
D
otson

Pra
ctica

l C
loud

 Security
Pra

ctica
l C

loud
 Security

Chris Dotson

Practical
Cloud Security
A Guide for Secure Design and Deployment

Second

Edition

CLOUD COMPUTING

“In Practical Cloud
Security, Chris Dotson
expertly navigates the
complex world of shared
responsibilities in cloud
systems, particularly as
they pertain to sensitive
sectors like healthcare.
Using a straightforward
yet thorough approach,
this second edition offers
essential strategies
for protecting data
and applications in
the cloud. It is a must-
read for students and
professionals aiming to
strengthen their skills in
cloud security.”

—Amir Bahmani, PhD
Stanford lecturer and Director of

Stanford Deep Data Research Center

Practical Cloud Security

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

With rapidly changing architecture and API-driven
automation, cloud platforms come with unique security
challenges and opportunities. In this updated second edition,
you’ll examine security best practices for multivendor
cloud environments, whether your company plans to move
legacy on-premises projects to the cloud or build a new
infrastructure from the ground up.

Developers, IT architects, and security professionals will
learn cloud-specific techniques for securing popular cloud
platforms such as Amazon Web Services, Microsoft Azure,
and IBM Cloud. IBM Distinguished Engineer Chris Dotson
shows you how to establish data asset management,
identity and access management (IAM), vulnerability
management, network security, and incident response
in your cloud environment.

•	 Learn the latest threats and challenges in the cloud
security space

•	 Manage cloud providers that store or process data or
deliver administrative control

•	 Learn how standard principles and concepts—such as least
privilege and defense in depth—apply in the cloud

•	 Understand the critical role played by IAM in the cloud

•	 Use best tactics for detecting, responding, and recovering
from the most common security incidents

•	 Manage various types of vulnerabilities, especially those
common in multicloud or hybrid cloud architectures

•	 Examine privileged access management in
cloud environments

Chris Dotson is an IBM Distinguished
Engineer and an executive security
architect in the IBM CIO organization.
He has 11 professional certifications,
including the Open Group Distinguished
IT Architect certification, and over 25
years of experience in the IT industry.

US $49.99	 CAN $62.99
ISBN: 978-1-098-14817-1

Chris Dotson

Practical Cloud Security
A Guide for Secure Design and Deployment

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-14817-1

[LSI]

Practical Cloud Security
by Chris Dotson

Copyright © 2024 Chris Dotson. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Megan Laddusaw
Development Editor: Rita Fernando
Production Editor: Clare Laylock
Copyeditor: Liz Wheeler
Proofreader: Rachel Head

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

March 2019: First Edition
October 2023: Second Edition

Revision History for the Second Edition
2023-10-06: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098148171 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Practical Cloud Security, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098148171

Table of Contents

Preface. ix

1. Principles and Concepts. 1
Least Privilege 2
Defense in Depth 2
Zero Trust 3
Threat Actors, Diagrams, and Trust Boundaries 4
Cloud Service Delivery Models 8
The Cloud Shared Responsibility Model 8
Risk Management 12
Conclusion 13
Exercises 15

2. Data Asset Management and Protection. 17
Data Identification and Classification 17

Example Data Classification Levels 18
Relevant Industry or Regulatory Requirements 19

Data Asset Management in the Cloud 21
Tagging Cloud Resources 22
Protecting Data in the Cloud 23

Tokenization 23
Encryption 24

Conclusion 31
Exercises 33

3. Cloud Asset Management and Protection. 35
Differences from Traditional IT 35
Types of Cloud Assets 36

iii

Compute Assets 37
Storage Assets 43
Network Assets 48

Asset Management Pipeline 49
Procurement Leaks 50
Processing Leaks 51
Tooling Leaks 52
Findings Leaks 52

Tagging Cloud Assets 52
Conclusion 54
Exercises 56

4. Identity and Access Management. 57
Differences from Traditional IT 59
Life Cycle for Identity and Access 60
Request 62
Approve 62
Create, Delete, Grant, or Revoke 63
Authentication 63

Cloud IAM Identities 63
Business-to-Consumer and Business-to-Employee 64
Multi-Factor Authentication 65
Passwords, Passphrases, and API Keys 68
Shared IDs 70
Federated Identity 71
Single Sign-On 71
Instance Metadata and Identity Documents 73
Secrets Management 75

Authorization 79
Centralized Authorization 80
Roles 81

Revalidate 82
Putting It All Together in the Sample Application 85
Conclusion 87
Exercises 89

5. Vulnerability Management. 91
Differences from Traditional IT 92
Vulnerable Areas 94

Data Access 95
Application 95
Middleware 98

iv | Table of Contents

Operating System 99
Network 100
Virtualized Infrastructure 100
Physical Infrastructure 100

Finding and Fixing Vulnerabilities 101
Network Vulnerability Scanners 102
Agentless Scanners and Configuration Management Systems 104
Agent-Based Scanners and Configuration Management Systems 105
Cloud Workload Protection Platforms 107
Container Scanners 107
Dynamic Application Scanners (DAST) 108
Static Application Scanners (SAST) 108
Software Composition Analysis Tools (SCA) 109
Interactive Application Scanners (IAST) 109
Runtime Application Self-Protection Scanners (RASP) 109
Manual Code Reviews 110
Penetration Tests 110
User Reports 112
Example Tools for Vulnerability and Configuration Management 112

Risk Management Processes 115
Vulnerability Management Metrics 115

Tool Coverage 116
Mean Time to Remediate 116
Systems/Applications with Open Vulnerabilities 117
Percentage of False Positives 117
Percentage of False Negatives 117
Vulnerability Recurrence Rate 118

Change Management 118
Putting It All Together in the Sample Application 119
Conclusion 123
Exercises 124

6. Network Security. 125
Differences from Traditional IT 125
Concepts and Definitions 127

Zero Trust Networking 127
Allowlists and Denylists 127
DMZs 129
Proxies 129
Software-Defined Networking 130
Network Functions Virtualization 130
Overlay Networks and Encapsulation 130

Table of Contents | v

Virtual Private Clouds 131
Network Address Translation 132
IPv6 133

Network Defense in Action in the Sample Application 134
Encryption in Motion 135
Firewalls and Network Segmentation 138
Allowing Administrative Access 144
Network Defense Tools 148
Egress Filtering 152
Data Loss Prevention 155

Conclusion 156
Exercises 158

7. Detecting, Responding to, and Recovering from Security Incidents. 161
Differences from Traditional IT 162
What to Watch 163

Privileged User Access 165
Logs from Defensive Tooling 167
Cloud Service Logs and Metrics 170
Operating System Logs and Metrics 171
Middleware Logs 172
Secrets Server 172
Your Application 172

How to Watch 173
Aggregation and Retention 174
Parsing Logs 175
Searching and Correlation 176
Alerting and Automated Response 176
Security Information and Event Managers 177
Threat Hunting 179

Preparing for an Incident 179
Team 180
Plans 181
Tools 183

Responding to an Incident 185
Cyber Kill Chains and MITRE ATT&CK 185
The OODA Loop 187
Cloud Forensics 188
Blocking Unauthorized Access 189
Stopping Data Exfiltration and Command and Control 189

Recovery 189
Redeploying IT Systems 189

vi | Table of Contents

Notifications 190
Lessons Learned 190

Example Metrics 190
Example Tools for Detection, Response, and Recovery 191
Detection and Response in a Sample Application 192

Monitoring the Protective Systems 193
Monitoring the Application 194
Monitoring the Administrators 195
Understanding the Auditing Infrastructure 195

Conclusion 196
Exercises 198

Appendix. Exercise Solutions. 199

Index. 205

Table of Contents | vii

Preface

As the title states, this book is a practical guide to securing your cloud environments.
In almost all organizations, security has to fight for time and funding, and it often
takes a back seat to implementing features and functions. Focusing on the “best bang
for the buck,” security-wise, is important.

This book is intended to help you get the most important security controls for your
most important assets in place quickly and correctly, whether you’re a security profes‐
sional who is somewhat new to the cloud, or an architect or developer with security
responsibilities. From that solid base, you can continue to build and mature your
controls.

While many of the security controls and principles are similar in cloud and on-
premises environments, there are some important practical differences. For that rea‐
son, a few of the recommendations for practical cloud security may be surprising to
those with an on-premises security background. While there are certainly legitimate
differences of opinion among security professionals in almost any area of informa‐
tion security, the recommendations in this book stem from years of experience in
securing cloud environments, and they are informed by some of the latest develop‐
ments in cloud computing offerings.

This is primarily a book about security, not compliance. That said, if you need to
meet specific compliance requirements, such as PCI DSS, HIPAA, or FedRAMP, you
will find some limited guidance on designing your security controls so that you will
be able to do so.

Who Should Read This Book
This book is designed as an intermediate-level resource and is intended primarily for
two types of practitioners:

ix

• Those who have some experience with securing on-premises environments, but
little or no experience with cloud environments

• Those who have experience building cloud environments, but little or no experi‐
ence with securing those cloud environments

The goal of this book is to provide a conceptual-level understanding of the “art of the
possible” in cloud security. You won’t find a cookbook-style guide on exactly how to
implement various controls in specific cloud environments, for a few reasons. One is
that such guides tend to become out of date very quickly, because cloud providers are
constantly improving their implementations. Another is that the cloud providers gen‐
erally do a better job of providing explicit how-to guides than I can, because the
implementations are specific to the way they’ve designed their services. A detailed
how-to guide by one cloud provider will be more useful than a generic how-to that
tries to cover multiple cloud providers.

What I try to provide is the understanding of when you need to find such a guide and
use it.

Navigating This Book
The first three chapters deal with understanding your responsibilities in the cloud
and how they differ from those in on-premises environments, as well as understand‐
ing what assets you have, what the most likely threats to those assets are, and some
protections for them.

Chapters 4 through 6 provide practical guidance, in priority order, of the most
important security controls that you should consider first:

• Identity and access management
• Vulnerability management
• Network controls

The final chapter deals with how to detect when something’s wrong and deal with it.
It’s a good idea to read this chapter before something actually goes wrong!

What’s New in the Second Edition
This new edition has been updated based on developments in the cloud computing
and security industries in the years since the release of the first edition. Some exam‐
ples are:

• More information on zero trust principles as they apply to protecting cloud
environments

x | Preface

• Advancements in encryption techniques, such as quantum-resistant encryption
algorithms

• Advancements in authentication techniques, such as passwordless technologies
and passkeys

• The use of privileged access management tools to protect cloud environments
• Verification of workload identities in addition to human identities
• The importance of protecting software supply chains, including build and

deployment environments in the cloud, with transparency through a Software
Bill of Materials (SBOM)

• Updates based on changes to offerings by major cloud providers since the previ‐
ous publication

• Updated examples of the different types of defensive tools and technologies avail‐
able today

In addition, you can now check your newfound understanding of cloud security con‐
cepts as you read. I have added some questions and exercises to the end of each chap‐
ter, and the answers are in the Appendix.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

Preface | xi

This element signifies a general note.

This element indicates a warning or caution.

O’Reilly Online Learning Platform
For almost 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help compa‐
nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/PracticalCloudSecurity2e.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

xii | Preface

http://oreilly.com
http://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/PracticalCloudSecurity2e
https://oreilly.com
https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
This book would not have happened without the encouragement and support of my
wonderful wife, Tabitha Dotson, who told me that I couldn’t pass up this opportunity
and juggled schedules and obligations for over a year to make it happen. I’d also like
to thank my children, Samantha (for her extensive knowledge of Greek mythology)
and Molly (for constantly challenging assumptions and thinking outside the box).

It takes many people besides the author to bring a book to publication, and I didn’t
fully appreciate this before writing one. I’d like to thank my first edition editors, Andy
Oram and Courtney Allen; my second edition editors, Rita Fernando and Megan
Laddusaw; my first edition reviewers, Hans Donker, Darren Day, and Edgar Ter Dan‐
ielyan; my second edition reviewers, Lee Atchison, Karan Dwivedi, and Akhil Behl;
and the rest of the wonderful team at O’Reilly who have guided and supported me
through this.

Finally, I’d like to thank all of my friends, family, colleagues, and mentors over the
years who have answered questions, bounced around ideas, listened to bad puns,
laughed at my mistakes, and actually taught me most of the content in this book.

Preface | xiii

https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

CHAPTER 1

Principles and Concepts

Yes, this is a practical guide, but we do need to cover a few cloud-relevant security
principles and concepts at a high level before we dive into the practical bits. If you’re a
seasoned security professional, but new to the cloud, you may want to skim down to
“The Cloud Shared Responsibility Model” on page 8.

The reason for covering these principles and concepts first is because they are used
implicitly throughout the rest of the book when I discuss designing and implement‐
ing security controls to stop attackers. Conceptual gaps and misunderstandings in
security can cause lots of issues. For example:

• If you’re not familiar with least privilege, you may understand authorization for
cloud services well, but still grant too much access to people or automation in
your cloud account or on a cloud database with sensitive information.

• If you’re not familiar with defense in depth, then having multiple layers of
authentication, network access control, or encryption may not seem useful.

• If you don’t know a little about threat modeling—the likely motivations of attack‐
ers, and the trust boundaries of the system that you’re designing—you may be
spending time and effort protecting the wrong things.

• If you don’t understand the cloud service delivery models and the shared respon‐
sibility model, you may spend time worrying about risks that are your cloud pro‐
vider’s responsibility and miss risks that are your responsibility to address.

• If you don’t know a little about risk management, you may spend too much time
and effort on low risks rather than managing your higher risks.

I’ll cover this foundational information quickly so that we can get to cloud security
controls.

1

Least Privilege
The principle of least privilege simply states that people or automated tools should be
able to access only what they need to do their jobs, and no more. It’s easy to forget the
automation part of this; for example, a component accessing a database should not
use credentials that allow write access to the database if write access isn’t needed.

A practical application of least privilege often means that your access policies are
deny by default. That is, users are granted no (or very few) privileges by default, and
they need to go through the request and approval process for any privileges they
require.

For cloud environments, some of your administrators will need to have access to the
cloud console—a web page that allows you to create, modify, and destroy cloud assets
such as virtual machines. With many providers, anyone with access to your cloud
console will have godlike privileges by default for everything managed by that cloud
provider. This might include the ability to read, modify, or destroy data from any part
of the cloud environment, regardless of what controls are in place on the operating
systems of the provisioned systems. For this reason, you need to tightly control access
to and privileges on the cloud console, much as you tightly control physical data cen‐
ter access in on-premises environments, and record what these users are doing.

Defense in Depth
Many of the controls in this book, if implemented perfectly, would negate the need
for other controls. Defense in depth is an acknowledgment that almost any security
control can fail, either because an attacker is sufficiently determined and skilled or
because of a problem with the way that security control is implemented. With defense
in depth, you create multiple layers of overlapping security controls so that if one
fails, the one behind it can still catch the attackers.

You can certainly go to silly extremes with defense in depth, which is why it’s impor‐
tant to understand the threats you’re likely to face. However, as a general rule, you
should be able to point to any single security control you have and say, “What if this
fails?” If the answer is unacceptable, you probably have insufficient defense in depth.
You may also have insufficient defense in depth if a single failure can make several of
your security controls ineffective, such as an inventory issue that causes multiple tools
to miss a problem.

2 | Chapter 1: Principles and Concepts

1 If you’re expecting tips on how to pick catchy marketing names, you’re probably reading the wrong book!

Zero Trust
Many products and services today claim to be zero trust, or to support zero trust
principles. The name is confusing, because zero trust does not mean a complete lack
of trust in anything, and the confusion is worse because it’s used for so many different
marketing purposes. There are many different definitions and different ideas about
what is meant by zero trust.

We are probably stuck with the term at this point, but “zero trust” should really be
called something else, such as “zero implicit trust” or “zero assumed trust without a
good reason.”1 The core principle is that trust from a user or another system should
be earned, rather than given simply because the user is able to reach you on the net‐
work, or has a company-owned device, or some other criterion that’s not well
controlled.

The implementation of zero trust will differ widely depending on whether you’re talk‐
ing about trusting devices, network connections, or something else. One commonly
used implementation of zero trust is requiring encryption and authentication for all
connections, even ones that originate and terminate in supposedly trusted networks.
This was always a good idea, but it’s even more important in cloud environments
where the perimeter is less strictly designed and internet connectivity is easy.

Another common implementation of zero trust principles is limiting users’ network
access to only the applications that they need, challenging the implicit trust that all
users should be able to connect to all applications, even if they cannot log in. If you
think this sounds a lot like least privilege and defense in depth, you’re right. There is
considerable overlap between zero trust principles and some of the other principles in
this chapter.

A third example of zero trust is the use of multi-factor authentication of users, with
reauthentication required either periodically or when higher-risk transactions are
requested. In this case, we’re challenging the implicit trust that whoever has the pass‐
word for an account, or controls a particular session for an application, is the
intended user.

When following zero trust principles, you should only trust an interaction if you have
strong evidence that the trust is warranted, such as by proof of strong authentication,
or authorization, or correct configuration. That evidence should either be from some‐
thing you directly control (such as your own authentication system or device man‐
agement system), or from some third party that you have explicitly evaluated as
competent to make trust decisions for you. Like other principles in this chapter, it can
be disruptive to the user experience if taken to extremes.

Zero Trust | 3

2 The Verizon Data Breach Investigations Report is an excellent free resource for understanding different types
of successful attacks, organized by industry and methods, and the executive summary is very readable.

3 I recommend Threat Modeling: Designing for Security, by Adam Shostack (Wiley, 2014).

Threat Actors, Diagrams, and Trust Boundaries
There are different ways to think about your risks, but I typically favor an asset-
oriented approach. This means that you concentrate first on what you need to pro‐
tect, which is why I dig into data assets first, in Chapter 2.

It’s also a good idea to keep in mind who is most likely to cause you problems. In
cybersecurity parlance, these are your potential “threat actors.” For example, you may
not need to guard against a well-funded state actor, but you might be in a business
where a cyber-criminal can make money by stealing your data, or where a “hackti‐
vist” might want to deface your website for political or social reasons. Keep these peo‐
ple in mind when designing all of your defenses.

While there is plenty of information and discussion available on the subject of threat
actors, motivations, and methods,2 in this book we’ll consider four main types of
threat actors that you may need to worry about:

• Organized crime or independent criminals, interested primarily in making
money

• Hacktivists, interested primarily in discrediting you by releasing stolen data,
committing acts of vandalism, or disrupting your business

• Inside attackers, usually interested in discrediting you or making money
• State actors, who may be interested in stealing secrets or disrupting your business

to advance a foreign government’s political mission or cause

To borrow a technique from the world of user experience design, you may want to
imagine a member of each applicable group, give them a name, jot down a little about
that “persona” on a card, and keep the cards visible when designing your defenses.

The second thing you have to do is figure out what needs to talk to what in your
application, and the easiest way to do that is to draw a picture and figure out where
your weak spots are likely to be. There are entire books on how to do this,3 but you
don’t need to be an expert to draw something useful enough to help you make deci‐
sions. However, if you are in a high-risk environment, you should probably create
formal diagrams with a suitable tool rather than draw stick figures.

4 | Chapter 1: Principles and Concepts

https://oreil.ly/ydkVz

Although there are many different application architectures, for the sample applica‐
tion used for illustration here, I will show a simple three-tier design. Here is what I
recommend for a very simple application component diagram:

1. Draw a stick figure and label it “user.” Draw another stick figure and label it
“administrator” (Figure 1-1). You may find later that you have multiple types of
users and administrators, or other roles, but this is a good start.

Figure 1-1. User and administrator roles

2. Draw a box for the first component the user talks to (for example, the web
servers), draw a line from the user to that first component, and label the line with
how the user talks to that component (Figure 1-2). Note that at this point, the
component may be a serverless function, a container, a virtual machine, or some‐
thing else. This will let anyone talk to it, so it will probably be the first thing
attacked. We really don’t want the other components trusting this one more than
necessary.

Figure 1-2. First component

3. Draw other boxes behind the first for all of the other components that first sys‐
tem has to talk to, and draw lines going to those (Figure 1-3). Whenever you get
to a system that actually stores data, draw a little symbol (I use a cylinder) next to
it and jot down what data is there. Keep going until you can’t think of any more
boxes to draw for your application.

Threat Actors, Diagrams, and Trust Boundaries | 5

Figure 1-3. Additional components

4. Now draw how the administrator (and any other roles you’ve defined) accesses
the application. Note that the administrator may have several different ways of
talking to this application; for example, via the cloud provider’s portal or APIs, or
through the operating system, or in a manner similar to how a user accesses it
(Figure 1-4).

Figure 1-4. Administrator access

5. Draw some trust boundaries as dotted lines around the boxes (Figure 1-5). A
trust boundary means that anything inside that boundary can be at least some‐
what confident of the motives of anything else inside that boundary, but requires
verification before trusting anything outside of the boundary. The idea is that if
an attacker gets into one part of the trust boundary, it’s reasonable to assume
they’ll eventually have complete control over everything in it, so getting through
each trust boundary should take some effort. Note that I drew multiple web
servers inside the same trust boundary; that means it’s okay for these web servers
to trust each other, and if someone has access to one, they effectively have access
to all. Or, to put it another way, if someone compromises one of these web
servers, no further damage will be done by having them all compromised.
In this context, zero trust principles lead us to reduce these trust boundaries to
the smallest reasonable size—for example, a single component, which here might
be an individual server or a cluster of servers with the same data and purpose.

6 | Chapter 1: Principles and Concepts

Figure 1-5. Component trust boundaries

6. To some extent, we trust our entire system more than the rest of the world, so
draw a dotted line around all of the boxes, including the admin, but not the user
(Figure 1-6). Note that if you have multiple admins, like a web server admin and
a database admin, they might be in different trust boundaries. The fact that there
are trust boundaries inside of trust boundaries shows the different levels of trust.
For example, the servers here may be willing to accept network connections from
servers in other trust boundaries inside the application, but still verify their iden‐
tities. On the other hand, they may not be willing to accept connections from sys‐
tems outside of the whole application trust boundary.

Figure 1-6. Whole application trust boundary

We’ll use this diagram of an example application throughout the book when discus‐
sing the shared responsibility model, asset inventory, controls, and monitoring. Right
now, there are no cloud-specific controls shown in the diagram, but that will change
as we progress through the chapters. Look at any place a line crosses a trust bound‐
ary. These are the places we need to focus on securing first!

Threat Actors, Diagrams, and Trust Boundaries | 7

Cloud Service Delivery Models
There is an unwritten law that no book on cloud computing is complete without an
overview of Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Soft‐
ware as a Service (SaaS). Rather than give the standard overview, I’d like to quickly
say that IaaS services typically allow you to create virtual computers, storage, and net‐
works; PaaS services are typically higher-level services, such as databases, that enable
you to build applications; and SaaS services are applications used by end users. You
can find many expanded definitions and subdivisions of these categories, but these
are the core definitions.

These service models are useful only for a general understanding of concepts; in par‐
ticular, the line between IaaS and PaaS is becoming increasingly blurred. Is a content
delivery network service that caches information for you around the internet to keep
it close to users a PaaS or an IaaS? It doesn’t really matter. What’s important is that
you understand what is (and isn’t!) provided by the service, not whether it fits neatly
into any particular category.

The Cloud Shared Responsibility Model
The most basic security question you must answer is, “What aspects of security am I
responsible for?” This is often answered implicitly in an on-premises environment.
The development organization is responsible for code errors, and the operations
organization (IT) is responsible for everything else. Many organizations now run a
DevOps model where those responsibilities are shared, and team boundaries between
development and operations are blurred or nonexistent. Regardless of how it’s organ‐
ized, almost all security responsibility is inside the company.

Perhaps one of the most jarring changes when moving from an on-premises environ‐
ment to a cloud environment is a more complicated shared responsibility model for
security. In an on-premises environment, you may have had some sort of internal
document of understanding or contract with IT or some other department that ran
servers for you. However, in many cases business users of IT were used to handing
the requirements or code to an internal provider and having everything else done for
them, particularly in the realm of security.

Even if you’ve been operating in a cloud environment for a while, you may not have
stopped to think about where the cloud provider’s responsibility ends and where
yours begins. This line of demarcation is different depending on the types of cloud
services you’re purchasing. Almost all cloud providers address this in some way in
their documentation and training materials, but the best way to explain it is to use the
analogy of eating pizza.

8 | Chapter 1: Principles and Concepts

4 Original concept from Albert Barron’s 2014 LinkedIn article, “Pizza as a Service”.

With Pizza as a Service,4 let’s say you’re hungry for pizza. There are a lot of choices!
You could just make a pizza at home, although you’d need to have quite a few ingredi‐
ents and it would take a while. You could run to the grocery store and grab a take and
bake; that only requires you to have an oven and a place to eat it. You could call your
favorite pizza delivery place. Or, you could just go sit down at a restaurant and order
a pizza. If we draw a diagram of the various components and who’s responsible for
them, we get something like Figure 1-7.

Figure 1-7. Pizza as a Service

The traditional on-premises world is like making a pizza at home. You have to buy a
lot of different components and put them together yourself, but you get complete
flexibility. Anchovies and cinnamon on wheat crust? If you can stomach it, you can
make it.

When you use Infrastructure as a Service, though, the base layer is already done for
you. You can bake it to taste and add a salad and drinks, and you’re responsible for
those things. When you move up to Platform as a Service, even more decisions are
already made for you, including how your pizza is baked. (As mentioned in the previ‐
ous section, sometimes it can be difficult to categorize a service as IaaS or PaaS, and
they’re growing together in many cases. The exact classification isn’t important; what’s
important is that you understand what the service provides and what your responsi‐
bilities are.)

The Cloud Shared Responsibility Model | 9

https://oreil.ly/l_RCH

When you get to Software as a Service (compared to dining out in Figure 1-7), it
seems like everything is done for you. It’s not, though. You still have a responsibility
to eat safely, and the restaurant is not responsible if you choke on your food. In the
SaaS world, this largely comes down to managing access control properly.

If we draw the diagram but focus on technology instead of pizza, it looks more like
Figure 1-8.

Figure 1-8. Cloud shared responsibility model

The reality of cloud computing is unfortunately a little more complicated than eating
pizza, so there are some gray areas. At the bottom of the diagram, things are concrete
(often literally). The cloud provider has complete responsibility for physical infra‐
structure security—which often involves controls beyond what many companies can
reasonably do on-premises, such as biometric access with anti-tailgating measures,
security guards, slab-to-slab barriers, and similar controls to keep unauthorized per‐
sonnel out of the physical facilities.

Likewise, if the provider offers virtualized environments, the virtualized infrastruc‐
ture security controls keeping your virtual environment separate from other virtual
environments are the provider’s responsibility. When the Spectre and Meltdown vul‐
nerabilities came to light in early 2018, one of the potential effects was that users in
one virtual machine could read the memory of another virtual machine on the same
physical computer. For IaaS customers, fixing that part of the vulnerability was the
responsibility of the cloud provider—Amazon, Microsoft, Google, and IBM all had to
make updates to their hypervisors, for example—but fixing the vulnerabilities within
the operating system was the customer’s responsibility.

10 | Chapter 1: Principles and Concepts

Network security is shown as a shared responsibility in the IaaS section of Figure 1-8.
Why? It’s hard to show on a diagram, but there are several layers of networking, and
the responsibility for each lies with a different party. The cloud provider has its own
network that is its responsibility, but there is usually a virtual network on top (for
example, some cloud providers offer a virtual private cloud), and it’s the customer’s
responsibility to carve this into reasonable security zones and put in the proper rules
for access between them. Many implementations also use overlay networks, firewalls,
and transport encryption that are the customer’s responsibility. This will be discussed
in depth in Chapter 6.

Operating system security is usually straightforward: it’s your responsibility if you’re
using IaaS, and it’s the provider’s responsibility if you’re purchasing platform or soft‐
ware services. In general, if you’re purchasing those services, you have no access to
the underlying operating system. (As a general rule of thumb, if you have the ability
to break it, you usually have the responsibility for securing it!)

Middleware, in this context, is a generic name for software such as databases, applica‐
tion servers, or queuing systems. They’re in the middle between the operating system
and the application—not used directly by end users, but used to develop solutions for
end users. If you’re using a PaaS, middleware security is often a shared responsibility;
the provider might keep the software up to date (or make updates easily available to
you), but you retain the responsibility for security-relevant settings such as
encryption.

The application layer is what the end user actually uses. If you’re using SaaS, vulnera‐
bilities at this layer (such as cross-site scripting or SQL injection) are the provider’s
responsibility, but if you’re reading this book you’re probably not just using someone
else’s SaaS. Even if all of the other layers have bulletproof security, a vulnerability at
the application security layer can easily expose all of your information.

Finally, data access security is almost always your responsibility as a customer. If you
incorrectly tell your cloud provider to allow access to specific data, such as granting
incorrect object storage permissions, middleware permissions, or SaaS permissions,
there’s really not much the provider can do other than try to detect the problem and
warn you.

The root cause of many security incidents is an assumption that the cloud provider is
handling something, when it turns out nobody was handling it. Many real-world
examples of security incidents stemming from poor understanding of the shared
responsibility model come from open Amazon Simple Storage Service (Amazon S3)
buckets. Sure, S3 storage is secure and encrypted, but none of that helps if you don’t
set your access controls properly. This misunderstanding has caused the loss of:

The Cloud Shared Responsibility Model | 11

5 Risks can also interact, or aggregate. There may be two risks that each have relatively low likelihood and limi‐
ted impacts, but they may be likely to occur together, and the impacts can combine to be more severe. For
example, the impact of either power line in a redundant pair going out may be negligible, but the impact of
both going out may be really bad. This is often difficult to anticipate; the Atlanta airport power outage in 2017
is a good example.

• Data on 198 million US voters
• Auto-tracking company records
• Wireless customer records
• Over 3 million demographic survey records
• Over 50,000 Indian citizens’ credit reports
• Over 100,000 students’ grades and personal info
• Thousands of hours of audio and video recordings that contain private

conversations

There are many more examples. Although there has been considerable progress, the
shared responsibility model is often still misunderstood. Many IT decision makers
still believe that public cloud providers are responsible for securing not just the cloud
services they offer, but also customer applications and data in the cloud. If you read
your agreement with your cloud provider, you’ll find this just isn’t true!

Risk Management
Risk management is a deep subject, with entire books written about it. If you’re really
interested in a deep dive, I recommend reading The Failure of Risk Management: Why
It’s Broken and How to Fix It, by Douglas W. Hubbard (Wiley, 2020), and NIST Special
Publication 800-30 Rev 1. In a nutshell, humans are really bad at assessing risk and
figuring out what to do about it. This section is intended to give you just the barest
essentials for managing the risk of security incidents and data breaches.

At the risk of stating the obvious, a risk is something bad that could happen. In most
risk management systems, the level of risk is based on a combination of how probable
it is that the bad thing will happen (likelihood), and how bad the result will be if it
does happen (impact). For example, something that’s very likely to happen (such as
someone guessing your password of “1234”) and will be very bad if it does happen
(such as you losing all of your customers’ files and paying large fines) would be a high
risk. Something that’s very unlikely to happen (such as an asteroid wiping out two
different regional data centers at once) but that would be very bad if it does happen
(going out of business) might only be a low risk, depending on the system you use for
deciding the level of risk.5

12 | Chapter 1: Principles and Concepts

https://oreil.ly/8VXtI
https://oreil.ly/fj5Fh
https://oreil.ly/fj5Fh

In this book, I’ll talk about unknown risks (where we don’t have enough information
to know what the likelihoods and impacts are) and known risks (where we at least
know what we’re up against). Once you have an idea of the known risks, you can do
one of four things with them:

1. Avoid the risk. In information security, this typically means you turn off the
system—no more risk, but also none of the benefits you had from running the
system in the first place.

2. Mitigate the risk. It’s still there, but you do additional things to lower either the
likelihood that the bad thing will happen or the impact if it does happen. For
example, you may choose to store less sensitive data so that if there is a breach,
the impact won’t be as bad.

3. Transfer the risk. You pay someone else to manage things so that the risk is their
problem. This is done a lot with the cloud, where you transfer many of the risks
of managing the lower levels of the system to the cloud provider.

4. Accept the risk. After looking at the overall risk level and the benefits of continu‐
ing the activity, you may decide to write down that the risk exists, get all of your
stakeholders to agree that it’s a risk, and then move on.

Any of these actions may be reasonable. However, what’s not acceptable is to either
have no idea what your risks are, or to have an idea of what the risks are and accept
them without weighing the consequences or getting buy-in from your stakeholders.
At a minimum, you should have a list somewhere in a spreadsheet or document that
details the risks you know about, the actions taken, and any approvals needed.

Conclusion
Even though there are often no perfect answers in the real world, understanding
some foundational concepts will help you make better choices in securing your cloud
environments.

Least privilege is basically just recognizing that giving privileged access to anything or
anyone is a risk, and you don’t want to take more risks than necessary. It’s an art, of
course, because there are sometimes trade-offs between risk and productivity, but the
general principle is good—only give the minimum amount of privilege necessary.
This is often overlooked for automation, but is arguably even more important there
because many real-world attacks hinge upon fooling a system or automation into tak‐
ing unexpected actions.

Defense in depth is recognizing that we’re not perfect, and the systems we design will
not be perfect. It’s also a nod to the basic laws of probability—if you have two inde‐
pendent things that both have to fail for a bad thing to happen, it’s a lot less likely to
happen. If you have to flip a coin and get tails twice in a row, your chances of that are

Conclusion | 13

only 25%, compared to the 50% chance of getting tails on one coin flip. We aspire to
have security controls that are much more effective than a coin toss, but the principle
is the same. If you have two overlapping, independent controls that are 95% effective,
then the combination of the two will be 99.75% effective! There are diminishing
returns with this approach, however, so five or six layers in the same area is probably
not a good use of resources.

Threat modeling is the process of understanding who is likely to attack your system
and why, and understanding the components of your system and how they work
together. With those two pieces of information, you can look at your system through
the eyes of potential attackers, and try to spot areas where the attackers may be able to
do something undesirable. Then, for each of those areas, you can put obstacles (or,
more formally, “controls” and “mitigations”) in place to thwart the attackers. In gen‐
eral, the most effective places to put mitigations are on trust boundaries, which are
the places where one part of your system needs to trust another part.

Understanding cloud delivery models can help you focus on the parts of the overall
system that you’re responsible for, so that you don’t waste time trying to do your
cloud provider’s job, and so that you don’t assume that your cloud provider is taking
care of something that’s really your responsibility. While there are standardized terms
for different cloud delivery models, such as IaaS, PaaS, and SaaS, some services don’t
fit neatly into those buckets. They’re conceptually useful, though, and the most
important thing is to understand where your provider’s responsibility ends and yours
begins in the cloud shared responsibility model. In an on-premises world, the secu‐
rity of the entire system will often be the responsibility of a single organization within
a company, whereas in cloud deployments, it’s almost always split among at least two
different companies!

Finally, while humans are pretty good at assessing risk in “is this predator going to eat
me?” types of situations, we’re not naturally very good at it in more abstract situa‐
tions. Risk management is a discipline that makes us better at assessing risk and fig‐
uring out what to do about it. The easiest form of risk management is estimating the
likelihood that something bad will happen and the impact of how bad it will be if it
does happen, and then making decisions based on the combination of likelihood and
impact. Risk management can lower our overall risk by letting us focus on the biggest
risks first.

Now that we have these concepts and principles in our tool kit, let’s put them to use
in protecting the data and other assets in our cloud environments.

14 | Chapter 1: Principles and Concepts

Exercises
1. Which of these are good examples of the principle of least privilege in action?

Select all that apply.
a. Having different levels of access within an application, with users only able to

access the functions that they require for their work
b. Requiring both a password and a second factor in order to log in
c. Giving an inventory tool read-only access rather than read/write access
d. Use of a tool such as sudo to allow a user to only execute certain commands

2. Which of these are good examples of the principle of defense in depth? Select all
that apply.
a. Encrypting valuable data, and also keeping people from reading the encrypted

data unless they need to see it
b. Having very strict firewall controls
c. Ensuring that your trust boundaries are well defined
d. Having multi-factor authentication

3. What are some common motivations for threat actors? Select all that apply.
a. Stealing money
b. Stealing secrets
c. Disrupting your business
d. Embarrassing you

4. Which of these items is always the cloud provider’s responsibility?
a. Physical infrastructure security
b. Network security
c. Operating system security
d. Data access security

5. What are the most important factors in assessing how severe a risk is? Select the
two that apply.
a. The chances, or likelihood, that an event will happen
b. How bad the impact will be if an event happens
c. Whether or not you can transfer the risk to someone else
d. Whether the actions causing the risk are legal or illegal

Exercises | 15

CHAPTER 2

Data Asset Management and Protection

Now that Chapter 1 has given you some idea of where your cloud provider’s responsi‐
bility ends and yours begins, your first step to securing your cloud environment is to
figure out where your data is—or is going to be—and how you’re going to protect it.
There is often a lot of confusion about the term “asset management.” What exactly are
our assets, and what do we need to do to manage them? The obvious (and unhelpful)
answer is that assets are anything valuable that you have. Let’s start to home in on the
details.

In this book, I’ve broken up asset management into two parts: data asset management
and cloud asset management. Data assets are the important information you have,
such as customer names and addresses, credit card information, bank account infor‐
mation, or credentials to access such data. Cloud assets are the things you have that
store and process your data—compute resources such as servers or containers, stor‐
age such as object stores or block storage, and platform instances such as databases or
queues. Managing these assets is covered in the next chapter. While you can start
with either data assets or cloud assets, and may need to go back and forth a bit to get
a full picture, I find it easier to start with data assets.

The theory of managing data assets in the cloud is no different than on-premises, but
in practice there are some cloud technologies that can help.

Data Identification and Classification
If you’ve created at least a “back-of-the-napkin” diagram and threat model as
described in the previous chapter, you’ll have some idea of what your important data
is, as well as the threat actors you have to worry about and what they might be after.
Let’s look at different ways threat actors might attack your data.

17

1 Ransomware is both an availability and an integrity breach, because it uses unauthorized modifications of
your data in order to make it unavailable.

2 If you have unlimited resources, please contact me!

One of the more popular information security models is the CIA triad: confidential‐
ity, integrity, and availability. A threat actor trying to breach your data confidentiality
wants to steal it, usually to sell it for money or embarrass you. A threat actor trying to
breach your data integrity wants to change your data, such as by altering a bank bal‐
ance. (Note that this can be effective even if the attacker cannot read the bank balan‐
ces; I’d be happy to have my bank balance be a copy of Bill Gates’s, even if I don’t
know what that value is.) A threat actor trying to breach your data availability wants
to take you offline for fun or profit, or use ransomware to encrypt your files.1

Most of us have limited resources and must prioritize our efforts.2 A data classifica‐
tion system can assist with this, but resist the urge to make it more complicated than
absolutely necessary.

Example Data Classification Levels
Every organization is different, but the following rules provide a good, simple starting
point for assessing the value of your data, and therefore the risk of having it breached:

Low or public
While the information in this category may or may not be intended for public
release, if it were released publicly the impact to the organization would be very
low or negligible. Here are some examples:

• Your servers’ public IP addresses
• Application log data without any personal data, secrets, or value to attackers
• Software installation materials without any secrets or other items of value to

attackers

Moderate or private
This information should not be disclosed outside of the organization without the
proper nondisclosure agreements. In many cases (especially in larger organiza‐
tions) this type of data should be disclosed only on a need-to-know basis within
the organization. In most organizations, the majority of information will fall into
this category. Here are some examples:

• Detailed information on how your information systems are designed, which
may be useful to an attacker

• Information on your personnel, which could provide information to attack‐
ers for phishing or pretexting attacks

18 | Chapter 2: Data Asset Management and Protection

• Routine financial information, such as purchase orders or travel reimburse‐
ments, which might be used, for example, to infer that an acquisition is likely

High or confidential
This information is vital to the organization, and disclosure could cause signifi‐
cant harm. Access to this data should be very tightly controlled, with multiple
safeguards. In some organizations, this type of data is called the “crown jewels.”
Here are some examples:

• Information about future strategy, or financial information that would pro‐
vide a significant advantage to competitors

• Trade secrets, such as the recipe for your popular soft drink or fried chicken
• Secrets that provide the “keys to the kingdom,” such as full access credentials

to your cloud infrastructure
• Sensitive information placed into your hands for safekeeping, such as your

customers’ financial data
• Any other information where a breach might be newsworthy

Note that laws and industry rules may effectively dictate how you classify some infor‐
mation. For example, the European Union’s General Data Protection Regulation
(GDPR) has many different requirements for handling personal data, so with this sys‐
tem you might choose to classify all personal data as “moderate” risk and protect it
accordingly. Payment Card Industry Data Security Standard (PCI DSS) requirements
would probably dictate that you classify cardholder data as “high” risk if you have it
in your environment.

Also, note that there are cloud services that can help with data classification and pro‐
tection. As examples, Amazon Macie can help you find sensitive data in Amazon S3
buckets, Google Cloud Sensitive Data Prevention can help you classify or mask cer‐
tain types of sensitive data, and Microsoft Purview can classify data on Azure cloud
services.

