’s see how you can expose those from your own code.

Instrumentation

So far we’ve focused on signals coming from the kernel or existing applications
(that is, code that you don’t own). Now we move to the topic of how you can, similar to
logs, equip your code to emit metrics.

The process of inserting code to emit signals, especially metrics, is mainly
relevant if you’re developing software. This process is usually referred to as
instrumentation, and there are two common instrumentation strategies:
autoinstrumentation (no additional effort for you as a developer) and custom
instrumentation, where you manually insert code snippets to, for example, emit a
metric at a certain point in your code base.

You can use StatsD, with client-side libraries
available for a number of programming languages, such as Ruby, Node.js, Python, and Go. StatsD is nice, but it has a few limitations, especially in dynamic environments
such as Kubernetes or IoT. In those environments, a different approach—sometimes called pull-based
or scraping—is usually a better choice. With scraping, applications expose metrics (usually via an HTTP endpoint), and an agent then calls this endpoint to retrieve metrics, rather than configuring the app with where to send the metrics to.
We’ll return to this topic in “Prometheus and Grafana”.

Advanced Observability

Now that you know the basics of Linux observability, let’s have a look at
some more advanced topics in this space.

Tracing and Profiling

The term tracing is overloaded: in the context of Linux, on a single machine,
tracing means capturing the process execution (function calls in user space, syscalls,
etc.) over time.

Note

In a distributed setup like containerized microservices in
Kubernetes or a bunch of Lambda functions that are part of a serverless app, we sometimes
shorten
distributed
tracing (for example, with OpenTelemetry and Jaeger) to tracing. This type
of tracing is out of scope for this book.

There are a number of data sources in the context of a single Linux machine.
You can use the following as sources for tracing:

	The Linux kernel

	
Traces can come from functions in the kernel or be triggered
 by syscalls. Examples include
 kernel probes
 (kprobes) or
 kernel
 tracepoints.

	User space

	
Application function calls, for example via
 user space
 probes (uprobes), can act as a source for traces.

Use cases for tracing include the following:

	
Debugging a program using, for example, the strace tracing tool

	
Performance analysis with a frontend, using perf

Warning

You may be tempted to use strace everywhere; however, you should be aware
of the overhead it causes. This is particularly relevant for production
environments. Read
“strace
Wow Much Syscall” by Brendan Gregg to understand the background.

See Figure 8-5 for an example output of sudo perf top, which generates a
summary by process.

[image: lmlx 0805]
Figure 8-5. A screenshot of the perf tracing tool

Going forward, it seems that eBPF (see “A Modern Way to Extend the Kernel: eBPF”) will become the de facto standard
to implement tracing, especially for custom cases. It has a rich ecosystem and
growing vendor support, so if you’re looking for a future-proof tracing method,
make sure it’s using eBPF.

One particular use case for tracing is profiling—that is, to identify
frequently called code sections. Some relevant low-level tooling for profiling
include pprof, Valgrind, and flame graph visualizations.

There are many options to consume perf output interactively and visualize
traces; for example, see Mark Hansen’s blog post
“Linux perf Profiler UIs”.

Continuous profiling is an advanced variant of profiling, which captures
traces (kernel and user space) over time. Once these timestamped traces are
collected, you can plot and compare them and drill down into interesting
segments. One very promising example is the eBPF-based open source project
parca, shown in Figure 8-6.

[image: lmlx 0806]
Figure 8-6. A screenshot of parca, a continuous profiling tool

Prometheus and Grafana

If you’re dealing with metrics over time (time series data), using
the Prometheus and Grafana combo
is something you may want to consider for advanced observability.

I’ll show you a simple, single-machine setup that you can
use to dashboard and even alert on things going on in your Linux machine.

We’ll use the node exporter
to expose a range of system metrics, from CPU to memory and network. We’ll
then use Prometheus to scrape the node exporter. Scraping means that Prometheus
calls an HTTP endpoint that the node exporter offers via the URL path /metrics, returning the metrics
in OpenMetrics format. For that to happen, we need to
configure Prometheus with the URL of the node exporter’s HTTP endpoint. The
final step in our setup is using Prometheus as a datasource in Grafana,
where you can see the time series data (metrics over time) in dashboards and
can even alert on certain conditions, such as low disk space or CPUs
overloading.

So, as a first step, download and untar the node exporter, and have it run the
binary with ./node_exporter & in the background. You can check if it’s running
properly with the following (output edited):

$ curl localhost:9100/metrics
...
TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 7.2575e-05
go_gc_duration_seconds{quantile="0.25"} 0.00011246
go_gc_duration_seconds{quantile="0.5"} 0.000227351
go_gc_duration_seconds{quantile="0.75"} 0.000336613
go_gc_duration_seconds{quantile="1"} 0.002659194
go_gc_duration_seconds_sum 0.126529838
go_gc_duration_seconds_count 390
...

Now that we have the signal data source set up, we run both Prometheus and
Grafana as containers. For the following, you’ll need Docker
(see “Docker”) installed and configured.

Create a Prometheus configuration file called prometheus.yml
with the following
content:

global:
 scrape_interval: 15s
 evaluation_interval: 15s
 external_labels:
 monitor: 'mymachine'
scrape_configs:
 - job_name: 'prometheus' [image: 1]
 static_configs:
 - targets: ['localhost:9090']
 - job_name: 'machine' [image: 2]
 static_configs:
 - targets: ['172.17.0.1:9100']

	[image: 1]

	Prometheus itself exposes metrics, so we include this (self-monitoring).

	[image: 2]

	That’s our node exporter. Since we’re running Prometheus in Docker, we
can’t use localhost but rather use the IP address Docker uses by default.

We use the Prometheus configuration file we created in the previous step
and mount it into the container via a volume, like so:

$ docker run --name prometheus \
 --rm -d -p 9090:9090 \ [image: 1]
 -v /home/mh9/lml/o11y/prometheus.yml:/etc/prometheus/prometheus.yml \ [image: 2]
 prom/prometheus:main

	[image: 1]

	The parameters here make Docker remove the container on exit (--rm),
run as a daemon (-d), and expose the port 9090 (-p) so we can use it from
our machine.

	[image: 2]

	Mapping our config file as a volume into the container. Note that here you
will have to replace /home/mh9/lml/o11y/ with the path where you stored
it. Also, this has to be an absolute path. So, if you want to keep this
flexible, you could use $PWD in bash or (pwd) in Fish rather than
the hardcoded path.

After you’ve executed the previous command, open localhost:9000 in your browser,
then click Targets in the Status dropdown menu at the top. You should, after
a few seconds, see something like the screen shown in Figure 8-7, confirming
that Prometheus has successfully scraped metrics from itself and the node
exporter.

[image: lmlx 0807]
Figure 8-7. A screenshot of Prometheus targets in the Web UI

Next, we launch Grafana:

$ docker run --name grafana \
 --rm -d -p 3000:3000 \
 grafana/grafana:8.0.3

After you’ve executed the preceding command, open localhost:3000 in your browser
and use admin for both the username and password. Next, we need to do two
things:

	
Add Prometheus as a datasource
in Grafana, using 172.17.0.1:9100 as the URL

	
Import the Node Exporter Full dashboard

Once you’ve done this, you should see something akin to Figure 8-8.

[image: lmlx 0808]
Figure 8-8. A screenshot of the Grafana UI with the Node Exporter Full dashboard

That was some exciting advanced observability for Linux, using modern tooling.
Given that the Prometheus/Grafana setup is more elaborate and has a number of
moving parts, you’ll likely not use it for a trivial task. In other words,
the Linux native tooling we discussed in this section should go a long way;
however, there are more advanced use cases—for example, home automation or
a media server—where you want to have a more complete solution, in which case
Prometheus/Grafana makes a lot of sense.

Conclusion

In this chapter, we looked at making sure you’re not flying blind when you’re
running into issues with your Linux system. The main signal types you’d
typically use for diagnostics are logs (textual) and metrics (numerical).
For advanced cases, you can apply profiling techniques, rendering resource
usage of processes along with the execution context (source file and lines
of the source code that is being executed).

If you want to learn more and dive deeper into this topic, have
a look at these resources:

	Basics

	

	
Systems Performance: Enterprise and the Cloud, second edition, by Brendan Gregg (Addison-Wesley)

	
“Linux Performance Analysis in 60,000 Milliseconds”

	Logging

	

	
“Linux Logging Complete Guide”

	
“Unix/Linux—System Logging”

	
“syslog-ng” on ArchWiki

	
fluentd website

	Monitoring

	

	
“80+ Linux Monitoring Tools for SysAdmins”

	
“Monitoring StatsD: Metric Types, Format and Code Examples”

	Advanced

	

	
“Linux Performance”

	
“Linux Tracing Systems & How They Fit Together”

	
“Profilerpedia: A Map of the Software Profiling Ecosystem”

	
“On the State of Continuous Profiling”

	
eBPF website

	
“Monitoring Linux Host Metrics with the Node Exporter”

Having completed this chapter and those that preceded it, you now know the basics of Linux, from kernel to shell to filesystems
and networking. The last chapter of this book is a collection of advanced topics
that didn’t quite fit in other chapters. You may find them interesting and
useful, depending on your goals, but for most day-to-day tasks, you now
know everything you need to get by.

1 Observability is also sometimes referred to with the numeronym o11y, as there are 11 letters between the o and the y.

Chapter 9. Advanced Topics

This final chapter is a bit of a mixed bag. We cover
a range of topics, from virtual machines to security to new ways to
use Linux. What the topics in this chapter have in common is that most of
them are relevant for you only if you have a specific use case in mind,
or if you require them in a professional setup.

We start off the chapter with how processes on a single machine can communicate
and share data. There is a wealth of interprocess communication (IPC) mechanisms
available, and here we focus on well-established and -used features: signals, named pipes,
and Unix domain sockets.

Then, we look at virtual machines (VMs). In contrast to the containers
we discussed in “Containers” (which are good for application-level dependency
management), VMs provide strong isolation for your workloads. You come across
VMs most often in the context of the public cloud and in the general case in
data centers. Having said that, using VMs locally can also be useful, such as for testing or to simulate distributed systems.