Whatever data classification system you use, write down a definition of each classifi‐
cation level and some examples of each, and make sure that everyone generating, col‐
lecting, or protecting data understands the classification system.

Relevant Industry or Regulatory Requirements
As mentioned in the preface, this is a book on security, not compliance. As a gross
overgeneralization, compliance is about proving your security to a third party—and
that’s much easier to accomplish if you have actually secured your systems and data.
The information in this book will help you with being secure, but there will be addi‐
tional compliance work and documentation to complete after you’ve secured your
systems.

Data Identification and Classification | 19

https://oreil.ly/znsxp
https://oreil.ly/MSzAr
https://oreil.ly/av897

That said, some compliance requirements may inform your security design. So, even
at this early stage, it’s important to make note of a few industry or regulatory
requirements:

EU GDPR
This regulation may apply to the personal data of any European Union or Euro‐
pean Economic Area citizen, regardless of where in the world the data is. The
GDPR requires you to catalog, protect, and audit access to “any information
relating to an identifiable person who can be directly or indirectly identified in
particular by reference to an identifier.” The techniques in this chapter may help
you meet some GDPR requirements, but you must make sure that you include
relevant personal data as part of the data you’re protecting.

US FISMA or FedRAMP
The Federal Information Security Management Act is applied per agency,
whereas Federal Risk and Authorization Management Program certification may
be used with multiple agencies, but both require you to classify your data and
systems in accordance with FIPS 199 and other US government standards. If
you’re in an area where you may need one of these certifications, you should use
the FIPS 199 classification levels.

US ITAR
If you are subject to International Traffic in Arms Regulations, in addition to
your own controls, you will need to choose cloud services that support ITAR.
Such services are available from some cloud providers and are managed only by
US personnel.

Global PCI DSS
If you’re handling credit card information, the Payment Card Industry Data
Security Standard dictates that there are specific controls that you have to put in
place, and there are certain types of data you’re not allowed to store.

US HIPAA
If you’re in the US and dealing with any protected health information (PHI), the
Health Insurance Portability and Accountability Act mandates that you include
that information in your list and protect it, which often involves encryption.

There are many other regulatory and industry requirements around the world, such
as MTCS (Singapore), G-Cloud (UK), and IRAP (Australia). If you think you may be
subject to any of these, review the types of data they are designed to protect so that
you can ensure that you catalog and protect that data accordingly.

20 | Chapter 2: Data Asset Management and Protection

http://bit.ly/2BQRBJc

3 Remember LinkedIn’s 6.5 million password hashes that were stolen, cracked offline, and then used to com‐
promise other accounts where users reused their LinkedIn password? This has happened many times, and
sites like have i been pwned can tell you about all of the breaches that may contain your email or password
data.

Data Asset Management in the Cloud
Most of the preceding information is good general practice and not specific to cloud
environments. However, cloud providers are in a unique situation to help you iden‐
tify and classify your data. For starters, they will be able to tell you everywhere you
are storing data, because they want to charge you for the storage!

In addition, use of cloud services brings some level of standardization by design. In
many cases, your persistent data in the cloud will be in one of the cloud services that
store data, such as object storage, file storage, block storage, a cloud database, or a
cloud message queue, rather than being spread across thousands of different disks
attached to many different physical servers.

Your cloud provider gives you the tools to inventory these storage locations, as well as
to access them (in a carefully controlled manner) to determine what types of data are
stored there. There are also cloud services that will look at all of your storage loca‐
tions and automatically attempt to classify where your important data is. You can
then use this information to tag your cloud assets that store data.

When you’re identifying your important data, don’t forget about
passwords, API keys, and other secrets that can be used to read or
modify that data! We’ll talk about the best way to secure secrets in
Chapter 4, but first you need to know exactly where they are.

If we look at our sample application that we diagrammed in Chapter 1, there’s obvi‐
ously customer data in the database. However, where else do you have important
assets? Here are some things to consider:

• The web servers have log data that may be used to identify your customers.
• Your web server has a private key for a Transport Layer Security (TLS) certificate;

with that and a little Domain Name System (DNS) or Border Gateway Protocol
(BGP) hijacking, anyone could pretend to be your site and steal your customers’
passwords (and some types of second factors) as they try to log in.

• Do you keep a list of password hashes to verify your customers? Hopefully you’re
using some sort of federated ID system, as described in Chapter 4, but if not, the
password hashes are a nice target for attackers.3

Data Asset Management in the Cloud | 21

https://haveibeenpwned.com

• Your application server needs a password or API key to access the database. With
this password, an attacker could read or modify everything in the database that
the application can.

Even in this really simple application, there are a lot of nonobvious things you need
to protect. Figure 2-1 repeats Figure 1-6 from the previous chapter, adding the data
assets in the boxes.

Figure 2-1. Sample application diagram with data assets

Tagging Cloud Resources
Most cloud providers, as well as container management systems such as Kubernetes,
have the concept of tags. A tag is usually a combination of a name (or “key”) and a
value. These tags can be used for lots of purposes, from categorizing resources in an
inventory, to making access decisions, to choosing what to alert on. For example, you
might have a key of PII-data and a value of yes for anything that contains personally
identifiable information, or you might use a key of datatype and a value of PII.

The problem is clear: if everyone in your organization uses different tags, they won’t
be very useful! Have a policy to use tags. To support this policy, create a tag standard
with a list of tags and explanations for when they must be used, use these same tags
across multiple cloud providers, and require them to be applied by any automated
tools that create cloud resources.

In smaller organizations, a simple tag standard will probably suffice. In larger organi‐
zations, this tag standard should probably be treated as a versioned, backward-
compatible standard with an assigned owner and periodic reviews. Some tags will
likely be organization-wide and some specific to subsections of the organization.
Even if one of your cloud providers doesn’t explicitly support the use of tags, there are

22 | Chapter 2: Data Asset Management and Protection

often other description fields that may be used to hold tags in easy-to-parse formats
such as JSON. Tags rarely cause any harm, so use them liberally; if you don’t need
them, they’re easily ignored.

Tags are free to use, so there’s rarely any technical concern with creating a lot of them,
but you should be careful not to make the tag standard so complicated that it confu‐
ses the humans who have to write rules for applying and consuming tag data. In addi‐
tion, cloud providers do impose some limits on how many tags a particular resource
can have (usually between 15 and 64 tags per resource).

Some cloud providers even offer automation to check whether tags are properly
applied to resources, so that you can catch untagged or mistagged resources early and
correct them. For example, if you have a rule that every asset must be tagged with the
maximum data classification allowed on that asset, then you can run automated scans
to find any resources where the tag is missing or where the value isn’t one of the clas‐
sification levels you have decided upon.

Table 2-1 shows the different names given to tagging by different cloud providers.
Kubernetes, which may run on-premises or on any IaaS provider, uses the term
“labels.”

Table 2-1. Tagging features

Infrastructure Feature name
Amazon Web Services Tags

Microsoft Azure Tags

Google Compute Platform Labels and network tags

IBM Cloud Tags

We will talk more about tagging resources in Chapter 3, but for now, jot down some
data-related tags that may apply to your different cloud resources, such as data
class:low, dataclass:moderate, dataclass:high, or regulatory:gdpr.

Protecting Data in the Cloud
Several of the data protection techniques discussed in this section may also be applied
on-premises, but many cloud providers give you easy, standardized, and less expen‐
sive ways to protect your data.

Tokenization
Why store the data when you can store something that functions similarly to the data,
but is useless to an attacker? Tokenization, which is most often used with credit card
numbers, replaces a piece of sensitive data with a token (usually randomly generated).

Protecting Data in the Cloud | 23

It has the benefit that the token generally has the same characteristics (such as being
16 digits long) as the original data, so underlying systems that are built to take that
data don’t need to be modified. Only one place (a “token service”) knows the actual
sensitive data. Tokenization can be used on its own or in conjunction with encryp‐
tion, discussed next.

Examples include cloud services that work with your browser to tokenize sensitive
data before sending it, and cloud services that sit in between the browser and the
application to tokenize sensitive data before it reaches the application.

Encryption
Encryption is the silver bullet of the data protection world; we want to “encrypt all
the things.” Unfortunately, it’s a little more complicated than that. There are three
types of data you might need to encrypt:

• Data in motion (being transmitted across a network)
• Confidential computing, or data in use (currently being processed in a comput‐

er’s CPU or held in RAM)
• Data at rest (on persistent storage, such as a disk)

Encryption of data in motion is discussed in detail in Chapter 6. In this section, we’ll
discuss the other two uses of encryption.

More bits are not always necessary or useful once you get to a cer‐
tain point; encryption is often broken due to a flaw in the imple‐
mentation rather than brute force. In addition, there’s often a
performance trade-off with using a cipher algorithm with more
bits, particularly if you use something without hardware accelera‐
tion. If you don’t want to make a deep study of it, it’s usually safe to
adopt the same cipher requirements as large private and govern‐
mental organizations that have studied the subject extensively.

Confidential computing
Encryption of data in use is now available from several cloud providers, and is typi‐
cally marketed to organizations with very sensitive data under the name confidential
computing. Because it changes the way the processor accesses memory, it requires
support in the hardware platform, and then the feature must be exposed by the cloud
provider.

The most common cloud implementation is to encrypt process or virtual machine
memory so that even a privileged user (or an attacker or malware impersonating a
privileged user) cannot read it, and the processor can read it only when executing

24 | Chapter 2: Data Asset Management and Protection

4 Note that in-memory encryption protects data only from attacks from outside the process; if you manage to
trick the process itself into doing something it shouldn’t, it can read the memory and divulge the data.

code for a specific process or virtual machine.4 If you are in a very high-security envi‐
ronment and your threat model includes protecting data in memory from a privi‐
leged user, or you want additional isolation between you and another tenant in the
cloud, you should seek out a platform that supports memory encryption. This often
goes by hardware-specific brand names such as Intel SGX/TGX, AMD SEV, and IBM
Z Pervasive Encryption.

Encryption of data at rest
Encryption of data at rest can be the most complicated to implement correctly. The
problem is not in encrypting the data; there are many libraries to do this. The prob‐
lem is that once you’ve encrypted the data, you now have an encryption key that can
be used to access it. Where do many people put this? In the clear, right next to the
data! Imagine locking a door and then hanging the key on a hook next to it helpfully
labeled “key.” To have real security (instead of just ticking a checkbox indicating that
you’ve encrypted data), you must have proper key management. Fortunately, there
are cloud services to help.

Encrypted data can’t be effectively compressed or deduplicated. If
you want to make use of compression or deduplication, do that
before encrypting it.

In traditional on-premises environments with high security requirements, you would
purchase a hardware security module (HSM) to hold your encryption keys, usually in
the form of an expansion card or a module accessed over the network. An HSM has
significant logical and physical protections against unauthorized access. With most
systems, anyone with physical access can try to tamper with it, but an HSM has sen‐
sors to wipe out the data as soon as someone tries to take it apart, scan it with X-rays,
fiddle with its power source, or look threateningly in its general direction.

HSMs are expensive, and so are not feasible for most on-premises deployments.
However, in cloud environments, advanced technologies such as HSMs and encryp‐
tion key management systems are now within reach of projects with modest budgets.

Some cloud providers have an option to rent a dedicated HSM for your environment.
While this may be required for the highest-security environments, a dedicated HSM
is still expensive in a cloud environment, and is often harder to spin up automatically.
Another good option is a key management service (KMS), which is run by the cloud
provider and usually uses an HSM on the backend to keep keys safe. A KMS is

Protecting Data in the Cloud | 25

5 Despite the findings of a well-known USENIX paper from 1996 by Peter Gutmann exploring the ability to
recover data on a hard disk that’s been overwritten, it’s not practical today. Recovering overwritten data from
solid state drives (SSDs) is slightly more practical due to the way writes happen, but most SSDs have a “secure
erase” feature to sanitize the entire drive; see Michael Wei et al.’s 2011 USENIX paper for more details.

usually a multitenant service, which is a slightly larger attack surface, and you do have
to trust both the HSM and the KMS (instead of just the HSM), which adds a little
additional risk. However, compared to performing your own key management—
often incorrectly—a KMS provides excellent security at a very low cost. You can have
the benefits of proper key management in projects with more modest security
budgets.

Table 2-2 lists the key management options offered by the major cloud providers, as
of this writing.

Table 2-2. Key management options

Provider Dedicated HSM option Key management service
Amazon Web Services Cloud HSM Amazon KMS

Microsoft Azure Azure Dedicated HSM Key Vault

Google Compute Platform Cloud HSM Cloud KMS

IBM Cloud Cloud HSM Key Protect

So, how do you actually use a KMS correctly? This is where things get a little
complicated.

Key management. The simplest approach to key management is to generate a key,
encrypt the data with that key, stuff the key into the KMS, and then write the encryp‐
ted data to disk along with a note indicating which key was used to encrypt it. There
are two main problems with this approach:

1. It puts a lot of load on the KMS. There are good reasons for wanting a different
key for every file, so a KMS with a lot of customers would have to store billions
or trillions of keys with near instantaneous retrieval.

2. If you want to securely erase the data, you have to trust the KMS to irrevocably
erase the key when you’re done with it, and not leave any backup copies lying
around. Alternatively, you have to overwrite all of the encrypted data,5 which can
take a while.

You may not want to wait hours or days for your data to be overwritten. It’s better if
you have the option to quickly and securely erase data objects in two ways: either by
deleting a key at the KMS, which may effectively erase a lot of different objects at
once; or by deleting a key where the data is actually stored, to delete a single data

26 | Chapter 2: Data Asset Management and Protection

https://oreil.ly/FSbkW
https://oreil.ly/ec5Hp

6 This is an extremely simplified explanation. For a really deep discussion of all things cryptographic, see Bruce
Schneier’s book Applied Cryptography, 2nd ed. (Wiley, 1996).

object. For these reasons, you typically have two levels of keys: a key encryption key
(KEK) and a data encryption key (DEK). As the names suggest, the key encryption
key is used to encrypt (or “wrap”) data encryption keys, and the wrapped keys are
stored right next to the data. The key encryption key usually stays in the KMS and
never comes out, for safety. The wrapped data encryption keys are sent to the HSM
for unwrapping when needed, and then the unwrapped keys are used to encrypt or
decrypt the data. You never write down the unwrapped keys. When you’re done with
the current encryption or decryption operation, you forget about them.6

The use of keys is easier to understand with a real-world analogy. Imagine you are
selling your house (which contains all of your data), and you provide a key to your
realtor to unlock your door. This house key is like a data encryption key; it can be
used to directly access your house (data). The realtor will place this key into a key box
on your door, and protect it with a code provided by the realtor service. This code is
like the key encryption key, and the realtor service that hands out codes is like the key
management service. In this mildly strained analogy, you actually take the key box to
the KMS, and it gives you a copy of the key inside with the agreement that you won’t
make a copy of it (write it to disk) and you’ll melt (forget) that copy when finished
with it. You never actually see the code that opens the box.

The end result is that when you walk up to the house (data), you know the data key’s
right there, but it can’t be opened without another key or password. Of course, in the
real world, a hammer and a little time would get the key out of the box, or would
allow you to break a window and not need the key. The cryptographic equivalent of
the hammer is guessing the key or password used to protect the data key. This is usu‐
ally done by trying all of the possibilities (brute force) or, for keys based on pass‐
words, trying many common passwords (a dictionary attack). If the encryption
algorithm and the implementation of that algorithm are correct, the expected time for
the “hammer” to get into the box is considerably longer than the expected lifetime of
the universe.

Server-side and client-side encryption. The great news is that you usually don’t have to
do most of this key management yourself! For most cloud providers, if you’re using
their storage and their KMS, and you turn on KMS encryption for your storage
instances, the storage service will automatically create data encryption keys, wrap
them using a key encryption key that you can manage in the KMS, and store the
wrapped keys along with the data. You can still manage the keys in the KMS, but you
don’t have to ask the KMS to wrap or unwrap them, and you don’t have to perform
the encryption or decryption operations yourself. Some providers call this server-side
encryption.

Protecting Data in the Cloud | 27

7 Although paradoxically, it’s often easy to do by accident!

Because the multitenant storage service does have the ability to decrypt your data, an
error in that storage service could potentially allow an unauthorized user to ask the
storage service to decrypt your data. For this reason, having the storage service per‐
form the encryption/decryption is not quite as secure as doing the decryption in your
own instance—if you implement it correctly, using well-known libraries and pro‐
cesses. Doing the encryption and decryption in your own application is often called
client-side encryption. However, unless you have a very low risk tolerance (and a
budget to match that low risk tolerance), I recommend that you use well-tested cloud
services and allow them to handle the encryption/decryption for you.

Note that when using client-side encryption, the server does not have the ability to
read the encrypted data because it doesn’t have the keys. This means no server-side
searches, calculation, indexing, malware scans, or other high-value tasks can be per‐
formed. Homomorphic encryption may make it feasible for operations such as addi‐
tion to be performed correctly on encrypted data without decrypting the data, but as
of this writing it’s too slow to be practical.

Unless you have devoted most of your distinguished career to cryp‐
tography, do not attempt to create or implement your own crypto
systems. Even when performing the encryption/decryption in your
own application, use only well-tested and supported library imple‐
mentations of secure algorithms.
If your organization doesn’t have a list of approved cryptographic
algorithms, a good source for recommended algorithms is NIST SP
800-131A.

Cryptographic erasure. It’s actually difficult to reliably destroy large amounts of data.7

It takes a long time to overwrite the data completely, and even then there may be
other copies sitting around. We can solve this through cryptographic erasure. With
this approach, rather than storing clear-text data on the disk, we store only an
encrypted version. Then, when we want to make data unrecoverable, we can wipe or
revoke access to the key encryption key in the KMS, which will make all of the data
encryption keys “wrapped” with that key encryption key useless, wherever they are in
the world. We can also wipe a specific piece of data by wiping out just its wrapped
data encryption key, so a multiterabyte file can be effectively made unrecoverable by
overwriting a 256-bit key.

28 | Chapter 2: Data Asset Management and Protection

https://oreil.ly/AbAjn
https://oreil.ly/AbAjn

How encryption foils different types of attacks
As we’ve discussed, encryption of data at rest can protect data from attackers by limit‐
ing their choices; the data is available in the clear only in a few places, depending on
where in the system the encryption is being performed. Let’s look at a simple example
application using a database to see how our encryption choices protect us. The rele‐
vant layers of this application are:

1. The storage system that the disks go in, which may encrypt data before sending it
to the disks

2. The Database-as-a-Service platform offering, which may encrypt data before
sending it to the storage system

3. The application, which may encrypt data before sending it to the database

Let’s explore the benefits, drawbacks, and residual risk of encryption at each of these
layers.

Disk-level encryption. Attackers might successfully steal disks from the data center or
the dumpster, or steal tapes in transit. If the storage subsystem is encrypting data
before storing it on disk, these attackers can’t make use of the data even with physical
access to the disks or tapes. The attackers only have access to an unintelligible “bag of
bits,” and the keys to decrypt the data are safely stored elsewhere, on the storage sub‐
system!

There used to be performance trade-offs for encrypting data sent to disk, but with
hardware cryptographic acceleration this is largely no longer an issue; cloud provid‐
ers routinely encrypt almost all data stored to disk, except in some bare-metal cases
where you manage the disks directly. So, there are very few drawbacks to disk-level
encryption in a cloud environment, and it’s probably done for you.

This is great news, but stolen or lost media typically isn’t a large risk in cloud environ‐
ments, given the physical controls and equipment disposal controls most cloud pro‐
viders implement. (Disk-level encryption is far more important for portable devices
such as smartphones and laptops, where devices get lost or stolen regularly and
decommissioning processes may not be as mature.)

Encryption performed only to “check the encryption box” will often only help to mit‐
igate this threat of physical theft—and sometimes not even this threat, because this
protection also fails if you store unwrapped keys on the same media as the data.

However, what if the attackers are able to impersonate an administrator of the storage
system that the disks can go in? Since the storage subsystem performs the decryption,
attackers at that layer (or above) will be able to see the unencrypted data.

Protecting Data in the Cloud | 29

Platform-level encryption. What if you have the database (or other service) encrypt the
data before sending it to the storage subsystem? In that case, anyone with access to
the storage subsystem under the database will only have a bag of bits; they can
destroy the data or make it temporarily unavailable, but should not be able to read or
tamper with it.

The trade-off for encrypting at this layer is often a little worse; because the database is
encrypting the data prior to sending it to storage, that means it can’t be compressed
or deduplicated by the storage subsystem, which in turn means that storage costs may
be higher. Depending on the database engine, there may also be some performance
trade-offs.

While database-level encryption protects you from things that go wrong at the layers
underneath it, there’s still some risk. The database has users who are allowed to see
the data in the database, and the database service has administrators who may be able
to access any database. Cloud providers often have several layers of controls to pre‐
vent their administrators from reading or tampering with customer data, so that’s a
relatively low risk. However, the larger risk is that if an attacker gets access to the API
key that your application uses to talk to the database, the attacker will be able to read
and write everything in the database that the application can!

Application-level encryption. Now we’re at the top of the stack. If your application
encrypts data prior to sending it to the database, then anyone at the database level is
left holding a bag of bits unless they can get into the application, or can steal the
application’s encryption key.

Whereas you may lose some performance or cost-effectiveness when encrypting at
the database layer, there’s a more significant trade-off here, with application-level
encryption. Because the database cannot see the unencrypted data, it cannot search
for specific data items, sort the data, report on it, or perform similar functions. The
application has to do these things (or live without them), which can have significant
performance or functionality impacts. I generally recommend implementing
application-level encryption only for the most sensitive data your application pro‐
cesses, and letting the lower layers handle encryption for everything else.

If an attacker gains unauthorized access to the application, all bets are off from an
encryption standpoint, because the application must be able to read the data in order
to function. However, defense in depth techniques can help. For example, using sepa‐
rate data stores protected by access control lists (ACLs) and separate encryption keys
for different applications can lower the impact of such a breach, by keeping the
attacker from being able to read anything other than what the compromised applica‐
tion has access to.

30 | Chapter 2: Data Asset Management and Protection

Quantum-Safe Cryptography
Quantum computers are expected to be much better at some tasks than classical com‐
puters, and some of those tasks have security implications for encryption. A well-
known example is that if you can factor large numbers quickly, then you can break an
important cryptographic algorithm.

Although quantum computers cannot enable these attacks yet, one of the risks is that
attackers will harvest encrypted data now so that they can decrypt it later. For this
reason, there is an industry-wide push to move to quantum-safe algorithms long
before these attacks become feasible in the real world.

Algorithms used for encryption of data in motion are most at risk, and future ver‐
sions of TLS are expected to use quantum-safe algorithms. While encryption of data
at rest via AES-256 is expected to be safe for the foreseeable future, it’s worth noting
that many schemes use a non-quantum-safe algorithm to encrypt the AES symmetric
key. This is done so that you can make the key available to many different individuals
without encrypting multiple copies of the data with different AES keys, but any prod‐
ucts that do this will need to update to reencrypt the AES keys using a quantum-safe
algorithm, or the data at rest may also be compromised.

For an in-depth look at quantum-safe cryptography, one good reference currently in
development is NIST SP 1800-38.

This is another example of where designing for defense in depth can help. Design the
system so that if you make encrypted versions of your data publicly available without
the keys, in theory nobody can read them. In addition, protect the encrypted data
wherever possible so that if that assumption fails, your data is still safe.

Conclusion
When planning your cloud strategy, you need to figure out what data you have—both
the obvious and non-obvious parts. Classify each type of data by the impact to you if
it’s read, modified, or deleted by an attacker. Get organizational-wide agreement on
which tags to use in a “tag standard,” and use the tagging features offered by your
cloud provider to tag resources that contain data.

If possible, you should decide on an encryption strategy before you create cloud
resources that store data, because it can be difficult to change later. In most cases, you
should use your cloud provider’s key management system to manage the encryption
keys, and you should use built-in encryption in the database and storage services.
If you have really sensitive information, consider encrypting it yourself in your
application prior to storing it, and use only well-tested implementations of secure
algorithms.

Conclusion | 31

https://oreil.ly/z3KTj

Carefully control the users and systems that have access to the keys, and set up alerts
to let you know when the keys are being accessed in any unusual fashion. Use of a key
management system will provide another layer of protection in addition to the access
controls on the storage instances, and can also provide you with an easy way to cryp‐
tographically erase the information when you’re done with it.

One of the concerns with encryption is that it can reduce performance, due to the
extra processing time required to encrypt and decrypt the data. Fortunately, this is no
longer as big a concern as it once was; hardware is cheap, and all of the major chip
makers have some form of hardware acceleration built into their CPUs. Performance
concerns are rarely a good excuse for not encrypting data, but there are some trade-
offs, and you can be certain only by testing with real-world loads.

A more important concern around encryption is the availability of your data. If you
cannot access the encryption keys, you cannot access your data. Ensure that you have
some sort of “break the glass” process for getting access to the encryption keys, and
make sure that it’s “noisy” and cannot be used without detection and alerting.

Finally, if the “bottom” of the stack is the physical hardware and the “top” of the stack
is the application, you get protection against more types of breaches by having the
encryption happen as close to the top of the stack as possible. The trade-offs are get‐
ting less functionality, performance, and cost-effectiveness from the lower layers, and
having to do more work yourself.

In a cloud environment, your data assets are stored and processed by different types
of cloud assets. In the next chapter, we’ll see what the different types are and how to
track and protect them.

32 | Chapter 2: Data Asset Management and Protection

Exercises
1. What is a reasonable number of data classification levels for most organizations?

a. 3
b. 30
c. 300

2. What are some good examples of data assets you may need to protect in the
cloud? Select all that apply.
a. Password hashes
b. API keys
c. Documents and images you store for your customers
d. IP addresses of your end users

3. In what states can data be encrypted and decrypted? Select all that apply.
a. When data is at rest, and written to some persistent storage
b. When data is in use in memory
c. When data is in motion, and transmitted from one place to another
d. When data is deleted, and removed from use

4. Which of the following statements about key management is true?
a. A hardware security module is required for proper key management.
b. You should never write encryption keys alongside the data, even if the keys

themselves are encrypted using a different key that’s not stored with the data.
c. Cloud providers have services to do some of the key management for you.

5. If you have the disk controller encrypt data as it’s written to the physical disk,
what types of attackers will be blocked by this encryption?
a. Attackers who gain unauthorized access to an application that uses the disk
b. Attackers who gain unauthorized access to a database used by the application
c. Attackers who gain access to the physical disk

Exercises | 33

CHAPTER 3

Cloud Asset Management and Protection

At this point, you should have a good idea of what data you have, where it’s stored,
and how you plan to protect it at rest. Now it’s time to look at other cloud assets and
how to inventory and protect them.

As mentioned in Chapter 2, cloud providers maintain a list of which assets you have
provisioned, because they want to be able to bill you. They also provide APIs to view
this list, and sometimes they have specialized applications to help you with inventory
and asset management.

In general, your cloud provider will know only about assets you
provision via its portal or APIs. For example, if you provision a vir‐
tual machine and then manually create containers on it, the cloud
provider will have no way of knowing about the containers.

Cloud infrastructure and services are often inexpensive and easy to provision, which
can quickly lead to having a huge number of assets strewn all over the world and for‐
gotten. Each of these forgotten assets is like a ticking time bomb, waiting to explode
into a security incident.

Differences from Traditional IT
One important difference with cloud asset management and protection is that you
generally don’t have to worry about physical assets or protection at all for your cloud
environments. You can gleefully outsource physical asset tags, anti-tailgating, slab-to-
slab barriers, placement of data center windows, cameras, and other physical security
and physical asset tracking controls.

35

Another important difference lies in the IT group’s participation in the process of
provisioning cloud assets. In a traditional IT environment, creating an asset such as a
server is often difficult and time-consuming. It usually requires going to a centralized
IT group, which will follow a detailed provisioning process and maintain a list of
assets in a database or a spreadsheet. There is a natural barrier to creating shadow IT
(IT resources that are hidden or not officially approved for use), because IT typically
requires capital assets. In most organizations, large capital expenditures are carefully
controlled.

One important benefit of cloud computing is replacing these large capital expendi‐
tures with monthly expenses, and offloading the capacity planning to an IaaS pro‐
vider. This is great, but it also means that it’s more difficult for the IT and finance
areas of the business to be effective gatekeepers for IT resources. Anyone in any area
of the business can easily provision a huge number of IT resources with only a credit
card (and sometimes not even that). This can quickly lead to asset management
problems.

Prior to the cloud, most organizations had some amount of shadow IT. In the cloud
era, this problem is often far worse—and the assets aren’t just servers.

Types of Cloud Assets
Before we can effectively manage cloud assets, we need to understand what they are
and their security-relevant characteristics. I find that creating clearly defined cate‐
gories of assets helps to organize my thinking. For this reason, I have categorized
cloud assets as compute, storage, and network assets, but you could choose different
categories.

More types of cloud assets are created every day, and it’s likely that you will not have
all of these types of assets. You also don’t need to track all of these assets in a single
place. The important thing is to know about all assets that are relevant to your
security.

If you are coming into an environment with a large number of existing cloud assets,
keep in mind that you don’t have to have a completely comprehensive solution for
asset management immediately. Concentrate on the assets that are the most security-
relevant to get immediate value, and then add additional types of assets to your
inventory incrementally. For many organizations, the most security-relevant assets
will be a few types of data storage and compute assets.

As you read through the types of cloud assets, it may help to jot down notes about the
types of assets that you know you have, and put stars next to the ones that are most
relevant for security. Although this chapter is primarily about asset management,
some of the security properties of these assets may inform the current or future

36 | Chapter 3: Cloud Asset Management and Protection

designs of your cloud environment. In the second part of this chapter, I’ll share some
ideas on how to inventory the cloud asset types you’ve identified here.

Many cloud assets are ephemeral, in that they are created and
deleted fairly often. This can make asset management more diffi‐
cult, and it may also make some popular methods of asset tracking,
such as tracking by IP address, ineffective.

Compute Assets
Compute assets typically take data, process it, and do something with the results. For
example, a very simple compute resource might take data from a database and send it
to a web browser on request, or send it to a business partner, or combine it with data
in another database.

These cloud asset categories are not completely distinct. Compute resources may also
store data, particularly temporary data. With some types of regulated data, it may be
necessary to ensure that you’re tracking every place that data could be, so don’t forget
about temporary data storage.

Virtual machines
Virtual machines (VMs) are the most familiar cloud asset type. VMs run operating
systems and processes that perform business functions. VMs in cloud environments
behave very similarly to their on-premises equivalents in many cases.

Virtual Machine Attacks
VMs in the cloud differ fundamentally from on-premises VMs in one important way:
in a cloud environment, you may be sharing the same physical system with other
cloud customers. These other customers might simply be inconsiderate and cause
“noisy neighbor” problems by using up all of the processor time, network bandwidth,
or storage bandwidth so that your VM cannot get its work done efficiently. However,
they might also be deliberately malicious and attempt to exploit the fact that you’re on
the same physical hardware to attack the confidentiality, integrity, and availability of
your system. These are additional risks to the standard “front-channel” risks for
servers, such as the use of stolen credentials or the exploitation of software vulnera‐
bilities on the server.

In general, there are two primary ways that other customers (or even attackers who
have gained access to your own VMs) might attack you. The first is via a “hypervisor
breakout” or “VM escape,” where an attacker on one VM is able to breach the hyper‐
visor and take full control over the physical system. Fortunately, this isn’t easy,
because hypervisors are designed to accept very little input from the virtual machines.
In general, a VM that wants to take over the hypervisor needs to find a vulnerability

Types of Cloud Assets | 37

in either the paravirtualized storage or network interfaces, which is not a large attack
surface. If physical systems are like separate buildings, virtual machines are like sepa‐
rate apartments that can contact the superintendent only via two mail slots labeled
“network” and “storage.” I call these back-channel attacks, because they attack the
infrastructure behind the VM.

The other way that attackers may gain information is through side-channel attacks,
which are based on unintended side effects of running code on a physical system.
When running on the same hardware, attackers may be able to deduce important
information about your VM, such as passwords or encryption keys, by carefully
watching the timing of processor instructions or cache accesses. This is essentially
how the famous Spectre and Meltdown vulnerabilities work.

This doesn’t mean you shouldn’t use VMs; the risks of these types of side-channel and
back-channel attacks are acceptable to most organizations, and you should probably
worry about other things first. However, it’s important to know that sharing physical
hardware creates some potential vulnerabilities. The good news is that, like physical
security, mitigating these types of attacks is almost always the responsibility of your
cloud provider (although in some cases you may also need to install operating system
fixes on your VMs).

VMs always have an operating system, which includes a kernel as well as other “user‐
space” programs shipped with the kernel by the operating system vendor. Some
servers can perform all of their functions using only the software shipped as part of
the OS. However, most VMs have additional software installed, such as platform/
middleware software and custom application code that your organization has written.

Because so many different components can be mixed together to make up a VM, we
need to be careful about vulnerability management, access management, and config‐
uration management for each of the different layers of a server. Successful attackers
may get access to any data the VM has access to. Attackers may also use that compro‐
mised VM to attack the rest of your infrastructure, or other organizations (which can
be a reputational hit for you).

Here are some example inventory items to track for VMs:

• The operating system name and version. Operating system vendors support ver‐
sions with security fixes for only a limited amount of time, so it’s important to
stay reasonably up to date and run a supported version of your OS.

• The names and versions of any platform or middleware software. This may be
software such as web servers, database servers, or queue managers. It’s important
to track this software for vulnerability management purposes (in case security
advisories are released) as well as for license management.

• Any custom application code on the VM that your organization maintains.

38 | Chapter 3: Cloud Asset Management and Protection

1 There are people who claim that bare metal is not cloud. By the most commonly accepted definition, NIST SP
800-145, the essential characteristics of cloud computing are on-demand self-service, broad network access,
resource pooling, rapid elasticity, and managed service. None of these essential characteristics require virtuali‐
zation technology, although there can be arguments over the definition of “rapid.”

• The IP addresses of the VM and what virtual private cloud network it’s in, if
applicable.

• The users allowed access to the operating system, and to the platform/middle‐
ware/application software if different.

Most of these are the same as with on-premises VMs. However, cloud VMs generally
only take a minute or two to create (although initialization may take longer), which
means that they can be created and deleted as needed. This is great for scaling up and
down quickly to meet demand, but can make asset management more difficult. For
this reason, you will probably need to use agents installed on your VMs or an inven‐
tory system from your cloud provider to collect all of the relevant information
automatically.

In addition to tracking the VMs themselves (often called “instances”), you also need
to track the “images” or templates that are copied to create new VMs. You don’t want
new servers to come online with critical vulnerabilities, even if they are patched
quickly after starting.

Some cloud providers provide “bare-metal” systems in addition to VMs.1 These have
the same security needs as VMs, but may also have firmware that occasionally needs
to be updated.

Many cloud providers also provide “dedicated” VMs. These are created in the same
way as regular VMs, except that the provider promises to not schedule any other cus‐
tomer’s VMs on the same physical systems with yours, which can prevent noisy
neighbor problems and side-channel attacks.

Bare-metal machines and dedicated VMs are not subject to the risks described in
“Virtual Machine Attacks” on page 37, but typically cost more. As with all security
decisions, you must weigh the costs and benefits. In general, I do not require bare-
metal machines or dedicated VMs for additional security until the more common
problems, such as vulnerability management and access management, are well under
control.

Note that many of the following asset types can be seen as a deconstruction of a VM
into smaller components provided “as a service.”

Types of Cloud Assets | 39

https://oreil.ly/hzQjr
https://oreil.ly/hzQjr

Containers
Like VMs, containers run processes that perform business functions, such as web
servers or custom application code. However, unlike VMs, they do not contain a full
operating system. Containers use the kernel of the VM they are hosted on, and might
not have any of the other software that comes with the operating system.

Containers can start up in under a second, which means that in many environments
they are created and deleted almost constantly.

Container Attacks
Whereas the hypervisors that run VMs have a very small attack surface, the shared
kernel used by all of the containers has a much larger attack surface. For example, the
Linux kernel contains over 300 system calls, many of which may be used by contain‐
ers. A vulnerability in any of these system calls may allow code running in one con‐
tainer to gain access to the entire system.

This doesn’t mean that containers are inherently insecure, but you should be careful
not to use containers as your only trust boundary between components with wildly
different security requirements. For example, having containers that allow internet
users to run their own code on the same server as containers that process your most
sensitive data is probably asking for trouble.

Container isolation will continue to mature over time. Containers may be limited to
fewer system calls using technologies like seccomp, reducing the likelihood that a vul‐
nerability in one of these system calls can be exploited. The kernel may also perform
additional checks as another layer of protection against containerized processes
“escaping.” Hybrid solutions that combine the greater isolation of VMs with the ease
of deployment offered by containers, such as Firecracker, are also an option.

If your containers do contain a full copy of the operating system and allow adminis‐
trators to log in, they are basically miniature VMs. Although containers can be used
in this “mini-VM” model, this isn’t the best way to use them. Your asset management
strategy for containers will depend partly upon how you are using them. We will look
at two models, the native container model and the mini-VM model, and a way of
managing containers.

Native container model. In a pure native container model:

• Containers should hold the bare minimum operating system components needed
to perform their function.

• Each container should perform only a single function (or “concern” in some
documentation).

40 | Chapter 3: Cloud Asset Management and Protection

https://oreil.ly/4ixDY

• Containers are immutable, meaning that they don’t change over time. A con‐
tainer may make changes in some other component, such as writing data to a
storage service, but that storage is maintained separately from the container
itself. This means containers have a perfect copy of the code in the image during
their lifetimes—they don’t update their own code, and nobody logs in to
change it.

• Rather than updating running containers, old containers are destroyed and new
containers are created with updated code.

Native, immutable containers should not need to have administrators logging in to
them for routine maintenance, although you probably need some provision for
obtaining emergency access occasionally for troubleshooting. If container logins are
not allowed in general, access management to the containers becomes less of a risk
than with servers. Vulnerability and configuration management are still important
risks, but the scope for a given container is much narrower than the scope for a server
that might perform many different functions.

Native containers are generally created and destroyed much more often than VMs.
That means it makes more sense to inventory the container images than the contain‐
ers themselves, and just keep track of which image a container is copied from to make
sure you don’t have any out-of-date containers. A container image needs to be inven‐
toried primarily in order to track the software and configurations in the image, so
that the image may be updated with security fixes and new configurations as vulnera‐
bilities are discovered.

Mini-VM container model. In a model where you treat containers like miniature VMs:

• Containers will usually run a full copy of the user-mode components of the oper‐
ating system.

• Containers perform multiple functions or concerns, such as running two differ‐
ent types of services in the same container.

• Containers allow administrative logins and change over time.

If you’re using containers like mini-VMs, you should inventory and protect them just
like VMs. This usually means installing inventory agents, even if such agents are nor‐
mally considered too “heavyweight” for containers in a native container model. It also
means tracking users, software, and all the other items mentioned in the preceding
section on VMs.

In both models, you should inventory and update the images, because you don’t want
new containers to be brought up with vulnerabilities.

Types of Cloud Assets | 41

2 You can find some procedure examples of attacks on Kubernetes on the MITRE ATT&CK website.

Container orchestration systems. Containers are great, but what’s even better is to have
something that takes care of bundling containers together to perform higher-level
functions, starting up multiple copies of these bundles, performing load balancing
with those copies, and providing other features such as easy ways for the components
to talk to one another. This type of system is called a container orchestration system.
This functionality is very useful, which also makes it appealing to attackers.

The most popular implementation of container orchestration as of this writing is
Kubernetes, along with variants of Kubernetes like OpenShift and K3s. In a Kuber‐
netes deployment, the primary assets are clusters, which hold pods, which hold con‐
tainers, which are created from images. In a Kubernetes environment, consider
inventorying the following components:

• Kubernetes clusters, so that access to them can be controlled and the Kubernetes
software may be kept up to date. Vulnerabilities in the Kubernetes software, con‐
figuration, or access controls could compromise all of the pods running on it,
and Kubernetes has been actively targeted by attackers.2

• Kubernetes pods, which may contain one or more containers. The Kubernetes
command line or API may be used to track the pods currently in existence and
which containers make up those pods.

• Container images, so that you can keep them up to date and not start vulnerable
containers in your cluster.

Application Platform as a Service
Application-Platform-as-a-Service (aPaaS) offerings, such as AWS Elastic Beanstalk,
Azure Pipelines, Google App Engine, and IBM Cloud Code Engine allow you to
deploy your code without provisioning VMs yourself. These offerings also provide
many resources, such as databases, as part of the platform. So, for example, a deploy‐
ment may consist of the code you’ve written plus a database provisioned by the aPaaS.
The deployment starts running when you create it and stops running when you
destroy it, but you never have to actually create a VM or container to hold it; that’s
done for you by your cloud provider.