The next section in this chapter focuses on modern Linux distributions, which
are usually container-centric and assume immutability. You’ll often find said distros in the context of distributed systems such as Kubernetes.

We then move on to selected security topics, covering Kerberos, a widely used
authentication suite, and pluggable authentication modules (PAM), an extension
mechanism Linux provides for authentication.

In the last part of this chapter, we review Linux solutions and use cases that,
at the time of writing, are not yet mainstream. But they could be relevant to you
and are worth exploring.

Interprocess Communication

In Linux there is a long list of
interprocess communication
(IPC) options available, ranging from pipes to sockets to shared memory. IPC enables
processes to communicate, synchronize activities, and share data. For example,
the Docker daemon
uses configurable sockets to manage containers. In this section, we review some
popular IPC options and their use cases.

Signals

Signals were originally
developed as a way for the kernel to notify user space processes about a
certain event. Think of signals as an asynchronous notification sent to a process.
There are many signals available (use the man 7 signal command to learn more),
and most of them come with a default action, such as stop or terminate the process.

With most signals, you define a custom handler, rather than letting Linux carry
on with the default action. This is useful when you want to, for example,
do some clean-up work or simply ignore certain signals. Table 9-1 shows
the most common signals that you should be familiar with.

Table 9-1. Common signals

	Signal
	Meaning
	Default action
	Handle option
	Key combination

	SIGHUP

	Tell a daemon process to reread its config file

	Terminate process

	nohup or custom handler

	N/A

	SIGINT

	User interruption from keyboard

	Terminate process

	Custom handler

	Ctrl+C

	SIGQUIT

	User quit from keyboard

	core dump and terminate process

	Custom handler

	Ctrl+\

	SIGKILL

	Kill signal

	Terminate process

	Cannot be handled

	N/A

	SIGSTOP

	Stop process

	Stop process

	Cannot be handled

	N/A

	SIGTSTP

	User caused stop from keyboard

	Stop process

	Custom handler

	Ctrl+Z

	SIGTERM

	Graceful termination

	Terminate process

	Custom handler

	N/A

There are also signals that don’t have defined meanings (SIGUSR1 and SIGUSR2)
that processes can use to communicate with each other, sending asynchronous
notification, if both parties agree on the semantics of the signal.

One typical way to send a signal to a process is the somewhat strangely named
kill command (due to its default behavior to cause processes to terminate):

$ while true ; do sleep 1 ; done & [image: 1]
[1] 17030 [image: 2]

$ ps [image: 3]
 PID TTY TIME CMD
16939 pts/2 00:00:00 bash
17030 pts/2 00:00:00 bash [image: 4]
17041 pts/2 00:00:00 sleep
17045 pts/2 00:00:00 ps

$ kill 17030 [image: 5]
[1]+ Terminated while true; do
 sleep 1;
done

	[image: 1]

	We set up a very simple program here that simply sleeps. With &, we
put it into the background.

	[image: 2]

	The shell job control confirms that our program runs as a job with ID 1 in
the background and reports its PID (17030).

	[image: 3]

	Using ps, we check if the program is still running.

	[image: 4]

	Here is our program (compare PID).

	[image: 5]

	By default, kill sends the SIGTERM to the process, and the default action
is to terminate the process gracefully. We provide kill with the PID of our process (17030), and since we didn’t register a custom handler, it is
terminated.

Now we’ll look at how to handle a signal with
trap. This allows us
to define a custom handler in a shell environment (command line
or script):

$ trap "echo kthxbye" SIGINT ; while true ; do sleep 1 ; done [image: 1]
^Ckthxbye [image: 2]

	[image: 1]

	With trap "echo kthxbye" SIGINT, we register a handler, telling Linux
that when the user presses Ctrl+C (causing a SIGINT signal to be sent to
our process), Linux should execute echo kthxbye before the default action (terminate).

	[image: 2]

	We see the user interruption (^C is the same as Ctrl+C) and then our
custom handler getting executed, printing kthxbye, as expected.

Signals are a simple yet powerful IPC mechanism, and now you know the basics of
how to send and handle signals in Linux. Next up, we discuss two more elaborate
and powerful IPC mechanisms—named pipes and UNIX domain sockets.

Named Pipes

In “Streams”, we talked about pipes (|) that you can use to pass
data from one process to another by connecting the stdout of one process with
stdin of another process. We call these pipes unnamed. Taking this idea a step further,
named pipes are pipes to which you
can assign custom names.

Just like unnamed pipes, named pipes work with normal file I/O (open, write, etc.)
and provide first in, first out (FIFO) delivery. Unlike unnamed pipes, the lifetime
of a named pipe is not limited to the processes it’s used with. Technically,
named pipes are a wrapper around pipes, using the pipefs pseudo filesystem
(see “Pseudo Filesystems”).

Let’s see a named pipe in action to better appreciate what you can do with
them. We create a named pipe called examplepipe in the following, along with
one publisher and one consumer process:

$ mkfifo examplepipe [image: 1]

$ ls -l examplepipe
prw-rw-r-- 1 mh9 mh9 0 Oct 2 14:04 examplepipe [image: 2]

$ while true ; do echo "x" > examplepipe ; sleep 5 ; done & [image: 3]
[1] 19628

$ while true ; do cat < examplepipe ; sleep 5 ; done & [image: 4]
[2] 19636
x [image: 5]
x
...

	[image: 1]

	We create a named pipe called examplepipe.

	[image: 2]

	Looking at the pipe with ls reveals its type: the first letter is a p,
indicating it’s a named pipe we’re looking at.

	[image: 3]

	Using a loop, we publish the character x into our pipe. Note that unless
some other process reads from examplepipe, the pipe is blocked.
No further writing into it is possible.

	[image: 4]

	We launch a second process that reads from the pipe in a loop.

	[image: 5]

	As a result of our setup we see x appearing on the terminal, roughly
every five seconds. In other words, it appears every time the process with PID
19636 is able to read from the named pipe with cat.

Named pipes are easy to use. Thanks to their design, they look and feel like
normal files. But they’re also limited, since they support only one direction
and one consumer. The next IPC mechanism we look at addresses these limitations.

UNIX Domain Sockets

We’ve already talked about sockets in the context of networking. There are also
other kinds of sockets that work exclusively in the context of a single machine,
and one such kind is called UNIX
domain sockets: these are bidirectional, multiway communication endpoints.
This means you can have multiple
consumers.

Domain sockets come in three
flavors: stream-oriented (SOCK_STREAM), datagram-oriented (SOCK_DGRAM), and sequenced-packet (SOCK_SEQPACKET). The addressing works based on filesystem pathnames. Rather than
having IP addresses and ports, a simple file path is sufficient.

Usually, you would be using domain sockets
programmatically.
However, you might find yourself in a situation where you need to troubleshoot
a system and want to use, for example, the socat
tool from the command line to interact manually with a socket.

Virtual Machines

This section is about an established technique that allows us to emulate
multiple VMs using a physical machine such as your
laptop or a server in a data center. This yields a more flexible and powerful
way to run different workloads, potentially from different tenants in a strongly
isolated manner. We focus on hardware-assisted virtualization for x86
architectures.

In Figure 9-1, you see the virtualization architecture on a conceptual level, comprising the following (starting from the bottom):

	The CPU

	
Must support hardware virtualization.

	The kernel-based virtual machine

	
Found in the Linux kernel; discussed in “Kernel-Based Virtual Machine”.

	Components in the user space

	
Components in the user space include the following:

	A Virtual Machine Monitor (VMM)

	
Manages VMs and emulates
 virtual devices, such as QEMU and Firecracker
 (see “Firecracker”). There is also libvirt, a
 library that exposes a generic API aiming to standardize VMM,
 which you can use programmatically (not explicitly shown in the figure;
 consider it part of the VMM block).

	The guest kernel

	
Typically also a Linux kernel but could also be Windows.

	The guest processes

	
Running on the guest kernel.

[image: lmlx 0901]
Figure 9-1. Virtualization architecture

The processes that run natively on the host kernel (in Figure 9-1, process 1 and process
2) are isolated from the guest processes. This means that in general the
physical CPU and memory of the host are not affected by guest activities. For
example, if there’s an attack going on in the VM, the host kernel and processes
are unaffected (as long as the VM is not given special access to the host
system). Note that there may be exceptions to this in practice, such
as rowhammer or
Meltdown and Spectre.

Kernel-Based Virtual Machine

The Kernel-based Virtual Machine (KVM)
is a Linux-native virtualization solution for x86 hardware that supports virtualization
extensions, such as the case with
AMD-V or
Intel VT.

There are two parts to the KVM kernel modules: the core module (kvm.ko) and
CPU architecture-specific modules (kvm-intel.ko/kvm-amd.ko). With KVM,
the Linux kernel is the hypervisor, taking care of most of the heavy lifting.
In addition, there are drivers such as the integrated
Virtio that allow for I/O
virtualization.

Today, hardware usually supports virtualization and KVM is already available,
but in order to see if your system is capable of using KVM, you can do
the following check (output edited):

$ grep 'svm\|vmx' /proc/cpuinfo [image: 1]
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb
rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology
tsc_reliable nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64
ds_cpl vmx tm2 ssse3 sdbg cx16 xtpr pdcm sse4_1 sse4_2 x2apic movbe popcnt [image: 2]
tsc_deadline_timer aes xsave rdrand lahf_lm 3dnowprefetch cpuid_fault cat_l2
ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust
smep erms mpx rdt_a rdseed smap clflushopt intel_pt sha_ni xsaveopt xsavec
xgetbv1 xsaves dtherm ida arat pln pts md_clear arch_capabilities
...

$ lsmod | grep kvm [image: 3]

kvm_intel 253952 0 [image: 4]
kvm 659456 1 kvm_intel

	[image: 1]

	Search for svm or vmx in the CPU information (note that it reports on a per-CPU
basis, so if you have eight cores, you would see this flags block
repeated eight times).

	[image: 2]

	We see vmx is listed, so we’re good concerning hardware-assisted

virtualization.

	[image: 3]

	Here we check if the KVM kernel modules are available.

	[image: 4]

	This tells us that we have the kvm_intel kernel module loaded, so we’re
all set concerning KVM usage.

One modern way to manage KVMs is with Firecracker.

Firecracker

Firecracker
is a VMM that can manage KVM instances. It is written
in Rust and was developed at Amazon Web Services primarily for serverless offerings,
such as AWS Lambda and AWS Fargate.

Firecracker is designed
to safely run multitenant workloads on the same physical machine. The
Firecracker VMM manages so-called microVMs that expose an HTTP API to the
host, allowing you to launch, query, and stop the microVMs. It emulates network
interfaces by using
TUN/TAP devices
on the host, and block devices are backed by files on the host, supporting Virtio
devices.

From a security perspective, in addition to the virtualization
discussed so far, Firecracker by default uses seccomp filters (see “seccomp Profiles”)
to limit the host system calls it can use. cgroups can also be used.
From an observability point of view, you can gather logs and metrics from Firecracker,
via named pipes.

With that we move on to modern Linux distributions that focus on immutability and
leverage containers.

Modern Linux Distros

The most prominent traditional Linux distributions include the following:

	
The Red Hat family (RHEL, Fedora, and CentOS/Rocky)

	
The Debian-based family (Ubuntu, Mint, Kali, Parrot OS, elementary OS, etc.)

	
The SUSE family (openSUSE and Enterprise)

	
Gentoo

	
Arch Linux

These are all perfectly fine distros. Depending on your needs and preferences,
you can choose from being fully in control and taking care of everything yourself
(from installation to patching) to having a fully managed offering where the distro
takes care of most of the tasks.

With the rise of containers, as discussed in “Containers”, the role of the
host operating system has changed. In the context of containers, traditional
package managers (see “Packages and Package Managers”) play a different role: most base
container images tend to be built from particular Linux distros, and dependencies
are met within the containers with .deb or .rpm packages, while the
container images package up all the application-level dependencies on top of them.

Further, making incremental changes to a system turns out to be a big challenge.
This is especially true when you need to do it at scale, such as when you need
to administrate a fleet of machines. Hence, for modern distros, the focus is
increasingly on immutability. The idea is that any change in the configuration
or code (think: a patch that fixes a security issue or a new feature) causes
the creation of a new artifact, such as a container image that gets launched
(in contrast to changing the running system).

When I say “modern Linux distros,” I mean distros that are container-centric, with
immutability and auto-upgrading (pioneered by Chrome) front and center.
Let’s have a look at some examples of modern distros.

Red Hat Enterprise Linux CoreOS

In 2013, a young start-up called CoreOS
made CoreOS Linux (later renamed
Container Linux) available. Its main features included a dual-partition scheme
for system updates and the lack of a package manager. In other words, all
apps would run as containers natively. In the ecosystem, a number of
tools were developed that are still in use (such as etcd; think: a distributed
version of the /etc directory for configuration tasks).

After Red Hat acquired CoreOS (the company), it announced the intention to
merge the CoreOS Linux with Red Hat’s own Project Atomic (that had similar
goals). This merger led to
Red Hat Enterprise Linux CoreOS (RHCOS),
which is not meant to be used on its own but in the context of the Red Hat
Kubernetes distribution called OpenShift Container Platform.

Flatcar Container Linux

A little bit after Red Hat announced its plans around Container Linux,
a German startup called Kinvolk GmbH (now part of Microsoft) announced that
it would fork and continue to develop Container Linux under the new brand name
Flatcar Container Linux.

Flatcar describes itself as a container-native, lightweight operating system
with use cases in container orchestrators such as Kubernetes and IoT/edge computing.
It continues the CoreOS tradition of auto-upgrades (optional with its own
update manager, Nebraska) and has a powerful yet simple-to-use provisioning utility called
Ignition
that enables you to have fine-grained control over boot devices (also used by
RHCOS for that purpose). Further, there is no package manager; everything is
running in containers. You can manage the life cycle of the containerized apps
with systemctl on a single machine or more typically with Kubernetes.

Bottlerocket

Bottlerocket is a
Linux-based operating system developed by AWS and meant for
hosting containers.
Written in Rust, it is used in a number of their offerings, such as Amazon EKS
and Amazon ECS.

Akin to Flatcar and CoreOS, instead of a package manager, Bottlerocket uses an
OCI image-based model for app upgrades and rollbacks. Bottlerocket uses a
(by and large) read-only, integrity-checked filesystem based on
dm-verity.
To gain access (via SSH, although discouraged) and control Bottlerocket, it runs a so-called
control container,
in a separate containerd instance.

RancherOS

RancherOS is a Linux distro where everything is
a container managed by Docker. Sponsored by Rancher (now SUSE), it is optimized
for container workloads as in their Kubernetes distro. It runs two Docker
instances: the system Docker, which runs as the first process, and the user Docker,
which is used to create application containers. RancherOS has a small footprint, which
makes it really great to use in the context of embedded systems and edge
computing.

Selected Security Topics

In Chapter 4, we discussed a number of access control mechanisms.
We discussed authentication (authn, for short), which verifies the identity
of a user and is a precondition for any sort of authorization (authz, for short).
In this section, we briefly discuss two widely used authn tools that you
should be aware of.

Kerberos

Kerberos is an authn suite developed by the
Massachusetts Institute of Technology in the 1980s. Today, it’s
formally specified in RFC 4120
and related IETF documents. The core idea of Kerberos is that we’re usually
dealing with insecure networks, but we want a secure way for clients and
services to prove their identity to one another.

Conceptually, the Kerberos authn process, shown in Figure 9-2, works as
follows:

[image: lmlx 0902]
Figure 9-2. Kerberos protocol concept

	
A client (for example, a program on your laptop) sends a request to a Kerberos
component called the Key Distribution Center (KDC), asking for credentials for a
given service, such as printing or a directory.

	
The KDC responds with the requested credentials—that is, a ticket for the
service and a temporary encryption key (session key).

	
The client transmits the ticket (which contains the client’s identity and a
copy of the session key) to the service.

	
The session key, shared by the client and service, is used to authenticate the
client and may optionally be used to authenticate the service.

There are also challenges with Kerberos, such as the central role that the KDC
plays (a single point of failure) and its strict time requirements (it requires
clock synchronization between the client and the server via NTP). Overall,
while not simple to operate and administrate, Kerberos is widely used and
supported in the enterprise and cloud providers.

Pluggable Authentication Modules

Historically, a program would manage the user authentication process itself.
With pluggable authentication modules (PAM), a flexible
way to develop programs that are independent of a concrete authentication
scheme has arrived in Linux (PAM has been around since the end of the 1990s in the
wider UNIX ecosystem). PAM uses a modular architecture, providing developers a
powerful library to interface with it. It also allows system administrators to plug in
different modules, such as the following:

	pam_localuser

	
Requires that a user is listed in /etc/passwd

	pam_keyinit

	
For
 session keyrings

	pam_krb5

	
For Kerberos 5 password-based
 checks

With that, we’ve reached the end of the advanced security topics and now turn
to more aspirational topics.

Other Modern and Future Offerings

In this section, we look at exciting Linux offerings, including new ways
to set up Linux and ways to work with Linux in new environments. In the
server world (be it an on-premises data center or the public cloud),
Linux is already the de facto standard, and Linux is under the hood in many
mobile devices.

What the topics here in this section have in common is that at
the time of writing, they have not yet entered the mainstream. However, if you’re curious about what
future developments might look like or where there’s still high growth potential
for Linux, read on.

NixOS

NixOS is a source-based Linux distro, taking a functional approach
to package management and system configuration as well as rollbacks for upgrades.
I call this a “functional approach” because the artifacts are based on immutability.

The Nix package manager builds the entire operating
system, from the kernel to system packages and apps. Nix offers multiuser
package management and even allows you to install and use multiple versions of the
same package.

Unlike most other Linux distros, NixOS does not follow the Linux Standard Base
filesystem layout as discussed in “Common Filesystem Layouts” (with system programs
located in /usr/bin, /usr/lib, and so on, and the configuration usually
located in /etc).

There are a number of interesting ideas in NixOS and its ecosystem, making it
especially relevant for CI pipelines. Even if you don’t want to go all in,
you can, for example, use the Nix package manager standalone (outside of NixOS).

Linux on the Desktop

While the viability of
Linux on the desktop
is subject to ongoing discussions, there is without doubt plenty of choice
concerning desktop-friendly distros and with them a selection of
window managers.

In good UNIX tradition, the Graphical User Interface (GUI) part is separated
from the rest of the operating system. Usually, an
X window manager
takes care of the GUI responsibilities (from window management to styling and
rendering) with the help of a display manager.

On top of the window manager, implementing a desktop experience (such as icons, widgets, and
toolbars), sit the desktop
environments, such as KDE or MATE.

There are many beginner-friendly desktop Linux distros available nowadays,
making it easy to switch from Windows or macOS. The same is true for a range
of open source applications, from office apps (writing docs or working with
spreadsheets, such as LibreOffice) to drawing and image editing (Gimp),
to all major web browsers, games, media players, and utilities, to development
environments.

The catalyst for Linux on the desktop might in fact come from a rather
unexpected direction: with Windows 11
allowing you to run graphical Linux apps out of the box, this might change the
incentives and uptake for good. Time will tell.

Linux on Embedded Systems

Linux on embedded systems
is a wide field, with implementations ranging from cars to networking equipment (such as routers), to smart
home devices (for example fridges) and media devices/smart TVs.

One particularly interesting generic platform you can acquire for little money
is a Raspberry Pi (RPI). It comes with its own
Linux distro called Raspberry Pi OS (a Debian-based system) and lets you install
this and other Linux distros simply via a microSD card. The RPI has a number
of General Purpose Input/Outputs (GPIOs), making it straightforward to use
external sensors and circuits via a breadboard. You can experiment with, and
learn electronics and program the hardware with, for example, Python.

Linux in Cloud IDE

In recent years, the viability of cloud-based development environments
has made enormous progress to a point where now (commercial) offerings exist
that combine an IDE (usually Visual Studio Code), Git, and a range of
programming languages in a Linux environment. All you as a developer need is
a web browser and network access, and you can edit, test, and run code “in the cloud.”

Two notable examples of Cloud IDEs, at the time of writing, are
Gitpod, which is available either as a managed offering
or as an open source to host yourself, and
Codespaces, which is deeply integrated
into GitHub.