Security of an aPaaS is very specific to the aPaaS and to the provider’s implementa‐
tion of that aPaaS. It’s important to understand the isolation model that keeps your
compute, network, and storage assets separate from those of other cloud customers.
For example, with many deployments, you will be running on the same VMs as other
customers, which provides limited compute isolation. You will often not be able to
contact other containers on the network, so you may have good network isolation.

42 | Chapter 3: Cloud Asset Management and Protection

https://oreil.ly/OjOWb

Storage isolation will depend upon what level, if any, of encryption is performed by
the persistent storage services available from your provider, and may vary from one
storage service to another.

When you create an aPaaS deployment, you need to track both the deployment itself
and its dependencies (such as build packs or other subcomponents) for the purposes
of vulnerability and configuration management. However, you don’t need to inven‐
tory anything about the underlying compute resources or storage resources, because
these are outside of your control.

Serverless functions
Serverless functions are a way to have your code running only when needed; some
examples are AWS Lambda, Azure Functions, Google Cloud Functions, and IBM
Cloud Functions.

Serverless offerings differ from aPaaS offers because nothing runs until its service has
been requested; there’s nothing specific to you that sits around waiting for incoming
requests. This means you don’t have to track both an image and the instances that are
created from that image, because there are no long-running instances. It’s only server‐
less from your perspective as a consumer, because the provider hides the servers
behind a layer of abstraction.

For serverless assets, you don’t need to inventory any operating system or platform
components. You only need to inventory the serverless deployments you have so that
you can manage vulnerabilities in your code and control access to the function.

Storage Assets
Storage assets typically persist data, and as such tend to be more permanent than the
other types of assets mentioned here. Sometimes data is described as “sticky” or as
having “gravity,” because moving large amounts of data around can be difficult and
time-consuming. You identified your most important data and storage assets in
Chapter 2, but there may be other storage assets that you haven’t considered. We’ll
look at some of the possibilities here.

Because I recommend an asset-oriented approach to risk assess‐
ment for most organizations, this book places particular emphasis
on storage assets. Access management is the most important secu‐
rity consideration for all of the cloud storage assets listed in this
section.

Types of Cloud Assets | 43

3 You can simulate a folder hierarchy in object storage by using object names with slashes in them. However, if
you want to display the objects in a “folder” named A, the object storage system is really just searching for all
object names that begin with A/.

Block storage
Block storage is just the cloud version of a hard drive; data is made available in small
blocks (say, 16 KB) to a server in the same manner as a disk controller. Some exam‐
ples are AWS Elastic Block Storage, Azure Disk Storage, Google Persistent Disk, and
IBM Cloud Block Storage.

The primary security concern with block storage is access management, because an
attacker who gets direct access to the block storage bypasses any operating system–
level controls you may have on the server using that storage.

File storage
File storage is the cloud version of a filesystem, organizing data into directories and
files. Some examples are AWS Elastic File System, Azure Files, Google Cloud Storage
FUSE, and IBM Cloud File Storage. As with block storage, the primary concern is
access management. Although the filesystem itself often provides access control lists
for the files, these are enforced by the operating system, not by the file storage. An
attacker with access to the file storage can read all files stored there.

Object storage
In storage terms, an object is very similar to a flat file, in that it is a stream of bytes
with metadata about the object. The primary differences are:

• Files are stored in folders that may be inside other folders. Objects are all thrown
together into a “bucket,” without any further levels of organization inside the
bucket.3

• Objects may have custom metadata associated with them. Files are limited to the
types of metadata that a filesystem provides, such as creator, creation time, and
permissions.

• Objects cannot be changed after creation. To make updates, you replace the
object with a new object, although there are ways to copy parts of existing
objects. With files, you may update only part of a file, or add additional data to it.

• Object storage offers per-object access control that is enforced by the object stor‐
age system. File storage typically enforces access control to the whole filesystem,
but then depends upon the operating system using the filesystem to enforce per-
file controls.

44 | Chapter 3: Cloud Asset Management and Protection

Most object storage offers different layers of access control, such as high-level policies
for a bucket and individual ACLs for specific objects. There have been many notable
data breaches when object storage bucket policies were set for open access, so it’s very
important to keep track of your object storage assets and the access control policies
for each one.

Some examples of object storage services are Amazon S3, Azure Blob Storage, Google
Cloud Storage, and IBM Cloud Object Storage.

Images
Images are chunks of code—including all the underlying system components, such as
the operating system—that you use to run VMs, containers, or aPaaS deployments in
a cloud environment. You make a copy of an image and start that copy running. The
new copy, or instance, may begin to diverge from the image at that point. VMs, bare-
metal systems, containers, and aPaaS environments all copy images to create running
systems. In many organizations, there is a hierarchy of images, where you start with a
“Golden Image” that has specific patches and hardening and then create additional
images from that “Golden Image.”

While images are stored on some type of cloud storage, such as block storage or
object storage, access to images is often controlled separately from the underlying
storage.

Different types of cloud assets and providers manage images in different ways, but
often there are many people in the organization who can get access to the contents of
the images and create instances from them. For this reason, images shouldn’t contain
every bit of information needed for an instance to run. For example, images should
not contain sensitive information such as passwords or API keys, because not every‐
one who has access to create or view the image should know these secrets. An image
should be configured so that when a copy (instance) of that image is started, the
instance gets the secrets from a secure location that very few people have access to.
This is discussed further in “Secrets Management” on page 75. Depending on how
you build images, you may be able to perform some checks to ensure secrets aren’t
included in the image.

If your images do need to contain sensitive information, it’s important to control
access to them so that an attacker can’t look into an image, pull out the credentials,
and use them. In addition, all images must be tracked so that they can be kept up to
date with security patches for the operating system, middleware/platform, or custom
application software. Otherwise, you’ll create cloud assets that are vulnerable as soon
as they are created. This is discussed further in Chapter 5.

Types of Cloud Assets | 45

Cloud databases
Entire treatises have been written about the different types of databases, such as rela‐
tional, document, time series, graph, key-value, and columnar databases. Choosing
the correct database type for your application is important for both functionality and
performance reasons.

Database choices can also have significant impacts on the security of the overall appli‐
cation. For example, some in-memory databases used for fast performance do not
offer encryption by default either over the network or on disk, which may be a secu‐
rity and/or compliance risk depending on the types of data stored.

All cloud databases can provide access control to the whole database, and some data‐
base types can also provide more fine-grained access control to data in the database.
At a minimum, you need to inventory your databases and what types of data are
stored in each of them. You also need to manage access to each database as a whole,
and potentially to different areas in the database, such as schemas.

Message queues
Message queues allow components to send small amounts of data (typically less than
256 KB) to one another, usually through a publisher/subscriber model. Although this
can be convenient, even these small chunks may contain sensitive data such as per‐
sonally identifiable information, so it’s important to protect access to your message
queues. In addition, if some of your components take instructions from messages, an
attacker with write access to the message queue might be able to make something
undesirable happen.

Secrets, such as encryption keys or passwords, should not be sent across a message
queue in general, but should use a storage service specifically designed for this type of
data, as described in the following subsection and in Chapter 4.

Configuration storage
In many cases, a cloud deployment brings together code and configuration. The same
code is usually shared between different instances of the application, and instances
are deployed to different areas or regions using different configurations. Configura‐
tion storage allows you keep this configuration information separate from the code.
Some examples are etcd, HashiCorp Consul, and AWS Systems Manager Parameter
Store.

46 | Chapter 3: Cloud Asset Management and Protection

Secrets configuration storage
Secrets configuration storage is a type of configuration storage specifically designed to
hold secret data that may be used to access other systems. Just as it’s a good practice to
separate your code and configurations, it’s also a good idea to separate access to your
secrets from other configuration data. Many people may need to be able to view your
code and your configurations, but very few people should be able to view the secrets!
Therefore, it’s important to identify any assets that store secrets, make sure they’re
built to protect those secrets, and carefully control access.

This is discussed in more detail in Chapter 4. Some examples of secret storage solu‐
tions are HashiCorp Vault, Keywhiz, Kubernetes Secrets, AWS Secrets Manager,
Azure Key Vault, Google Secret Manager, and IBM Cloud Secrets Manager. Because
of the concentrated risk in having all of your secrets in one location, you do need to
be very careful when using a secrets manager. I recommend using one provided by a
cloud provider “as a service” in most cases.

Encryption key storage
Encryption keys are a specific type of secret that are used for encrypting and decrypt‐
ing data. As with secrets configuration, there are many benefits to using a special-
purpose service for this type of data, such as being able to perform wrap and unwrap
operations without exposing the master key. You need to identify any assets that store
encryption keys and carefully control access to these, in addition to controlling access
to the encrypted data.

These types of systems were discussed in detail in Chapter 2. The main types of
encryption key storage are dedicated hardware security modules and multitenant key
management systems.

Certificate storage
Another specialization of secret storage, certificate storage systems can safely store
your X.509 private keys, which are used to cryptographically prove that you own the
certificates. In addition, these systems can alert you when one of your certificates is
due to expire, if you’re not using automation (such as tools implementing the ACME
protocol) to renew them.

Source code repositories and deployment pipelines
Many organizations carefully track other types of assets, but allow their source code
to be distributed all over the place and built using many different pipelines.

In many cases, source code doesn’t need to be kept secret if good practices such as
separating out configuration and secrets are followed. However, ensuring that an

Types of Cloud Assets | 47

4 A famous “supply chain” attack like this was executed against SolarWinds in December 2020; it compromised
the build system to insert malware into the build.

attacker doesn’t modify your source code or any artifacts during the deployment path
is very important,4 so these assets need to be tracked to protect their integrity.

In addition, you need to have a good inventory of your source code repositories in
order to effectively check for vulnerabilities. There are tools available to check for
bugs in code you’ve written as well as known vulnerabilities in code you have incor‐
porated from other sources. These tools cannot operate on code that they are not
aware of! This will be covered in more depth in Chapter 5.

Network Assets
Network assets are the cloud equivalent of on-premises switches, routers, virtual local
area networks (VLANs), subnets, load balancer appliances, and similar assets. They
enable communication between other assets and the outside world, and they often
perform some security functions.

Virtual private clouds and subnets
Virtual private clouds (VPCs) and subnets are high-level ways to draw boundaries
around what’s allowed to talk to what. It’s important to have a good inventory of
these; as mentioned earlier, many other controls, such as network scanners, depend
on having good inputs for what to scan to be effective. Subnets and VPCs are dis‐
cussed further in Chapter 6.

Content delivery networks
Content delivery networks (CDNs) can distribute content globally for low-latency
access. While the information in a CDN may not be sensitive in most cases, an
attacker with access to the CDN can poison the content with malware, Bitcoin min‐
ers, or distributed denial-of-service (DDoS) code.

DNS records
You need to track your DNS domains and the registrars you use to register them.
Although TLS connections offer protection against spoofing, some browsers do not
default to TLS, and users often ignore the warnings. Spoofing DNS records can lead
someone to go to an attacker’s site instead of yours, and then the attacker can steal
their credentials, read all of the data going through to your site, and even change data
in transit.

48 | Chapter 3: Cloud Asset Management and Protection

In addition to security concerns, if you don’t track one of your DNS domains and for‐
get to renew it, you’ll have a service outage!

TLS certificates
TLS certificates—often still called SSL certificates, and more properly X.509
certificates—rely on cryptographic principles. They are the best line of defense
against an attacker spoofing your website. You need to track your TLS certificates for
the following reasons:

• There are cases where an entire class of certificates needs to be reissued, such as
when a particular cryptographic algorithm is found to be weak or when a certifi‐
cate authority has a security issue.

• Just as with DNS domains, if you forget to renew a certificate, you will often have
a service outage because connections will fail when a certificate has expired.

• You must track who has access to the private keys, because these individuals have
the ability to impersonate your site. It’s worth noting that automated certificate
renewals, combined with alerting on any access to the private keys, can actually
prevent any humans from accessing the private keys except in emergency “break-
glass” situations. This both improves security and reduces the risk of outages
from expired certificates.

If you have a large number of certificates, consider using a certificate storage service,
discussed earlier, to track them.

Load balancers, reverse proxies, and web application firewalls
DNS records usually point to load balancers, reverse proxies, or web application fire‐
walls for processing and traffic direction. It’s important to have a good inventory of
these assets for proper access control, because they can usually see and modify all of
the network traffic to your applications. These are covered in more detail in
Chapter 6.

Asset Management Pipeline
So, now that you know what types of assets to look for, what can you do to track
them? In most organizations, there are natural control points on the way to provision
services and infrastructure. These will vary between organizations, but you must find
the control points and tighten them up to ensure you know about all of your cloud
assets and manage the risks appropriately.

I like to explain this using a plumbing analogy. Imagine you have a pipeline contain‐
ing your various cloud assets, flowing from your cloud providers and leading to your
different security systems. You must try to prevent all of the asset management

Asset Management Pipeline | 49

“leaks” that could allow assets to get left out of important security efforts. This is true
whether you’re running your entire company’s IT, or whether you’re only responsible
for a single application. Conceptually, this looks like Figure 3-1. Now we’ll look at the
different kinds of leaks that can occur.

Figure 3-1. Sample asset management pipeline

Procurement Leaks
At the source, you have multiple ways for assets to be created. You may have several
cloud providers with different delivery models (IaaS, PaaS, SaaS) provisioning many
different types of assets. In most cases, you’ll be charged for these assets. That often
means that a good first step is looking at the procurement process.

Some cloud providers have built-in asset management systems that
already integrate with the other services they provide, and may
even have ways to bring in assets from your on-premises environ‐
ments or other cloud providers. This is a growing field, so look into
what your providers offer before building a custom solution.

This isn’t foolproof—some cloud resources can be provisioned without spending any
money, and in larger organizations people may be able to categorize their cloud
expenses in different ways. However, it’s a good start.

50 | Chapter 3: Cloud Asset Management and Protection

5 Make sure to follow the least privilege principle, and ensure that credentials for inventory automation don’t
provide more power to your inventory system than absolutely necessary! An inventory system should not
need to read anything but metadata or modify anything other than tags.

6 Note that free services are often not entirely “free”; the provider may get to use your data or get certain rights
to your data, so you should inspect the terms of service!

Look through your IT charges. For each cloud expense, you need to go to the individ‐
ual responsible for incurring the charges and get some limited auditing credentials.5

This will allow you to automatically pull inventory information. A “leak” here usually
means that you’ve missed an entire cloud provider, either because you didn’t see the
expense or because it’s a free service.6

Processing Leaks
The second step is to use those audit credentials to find out exactly what the cloud
providers are doing for you. That means you need to use their portals, APIs, or inven‐
tory systems to pull a list of assets. Note that you may have assets inside of other
assets. For example, you may have a web server inside a container inside a VM.

Every cloud provider has a portal, API, or set of command-line utilities that can be
used to retrieve information about assets. Almost always, automation using the API
or command-line tools is preferable because manual inventories are difficult to keep
up to date. However, a manual inventory is better than nothing, and might even be
sufficient for a few types of assets if changes are very infrequent.

In addition to portals and APIs, some cloud providers and third parties have inven‐
tory or security tracking systems. Some systems allow you to track down to the level
of what’s installed on different virtual machines, feed directly into other available
security services (such as scanners), and import assets from other providers or on-
premises infrastructure. Table 3-1 lists some current services as of this writing.

Table 3-1. Options for auditing cloud activity

Infrastructure Ways to audit usage
Amazon Web Services API, portal, command line, AWS Systems Manager Inventory

Microsoft Azure API, portal, command line, Azure Automation Inventory

Google Cloud Platform API, portal, command line, Cloud Security Command Center Asset Inventory

IBM Cloud API, portal, command line, IBM Cloud Security Advisor

Make sure you delve into each asset type to find additional assets that could be
important from a security perspective. A “leak” here means that you queried the
cloud provider for assets, but you didn’t inventory some cloud assets for that pro‐
vider. For example, you may have inventoried all of the virtual machines, but missed
the object storage buckets that your team provisioned. If you don’t inventory those

Asset Management Pipeline | 51

object storage buckets, your downstream tools and processes cannot check the buck‐
ets to make sure that access to them is controlled properly, or that they’ve been
assigned the proper tags.

Tooling Leaks
The third step is to ensure that each tool that helps check the security of your assets is
tied into this asset inventory and can obtain the information it needs to do its job.
Here are some examples:

• Your network vulnerability scanner should be able to obtain the IP addresses in
use from the VM information or VPC subnet information.

• Your web application vulnerability scanner should be able to obtain the URLs of
each of your web applications.

• Your health checking or baselining system needs to know about the different
VMs so that it can check the configurations of each.

• If your organization uses Windows systems, your antivirus solution will need a
list of all those systems in order to effectively track alerts and ensure antivirus
signatures are up to date.

A “leak” in this area means that you knew about some assets but didn’t have your
tools or processes check those assets for security issues. More information on these
tools and protective measures will be given in Chapter 5, but there’s really no way for
the tools to find security issues in assets that they don’t know about.

Findings Leaks
The final step is to ensure you’re actually addressing any findings from your tooling
systems. This may seem obvious, but in practice these findings are often ignored, par‐
ticularly with “noisy” scanning systems that create a lot of false positives.

It’s perfectly acceptable to decide to accept a finding (risk) without fixing it, but
ignoring the findings without any sort of review is a “leak.”

Tagging Cloud Assets
It makes sense to categorize and organize your assets when creating them, so that you
know what they contain and what they are used for. Tags can make automation and
access control much easier. Just as you tagged your data assets with the types of data
on them in Chapter 2, you also need to tag other types of assets to indicate both the
types of data processed by them and why the assets are needed.

It’s important to use the same data tags from Chapter 2 to indicate the types of data
processed on compute assets, so that you have a consistent view of where your data is

52 | Chapter 3: Cloud Asset Management and Protection

stored and processed. However, while it’s relatively simple to come up with a set of
data classification levels or a list of compliance requirements, there are almost endless
possibilities for other operational tags.

Here are some examples of the types of tags that may be useful:

• Function of the asset
• Environment type for the asset, such as development, test, or production
• Application or project that the asset is used for
• Department that is responsible for the asset
• Version number
• Automation tags, which can indicate whether the asset should be selected for

action by scripts, scanners, or other automation

With many cloud providers, tags are case sensitive, so ApplicationA
and applicationA won’t match.

Looking at our sample application from Chapter 1, we can add some tags to the
servers, as seen in Figure 3-2.

Figure 3-2. Sample application diagram with tags

Tagging Cloud Assets | 53

Proper tagging can enable automated security checks. For example, perhaps you have
a very sensible policy that sensitive data must not be stored or accessed on develop‐
ment and test systems. To help enforce this policy, you could:

1. Have automation that searches VMs and tags them with dataclass:sensitive-
data if the automation detects either certain types of data (such as credit card
numbers) or credentials to access sensitive data (such as the production
database).

2. Have automation in your build processes to automatically tag VMs as
environment:development, environment:test, or environment:production as
they’re created.

3. Create a report of any assets that have a dataclass:sensitive-data tag along
with either an environment:development or an environment:test tag.

For tags to be effective, you must maintain a consistent set of tag names and allowed
values, which means having a tagging standard and sticking to it. In most smaller
organizations, the tagging standard should be organization-wide. A larger organiza‐
tion will need to agree on some organization-wide tags as well as allowing tags spe‐
cific to business units. In either case, there should be a clear owner of the tagging
standard who adds additional tags to the official list as needed.

You may want to develop automation to collect all of the tags currently in use and
report on any that are not specified in the tagging standard for your organization or
business unit.

Conclusion
There are so many different cloud as-a-service offerings available today that it can be
difficult to understand and track all of them.

You need to get the biggest bang for the buck for your tracking efforts. This means
prioritizing the tracking of providers and assets where losing track of an asset is most
likely to cause a large impact, such as assets that store or process sensitive data or that
have administrative control over other assets. For example, you may choose not to
worry about tracking all of your virtual machine images until you have tight tracking
of all of your databases where customer data is stored, your existing virtual machines
that have access to those databases, and your source code (and dependent libraries)
that processes customer data.

54 | Chapter 3: Cloud Asset Management and Protection

Use a pipeline approach that tracks cloud providers, assets created by those providers,
what your security tooling does with those assets, and what you do with the findings
from those security tools. If you have on-premises resources, treat those the same way
as resources at a third-party cloud provider, although you may not have tagging or an
API for automation.

Asset management can also have important benefits besides security. For example,
you may discover that you have assets that are no longer needed, and deleting these
can cut costs in addition to reducing security risks. If you’re having difficulty getting
support for an asset management solution based solely on security requirements, try
also pitching it as a cost-control measure.

Now that you understand the different types of cloud assets available and some good
ways to keep track of them, let’s look at how to protect these assets and the data in
them from one of the most common causes of breaches—issues with identity and
access management.

Conclusion | 55

Exercises
1. What are some reasons why manual tracking of cloud assets is error-prone?

Select all that apply.
a. There are too many cloud assets.
b. Cloud assets are created and destroyed often.
c. There is often a single team that deploys cloud assets.
d. APIs make tracking cloud assets more difficult.

2. What are some types of cloud infrastructure assets? Select all that apply.
a. Compute assets
b. Storage assets
c. Network assets
d. Encrypted assets

3. True or false: Containers are inherently insecure and should not be used when
security is important.

4. Which of these are common leaks in an asset management pipeline? Select all
that apply.
a. Missing a cloud provider
b. Missing assets from a cloud provider
c. Not feeding the correct assets into your security tooling
d. Having known risks

5. What are some reasonable tags for cloud assets? Select all that apply.
a. The asset owner
b. The types of data on the asset
c. The type of environment the asset is part of, such as development, test, or

production
d. The function of the asset in your application, such as web server or applica‐

tion server

56 | Chapter 3: Cloud Asset Management and Protection

1 See, for example, the Verizon Data Breach Investigations Report.
2 There is also the process of verifying that a person is who they say they are before giving them an identity,

generally called identity proofing. That’s usually performed by corporate onboarding processes and help desk
password recovery processes, and is not normally the responsibility of users of cloud services.

CHAPTER 4

Identity and Access Management

Identity and access management (IAM) is perhaps the most important set of security
controls. In breaches involving web applications, lost or stolen credentials have been
attackers’ most-used tool for several years running.1 If attackers have valid credentials
to log in to your system, all of the patches and firewalls in the world won’t keep them
out!

Identity and access management are often discussed together, but it’s important to
understand that they are distinct concepts:

• An identity is how a person (or automation) is represented in the system.2 The
process of verifying that the entity making a request is really the owner of the
identity is called authentication (often abbreviated as “authn”).

• Access management is about allowing identities to perform the tasks they need to
perform (and, in a least privilege environment, only the tasks they need to per‐
form). The process of checking what privileges an identity should have is called
authorization (often abbreviated as “authz”).

Authentication is proving that you are who you say you are. In the physical world,
this might take the form of presenting an ID card, which was issued by a trusted
authority and has your picture on it. Anyone can inspect that credential, look at you,
and decide whether to believe that you are who you say you are. As an example, if you
drive up to a military base and present your driver’s license, you’re attempting to

57

https://oreil.ly/Ealmn

3 Zero-knowledge encryption means that your provider has no technical way of decrypting the data, usually
because you only send encrypted data without the keys. This sharply limits what the provider can do, and is
most suitable for backup services where the provider just needs to hold a lot of data without any processing.

authenticate yourself with the guard. The guard may choose to believe you, or may
decide you’ve provided someone else’s driver’s license or that it’s been forged, or may
tell you that the base only accepts military IDs and not driver’s licenses.

Authorization refers to the ability to perform a certain action, and generally depends
first on authentication (knowing who someone is). For example, the guard at the base
may say, “Yes, I believe you are who you say you are, but you’re not allowed to enter
this base.” Or you may be allowed in, but not allowed access to most buildings once
inside.

In IT security, we often muddle these two concepts. For example, we may create an
identity for someone (with associated credentials such as a password) and then
implicitly allow anyone with a valid identity to access all data on the system. Or we
may revoke someone’s access by deleting the person’s identity—that works, but it’s like
tearing up their driver’s license instead of just denying them access. Although these
solutions may be appropriate in some cases, it’s important to understand the distinc‐
tion. Is it really appropriate to authorize every user for full access to the system? What
if you have to give someone outside the organization an identity in order to allow
them to access some other area of the system—will that user also automatically gain
access to internal resources?

Note that the concepts (and analogies) can get complicated very quickly. For example,
imagine a system where instead of showing your license everywhere, you check out
an access badge that you show to others, and a refresh badge that you need to show
only to the badge issuer. The access badge authenticates you to everyone, but works
for only one day, after which you have to go to the badge office and show the refresh
badge to get a new access badge. Each site where you present your access badge veri‐
fies the signature on it to make sure it’s valid, and then calls a central authority to ask
whether you’re on the list for access to that resource. This is similar to the way some
IT access systems work, although fortunately your browser and the systems providing
service to you take care of these details for you!

An important principle with identity and access management, as well as in other
areas of security, is to minimize the number of organizations and people whom you
have to trust. For example, except for cases where zero-knowledge encryption will
work,3 you’re going to have to trust your cloud provider’s authentication and authori‐
zation processes to keep your data from being seen by unauthorized people. You have
to accept the risk that if your provider is completely compromised, your data is com‐
promised. However, since you’ve already decided to trust the cloud provider, you
want to avoid trusting any other people or organizations if you can instead leverage

58 | Chapter 4: Identity and Access Management

4 I like to jokingly refer to this as the “principle of already screwed.” It’s good to have a way to monitor your
provider’s actions, though, to detect a potential compromise.

5 If you are 99.9% sure that any given user’s credentials won’t be stolen in a year, and you have 1,000 users, then
you’re only 36.7% sure that none of your users’ credentials will be stolen in a year. Probabilities are fun!

that existing trust without incurring additional risk.4 Think of it like paying an admis‐
sion fee; once you’ve paid the “fee” of trusting a particular organization, you should
use it for all it’s worth to avoid introducing additional risk into the system.

Differences from Traditional IT
In traditional IT environments, access management is often performed in part by
physical access controls (who can enter the building) or network access controls (who
can connect to the network remotely). As an example, you may be able to count on a
perimeter firewall as a second layer of protection if you fire an admin and forget to
revoke their access to one of the servers.

It’s important to note that even in a non-cloud environment, this is often a very weak
level of security—are you confident that the access controls for all of your Ethernet
ports, wireless access points, and VPN endpoints will stand up to even casual attack?
In most organizations, someone could ask to use the bathroom and plug a $5 remote
access device into an Ethernet port on the way there, or steal wireless or VPN creden‐
tials to get in without even stepping foot on the premises. The chance of any given
individual having their credentials stolen might be small, but the overall odds of hav‐
ing unauthorized people on the network increase quickly as you add more and more
people to the environment.5 This is doubly true in cloud environments, where all
access is remote access and the odds are even higher that you will have unauthorized
people on a supposedly secure network.

In traditional environments, access control is sometimes performed simply by revok‐
ing a user’s entire identity, so that they can no longer log in at all. But when using
cloud environments, this often won’t take care of the entire problem. For conve‐
nience, many services provide long-lived authentication tokens that will continue to
work even without the ability to log in on a new session. Unless you’re careful to have
an “offboarding” feed that notifies applications when someone leaves so that the
application can revoke all access, people may retain access to things you didn’t intend.
As an example, if you use a webmail service, when was the last time you typed in your
webmail password? Changing your password or preventing you from using the login
page wouldn’t do any good if webmail providers didn’t also revoke the access tokens
stored in your browser cookies during a password change operation.

Differences from Traditional IT | 59

There are many examples of data breaches caused by leaving Amazon S3 buckets
open to public access. If these were file shares left open to anyone in the company
behind a corporate firewall, they might not have been found by an attacker or
researcher on the internet. (In any organization of a reasonable size, there are almost
certainly bad actors on the internal network who could have stolen that information,
perhaps without detection, but the likelihood of attack is higher when it’s internet-
facing.)

The point behind these examples is that many organizations find that they’ve lived
with lax IAM controls on-premises, and need to improve them significantly for the
cloud. Fortunately, there are services available to make this easier.

Life Cycle for Identity and Access
Many people make the mistake of thinking of IAM as only authentication and
authorization. Although those are both very important, IAM also includes other parts
of the identity life cycle. In the earlier example about attempting to enter a military
base, we assumed that you, the requester, already had an identity (your driver’s
license)—but how did you get that? And who put your name on the list of people
who were allowed on the base?

Many organizations handle this poorly. Requesting an identity might be done by call‐
ing or messaging an administrator, who approves and creates the identity without
keeping any record of it. This might work fine for really small organizations or low-
risk environments, but many times you need a system to record when someone
requests access, how the requester was authenticated, and who approved the new
identity or the access.

Even more important is the backend of the life cycle. You need a system that will
automatically check every so often if a user’s identity and access are still needed. Per‐
haps the person has left the company, or moved to a different department, and should
no longer have access. (Or worse, imagine having the unpleasant task of firing some‐
one, and realizing a month later that due to human error the person still has access to
an important system!)

There are many different versions of IAM life cycle diagrams, with varying amounts
of detail in the steps. The one in Figure 4-1 shows the minimum number of steps, and
addresses both creation and deletion of identities along with creation and deletion of
access rules for those identities. Identity and access may be handled by different sys‐
tems or the same system, but the steps are similar.

Note that you don’t necessarily need a fancy automated system to implement every
one of these steps. In an environment with few requesters and few approvers, a
mostly manual process can work fine as long as it’s consistently implemented and
there are checks to prevent a single human error from causing problems. As of this

60 | Chapter 4: Identity and Access Management

writing, most automated systems to manage the entire life cycle (often called identity
governance systems) are geared toward larger enterprises; they are usually expensive
and difficult to implement. However, there is a growing trend to provide these gover‐
nance solutions in the cloud like other services. These are often included as part of
other identity and access services, so even smaller organizations will be able to benefit
from them.

Figure 4-1. IAM life cycle

Also note that the processes and services used might differ considerably, depending
on who the entities are. The types of identity and access management used to give
your employees access to your cloud provider and your internal applications differ
considerably from those used to grant your customers end-user access to your appli‐
cations. I’ll distinguish between these two general cases in the following discussion.

Don’t forget about identities for non-human things in the system,
such as applications. These need to be managed too, just like
human identities. Many teams do a great job of controlling access
for people, but have very lax controls on what automation is
authorized to do.

Life Cycle for Identity and Access | 61

Let’s go through each of these steps. The process starts when someone or something
puts in a request. This might be the manager of a newly hired employee, or some
automation such as your HR system.

Request
The life cycle begins when an entity makes an identity or access management request.
This entity should usually be authenticated in some fashion. Inside your organization,
you don’t want any anonymous requests for access, although in some cases the authen‐
tication may be as simple as someone visually or aurally recognizing the person.

When providing access to the general public—for example, for a web application—
you often want to link to some other identity, such as an existing email address or a
mobile phone number.

The common requests are:

• Create an identity (and often implicitly grant that identity at least a base level of
access).

• Delete an identity, if the entity no longer needs to authenticate anywhere.
• Grant access to an existing identity—for example, to a new system.
• Revoke access from an existing identity.

In cloud environments, the request process often happens “out of band,” using a
request process inside your organization that doesn’t involve the cloud IAM system
yet.

Approve
In some cases, it’s acceptable to implicitly approve access. For example, when granting
access to a publicly available web application, anyone who requests access is often
approved automatically, provided that they meet certain requirements. These require‐
ments might be anti-fraud in nature, such as providing a valid mobile number or
email address, providing a valid credit card number, completing a CAPTCHA or “I
am not a robot” form, or not originating from an anonymizing location such as an
end-user VPN provider or a known Tor exit node.

However, inside an organization, most access requests should be explicitly approved.
In many cases, two approvals are reasonable—for example, by the user’s immediate
supervisor, as well as the owner of the system to which access is being requested. The
important thing is that the approver or approvers are in a position to know whether
the requested access is reasonable and necessary. This is also an internal process for
your team that usually happens with no interaction with your cloud providers.

62 | Chapter 4: Identity and Access Management

Create, Delete, Grant, or Revoke
After approval, the actual action to create an identity, delete an identity, grant access,
or revoke access may happen automatically. For example, the request/approve system
may use cloud provider APIs to create the identity or grant the access.

In other cases, this may generate a ticket, email, or other notification requiring a per‐
son to take manual action. For example, an admin may need to log in to the cloud
portal to create the new identity and grant it a certain level of access. Automation is
preferable, particularly for frequently requested items, to reduce the possibility of
human error.

Authentication
So far, much of what has been discussed is not really different from access manage‐
ment in on-premises environments—before an identity exists, you have to request it
and have a process to create it. However, authentication is where cloud environments
begin to differ because of the many identity services available.

It’s important to distinguish between the identity store, which is the database that
holds all of the identities, and the protocol used to authenticate users and verify their
identities, which can be OpenID, SAML, LDAP, or others.

There are different cloud services available to help, depending on who is being
authenticated:

• Authenticating your organization’s employees with your cloud providers falls
under business-to-business (B2B) authentication, and the cloud service is often
called something like “Cloud IAM.”

• Authenticating your organization’s customers with your own applications run‐
ning in the cloud is often called business-to-consumer (B2C) authentication, and
the cloud service is often called something like “Customer IAM” or “CIAM.”

• Authenticating your organization’s employees with your own applications is often
called business-to-employee (B2E) authentication; it may use the same services as
B2C authentication or may be called something like “Workforce Identity.”

Cloud IAM Identities
Most cloud providers offer IAM services that must be used when accessing their
cloud services. These are usually available for no additional charge. They allow you to
have one central location to manage the identities of cloud administrators in your
organization, along with the access that you have granted those identities to all of the
services that cloud provider offers.

Authentication | 63

This can be a big help. If you are using dozens or hundreds of services from a cloud
provider, it can be difficult to get a good picture of what level of access a given person
has if you have to go separately to every service. It can also be difficult to make sure
you’ve revoked all of their access when that person leaves your organization. Remov‐
ing access is especially important, given that many of these services may be used
directly from the internet!

Table 4-1 lists some examples of identity services to authenticate your cloud adminis‐
trators with cloud provider services.

Table 4-1. Cloud provider identity services

Provider Cloud identity service
Amazon Web Services AWS IAM

Microsoft Azure Azure Active Directory

Google Cloud Platform Cloud IAM

IBM Cloud Cloud IAM

Business-to-Consumer and Business-to-Employee
In addition to the identities your organization uses for accessing cloud provider serv‐
ices, you may also need to manage identities for your end users, whether they are
external customers or your own employees.

Although you can do customer identity management yourself by simply creating
rows in a database with passwords, this is often not an ideal experience for your end
users, who will have to juggle yet another login and password. In addition, there are
significant security pitfalls to avoid when verifying passwords, as described in “Pass‐
words, Passphrases, and API Keys” on page 68. There are two better options:

• Use an existing identity service. This may be an internal identity service for your
employees or your customers’ employees. For end users, it may also be an exter‐
nal service such as Facebook, Google, or LinkedIn. This requires you to trust that
identity service to properly authenticate users for you. It also makes your associa‐
tion with the identity service obvious to your end users when they log in, which
may not always be desirable.

• Use customer identities specific to your application, and use a cloud service to
manage these customer identities. Users still have another credential to deal with,
but at least you don’t have to verify the credential.

The names of these Identity-as-a-Service (IDaaS) offerings do not always make it
clear what they do. Table 4-2 lists some examples from major cloud infrastructure
providers as well as third-party providers. There are many third-party providers in
this space and they change often, so this isn’t an endorsement of any particular

64 | Chapter 4: Identity and Access Management

providers. For business-to-employee cases, most of these IDaaS services can also use
your employee information store, such as your internal directory.

Table 4-2. ID management systems

Provider Customer and workforce identity management cloud services
Amazon Web Services Amazon Cognito

Microsoft Azure Azure Active Directory B2C

Google Cloud Platform Identity Platform

IBM Cloud App ID

Okta Customer Identity Cloud, Workforce Identity Cloud

Ping PingOne for Customers, PingOne for Workforce

Note that whether you’re creating identities yourself or using a
cloud service, any personally identifiable information you collect or
process may be subject to regulatory requirements such as the EU
GDPR.

Multi-Factor Authentication
Multi-factor authentication is one of the best ways to guard against weak or stolen
credentials, and if implemented properly will only place a small additional burden on
users. Most of the identity services shown in Table 4-2 support multi-factor
authentication.

As background, the different authentication factors are commonly defined as:

1. Something you know. Passwords are the best-known examples, but personal
identification numbers (PINs)—which, unlike a password, can only be used in
conjunction with a specific device you have—are becoming more popular.

2. Something you have. For example, an access badge, a mobile phone, or a piece of
data that is impractical to memorize, such as a randomly generated private key.

3. Something you are. For example, your fingerprint, face, or retinal pattern.

As the name implies, multi-factor authentication involves using more than one of
these factors for authentication. Using two of the same factor, like two different pass‐
words, doesn’t help much because the same attack could be used to get both pass‐
words! The most common implementation is two-factor authentication (2FA), which
uses something you know (like a password) and something you have (like your
mobile phone).

Authentication | 65

2FA does not require one of the factors to be a password. Password‐
less logins that have two factors (such as a physical device you have
and your fingerprint to unlock the device) can be considerably
more secure and convenient than password authentication.

2FA should be the default for most access; if implemented correctly, it requires very
little extra effort for most users. You should absolutely use 2FA any place where the
impact of lost or stolen credentials would be high, such as for any privileged access,
access to read or modify sensitive data, or access to systems such as email that can be
leveraged to reset other passwords. For example, if you’re running a banking site, you
may decide that the impact is low if someone is able to read a user’s bank balance, but
high (with 2FA required) if someone is attempting to transfer money. Requiring addi‐
tional authentication for higher-risk activities is called step-up authentication.

If you’re managing a cloud environment, unauthorized administrative access to the
cloud portal or APIs is a very high risk to you, because an attacker with that access
can usually leverage it to compromise all of your data. You should turn on two-factor
authentication for this type of access; most cloud providers natively support this.
Alternatively, if you’re using single sign-on (SSO), discussed in “Single Sign-On” on
page 71, your SSO provider may already perform 2FA for you.

Many services offer multiple authentication methods. The most common methods
are:

Passwords and passphrases (something you know)
A password is not tied to a particular device, and will work from anywhere. The
problems with passwords are plentiful and well known: many people choose
passwords that are commonly used and subject to dictionary attacks, or are sim‐
ple and short enough to be cracked with brute-force attacks, or are reused across
multiple services so that compromising one service gives an attacker the pass‐
word for another (which can be discovered through credential stuffing attacks).
It’s really past time to stop using them, but change is hard.

PINs (something you know)
On the surface, PINs may seem like they’re worse than passwords, because
they’re usually simpler, but the important thing about PINs is that they are only
useful when paired with a specific physical device. Someone who guesses your PIN
without having the associated device (usually a mobile phone, laptop, or hard‐
ware security key) cannot gain access to it, which makes a successful attack much
harder.

SMS text messages to a mobile device (something you have)
This method has fallen out of favor because of the ease of stealing someone’s
phone number (via SIM cloning or number porting) or intercepting the message,

66 | Chapter 4: Identity and Access Management

so new implementations should not use it, and existing implementations should
move to another method. This does require cellular network access to receive the
text messages.

Time-based one-time passcodes, or TOTPs (something you have)
This method requires providing a mobile device with an initial “secret” (usually
transferred by a 2D barcode). The secret is a formula for computing a one-time
password every minute or so. The one-time password needs to be kept safe for
only a minute or two, but the initial secret can allow any device to generate valid
passwords and so should be destroyed or put in a physically safe place after use.
After the initial secret is transferred, network access is not required for the
mobile device, only a synchronized clock. The main drawback is that TOTPs are
less convenient for users and are “phishable,” meaning that an attacker who fools
you into entering both the password and the passcode into a fake site can gain
access.

Hash-based one-time passcodes, or HOTPs (something you have)
These are similar to TOTPs in both advantages and disadvantages, but use a
counter instead of the time, so don’t require a synchronized clock. However, they
can get out of sync if too many codes are generated and not used.

Push notifications to a mobile device (something you have)
With this method, an already authenticated client application on a mobile device
makes a connection to a server, which “pushes” back a one-time-use code or asks
for permission. This is secure as long as the authentication for the already
authenticated client application is secure, but does require network access for the
mobile device. The primary drawback is that an attacker may be able to fool the
user into saying yes either with a clever forgery site or by fatiguing the user with
lots of requests.

Fingerprint readers, face readers, and retina readers (something you are)
While these biometric methods are often foolable with enough effort (creating
replica fingers or faces or eyes), the implementations continue to improve and
they are good enough as a single factor to meet most security requirements.

A hardware device, such as one complying with the FIDO Universal 2nd Factor (U2F)
or FIDO2 standards (something you have)

FIDO U2F is only a second authentication factor, generally used with a password,
while FIDO2 can function as a combined multi-factor device to allow password‐
less authentication. FIDO2 devices are also called passkeys. This is by far the best
option, because the passkey knows what application it’s talking to and can’t be
fooled by fake sites. Initially, these were only available as standalone hardware
security keys, but the technology is now built into most laptops and mobile devi‐
ces. Use of this type of authentication is likely to become ubiquitous in the near

Authentication | 67

https://oreil.ly/vo9ed

future, integrated with smartphones and wearable technologies such as watches
and rings. A FIDO2 device can be unlocked with a PIN or a biometric factor,
which combines two factors into one device for very strong, phishing-resistant,
passwordless authentication.

Note that many of these methods to verify “something you have”
are vulnerable to social attacks, such as calling the user under false
pretenses and asking for the one-time passcode! Even the strongest
forms of authentication, such as FIDO2, can be subject to down‐
grade attacks if the user goes to a fake site that says, “That didn’t
work, please try a different (weaker) method.” In addition to rolling
out multi-factor authentication, you must provide some minimal
training to users to help them recognize common attacks.

All major cloud providers offer ways to implement multi-factor authentication,
although Google uses the friendlier term “2-Step Verification.”

Passwords, Passphrases, and API Keys
If you’re using multi-factor authentication, passwords or passphrases are no longer
your only line of defense. That said, unless you’ve gone to a full passwordless model,
it’s still important to choose good passwords. This is often even more true in cloud
environments, because in many cases an attacker can guess passwords directly over
the internet from anywhere in the world.

“Passphrase” is just a term for a longer, more secure password, so I’ll use the more
generic term “password” here. While there is lots of advice and debate about good
passwords, my recommendations for choosing passwords are simple:

1. Never reuse passwords unless you genuinely don’t care about an unauthorized
user getting access to the resources protected by that password. For example, you
might use the same password on a dozen forum systems because you don’t really
care if someone posts as you on any or all of those forums. (Even then, though,
there is still some risk that the user can somehow leverage that access to reset
other passwords, so it’s best not to reuse passwords at all.) When you type a pass‐
word into a site, you should assume that the site’s administrators are malicious
and will use the password you have provided to break into other sites.

2. Not reusing passwords means you’ll end up with a lot of passwords, so use a rep‐
utable password wallet to keep track of them. Store copies of any master pass‐
words or recovery keys in a physically secured location, such as a good safe or a
bank safe deposit box.

3. For passwords that you do not need to remember (for example, that you can
copy and paste from your password wallet), use a secure random generator.

68 | Chapter 4: Identity and Access Management

6 Password strength is usually measured in “bits of entropy.” A very oversimplified explanation is that if you
give an attacker all of the information you can about how a password is constructed but not the actual pass‐
word, such as “it’s 20 uppercase alphabetic characters,” the number of bits of entropy is about log2(number of
possible passwords).

7 Diceware is based on the idea that it’s far easier for humans to remember phrases than characters, and that
almost everyone can find some six-sided dice. You can download the Diceware word list, then roll dice to
randomly pick five or six words off the list. There are also web pages that generate a passphrase locally for
you. The result is an extremely secure password that’s easy to remember.

Twenty characters is a good target, although you may find some systems
that won’t accept that many characters; for those, use as varied a character set as
possible.6

4. For passwords you do need to remember, such as the password for your pass‐
word wallet, create a six-word Diceware password7 and put the same non-
alphabetic character, such as a dollar sign, equals sign, or comma, between each
word. Feel free to regenerate the password a few times until you find one that you
can construct some sort of silly story about to help you remember it. This will be
easy to memorize quickly and nearly impossible for an attacker to guess. The
only drawback is that it takes a while to type, so you don’t want to have to type it
constantly!

API keys are very similar to passwords but are designed for use by automation, not
people. For that reason, you cannot use multi-factor authentication with API keys,
and they should be long random strings, as noted in item 3 in the preceding list.
Unlike most user identities where you have a public user ID and a private password,
you usually have only a private API key that tells the system who you are and also
authenticates you.

Verifying Passwords
You may also be tasked with verifying users’ passwords, which can be much more
complicated than it seems. Avoid this task if possible!

The simplest way to verify passwords is to store a list of the users and passwords and
then check to see whether the password entered matches what’s on the list. This is a
very bad idea, however, because if someone gets access to your list, they have every‐
thing they need to impersonate every user on the list!

A much better method is to not store the passwords themselves, but to store some‐
thing that can be used to verify the passwords. This is implemented using a one-way
hash, which is something you can derive with a function if you have the password,
but which cannot be used to go backward to get the password. However, the devil is
in the details—if you use the wrong function or the wrong parameters for the func‐
tion, the passwords can be easily obtained (“cracked”) through a brute-force attack,

Authentication | 69

https://oreil.ly/GvcDi

by guessing a lot of possible passwords. Perfectly good hash algorithms such as
SHA-256 are terrible for password hashes because they’re fast to compute, by design.

As of this writing, password hashes should be stored using scrypt, bcrypt, PBKDF2,
or Argon2 functions with reasonable parameters. The recommendations for func‐
tions and parameters change over time as cracking hardware gets more sophisticated
and weaknesses are found in hashing algorithms, so you must reevaluate your choices
at least annually. When you change algorithms or parameters, all new passwords will
use the new methods, but by design there’s no way to convert the old hashes to new
hashes. If there’s an urgent need to change (such as evidence of a breach that might
have gained access to password hashes), you must reset all user passwords
immediately.

Even if you store hashes securely, you should have a testing mechanism in place to
prevent users from using really easy-to-guess passwords like abc123 or Fall2018.
Attackers are increasingly using techniques such as “password spraying,” where they
try an easy password on hundreds or thousands of IDs at once. This often doesn’t
trigger any alarms because it shows up as only a single failed login for each ID. You
should also monitor for a lot of failures coming from one location, which is often
indicative of credential stuffing attacks, where an attacker gets a list of passwords
from one site and tries them on other sites.

For cloud services and applications, use a federated identity from another provider or
a consumer/employee IAM cloud service where possible. For system-level access, use
key-based authentication or centralized authentication with password strength test‐
ing. Don’t store and verify password hashes yourself unless there is no good
alternative.

Shared IDs
Shared IDs are identities for which more than one person has the password or other
credentials, such as the built-in root or Administrator account on a system. These can
be difficult to handle well in cloud environments, just as they are on-premises.

Where possible, every user or tool should have its own ID that’s not used by anyone
or anything else. Many systems allow users to assume a privileged role or separate
higher-privileged ID for some activities, such as by using sudo on Unix-like systems.
When you do need to use shared IDs, you need to be able to tell exactly which indi‐
vidual (or automated tooling) was using the ID for any access.

If you do have to share an ID, such as root, the system you’re using the shared ID on
has no way of distinguishing who was using it. That means you need to have a sepa‐
rate process and tooling to check out the shared credentials and then change them
when they’re checked back in. This tooling is usually called a privileged access man‐
agement (PAM) or privileged identity management (PIM) system, and it can also

70 | Chapter 4: Identity and Access Management

perform other functions, such as recording the session or prohibiting the use of some
commands.

Federated Identity
Federated identity is a concept, not a specific technology. It means that you may have
identities on two different systems, and the administrators of those systems can both
agree to use technologies that link those identities together so that you don’t have to
manually create separate accounts on each system. From your perspective as a user,
you have only a single identity.

In practice what this usually means is that Company A and Company B both use your
corporate email address, such as user@company-a.com, as your identity, and Com‐
pany B defers to Company A to actually authenticate you. Company A will then pass
an assertion or token back with its seal of approval: “Yes, this is indeed
user@company-a.com; I have verified them, here is my signature to prove that it’s me,
and you’ve already agreed that you’ll trust me to authenticate users with identifiers
that end in @company-a.com.”

Single Sign-On
Single sign-on (SSO) is a set of technology implementations that rely upon the con‐
cept of federated identity.

In the bad old days, every website had a separate login and password. That’s a lot of
passwords for users to keep track of! The predictable result is that users often reuse
the same password across multiple sites, meaning that the user’s password is only as
well protected as the weakest site.

Enter SSO. The idea is that instead of a website asking for a user’s ID and password,
the website instead redirects the user to a centralized identity provider (IdP) that it
trusts. (Note that the identity provider may not even be part of the same
organization—the only requirement is that the website trusts it.) The IdP will do the
work of authenticating the user, via means such as a username and password, and
hopefully an additional authorization factor. It will then send the user back to the
original website with proof that it has verified the user. In some cases, the IdP will
also send information (such as group membership) that the website can use to make
authorization decisions, such as whether the user should be allowed in as a regular
user, as an administrator, or not at all.

For the most part, SSO works only for websites and mobile applications, although
this is beginning to change. You may need a different protocol (such as LDAP, Ker‐
beros, TACACS+, or RADIUS) for performing centralized authentication to non-web
assets like network devices or operating systems.

Authentication | 71

Rarely do you find something that’s both easier for users and provides better security!
Users only have to remember one set of credentials, and because these credentials are
only ever seen by the identity provider (and not any of the individual sites), a com‐
promise of those sites won’t compromise the user’s credentials. In addition, your SSO
provider can implement controls that follow other zero trust principles, such as
checking whether an unmanaged or out-of-date device is being used, or if the user’s
credentials are being used from two different countries at the same time. These types
of controls are very difficult to implement individually on each application.

The only drawback to SSO is that it is slightly more difficult for a website to imple‐
ment than poor authentication mechanisms, such as comparing against a plain-text
password or an insecurely hashed password in a database.

SAML and OIDC
As of this writing, Security Assertion Markup Language (SAML—the abbreviation
rhymes with “camel”) and OpenID Connect (OIDC) are the most common SSO tech‐
nologies. While the end results are similar, the mechanisms they use are somewhat
different.

The current SAML version is 2.0, and it has been around since 2005. This is one of
the most common SSO technologies, particularly for large enterprise applications.
While there are many in-depth explanations of how SAML works, here is a very sim‐
plified version:

1. You point your web browser at a web page you want to access (called a service
provider, or SP).

2. The SP web page says, “Hey, you don’t have a SAML cookie, so I don’t know who
you are. Go over here to this identity provider web page and get one,” and redi‐
rects you.

3. You go to the IdP and log in using your username, password, and hopefully a sec‐
ond factor, or a passwordless method.

4. When the IdP is satisfied it’s really you, it gives your browser a cookie with a
cryptographically signed XML “assertion” that says, “I’m the identity provider,
and this user is authenticated,” and then redirects you back.

5. Your web browser hands that cookie back to the first web page (SP). The SP veri‐
fies the cryptographic signature and says, “You managed to convince the IdP of
your identity, so that’s good enough for me. Come on in.”

After you’ve logged in once, this all happens automatically for a while until those
assertion documents expire, at which point you have to log in to the IdP again.

One important thing to note is that there was never any direct communication
between the initial web page and the identity provider—your browser did all of the

72 | Chapter 4: Identity and Access Management

hard work to get the information from one place to another. That can be important in
some cases where network communications are restricted.

Also note that SAML provides only identity information, by design. Whether or not
you’re authorized to log in or take other actions is a different question, although some
SAML implementations pass additional information along with the assertion (such as
group membership) that can be used by the application to make authorization
decisions.

OpenID Connect is a much newer authentication layer, finalized in 2014, on top of
OAuth 2.0. It uses JSON Web Tokens (JWTs, sometimes pronounced “jots”) instead
of XML, and uses somewhat different terminology (“relying party” is usually used in
OIDC versus “service provider” in SAML, for example).

OIDC offers both Authorization Code Flows (for traditional web applications) and
Implicit Flows (for applications implemented using JavaScript on the client side).
While there are numerous differences from SAML, the end results are similar in that
the application you’re authenticating with never sees your actual password, and you
don’t have to reauthenticate for every application.

Some services can take requests from OIDC-enabled applications and “translate”
these to requests to a SAML IdP. In larger organizations, it’s very common to have
both standards in use, and most IdPs support both.

SSO with legacy applications
What if you want to provide single sign-on to a legacy application that doesn’t sup‐
port it? One option is to put something in front of the application that handles the
SSO requests and then tells the legacy application who the users are.

The legacy application will trust this frontend service (often a reverse proxy) to per‐
form authentication, but it’s very important that it not accept connections from any‐
thing else. Techniques like this are sometimes needed when moving an existing
application to the cloud, until the application can be reworked to allow SSO natively.
Many of the Identity-as-a-Service providers listed earlier also offer ways to SSO-
enable legacy applications.

Instance Metadata and Identity Documents
As mentioned earlier in this chapter, we often assume that automation, such as a pro‐
gram running on a system, has already been assigned an identity and a way to prove
that identity. For example, if I start up a new system, I can create a username and
password for that system to use and supply that username and password to the sys‐
tem as part of the process of creating it. However, in many cloud environments, there
are easier ways.

Authentication | 73

A process running on a particular system can contact a well-known endpoint that will
tell it all about the system it’s running on, and the process will also provide a crypto‐
graphically signed way to prove that system’s identity. The exact details differ from
provider to provider, but conceptually it looks like Figure 4-2.

Figure 4-2. Using identity documents

This is not foolproof, however, in that any process on the system can request this
metadata, regardless of its privilege level on the system. This means you either need
to put only processes of the same trust level on the system, or take actions to block
lower-privileged processes from assuming the identity of the entire system. This can
be a particular concern in container environments, where any container on a host
system could request the identity document and then pretend to be that host system.
In cases like this, you need to block the containers from reaching the metadata
service.

This system also requires the cloud service to recognize the particular type of docu‐
ment and signature that the metadata service is using. If only there were a standard
format for these documents and signatures, so that the cloud service could choose to
trust containers created in a particular cluster or virtual machines created in a specific
cloud account! Enter SPIFFE, which is a standard method for allowing a workload
(which may be a container, a virtual machine, a multi-node application, etc.) to
authenticate with something else. SPIRE is a reference implementation of the SPIFFE
specification. As of this writing, SPIFFE is not widely used, but eventually it or a simi‐
lar specification is likely to eliminate the widespread use of static API keys for
authentication. Instead of configuring the system to trust anyone who gets the API
key, you’ll configure it to only trust those workloads that can both show you a valid
ID and are on your list of things to trust.

74 | Chapter 4: Identity and Access Management

https://spiffe.io

8 Some applications can remember a TOTP secret and use it to log in along with a password, but this is usually
only done in cases where a testing tool is pretending to be a user logging in. If an attacker gets into that appli‐
cation, they’ll find both the password and the TOTP secret in the same place, so in this situation the second
factor doesn’t really help from a security perspective.

If you can use identity documents, then you don’t need to do as much secrets man‐
agement. As a workload, I can make a simple request and be given the secrets that I
need to access other resources, and then forget the secrets and ask again if I need
them later. However, given that identity documents are not yet in widespread use, and
that many types of resources don’t accept them yet, you’ll need some tools and tech‐
niques for managing secrets. We’ll look at those next.

Secrets Management
I talked about passwords earlier primarily in the context of a person authenticating
with a system. Administrative users and end users have had secrets management
techniques for as long as there have been secrets, ranging from good (password wal‐
lets and physical safes) to really bad (the ubiquitous Post-it note on the monitor or
under the keyboard). While the term secrets management generally applies any time
you have a secret to remember, it’s usually used more specifically to refer to secrets
used by one system to talk to another.

For example, let’s look at the case where an application server needs to talk to a data‐
base server. Clearly, multi-factor authentication can’t be used here; the application
server doesn’t have a hardware security key or a fingerprint!8 This means you need to
be very careful with the authentication credentials for system-to-system connections,
because they may be your only line of authentication defense.

System-to-system authentication credentials may involve a password, API key, cryp‐
tographic token, or public/private key pair. All of these solutions have something that
needs to be kept secret. We refer to all of these things simply as secrets, and secrets
management is about making them available to the entity that needs them—and
nobody else. (In addition, you may have items unrelated to authentication that need
to be kept secret, such as encryption keys; while these are also technically secrets,
they’re usually covered more specifically under encryption key management.)

Secrets are dangerous things that should be handled carefully. Here are some princi‐
ples for managing secrets:

• Secrets should be easy to change at regular intervals and whenever there’s any
reason to think they may have leaked out. If changing the secret means that you
have to take the application down and manually change it in many places, that’s a
problem.

Authentication | 75

9 There is actually a common term for secrets found in public GitHub repositories: “GitHub dorks.” This has
been such a widespread issue that GitHub now has ways to block code pushes that contain secrets.

• Secrets should always be encrypted at rest and in motion, and they should be dis‐
tributed to systems only after proper authentication and authorization.

• If possible, no human should know the secrets—not the developers who write the
code, not the operators who can look at the running system, nobody. This often
is not possible, but we should at least strive to minimize number of people who
know secrets!

• The system storing and handing out the secrets should be well protected. If you
put all the secrets in a vault and then hand out keys to the vault to dozens of peo‐
ple, that’s a problem.

• Secrets should be as useless to an attacker as possible while allowing the system
to function. This is again an instance of least privilege; try not to keep secrets
around that offer the keys to the kingdom, such as providing root access to all
systems, but instead have limited secrets, such as a secret that allows read-only
access to a specific database.

• All accesses and changes to secrets should be logged.

Even organizations that do a great job with authentication and authorization often
overlook secrets management. For example, you may do a great job keeping track of
which people have personal IDs with access to a database, but how many people
know the password that the application server uses to talk to the database? Does it get
changed regularly, and immediately if someone leaves the team? In the worst case,
this password is in the application server code and checked into some public reposi‐
tory, such as GitHub.9

There have been many breaches resulting from accidentally storing secrets, such as
AWS API keys, in source code. The code needs the credentials to function when it’s
deployed, but putting secrets directly into source code (or into the source code repos‐
itory as part of a configuration file) is a really bad idea, for two reasons:

• The source code repository likely was not designed primarily for keeping infor‐
mation secret. Its primary function is protecting the integrity of the source
code—preventing unauthorized modification to insert a backdoor, for example.
In many cases, it may show the source code to everyone by default as part of a
social coding initiative.

• Even if the source code repository is perfectly safe, it’s very unlikely that everyone
who has access to the source code should also be authorized to see the secrets
used in the production environment.

76 | Chapter 4: Identity and Access Management

The most obvious solution is to take the secrets out of the source code and place
them somewhere else, such as in a safe place in your deployment tooling or on a dedi‐
cated secrets server.

In most cases, a deployment of an application will consist of three pieces that come
together:

• The application code
• The configuration for this particular deployment
• The secrets needed for this particular deployment

Storing all three of these things together is a really bad idea, as previously discussed.
Having configuration and secrets together is also often a bad idea, because systems
designed to hold configuration data may not be properly designed for keeping that
data secret.

Let’s take a look at four reasonable approaches to secrets management, ranging from
minimally secure to highly secure.

The first approach is to use existing configuration management systems and deploy‐
ment systems for storing secrets. Many popular systems today have some ability to
hold secrets in addition to normal configuration data—for example, Ansible Vault
and Chef encrypted data bags. This can be a reasonable approach if the deployment
tooling is careful with the secrets, and more importantly if access to the deployment
system and encryption keys is tightly controlled. However, there are often too many
people who can read the secrets. In addition, changing secrets usually requires rede‐
ploying the system, which may be more difficult in some environments.

The second approach is to use a secrets server. With a separate secrets server, you
need only a reference to the secret in the configuration data and the ability to talk to
the secrets server. At that point, either the deployment software or the application can
get the secret by authenticating with the secrets server using a secrets server pass‐
word…but you see the problem, right? Now you have another secret (the password to
the secrets server) to worry about.

Although imperfect, there’s still considerable value to this approach to secrets
management:

• The secrets server requests can be logged, so you may be able to detect and pre‐
vent an unauthorized user or deployment from accessing the secrets. This is dis‐
cussed more in Chapter 7.

• The secrets server may use other ways to determine that the request is legitimate
than just the password, such as the IP address range requesting the secret. As dis‐
cussed in Chapter 6, IP allowlisting usually isn’t sufficient by itself, but it is a use‐
ful secondary control.

Authentication | 77

• You can easily update the secrets later, and all of your systems that retrieve the
secrets will get the new ones automatically.

The third approach has all of the benefits of a secrets server, but uses a secure intro‐
duction method to reduce the likelihood that an attacker can get the credentials to
access the secrets server:

1. Your deployment tooling communicates with the secrets server to get a one-time-
use secret, which it passes along to the application.

2. The application then trades that in for the real secret to the secrets server, and it
uses that to obtain all the other secrets it needs and hold them in memory. If
someone has already used the one-time secret, this step will fail, and the applica‐
tion can send an alert that something is wrong.

Your deployment tooling still needs one set of static credentials to your secrets server,
but this allows it only to obtain one-time keys and not to view secrets directly. (If
your deployment tooling is completely compromised, then an attacker could deploy a
fake copy of an application to read secrets, but that’s more difficult than reading the
secrets directly and is more likely to be detected.)

Operations personnel cannot view the secrets, or the credentials to the secrets server,
without more complicated memory-scraping techniques. For example, instead of
simply reading the secret out of a configuration file, a rogue operator would have to
dump the system memory out and search through it for the secret, or attach a debug‐
ger to a process to find the secret.

The fourth approach, if available, is to leverage some offerings built into your cloud
platform by its provider to avoid the “turtles all the way down” problem:

1. Some cloud providers offer instance metadata or identity documents to systems
provisioned in the cloud. Your application can retrieve this identity document,
which will say something like, “I am server ABC. The cloud provider crypto‐
graphically signed this document for me, which proves my identity.”

2. The secrets server then knows the identity of the server, as well as metadata such
as tags attached to the server. It can use this information to authenticate and
authorize an application running on the server and provide it the rest of the
secrets it needs to function. In the future, you may be able to use the identity
document directly with most cloud services, and not need the secrets server
at all!

78 | Chapter 4: Identity and Access Management

Let’s summarize the four reasonable approaches to secrets management:

• The first approach stores secrets only in the deployment system, using features
designed to hold secrets, and tightly controls access to the deployment system.
Nobody sees the secrets by default, and only authorized individuals have the
technical ability to view or change them in the deployment system.

• The second approach is to use a secrets server to hold secrets. Either the deploy‐
ment server or the deployed application contacts the secrets server to get the nec‐
essary secrets and use them. In many cases the secrets are still visible in the
configuration files or environment variables of the running application after
deployment, so operations personnel may be able to easily view the secrets or the
credentials to the secrets server.

• The third approach has the deployment server only able to get a one-time token
and pass it to the application, which then retrieves the secrets and holds them in
memory. This protects you from having the credentials to the secrets server or
the secrets themselves intercepted.

• The fourth approach leverages the deployment platform itself as the root of trust.
For example, an IaaS provider hands out signed identity documents to virtual
machines that the secrets server can use to decide which secrets to provide to that
virtual machine.

Several products and services are available to help you manage secrets. HashiCorp
Vault and Keywhiz are standalone products that may be implemented on-premises or
in the cloud, and AWS Secrets Manager is available through an as-a-service model.

Authorization
Once you’ve completed the authentication phase and you know who your users are,
it’s time to make sure they are limited to performing only the actions they are sup‐
posed to perform. Some examples of authorization include granting permission to
access an application at all, to access an application with write access, to access a por‐
tion of the network, or to access the cloud console.

End-user applications often handle authorization themselves. For example, there may
be a database row or document for each user listing the access level that user has. This
makes some sense, because each application may have specific functions to authorize,
but it means that you have to visit every application to see all of the access a user has.

Authorization | 79

The most important concepts to remember for authorization are least privilege and
separation of duties. As a reminder, least privilege means that your users, systems, or
tools should be able to access only what they need to do their jobs, and no more. In
practice, this usually means that you have a “deny by default” policy in place, so that
unless you specifically authorize something, it’s not allowed.

Separation (or segregation) of duties actually comes from the world of financial con‐
trols, where two signatures may be needed for checks over a certain amount. In the
world of cloud security, this usually translates more generally into making sure that
no one person can completely undermine the security of the entire environment. For
example, someone with the ability to make changes on systems should not also have
the ability to alter the logs from those systems, or the responsibility for reviewing the
logs from those systems.

For cloud services and internal applications, centralized authorization is becoming
more popular.

Centralized Authorization
The problems with the old, ad hoc practice of scattering identities all over the place
have been solved through federated identities and single sign-on. However, you may
still have authorization records scattered all over the place—every application may be
keeping its own record of who’s allowed to do what in that application.

You can deauthorize someone completely by deleting their identity (assuming persis‐
tent access tokens don’t keep them authorized for a while), but what about revoking
only some access? The ability to remove someone’s identity is important, but it’s a
pretty heavy-handed way to perform access management. You often need more fine-
grained ways to manage access. Centralized authorization can let you see and control
what your users have access to in a single place.

In a traditional application, all of the authorization work was performed internally in
the application. In the world of centralized authorization, the responsibilities typically
get divided up between the application and the centralized authorization system.
There are more details in some systems, but here are the basic components:

Policy Enforcement Point (PEP)
This point is implemented in the application, where the application controls
access. If you don’t have the specified access in the policy, the service or applica‐
tion won’t let you perform that function. The application checks for access by
asking the Policy Decision Point for a decision.

80 | Chapter 4: Identity and Access Management

Policy Decision Point (PDP)
This point is implemented in the centralized authorization system. The PDP
takes the information provided by the application (such as identity and requested
function), consults its policy, and gives the application its decision on whether
access is granted for that particular function.

Policy Administration Point (PAP)
This point is also implemented in the centralized authorization system. This is
usually a web user interface and associated API where you can tell the centralized
authorization system who’s allowed to do what.

Most cloud providers have a centralized access management solution that their serv‐
ices will consult for access decisions, rather than making the decisions on their own.
You should use these mechanisms where available, so that you can see all of the access
granted to a particular administrator in one place.

Roles
Many cloud providers offer roles or trusted profiles, which are similar to shared IDs in
that you assume a role, perform actions that role allows, and drop the role. This is
slightly different from the traditional definition of a role, which is a set of permissions
or entitlements granted to a user or group.

The primary difference between shared IDs and cloud provider roles is that a shared
ID is a standalone identity with fixed credentials. A cloud provider role is not a full
identity; it is a special status taken on by another identity that is authorized to access a
role, and is then assigned temporary credentials to access that role.

Role-based access can add an additional layer of security by requiring users or serv‐
ices to explicitly assume a separate role for more privileged operations, following the
principle of least privilege. Most of the time the user can’t perform those privileged
activities unless they explicitly put on the role “hat” and take it off when they’re done.
The system can also log each request to take on a role, so administrators can later
determine who had that role at a particular time and compare that information to
actions on the system that have security consequences.

People aren’t the only entities who can assume roles. Some components (such as vir‐
tual machines) can assume a role when created and perform actions using the privi‐
leges assigned to that role.

Authorization | 81

Roles Versus Groups
At this point, you may ask, “What’s the difference between a role and a group?” In
their purest forms, these are the differences:

• A group is a collection of entities, such as users, without any information about
what authorizations are granted to the entities in that group. The group VMAd‐
minGroup might contain Chris and Barbara, but you don’t know what they’re
allowed to do.

• A role is a collection of permissions that may be granted to users, groups, or
other entities such as VMs. However, a “pure” role doesn’t inherently contain any
information about who those permissions are granted to. A role named VMAd‐
minRole might grant you the permission to create and delete virtual machines,
but the role definition doesn’t tell you who actually gets those permissions. In
some cases a role is permanently assigned to certain users or groups, and in some
cases a user may be authorized to explicitly “assume” a role and drop that role
when it’s no longer needed.

In practice, many roles also specify the users (or groups) that they apply to, and in
many cases group membership provides the group members with a single permanent
set of permissions (a single role). The terms are often used interchangeably, but with
some cloud providers the distinction is important (such as with AWS IAM groups
and roles).

Revalidate
At this point, your users and automation should have identities and be authorized to
do only what they need to do. You need to make sure that this withstands the test of
time.

As previously mentioned, the revalidation step is very important in both traditional
and cloud environments, but in cloud environments you may not have any additional
controls (such as physical building access or network controls) to save you if you for‐
get to revoke access. You need to periodically check each authorization to ensure that
it still needs to be there.

The first type of revalidation is automated revalidation based on certain parameters.
For example, you should have a system that automatically puts in a request to revoke
all access when someone leaves the organization. Note that simply deleting the user’s
identity may not be sufficient, because the user may have cached credentials such as
access tokens that can be used even without the ability to log in. In situations like this,
you need an offboarding feed, which is a list of entities whose access should be
revoked. Any system that hands out longer-lived credentials such as access tokens

82 | Chapter 4: Identity and Access Management

must process this offboarding feed at least daily and immediately revoke those enti‐
ties’ access.

The second type of revalidation requires human judgment to determine whether a
particular entity still needs access. There are generally two types of judgment-based
revalidation:

Positive confirmation
This is stronger—it means that access is lost unless someone explicitly says, “This
access is still needed.”

Negative confirmation
This is weaker—it means that access is retained unless someone says, “This
access is no longer needed.”

Negative confirmation is appropriate for lower-impact authorization levels, but for
types of access with high impact to the business, you should use positive confirma‐
tion. The drawbacks to positive confirmation are that it’s more work, and access may
be accidentally revoked if the request isn’t processed in time (which may cause opera‐
tional issues).

The largest risk addressed by revalidation is that someone who has left the organiza‐
tion (perhaps under contentious circumstances) retains access to systems. In addition
to this, though, access tends to accumulate over time, like junk in the kitchen junk
drawer (you know the one). Revalidation clears out this junk.

However, note that if it’s difficult to get access, your users will often claim they still
need access, even if they no longer do. Your revalidation efforts will be much more
effective at pruning unnecessary access if you also have a fast, easy process for grant‐
ing access when needed. If that’s not possible, then it may be more effective to auto‐
matically revoke access if not used for a certain period of time instead of asking if it’s
still needed. This also has risks, because you may find nobody available has access
when needed!

Cloud Identity-as-a-Service offerings are increasingly offering management of the
entire identity life cycle in addition to authentication and authorization services. In
other words, providers are recognizing the importance of the relationship’s ending as
well as the relationship’s beginning, and they are helping to streamline and formalize
endings.

Revalidate | 83

What Are All These Tools?
The names of the various tools to help with secrets and identity management can be
confusing. There is some disagreement on naming, and many products perform more
than one function, but here’s a cheat sheet with some of the most common names and
functions:

• A password wallet is something individuals use to securely store passwords and
automatically fill them in. Some password wallet programs also have the ability
to share passwords with other users.

• A credential vault, privileged access management system, or privileged identity
management system is a system that allows individuals (and sometimes automa‐
tion) to store credentials, check them out, and use them. A main point is to
ensure individual accountability, so that you know which entity is using a creden‐
tial at any given time. The system may also perform other functions, such as dis‐
covering existing privileged accounts, recording sessions, or controlling what
commands can be issued.

• A directory service keeps a list of users and groups, and usually has a way to
authenticate them. Directory services are now often a component of other
products.

• An identity access management system or identity provider is a system that can
perform many of the types of authentication covered earlier, and that implements
federation protocols such as SAML and OIDC.

• An identity governance system is a system that handles the request, approval, and
revalidation parts of the life cycle; it may also have other functionality, such as
helping you find separation of duties issues or simplify roles.

• A secrets management system is mostly geared toward securely storing credentials
for automation to use, although individuals may also use it. It’s often part of a
deployment pipeline that allows the new deployment to get the secrets it needs to
function.

• An encryption key management system is specifically geared toward secrets that
are encryption keys, and will also allow you to perform functions like generating
keys securely and performing wrap/unwrap functions with keys.

• A certificate management system is specifically geared toward X.509 certificates;
it may allow you to generate and sign them and notify you when they’re about to
expire.

84 | Chapter 4: Identity and Access Management

Putting It All Together in the Sample Application
Remember our simple web application from Chapter 1? Let’s add identity and access
management information to the diagram, which now looks like Figure 4-3. I’ve
removed the whole application trust boundary to simplify the diagram. A description
of the steps, many of which have multiple parts, follows.

Figure 4-3. Sample application diagram with IAM

Putting It All Together in the Sample Application | 85

Unfortunately, that complicated the diagram quite a bit! Let’s look at some of the new
interactions in detail:

1. The end user attempts to access the application and is automatically approved for
access by virtue of having a valid identity and optionally passing some anti-fraud
tests. The user logs in with SSO, so the application identity is federated with the
user’s external identity provider, and the application doesn’t have to validate pass‐
words. From the user’s perspective, they’re using the same identity as they do at
their company or on their favorite social media site.

2. The administrator requests access to administer the application, which is
approved. The administrator is then authorized in a centralized authorization
system. The authorization may take place within the cloud’s IAM system, or the
cloud’s IAM system may be configured to ask the organization’s own internal
authorization system to perform the authorization.

3. The administrator authenticates with the cloud IAM service using a strong pass‐
word and multi-factor authentication and gets an access token to give to any
other services. Again, optionally, the cloud IAM service may be configured to
send the user to the organization’s internal authentication system.

4. The administrator makes requests to cloud provider services, such as to create a
new virtual machine or container. (Behind the scenes, the cloud VM service asks
the cloud IAM service whether the administrator is authorized.)

5. The administrator uses a cloud provider service to execute commands on the vir‐
tual machines or containers as needed. (Behind the scenes, the cloud “execute
command” service asks the cloud’s IAM service whether the administrator is
authorized to execute that command on that virtual machine or container.) If this
feature isn’t available from a particular cloud provider, the administrator might
use a more traditional method, such as SSH, with the virtual machine using the
LDAP protocol to authenticate and authorize administrators against an identity
store. Note that in a container environment, executing commands may not even
be needed for normal maintenance and upgrades, because the administrator can
deploy a new container and delete the old one rather than making changes to the
existing container.

6. A secrets service is used to hold the password or API key for the application
server to access the database system. Figure 4-3 shows the application server get‐
ting an identity document from the cloud provider, accessing the secrets server
directly to get the secret, and accessing the database. If the database will accept
the identity document directly, you may not even need the secrets server! The
same process could happen for the authentication between the web server and
the application server, but only one secrets service interaction is shown for

86 | Chapter 4: Identity and Access Management

simplicity. The secrets service may be run by the organization, or may be an as-a-
service offering from a cloud provider.

Note that every time one of our application’s trust boundaries is crossed, the entity
crossing the trust boundary must be authenticated and authorized in order to per‐
form an action. There are other trust boundaries outside the application that are not
pictured, such as the trust boundaries around the cloud and organization systems.

Conclusion
Many organizations have historically been somewhat lax about identity and access
management in on-premises environments, and have relied too much upon other
controls (such as physical security and network controls). However, IAM is
supremely important in cloud environments. Although the concepts are similar in
both cloud and on-premises deployments, there are new technologies and cloud serv‐
ices that improve security and make the job easier.

In the whole identity and access life cycle, it is easy to forget about the request, appro‐
val, and revalidation steps. Although they can be performed manually, many as-a-
service offerings that initially handled only the authentication and authorization steps
now provide workflows for the approval step as well, and this trend is accelerating.

Centralized authentication systems give administrators and end users a single identity
to be used across many different applications and services. While these have been
around in different forms for a long time, they are even more necessary in cloud envi‐
ronments, where they are available by default. Given the proliferation of cloud sys‐
tems and services, managing identities individually for each system and service can
quickly become a nightmare in all but the smallest deployments. Old, forgotten iden‐
tities may be used by their former owners or by attackers looking for an easy way in.
Even with centralized authentication, you must still use good passwords and multi-
factor authentication. Cloud administrators and end users often authenticate via dif‐
ferent systems.

As with the authentication systems, centralized authorization systems allow you to
see and modify everything an entity is authorized to do in one place. This can make
granting and revalidating access easier, and make separation of duties conflicts more
obvious. Make sure you follow the principles of least privilege and separation of
duties when authorizing both people and automation for tasks, and avoid having
super-powered identities and credentials for daily use.

Conclusion | 87

Secrets management is a quickly maturing field, where secrets used for system-to-
system access are maintained separately from other configuration data and handled
according to strict principles of confidentiality and auditing. In some cases, system-
to-system authentication can be performed using identity documents, which can
reduce the need to have separately maintained secrets. Secrets management capabili‐
ties are available in existing configuration management products, standalone secrets
server products, and as-a-service cloud offerings.

Now that you understand how to avoid one of the biggest causes of breaches—insuf‐
ficient identity and access management—let’s look at one of the other biggest causes,
insufficient vulnerability management.

88 | Chapter 4: Identity and Access Management

Exercises
1. What steps are commonly used in an access management life cycle? Select all that

apply.
a. Request access
b. Approve access
c. Use access
d. Revalidate access

2. Which of the following statements about authentication is true?
a. Authentication is about proving that you are who you say you are.
b. Authentication is all you need to access an application.
c. API keys can be used for multi-factor authentication.
d. Authentication is not required for internal communications.

3. Which of the following statements about authorization are true? Select all that
apply.
a. Authorization is about being allowed to access a particular application or take

a particular action.
b. Unless everyone is authorized for a particular action, authorization is only

useful when combined with authentication.
c. Authorization can be effective when either centralized or decentralized.

4. Which of the following are true statements about cloud identity services? Select
all that apply.
a. A cloud identity service usually provides a central service that can authenti‐

cate users.
b. A cloud identity service usually provides a central service that can authorize

users.
c. A cloud identity service usually provides a central service for storing secrets.
d. Cloud identity services come in multiple forms, such as business-to-consumer

and business-to-employee.

Exercises | 89

5. Which of the following statements about federation and single sign-on are true?
Select all that apply.
a. Federation and single sign-on are different technologies that accomplish simi‐

lar goals.
b. Federated identity is the concept of linking identities together on two different

systems.
c. Single sign-on is a way to use federated identities.
d. Single sign-on is easier for users, but often comes with a trade-off of lower

security.

90 | Chapter 4: Identity and Access Management

1 Perhaps one that included wearing boots.

CHAPTER 5

Vulnerability Management

In Greek mythology, Achilles was killed by an arrow to his only weak spot—his heel.
Achilles clearly needed a better vulnerability management plan!1 Unlike Achilles, who
had only one vulnerable area, your cloud environments will have many different
areas where vulnerabilities can appear. After locking down access control, setting up a
continuous process for managing potential vulnerabilities is usually the best invest‐
ment in focus, time, and money that you can make to improve security.

There is considerable overlap between vulnerability management and patch manage‐
ment. For many organizations, the most important reason to install patches is to fix
vulnerabilities rather than to fix functional bugs or add features. There is also consid‐
erable overlap between vulnerability management and configuration management,
since incorrect configurations can often lead to vulnerabilities, even if you’ve dutifully
installed all security patches. There are sometimes different tools and processes for
managing vulnerabilities, configuration, and patches, but in the interests of practical‐
ity, we’ll cover them all together in this chapter.

Unfortunately, vulnerability management is rarely as easy as turning on automatic
patching and walking away. In cloud environments, vulnerabilities may be found in
many different layers, including the physical facilities, the compute hardware, the
operating system, code you’ve written, and libraries you’ve included. The cloud
shared responsibility model described in Chapter 1 can help you understand where
your cloud provider is responsible for vulnerabilities, and the contents of this chapter
will help you manage your responsibilities. In most cases, you’ll need several different
tools and processes to deal with different types of vulnerabilities.

91

Vulnerability Versus Patch Management
The terms “vulnerability management” and “patch management” are often used inter‐
changeably, but they are different. Software patches often fix functional issues in addi‐
tion to security vulnerabilities, and not all vulnerabilities are fixed by applying
patches. For example, your vulnerability management process might identify insecure
configurations that are fixed without patching, or it might mitigate a vulnerability by
turning off a feature rather than applying a patch.

Differences from Traditional IT
The rate of change is often much higher in cloud environments compared to on-
premises, and these constant changes can leave traditional vulnerability management
processes in the dust. As discussed in Chapter 3, you must use inventory from cloud
APIs to feed each system into your vulnerability management tools as it is created, to
avoid missing new systems as they come online.

In addition to the rate of change, popular contemporary hosting models such as con‐
tainers and serverless hosts change the way that you do vulnerability management,
because existing tools either aren’t applicable or aren’t efficient. If you have a lot of
containers, you cannot put a heavyweight vulnerability management tool that uses a
few percent of your CPU in every container, like you would in virtual machines. You’d
likely end up running hundreds of copies of the agent on the system and have no
CPU time left for the real work!

Plus, even though continuous integration (CI), continuous delivery (CD), and micro‐
service architectures are separate from cloud computing, they often happen along
with cloud adoption. Adoption of these techniques can also radically change vulnera‐
bility management.

For example, a traditional vulnerability management process might look something
like this:

1. Discover that security updates or configuration changes are available.
2. Prioritize which updates need to be implemented based on the risk of security

incidents.
3. Test that the updates work, in a test environment.
4. Schedule the updates for a production environment.
5. Deploy the updates to production.
6. Verify that production still works.

92 | Chapter 5: Vulnerability Management

2 For example, all major cloud providers can be used with HashiCorp Terraform, and AWS also has its propriet‐
ary CloudFormation.

3 A blue/green deployment is where you have old (blue) and new (green) versions of an application running at
the same time. You move traffic a little at a time from the blue version to the green version, so that any issues
with the new version don’t impact all of your customers at once and you can quickly move everyone back to
blue if something is wrong with the new version.