Conclusion

This chapter covered advanced topics and refined your knowledge of basic techniques and
tooling. If you want to enable IPC, you can use signals and named pipes.
For isolating workloads, you can use VMs, especially modern variants such
as Firecracker. We also discussed modern Linux distributions:
if you plan to run containers (Docker), you may want to consider
these container-centric distros that enforce immutability. We then moved on to
selected security topics, specially Kerberos and PAM for flexible and/or
large-scale authentication. Finally, we reviewed not-yet-mainstream Linux
solutions such as Linux on the desktop and how you can get started with
Linux on embedded systems, such as the Raspberry Pi, for local experimentation
or development.

Some further reading for this chapter:

	IPC

	

	
“An Introduction to Linux IPC”

	
“Inter-process Communication in Linux: Using Pipes and Message Queues”

	
“The Linux Kernel Implementation of Pipes and FIFOs”

	
“Socat Cheatsheet”

	VMs

	

	
“What Is a Virtual Machine?” (VMware)

	
“What Is a Virtual Machine (VM)?” (Red Hat/IBM)

	
“How to Create and Manage KVM Virtual Machines from CLI”

	
“KVM” via Debian Wiki

	
QEMU machine emulator and virtualizer website

	
Firecracker website

	Modern distros

	

	
“Containers and Clustering”

	
“Immutability & Loose Coupling: A Match Made in Heaven”

	
“Tutorial: Install Flatcar Container Linux on Remote Bare Metal Servers”

	
List of image-based Linux distributions and associated tooling

	
“Security Features of Bottlerocket, an Open Source Linux-Based Operating System”

	
“RancherOS: A Simpler Linux for Docker Lovers”

	Selected security

	

	
“Kerberos: The Network Authentication Protocol”

	
“PAM Tutorial”

	Other modern and future offerings

	

	
“How X Window Managers Work, and How to Write One”

	
“Purely Functional Linux with NixOS”

	
“NixOS: Purely Functional System Configuration Management”

	
“What Is a Raspberry Pi?”

	
“Kubernetes on Raspberry Pi 4b with 64-bit OS from Scratch”

We’ve reached the end of the book. I hope this is the start of your own Linux
journey. Thanks for staying with me, and if you have feedback, I’m always
interested to hear from you, either via Twitter or via good old email:
modern-linux@pm.me.

Appendix A. Helpful Recipes

In this appendix, I’ve compiled a list of recipes for common tasks. This is
just a selection of recipes that I’ve gathered over time, tasks that I often
carry out and like to have handy as a reference. By no means is this a complete
or deep coverage of Linux usage and admin tasks. For a comprehensive
collection of recipes, I strongly recommend you check out Carla Schroder’s
Linux Cookbook (O’Reilly), covering a range of recipes in great detail.

Gathering System Information

To learn about the Linux version, kernel, and other related information, use
any of the following commands:

cat /etc/*-release
cat /proc/version
uname -a

To learn about basic hardware equipment (CPU, RAM, disks), do:

cat /proc/cpuinfo
cat /proc/meminfo
cat /proc/diskstats

To learn more about the hardware of your system, such as about the BIOS, use:

sudo dmidecode -t bios

Note for the previous command: other interesting options for -t include
system and memory.

To query overall main memory and swap usage, do:

free -ht

To query how many file descriptors a process can have, use:

ulimit -n

Working with Users and Processes

You can list logged-in users with either who or w (more detailed output).

To show system metrics (CPU, memory, etc.) on a per-process basis for a specific
user, SOMEUSER, use the following command:

top -U SOMEUSER

List all processes (for all users) in tree format with details by using:

ps faux

Find a specific process (python here):

ps -e | grep python

To terminate a process, use its PID if you know it (and add -9 as a
parameter if the process ignores this signal):

kill PID

Alternatively, you can terminate a process by name using killall.

Gathering File Information

To query file details (including filesystem information such as inodes):

stat somefile

To learn about a command, how the shell interprets it, and where the
executable file is located, use:

type somecommand
which somebinary

Working with Files and Directories

To display the content of a text file called afile:

cat afile

To list the contents of a directory, use ls, and you may wish to further
use the output. For example, to count the number of files in a directory, use:

ls -l /etc | wc -l

Finding files and file content:

find /etc -name "*.conf" [image: 1]
find . -type f -exec grep -H FINDME {} \; [image: 2]

	[image: 1]

	Find files ending in .conf in directory /etc.

	[image: 2]

	Find “FINDME” in current directory by executing grep.

To show the differences in files, use:

diff -u somefile anotherfile

To replace characters, use tr like so:

echo 'Com_Acme_Library' | tr '_A-Z' '.a-z'

Another way to replace parts of a string is with sed (note that the delimiter
doesn’t have to be /, which is handy for cases where you replace content in a
path or URL):

cat 'foo bar baz' | sed -e 's/foo/quux/'

To create a file of a specific size (for testing), you can use the dd command,
as shown here:

dd if=/dev/zero of=output.dat bs=1024 count=1000 [image: 1]

	[image: 1]

	This creates a 1 MB file (1,000 times 1 KB blocks) called output.dat
that is filled with zeros.

Working with Redirection and Pipes

In “Streams”, we discussed file descriptors and streams. Here are
a few recipes around this topic.

File I/O redirection:

command 1> file [image: 1]
command 2> file [image: 2]
command &> file [image: 3]
command >file 2>&1 [image: 4]
command > /dev/null [image: 5]
command < file [image: 6]

	[image: 1]

	Redirect stdout of command into file.

	[image: 2]

	Redirect stderr of command into file.

	[image: 3]

	Redirect both stdout and stderr of command into file.

	[image: 4]

	An alternative way to redirect stdout and stderr of command into file.

	[image: 5]

	Discard output of command (by redirecting it to /dev/null).

	[image: 6]

	Redirect stdin (inputs file to command).

To connect stdout of one process to stdin of another process, use a
pipe (|):

cmd1 | cmd2 | cmd3

To show the exit codes of each command in a pipe:

echo ${PIPESTATUS[@]}

Working with Time and Dates

To query time-related information, such as local and UTC time as well as synchronization
status, use:

timedatectl status

Working with dates, you usually want to either get a date or timestamp for the
current time or convert existing timestamps from one format to another.

To get the date in the format YYYY-MM-DD—for example, 2021-10-09—use the
following:

date +"%Y-%m-%d"

To generate a Unix epoch timestamp (such as 1633787676), do:

date +%s

To create an ISO 8601 timestamp for UTC (something like 2021-10-09T13:55:47Z),
you can use:

date -u +"%Y-%m-%dT%H:%M:%SZ"

Same ISO 8601 timestamp format but for local time:

date +%FT%TZ

Working with Git

To clone a Git repo—that is, to make a local copy on your Linux system—use the
following:

git clone https://github.com/exampleorg/examplerepo.git

After the previous git clone command is completed, the Git repo will be in the
directory examplerepo, and you should execute the rest of the following
commands in this directory.

To view local changes in color and show where lines have been added and removed
side by side, use:

git diff --color-moved

To see what has changed locally (files edited, new files, removed files), do:

git status

To add all local changes and commit them:

git add --all && git commit -m "adds a super cool feature"

To find out the commit ID of the current commit, use:

git rev-parse HEAD

To tag a commit with ID HASH using the tag ATAG, do:

git tag ATAG HASH

To push the local changes to a remote (upstream) repo with a tag ATAG:

git push origin ATAG

To see the commit history use git log; specifically, to get a summary, do:

git log (git describe --tags --abbrev=0)..HEAD --oneline

System Performance

Sometimes you need to see how fast a device is or how your Linux system
performs under load. Here some ways to generate system load.

Simulate memory load (and also burn some CPU cycles) with the following
command:

yes | tr \\n x | head -c 450m | grep z

In the preceding pipe, yes generates an endless supply of y
 characters, each on its own line, and then the tr command converts it
 into a continuous stream of yx that the head command chops off at 450
 million bytes (ca. 450 MB). Last but not least, we let grep consume
 the resulting yx block for something that doesn’t exist (z), and hence
 we see no output, but it is still generating load.

More detailed disk usage for a directory:

du -h /home

Listing free disk space (globally, in this case):

df -h

Load test a disk and measure I/O throughput with:

dd if=/dev/zero of=/home/some/file bs=1G count=1 oflag=direct

Appendix B. Modern Linux Tools

In this appendix, we focus on modern Linux tools and commands. Some of the
commands are drop-in replacements of existing commands; others are new ones.
Most of the tools listed here improve on the user experience (UX), including
simpler usage and making use of colored output, resulting in a more efficient
flow.

I’ve compiled a list of relevant tools in Table B-1,
showing features and potential replacement scenarios.

Table B-1. Modern Linux tools and commands

	Command
	License
	Features
	Can replace or enhance:

	bat

	MIT License and Apache License 2.0

	Display, page, syntax highlighting

	cat

	envsubst

	MIT License

	Template-based env variables

	N/A

	exa

	MIT License

	Meaningful colored output, sane defaults

	ls

	dog

	European Union Public Licence v1.2

	Simple, powerful DNS lookups

	dig

	fx

	MIT License

	JSON processing tool

	jq

	fzf

	MIT License

	Command-line fuzzy finder

	ls + find + grep

	gping

	MIT License

	Multitarget, graphing

	ping

	httpie

	BSD 3-Clause “New” or “Revised” License

	Simple UX

	curl (also note there is curlie)

	jo

	GPL

	Generate JSON

	N/A

	jq

	MIT License

	Native JSON processor

	sed, awk

	rg

	MIT License

	Fast, sane defaults

	find, grep

	sysz

	The Unlicense

	fzf user interface for
systemctl

	systemctl

	tldr

	CC-BY (content) and MIT License (scripts)

	Focus on usage examples of commands

	man

	zoxide

	MIT License

	Quickly change directories

	cd

To learn more about the background and usage of many of the tools
listed in this appendix, you can make use of the following resources:

	
Check out the podcast episode on
modern UNIX tools
from The Changelog: Software Development, Open Source.

	
There is an active list of modern tools available via the GitHub repo
Modern UNIX.