4 One of the barriers to vulnerability scanning is that if you actually find a vulnerability, sometimes the scan will
crash the affected component. Sure, you found a problem, but at the cost of incurring downtime! The risk of
an outage is much lower if the scan can only crash one of the instances of the application at a time.

This type of process is reasonably designed to balance the risk of a security incident
against the risk of an availability incident in production environments. As I often like
to tell people, security is easy—just turn everything off and bury it in concrete. Secur‐
ing environments while keeping them running and usable is much more difficult.

However, in our brave new world of cloud computing, infrastructure as code, CI/CD,
and microservice architectures, we have options for reducing the risk of an availabil‐
ity incident and changing the balance:

• Cloud offerings and infrastructure as code allow the definition of the environ‐
ment to be part of the code.2 This allows a new environment and new code to be
tested together, rather than combining the environment and the code at the end
when you install on an existing machine. In addition, because you can create a
new production environment for each deployment and switch back to (or re-
create) the old one easily if needed, you can reduce the risk of getting into a state
where you cannot roll back quickly. This is similar to “blue/green” deployments
in traditional environments,3 but with the cloud you don’t need to pay for the
“green” environment all the time, so infrastructure as code can be used even for
smaller, lower-budget applications.

• Continuous integration and continuous delivery allow smaller changes to be
deployed to production on each iteration. Smaller changes reduce the risk of
catastrophic failures and make troubleshooting easier for problems that do arise.

• Microservice architectures can decouple services, so that changes in one micro‐
service are less likely to have undesired side effects in other microservices. This is
especially true in container-based microservice environments, because each con‐
tainer is isolated from the others.

• Microservice architectures also tend to scale horizontally, where the application
is deployed across more machines and containers as needed to handle the load.
This also means that changes can be rolled out in phases across the environment,
and bugs that got missed in testing or potentially disruptive scans4 will take down
only some of the capacity of the application.

Differences from Traditional IT | 93

Each of these items swings the balance toward higher availability, which means that
security updates can be more proactive while still raising the overall availability of the
system. This in turn reduces your overall risk. The new vulnerability management
process looks like this:

1. Automatically pull available security updates as part of normal development
efforts. For example, this might include updated code libraries or updated operat‐
ing system components. Note that if you’re doing this regularly, the changes will
tend to be smaller and easier to digest.

2. Test the updates along with other application changes as part of the normal appli‐
cation test flow for a deployment. Only if you find a problem at this stage do you
need to step back to evaluate whether the updates need to be included.

3. Deploy the new version, which automatically creates a new production environ‐
ment that includes code changes, security updates, and potentially updates to the
configuration. In many cases, this new deployment will only get a small subset of
the production traffic initially, so that if there is an issue it will only affect a small
subset of the users before being rolled back.

4. Discover and address any additional vulnerabilities in test or production environ‐
ments that aren’t covered as part of the normal delivery process, add them as
bugs to the development backlog, and address them in the next iteration (or as a
special release if really urgent).

You still have some manual vulnerability management work to do in step 4, but far
less than in the standard process. As you’ll see in this chapter, there are many types of
vulnerabilities, but this high-level process will work for most.

Vulnerable Areas
What types of vulnerabilities do you have to worry about? Imagine that your applica‐
tion is part of a stack of components, with the application on top and physical com‐
puters and facilities at the bottom. We’ll start at the top of the stack and work
downward. There are many different ways to categorize the items in the stack, but
we’ll use the shared responsibility model diagram from Chapter 1 (see Figure 5-1).

Let’s look at each layer of this diagram in more detail from the perspective of vulnera‐
bility management, starting at the top. Your responsibilities will differ depending on
the delivery model (IaaS, PaaS, or SaaS).

94 | Chapter 5: Vulnerability Management

Figure 5-1. Cloud shared responsibility model

Data Access
Consumer responsibility for IaaS, PaaS, and SaaS

Deciding how to grant access to the data in the application or service is almost always
the customer’s responsibility in a cloud environment. Vulnerabilities at the data
access layer almost always boil down to access management problems, such as leaving
resources open to the public, leaving access intact for individuals who no longer need
it, or using poor credentials. These issues were discussed in detail in Chapter 4.

Application
Consumer responsibility for IaaS and PaaS

If you’re using SaaS, the security of the application code will be your provider’s
responsibility, but there may be security-relevant configuration items that you’re
responsible for as a customer. For example, if you’re using a web email system, it will
be up to you to determine and set reasonable configurations such as two-factor
authentication or malware scanning. You also need to track and correct these config‐
urations if they drift from your requirements.

If you’re not using SaaS, you are probably writing some sort of application code,
whether it’s hosted on virtual machines, an aPaaS, or a serverless offering. No matter
how good your team is, your code is almost certainly going to have some bugs, and at
least some of those bugs are likely to impact security. In addition to your own code,
you’re often going to be using frameworks, libraries, and other code provided by
third parties that may contain vulnerabilities. Vulnerabilities or malware in this

Vulnerable Areas | 95

inherited code are often more likely to be exploited by attackers, because the same
basic attack will work across many applications.

Vulnerabilities in popular open source components, such as Log4j,
Apache Struts, and OpenSSL, have led to vulnerabilities in many
applications that use those components. Exploiting these vulnera‐
bilities is much easier for attackers than researching specific
application code, so they tend to be an even higher risk than vul‐
nerabilities in code you’ve written!

The classic example of an application vulnerability is a buffer overflow. However,
many applications are now written in languages that make buffer overflows difficult,
so while these attacks still happen, they don’t make the top of the list any more. Fol‐
lowing are a few examples of application vulnerabilities from the OWASP Top 10 list
for 2021. In each of these examples, access controls, firewalls, and other security
measures are largely ineffective in protecting the system if these vulnerabilities are
present in the application code:

Broken access control
Whereas the Data Access section deals with errors in granting access, this deals
with errors in the application code that actually enforces that access. A very com‐
mon error for web applications is trusting something the browser is telling you,
such as “I have verified that the parameter in this field is safe,” when the browser
is completely under the attacker’s control and can’t be trusted. Cross-site script‐
ing is one example of this class of errors.

Injection attacks
This is when your application gets a piece of untrusted data from a malicious
user and sends it to some sort of interpreter. A classic example is SQL injection,
where the attacker sends information that causes the query to return everything
in the table instead of what was intended.

Vulnerable and outdated components
If you’re using a component in your application and the component has a vulner‐
ability, your application is also likely to be vulnerable. Log4j is the one of the
best-known examples of this, where a vulnerability in a seemingly harmless log‐
ging package allowed anyone to take over an application if they could get the
application to put a particular string into the application logs.

96 | Chapter 5: Vulnerability Management

Secure Software Standards and Frameworks
It can be difficult to know if the components and applications that you’re using con‐
tain accidental vulnerabilities, or even malware that’s been purposefully injected.
There are several industry efforts aimed at helping with this problem.

Standards such as the NIST Secure Software Development Framework (SSDF) are
similar to food safety standards, but for software; they provide requirements for pro‐
ducing secure software. These standards typically tell you what you need to accom‐
plish, but not how to accomplish it.

A Software Bill of Materials (SBOM) is like an ingredients label for software, and can
tell you what went into an application or component. This can make automated scan‐
ning for vulnerabilities in your dependencies much more accurate. Several tools can
now generate and consume SBOMs, and at the time of this writing, there are two
popular SBOM formats, CycloneDX and SPDX. SBOMs are required by some stand‐
ards, including the NIST SSDF, and are likely to be contractually required by organi‐
zations purchasing software in the future.

Security frameworks such as Supply-chain Levels for Software Artifacts (SLSA) pro‐
vide a set of guidelines on how to secure your development and build environments
and digitally sign applications and components. These can tell you how to meet
some of the requirements in the standards, and if you’re consuming components, the
SLSA level can give you an idea of how mature the process for producing each com‐
ponent is.

Note that application-level attacks are possible regardless of how your application is
deployed—on a virtual machine, on an aPaaS, or on a serverless platform. Some tools
discussed in Chapter 6, such as web application firewalls, may be able to act as a
safety net if there is a vulnerability in application code. However, make no mistake—
quickly detecting and fixing vulnerable code and dependencies is your first and most
important line of defense.

Although web application frameworks such as React can be a source of vulnerabilities
you have to manage, they can also help you avoid vulnerabilities in your own code.
Many frameworks have built-in protections against cross-site scripting (XSS), cross-
site request forgery (CSRF), SQL injection (SQLi), clickjacking, and other types of
attacks. Understanding the protections offered by your framework and using them
can easily enable you to avoid some of these issues.

Vulnerable Areas | 97

https://oreil.ly/HFyDp
https://cyclonedx.org
https://spdx.dev
https://slsa.dev

Middleware
Consumer responsibility for IaaS and some PaaS

In many cases, your application code uses middleware or platform components, such
as databases, application servers, or message queues. Just as with dependent frame‐
works or libraries, vulnerabilities here can cause you big problems because they’re
attractive to attackers—the attacker can exploit that same vulnerability across many
different applications, often without having to understand the applications at all.

If you’re running these components yourself, you’ll need to watch for updates, test
them, and apply them. These components might be running directly on your virtual
machines, or they might be inside containers you’ve deployed. Note that tools that
work for inventorying what’s installed on virtual machines will usually not find items
installed in containers.

If the components are provided as a service by your cloud provider, your provider
will usually have the responsibility for patching. However, there’s a catch! In some
cases, the updates won’t be pushed to you automatically, because they could cause an
outage. In those cases, you may still be responsible for testing and then pushing the
button to deploy the updates at a convenient time.

In addition to applying patches, you also need to worry about how middleware is
configured, even in a PaaS environment. Here are some real-world examples of mid‐
dleware/platform configuration issues that can lead to a security incident or breach:

• A web server is accidentally configured to allow viewing of the password file.
• A database is not configured for the correct type of authentication, allowing any‐

one to act as a database manager.
• A Java application server is configured to provide debug output, which reveals a

password when a bug is encountered.

For each component you use, you need to examine the configuration settings avail‐
able and make a list of security-relevant settings and what the correct values are.
These should be enforced when the component is initially brought into service and
then checked regularly afterward to make sure they’re all still set correctly and pre‐
vent “configuration drift.” This kind of manual monitoring is often called benchmark‐
ing, health checking, or simply configuration management.

98 | Chapter 5: Vulnerability Management

5 In 2003, Microsoft decided to collect all of the patches from the previous month and release them on the sec‐
ond Tuesday of the month, and many other companies followed suit. The rumor is that Tuesdays were chosen
because they give plenty of time to avoid ruining the weekend, and Mondays are already bad enough.

While you can certainly write benchmarks or configuration specifi‐
cations from scratch, I recommend starting with a common set of
best practices, such as the Center for Internet Security’s CIS Bench‐
marks. You can tailor these for your organization and deployments,
and even contribute a change if you find a problem or want to sug‐
gest an enhancement. Because the benchmarks are a community-
based effort, you’re more likely to benefit from up-to-date
configuration checks that take into account new threats and new
versions of platform products and operating systems. Several popu‐
lar products can perform the CIS Benchmarks checks out of the
box.

Operating System
Consumer responsibility for IaaS

Operating system patches are what many people think of when they think of vulnera‐
bility management. It’s Patch Tuesday,5 time to test the patches and roll them out! But
while operating system patches are an important part of vulnerability management,
they’re not the only consideration.

Just as with the middleware/platform layer of the stack, you must make sure the con‐
figuration is correct in addition to patching. You can do this by having benchmarks
for the OS configurations that are set when deploying the operating system instance
and then checked regularly afterward.

In addition, operating systems tend to ship with a lot of different components that are
not needed in your environment. Leaving these components in a running instance
can be a big source of vulnerabilities, either from bugs or misconfiguration, so it’s
important to turn off anything that’s not required. This is often referred to as harden‐
ing. One advantage with containers is that you often start with a minimal container
image and only install what you need for the application to run in the container, a
process that hardens the container by default.

Many cloud providers have a catalog of virtual machine images that are automatically
kept up to date, so that you should get a reasonably up-to-date system when deploy‐
ing. However, if the cloud provider doesn’t automatically apply patches upon deploy‐
ment, you should do so as part of your deployment process.

Vulnerable Areas | 99

https://oreil.ly/BNjmr
https://oreil.ly/BNjmr

An operating system typically consists of a kernel, which runs all other programs,
along with many different userspace programs. Many containers also contain the
userspace portions of the operating system, and so operating system vulnerability
management and configuration management also factor into container security.

In most cases, the cloud provider is responsible for the hypervisors. However, if
you’re responsible for any hypervisors, they’re also included in this category because
they’re essentially special-purpose operating systems designed to hold other operating
systems. Hypervisors are typically already hardened, but they do still require regular
patching and have configuration settings that need to be benchmarked and set cor‐
rectly for your environment.

Network
Consumer responsibility for IaaS

Vulnerability management at the network layer involves two main tasks: managing
the network components themselves and managing which network communications
are allowed.

The network components themselves, such as routers, firewalls, and switches, typi‐
cally require patch management and security configuration management similar to
operating systems, but often through different tools.

Managing the security of the network flows going through those devices is discussed
in detail in Chapter 6.

Virtualized Infrastructure
Provider responsibility

In an Infrastructure-as-a-Service environment, the virtualized infrastructure (virtual
network, virtual machines, storage) will be the responsibility of your cloud provider.
However, in a container-based environment, you may have security responsibility for
the virtualized infrastructure or platform on top of the one offered by the cloud pro‐
vider. For example, vulnerabilities may be caused by misconfiguration or missing
patches of the container runtime, such as Docker, or the orchestration layer, such as
Kubernetes.

Physical Infrastructure
Provider responsibility

In most cases, physical infrastructure will be the responsibility of your cloud pro‐
vider. There are a few cases where you may be responsible for configuration or vul‐
nerability management at the physical level, however. If you are running a private
cloud, or if you get bare-metal systems provisioned as a service, you may have some

100 | Chapter 5: Vulnerability Management

physical infrastructure responsibilities. For example, vulnerabilities can be caused by
missing BIOS/microcode updates or poor security configuration of the baseboard
management controller that allows remote management of the physical system.

Finding and Fixing Vulnerabilities
Now that you’re armed with an understanding of all of the places vulnerabilities
might be hiding, you need to identify which types of vulnerabilities are most likely to
be a problem in your environment. As I’ve repeated several times in this book, go for
the biggest bang for the buck first—pick the most important area for your organiza‐
tion, and get value from it before moving on to other areas. A common pitfall is hav‐
ing four or five different sets of tools and processes in place just so you can check off
some boxes on a list of best practices somewhere, none of which are actually provid‐
ing a lot of value in finding and fixing vulnerabilities.

If you recall the asset management pipeline discussed in Chapter 3, this is the part
where we put our fancy tools into the pipeline (Figure 5-2) to make sure we know
about and deal appropriately with our risks.

Figure 5-2. Sample asset management pipeline

In Chapter 3, we were concerned with the left half of the diagram—watching pro‐
curement to find out about shadow IT and making sure we inventoried the assets
from all the different cloud providers. Here, the goal is to plug the leaks shown on the
right half of the diagram. For example, this is where we can minimize our “tooling”

Finding and Fixing Vulnerabilities | 101

leaks (which result from not protecting known assets) as well as our “findings” leaks
(which result from not properly dealing with known findings).

First, look at the tooling leaks area of the figure. Imagine the sizes of the pipes in your
environment as being determined by a combination of how many problems you
might find in these areas, as well as how critical to the business those problems might
be. I’ve found that when I imagine this, I sometimes realize that there is a lot of water
gushing out in a particular area, either because there’s no tool in that area or because
the tool doesn’t have visibility to a lot of assets. This can lead to a lot of unknown risk!

For example, if your environment contains a lot of Windows systems with critical
data, fixing leaks in your antivirus pipeline might be near the top of your list. On the
other hand, if you have mostly web applications running on Linux, an aPaaS, or a ser‐
verless platform, you probably want to focus on making sure you find and remediate
web application vulnerabilities first before worrying too much about a small number
of Windows systems that have less-critical data.

Next, look at the findings leaks area of the figure. This time, imagine that the sizes of
the pipes are determined by the number of findings coming out of each tool and how
critical those findings might be. You may realize that you have tools from which
you’re ignoring a lot of important output, and you’re therefore creating a lot of
unknown risk.

There are many, many different types of tools, which overlap a lot in the vulnerabili‐
ties they search for. Some of the tools have been used in traditional environments for
years, and others are newly introduced by cloud environments. The following are
explanations of the different categories of vulnerability and configuration manage‐
ment tools, but note that many products will address more than one of these
categories.

Network Vulnerability Scanners
Alongside operating system patches, network vulnerability scans are the other best-
known piece of vulnerability management. This is for a good reason—they’re very
good at finding some types of vulnerabilities—but it’s important to understand their
limitations.

Network vulnerability scanners don’t look at software components. They simply
make network requests, try to figure out what’s listening, and check for vulnerable
versions of server applications or vulnerable configurations. As an example, a net‐
work vulnerability scanner could determine that one of the services on a system is
allowing insecure connections, which would make the system vulnerable to a POO‐
DLE attack, based on the information in an SSL/TLS handshake. The scanner can’t
know, however, about the different web applications or REST APIs served up on that

102 | Chapter 5: Vulnerability Management

https://oreil.ly/DDsB4
https://oreil.ly/DDsB4

network address, nor can it see components such as library versions inside the
system.

Obviously, network vulnerability scanners cannot scan the entire internet, or your
entire cloud provider, and magically know which systems are your responsibility. You
have to provide these tools with lists of network addresses to scan, and if you’ve
missed any addresses, you’re going to have vulnerabilities you don’t know about. This
is where the automated inventory management discussed in Chapter 3 is vital.
Because many cloud components are open to the internet, and because attackers can
exploit vulnerabilities that they discover in common components very quickly, your
cycle time for inventorying internet-facing components, scanning them, and fixing
any findings needs to be as fast as possible.

In addition, don’t make the mistake of thinking network vulnerability scans are
unnecessary just because you have isolated components, which will be described in
Chapter 6. There is often a debate between network teams and vulnerability scanning
teams on whether to poke holes in the firewall to allow the vulnerability scanner into
a restricted area. I maintain that the risk of having an unknown vulnerability is much
higher than the risk that an attacker will leverage those specific firewall rules to get
into the restricted area, so vulnerability scanners should be allowed to scan every
component, even if it means weakening the perimeter network controls very slightly.
I have seen many incidents where an attacker got behind the perimeter and exploited
a vulnerable system there. In contrast, although it has probably happened some‐
where, I have not personally seen or heard of any incidents where the attacker took
over the scanner and used its network access to attack systems.

Network vulnerabilities found on a segment of a protected virtual private cloud net‐
work have a lower priority than vulnerabilities on a component directly exposed to
the internet, but you should still discover them and fix them. Attackers have a very
inconvenient habit of ending up in parts of the network where they’re not supposed
to be.

Depending on how your deployment pipeline works, you should incorporate a net‐
work vulnerability scan of the test environment into the deployment process where
possible. Any findings in the test environment should feed into a bug tracker, and if
not marked as a false positives, they should ideally block the deployment.

There are several cloud-based network vulnerability scanners that you can purchase
and run as a service, without purchasing any infrastructure. However, you may need
to create relay systems or containers inside your network for scanning areas that are
not open to the internet.

Finding and Fixing Vulnerabilities | 103

Network-based tools can find vulnerabilities without knowing what
processes they’re talking to; they just see what process answers on
different TCP/UDP ports on a given IP address. They’re very useful
because they see the same things an external attacker will see. How‐
ever, this can also generate false positives, because the tool will often
use the reported version of a component, which may not be correct
or may not indicate that security patches have been installed. You
must have a well-documented, effective process for masking false
positives, or you run the risk of teams ignoring all of the scan results
because some of them are incorrect.

Agentless Scanners and Configuration Management Systems
If network vulnerability scanners bang on the doors and windows of the house,
agentless scanners and configuration management systems come inside the house
and poke around. Agentless scanners also connect over the network, but use creden‐
tials to get into the systems being tested. The term “agentless” distinguishes these
scanners from the ones described in the next section, which require an “agent” to run
on each target system. In some cases, one tool may perform both network scans and
agentless/agent scans.

When using agentless scanners, remember the least privilege principle and give the
scanner credentials with the minimum permissions needed to perform the scan.
Unfortunately, many scanners need full administrative privileges to function, but this
is beginning to change, and some scanners have a “least privilege” option.

Agentless scanners can find vulnerabilities that network vulnerability scanners can’t.
For example, if you have a local privilege escalation vulnerability that allows a normal
user to take over the entire system, a network vulnerability scanner won’t have the
“normal user” privileges needed to see it, but an agentless scanner does.

Agentless scanners often perform both missing patch detection and security configu‐
ration management, as the following examples show:

• The agentless scanner may run package manager commands to check that
installed software is up to date and has important security fixes. For instance,
some versions of the Linux kernel or C libraries have problems that allow some‐
one without root privileges to become root; these problems can be detected by
up-to-date scanners.

• The agentless scanner may check that security configurations are correct and
meet policy requirements. For example, the system may be configured to allow
Telnet connections (which could allow someone snooping on the network to see
passwords, and therefore should be prohibited by policy); the scanner should
detect that Telnet is enabled and flag an alert.

104 | Chapter 5: Vulnerability Management

In some cases, these tools can actually fix misconfigurations or vulnerable packages
in addition to just detecting the problems. But as mentioned earlier, such automated
fixes can disrupt availability if they introduce new problems or don’t match your
environment’s requirements. Where possible, it’s preferable to roll out an entirely new
system that doesn’t have the vulnerability rather than trying to fix it in place.

With all of this capability, why would you need both an agentless scanner and a net‐
work vulnerability scanner? Although there’s a lot of overlap, agentless scanners fun‐
damentally have to understand the system they’re looking at, which means that they
don’t function well on operating system versions, software, or other items they don’t
recognize. The fact that network vulnerability scanners are “dumber” and only bang
on network addresses is actually a strength in some cases, because they can find issues
with anything on the network—even devices that allow no logins, such as network
appliances, IoT devices, or containers.

Agent-Based Scanners and Configuration Management Systems
Agent-based scanners and configuration management systems generally perform the
same types of checks as agentless scanners. However, rather than having a central
“pull” model, where a controller system reaches out to each system to be scanned and
pulls the results in, agent-based scanners install a small component on each system—
the agent—that “pushes” results to the controller.

There are both benefits and drawbacks to this approach, described in the following
subsections.

Credentials
Agent-based scanners eliminate one source of risk inherent to agentless scanners by
making it the problem of whoever or whatever is deploying the agents in the first
place.

As mentioned in the previous section, agentless scanners must have credentials for all
the systems they scan—and usually privileged credentials—in order to perform their
scans. Although the risk of granting those credentials is generally much less than the
risk of unknown vulnerabilities in your environment, it does make the agentless scan‐
ner a really attractive target for attackers. In contrast, agent-based scanners require
privileges to deploy initially, but the scanner console just receives reports from the
agents and has only whatever privileges the agent permits the console to use (which
may still be full privileged access).

Deployment
Agents have to be deployed and kept up to date, and a vulnerability in the agent can
put your entire infrastructure at risk. However, a well-designed agent in a “read-only”
mode may be able to mitigate much of the impact of an attacker taking over the

Finding and Fixing Vulnerabilities | 105

scanner console; the attacker will still get a wealth of vulnerability information but
may not get privileged access on all systems.

Agentless scanners don’t require you to deploy any code, but you often have to con‐
figure the target systems in order to provide access to the scanner. For example, you
may need to create a user ID and provide that user ID with a certain level of sudo
privileged access.

Network
Agentless scanners must have inbound network access in order to work. As previ‐
ously mentioned, allowing this network access can increase the risk to your environ‐
ment. Most tools also have the option of deploying a relay system inside your
network that makes an outbound connection and allows control via that connection,
but the relay system is another system that requires management.

Agent-based systems can make only outbound connections, without allowing any
inbound connections. Outbound connections still have some risk, but it’s often lower
than the risk associated with inbound connections.

Least privilege
With both agentless and agent-based scanners, you can follow the principle of least
privilege by allowing only the necessary privileges to the user ID that is used by the
scanner or agent. However, some operating systems offer additional ways to limit
what running processes are able to do, such as SELinux or AppArmor on Linux sys‐
tems. These can be difficult to apply effectively, but tend to work better to limit what
agents can do rather than individual scanner users.

Choosing an agent-based or agentless scanner
Some tools can perform checks using either an agent model or an agentless model.
Which is best? Ultimately, there’s no right answer for all deployments, but it’s impor‐
tant to understand the benefits and drawbacks of each when making a decision. I
typically favor an agent-based model, but there are good arguments for both sides,
and the most important thing is that you address configuration and vulnerability
management.

Several cloud providers offer agent-based scanners in their support
for your cloud environment. These can be simpler to automatically
deploy, and you won’t have to manually pull a list of assets from
your cloud provider and feed them into the scanner.

106 | Chapter 5: Vulnerability Management

Cloud Workload Protection Platforms
Tools in the cloud workload protection platform category are offered by both cloud
providers and third parties. They usually gather configuration and vulnerability man‐
agement information via agents or agentless methods, via the deployment pipeline, or
from a third-party tool. They’re typically marketed by the providers as a “one-stop
dashboard” for multiple security functions, including access management, configura‐
tion management, and vulnerability management throughout the development and
deployment phases.

These tools may also offer the ability to manage infrastructure or applications not
hosted by the cloud provider—either on-premises or hosted by a different cloud
provider—as an incentive to use them for your entire infrastructure. They’re some‐
times also called cloud native application protection platforms (CNAPPs).

Container Scanners
Traditional agentless and agent-based scanners work well for virtual machines, but
often don’t work well in container environments. Containers are intended to be very
lightweight processes, and deploying an agent designed for a virtual machine envi‐
ronment in each container can lead to crippling performance and scalability issues.
Also, if used correctly containers usually don’t allow a traditional network login,
meaning that agentless scanners designed for virtual machines will fail.

Two approaches are popular as of this writing. The first approach is to use scanners
that pull apart the container images and look through them for vulnerabilities. If an
image is rated as vulnerable, you know to avoid deploying new containers based on it
and to replace any existing containers deployed from it. This has the benefit of not
requiring any access to the production systems, but the drawback is that once you
identify a vulnerable image, you must have good enough inventory information
about all of your running containers to ensure you replace all of the vulnerable ones.

In addition, if your containers are mutable (change over time), additional vulnerabili‐
ties may have been introduced that scanning the source image won’t reveal. For this
reason and others, I recommend the use of immutable containers that are replaced by
a new container whenever any change is needed. Regularly replacing containers can
also help keep threat actors from persisting in your network, because even if they
compromise a container, it will be wiped out in a week or so—and the new container
will hopefully have a fix for the issue that led to the compromise.

The second approach is to concentrate on the running containers, using an agent on
each container host that scans the containers on that system and reports which con‐
tainers are vulnerable so that they may be fixed (or preferably, replaced). The benefit
is that, if the agent is deployed everywhere, you cannot end up with “forgotten” con‐
tainers that are still running a vulnerable image after you have created a new image

Finding and Fixing Vulnerabilities | 107

with the fix. The primary downside, of course, is that you must have an agent on each
host. This can potentially be a performance concern, and may not be supported by
your provider if you’re using a Container-as-a-Service offering.

These approaches are not mutually exclusive, and some tools use both. If you’re using
containers, or planning to use containers soon, make sure you have a way to scan for
vulnerabilities in the images and/or running containers and feed the results into an
issue tracking system.

Dynamic Application Scanners (DAST)
Network vulnerability scanners run against network addresses, but dynamic web
application vulnerability scanners run against specific URLs of running web applica‐
tions or REST APIs. Dynamic application security testing (DAST) tools can find issues
such as cross-site scripting or SQL injection vulnerabilities by using the application
or API like a user would. These scanners often require application credentials.

Some of the vulnerabilities found by dynamic scanners can also be blocked by web
application firewalls (WAFs), as discussed in Chapter 6. That may allow you to put a
lower priority on fixing the issues, but you should fix them fairly quickly anyway to
offer security in depth. If the application systems aren’t configured properly, an
attacker might bypass the WAF and attack the application directly.

Dynamic scanners can generally be invoked automatically on a schedule, so that they
can flag new known vulnerabilities that have been discovered. They can also be incor‐
porated into a continuous deployment pipeline to run when changes are made to the
application. DAST tools should feed their results into an issue tracking system rather
than depending on someone to remember to check the report.

Static Application Scanners (SAST)
Whereas dynamic application scanners look at the running application, static applica‐
tion security testing (SAST) tools look directly at the code you’ve written. For this rea‐
son, they’re a very good candidate for running as part of the deployment pipeline as
soon as new code is committed, to provide immediate feedback. These tools can spot
security-relevant errors such as memory leaks or off-by-one errors that can be very
difficult for humans to see. Because they’re analyzing the source code, you must use a
scanner designed for the language that you’re using. Luckily, scanners have been
developed for a wide range of popular languages, and can be run as a service. The
OWASP Source Code Analysis Tools page is a good resource for finding a tool that
will work for your application.

The biggest problem with static scanners is that they tend to have a high false positive
rate, which can lead to “security fatigue” in developers. If you deploy static code scan‐
ning as part of your deployment pipeline, make sure that it will work with the

108 | Chapter 5: Vulnerability Management

https://oreil.ly/w4vIb

languages you’re using and that developers can quickly and easily mask false positives
so that they aren’t overwhelmed with a lot of useless findings on every scan.

Software Composition Analysis Tools (SCA)
Arguably an extension of static code scanners, software composition analysis (SCA)
tools look primarily at the open source dependencies that you use rather than the
code you’ve written. Most applications today make heavy use of open source compo‐
nents such as frameworks and libraries, and vulnerabilities in those can cause big
problems. SCA tools automatically identify the open source components and versions
you are using, then cross-reference against known vulnerabilities for those versions.
They can help you discover high-risk vulnerabilities in your dependencies, such as
vulnerabilities in Log4j, Apache Struts, or the Spring Framework. Some tools can
automatically propose code changes that use newer versions.

In addition to vulnerability management, some products can look at the licenses the
open source components are using to ensure that you don’t use components with
unfavorable licensing. Some of these tools can also generate a Software Bill of Materi‐
als for your application, similar to an ingredients label for food. Some organizations,
including the US federal government, now require an SBOM for any products that
they purchase. The US government’s guidance is laid out in the Software Supply
Chain Security Guidance document, and it’s likely that other governments and large
organizations will adopt similar guidance in the future.

Interactive Application Scanners (IAST)
Interactive application security testing (IAST) tools do a little bit of both static scan‐
ning and dynamic scanning. They see what the code looks like and watch it from the
inside while it runs. This is done by loading the IAST code alongside the application
code to watch while the application is exercised by functional tests, a dynamic scan‐
ner, or real users. IAST solutions can often be more effective at finding problems and
eliminating false positives than either SAST or DAST solutions.

Just like with static code scanners, the specific language and runtime you’re using
must be supported by the tool. Because this is running along with the application, it
can decrease performance in production environments. With modern application
infrastructure and deployments, that concern can usually be mitigated either by hori‐
zontal scaling or by having the deployment pipeline run the IAST tool in a test envi‐
ronment that mimics a production workload closely.

Runtime Application Self-Protection Scanners (RASP)
Runtime application self-protection (RASP) tools may sound similar to the scanners
described previously, but this is not a scanning technology. RASP solutions, like IAST
solutions, involve an agent deployed alongside your application code, but RASP tools

Finding and Fixing Vulnerabilities | 109

https://oreil.ly/jjqfF
https://oreil.ly/jjqfF

are designed to block attacks rather than just detect vulnerabilities. (Several products
do both—detect vulnerabilities and block attacks—making them both RASP and
IAST solutions.) Like IAST tools, RASP tools can degrade performance in some cases
because more code is running in the production environment.

RASP solutions offer some of the same protection as a distributed WAF, because both
block attacks in production environments. For this reason, RASP and WAF solutions
are discussed in Chapter 6.

Manual Code Reviews
Manual code reviews can be expensive and time-consuming, but they can be better
than application testing tools for finding many types of vulnerabilities. In addition,
having another person explain why a particular piece of code has a vulnerability can
be a more effective way to learn than trying to understand the results from automated
tools.

Code reviews are standard practice in many high-security environments. In many
other environments, they may be used only for sections of code with special signifi‐
cance to security, such as sections implementing encryption or access control.

Penetration Tests
A penetration test (pentest) is performed by someone you’ve engaged to try to get
unauthorized access to your systems and tell you where the vulnerabilities are. It’s
important to note that automated scans of the types discussed earlier are not penetra‐
tion tests, although a pentester may use those scans as a starting point. Larger organi‐
zations may have pentesters on staff, but many organizations contract with an
external supplier.

Penetration tests by an independent third party are required by PCI
DSS and FedRAMP moderate/high standards, and they may be
required for other attestations or certifications.

In pentesting, I recommend that you provide the pentester with information about
the design of the system, but not any secret information such as passwords or API
keys. In some cases, you may also choose to provide more initial access than an out‐
side attacker would start with, either for testing the system’s strength against a mali‐
cious insider or for seeing what would happen if an attacker found vulnerabilities in
the outer defenses.

110 | Chapter 5: Vulnerability Management

https://oreil.ly/r0EtT
https://oreil.ly/r0EtT
https://oreil.ly/o6sL7

You can also choose to point the pentester at the application without any additional
information or to provide only limited information. But providing as much informa‐
tion as possible about the application (other than credentials) is usually more effec‐
tive and a better use of time because the pentesters spend less time on reconnaissance
and more time on finding actual vulnerabilities. Remember that real attackers will
usually have more time to try to break into your system than your pentesters do!

It’s important to note that a pentester will typically find one or two ways into the sys‐
tem, but not all the ways. A pentest with negative or minimal findings gives you some
confidence in the security of your environment. However, if you have a major finding
and you fix that particular vulnerability, you need to keep retesting until you get
acceptable results. Pentesting is typically an expensive way to find vulnerabilities, so if
the pentesters are coming back with results that an automated scan could have found,
you’re probably wasting money and time. Pentesting is often done near the end of the
release cycle, which also means that problems found during pentesting are more
likely to make a release late.

Automated testing often finds potential vulnerabilities, but pentesting (when done
correctly) shows actual, successful exploitation of vulnerabilities in the system.
Because of this, you should prioritize fixing high-severity pentest results above all
other findings other than user reports.

Most cloud service providers require you to get approval prior to
conducting penetration tests of applications hosted on their infra‐
structure or platform. Failure to get approval can be a violation of
the provider’s terms of service and may cause an outage, depending
on the provider’s response to the intrusion.

Penetration Testing and Red/Blue Teaming
A penetration test is typically scoped to a specific target, such as a new application or
service, and is scheduled to occur at a specific time, such as prior to production
deployment. A pentester will often start by using various scanning tools to find
potential vulnerabilities and then will attempt to exploit those vulnerabilities.

A red team will often use many of the same tools as a pentester but is more loosely
engaged to roam around the entire network or organization looking for vulnerabili‐
ties. A blue team is a defensive team and will attempt to detect the red team (as well as
real attackers!). Some organizations also form purple teams, where the red and blue
teams collaborate on fixing issues after they’re found and on creating more effective
defenses.

Finding and Fixing Vulnerabilities | 111

6 Some examples of poor breach handling: Uber has paid over $148 million in a settlement agreement for
attempting to cover up a breach, and LastPass harmed its reputation by attempting to downplay the severity
of an August 2022 security incident.

User Reports
In a perfect world, all bugs and vulnerabilities would be discovered and fixed before
users see them. After you’ve stopped laughing, you need to deal with reports of secu‐
rity vulnerabilities that you receive from your users or bug bounty programs.

This means you need to have a well-defined, fast process to verify whether each
reported vulnerability is real or not, and if so roll out a fix and communicate to the
users. In the case of a bug bounty program, you may have a limited amount of time
before the vulnerability is made public, after which the risk of a malicious attack
increases sharply.

User reports overlap somewhat with incident management processes. In some cases,
external user reports straddle the line between being a helpful report and an extortion
attempt! If your security leaders are not comfortable dealing with end users, public
relations, or legal issues, you may also need to have someone in the process who spe‐
cializes in communications and/or a lawyer to assist the security team in avoiding a
public relations or legal nightmare. There are often multiple concerns at odds with
one another: there’s a desire to say as little as possible to avoid legal liability, and a
desire to communicate transparently to avoid a public relations nightmare, and a
desire to keep things quiet to avoid a breach while the vulnerability is being fixed.
There have been several notable cases where a poor response to a reported vulnerabil‐
ity or breach was much more damaging to an organization than the initial issue!6

Example Tools for Vulnerability and Configuration Management
Most of the tools listed in the previous sections can be integrated into cloud environ‐
ments, and most cloud providers have partnerships with vendors or their own pro‐
prietary vulnerability management tools.

Because so many tools address more than one area, it doesn’t make sense to catego‐
rize them into the areas listed earlier. I’ve put together a list of some representative
solutions in the cloud vulnerability and configuration management space, with a very
brief explanation of each. Some of these tools also provide features for incident detec‐
tion and response (Chapter 7), access management (Chapter 4), inventory and asset
management (Chapter 3), or data asset management (Chapter 2).

I’m not endorsing any of these tools by including them, or snubbing other tools by
excluding them; these are just some examples so that when you get past the initial
marketing blitz by the vendor of whatever solution you’re considering you’ll be able
to recognize, “Oh, this tool claims to cover areas x, y, and z.” I’ve included some tools

112 | Chapter 5: Vulnerability Management

https://oreil.ly/J8gw3
https://oreil.ly/YJHGG

that fit neatly into a single category, some tools that cover many different categories,
and some tools that are specific to popular cloud providers. This is a quickly chang‐
ing space, and different projects and vendors are constantly popping up or adding
new capabilities.

Here’s the list of tools, in alphabetical order:

• Amazon Inspector is an agent-based scanner that can scan for missing patches
and poor configurations on Linux and Windows systems, as well as being a con‐
tainer and serverless scanner.

• Ansible is an agentless automation engine that can be used for almost any task,
including configuration management.

• AWS Config checks the configurations of your AWS resources in detail and keeps
historical records of those configurations. For example, you can check that all of
your security groups restrict SSH access, that all of your Electric Block Store
(EBS) volumes are encrypted, and that all of your Relational Database Service
(RDS) instances are encrypted.

• AWS Systems Manager (SSM) is a security management tool that covers several
areas, including inventory, configuration management, and patch management.
The State Manager component can be used to enforce configurations, and the
Patch Manager component can be used to install patches; both of these functions
are executed by an SSM agent installed on your instances.

• AWS Trusted Advisor performs checks in several areas, including cost, perfor‐
mance, fault tolerance, and security. It can perform some high-level checks in the
area of configuration management for AWS resources, such as whether a proper
IAM password policy is in place or CloudTrail logging is enabled.

• Azure Update Management is agent-based and primarily aimed at managing
operating system security patches, but it can also perform software inventory and
configuration management functions.

• Burp Suite is a dynamic web application scanning suite.
• Chef is an agent-based automation tool that can be used for configuration man‐

agement, and the InSpec project specifically targets configuration related to secu‐
rity and compliance.

• Contrast provides IAST and RASP solutions.
• Google Cloud Security Command Center is a security management tool that can

pull in information from the Google Cloud Security Scanner and other third-
party tools, and also provide inventory management and network anomaly
detection functions.

• Google Cloud Web Security Scanner is a DAST tool for applications hosted on
Google Cloud Platform.

Finding and Fixing Vulnerabilities | 113

https://oreil.ly/2gMY8
https://www.ansible.com
https://oreil.ly/9-Oav
https://oreil.ly/InzKp
https://oreil.ly/O-3Z5
https://oreil.ly/Nf9AX
https://oreil.ly/c7_vr
https://docs.chef.io
https://www.inspec.io
https://www.contrastsecurity.com
https://oreil.ly/LAV66
https://oreil.ly/JIGFs

• IBM Cloud Security and Compliance Center is a security management tool that
can pull in vulnerabilities from IBM Vulnerability Advisor as well as network
anomaly information.

• IBM Vulnerability Advisor scans container images.
• Mend.io, formerly WhiteSource, has several products, including an SCA solu‐

tion.
• Microsoft Defender for Cloud, formerly Azure Security Center, is a security man‐

agement tool that can manage your cloud configuration and integrate with your
code pipeline and system agents to pull in vulnerability information.

• Palo Alto’s Prisma Cloud, formerly Twistlock, can perform configuration and
vulnerability management on container images, running containers, and the
hosts where the containers run.

• Puppet is an agent-based automation tool that can be used for configuration
management.

• Qualys has products that cover many of the categories we’ve discussed, including
network vulnerability scanning, dynamic web application scanning, and others.

• Tenable has a range of products including the Nessus network scanner, agent-
based and agentless Nessus patch and configuration management scanners, and a
container scanner.