Index
Symbols
	& (ampersand), Streams
	\ (backslash), Streams
	| (pipe), Streams

A
	access control, Access Control-Conclusion	basics, Basics-Types of Access Control
	centralized user management, Centralized User Management
	good practices, Good Practices
	managing users locally, Managing Users Locally-Managing Users Locally
	permissions, Permissions-Process Permissions
	resources and ownership, Resources and Ownership
	sandboxing, Sandboxing
	types of, Types of Access Control
	users, Users-Centralized User Management

	ACLs (access control lists), Access Control Lists
	Address Resolution Protocol (ARP), procfs, Address Resolution Protocol-Address Resolution Protocol
	advanced multilayered unification filesystem (AUFS), Copy-on-Write Filesystems
	Alacritty, Other Multiplexers
	ampersand (&), Streams
	AppImage, Modern Package Managers
	application layer networking, Application Layer Networking-Sharing with Windows	file transfer, File Transfer-File Transfer
	NFS, Network File System
	sharing with Windows, Sharing with Windows
	SSH, Secure Shell
	web and, The Web-The Web

	applications	defined, Basics
	managing (see package managers)
	supply chain, Linux Application Supply Chains-Linux Application Supply Chains
	terminology, Applications, Package Management,
and Containers

	ARM architecture, ARM Architecture
	ARP (Address Resolution Protocol), procfs, Address Resolution Protocol-Address Resolution Protocol
	auditing, Good Practices
	AUFS (advanced multilayered unification filesystem), Copy-on-Write Filesystems
	authentication	Kerberos, Kerberos
	PAM, Pluggable Authentication Modules

	autonomous system, Routing

B
	backslash (\), Streams
	bash	fish versus, Basic usage
	origins, Shells
	scripting in, Scripting

	bash scripts	linting/testing, Linting and Testing Scripts
	writing portable scripts, Writing Portable bash Scripts-Good practices

	bat, Viewing file contents with bat
	bats (Bash Automated Testing System), Linting and Testing Scripts
	BGP (Border Gateway Protocol), Routing
	bind mounts, Mounting filesystems
	BIOS (Basic I/O System), CPU Architectures, RISC-V Architecture
	BitTorrent, Other Advanced Tooling
	boot process, The Linux Startup Process-The Linux Startup Process
	booting, defined, Basics
	Border Gateway Protocol (BGP), Routing
	Bottlerocket, Bottlerocket
	btrfs (b-tree filesystem), Copy-on-Write Filesystems
	buildah, Other Container Tooling
	Byobu, Other Multiplexers

C
	capabilities, Capabilities
	cgroups, Linux cgroups-cgroup v2
	Classless Inter-Domain Routing (CIDR), IPv4
	cloud computing, What Are Modern Environments?
	Cloud IDEs, Linux in Cloud IDE
	commands, modern (see modern commands)
	containers, Containers-Other Container Tooling	(see also modern distros)
	alternatives to Docker, Other Container Tooling
	cgroups, Linux cgroups-cgroup v2
	CoW filesystems and, Copy-on-Write Filesystems
	Docker, Docker-Example: containerized greeter
	namespaces, Linux Namespaces-Linux Namespaces

	continuous profiling, Tracing and Profiling
	copy on write (CoW) filesystems, Copy-on-Write Filesystems-Copy-on-Write Filesystems, Copy-on-Write Filesystems
	CoreOS, Red Hat Enterprise Linux CoreOS
	counters, Metrics
	CPU architectures, CPU Architectures-RISC-V Architecture	ARM, ARM Architecture
	RISC-V, RISC-V Architecture
	x86, x86 Architecture

D
	DAC (Discretionary Access Control), Types of Access Control
	daemon, Basics
	data temperature, Logging
	datagrams, User Datagram Protocol
	date command, Date and time handling
	deb package manager, Debian deb-Debian deb
	debugfs, In-Memory Filesystems
	desktop, Linux on, Linux on the Desktop
	/dev filesystem (devfs), devfs
	devfs, devfs
	device drivers, Device Drivers
	DHCP (Dynamic Host Configuration Protocol), Dynamic Host Configuration Protocol
	directories, working with, Working with Files and Directories
	Discretionary Access Control (DAC), Types of Access Control
	distros	basics, Linux Distributions
	modern (see modern distros)

	DNS (Domain Name System), DNS-DNS Lookups	lookups, DNS Lookups-DNS Lookups
	records, DNS Records-DNS Records

	Docker, Docker-Example: containerized greeter	container images, Container Images
	containerized greeter example, Example: containerized greeter-Example: containerized greeter
	running containers, Running containers

	Dockerfile, Container Images
	domain sockets, UNIX Domain Sockets
	drive, defined, Basics
	drivers, Device Drivers
	dvtim, Other Multiplexers
	Dynamic Host Configuration Protocol (DHCP), Dynamic Host Configuration Protocol

E
	eBPF, A Modern Way to Extend the Kernel: eBPF
	effective UID, Process Permissions
	embedded systems, Linux on, Linux on Embedded Systems
	environment variables, Variables-Variables
	environments for hands-on experience, How to Use the Book
	escape sequences, Terminals
	exa, Listing directory contents with exa
	exit status, Exit status
	ext4 filesystem, Common Filesystems

F
	FAT filesystems, Common Filesystems
	FHS (Filesystem Hierarchy Standard), Common Filesystem Layouts
	file content management, File content management
	file information, gathering, Gathering File Information
	file permissions, File Permissions-File Permissions
	file transfer, File Transfer-File Transfer
	File Transfer Protocol (FTP), File Transfer
	files, working with, Working with Files and Directories
	filesystem, Filesystems-Conclusion	AUFS, Copy-on-Write Filesystems
	basics, Basics-Basics
	btrfs, Copy-on-Write Filesystems
	common, Common Filesystems-Common Filesystems
	common layouts, Common Filesystem Layouts
	CoW, Copy-on-Write Filesystems-Copy-on-Write Filesystems
	creating, Creating filesystems
	devfs, devfs
	ext4, Common Filesystems
	FAT, Common Filesystems
	in-memory, In-Memory Filesystems
	kernel and, Filesystems
	LVM, Logical Volume Manager-Logical Volume Manager
	mounting, Mounting filesystems
	operations, Filesystem Operations-Mounting filesystems
	OverlayFS, Copy-on-Write Filesystems
	procfs, procfs-procfs
	pseudo, Pseudo Filesystems-devfs
	regular files, Regular Files-Copy-on-Write Filesystems
	sysfs, sysfs
	Unionfs, Copy-on-Write Filesystems
	VFS, The Virtual File System-Common Filesystem Layouts
	XFS, Common Filesystems
	ZFS, Common Filesystems

	Filesystem Hierarchy Standard (FHS), Common Filesystem Layouts
	filesystem layout, Common Filesystem Layouts
	filesystem UID, Process Permissions
	Firecracker, Firecracker
	Fish shell, Fish Shell-Configuration	basic usage, Basic usage
	configuration, Configuration-Configuration

	Flatcar Container Linux, Flatcar Container Linux
	Flatpak, Modern Package Managers
	flow control, Flow control
	formatting, Filesystem Operations
	FTP (File Transfer Protocol), File Transfer
	functions, in scripting, Functions

G
	gauges, Metrics
	geoiplookup, Other Advanced Tooling
	Git, working with, Working with Git
	Grafana, Prometheus and Grafana-Prometheus and Grafana
	graphics processing units (GPUs), Device Drivers

H
	hard links, Basics
	histograms, Metrics
	Homebrew, Modern Package Managers
	Hyper Text Markup Language (HTML), The Web
	Hypertext Transfer Protocol (HTTP), The Web

I
	I/O devices, monitoring, Device I/O and Network Interfaces-Device I/O and Network Interfaces
	I/O streams, Streams-Streams
	ICMP (Internet Control Message Protocol), Internet Control Message Protocol
	immutability, Containers
	in-memory filesystems, In-Memory Filesystems
	init systems	and boot process, The Linux Startup Process
	System V, The Linux Startup Process
	systemd, systemd-Example: scheduling greeter

	inodes, defined, Basics
	integrated performance monitoring, Integrated Performance Monitors-Integrated Performance Monitors
	Internet Control Message Protocol (ICMP), Internet Control Message Protocol
	Internet of Things (IoT), What Are Modern Environments?
	interprocess communication (IPC), Interprocess Communication-UNIX Domain Sockets	named pipes, Named Pipes
	signals, Signals
	UNIX domain sockets, UNIX Domain Sockets

	IP address, The TCP/IP Stack
	IPv4, IPv4-IPv4
	IPv6, IPv6
	isolation, Resource Visibility

J
	job control, Job control
	journalctl, Monitoring with journalctl, journalctl
	jq, JSON data processing with jq
	JSON, JSON data processing with jq

K
	Kerberos, Kerberos
	kernel, The Linux Kernel-Conclusion	boot process and, The Linux Startup Process
	components, Kernel Components-syscalls
	CPU architectures and, CPU Architectures-RISC-V Architecture
	device drivers, Device Drivers
	eBPF and, A Modern Way to Extend the Kernel: eBPF
	extensions, Kernel Extensions-A Modern Way to Extend the Kernel: eBPF
	Linux architecture and, Linux Architecture
	memory management, Memory Management-Memory Management
	modules, Modules
	networking functionality, Networking
	process management, Process Management-Process Management
	syscalls, syscalls-syscalls

	kernel mode, Linux Architecture
	kernel-based virtual machine (KVM), Kernel-Based Virtual Machine

L
	language-specific package managers, Language-Specific Package Managers
	least privileges principle, Good Practices
	Lightweight Directory Access Protocol (LDAP), Centralized User Management
	Linux (generally)	architecture, Linux Architecture
	brief history of, The Linux Story (So Far)
	distributions, Linux Distributions, Modern Linux Distros-RancherOS
	high-level overview, A Ten-Thousand-Foot View of Linux
	kernel (see kernel)
	modern tools and commands, Modern Linux Tools-Modern Linux Tools
	resource visibility, Resource Visibility-Resource Visibility
	startup process (see boot process)

	logging, Logging-journalctl	journalctl, journalctl
	syslog, Syslog

	Logical Volume Manager (LVM), Logical Volume Manager-Logical Volume Manager
	logs, defined, Logs
	loopfs, In-Memory Filesystems

M
	mandatory access control, Types of Access Control
	maximum transmission unit (MTU), Network interface controller
	media access control (MAC), The Link Layer
	memory management, Memory Management-Memory Management
	metrics, defined, Metrics
	microVMs, Firecracker
	mobile devices, What Are Modern Environments?
	modern commands, Modern Commands-JSON data processing with jq, Modern Linux Tools-Modern Linux Tools	finding content in files with rg, Finding content in files with rg
	JSON data processing with jq, JSON data processing with jq
	listing directory contents with exa, Listing directory contents with exa
	viewing file contents with bat, Viewing file contents with bat

	modern distros, Modern Linux Distros-RancherOS	Bottlerocket, Bottlerocket
	CoreOS, Red Hat Enterprise Linux CoreOS
	Flatcar, Flatcar Container Linux
	RancherOS, RancherOS

	modern environments, What Are Modern Environments?-What Are Modern Environments?
	modern tools, Modern Linux Tools-Modern Linux Tools
	modern, defined, What Are Modern Environments?
	module, kernel and, Modules
	monitoring, Monitoring-Instrumentation	device I/O and network interfaces, Device I/O and Network Interfaces-Device I/O and Network Interfaces
	instrumentation, Instrumentation
	integrated performance monitors, Integrated Performance Monitors-Integrated Performance Monitors

	MTU (maximum transmission unit), Network interface controller
	multithreading, Process Management
	murex, Other Modern Shells

N
	named pipes, Named Pipes
	namespaces, Resource Visibility, Linux Namespaces-Linux Namespaces
	navigation shortcuts, Navigating
	Network File System (NFS), Network File System
	network interface controller (NIC), Network interface controller
	network interfaces, Basics, Device I/O and Network Interfaces-Device I/O and Network Interfaces
	Network Time Protocol (NTP), Network Time Protocol
	networking, Networking-Conclusion	basics, Basics
	DHCP, Dynamic Host Configuration Protocol
	kernel and, Networking
	NTP, Network Time Protocol
	protocols, The TCP/IP Stack-Sockets
	TCP/IP stack, The TCP/IP Stack-Sockets
	whois, whois
	wireshark and tshark, Wireshark and tshark

	NFS (Network File System), Network File System
	NIC (network interface controller), Network interface controller
	NixOS, NixOS
	NTP (Network Time Protocol), Network Time Protocol
	Nushell, Other Modern Shells

O
	observability, Observability-Conclusion	basics, Basics-Traces
	defined, Terminology
	I/O, Device I/O and Network Interfaces-Device I/O and Network Interfaces
	logging, Logging-journalctl
	metrics, Prometheus and Grafana-Prometheus and Grafana
	monitoring, Monitoring-Instrumentation
	network, Device I/O and Network Interfaces-Device I/O and Network Interfaces
	OODA loop, Observability Strategy
	profiling, Tracing and Profiling
	signal types, Signal Types
	terminology, Terminology
	tracing, Tracing and Profiling-Tracing and Profiling

	OCI (Open Container Initiative), Containers
	Oil shell, Other Modern Shells
	OODA (observe-orient-decide-act) loop, Observability Strategy
	Open Container Initiative (OCI), Containers
	Open Systems Interconnection (OSI) model, The TCP/IP Stack
	operating system, reasons for having, Why an Operating System at All?
	OverlayFS, Copy-on-Write Filesystems
	ownership, access control and, Resources and Ownership

P
	package managers, Packages and Package Managers-Language-Specific Package Managers	Debian deb, Debian deb-Debian deb
	language-specific, Language-Specific Package Managers
	modern, Modern Package Managers
	RPM, RPM Package Manager-RPM Package Manager

	package, defined, Basics
	PAM (Pluggable Authentication Modules), Pluggable Authentication Modules
	partition, defined, Basics
	passwords, Managing Users Locally-Managing Users Locally
	permissions, Permissions-Process Permissions	ACLs, Access Control Lists
	advanced permission management, Advanced Permission Management-Access Control Lists
	capabilities, Capabilities
	file permissions, File Permissions-File Permissions
	process permissions, Process Permissions-Process Permissions
	seccomp profiles, seccomp Profiles

	PID (process id), Resource Visibility
	pipefs, In-Memory Filesystems
	pipes (|), Streams, Working with Redirection and Pipes	and UNIX philosophy, Streams
	named, Named Pipes

	Pluggable Authentication Modules (PAM), Pluggable Authentication Modules
	podman, Other Container Tooling
	portable bash scripts, Writing Portable bash Scripts-Good practices	executing, Executing portable scripts
	good practices, Good practices
	skeleton template, A skeleton template

	ports, Ports
	POSIX (Portable Operating System Interface), A Ten-Thousand-Foot View of Linux, Shells, Process Permissions
	PowerShell, Other Modern Shells
	prefix, tmux
	/proc filesystem (procfs), procfs-procfs
	process	defined, Basics
	listing, Working with Users and Processes

	process id (PID), Resource Visibility
	process management, Process Management-Process Management
	process permissions, Process Permissions-Process Permissions
	process states, Process Management
	procfs, procfs-procfs
	profiling, Tracing and Profiling
	program, defined, Basics
	Prometheus, Prometheus and Grafana-Prometheus and Grafana
	pseudo filesystems, Pseudo Filesystems-devfs

R
	RancherOS, RancherOS
	Raspberry Pi (RPI), Linux on Embedded Systems
	real UID, Process Permissions
	Red Hat Enterprise Linux CoreOS, Red Hat Enterprise Linux CoreOS
	redirection, Working with Redirection and Pipes
	resource visibility, Resource Visibility-Resource Visibility
	resources, access control and, Resources and Ownership
	rg, Finding content in files with rg
	RISC-V architecture, RISC-V Architecture
	root, Users
	routing, The Internet Layer-Routing
	RPI (Raspberry Pi), Linux on Embedded Systems
	RPM Package Manager, RPM Package Manager-RPM Package Manager
	rsync, File Transfer
	Rsyslog, Syslog

S
	sandboxing, Sandboxing	seccomp, seccomp Profiles

	saved set-user-ID, Process Permissions
	scp, File Transfer
	scraping, Instrumentation
	screen (terminal multiplexer), screen
	scripting, Scripting-End-to-End Example: GitHub User Info Script	advanced data types, Advanced data types
	advanced I/O, Advanced I/O
	basics, Scripting Basics-Advanced I/O
	defined, Shells and Scripting
	end-to-end example: GitHub user info script, End-to-End Example: GitHub User Info Script-End-to-End Example: GitHub User Info Script
	flow control, Flow control
	functions, Functions

	seccomp, seccomp Profiles, Firecracker
	Secure Shell (SSH), Secure Shell
	security, Selected Security Topics-Pluggable Authentication Modules	(see also access control)
	Firecracker and, Firecracker
	Kerberos, Kerberos
	PAM, Pluggable Authentication Modules
	scripting good practices, Good practices
	sensitive information in logs, Logging
	SSH, Secure Shell

	SELinux, Types of Access Control, Good Practices
	setuid, Good Practices
	shell, Shells-Job control	and streams, Streams-Streams
	built-in commands, Built-in commands
	choosing a shell, Which Shell Should I Use?
	common tasks, Common Tasks-Date and time handling
	date/time handling, Date and time handling
	elements of, Shells-Job control
	exit status, Exit status
	file content management, File content management
	Fish shell, Fish Shell-Configuration
	human-friendly, Human-Friendly Shells-Which Shell Should I Use?
	job control, Job control
	modern commands, Modern Commands-JSON data processing with jq
	navigating, Navigating
	scripting (see scripting)
	shortening often-used commands, Shorten often-used commands
	variables, Variables-Variables
	viewing long files, Viewing long files
	Z-shell, Z-shell

	shell scripting (see scripting)
	shell variables, Variables-Variables
	ShellCheck, Linting and Testing Scripts
	shortcuts, Navigating
	signals	about, Signals
	defined, Terminology

	Snap, Modern Package Managers
	socat, Other Advanced Tooling
	sockets, Sockets
	sockfs, In-Memory Filesystems
	SSH (Secure Shell), Secure Shell
	standards, W3C and, The Web
	streams, Streams-Streams
	structured logging, Logs
	sudo, Good Practices
	super block, defined, Basics
	supply chain, Linux Application Supply Chains-Linux Application Supply Chains	defined, Basics

	swapfs, In-Memory Filesystems
	symbolic links (symlinks), Basics
	/sys filesystem (sysfs), sysfs
	sysfs, sysfs
	syslog, Syslog
	syslog-ng, Syslog
	system calls (syscalls), Why an Operating System at All?, syscalls-syscalls
	system information, gathering, Gathering System Information
	system performance, testing, System Performance
	System V–style init programs, The Linux Startup Process
	systemctl, Management with systemctl
	systemd, systemd-Example: scheduling greeter	journalctl, Monitoring with journalctl
	scheduling greeter example, Example: scheduling greeter-Example: scheduling greeter
	systemctl, Management with systemctl
	units, Units

T
	TCP (Transmission Control Protocol), Transmission Control Protocol-Transmission Control Protocol
	TCP/IP stack, The TCP/IP Stack-Sockets	application layer, Application Layer Networking-Sharing with Windows
	ARP, Address Resolution Protocol-Address Resolution Protocol
	BGP, Routing
	DNS, DNS-DNS Lookups
	ICMP, Internet Control Message Protocol
	internet layer, The Internet Layer-Routing
	IPv4, IPv4-IPv4
	IPv6, IPv6
	link layer, The Link Layer-Address Resolution Protocol
	NIC, Network interface controller
	ports, Ports
	routing, Routing-Routing
	sockets, Sockets
	TCP layer, Transmission Control Protocol-Transmission Control Protocol
	transport layer, The Transport Layer-User Datagram Protocol
	UDP, User Datagram Protocol

	terminal, Terminals
	terminal multiplexer, Terminal Multiplexer-Other Multiplexers	choosing a multiplexer, Which Multiplexer Should I Use?
	screen, screen
	tmux, tmux-tmux

	text, manipulating, File content management
	3mux, Other Multiplexers
	time/date handling, Date and time handling, Working with Time and Dates
	TLB (translation lookaside buffer), Memory Management
	tmpfs, In-Memory Filesystems
	tmux (terminal mulitplexer), tmux-tmux	reasons to use, Which Multiplexer Should I Use?