Statistically speaking, people are terrible at statistics. When you
evaluate marketing claims, it’s important to use tools that have rea‐
sonable false positive and false negative rates. As an extreme exam‐
ple, if a tool flags everything as a problem, it will catch every one of
the real problems (100% true positive rate), but the false positive
rate will be so high that it’s useless. Similarly, if the tool flags noth‐
ing as a problem, its false positive rate is perfect (0%), but it has
missed everything. Beware of marketing claims that focus on only
one side of the equation!

114 | Chapter 5: Vulnerability Management

https://oreil.ly/N9Gyl
https://oreil.ly/KiA25
https://www.mend.io
https://oreil.ly/VBgly
https://oreil.ly/fq2mQ
https://puppet.com
https://www.qualys.com
https://www.tenable.com

Risk Management Processes
At this point in the process you should understand where the most vulnerable areas
are in your environment and which tools and processes you can use to find and fix
vulnerabilities. Now you need a system to prioritize any vulnerabilities that can’t be
fixed quickly, where “quickly” is usually defined in relation to time periods in your
security policy.

This is where a risk management program comes in, near the end of the pipeline
shown in Figure 5-2. Each vulnerability you find that can’t be addressed within your
accepted guidelines needs to be evaluated as a risk, so that you consciously under‐
stand the likelihood of something bad happening and the impact if it does. In many
cases, you might accept the risk as a cost of doing business. However, the risk evalua‐
tion might lead to additional controls (to reduce the likelihood) or mitigations (to
reduce the impact), such as putting in place some extra detection or prevention tools
or processes. Risk evaluation might also lead to avoidance, such as turning off the sys‐
tem entirely in some cases.

A leak in the pipeline here means you found vulnerabilities but couldn’t fix them
right away, and you also failed to actually understand how bad they could be for your
business. Using an existing framework for evaluating risk, such as NIST 800-30 or
ISO 31000, can be much easier than starting from scratch.

You don’t need a really complicated risk management program to get a lot of value; a
simple risk register with an agreed-upon process for assigning severity to the risks
goes a long way. However, you’re not finished with vulnerability management until
you’ve made a conscious decision about what to do with each unresolved vulnerabil‐
ity. These decisions need to be reevaluated periodically—say, quarterly—in case cir‐
cumstances have changed.

Vulnerability Management Metrics
If you can’t measure how you’re doing with your vulnerability management program,
you generally can’t justify its usefulness or tell if you need to make changes. Metrics
are useful but dangerous things; they help drive continuous improvement and reveal
problems, but they can also lead to silly decisions. Make sure that part of your process
of reviewing metrics and results includes a sanity check on whether there are reason‐
able extenuating factors to a metric going the wrong direction, or whether the metrics
are being manipulated in some way.

Vulnerability Management Metrics | 115

There are many different metrics available for vulnerability management, and many
tools can automatically calculate metrics for you. Metrics can generally be reported by
separate teams or business units. Sometimes a little friendly competition helps moti‐
vate teams, but remember that some teams will naturally have a harder job to keep up
with vulnerability management than others!

Every organization will be different, but here are some metrics that I’ve found useful
in the past.

Tool Coverage
For each tool, what percentage of the in-scope systems is it able to cover? For exam‐
ple, for a dynamic application scanner, what percentage of your web applications does
it test? For a network scanner, what percentage of your cloud IP addresses does it
scan? These metrics can help you spot leaks in your asset and vulnerability manage‐
ment pipeline. These metrics should approach 100% over time if the system scope is
defined properly for each tool.

If you have tools with a really low coverage rate on systems or applications that
should be in scope for them, you’re not getting much out of them. In many cases, you
should either kick off a project to get the coverage percentage up, or retire the tool.

Mean Time to Remediate
It’s often useful to break the mean time to remediate metric down by different severi‐
ties and different environments. For instance, you may track by severity (where you
want to see faster fixes for “critical” items than for “low-severity” items) and break
those out by types of systems (internal or internet-facing). You can then decide
whether these time frames represent an acceptable risk, given your threat model.

Remember that remediation doesn’t always mean installing a patch; it could also be
turning off a feature so that a vulnerability isn’t exploitable. Mitigation through other
means than patch installation should be counted correctly.

Note that this metric can be heavily influenced by external factors. For example, when
the Spectre/Meltdown vulnerabilities hit, patch availability was delayed for many sys‐
tems, which caused mean time to remediate (MTTR) metrics to go up. In that partic‐
ular case, the delays didn’t indicate a problem with the organization’s vulnerability
management program; it meant that the general computing environment had been
hit by a severe vulnerability.

116 | Chapter 5: Vulnerability Management

Systems/Applications with Open Vulnerabilities
The systems/applications with open vulnerabilities metric is usually expressed as a
percentage, since the absolute number will tend to go up as additional items are
tracked. This metric is often broken down by different system/application classifica‐
tions, such as internal or internet-facing, as well as the severity of the vulnerability
and whether it’s due to a missing patch or an incorrect configuration.

Note that the patch management component of this metric will naturally be cyclical,
because it will balloon as vulnerabilities are announced and shrink as they’re
addressed via normal patch management processes. Similarly, changes to the bench‐
mark may cause the configuration management component of this metric to tem‐
porarily balloon until the systems have been configured to match the new
benchmark.

Some organizations measure the absolute number of vulnerabilities, rather than sys‐
tems or applications that have at least one vulnerability. In most cases, measuring the
number of vulnerable systems or applications is more useful than measuring the
absolute number of vulnerabilities. A system that has one critical vulnerability poses
about the same risk as a system with five critical vulnerabilities—either can be com‐
promised quickly. In addition, the absolute number of vulnerabilities often isn’t much
of an indication of the effort required to resolve all issues, which would be useful for
prioritization. You might resolve hundreds of vulnerabilities in a few minutes on a
Linux system with a command like yum -y update; shutdown -r now.

Variations of this metric can also be used to derive additional metrics around overall
risk and effectiveness. For example, this metric may be subdivided into “systems/
applications with open vulnerabilities that have been risk accepted” and “systems/
applications with open vulnerabilities that exceed policy timeline and have not been
risk accepted” to give you an indication of whether you’re accepting too much risk or
whether you’re able to patch quickly enough.

Percentage of False Positives
The percentage of false positives metric can help you understand how well your tools
are doing, and how much administrative burden is being placed on your teams due to
issues with tooling. As mentioned earlier, with some types of tooling, false positives
are a fact of life. However, a tool with too many false positives may not be useful.

Percentage of False Negatives
It may be useful to track how many vulnerabilities should have been detected by a
given tool or process but were instead found by some other means. A tool or process
with too many false negatives can lead to a false sense of security.

Vulnerability Management Metrics | 117

Vulnerability Recurrence Rate
If you’re seeing vulnerabilities come back after they’ve been remediated, that can indi‐
cate a serious problem with tools or processes.

A Note on Vulnerability Scoring
The first question almost everyone asks about a given vulnerability is, “How bad is
it?” The most commonly accepted standard for “badness” is the Common Vulnerabil‐
ity Scoring System (CVSS). CVSS has been around since 2005, and two major ver‐
sions are in heavy use (v2 and v3). Both versions have their proponents and critics,
but most security professionals agree that the base number you get from either
CVSSv2 or CVSSv3 doesn’t tell the whole story for your environment and your orga‐
nization. It’s important to have some method to adjust CVSS scores for the threat
landscape and your specific environment, either by using CVSS temporal and envi‐
ronmental scores or some other method.

However, this can quickly turn into a game of changing the classification of items to
avoid going overdue. While metrics are useful, it’s important that you don’t lose track
of the real goal, which is to prevent security incidents.

In many cases, we don’t need to think too hard about how bad the vulnerability is.
The default action in cloud environments should be to automatically apply security
patches and run automated tests to see whether they have caused issues. Only if a secu‐
rity patch or configuration change isn’t available, causes problems, or can’t be exe‐
cuted for other reasons should you go through the trouble of manually evaluating
how big of a risk it is to your environment.

Change Management
Many organizations have some sort of change management function. In its simplest
form, change management should ensure that changes are made only after they’re
approved, and that there has been some evaluation of the risk of making a change.

Change management can assist with vulnerability management by making sure that
proposed changes don’t introduce new security vulnerabilities into the system. If
done poorly, change management can also hinder vulnerability management and
increase overall risk by slowing down the changes needed to resolve vulnerabilities.

As discussed earlier in the chapter, some of the new technologies in cloud environ‐
ments may reduce the risk of an overall outage, so that less manual change manage‐
ment is needed to achieve the same level of operational risk. Part of an overall cloud
vulnerability management program may be modifying change management
processes.

118 | Chapter 5: Vulnerability Management

For example, pushing new code along with security fixes to production may be a
business-as-usual activity that’s automatically approved by a change control board,
provided that there’s a demonstrated process for quickly getting back to a good state.
That might be accomplished by pushing another update, rolling back to a previous
version, or turning off application traffic to the new version while the issue is being
worked out. However, larger changes, such as changes to the design of the applica‐
tion, may still need to go through a manual change management process.

Ideally, there should be at least one security practitioner involved with the change
control process, either as a change control board member or as an advisor.

A documented change management process is required for several
industry and regulatory certifications, including SOC 2, ISO 27001,
and PCI DSS.

Putting It All Together in the Sample Application
Remember the really simple three-tier sample application from Chapter 1? It looked
like Figure 5-3.

Figure 5-3. Diagram of a sample application

If you’re in an orchestrated, container-based microservice environment, with test and
production Kubernetes clusters, your sample application may look a bit different.
However, you can still spot the same three main tiers in the middle of the diagram
(Figure 5-4).

Putting It All Together in the Sample Application | 119

Figure 5-4. Diagram of a sample microservice application

For simplicity, the worker nodes that actually run the containers aren’t shown in this
diagram, and only one cluster is pictured rather than separate test and production
clusters. Let’s look at how we might design a vulnerability management process in
this environment. First, consider the roles shown at the top:

1. Before deployment, a pentester tries to break into the system, just like a real
attacker would. This test might be run by an external team that’s contracted to
test this specific system at a given time, an internal red team that roams around
doing unannounced testing of systems, or both.

2. The user will use the application, just as in the previous examples. End users may
report security vulnerabilities in addition to functional bugs.

120 | Chapter 5: Vulnerability Management

3. The admin/developer is a role with both development and operations/adminis‐
tration responsibilities. In your organization, these responsibilities might lie with
a single person or multiple teams, but whoever is filling this role must do the
following:
a. Ensure that the infrastructure and platform components, such as the Kuber‐

netes master and the worker nodes, are up to date.
b. Make code updates. Note that in an infrastructure-as-code environment, these

code updates might also represent changes to the infrastructure, such as new
microservices or modifications to the “firewall” for each microservice to allow
different connections.

c. Push to production and/or switch traffic to the new version of the application.
The process for and decision of when to do this will be organization-specific
but for major deployments should usually include business stakeholders in
addition to IT staff.

4. The code reviewer may be part of a separate team, but is often simply another
developer in the organization. Not every organization uses manual code reviews,
but they can be a good way to spot vulnerabilities in security-critical areas of
code such as authentication or authorization routines.

Second, let’s look at the pipeline to deploy, on the left side of the figure:

1. An admin/developer will commit a change to the codebase, which will trigger the
deployment pipeline automation.

2. A static code scanner will flag problems in your proprietary code, such as accept‐
ing input without validation. A software composition analysis tool will also look
at any open source dependencies to see if there are known vulnerabilities in
them. Ideally, the developer will get almost immediate feedback if an issue is
found, and issues that are severe enough will block deployment of the new code
unless overridden.

3. The automation will start up a copy of the new code in a test environment and
run test cases to verify that the code functions.

4. The automation will invoke a dynamic application tester to find any problems.
Again, ideally the developer will be notified of any issues here, and severe issues
will stop the process.

5. If all tests pass, the code will be deployed as a new instance to production, where
the administrator can choose to direct some or all of the production traffic to the
new instance. If everything works fine, all traffic can be sent to the new instance
and the old instances can be deleted.

Putting It All Together in the Sample Application | 121

7 UDP scanning, like any other UDP communications, is somewhat unreliable by design.

Third, let’s look at the periodic scanning tools on the right side of the figure. These
are needed because the world changes when new vulnerabilities are discovered, even
if the code doesn’t change! For each of these, if a problem is found, a ticket will auto‐
matically be entered as an issue in a tracking repository (shown here as part of the
source code repository), and issues will go through the risk management process if
they stay around for too long:

1. The network vulnerability scanner will test all of the TCP and UDP7 ports on the
IP addresses of the worker nodes that make up the cluster. In a well-configured
cluster, the scanner may only see the HTTPS (tcp/443) ports open, but it may
find problems with those (such as a vulnerable version of a web server or a con‐
figuration allowing weak TLS ciphers). It may also spot NodePorts opened acci‐
dentally that allow traffic in to some other service besides the frontend web
server. For example, perhaps someone accidentally left the database open to the
internet instead of only to the application microservices!

2. The container scanner will look for problems in each running container. Perhaps
the operating system components used by the containers have known vulnerabil‐
ities, such as binary libraries that can’t be detected by the SCA tools.

3. The agent installed on each worker node (virtual machine) in the cluster will
watch to make sure that the operating system components are kept up to date
and that the CIS Benchmarks for that operating system pass.

4. Finally, the IAST agent that’s part of each microservice will open a ticket for
issues found while the code was executing, and the RASP agent will attempt to
block attacks.

There’s a lot going on! Don’t panic, though. This is for educational purposes, and
many smaller environments won’t need all the tools pictured here. Also, many prod‐
ucts perform multiple functions: for example, a single tool might perform static scan‐
ning, dynamic scanning, and IAST/RASP. In a perfect world, all of the vulnerabilities
would funnel into one place to be dealt with, like issues in a code repository, but here
in the real world you may be stuck with multiple tool consoles to check. The impor‐
tant thing is to understand what the different types of tools do and select tools that
address the biggest threats to your application.

Stated more bluntly, just buying a tool and installing it may look good on reports to
management, but you need to actually do something with what the tool is telling you.
Concentrate on finding real issues and creating a good feedback loop back to your
developers and administrators, that you can measure with some useful metrics,
before adding another tool into the mix.

122 | Chapter 5: Vulnerability Management

Conclusion
Vulnerability management, patch management, configuration management, and
change management are separate disciplines in their own right, with separate tooling
and processes. In this chapter, I’ve combined them to quickly cover the most impor‐
tant aspects of each, but there are entire books written on all of these subjects.

Vulnerability management in cloud environments is similar in many ways to on-
premises vulnerability management. However, with cloud computing often comes a
heightened business focus on rapid deployment of new features. This leads to a need
for vulnerability management processes that can keep up with quickly changing
infrastructure.

In addition, the philosophies of immutable infrastructure and continuous delivery
are often adopted along with the cloud, and these can considerably reduce the risk of
an outage due to a change. This alters the balance between operational and security
risk. Because applying security fixes is a change, and you can make changes more
safely, you can afford to roll out security fixes more quickly without risking bringing
the system down. This means that you should usually adopt different vulnerability
management, patch management, and change management processes in cloud envi‐
ronments. In addition, there are both cloud-aware and provider-specific tools that
can make vulnerability management easier than it is on-premises.

After access management, vulnerability management is the most critical process to
get right for cloud environments. Attackers can get unauthorized access to your sys‐
tems through vulnerabilities at many different layers of your application stack. You
need to spend some time understanding the different layers, what your vulnerability
management responsibility is for each of those layers, and where the biggest risks to
your environment are likely to be. You then need to understand the different types of
vulnerability management tools available and which ones address the areas that are
highest risk for you.

Every vendor will try to convince you that their tool will do everything for you. That’s
rarely the case; you’ll usually need at least a few different tools to cover vulnerability
management and configuration management across your cloud environment. Focus
on getting value from each tool you use before throwing more into the mix. For each
tool, you should be able to explain clearly what types of vulnerabilities it will find.
You should also be able to sketch out a pipeline of how the tool gets valid inputs, how
it finds and/or fixes vulnerabilities, how it communicates vulnerabilities back to the
teams who are responsible for fixing them, and how you track the vulnerabilities that
can’t be fixed right away as risks.

In the next chapter, I’ll finally talk about what most people think of first when they
think about cybersecurity: firewalls and network controls.

Conclusion | 123

Exercises
1. What are some common areas where the consumer is responsible for vulnerabili‐

ties in IaaS cloud environments? Select all that apply.
a. Physical attack surface vulnerabilities, such as door locks
b. Missing operating security patches
c. Incorrect middleware configurations, such as database configurations
d. Incorrect application configurations, such as granting access to the wrong

person
2. Which of the following types of tools can discover missing operating system

patches? Select all that apply.
a. Network vulnerability scanners
b. Agentless scanners and configuration management
c. Dynamic application scanners
d. Static application scanners

3. Which of the following types of tools can discover coding errors that you’ve
made in code you maintain? Select all that apply.
a. Agentless scanners and configuration management
b. Container scanners
c. Dynamic application scanners
d. Static application scanners

4. True or false: You can be confident that your cloud environment is reasonably
secure once you have fixed all vulnerabilities found in a network vulnerability
scan.

5. True or false: You can be confident that your cloud environment is reasonably
secure once you have fixed all vulnerabilities found in a penetration test.

6. True or false: You must fix every vulnerability found in order to have an accepta‐
ble level of risk for your cloud environment.

124 | Chapter 5: Vulnerability Management

CHAPTER 6

Network Security

In both traditional and cloud environments, network controls are an important part
of overall security, because they rule out entire hosts or networks as entry points. If
you can’t talk to a component at all, it’s difficult to compromise it. Sometimes net‐
work controls are like the fences around a military base; they make it difficult for
people to approach the base without being detected. At other times they’re like a
goalie that stops the ball after all other defenses have failed.

In this day and age, remaining disconnected from the internet is not an option for
most companies. The network is so fundamental to modern applications that it’s also
almost impossible to tightly control every single communication. This means that
network controls are in many cases secondary controls and are here to help mitigate
the effects of some other problem. If everything else were configured absolutely per‐
fectly—that is, if all of your systems were perfectly patched for vulnerabilities, and all
unnecessary services were turned off, and all services authenticated and authorized
any users or other services perfectly—you could safely have no network controls at
all. However, we don’t live in a perfect world, so it’s really important to make use of
the principle of defense in depth and add a layer of network controls to the controls
we’ve already discussed.

Differences from Traditional IT
Despite cries of “the perimeter is dead!,” for many years, administrators depended
heavily upon the network perimeter for security. Network security was sometimes the
only security that system administrators relied upon. That’s never been a good model
for any environment, traditional or cloud. Fortunately, the new focus on zero trust
has helped bring awareness that firewalls can’t always save you to a larger audience.

125

In an on-premises environment, the perimeters are often easy to define. In the sim‐
plest case, you draw one dotted line (trust zone) around your demilitarized zone
(DMZ; also called the perimeter network) and another dotted line around your inter‐
nal network, and you carefully limit what comes into the DMZ and what comes from
the DMZ into your internal network (more on that in “DMZs” on page 129).

In the cloud, the decision of what’s inside your perimeter, and the implementation of
that perimeter, are often quite different from in an on-premises environment. Your
trust boundaries aren’t as obvious. If you’re making use of a Database as a Service, is
that inside or outside of your perimeter? If you have deployments around the world
for disaster recovery and latency reasons, are those deployments all inside the same
perimeters or different perimeters? In addition, creating these perimeters is no longer
costly when you move to most cloud environments, so you can afford to have sepa‐
rate network segments for every application and use other services, such as web
application firewalls, quickly and easily.

The most confusing thing about network controls in cloud environments is the large
variety of delivery models you can use to build your application. What makes sense is
different for each delivery model. You need to consider what a reasonable network
security model looks like for the following models:

IaaS environments (e.g., bare-metal and virtual machines)
These are the closest to traditional environments, but they can often benefit from
per-application segmentation, which is not feasible in most on-premises
environments.

Orchestrated container-based environments (e.g., Docker and Kubernetes)
If applications are decomposed into microservices, more granular network con‐
trols are possible inside the individual applications.

Application PaaS environments (e.g., Cloud Foundry, Elastic Beanstalk, and Heroku)
These differ in the number of network controls available. Some may allow for
per-component isolation, some may not provide configurable firewall functions
at all, and some may allow the use of firewall functions from the IaaS down.

Platform PaaS environments (e.g., databases)
These are often open to the internet by default but may offer network ingress
controls as an option.

Serverless or Function-as-a-Service environments (e.g., AWS Lambda, OpenWhisk,
Azure Functions, and Google Cloud Functions)

These operate in a shared environment that may not offer network controls, or
offer them only on the frontend.

126 | Chapter 6: Network Security

SaaS environments
While some SaaS offerings provide simple network controls (such as access only
via VPN or from allowlisted IP addresses), many do not.

In addition, many applications use more than one of these service models as part of
the overall solution. For example, you might use both containers and traditional IaaS
in your application, or a mixture of your own code with SaaS. This may mean that
some areas of your application can have better coverage for network controls than
others, so it’s important to keep your overall threat model and biggest risks in mind.

Concepts and Definitions
Although cloud networking brings some new ideas to the table, many traditional
concepts and definitions are still relevant in cloud environments. However, as
described in the following subsections, they may be used in slightly different ways.

Zero Trust Networking
As mentioned in Chapter 1, zero trust is a concept, and not a product or service.
There are many different aspects of zero trust, ranging from verifying end-user devi‐
ces to evaluating context such as user behavior in authorization decisions.

When securing a cloud environment network, the most important part of zero trust is
that you secure communications between resources in your cloud environment—
meaning authentication, authorization, and encryption—even if the communication
takes place entirely inside your perimeter. An example of this is using TLS for all con‐
nections except for “localhost only” communications.

Securing connections is often combined with micro-segmentation, because it is usu‐
ally easier and cheaper to create more network segments in a cloud environment than
in on-premises environments. Micro-segmentation ensures that when you allow net‐
work access from one component to another, you do not allow access to more
resources than necessary. An example of this would be the use of security groups and
small VPC subsets, described later in this chapter, to prevent communications that
aren’t necessary for the application to function.

Allowlists and Denylists
An allowlist (also called a whitelist) is a list of things that are allowed, with everything
else denied. An allowlist may be contrasted with a denylist (also called a blacklist),
which is a specific list of things to deny, while allowing everything else. In general, we
want to be as restrictive as possible without being silly, so we want to use allowlists if
feasible.

Concepts and Definitions | 127

1 To be needlessly pedantic, they should really be named “TCP/UDP allowlists” rather than “IP allowlists” if
they include port information.

IP allowlists are what many people think of as traditional firewall rules. They specify a
source address, a destination address, and a destination port.1 IP allowlists can be
useful for allowing only specific systems even to try to get access to your application.
But because IP addresses are so easy to spoof, they should not be used as the only
method to authenticate systems. That bears repeating: it’s almost never a good idea to
authenticate a system or authorize access solely based on what part of the network the
request comes from, although allowlists can help. Techniques such as API keys or
TLS certificates should be used to authenticate other systems, with IP allowlists play‐
ing a supporting role.

IP allowlists also aren’t good for controlling user access. This is because users have the
irritating habit of moving around on the network. (To some extent, this is also true of
infrastructure in cloud environments, but generally you can at least specify a list of
valid subnets that the requests will come from.) In addition, IP addresses don’t belong
to users, but to the systems they’re using, and network address translation (NAT) fire‐
walls are still ubiquitous enough to make those IP addresses ambiguous. So, IP allow‐
lists don’t authenticate individuals; they provide weak authentication for systems or
local networks in a relatively easy-to-fool way.

In many cloud environments, systems are created and destroyed regularly. For that
reason, IP allowlist source or destination addresses may need a much broader reach
than is customary in on-premises environments. They may even be specified as
0.0.0.0/0 with a specific port (representing any address), which firewall administra‐
tors have traditionally not allowed for most rules. Remember that we are depending
on many other controls besides just IP allowlisting to protect us!

With the rise of content delivery networks and global server load balancers (GSLBs),
IP allowlists are also becoming less useful for some types of filtering (such as controls
on outbound connections) because the network addresses can change rapidly. If you
stick to requiring specific IP addresses for all rules and the CDN’s addresses change
every week, you will end up with a lot of incorrectly blocked connections. That said,
restricting outbound (egress) connections is still one of the best methods to prevent
something malicious that manages to get into your network from “calling home,”
although you may need to use a proxy instead of an IP allowlist.

With those caveats in mind, IP allowlisting remains an important tool for cutting off
network access where it isn’t needed, as long as it isn’t used as the primary defense or
the only method to authenticate systems and users. Zero trust principles in network
communications mean that you will authenticate even those connections coming
from “trusted” areas, but you should still use allowlists where feasible to quickly filter
out attacks that may come from outside of those trusted areas.

128 | Chapter 6: Network Security

DMZs
A DMZ is a concept from traditional network controls that carries over well to many
cloud environments. It’s simply an area at the front of your application into which
you let the least-trusted traffic (such as visitor traffic). In most cases, you’ll place sim‐
pler, less trusted components in the DMZ, such as your proxy, load balancer, or static
content web server. Compromising one of these components should not provide a
large advantage to the attacker.

Your internal components will generally not allow any connections other than from
the DMZ, but will still need to authenticate the connections coming from the DMZ.
A separate DMZ area may not make sense in some cloud environments, or it may
already be provided as part of the service model (particularly in PaaS environments).

Proxies
Proxies are components that receive a request, send the request to some other compo‐
nent to be serviced, and then send the response back to the original requester. In both
cloud and traditional environments, they are often used in one of two models:

Forward proxies
The proxy receives requests from your components and makes outbound
requests on their behalf.

Reverse proxies
The proxy receives requests from your users and relays those requests to your
backend servers.

Proxies can be useful for both functional requirements (to spread different requests
out to different backend servers) and security. Forward proxies are most often used to
put rules on what traffic is allowed out of the network (see “Egress Filtering” on page
152).

Reverse proxies can improve security if there’s a vulnerability in a protocol or in a
particular implementation of a protocol. In that case, the proxy may be compromised,
but it will usually provide an attacker with less access to the network or critical
resources than the actual backend server would.

Reverse proxies also provide a better user experience by giving the end user the
appearance of dealing with a single host. Cloud environments often make even more
use of reverse proxies than traditional environments, because the application func‐
tions may be spread out across multiple backend components. This is particularly
true for microservice-friendly environments, such as Kubernetes, which includes sev‐
eral proxies as part of its core functionality.

Concepts and Definitions | 129

2 If the protocol being proxied is IP, it’s called network address translation and “routing” instead of “proxying,”
but the concept is the same!

Although you can have a proxy for almost any protocol, in practice the term usually
refers to an HTTP/HTTPS proxy.2

Software-Defined Networking
Software-defined networking (SDN) is an often overused term that can apply to many
different virtualized networking technologies. In this context, SDN may be used by
your cloud provider to implement the virtual networks that you use. The networks
you see may actually be encapsulated on top of another network, and the rules for
processing their traffic may be managed centrally instead of at each physical switch or
router.

From your perspective, you can treat the network as if you were using physical
switches and routers, even though the implementation may be a centralized control
plane coordinating many different data plane devices to get traffic from one place to
another.

Network Functions Virtualization
Network functions virtualization (NFV), also called virtual network functions (VNFs),
reflects the idea that you no longer need a dedicated hardware box to perform many
network functions, such as firewalling, routing, or intrusion detection and preven‐
tion. You may use NFV appliances in your design explicitly, and NFV is also how
many cloud providers provide network functions to you as a service. When possible,
you should use the as-a-service functions rather than maintaining your own services.

Overlay Networks and Encapsulation
An overlay network is a virtual network that you create on top of your provider’s net‐
work. Overlay networks are often used to allow your virtual systems to communicate
with each other as if they were on the same network, regardless of the underlying
provider network.

This is most often accomplished by encapsulation, wherein packets between your vir‐
tual systems are put inside packets sent across your provider network (Figure 6-1).
Some common examples of encapsulation methods are Virtual Extensible LAN
(VXLAN), Generic Routing Encapsulation (GRE), and IP in IP.

130 | Chapter 6: Network Security

Figure 6-1. Encapsulating IP packets between systems

For example, if virtual machine A on host 1 wants to talk to virtual machine B on
host 2, it will send out a packet. Host 1 will wrap that packet up in another packet and
send it to host 2, which will unwrap it and hand the original packet to virtual
machine B. From the perspective of the virtual machines, they’re plugged into the
same Ethernet switch and/or IP subnet, even though they may be physically located
across the world from one another.

Virtual Private Clouds
In the older days of IaaS services, all provisioned systems were reachable on the inter‐
net, even if the systems did not require inbound access from the internet. Later, pri‐
vate clouds used the same delivery model as the public cloud, but for systems owned
and operated by a single company instead of being shared among multiple compa‐
nies. Private clouds could be located inside a company’s perimeter, with no access
from outside and no sharing of resources.

Although each cloud provider’s definition may vary, a VPC hardly ever isolates vir‐
tual hosts to the same degree as a true private cloud. Shared resources in cloud IaaS
often include storage, network, and compute resources. A VPC, despite the name,
generally deals only with network isolation, by allowing you to create separate virtual
networks to keep your applications separate from other customers or applications.

Marketing aside, VPCs are the best of both worlds for many companies. With VPCs,
you get the cost and elasticity benefits of a highly shared environment and still have
tight control over which components of your application you expose to the rest of the
world. Cloud IaaS providers usually have other options for compute isolation (such as
dedicated hosts) or storage isolation (such as per-customer encryption). Because pro‐
viders implement VPCs using software-defined networking and overlay networks,
you can stand up very complicated network topologies almost instantly, whereas it
might take a traditional on-premises network team weeks or months to configure the
same thing.

Concepts and Definitions | 131

3 Technically, masquerading is a dynamic form of SNAT where the source address is set to the address of the
interface it’s leaving on, but most people use the terms interchangeably.

While it still makes sense in many cases for the front door of your application to be
on the internet, a VPC allows you to keep the majority of your application in a private
area designed to be unreachable by anyone but you. VPCs can also allow you to keep
your entire application private, accessible only by a VPN or other private link. But
even though VPCs allow you to configure the networking so that only you should
have access, you should still follow zero trust principles and authenticate all incoming
connections.

Network Address Translation
Network address translation was originally designed to combat the shortage of IP
addresses by using the same IP addresses in multiple parts of the internet, and trans‐
lating them to publicly routable addresses before sending them across the internet
(Figure 6-2). Source NAT (SNAT, or masquerading) is changing the source addresses
as packets leave your VPC area.3 Destination NAT (DNAT) is changing the destina‐
tion addresses of packets from the outside as they enter your VPC area so that they go
to particular systems inside the VPC. If you don’t perform DNAT to a system inside
your VPC, then there’s no way for an outside system to reach the inside system.
Although IPv6 (discussed in the following section) will eventually save us from deal‐
ing with NAT, we’re stuck with it for the foreseeable future.

Figure 6-2. Network address translation in and out of a VPC

NAT is used heavily in cloud environments—particularly in VPC environments
where you use private range addresses, defined in RFC 1918, for the systems inside
the VPC. These addresses are easy to spot; they start with “10.,” “192.168.,” or
“172.16.” through “172.31.”. The difference in cloud environments is that you

132 | Chapter 6: Network Security

https://oreil.ly/yo_7x

4 If you think about it, the problem of “we ran out of numbers” is a really silly reason to have to put up with
these headaches.

generally don’t have to manually configure NAT rules in a firewall. In most cases, you
can simply define the rules using the portal or API, and the NAT function will be per‐
formed automatically for you.

A commonly repeated phrase is that “NAT is not security.” That is 100% true, but
practically irrelevant. Performing NAT doesn’t in itself provide any security; you’re
just making a few changes to the IP header as you route packets.

However, the presence of NAT implies the existence of a firewall capable of doing
NAT, which is generally also allowlisting specific DNAT traffic and which is config‐
ured to drop all packets that don’t match a DNAT rule. You can have exactly the same
security without NAT by using IP allowlists for the traffic you want to forward, with
an implied “drop everything else” rule at the bottom. Some people use NAT as short‐
hand for the translation plus the allowlisting, but it’s the firewall providing the secu‐
rity, not NAT; using NAT in your solution doesn’t mean you’re relying only on the
translation feature for security.

IPv6
Internet Protocol version 6 (IPv6) is a system of addressing machines that makes far
more addresses available than the traditional IPv4. From a security perspective, IPv6
has several improvements, such as mandatory support for Internet Protocol Security
(IPsec), transport security, cryptographically generated addresses, and a larger
address space that makes scanning a range of addresses much more time-consuming.

IPv6 has the potential to make system administration tasks easier in the near future,
because overlapping IPv4 ranges can make life difficult from the perspectives of asset
management, event management, and firewall rules.4 (Which host does that 10.1.2.3
refer to? The one over here, or the one over there?) Although the use of IPv4 on the
internet will probably continue for decades, a move to IPv6 for internal administra‐
tion purposes in larger enterprises is likely to happen sooner.

From a practical point of view, the most important thing with IPv6 is to ensure that
you maintain IPv6 allowlists if your systems have IPv6 addresses. Even though many
end users don’t know about IPv6, attackers can use it to circumvent your IPv4
controls.

Concepts and Definitions | 133

Network Defense in Action in the Sample Application
Now that we’ve covered some of the key concepts, the remainder of this chapter will
be based on our simple web application in the cloud, which is accessed from the
internet and uses a backend database (Figure 6-3). In this example, we’ll be protecting
against a threat actor named Molly, whose primary motivation is stealing our cus‐
tomers’ personal information from the database to sell on the dark web.

Figure 6-3. Sample application with network controls

Note that this is a somewhat intricate example intended for illustration purposes, so
you may not need all of the controls pictured for your environment. I recommend
that you prioritize network controls in the order listed in the following subsections.
Don’t spend a lot of time designing the later controls until you’ve put the earlier

134 | Chapter 6: Network Security

controls in place and have verified that they are effective; it’s much better to have TLS
and a simple firewall configured correctly and being monitored than to have five dif‐
ferent network controls that are configured poorly and ignored.

To use an analogy, ensure your ground-floor doors are locked securely before putting
bars on your second-floor windows!

Encryption in Motion
Transport Layer Security (TLS), formerly known as SSL, is the most common method
for securing communication of data in motion (flowing between systems on the net‐
work). Some people may categorize this as an application-level control rather than a
network-level control, because in a traditional environment it’s often under the con‐
trol of the application team rather than the network team. In cloud environments,
those may not be separate groups, so it’s included as a network control here. However
you classify it, encryption in motion is a very important security control.

When implemented properly, TLS provides three controls for the price of one. With
TLS, a server will generate a key pair (a public and private key), and then will get a
certificate authority to sign the public key. The signed public key is called a certificate.
A client system will look at that certificate, and who signed it, to decide if the server is
who it says it is—in other words, the client will authenticate the server. In addition,
once the server authentication step has happened, the two systems will agree on a
symmetric encryption key used to encrypt that connection, which keeps attackers
from breaching the confidentiality or integrity of the information as it flows through
the connection.

Many components support TLS natively. In cloud environments, I recommend using
TLS not just at the frontend, but for all communications that cross a physical or vir‐
tual network switch. This includes communications that may realistically cross such
boundaries in the future as components are moved around. Communications
between components that will always remain in the same network stack (or the same
network namespace when using containers) do not gain any security benefit from
using TLS. Examples of these communications are localhost connections within a vir‐
tual machine or between containers in a single Kubernetes pod.

There is debate in some circles as to whether it’s a good idea to encrypt traffic going
across networks you control, because you lose the ability to inspect the traffic as it
passes through your network. The implicit assumption is that it’s unlikely for an
attacker to get through your perimeter to view the traffic that you want to inspect. As
of this writing, one of the top causes of breaches is attacks on web applications, allow‐
ing an attacker into the application servers—which are behind the perimeter, it
should be noted. There’s no reason to think this trend will reverse. For this reason, I
recommend encrypting all network traffic that contains information that would harm
you if made public. This easy rule of thumb excludes network traffic, such as pings,

Network Defense in Action in the Sample Application | 135

https://oreil.ly/wQv6A

that contains no useful information for an attacker. Rather than relying upon network
inspection to detect an attacker, you should rely upon event information generated by
your systems. Refer to Chapter 7 for more information.

Simply turning on TLS is not sufficient, however. TLS loses much of its effectiveness
if you do not also perform the authentication step mentioned earlier, because it’s not
difficult for an attacker to hijack a connection and perform a man-in-the-middle
attack. As an example, as Figure 6-4 shows, even in modern container environments
it can be possible for a compromised container (M) to trick other containers (A and
B) into sending traffic through it. Without certificate checking, A thinks it has an
encrypted TLS connection to B, when in reality it has an encrypted connection to M.
M decrypts the connection, reads the passwords or other sensitive data, and then
makes an encrypted connection to B and passes through the data (possibly changing
it at the same time). TLS encryption doesn’t help at all in this situation without certif‐
icate checking!

Figure 6-4. Man-in-the-middle attack

What this means is that you also have to perform key management—creating a sepa‐
rate key pair and getting a certificate signed for each one of your systems—which can
be painful and difficult to automate.

Fortunately, in cloud environments this is becoming easier. One way to do this is via
identity documents, which some cloud providers make available to systems when
they’re provisioned. The provisioned system can retrieve a cryptographically signed
identity document that can be used to prove its identity to other components. When
you combine an identity document with the ability to automatically issue TLS certifi‐
cates, you can have a system automatically come online, authenticate itself with a
public key infrastructure (PKI) provider, and get a key pair and certificate that are
trusted by other components in your environment. In this fashion, you can be certain

136 | Chapter 6: Network Security

5 A ciphersuite is a set of encryption and signing algorithms that are used to protect the TLS connection.
Although there are a lot of important details that are of interest to cryptographers, in general you just need to
know which ones are currently considered safe and limit your connections to use those. In some cases, you
may need to accept less-secure ciphersuites if you don’t control the other end of the connection—for example,
if you need to allow out-of-date browsers to connect.

that you’re talking to the system you intended to and not to a man-in-the-middle
attacker. You do have to trust the cloud provider, but you already have to trust them
because they create instances and manipulate existing instances.

Here are a couple of examples:

• You can automatically create certificates using tools such as AWS instance iden‐
tity documents and HashiCorp Vault. When an AWS instance boots, it can
retrieve its instance identity document and signature and send those to Vault,
which will verify the signature and provide a token for reading additional secrets.
The instance can then use this token to have Vault automatically generate a key
pair and sign the TLS certificate.

• In Kubernetes environments with Istio, Istio Auth can provide keys and certifi‐
cates to Kubernetes containers. It does this by watching to see when new contain‐
ers are created, automatically generating keys/certificates, and making them
available to containers as secret mounts.

• Cloud certificate storage systems such as AWS Certificate Manager, Azure Key
Vault, and IBM Cloud Secrets Manager can easily provision certificates and safely
store private keys.

The Heartbleed vulnerability notwithstanding, TLS is still a very secure protocol if
configured properly. At the time of this writing, TLS 1.3 is the current version of the
protocol that should be used, and only specific ciphersuites5 should be allowed. While
there are definitive references for valid ciphersuites, such as NIST SP 800-52, for
most users an online test such as one provided by SSL Labs is the fastest way to verify
whether a public-facing TLS interface is configured properly. Once you have verified
your public interface, you can then copy a valid configuration to any non-public-
facing TLS interfaces you have. Network vulnerability scanning tools such as Nessus
can also highlight weak protocols or ciphersuites allowed by your systems.

You will need to include new ciphersuites as they become available and remove old
ciphersuites from your configuration as vulnerabilities are discovered. You can review
acceptable ciphersuites as part of your vulnerability management process, because
network vulnerability scanners can spot out-of-date ciphersuites that are no longer
secure. Fortunately, ciphersuites are compromised at a much lower rate than other
tools in common use, where vulnerabilities are routinely discovered.

Network Defense in Action in the Sample Application | 137

https://oreil.ly/mqi7y
https://oreil.ly/mqi7y
https://www.vaultproject.io
https://istio.io
https://oreil.ly/iVRAj
https://oreil.ly/Ai2qO
https://oreil.ly/Ai2qO
https://oreil.ly/VuYq-
https://heartbleed.com
https://www.ssllabs.com

It’s also important to generate new TLS private keys whenever you get a new certifi‐
cate, or whenever the keys may have been compromised. Solutions such as Let’s
Encrypt generate new private keys and renew certificates automatically, which can
limit the amount of time for which someone can impersonate your website if your
private keys are stolen.

Our attacker, Molly, may be able to snoop on or manipulate the connections between
users and web servers, or between the web servers and the application servers, or
between the application servers and the database. But with a correct TLS implementa‐
tion, she shouldn’t be able to get any useful data (such as the credentials for accessing
the database in order to steal the data).

Firewalls and Network Segmentation
Firewalls are a network control that is familiar to many people. Once you have a plan
to secure all of your communications, you can begin dividing your network into sep‐
arate segments (based on trust zones) and putting firewall controls in place. At their
simplest, network firewalls implement IP allowlists between two networks (each of
which may contain many hosts). Firewall appliances may also perform many other
functions, such as that of a terminating VPN, IDS/IPS, or WAF; but for this section,
we’ll concentrate on the IP allowlist functionality.

Firewalls are usually used for two main purposes:

• Perimeter control, for separating your systems from the rest of the world
• Internal segmentation, to keep sets of systems separated from one another

You might use the same technologies to accomplish both purposes, but there’s an
important difference in what you should pay attention to. On the internet there’s
always someone trying to attack you, so alerts from the perimeter are very noisy. On
internal segmentation firewalls, any denied connection attempts are either due to an
attacker trying to move laterally or a misconfiguration. Either one should be
investigated!

There are three main firewall implementations in the cloud:

Network access control lists
These are often called network ACLs, or NACLs. Instead of operating your own
firewall appliances, you simply define rules for each network about what’s
allowed into and out of that network. Think of this like a “rough cut,” or like a
security guard allowing people into a building.

138 | Chapter 6: Network Security

https://letsencrypt.org
https://letsencrypt.org

Security groups
Instead of operating your own host firewalls, you simply define security group
rules and they’re implemented as a service for your virtual hosts. Security groups
apply at a per-host level rather than a per-network level. Some implementations
may not have all the features that network ACLs provide, such as logging of
accepted and denied connections. One nice thing about security groups is that
you can use the members of a group as a source or destination. For example, if
you have a set of database servers that all need to talk to each other on a certain
port, then you can do that by referencing the server group for inbound and out‐
bound rules, and you don’t have to change the rules when adding new members
to the group. Think of this like a “fine cut,” or like a badge reader that only allows
specific individuals into a particular room in the building.

Virtual firewall appliances
While still appropriate for some implementations, this is largely a lift-and-shift
model from on-premises environments. Note that most virtual firewall applian‐
ces are next-generation appliances that combine allowlisting with additional
functionality, such as a WAF or IDS/IPS. While you design and implement your
network controls, treat these separate functions as if they were separate devices
plugged in back to back, and don’t worry about designing the higher-level con‐
trols until you have the perimeter and internal segmentation designed.

Table 6-1 shows, as of this writing, the IP allowlisting controls available on popular
cloud services.

Table 6-1. IP allowlisting options offered by cloud providers

Provider IP allowlisting features
Amazon Web Services IaaS VPCs, network ACLs, security groups, and virtual appliances available in the marketplace

Microsoft Azure IaaS Virtual networks, network security groups (NSGs), and network virtual appliances

Google Cloud Platform IaaS VPCs, firewall rules, and target tags

IBM Cloud IaaS VPCs with network ACLs, security groups, and gateway appliances

Kubernetes (overlay on an IaaS) Network policies

Let’s take a closer look at how to implement firewall controls in a cloud environment.

Perimeter control
The first firewall control you should design is a perimeter of some form. This may be
implemented via a firewall appliance, but more often it will simply be a virtual private
cloud with a network ACL. Most providers have the ability to create network ACLs. In
that case, you don’t need to worry about the underlying firewall at all; you simply pro‐
vide rules between security zones, and everything below that is abstracted from you.

Network Defense in Action in the Sample Application | 139

You may be tempted to share a perimeter among several different applications. In tra‐
ditional environments, firewalls are often costly and time-consuming to use; they
require a physical device, and in many organizations a separate team will configure
the firewall. For those reasons, multiple applications that don’t actually need to com‐
municate with one another often share network segments. This can be a significant
security risk, because a breach in a less important application can provide a foothold
for an attacker to pivot to a more important application, often undetected.

In cloud environments, you should give each application its own separate perimeter
controls. This may sound like a lot of trouble, but remember that in most cases you
are just providing rules for the cloud provider’s firewall to enforce. Defining the net‐
work perimeter rules separately for each application means you can manage the rules
along with the configuration of the application, and each application can change its
own perimeter rules without affecting other applications (unless the other applica‐
tions are dependent on that application).

In our example, for perimeter control and internal segmentation, we’ll put the entire
application inside a VPC with private subnets for the backend web and application
servers and network ACLs. Depending on the application, we might have also chosen
to use only security groups without a VPC for all systems in the application, or to use
virtual firewall appliances as the interface between the internet and the rest of the
application.

On AWS, Google Cloud Platform, and IBM Cloud, we would create a VPC with one
public subnet for the web servers (DMZ), and a private subnet for the application
servers. On Azure, we would create virtual networks with subnets. We would then
specify which communications should be allowed into our VPC from the internet.

Internal segmentation
Okay, now we have a perimeter behind which we can place our sample application (in
the form of a VPC) so that we can allow only specific traffic in. The next step is to
implement network controls inside our application. The application will likely have a
few different trust boundaries, such as the web layer (the DMZ), the application layer,
and the database layer.

In the traditional IT world, internal segmentation was often messy: you would need
lots of different 802.1Q VLANs, which had to be requested via a ticket, or you would
use a hosted firewall solution that you could centrally manage. In cloud environ‐
ments, with a few clicks or invocations of the APIs, you can create as many subnets as
you need, often without any additional charges.

Once we have created our three subnets (some of them may have been created auto‐
matically when we created a VPC), we’re ready to apply network ACLs or security
groups. In our simple example, we would allow only HTTPS traffic from the internet
to the web subnet, HTTPS traffic from the web subnet into the application subnet,

140 | Chapter 6: Network Security

6 Some cloud providers distinguish between security groups, which apply to a single system, and network
access control lists, which apply to the traffic entering and exiting the subnet. However, Microsoft Azure uses
network security groups that can apply to both systems and subnets, and Google Cloud Platform uses firewall
rules and target tags.

and SSH into both. This is very similar to traditional environments, except that we
can create these subnets so quickly and easily that we can afford to have separate ones
for each application, with no sharing.

Most cloud providers also allow you to use a command-line tool or a REST API to do
everything you can on the portal. This is essential for automating deployments,
although it does require you to do a little more manual plumbing work in some cases.
In this case, we would create a VPC with one public subnet and two private subnets,
attach an internet gateway, route traffic out the gateway, and allow only tcp/443 into
the DMZ subnet. Rather than creating a script from scratch, I recommend that you
use an infrastructure-as-code tool like HashiCorp Terraform or AWS CloudForma‐
tion. Tools such as these allow you to declare what you want your network infrastruc‐
ture to look like and automatically issue the correct commands to create or modify
your cloud infrastructure to match.

Cloud web consoles, command-line invocations, and APIs change over time, so the
best reference is usually the cloud provider’s online documentation. The important
concept is that most cloud platforms allow you to create a virtual private cloud that
contains one or more subnets that you can use for trust zones.

Security groups
At this point, we already have a perimeter and firewall rules, so why would we need
more IP allowlists? The reason is that it’s possible that our attacker has obtained a
small foothold into one of our subnets (probably the DMZ), which gets her behind
our existing subnet controls. We’d like to block or detect her attempts to move else‐
where within our application, such as by attacking our administrative ports. To do
this, we’ll use per-system firewalls.

Although you can certainly use local firewalls on your operating system, most cloud
providers provide a method for the cloud infrastructure itself to filter traffic coming
into your virtual system before your operating system sees it. This feature is often
called security groups.6

If you choose to use security groups to meet your internal network
segmentation requirements, make sure that you can detect denied
connections, because not all implementations permit feeding these
denied attempts to a security information and event manager.
Please refer to Chapter 7 for more information.

Network Defense in Action in the Sample Application | 141

Just as in traditional environments, you should configure your security groups to
allow traffic in only on the ports needed for that type of system. For example, on an
application server, allow traffic in only on the application server port. In addition,
restrict administrative access ports, such as SSH, to particular IP addresses that you
know you’ll perform administration functions from, such as your bastion host or cor‐
porate IP range. In most implementations, you not only can specify a specific IP
source, but can also allow traffic from any instance that has another security group
specified.

If you allow administrative access from your entire company’s IP range, note that any
compromised workstation, server, or mobile device in your environment can be used
to access the administrative interface. This is better than leaving it open to the entire
internet, but don’t get complacent: these ports should still be protected as if they were
open to the internet, because there are a lot of ways into a large corporate network!
That means they should be scanned for vulnerabilities and all connections should be
authenticated via complex passwords or keys and certificates.

In some smaller deployments, you might choose to put your entire application into a
single subnet and use security groups for both perimeter control and internal seg‐
mentation. For example, the database server may have a security group in place that
allows SSH access only from a subnet you trust, and allows database access only from
your application servers. If there’s a one-to-one correspondence between your secu‐
rity groups and your subnets (that is, everything on the same subnet also uses the
same security group), defining subnets might create additional complexity without
much benefit. While most implementations will benefit from both, security groups
have a slight edge in that they offer better protection against a misconfigured service
on one of your systems; with network ACLs, anything that gets into the subnet can
exploit that misconfigured service.

Like many other network controls, internal segmentation is a redundant layer of
security. It will help you if there’s an issue somewhere else, such as because you’ve
misconfigured your perimeter, an attacker has gotten in past your perimeter, or
you’ve accidentally left a service running with default credentials.

Service endpoints
It’s important to note that some layers of your application, like the database, might be
shared as-a-service functions. This means that they’re actually outside your perime‐
ter, although they can be virtually behind your perimeter via proper access controls
and service endpoints. To illustrate this, the version of the sample application in this
chapter shows a Database as a Service in use.

Several cloud providers offer service endpoint functionality. An endpoint is just a
place to go to reach the service, and a service endpoint makes your as-a-service
instance directly reachable via an IP address on your virtual private cloud subnet.

142 | Chapter 6: Network Security

This is convenient in that you don’t have to specify outbound firewall rules to reach
the instance, but the real beauty of this feature is that the service can be accessed only
via that virtual IP address. For example, even if someone on the internet obtains the
correct credentials for your database, they still cannot access the instance. They
would need to get into your VPC and talk to the virtual IP address there using the
credentials.

Even if service endpoint functionality is not available, the as-a-service function might
allow you to allowlist which IP addresses can connect. If so, this is mostly equivalent
to service endpoint functionality (although slightly more difficult) and can help
guard against stolen or weak credentials for that service.

Container firewalling and network segmentation
What about isolating access in a container world? Although the implementation dif‐
fers somewhat, the concepts are still essentially the same. At the time of this writing,
Kubernetes is the most popular container orchestration solution, so I’ll focus on it
here.

For a perimeter, you will typically use existing IaaS network controls such as a VPC
or security groups, but you may also use Kubernetes network policies to enact local
firewalls on the worker nodes. In either case, the goal is to prevent any inbound traf‐
fic except to the NodePort, ingress controller, or whatever mechanism you’re using to
accept traffic from outside. This can be an extra safeguard to prevent a misconfigured
backend service from accidentally being reachable from the internet.

For internal segmentation, you can use Kubernetes network policies to isolate pods.
For example, the database pods can be configured to only allow access from the appli‐
cation server pods.

The equivalent functionality to security groups is already built in for many use cases.
In container networking, you allow access only to specific ports on the container as
part of the configuration. This performs much of the functionality of security groups
at the container level. In addition, containers are usually running only the specific
processes needed and no other unnecessary services. One of the primary benefits of
security groups is that they act as a second layer of protection in case unnecessary
services are running, to prevent access to them.

For a certain amount of virtual machine separation, you can also “taint” specific
worker nodes so that only DMZ pods will be scheduled on those nodes. You might
put those nodes into a separate subnet. Figure 6-5 shows an alternate version of the
sample application using containers.

Network Defense in Action in the Sample Application | 143

Figure 6-5. Sample container network controls

Note that this addresses only network isolation; compute isolation is still a concern in
the container world, which is why Figure 6-5 showed the most vulnerable systems
isolated to separate worker nodes. Containers all run on the same operating system,
and an operating system provides a lot more functionality than the virtualized hard‐
ware of a VM, which means that there are more possibilities for an attacker who gets
inside a container to break out and affect other containers.

Allowing Administrative Access
Now that you have set up some walls around your application and some internal trip‐
wires to catch anyone who’s gotten inside, other systems or your administrators may
need a way of getting past your perimeter to maintain your application.

One of the worst things our attacker, Molly, can do is get access to administrative
interfaces—for example, direct access to our database administration interfaces—and
pull all of our customer data out through the back door. Requiring that all adminis‐
trative access take place via a VPN or a bastion host makes her have to go through
considerable effort before even attempting to log in to our backend database. This
section discusses when to use VPNs or bastion hosts.

Your administrators might not need to get inside the perimeter if
you have a method to run commands on servers (such as AWS Sys‐
tems Manager Run Command, or kubectl exec), or if they can
always diagnose problems via the logs coming out and replace any
component that’s acting up with a new version. It’s ideal if you can
run day-to-day operations without getting behind the perimeter,
but many applications aren’t designed for this.

144 | Chapter 6: Network Security

7 A remote access trojan is a type of malware used to control an unsuspecting user’s system. For example, an
administrator may browse to a malicious website, which silently installs a RAT. Late at night, when the admin‐
istrator is asleep, an attacker may take control of the administrator’s workstation and use open sessions or
cached credentials to attack the system.

Bastion hosts
Bastion hosts (also called jump hosts) are systems for administrative access that are
accessible from a less trusted network (such as the internet). The network is set up so
that all communication to the internal networks must flow through a bastion host.

A bastion host has the following useful security properties:

• Like a VPN, it reduces your attack surface, because it’s a single-purpose hardened
host that other machines hide behind.

• It can allow for session recording, which is very useful for advanced privileged
user monitoring. Session recordings may be spot-checked to catch an insider
attack, use of stolen credentials, or an attacker’s use of a remote access trojan
(RAT)7 to control a legitimate administrator’s workstation.

• In some cases (for example, incoming Remote Desktop Protocol connections
where a user then uses a web browser for HTTPS connections), a bastion host
performs a protocol shift. This can make things more difficult for attackers
because they need to compromise both the bastion host and the destination
application.

Many privileged access management tools, in addition to allowing administrators to
check out credentials to use administrative identities when needed, can also operate
in an “inline mode” where they have similar features to bastion hosts, such as session
recording, session monitoring, session termination, or the ability to block certain
commands from being issued.

I recommend using bastion hosts if the advanced capabilities of session recording or
protocol shifts are useful in your environment, or if a client-to-site VPN is not suit‐
able for some reason. Otherwise, I recommend using client-to-site VPNs provided as
a service for administrative access, because it’s one less thing for you to maintain.

Virtual private networks
Creating a VPN is like stretching a virtual cable from one location to another. In real‐
ity, the connectivity is actually performed by using an encrypted session across an
untrusted network like the internet. There are two primary VPN functions, which are
very different:

Network Defense in Action in the Sample Application | 145

8 Internet users around the world became alerted to this potential through Edward Snowden’s explosive
revelations.

Site-to-site communications
Two separate sets of systems communicate with one another using an encrypted
tunnel over an untrusted network such as the internet. This might be used for all
users at a site to get through the perimeter to access the application, or for one
application to talk to another application. It should not normally be used to pro‐
tect administrative interfaces.

Client-to-site (or “road warrior”) communications
An individual user with a workstation or mobile device virtually plugs in to a
remote network. This might be used by an end user to access an application or by
an administrator to work on the individual components of an application.

The following subsections describe these solutions and show their advantages and
drawbacks.

Site-to-site VPNs
VPNs for site-to-site communications can provide additional security, but they can
also lead to poor security practices. For this reason, I no longer recommend using a
site-to-site VPN if all of the communication that flows between the sites uses TLS and
if IP allowlisting is applied where feasible. Here are the reasons for this:

1. Setting up a site-to-site VPN is more work than using TLS. A VPN requires con‐
figuring two firewalls (or often four, as they’re usually redundant pairs) with the
proper parameters, credentials, and routing information.

2. Using a site-to-site VPN is arguably less secure if it leads to the use of insecure
protocols. That’s because VPNs leave the data in motion unprotected on either
end before it enters the tunnel, so an attacker who manages to get inside the
perimeter may be able to eavesdrop on that traffic.8

3. Site-to-site VPNs are too coarse-grained, in that they’ll allow anyone on one net‐
work (often a large corporate network) to access another network (such as your
administrative interfaces). It’s better to perform access control at the administra‐
tive user level than the network level.

Of course, you can use both a VPN and TLS connections inside the VPN for addi‐
tional security. However, your efforts are probably better spent elsewhere in most
cases, and you should definitely prioritize end-to-end encryption with TLS first.
There is some limited security benefit in hiding the details of your communications
(such as destination ports) from an attacker. If you do choose to use both TLS and a
VPN, you should use a different protocol for your VPN, such as IPsec, or the same

146 | Chapter 6: Network Security

https://oreil.ly/VRAKX
https://oreil.ly/VRAKX

9 Google doesn’t either.

vulnerability may allow an attacker to compromise both the VPN tunnel and the
transport security inside it.

Client-to-site VPNs
I no longer recommend client-to-site VPNs for end-user access to most corporate
applications unless they hold really sensitive information or have known weaknesses
that are impractical to fix quickly.9 VPNs are often inconvenient for end users and can
be detrimental to battery life on mobile devices. Plus, once the user base is large
enough, it’s much more likely that an attacker can get access to the corporate network
because there are so many individuals to attack. VPNs can be a good control in some
cases, but they are second only to firewalls in terms of people assuming that they con‐
vey some sort of magical protection.

If you do decide to require VPN access for your internal application, I recommend
using a completely different set of credentials for the VPN, such as a TLS certificate
issued by a completely different administrative domain from the one issuing your
normal user credentials. You should already have implemented the controls in Chap‐
ter 4, and you don’t want your VPN layer to become a redundant implementation of
the same access management controls your application is already using. Make sure
that you do not relax any application controls based on the fact that users need a VPN
to access the application.

Administrators are different from end users, however. Client-to-site VPNs can be a
good way for your administrators to gain access to the internal workings of your
cloud environment. (Another good way is a bastion host, or jump host, discussed
previously). The reasons I suggest a VPN for administrators, and not for regular end
users, are that the backend connections used by administrators are often higher risk
(because there are more of them, so they’re harder to secure), the cost to implement is
lower (because there are fewer administrators than end users), and there should be
few enough administrators that it’s harder for an attacker to accidentally be granted
access. So, in many cases, VPN access is worth it for administrators, but not for end
users, though obviously this is highly dependent on your application and risk
appetite.

VPNs have both the benefit and drawback of permitting more protocols than bastion
hosts. Being able to use additional protocols can make life easier for administrators
but can also make it easier for an attacker driving a compromised workstation to
attack the production network. VPNs also don’t support session recording, so for
these reasons, higher-security environments will often use bastion hosts.

Network Defense in Action in the Sample Application | 147

https://oreil.ly/BGnmy

Client-to-site VPNs are usually easy to use but often require some sort of software to
be installed on the administrator’s workstation, which can be a concern in companies
that restrict software installation, and sometimes different VPN products will conflict
with one another. Most solutions support the use of complex credentials (such as a
certificate or a key) and two-factor authentication to mitigate the risk of easily
guessed credentials or stolen credentials.

Examples of client-to-site VPN access on different cloud platforms are listed in
Table 6-2.

Table 6-2. VPN access in popular cloud providers

Provider VPN features
Amazon Web Services Amazon Client VPN

Microsoft Azure VPN Gateway

Google Cloud Platform Google Cloud VPN

IBM Cloud IBM Cloud Client VPN for VPC

Some industry or regulatory certifications may require you log the
creation of VPN connections. Make sure you can get connection
logs out of your VPN solution!

Network Defense Tools
At this point you should have a perimeter, internal controls, and a way for your
administrators to get through the perimeter as needed. Now, let’s move on to some
more advanced controls.

Web application firewalls
A web application firewall is a great way to provide an extra layer of protection
against common programming errors in your application, as well as vulnerabilities in
libraries or other dependencies that you use. A WAF is really just a smart proxy; it
gets the request, checks the request for various bad behaviors such as SQL injection
attacks, and then makes the request to the backend system if it’s safe to do so. WAFs
can protect against attacks that traditional firewalls can’t, because the TCP/IP traffic is
perfectly legitimate and the traditional firewalls don’t look at the actual effects on the
application layer.

WAFs can also help you respond quickly to a new vulnerability, because it’s often
faster to configure the WAF to block the exploit than to update all of your systems.

148 | Chapter 6: Network Security

In traditional environments, WAFs can often be “blinky boxes”—
they sit in a rack and blink lights reassuringly on the front panel,
but are not actually effective at stopping anything. In both tradi‐
tional and cloud environments, if you don’t set up properly cus‐
tomized rules for your application, maintain those rules, and look
at alerts, you probably aren’t getting a lot of value from your WAF.
Unfortunately, sometimes WAFs are just used to check a compli‐
ance box and are only in place because they offer an easier route to
PCI compliance than code inspections.

In cloud environments, a WAF may be delivered as Software as a Service, as an appli‐
ance, or in a distributed (host-based) model. In the cases of a WAF service or appli‐
ance, you must be careful to ensure that all traffic actually passes through the WAF.
This often requires the use of IP allowlists to block all traffic that’s not coming from
the WAF, which can lead to a minimal amount of additional maintenance because the
list of IP addresses for requests coming from a cloud WAF offering will vary over
time. It can also be difficult to route all traffic through your WAF appliance without
creating a single point of failure. Some cloud providers offer services, such as AWS
Firewall Manager, that help you ensure that your applications are always covered by
a WAF.

A host-based model doesn’t have these problems; all traffic will be processed by the
distributed WAF regardless. You do need to have good inventory management and
deployment processes to ensure that the WAF gets deployed to each system, but this
is often an easier task than ensuring that all traffic flows through a SaaS or appliance.

RASP modules
A runtime application self-protection module is similar to a WAF in many ways. Like
WAFs, RASP modules attempt to block exploits at the application layer, but the
mechanism used is significantly different. A RASP works by running alongside your
application code and watching how the application handles requests, instead of only
seeing the requests. RASP modules must support the specific language and applica‐
tion environment, whereas WAFs can be used in front of almost any application.
Some vendors have both WAF and RASP module offerings, and an application can be
protected by both a RASP module and a WAF.

Our attacker, Molly, might attempt to come right in the front door as a normal user
and find some problem with our application that allows her to steal all of our cus‐
tomer data. If we’ve accidentally left a way for her to fool our application into giving
up the data, a WAF or RASP module might be able to block it.

Note that one of the most common methods of attacking web applications is the use
of stolen or weak credentials. If Molly has a set of administrative credentials provid‐
ing access to all data, a WAF or RASP module will not defend against this type of

Network Defense in Action in the Sample Application | 149

attack, which is why identity and access management is so important! However, I still
recommend the use of SaaS or host-based WAFs and RASP modules for web applica‐
tions in the cloud, and even APIs can get some limited benefits from parameter
checking.

A cloud WAF service will be able to see all of the content in your
communications. This should not be an issue for most organiza‐
tions, with the proper legal agreements in place and when dealing
with a reputable WAF company, but may be a problem for some
highly regulated organizations.

Anti-DDoS
Distributed denial-of-service (DDoS) attacks are a huge problem for many companies
with internet-facing services. If you receive too many fake requests or too much use‐
less traffic, you can’t provide services to the legitimate requesters.

The other controls we’ve discussed are generally recommended; you should rarely
accept the risk of doing without them. However, you need to check your threat model
before investing too much in anti-DDoS measures. Put more bluntly, is anyone going
to care enough to knock you off the internet, and how big of a problem is it for you if
they do? Unlike a data breach, where you can never remove all copies of the stolen
data, a DDoS attack will eventually end.

If you’re running any sort of online retailing application, or a large corporation’s web
presence, or any other application such as a game service where downtime can obvi‐
ously cost you money or cause embarrassment, you’re potentially a target for extor‐
tionists who will demand money in return for stopping an attack. If you’re hosting
any content that’s controversial, you’re likewise an obvious target. Note that the bar to
entry is very low; there are “testing” or “booter” services available cheaply that can
easily generate too much traffic for your site to handle, so it only takes one individual
with a few hundred dollars to ruin your day.

However, if you’re running a back-office application where some downtime will not
obviously limit your business or embarrass you, you may need very little in the way of
anti-DDoS measures. If this is the case, make sure that you clearly document that
you’re accepting the risk of DDoS attacks and get agreement from all of your stake‐
holders! While foregoing (or having very limited) anti-DDoS protections may be the
correct choice in some cases, it should not be the default choice, and it’s not one to be
made lightly.

Anti-DDoS measures can be blinky boxes or virtual appliances, but in most cases
today, anti-DDoS protection is delivered in a SaaS model. This is largely due to
economies of scale; anti-DDoS services often need a large internet pipe and lot of
compute power to sort through all of the incoming requests and filter out the fake

150 | Chapter 6: Network Security

ones, but this capacity is needed only occasionally for each customer. An individual
anti-DDoS appliance (or its network connection) can easily be overwhelmed by a
large-scale volumetric attack.

If you choose to implement anti-DDoS measures, I recommend you use a cloud ser‐
vice. There are many providers in this space; two examples are Akamai and Cloud‐
flare. You will need to route all of your traffic through the anti-DDoS service, tune
your rules, and practice an attack scenario.

Some IaaS providers also provide anti-DDoS as a service. In addition, there are inde‐
pendent anti-DDoS cloud services, and some of these also include WAF functionality.
Note that a cloud anti-DDoS service can function in some modes without decrypting
your traffic, but a cloud WAF will need to be able to decrypt your traffic in order to
function. For that reason, you need to ensure that any cloud WAF provider you
engage can meet your security and compliance requirements.

Intrusion detection and prevention systems
In the traditional IT world, an intrusion detection system (IDS) is often a blinky box
that generates alerts when the traffic that passes through it matches one of its rules.
An intrusion prevention system (IPS) will block the traffic in addition to alerting. An
IDS/IPS agent may also be deployed to each host, configured centrally, to detect and
block malicious traffic coming to that host. IDS and IPS are almost always offered in
the same product, and are generally treated as the same control. If you are more sure
that a certain type of traffic is malicious, or if your risk tolerance is lower, you will
configure a particular rule to block rather than just alert.

An IDS/IPS rule may be signature-based and trigger on the content of the communi‐
cation—for example, upon seeing a particular stream of bytes included in a piece of
malware. For this to work, the IDS/IPS needs to be able to see the clear-text commu‐
nications, which it often does by having the keys to decrypt all of the communica‐
tions. This is a valid model, but it makes the IDS/IPS a valuable target for attackers;
not only can an attacker who compromises an IDS/IPS watch all traffic going through
it, but if they obtain the signing certificates or private keys used by the IDS/IPS, they
may be able to carry out attacks elsewhere on the network. In addition, newer ciphers
with “forward secrecy” prevent this type of snooping. There are trade-offs, but for
both functional and risk reasons, I do not normally recommend snooping on encryp‐
ted traffic on the network.

IDS/IPS rules may also be based on behavior, triggering only on the metadata of the
network traffic. For example, a system that is initiating connections to a lot of net‐
work ports (port scanning) may be owned by an attacker, so you can have a rule that
checks for that. Such rules can be useful even when traffic is encrypted end to end so
that the IDS/IPS cannot look inside it.

Network Defense in Action in the Sample Application | 151

For this control, there is not a lot of difference between traditional deployments and
cloud deployments. In the blinky box model, the IDS/IPS will often be a virtual appli‐
ance instead of a physical box. However, all traffic must flow through that virtual
appliance in order for it to detect or prevent attacks. This can sometimes lead to scal‐
ability concerns, because virtual appliances often cannot process as much traffic as a
dedicated box with hardware optimizations. It can also be difficult to position an
infrastructure IDS/IPS solution so that all traffic flows through it. If you succeed at
this, you may still add latency and another potential point of failure as traffic takes
extra hops to get to the IDS/IPS and then to the backend system, instead of going
directly from the end user to the backend system.

Host-based IDS/IPS solutions in cloud environments also function similarly to their
traditional counterparts, though they can often be baked into virtual machine images
or container layers more easily than they can be rolled out to already installed operat‐
ing systems. Incorporating them into images can be an easier model to use in cloud
environments, because the systems being protected may be spread around the world.

Although there is some difference of opinion on the matter, an IDS/IPS might not
add much value as part of a perimeter control if a WAF is used correctly. This is
because the WAF prevents the IDS/IPS from seeing most attacks. However, an
IDS/IPS can be very useful for detecting an attacker who has already gotten through
the perimeter. If our attacker, Molly, attempts to perform reconnaissance via a port
scan from one of our cloud instances, an internal IDS/IPS may be able to alert us to
the threat.

If you have already correctly implemented and tested the other controls described in
this chapter and want additional protection, I recommend baking a host-based
IDS/IPS agent into each of your system images and having the agents report to a cen‐
tral logging server for analysis.

Egress Filtering
You’ve implemented all of the controls we’ve discussed, and you want to tighten down
the environment even further. Great! You absolutely have to expect and block attacks
from the outside. However, it’s possible someone will take control of one of your
components. For that reason, it is also a great idea to limit outbound, or egress, com‐
munications even from components that you should be able to trust. These are some
reasons to perform egress filtering:

• Supply chain attacks are on the rise, with the SolarWinds hack being the best-
known example as of this writing. While a big part of the solution to supply
chain woes is better protections in the build and distribution processes, egress
controls can also prevent damage by keeping a successful attacker from being
able to call home for instructions.

152 | Chapter 6: Network Security

10 Copying data via mobile device photos and videos, often called the “analog hole,” is nearly impossible to block
without very restrictive physical controls, such as searching individuals before allowing entrance to a secured
area.

• An attacker may want to steal a copy of your data by transferring it to some place
outside your control. This is called data exfiltration. Egress filtering can help
reduce or slow data exfiltration in the event of a successful attack. However, in
addition to limiting normal connections, you must also take care to block other
avenues of data exfiltration, such as DNS tunneling, Internet Control Message
Protocol (ICMP) tunneling, and hijacking of existing allowed inbound connec‐
tions. For example, if an attacker compromises a web or application server and
puts the data on it, that system will happily serve up the data, bypassing any
egress controls. This is primarily useful when you have a large volume of data to
protect; smaller amounts of data could be written down or screenshotted.10

• Egress filtering can also help prevent watering hole attacks, although these are less
common against servers than against end users. For example, your policy may
require that all components be updated from an internal trusted source. How‐
ever, due to human error, a service might be configured to make unauthorized
calls out to an update server that could be compromised by an attacker to pro‐
vide it with a malicious update. In this case, egress filtering would be a second
line of defense against that attack, making it impossible for the misconfigured
component to reach out to the update server.

Egress filtering is required for some environments: for example, the
NIST 800-53 Rev 5 controls list the requirement under SC-7(5) for
moderate environments, and as an optional enhancement in
SC-5(1) to prevent your own systems from participating in a
denial-of-service attack against someone else. Egress filtering con‐
trols can include simple outbound port restrictions, outbound IP
allowlists and port restrictions, or even an authenticating proxy
that allows only the HTTPS traffic that a specific component
requires.

Outbound port restrictions are the simplest way to limit traffic, but also the least
effective. For example, you may decide that there’s no good reason for any part of
your cloud deployment to be talking to anything else other than over the default
HTTPS port, tcp/443, but that you can allow tcp/443 traffic to any destination. While
that may prevent a few types of malware from calling home, such a solution is not
particularly effective and is often used to check a compliance box saying you have
egress controls. In a cloud deployment, port-based egress filtering can be done via

Network Defense in Action in the Sample Application | 153

11 Don’t turn off certificate checking, except as a very temporary measure for troubleshooting connection errors.
TLS provides no protection from man-in-the-middle attacks if certificate checking is turned off.

security groups or network ACLs, analogous to the way it’s done for the ingress con‐
trols discussed earlier.

Outbound IP allowlisting can be effective when it works. However, like inbound IP
allowlisting, outbound IP allowlisting is becoming less and less feasible with the rise
of CDNs and GSLBs. While these are very important tools for making content and
services available more quickly and reliably, they render IP-based controls ineffective
because the content may reside at many different IP addresses around the world that
change rapidly.

Proxies are the most effective way to implement egress controls. One variant is creat‐
ing an explicit proxy. This is done by creating a proxy server and then only allowing
components to talk to the proxy, not the outside world. The downside is that you
must configure each component to ask the proxy to make connections on its behalf.
Most operating systems have the ability to set an explicit proxy at the OS level; for
example, on Linux, you can set the http_proxy and https_proxy environment vari‐
ables, and on Windows you can change the proxy settings in the control panel. Many
applications that run on the operating system will use this proxy if it’s set, but not all.
One nice feature is that in most cases, the proxy will set up the connection for you but
will not be able to see the traffic.

Another option is using a transparent proxy. In this case, something on the network
(such as an intelligent router) sends the traffic to the proxy instead of the requested
destination. The proxy pretends to be the “real” destination, then evaluates the
request (for example, to see whether it’s going to an allowlisted URL) and makes the
request on behalf of the backend system if it meets the validation requirements. The
downsides with transparent proxies are that the proxy can see the information flow‐
ing through, and for a transparent proxy to work you must weaken protections in
TLS that keep other systems from pretending to be the destination site!

Some newer technologies, such as Istio, can transparently proxy only allowed traffic
in a Kubernetes cluster. In the future, it’s likely that more and more platforms will
allow you to specify as part of the deployment which sites or URLs a component
needs to reach, and the egress restrictions will be implemented automatically by the
platform on a per-component basis.

While HTTP is certainly the most common protocol to proxy, there are proxies avail‐
able for other protocols as well. Note that for HTTPS connections, the source should
validate that the destination is the correct system by means of an X.509 certificate.11

This validation will fail unless the transparent proxy has the ability to impersonate
any site, which is risky.

154 | Chapter 6: Network Security

https://oreil.ly/xE7vy

Like an IDS/IPS, a proxy itself becomes an attractive target for
attackers. Anyone with access to the proxy can perform a man-in-
the-middle attack and, depending on the proxy configuration, may
be able to listen to or modify any data flowing through it. This can
easily compromise the entire application. In addition, if the proxy
has a signing certificate trusted by the components in your cloud
deployment, an attacker who gets that signing certificate can
impersonate any site until the certificate is removed from the trust
stores of all components. If you choose to implement a transparent
proxy for egress traffic, make sure that it is protected at least as well
as the other components of the system.

With supply chain attacks becoming much more common, I now recommend the use
of proxies for any higher-security environments. However, they can be painful to
implement because you may not have a good list of all of the internet connections
your different components are making. If you’re willing to accept the risk that one of
the products you’re using may be compromised, then limited egress controls via net‐
work ACLs and security groups may suffice. In the example in Figure 6-3, I showed a
combination egress proxy and data loss prevention system, but this may also be per‐
formed by an as-a-service offering.

Data Loss Prevention
Data loss prevention (DLP) watches for sensitive data that is either improperly stored
in the environment or is being copied out of the environment. Cloud providers may
offer DLP services as an add-on feature to other services, or you may choose to
implement DLP controls yourself in your environment.

In an IaaS/PaaS cloud environment, DLP may be implemented as part of egress con‐
trols. For example, the web proxy for outbound communications may be configured
with DLP technology to alert an administrator or block an outbound communication
if it contains credit card information. DLP may also be integrated into an IDS/IPS
device, or performed by a standalone virtual appliance through which traffic flows
and is decrypted and inspected. The same trade-offs apply here as discussed with
proxies: if the DLP appliance can read the information flowing through, then it has to
be secured at least as well as the systems that hold the information, and technologies
such as forward secrecy prevent both attackers and DLP devices from snooping on
the traffic even if the key is known.

A SaaS environment may integrate DLP directly to prevent certain data types from
being stored at all, or to automatically tag such information. This type of DLP, if avail‐
able, can be considerably more effective than egress-based DLP controls, but it is
highly specific to the SaaS.

Network Defense in Action in the Sample Application | 155

If you have sensitive information, such as payment information or personal health
data, you may need to incorporate DLP controls into your cloud environment. For
the majority of cloud deployments, however, DLP may not be required. Unless you
are willing to carefully configure the solution, follow up on alerts, and deal with false
positives, DLP will only provide you with a false sense of security.

Conclusion
Do you know what our attacker, Molly, will actually do in a lot of cases? She will point
scanning tools such as Nmap, Nessus, or Burp Suite at every system she can find.
She’ll find some viable command injection attack, or MySQL instance with default
credentials, or vulnerable SMTP server, or some other silly thing that has been missed
despite all of the vulnerability and asset management processes in place. She’ll use
default credentials, an unpatched vulnerability, or a similar problem to get in and
compromise the rest of the system from there.

An attacker might gain entry for several reasons: maybe your asset management pro‐
cess has a leak, or items vulnerable to attack were turned on by accident, or your vul‐
nerability management process missed a vulnerable component or configuration, or
someone set a stupid password despite policies and controls to avoid it. The network
controls may be either your first or last line of defense in those cases, but don’t
depend on them as your only line of defense.

As examples, the perimeter might be able to stop someone from getting in to exploit
these failures in other processes, or at least give you a chance to notice an attack in
progress and respond. TLS may prevent an attacker with a small foothold from sniff‐
ing credentials or data. The WAF may jump in front of an injection attack that would
have tricked your application into giving out all of your data through the front door.
An IPS/IDS may detect and block unauthorized scans inside your perimeter. Security
groups may help protect you by saying, “Look, this is a virtual machine or container
for component X. It needs to let in only specific traffic for component X, and also
maybe some administrative stuff. Also, the administrative stuff should come only
from over here, not from a kid in his parents’ basement.”

For those reasons, network controls are an important layer of protection for your
cloud environment. While a lot of technically complicated controls are available, it’s
important to prioritize them to get the best protection for your efforts. I recommend
that you go through the following steps in the order listed:

1. Draw a diagram of your application, with trust boundaries.
2. Make sure that your inbound connections use TLS, and that all component-to-

component communications that may go across the wire use TLS with authenti‐
cation.

156 | Chapter 6: Network Security

3. Enforce a perimeter and internal segmentation, and provide a secure way for
your administrators to manage the systems via a bastion host, a VPN, or another
method offered by your cloud provider.

4. Set up a web application firewall, RASP, and/or IDS/IPS, if appropriate.
5. Set up DDoS protection if appropriate.
6. Set up at least limited egress (outbound) filtering, with more strict egress filtering

for higher-security applications.
7. Check all of these configurations regularly to make sure they’re still correct and

useful. Some cloud providers provide services to check configurations, including
network configurations. For example, you could have an automated check to
make sure all of your systems’ security groups are configured to only permit SSH
access from specific IP addresses.

It should be somewhat obvious that none of the controls presented here are particu‐
larly effective in a “check-the-box” mode, where you deploy them and then do not
take care to tune them, update them, and investigate what they’re finding. It’s very
important not only to set up these controls, but also to continually review logs to
detect intrusion attempts or attackers already in the network trying to move laterally.
Investigating alerts from security tooling finds leads us into the subject of the next
and final chapter: detecting, responding, and recovering from security incidents.

Conclusion | 157

Exercises
1. Which of the following are likely to be useful in protecting your cloud environ‐

ment from network-based attacks? Select all that apply.
a. Security groups
b. Network access control lists
c. Virtual firewall appliances
d. Physical firewall appliances

2. What features does a virtual private cloud (VPC) typically offer?
a. Dedicated virtual network segments
b. Dedicated storage
c. Dedicated CPUs
d. Dedicated encryption keys

3. What are some of the benefits of using Transport Layer Security (TLS)? Select all
that apply.
a. Server authentication
b. Confidentiality of data transmitted
c. Integrity of data transmitted
d. Blocking network connections by attackers

4. True or false: There is no need for a perimeter in modern cloud environments.
5. Which of the following statements about internal network segmentation are true

for cloud environments? Select all that apply.
a. Internal network segmentation is typically easier to implement in cloud envi‐

ronments than traditional environments.
b. Cloud providers usually do not charge additional fees for internal

segmentation.
c. Security groups allow you to create separate subnets for your different

applications.
d. Network access control lists allow you to prevent systems in one subnet from

talking to another subnet.
6. True or false: Anti-DDoS appliances can effectively mitigate large scale volumet‐

ric DDoS attacks.

158 | Chapter 6: Network Security

7. Which of the following statements about egress filtering are true? Select all that
apply.
a. Egress filtering can prevent malware from “calling home.”
b. Egress filtering can protect against exploitation of supply chain attacks.
c. Egress filtering is most effective using IP-based controls.
d. Egress filtering is most effective using proxies.
e. Egress filtering is typically difficult in traditional environments, but easy to

apply in cloud environments.

Exercises | 159

CHAPTER 7

Detecting, Responding to, and
Recovering from Security Incidents

By now, you know what your cloud assets are, and you have put some reasonable pro‐
tections in place for them. Everything’s good, right?

When you’re two-thirds of the way through a mystery novel and the mystery appears
to be solved, you know the story isn’t over. It’s probably not a big surprise that you’re
not done with cloud security yet either, since there are still pages left in this book.

All of the previous chapters have dealt with identifying your assets and protecting
them. Unfortunately, you won’t always be successful. In fact, in some organizations
and industries, minor security incidents are a routine part of life! At some point
attackers will almost certainly attempt, sometimes successfully, to gain unauthorized
access to your assets. At that point, the trick is to detect them as quickly as possible,
kick them out, and do whatever damage control is needed. As part of this, it is helpful
to understand what attackers often do and how attacks often proceed.