	tmuxinator, Other Multiplexers
	top-level domains (TLD), DNS
	traces, defined, Traces
	tracing, Tracing and Profiling-Tracing and Profiling
	translation lookaside buffer (TLB), Memory Management
	Transmission Control Protocol (TCP), Transmission Control Protocol-Transmission Control Protocol
	trigger, tmux
	tshark, Wireshark and tshark
	Tunnels, Other Advanced Tooling

U
	UDP (User Datagram Protocol), User Datagram Protocol
	UEFI (Unified Extensible Firmware Interface), CPU Architectures, The Linux Startup Process
	Uniform Resource Locator (URL), The Web
	union mounts, Copy-on-Write Filesystems
	Unionfs, Copy-on-Write Filesystems
	unit, in systemd, Units
	UNIX domain sockets, UNIX Domain Sockets
	UNIX epoch time, Date and time handling
	URL (Uniform Resource Locator), The Web
	user account, Resources and Ownership
	User Datagram Protocol (UDP), User Datagram Protocol
	user directory, Centralized User Management
	user ID (UID), Users
	user land, Linux Architecture, Linux Architecture
	users	access control, Users-Centralized User Management
	centralized user management, Centralized User Management
	listing, Working with Users and Processes
	managing locally, Managing Users Locally-Managing Users Locally

V
	variables, in shell, Variables-Variables
	Virtual File System (VFS), Filesystems, The Virtual File System-Common Filesystem Layouts
	virtual machines (VMs), Virtual Machines-Firecracker	Firecracker, Firecracker
	KVM, Kernel-Based Virtual Machine

	volume, defined, Basics

W
	W3C (World Wide Web Consortium), The Web
	web, The Web-The Web
	whois, whois
	Windows, application layer networking and, Sharing with Windows
	Wireshark, Wireshark and tshark

X
	x86 architecture, x86 Architecture
	XFS, Common Filesystems

Y
	yum, RPM Package Manager-RPM Package Manager

Z
	Z-shell, Z-shell
	Zellij, Other Multiplexers
	ZFS, Common Filesystems

 About the Author

 Michael Hausenblas is a solution engineering lead on the Amazon Web Services (AWS)
 open source observability service team. His background is in data engineering
 and container orchestration, from Mesos to Kubernetes. Michael is experienced
 in advocacy and standardization at W3C and IETF and writes code these days
 mainly in Go. Before Amazon, he worked at Red Hat, Mesosphere (now D2iQ),
 and MapR (now part of HPE) and spent a decade in applied research.

 Colophon

 The stately animal on the cover of Learning Modern Linux is an emperor penguin (Aptenodytes forsteri), the largest and arguably most iconic of the penguin species.

 These large, flightless birds are uniquely adapted to thrive in a harsh Antarctic habitat. Their streamlined bodies make them highly efficient swimmers, and solid bones enable them to withstand intense barometric pressures as they dive to depths of more than 1,750 feet while hunting for fish, squid, and krill. They may spend up to 20 minutes underwater before resurfacing for air.

 Emperor penguins are highly social, relying on cooperative nesting and foraging behaviors to survive. Gathering in large colonies, they huddle together for warmth amid temperatures that can drop below -50°F. When returning to the colony after a lengthy sojourn at sea, emperors employ distinct vocalizations to locate their mate among many thousands of penguins, despite their not maintaining fixed nesting sites.

 During the winter breeding season, the female emperor penguin lays a single egg, which is then incubated by the male. The male penguin protects the egg by balancing it on his feet and draping it with a flap of skin called a brood pouch. For this two-month incubation period, the vigilant male penguin eats nothing and may lose significant body mass.

 The emperor penguin is currently considered near threatened. Scientific models predict steep population reductions as sea ice continues to decline due to climate change. Like all of the animals featured on O’Reilly covers, whether endangered or not, emperor penguins are vitally important to our world.

 The cover illustration is by Karen Montgomery, based on an antique line engraving from Meyers Kleines Lexicon. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

OEBPS/assets/7.png

OEBPS/assets/lmlx_0302.png
Terminal

stdout stderr stdin

Keyboard
Monitor

OEBPS/assets/lmlx_0301.png
“I SPEND A LOT OF TIME ON THIS TASK.
T SHOULD LIRITE A PROGRAM AUTOMATING IT!™

THEORY:

WRING
CODE)

WORK ON-
ORIGINAL TAGK

WRITNG
CODE \
WoRk| __/ RETINKNG ____
ANYVIORE

TME

OEBPS/assets/lmlx_0205.png
User program Kernel

Per-event data

Statistics

OEBPS/assets/9.png

OEBPS/assets/8.png

OEBPS/assets/lmlx_0806.png
PArcq e e

[—

OEBPS/assets/lmlx_0805.png
39% perf

(

[

(

[

(

[.] _denangle java_syn
37% libelf-6.176.50 lio

1

[

(

1

[

[

1
1
]
1
1
1
] gelf_getshdr
]
1
1
]
1
]

24.75% pert (-] _synbols_insert
.68 perf (-] b next
4.83% [kernel] (k] module _get_ kallsyn
3.66% perf (-] rb_insert_color
2.26% perf [.] d denangle callback
1.3¢% [kernel] (K] clear page erns
1.30% [kernel] (kI acpi_0s_read_port
1.18% [kernel] (K] nunber
1.15% Libe-2.27.50 [.] _libc calloc
115% [kernel] (k] acpi_idle_do_entry.
1164 [kernel] (K] format_decode
1.o4% perf (. dso_toad_syn
1.60% libc-2.27.50 (] cfree
0.96% [kernel] (kI Kallsyns_expand_synbol..constprop. 1
0.86% [kernel] (K] mencpy_erns
0.87% [kernel] k] vsnprint
0.71% [kernel] (k] string nocheck
0.61% [kernel] (K] get_page fron_ freelist
0.60% perf (.1 synbol_new
0.55% perf 1b_erase
0.49% perf __dso_load_kallsyns
0.41% libelf-0.170.50 Gelf_getsyn
0.41% libc-2.27.50 getdelin
0.40% libc-2.27.50 6x0060000000093439
0.
0.
0.35% [kernel] K] change_protection_range
0.3¢% [kernel] K1 psi_task_change

0.33% libc-2.27.50 nalloc

0.33% [kernel] K1 update iter

0.33% perf java_denangle_sym

0.31% perf] eprintf

0.30% [kernel] (k] _handle_m fault

0.30% [kernel] (kI update_blocked averages

0.29% [kernel] (k] native irq return iret

o

2

5 pert 1.1 rust 15 sangled
8. 5 highor level overview; trys: perf top

sort comm,dso

OEBPS/assets/lmlx_0804.png
exsvannunsunness

OEBPS/assets/lmlx_0803.png

OEBPS/assets/6.png

OEBPS/assets/lmlx_0902.png
Client

Service

OEBPS/assets/5.png

OEBPS/assets/lmlx_0901.png
Guest

process

Process | | Process Guest
User space

VMM
(X 1)

[Host kernel MJJ

[CPU with virtualization support]

OEBPS/assets/4.png

OEBPS/assets/lmlx_0808.png
®

cecem+ o

e

OEBPS/assets/lmlx_0204.png
Program open_file("example.txt") User land

sys_call_table _ - Kernel

syscall: openat

OEBPS/assets/lmlx_0807.png
Prometheus s Gosh S b G

Targets

P——

o e Loue
e - B
prometheus (11 6) G

i - D e

e

ey

OEBPS/assets/lmlx_0401.png
Launch

Users Processes

Own Use

OEBPS/assets/lmlx_0310.png
Load random exampio

ShelCheck

fincs bugs i your shel scripts.
You can caba, spt, én, i Orbeew snatats i locallyightnow.
Pastoa scrpttotry t ou:

Your Edtor (Ace) va

cho You are using the SSIELL shell

ShelCheck Output

ShellCheck is.

GPLYS: o0 s n froodom
avaiablo on Gitub (s s this webs)

aready packaged for your disro o packago manager

supported as an ntograted Inte in majorediors

avaiablo n CodeClmae, Codacy and GodoFactor to auto-chack your GiHub rapo
i in Haskel, f you're Ino that sort of thing.

OEBPS/assets/lmlx_0309.png
(0) + zzz: 1 windows

(1) + _home: 1 windows

(2) + cortex: 2 windows

(3) + launches: 2 windows

(4) + olly-apps: 4 windows
(5) + olly-recipes: 2 windows
(6) + polly: 1 windows

(7) + prometheus: 1 windows

(8) + sandbox: 2 windows (attached)

(9) + writing: 3 windows

OEBPS/assets/lmlx_0308.png
Session “bar”

Session “foo”

|
9 Paned|$

o
o
>3
]
N

$ls Panel

Window “base”

| Window “experiment”

OEBPS/assets/lmlx_0402.png

OEBPS/assets/cover.png
OREILLY"

Learning
Modern Linux

A Handbook for the Cloud Native Practitioner

Michael Hausenblas

OEBPS/assets/lmlx_0303.png
File: main.go

package main
import (
fmt"
"net/http”
func main() {

http.HandleFunc("/*, HelloServer)
http.ListenAndServe(":8080", nil)

func HelloServer(w http.ResponseWriter, r xhttp.Request) {
fmt.Fprintf(w, "Hello, %s!", r.URL.Path[1:])

File: app.yaml

apiVersion: apps/vi
kind: Deployment
metadata:
name: something
nanespace: xample
spec
selector:
matchlabels:
L

inage: publ)c ecr.aws/nhausenblas/exanple: stable

OEBPS/assets/lmlx_0307.png
t> $ cd tmp 14:09:54
-E[-'/tmp] [G:master]
> 14:09:58

OEBPS/assets/lmlx_0306.png

OEBPS/assets/lmlx_0305.png
Lai-gLer
(List ane entry per Line
Cfor ~: pispay extened acrioues)
o Niggn
(s

(o scapes for von
c sces for rons

aohi
i cotimn outpit)
(Sort (-t by o id e and hon ime (1))
st directoies, ot thse coten)

1t ACL associated with file, of present

(1o

Copend iniiacor. d1e/ s st i Pt

output, enables -2)

CEmite coorisod ovputy

(sho g st o omer b tong Ty =1

(FotLow symtink given on comandline)
e um)

(Show inode nusbe iles)

ox =5 bisstey siees Ik ot blote)

CFollow all systinks Cancels -P option)

Tinka
(Gnsort

Long sting format)
(Coma-saprved formt, (il scrss sceen)
(Lo

reat, numerical UIDs and GI05)
for -1 Sho file flags)

(Long format, cait group names)
(Don' follow syatinks)
nd 3

column output, horizontally listed)

OEBPS/assets/lmlx_0304.png
—> $ exa g-long --all --git
app.yaml Dockerfile example.json main.go script.sh test

OEBPS/assets/lmlx_0703.png
g]TIZ|3|4|5|6I7|SIQ|(I)IIIZ|3|4|5 E|7|8|9|(2)|1|213|4|5|5|7IS|9|;||
Version I HL | Type of service Totallength
dentification Flags | Fragment offset
Timetolive | protocol Header checksum
Source address
Destination address
Options Padding

OEBPS/assets/lmlx_0702.png
> Receive path
O Sendpath

Application layer

Transport layer

Internet layer

Link layer

OEBPS/toc01.html
		Preface

		About You

		How to Use the Book

		Conventions

		Using Code Examples

		O’Reilly Online Learning

		How to Contact Us

		Acknowledgments

		1. Introduction to Linux

		What Are Modern Environments?

		The Linux Story (So Far)

		Why an Operating System at All?

		Linux Distributions

		Resource Visibility

		A Ten-Thousand-Foot View of Linux

		Conclusion

		2. The Linux Kernel

		Linux Architecture

		CPU Architectures

		x86 Architecture

		ARM Architecture

		RISC-V Architecture

		Kernel Components

		Process Management

		Memory Management

		Networking

		Filesystems

		Device Drivers

		syscalls

		Kernel Extensions

		Modules

		A Modern Way to Extend the Kernel: eBPF

		Conclusion

		3. Shells and Scripting

		Basics

		Terminals

		Shells

		Modern Commands

		Common Tasks

		Human-Friendly Shells

		Fish Shell

		Z-shell

		Other Modern Shells

		Which Shell Should I Use?

		Terminal Multiplexer

		screen

		tmux

		Other Multiplexers

		Which Multiplexer Should I Use?

		Scripting

		Scripting Basics

		Writing Portable bash Scripts

		Linting and Testing Scripts

		End-to-End Example: GitHub User Info Script

		Conclusion

		4. Access Control

		Basics

		Resources and Ownership

		Sandboxing

		Types of Access Control

		Users

		Managing Users Locally

		Centralized User Management

		Permissions

		File Permissions

		Process Permissions

		Advanced Permission Management

		Capabilities

		seccomp Profiles

		Access Control Lists

		Good Practices

		Conclusion

		5. Filesystems

		Basics

		The Virtual File System

		Logical Volume Manager

		Filesystem Operations

		Common Filesystem Layouts

		Pseudo Filesystems

		procfs

		sysfs

		devfs

		Regular Files

		Common Filesystems

		In-Memory Filesystems

		Copy-on-Write Filesystems

		Conclusion

		6. Applications, Package Management,
and Containers

		Basics

		The Linux Startup Process

		systemd

		Units

		Management with systemctl

		Monitoring with journalctl

		Example: scheduling greeter

		Linux Application Supply Chains

		Packages and Package Managers

		RPM Package Manager

		Debian deb

		Language-Specific Package Managers

		Containers

		Linux Namespaces

		Linux cgroups

		Copy-on-Write Filesystems

		Docker

		Other Container Tooling

		Modern Package Managers

		Conclusion

		7. Networking

		Basics

		The TCP/IP Stack

		The Link Layer

		The Internet Layer

		The Transport Layer

		Sockets

		DNS

		DNS Records

		DNS Lookups

		Application Layer Networking

		The Web

		Secure Shell

		File Transfer

		Network File System

		Sharing with Windows

		Advanced Network Topics

		whois

		Dynamic Host Configuration Protocol

		Network Time Protocol

		Wireshark and tshark

		Other Advanced Tooling

		Conclusion

		8. Observability

		Basics

		Observability Strategy

		Terminology

		Signal Types

		Logging

		Syslog

		journalctl

		Monitoring

		Device I/O and Network Interfaces

		Integrated Performance Monitors

		Instrumentation

		Advanced Observability

		Tracing and Profiling

		Prometheus and Grafana

		Conclusion

		9. Advanced Topics

		Interprocess Communication

		Signals

		Named Pipes

		UNIX Domain Sockets

		Virtual Machines

		Kernel-Based Virtual Machine

		Firecracker

		Modern Linux Distros

		Red Hat Enterprise Linux CoreOS

		Flatcar Container Linux

		Bottlerocket

		RancherOS

		Selected Security Topics

		Kerberos

		Pluggable Authentication Modules

		Other Modern and Future Offerings

		NixOS

		Linux on the Desktop

		Linux on Embedded Systems

		Linux in Cloud IDE

		Conclusion

		A. Helpful Recipes

		Gathering System Information

		Working with Users and Processes

		Gathering File Information

		Working with Files and Directories

		Working with Redirection and Pipes

		Working with Time and Dates

		Working with Git

		System Performance

		B. Modern Linux Tools

		Index

		About the Author

OEBPS/assets/lmlx_0701.png
Browser SSH User
(dig J)(ping J(ap J((mail) space
[TGP] Kernel
(3) (1w) space
[NIC] [Wireless]
Hardware

OEBPS/assets/lmlx_0604.png
Namespaces and cgroups

AppA || AppB (| AppC

Docker
daemon

User

$ docker run
$ docker build

Container
image

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

OEBPS/assets/lmlx_0502.png
Filesystem Filesystem
A B
hd hd

Logical Logical
volume1 volume 2
Volume group 1 Volume group 2

Physical Physical Physical
volume 1 volume?2 | volume3

OEBPS/assets/lmlx_0501.png

[

[I I 1
Local] [In-memory] Pseudo] [Networked]

filesystems | | filesystems | | filesystems | | filesystems
Drivers Drivers
_)
HDD, SD, ...
Network
Local
devices

Remote
devices

OEBPS/assets/lmlx_0603.png
Tooling

Formats

OEBPS/DejaVuSans-Bold.otf

OEBPS/assets/lmlx_0602.png
«Package
*Metadata

Developer

Software Repository
maintainers

OEBPS/DejaVuSerif.otf

OEBPS/assets/lmlx_0601.png
OPoweron
Hardware
UEFlor BIOS ']—-[Bootloader 2]—|

3 Kernel

1

User
. 4 Otheruser 5
L[Init H space] space

OEBPS/UbuntuMono-Bold.otf

OEBPS/assets/lmlx_0503.png

OEBPS/assets/lmlx_0201.png
User
space

!
|
|
o |t
g [
k=]
g : Kernel
|
|
|
|
J

T Hardware

B -
Memo

M". i

: " Filesystems

EY
oI
S
S
7
a
o

|
w
™ |

OEBPS/assets/lmlx_0101.png
Apps Networking Observability
ché Ch7 Ch8
Shells Access control Filesystems
Ch3 Ch4 Ch5

o |

OEBPS/assets/lmlx_0802.png
(PR ver (TS][ﬂ][app) PiD)(miD
S ———

Header

Structured data

OEBPS/assets/2.png

OEBPS/assets/12.png

OEBPS/assets/1.png

OEBPS/assets/11.png

OEBPS/assets/lmlx_0203.png
Physical memory (RAM)

Process 1 Process 2

Page table

Page table

Process 2

Virtual memory Virtual memory

OEBPS/assets/lmlx_0202.png
Wait

completed
Interrupt
Ready]:[Running
Schedule

Terminated

Wait (1/0)

Exit

OEBPS/assets/3.png

OEBPS/assets/lmlx_0706.png
0 7 | 8 15|16 23(24] 31
Source port Destination port
Length Checksum

Data octets...

OEBPS/assets/lmlx_0705.png
ngIZ|BI4|5|6]7|SIQI(I)IIIZI}IAISIEI7|8|9|(Z)ITIZIa|4|SIE|7IS|9|;II

Source port Destination port
Sequence number
Acknowledgment number

UJA[P|R[S|F
Dataoffset| Reserved |R|C[S[S[Y]I Window

G|K[H[T[N|N

Checksum Urgent pointer
Options Padding

Data

OEBPS/assets/lmlx_0704.png
hovsnblas-info (185.10min 211100
Grerio (331185 n 21103

Siiaiams

25,7100

27.580m

25,00

22,3160

0}

sax 30.9m5
et

995 26,1485
595 2627908

OEBPS/assets/10.png

OEBPS/assets/lmlx_0801.png
Linux Performance Observability lools

strace Operaiing System Hardware Various:
1ezace ss nstat x /proc
opensncop dnesg dstat
1s0f “Applications gethostlatency
satrace
estar [Usystemiraties/ /] #] “petar tusbostat
- __System Call Interface/ // profile
Ftrace N vFs Sockets ¥
Scheduler 4
boas File Systems | _TCP/UDP , !
bpftrace o P vial |
Memo
extaaist / | 4BlockDevice/ [Net Devme? ry h
extaslover Db .
ipt
LS . P
stz zfe) maiush tsbiop, | topdump | ESPLife \ slabtop
lostat udpconnect
biosnoop hardirgs
biotop numastat
L= e
netstat
ip

7 1 ToF b S
SChlicy swibon sthbbol smieget dldptost s o

OEBPS/assets/lmlx_0708.png

OEBPS/assets/lmlx_0707.png
User
program

Local host . Foreign
i
i)
User queries Y Queries 1 Foreign
User responses| Resolver | Responses | | name
™|_server
!
Cache '
< References
addmonst :
!
Shared z
database !
'
!
Refreshes| References '
!
Responses '
Name N | Foreign
server Queries + | resolver
. !
!
!
Foreign
Maintenance responses , name
™| server