We’ve seen many high-profile breaches in the past few years. What often distin‐
guishes a bad breach from a really bad breach—there are no good ones—is how long
it took to detect what was going on and how effectively the victim responded. One
recent study of more than 550 organizations showed that the mean time to identify a
breach was 277 days, and that companies that identified a breach in fewer than 200
days saved more than $1 million compared to those that took more than 200 days.
With that in mind, let’s see what we can do to detect issues and respond to them
before they become disasters.

161

https://oreil.ly/sQIQR
https://oreil.ly/sQIQR

MITRE ATT&CK and Kill Chains
There are several resources that attempt to describe what an attacker might do. The
most popular as of this writing are the MITRE ATT&CK framework (pronounced
“attack”) and the Lockheed Martin Cyber Kill Chain, but there are others, such as the
Unified Kill Chain.

MITRE ATT&CK is generally more detailed than the kill chains and shows different
tactics, techniques, and procedures (TTPs) that an attacker might use in different
phases of the attack and in different computing environments.

The kill chains are more like outlines, listing common steps in the order that attackers
typically take them in, such as reconnaissance, weaponization, delivery, exploitation,
installation, command and control, and action on objectives.

I recommend that your incident response team read through and understand at least
one kill chain model, as well as some of the TTPs in the MITRE ATT&CK cloud
matrix. Understanding what attackers are likely to try can help when responding to
an active attack. We’ll look at one example later in this chapter.

Differences from Traditional IT
Take another look at the shared responsibility model diagram from Chapter 1
(Figure 1-8).

In a traditional environment, you had to worry about what was happening at every
one of these levels. The good news about cloud environments is that intrusion detec‐
tion and response are the provider’s job, in the areas that are their responsibility.
Rarely, you could be affected by a breach at your provider, in which case you
should be notified and may need to perform response and recovery activities specific
to the services you’re using. However, in the vast majority of cases, all of your detec‐
tion, response, and recovery activities will be in the areas marked “consumer
responsibility.”

For the most part, you don’t get to see any logs from the levels that are the provider’s
responsibility, although you can sometimes see actions the provider has taken on
your behalf, such as accessing your encryption keys. However, there’s an important
new source of privileged user logs in a cloud environment: you can track things your
team did using the provider’s portals, APIs, and command-line interfaces.

You won’t be allowed to touch the physical hardware in a cloud environment. Many
incident response teams use a “jump bag” with forensic laptops, hard drive duplica‐
tors, and similar technology. Although you may still need such tools for dealing with
incidents involving non-cloud infrastructure (for example, malware infections on

162 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

https://oreil.ly/1LnrI
https://oreil.ly/lugUE
https://oreil.ly/kfxOz

on-premises servers), you will need virtual, cloud-based equivalents of the jump bag
tools for incident response in the cloud. This also means that the forensic parts of
cloud incident response can be done from anywhere, although there may still be ben‐
efits to being physically colocated with other people involved in the response.

What to Watch
Any system of reasonable size offers so many different logs and metrics that it’s easy
to get buried in data that’s not useful for security purposes. Picking what to watch is
very important! Unfortunately, this will necessarily be specific to your environment
and application, so you really need to think about your threat model—what assets
you have and who is most likely to attack them—as well as what logs come out of the
systems in your asset management pipeline, discussed in Chapter 3.

As an example, if you have many terabytes of data, watching metrics on the volume of
your network traffic and the length of connections might be very useful to spot some‐
one in the process of stealing it. However, network traffic metrics like that won’t be as
useful if you’re distributing software that you think someone may try to compromise
with a backdoor. In that case, the volume of data, destination, and session length
won’t change, but the content will be corrupted.

As another example, if you’ve paid for a specific tool such as antivirus software, and
have done the work to ensure that all of your cloud VMs are running it, it’s pretty silly
to ignore it when it’s screaming that it has found something. When you see alerts
from that tool, it may have successfully protected you from the entire attack. How‐
ever, it may also have blocked only part of the attack, or it may have detected some‐
thing suspicious but not blocked it. You need to investigate to see how the malware
got on the system and whether the attack was fully blocked or not.

Once you have a threat model in mind, and a good idea of what components make up
your environment, the following sidebar covers some good general starting points for
what to watch. We will look at more concrete examples when we consider the sample
application at the end of the chapter.

Logs, Events, Alerts, and Metrics
A log, or event, is a record of a specific thing that happened. For example, your envi‐
ronment might generate a log record whenever someone authenticates, or makes a
web request, or changes a configuration, or any number of other things that could
happen in a complex environment.

An alert is a type of event where the system’s rules indicate that it’s worth notifying
someone. The fact that antivirus software pulled updated definitions is an event. The
fact that it actually found malware should be an alert!

What to Watch | 163

Metrics are sets of numbers that give information about something. Metrics are usu‐
ally time-based, so you might have a metric collected every minute for how many
authentication requests have happened, how much free disk space is available, or the
number of web requests made.

The primary advantage of logs is that they provide a lot more information about what
has happened, but the cost of storing and searching logs can increase quickly as activ‐
ity increases. If you have twice as many web requests, you have twice as many log
records! On the other hand, while the numbers reported by metrics during each time
period will get larger as activity increases, the cost of storing and processing the met‐
rics doesn’t increase (because it usually takes the same space to store the numbers 100
and 200). Both logs and metrics can be useful for detecting security incidents and
generating alerts, and metrics can sometimes be a better choice for alerting when
there are too many log entries to deal with.

For each of the following types of events, you need to make sure that the log entries
contain enough data to be useful. At a minimum, this usually means when, what, and
who: when the event happened, what happened, and who triggered the event. In some
cases “who” might be a system or other automatic tool, such as when a system reports
high CPU usage.

With one exception, you should never put passwords, API keys,
sensitive personal information, protected health information, or
any other sensitive data in logs. In most cases, not every individual
who has access to the logs is authorized to see that information. In
addition, having copies of sensitive information in more places
than necessary increases the risk that it will be accidentally
disclosed.
In fact, for privacy reasons, you should avoid directly logging per‐
sonally identifiable data wherever feasible. If you need to be able to
figure out who is referred to in logs, use non-personally identifiable
unique IDs, such as GUIDs, and keep a table elsewhere that lets
you correlate those GUIDs to the actual entities.
The exception to the rule about sensitive data in logs is session
recording for privileged user monitoring, which may occasionally
log API keys used on a command line or other sensitive informa‐
tion. In this case, access to the session records must be very tightly
controlled, such as by sending them to a “deposit only” location so
that only a small monitoring team is able to see them after they’re
generated. The risk reduction from being able to audit privileged
user sessions will often outweigh the increased risk of occasional
secrets in those records.

164 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

1 This is sometimes also called the “four eyes principle,” the “two-person rule,” or the “two-man rule.”

Privileged User Access
Almost everyone should be logging and at least spot-checking privileged user logins
at all levels of their environments. Watching these can be a great way to trigger ques‐
tions that lead to detecting malicious activity, such as “Why is that person logging in
at all?” or “Didn’t that person leave the company?” or “Does anyone recognize this
account?”

Monitoring privileged user access doesn’t mean you don’t trust your administrators. In a
perfect world, you wouldn’t have to place 100% trust in any single individual. Every
task that involves a risk would need to be approved by at least two people, requiring
collusion in order to perform such tasks without being detected.1 That level of dili‐
gence certainly isn’t necessary for all tasks in all organizations, although you should
consider it for high-value actions such as money transfers or access to secret data
stores. What we’re mostly focused on here is detecting an unauthorized person pre‐
tending to be an administrator. Given that one of the most prevalent causes of security
incidents is lost or stolen credentials, watching what your administrators are doing is
a great way to catch someone pretending to be an admin.

Cloud providers can keep good logs of when someone logged on as one of your
administrators using the cloud administrative interfaces (the web portal, APIs, or
command-line interfaces), and what they did—for example, you may see logs such as
“created an instance,” “created a database,” or “created an administrative user.” These
logs may be collected by cloud services like AWS CloudTrail, Azure Activity Log,
Google Cloud’s operations suite, and IBM Cloud Activity Tracker; but in some cases
you have to explicitly turn on the logging feature, specify where and how long to
retain logs, and pay for the storage.

In addition to privileged user logs collected by the cloud provider, administrators
often also have privileged access to the systems created in the cloud environment. For
example, you may have administrative accounts on virtual machines, or on firewall
appliances, or on databases. Access to these may be reported using a protocol like
syslog. You may also have other systems used by administrators, such as a password
vault to check out shared IDs. Generally speaking, any systems used by administra‐
tors to perform privileged actions should log those actions for later inspection.

Administrative activity logs should be divided into two types, which I’ll label toxic
logs and sanitized logs.

Toxic logs might contain sensitive information, such as passwords and API keys that
could give an attacker direct access to the system. You may not have any toxic logs in
your environment. In general, toxic logs should be accessed only during a suspected

What to Watch | 165

incident, or by a small, monitored team that regularly spot-checks administrative ses‐
sions. When toxic logs are accessed, that should also trigger some form of notification
so that at least two people know the logs were accessed. Here are some examples of
toxic logs:

• Secure shell session logs or other logs showing commands and options
• The exact commands executed by admins on virtual machines via a cloud pro‐

vider feature such as Amazon EC2 Run Command, unless you have some way to
keep secrets from being logged with those commands

• The exact commands executed by admins on containers, such as those beginning
with kubectl exec, unless you have some way to keep secrets from being logged
with those commands

Sanitized logs are specifically designed not to contain secrets. The vast majority of
logs should fall into this category. Here are some examples of sanitized logs:

• Actions that the admin performs via a cloud API or the cloud provider console
• Actions that the admin performs on the Kubernetes console, such as deploying a

new application or authorizing additional users
• Successful and failed authentication and authorization attempts for any of the

components in the system (for instance, if an administrator successfully logs into
the cloud console but is not allowed to create a resource there, both events
should be logged)

Session Recording Tools
One of the functions usually included in privileged access management or privileged
identity management systems is session management—the ability to record privileged
sessions, as well as watch what a privileged user is doing in real time and disconnect
sessions that are suspicious. This is particularly important in areas where the systems
being managed have high confidentiality or integrity requirements, and there’s a sig‐
nificant incentive for attackers to either access or change the data managed by these
systems.

Session recording tools generally work in one of two models: either all sessions go
through one central location for recording and control, or session recording happens
using agents on the servers themselves. Having everything go through a central loca‐
tion has the downside of a single point of failure. Having everything logged by a local
agent on the server has the downside that the privileged user often has the privileges
to turn off the agent. In general, I recommend having centralized session recording,
with a break-glass process to gain access if the session recording infrastructure is
down.

166 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

The privileged users of most of the systems being managed and the privileged users
who manage the session recording tool should generally be different groups. Again,
you want to set up a system where no single individual (or attacker pretending to be
that individual) can issue malicious commands and also disable the logging of those
malicious commands.

As previously mentioned, session recording logs are “toxic,” in that they may contain
passwords or other secrets. I generally recommend that session recording tools be
configured to deposit logs in a “drop box” fashion, where the recording tool can send
logs to a centralized location but does not have a local copy and cannot see or modify
the logs after sending them.

Logs from Defensive Tooling
If you have defensive tools like antivirus software, firewalls, web application firewalls,
intrusion detection systems, or network monitoring tools, you need to be looking at
the logs that these produce. You can’t be certain that those tools will be 100% effective
in preventing all attacks. In some cases, the tools may block the initial attack and let a
subsequent attack through, or they may only log that something happened without
blocking the attack. You need to collect and analyze the logs from these services, or
you may be giving up a big early-warning advantage.

The problem is that some of these tools are necessarily noisy and have a high percent‐
age of false positive alerts. Don’t underestimate the risk of false positives! It’s very easy
to train yourself and your staff to ignore alerts that may actually be important. You
need a feedback loop so that people seeing false positives have a way to try to either
filter out specific logs from processing altogether or tune the system so that the tools
don’t produce false alerts as often. This is an art, of course, because you run the risk of
filtering or tuning out true positives, but in most cases you should accept a small risk
of tuning out a true positive to prevent your team from ignoring the alerts altogether.
Just as you should have multiple layers of protection, you should also have multiple
detection layers so that you’re not dependent on only one tool to detect malicious
activity.

The logging recommendations for most defensive tooling in cloud environments are
very similar to in on-premises environments.

Anti-DDoS
Systems used to defend against denial-of-service attacks should be configured to alert
on attacks. This should generally be a high-priority alert, such as paging someone,
because DDoS attacks often escalate over time or are followed by an extortion
attempt. In addition, a DDoS attack can be a distraction to cover up other breach
activity, although there is disagreement as to how common this is.

What to Watch | 167

Web application firewalls
Both distributed and centralized WAF solutions can alert on attacks that were
blocked or on requests that look suspicious. These alerts can be useful to understand
when an attack against your web applications has been attempted.

WAFs are often used in lieu of manual code reviews for PCI DSS
certification. As part of that, you’ll also need to show that you’re
retaining and analyzing the logs from the WAF systems.

Firewalls and intrusion detection systems
Internet-facing firewalls and IDSs will need to be tuned fairly low for alerting,
because systems exposed to the internet are under constant low-grade attack (such as
port scans and password guessing). However, the historical data provided by these
systems may be of use when an incident is suspected.

On the other hand, a firewall or IDS deployed inside your perimeter should be tuned
to be fairly sensitive, because alerts here are probably indicative of misconfiguration
or an actual attack. Aside from other defensive tools, which can be allowlisted so that
they don’t cause alerts, nothing else should really be scanning your internal network
or causing failed connections.

In this same general category are network traffic analysis systems, which typically
aggregate flow data from routers and switches to give an overall picture of how data is
moving into, out of, and through your environment. These can also be configured to
send alerts that might indicate something is wrong.

Antivirus
Ensure that you will get alerts if any in-scope systems in your asset management sys‐
tem aren’t running antivirus software, and if any malware is found.

Note that when an attacker exploits a vulnerability to get into your system, their first
step is usually to drop some malware on the system. If the attacker is smart, they’ll
make sure the malware they use is custom enough not to trip any antivirus software
you have in place. Attackers can use services or may have labs to run their malware
through every piece of antivirus software available to make sure it isn’t detected. For‐
tunately, not all attackers are that smart, and these tools are still very helpful to catch
the dumb ones. Don’t reject tools just because they’re not 100% effective!

168 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

In the infamous 2013 Target breach, one of the mistakes was not
responding to the alerts from the antivirus software.

Detection and response tools
Whereas traditional anti-malware software focuses primarily on blocking malicious
activity, endpoint detection and response (EDR) software is more focused on allowing
teams to investigate and respond to threats that have gotten through the first line of
defenses. If antivirus software is like the flame-retardant materials in a physical struc‐
ture, the EDR software is like the smoke detector and sprinkler systems.

EDR is typically done by recording lots of information about the running systems,
such as hash values of each executable or library that has run on the system, or a his‐
tory of what network connections were attempted or made. While some of this infor‐
mation may be obtained via operating system or network logs, EDR software can
accumulate it all in one place easily. There, it can be associated with threat intelligence
feeds, such as newly discovered command-and-control servers or newly reported
malware signatures, to detect both current and historical activity. Some EDR software
can also be used to quarantine and investigate systems when an attack is identified.

While these capabilities are often used interactively by a response team, EDR solu‐
tions can also send alerts when threats are discovered in your environment, so they
overlap somewhat with antivirus software.

All the DRs
The market is filled with many types of detection and response tools—as of this writ‐
ing, EDR, NDR, and XDR are the most common categories. The definitions of these
overlap somewhat and are not universally agreed upon, and many vendors will try to
convince you that their tool can do everything. Let’s take a quick look at each.

Endpoint detection and response (EDR) tools, as described earlier, offer three main
benefits over traditional antivirus tools. The first is the use of many other signals
besides signatures and process behaviors to alert on suspicious activity. The second is
the ability to look back in history to see who or what is already infected, based on new
information. The third is the ability to quickly quarantine an entire system that
appears to have been compromised, rather than just quarantining a suspicious file.

Network detection and response (NDR) is similar, but for network flows. NDR tools
often offer behavioral analysis in addition to signature checking, similar to network
traffic analysis systems, as well as the ability to quickly lock down network flows in
response to an active attack.

What to Watch | 169

Extended detection and response (XDR) is typically a combination of several differ‐
ent security products integrated together, although different vendors combine differ‐
ent functions and call it XDR.

Regardless of the technologies you use, ensure that you’re consuming the alerts from
the tools and responding to them.

File integrity monitoring
Some files shouldn’t change regularly, and if they are changed, that might be evidence
of an attack. For example, if someone modifies the configuration of the logging sys‐
tem, that’s suspicious. In fact, on a Linux system, most changes to the /etc directory
tree should be viewed with some suspicion.

File integrity monitoring (FIM) software can alert when specific files are changed, and
some products also allow you to alert when certain Windows registry entries are
changed. Some cloud providers offer FIM capability as part of the IaaS cloud man‐
agement platform. There are also free and paid versions of FIM products that you can
deploy to your systems.

File integrity monitoring is explicitly required for PCI DSS certifi‐
cation, and some auditors may require it to cover not only flat files
but also changes to the Windows registry.

Cloud provider monitoring tools
Cloud provider monitoring tools, such as AWS CloudTrail, Azure Monitor, and IBM
Cloud Activity Tracker, can provide important insight into what the different entities
inside your cloud account are doing. This is particularly important for privileged
users or highly privileged service accounts.

These tools will typically have the ability to both collect logs and set alerts for actions
that either should never happen or should be rare enough that they warrant notifying
other users. Some examples of these types of actions may be assuming a privileged
role inside the cloud account or changing security parameters of the cloud account or
critical services in the account.

Cloud Service Logs and Metrics
In addition to logging administrator actions, most cloud providers also offer useful
logs and metrics about their services. Browse through the logs and metrics available
for the cloud services you’re using, and think about which ones might go haywire in
an attack and/or be useful for figuring out how bad things are after the fact. Here are
some examples:

170 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

CPU usage metrics
Spikes in CPU usage not explained by increased usage might indicate active ran‐
somware encryption or cryptomining.

Network logs and metrics
For example, if you are using virtual private cloud subnets, many cloud providers
can provide metrics on the data passing into and out of these subnets, as well as
flow logs showing accepted and denied traffic. Denied traffic when the source is
your own component indicates either a misconfiguration or an attack, and
should be investigated. Spikes in network traffic might indicate that a denial-of-
service attack is beginning or that an attacker is actively stealing data.

Storage input/output (I/O) metrics
A spike in I/O not explained by increased usage might indicate active ransom‐
ware, a denial-of-service attack, or an attacker in the process of stealing data.

Metrics on requests to platform components, such as databases or message queues
If your database starts going crazy, that may be an indication of an attacker steal‐
ing large amounts of data. If your message queue starts going crazy, perhaps an
attacker is in part of the system and is attempting to send messages to other
components.

End-user logins and activity on SaaS offerings
If a user starts pulling down huge amounts of data from a cloud storage service,
that could be an indication that the account is compromised. If you’re using a
cloud access security broker (CASB) to mediate access to a cloud service, it may
also generate more detailed events related to user activity that you can monitor.

Platform service logs and metrics
Each platform service may have logs and metrics that are useful for detection and
response in addition to operational monitoring. For example, if you’re using an
orchestration platform such as Kubernetes, you can turn on auditing. The Kuber‐
netes documentation explains how to turn on audit logging and how to direct
those logs to a collection point. Similarly, object storage, databases, and other
cloud services have service-specific logs and metrics.

Operating System Logs and Metrics
If you are running virtual machines or bare-metal machines in the cloud, the security
of the operating system is generally your responsibility, and this includes collecting
and analyzing logs. This is similar to on-premises infrastructure:

• The CIS Benchmarks list is a reasonable base set of events to log for many differ‐
ent operating systems, products, and services that you may have in your
environment.

What to Watch | 171

https://oreil.ly/Z6r_x
https://oreil.ly/Z6r_x
https://oreil.ly/y91Sb

• If you’re using Windows, Microsoft provides some good information about event
IDs to monitor. For example, a fairly common type of attack is a pass-the-hash
attack, and the documentation provides information about specific event IDs to
monitor in order to spot such an attack.

• If you’re using Linux, many Linux operating system vendors provide instructions
on how to enable audit logging to meet different industry and regulatory require‐
ments. Even if you don’t have to comply with those requirements, the instruc‐
tions can be a useful starting point for what to log and analyze in your
environment.

• Metrics such as memory usage, CPU usage, and I/O can be very useful to security
teams as well as operations teams.

Middleware Logs
If you’re running your own database, queue manager, application server, or other
middleware, you may need to turn on logging and metrics collection. In addition to
any privileged user activities (see “Privileged User Access” on page 165), you may be
able to set up alerts for all access to sensitive databases that originates from anywhere
except a legitimate application ID or system, or for access to specific tables, or other
alerts useful for tracking access to sensitive data.

Secrets Server
If you’re running a secrets server, as discussed in Chapter 4, you should log all access
to secrets. Here are some examples of unusual activity that you may wish to alert on
and investigate:

• Authentication or authorization failures on the secrets server, which may indicate
an attack

• An unusual amount of activity for secrets retrieval
• The use of administrative credentials

Your Application
If you’ve written a custom application or are running a third-party application, it may
produce its own logs and metrics that could be useful to both operations teams and
security teams. For example, a banking application may log all transfers, and transfers
over a certain threshold might generate an alert.

172 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

https://oreil.ly/p6JT8

Deception Techniques
In addition to other detection technologies, some technologies are designed to make
life more difficult for an attacker without bothering your normal users and adminis‐
trators. The most common example of this is a honeypot, which is a system that sits
around pretending to be a functional part of the infrastructure, but whose sole pur‐
pose is to distract and slow down attackers and alert you when they’re in the system.

In addition to honeypot systems, there are also honey tokens and honey IDs. Honey
tokens can be embedded in useful-looking but fake files (such as next-quarter-secret-
plans.docx) and alert you when and by whom those files are opened. They can also be
normally unused items like API keys embedded in source code that alert you when
used. Honey IDs are often unused, non-privileged IDs that look appealing to an
attacker (like “superadmin”) and which generate an immediate alert if someone tries
to use them.

It’s important to note that although “security through obscurity” is ineffective in gen‐
eral, secrecy is essential in the specific case of deception techniques. Do not document
the presence of honeypots, honey tokens, or honey IDs in any location where anyone
outside of your core security team can learn about them.

Deception technologies can be a useful way to leverage your “home court advantage”
in defending your environment, because you can lay traps for attackers that only you
know about. However, this is an advanced technique. Make sure you have your log‐
ging, monitoring, alerting, response, and recovery plans running effectively before
investing much time and effort in deception.

Deception techniques can be used both on-premises and in the cloud. One cloud
native example is Microsoft Sentinel Deception.

How to Watch
Now that we’ve covered what types of events and metrics might be good to watch for
in your environment, let’s look at how to effectively collect and use them to detect and
respond to intrusions. Figure 7-1 shows the different steps in this process. These steps
may all be done by a single product or service, such as a SIEM, or by multiple prod‐
ucts and services acting together.

Figure 7-1. Logging and alerting chain

How to Watch | 173

https://oreil.ly/Dh6fA

Make sure the time is synchronized on all of your systems, gener‐
ally by using the Network Time Protocol (NTP). In addition, make
sure either that all timestamps contain time zone information or
that you use the same time zone (such as GMT) for all logs. This is
usually very easy to configure, and it can avoid the nightmare of
trying to correlate events between different log sources when the
system clocks or time zones are off.

Aggregation and Retention
All of the logs described earlier need to be stored somewhere and kept for a mini‐
mum length of time. While allowing logs to collect on various different systems is far
better than having no logs at all, it’s far from ideal. Individual system disks may fill
up, causing loss of logs and operational problems, and an attacker who gets into a sys‐
tem can erase the logs to cover their tracks. Plus, it can be very slow and inconvenient
to get into dozens of different systems to search logs and pull together a picture of
what’s going on.

In the past, important logs would often be printed onto paper and shipped to a physi‐
cally secure location. While that’s a pretty safe way of securing them and making
them unerasable by computer, paper has some pretty big drawbacks—it’s not searcha‐
ble by automation, it’s heavy, it’s expensive, and it’s a fire hazard.

In the cloud, you can get many of the same benefits much more easily by locating
your log aggregation service in a separate cloud account with different administrative
credentials so that the logs can’t be wiped out by someone with access to the primary
systems. (This is also a good idea for backups, as discussed later.) Most cloud provid‐
ers have services that can aggregate, retain, and search logs so you don’t have to set up
log aggregation from scratch.

You should retain most logs for at least one year. Longer retention
periods can sometimes be helpful for investigating security inci‐
dents, but longer retention periods can sometimes conflict with
privacy regulations. If you’re subject to any industry or regulatory
standards, look at the specific retention requirements for those
logs, but as of this writing, one year is usually a safe choice.

Once you have all of your logs and alerts in a central, secure location with the proper
retention period configured, you need to tackle the problems of looking through
those logs to alert on suspicious behavior and of making sure the alerts get to the
right people and are acknowledged and investigated.

174 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

2 The term “syslog” can be confusing because it is often used to refer to a program to accept syslog messages, a
network protocol (usually running over udp/514 or tcp/514), and a format for lines in a log file.

Parsing Logs
If you have all your logs aggregated in a safe place, congratulations! A determined
human can eventually go through all of those logs and get answers to important ques‐
tions, although it may take a while. However, one of the primary motivations for
inventing computers was to process data much faster than humans can.

Log parsers pull specific pieces of information (fields) out of the different types of
events. Here are some examples of log parsers at work:

• For an operating system event, the parser will recognize the timestamp, the name
of the system generating the event, and the event text. Further parsing may hap‐
pen for some types of events; for example, for a failed login event, the parser can
also recognize the IP address from which the login was attempted.

• For firewall logs, the parser will recognize the timestamp, source IP address, des‐
tination IP address, and accepted/denied result.

• For antivirus logs, the parser will recognize the timestamp, hostname, and event
details such as a failed update or the discovery of malware.

Unfortunately, there are thousands of different log formats. There are a few common
event log formats that make parsing a little easier, however. Many tools can parse logs
in these formats into specific fields, although that doesn’t always mean the fields are
useful. Here are some examples:

• Syslog is a standard format for log messages, although “format” is a little gener‐
ous.2 There are actually a couple of popular syslog formats: RFC 3164 describes a
collection of things seen in the wild, and RFC 5424 is more prescriptive. Typi‐
cally, a syslog record will contain a timestamp, the name of the system generating
the message, the type of process sending the message, a severity level, and a
mostly free-form message. It’s often up to the parser to figure out what generated
the free-form message and perform further parsing on it.

• The Common Log Format (CLF) and Extended Log Format (ELF) are primarily
used by web servers to log requests.

• The Common Event Format (CEF) is an extension of the syslog format, primarily
used by MicroFocus ArcSight, that provides additional structured fields.

• The Cloud Auditing Data Federation (CADF) standard is intended to allow
switching between cloud providers without changing the log aggregation and
parsing systems.

How to Watch | 175

https://oreil.ly/GfYSZ
https://oreil.ly/meyxY
https://oreil.ly/QirhJ
https://oreil.ly/9x7WW

Searching and Correlation
Once the logs are aggregated and parsed, you can search based on the parsed fields
and correlate events between different systems. For example, you can search for all
login failures during a certain time period, all cases where a successful login hap‐
pened without a VPN connection for the same user, or malware detection followed
by a login.

The ability to perform quick searches across multiple different log sources and types
of logs can be invaluable during incident response. Test the ability of the system to
quickly handle multiple searches by many frantic people before you’re in the middle
of a security incident!

Many systems have the idea of hot and cold storage. Hot storage
can be queried instantly, whereas cold storage may need to be
retrieved and reloaded before it can be searched.

Alerting and Automated Response
When an automated system sees something a human should look at, it raises an alert
(occasionally called an “offense”), and in some cases may automatically respond by
disabling access to or shutting down a component. Alerts may be based on certain
events, on correlations of events happening, or on certain thresholds being reached.

This is really where the art lies in log analysis. If the system is tuned so sensitively that
your security team is constantly getting false alerts, all of the alerts will quickly be
ignored. On the other hand, if you’re not getting at least some alerts regularly, you’re
probably not following up on some things that you should be. You need a feedback
loop for each type of false alert to determine whether it makes sense to filter out those
types of events, raise thresholds, or take other actions to reduce the false alerts. Con‐
sider running periodic tests that you know will generate alerts, to ensure that they’re
not ignored.

There are some alerts that you should almost always follow up on. Multiple login fail‐
ures for privileged users, malware found on systems, and other alerts that may be pre‐
cursors of a security incident should at least get a look, even if they’re usually false
alarms.

Don’t forget that you also need to have alerts when logs stop flowing. That’s a security
issue too! In many cases, it just means something is malfunctioning, which might
prevent you from seeing a future problem. In some cases, however, it might actually
be an indicator of an attack in progress.

176 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

Automated response sounds great in principle, but it really has the potential to dis‐
rupt your business. In addition to outages caused by an incorrect response or an
automated overreaction, automated response systems can be deliberately leveraged by
attackers to cause outages. It’s not fun to realize that you’ve spent a considerable
amount of money to prevent denial-of-service attacks, only to unintentionally enable
an attacker to conduct an easy denial-of-service attack using a simple port scanner or
a few failed logins. Some environments have high enough security requirements that
you’re willing to suffer an outage rather than accept even a small risk of letting a pos‐
sible attack continue until a human can investigate, but in most cases the operational
and security risks have to be balanced carefully.

Alerting shouldn’t be a fire-and-forget activity. You often need a way to rotate differ‐
ent individuals in and out, because nobody wants to be on call all the time, and you
need some way to ensure that an alert is acknowledged within a certain amount of
time or escalated to someone else to handle. There are cloud-based services for every‐
thing, and alerting is no exception. In most cases, the same system can be used for
both operational response and security response activities.

Larger organizations will usually either build a system or contract with a managed
security service provider (MSSP) for a 24×7 security operations center (SOC) to
monitor and respond to alerts. A room with lots of screens displaying important-
looking graphics is optional, but looks impressive to your C-suite management and
customers and can help present important information quickly in an urgent situation.
In many cases, organizations use a hybrid model where some of the lower-level moni‐
toring and alerting is performed by an MSSP, and the more important alerts are esca‐
lated to in-house staff.

Modern systems can produce billions of log events. You can use even more automa‐
tion to help deal with them—and this is where a SIEM can come in handy.

Security Information and Event Managers
A security information and event manager (SIEM) can perform some or all of the
steps described in the previous sections. For example, you may have your SIEM
aggregate logs, or you may instead have a separate system aggregate and filter logs
and feed only a subset of them to the SIEM. Because many cloud providers have
lower-cost, high-volume log aggregation services, and because logs are often used for
operational troubleshooting in addition to security incident detection and response,
many organizations have a cloud log aggregator feed security-relevant events into the
SIEM.

How to Watch | 177

SIEM rules can be used to detect potential bad behavior, sometimes by correlating
events that happened in two different places or by comparing current and historical
data. Here are some questions that might be raised by a security operator viewing
alerts from a properly configured SIEM:

• “Database traffic is up 200% from the monthly average. Maybe the application is
just really popular right now, but is someone systematically stealing our data?”

• “We just saw an outbound connection to an IP address that has been used by a
known threat actor recently, according to this threat intelligence feed. Is that a
compromised system talking to a command-and-control server?”

• “There were 150 failed login attempts on an account, followed by a success. Is
that a successful brute-force attack?”

• “We saw a single failed login attempt on 300 different accounts, followed by a
success on account #301. Is that a successful password spraying attack?”

• “A port scan was followed by a lot of traffic from a port that hasn’t been used in
months. Port scans happen all the time, but perhaps a vulnerable service was
found and compromised?”

• “John doesn’t normally log in at 3:00 AM EST, or from that country. Maybe that’s
not really John?”

• “Three different accounts logged in from the same system over the course of 30
minutes. It seems unlikely all of those people are actually using that system, so
maybe the system and those accounts are compromised?”

• “A new administrative account was just created outside of normal business hours.
Maybe someone’s working late, but maybe there’s an issue?”

• “Someone was just added to the administrator group. That’s a rare event, so
shouldn’t we check on it?”

• “Why are there firewall denies with an internal system as the source? Either
something is misconfigured or there’s an unauthorized user trying to move
around the network.”

A SIEM can be run in-house, as a cloud service, or as part of a managed security serv‐
ices engagement. Many cloud infrastructure and platform providers have built-in
services that provide at least some SIEM functions, and there are also many third-
party solutions. Regardless of whether you choose to use a SIEM or not, make sure
that you are meeting your requirements for aggregation and retention, parsing,
searching and correlation, alerting, and automated response capabilities.

178 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

To SIEM or Not to SIEM
Do you need a security information and event manager? Smaller organizations may
be able to make do with a log aggregation facility that generates simple alerts, or that
security personnel can dig through to find threats. However, there’s a reason these
dedicated SIEM products and services exist. The logic and rules required to pull rele‐
vant data out of a lot of different log formats, correlate logs from different sources,
know what common attacks look like, and get a threat intelligence feed on current
attacks around the world can be very complicated. All of this work is difficult to
reproduce internally, so many larger environments either run a SIEM product or ser‐
vice, or hire a managed security service to run one for them and assist with response.

Threat Hunting
Only after you have the basics down—that is, you’re collecting security-relevant logs
and metrics, parsing them, and responding to alerts generated by your systems—
should you move on to threat hunting.

Threat hunting is one of the few cases where it’s okay to go “looking for trouble,”
rather than reacting to specific alerts. You start by creating a hypothesis, such as “Per‐
haps I’m being targeted by Advanced Persistent Threat 12345” or “Maybe someone is
after the secret plans to my spaceship.” You then query the data you have collected,
and collect new data if needed, to gather evidence to either prove or disprove that
hypothesis.

Preparing for an Incident
You have the logs, and you are doing useful things with them, such as getting alerts.
Now you need to plan for what to do when one of those alerts is the real deal.
Depending on the risk to your environment, your plans don’t have to be exhaustive,
because even a little bit of planning can help enormously.

The first decision that you need to make is this: at what point are you going to call for
outside help? This will depend heavily upon the perceived risk to your organization,
the severity of the incident, and the size of your security team. However, even large,
well-prepared organizations may need outside help for more serious security inci‐
dents. A quick search will turn up many incident response firms, and it’s a good idea
to have vetted a couple of them ahead of time in case you need them.

In addition, you may want to consider cybersecurity insurance, particularly if you
have a small team and little incident response can be done in-house. In some cases,
this insurance may be included with general business protection policies, although
many exclude cybersecurity incidents. As with any insurance, you need to carefully

Preparing for an Incident | 179

3 In many organizations, this is called the Computer Security Incident Response Team (CSIRT), to distinguish
it from other incident response teams.

read the coverage and exclusions, as some policies exclude common types of attacks
such as social engineering attacks, or deny coverage based on unclear security
requirements for the insured. However, these policies can pay for most or all expenses
associated with incident response.

The most important preparation work is the collection and retention of logs,
described earlier, so that you can call up a reasonable amount of current and histori‐
cal data to perform investigations. In addition to that, you need to put together a
team, a plan, and some tools.

Team
The incident response team3 has the stressful job of figuring out what’s going on dur‐
ing an attack and containing the incident as much as possible. The first thing you
need to do is identify primary and backup technical incident response leaders,
because response activities cannot wait for someone to return from vacation. These
people will be responsible for running any internal investigations and coordinating
with any outside help.

You also need to identify primary and backup business leaders who can be available
immediately to sign off on business decisions such as taking systems down or author‐
izing payments. In smaller organizations, the technical leaders and business leaders
might be the same people, but you still need at least one primary and one backup
person.

In addition to the team leadership, you will also need technical specialists in the dif‐
ferent areas that are most likely to be attacked in your threat model. For example, if
you are worried about someone taking data on your customers from your cloud web
application, you might need to line up network specialists, web server specialists,
database specialists, and specialists familiar with the inner design and workings of the
application itself. You don’t want to realize in the middle of an incident that you can’t
reach any of the people who understand a component where the problem is
suspected.

Finally, you also need these primary and backup contacts:

• Your legal department (or someone from your legal firm), to help with questions
about complying with contracts and regulations

• Your communications department, or someone authorized to speak with the
media and to speak to law enforcement authorities should that be necessary

180 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

• Your HR department, or someone authorized to make hiring/firing decisions in
case an insider threat is identified

All of these responsibilities may fall to different individuals, or these tasks may be
performed by the leaders identified earlier in this section, provided that you have pri‐
mary and backup coverage for each area.

Whether you have a full-time incident response team or not, you should also have the
equivalent of a volunteer fire department. Identify knowledgeable people who can be
trained in incident response, and get management preapproval to pull them off of
what they’re currently doing to deal with a high-priority incident.

A few other notes on creating and maintaining an incident response team follow:

• Nobody wants to be on call during a weekend or over a holiday. Unfortunately,
attackers know this, so incidents are more likely to begin at these inconvenient
times.

• If incident response is a regular activity in your organization, burnout is a serious
concern. It is even more of a concern if you have a largely volunteer team that is
attempting to deal with incident response on top of a normal workload. If possi‐
ble, rotate people in and out so that they have a break from incident response
activities.

• Determine general incident response roles for team members ahead of time and
write them down so that during the incident, nobody is confused over who is
responsible for what.

• Have the team meet at least quarterly to make sure everyone is still on board with
the plans.

Once you have an incident response team, you need some plans for the team to
follow.

Plans
Most of the team composition advice in the previous section is not cloud-specific, but
your incident response plans will be. You need to come up with some likely scenarios
in your cloud environment and have some plans to cover those scenarios.

As part of your planning, you need to understand what your cloud provider is com‐
mitted to doing in the event of a security incident. Will they provide additional logs
or take forensic images? Do they provide contact information for security incidents?
You don’t want to be in the middle of an incident trying to read the terms of service
to figure out your provider’s responsibility.

Preparing for an Incident | 181

In many cases, the cloud provider will be responsible for responding to incidents
involving breaches to its cloud services, but not to incidents that only involve your
application. However, there are some exceptions, such as DDoS attacks, where the
cloud provider may work with you to help mitigate the attack—or may turn off all
outside network access to your application to prevent the attack from impacting its
other customers! It’s important to know what your provider can do for you ahead of
time.

You also need at least a small, preapproved budget for dealing with security incidents.
This doesn’t mean the team has a blank check to purchase anything they want, but the
allocation should be enough to cover reasonable items without going through a
potentially lengthy procurement and approval process. For example, if part of the
incident response plan is to contact an incident response firm, at least initial consult‐
ing charges should be preapproved. If part of the plan is to put people on planes right
away, airfare should be preapproved. Try to budget for and preapprove items that are
likely to be needed in the first few hours of an incident.

Prioritization is also an important part of incident response planning. You don’t want
to respond to an attempted attack in the same way that you respond to someone
actively stealing your data. Create at least a few severity levels for security incidents,
with some guidelines on what to do in each case. For example, you might list cate‐
gories for “confirmed unsuccessful attack,” “confirmed successful attack without data
loss,” and “confirmed successful attack with data loss.” As incidents move up the scale,
the response might change.

You should also have some organization-wide guidance for reporting suspected secu‐
rity incidents and not interfering with investigations. This can be as simple as an item
in the employee handbook that says something like, “If you suspect that an unauthor‐
ized user is accessing our information systems, please call the following number to
report a suspected security incident. You are permitted to shut down affected nones‐
sential systems, but do not delete any systems or destroy any data, and do not attempt
to retaliate.”

If you haven’t had a chance to test your incident response plans yet, consider per‐
forming a tabletop exercise. You can do this in-house, by inventing a plausible sce‐
nario and playing it out in a test environment. There are also firms that make this
easier by providing scenarios, fake news bulletins, and other props, and that will cri‐
tique how the plan was executed to help address weaknesses. For example, a likely
scenario might be that there’s an attack in progress and you need to go into lockdown
mode. In a cloud environment, this might involve one or more of the following:

• A plan to disable all cloud portal and API access other than the minimum
required during the incident. For example, you could decide that only four indi‐
viduals need access in the short term and run scripts to disable all other users’
access.

182 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

• A plan to disable all network access to your cloud environment, or some subset
of it. This might disable the application completely, or temporarily disable some
functionality.

• A plan to shut down the entire environment, lock the secrets server, and re-create
a new environment.

Part of your incident response plan should involve having backups
that you can use to restore data and functionality. Make sure your
backups are in a separate cloud account, with separate administrative
credentials from the production data. There have been documented
cases of attackers wiping not only the production data, but also all
of the backups that were accessible from the production account.
It’s important to understand how long restores will take, too. Some‐
times you have a perfectly reasonable recovery strategy, except that
it requires the entire world to stop turning for a week. You don’t
have to be able to function at 100% while recovery is taking place—
delaying sending out bills or jotting down handwritten notes for
entry into the IT systems later may be perfectly reasonable—but
you do need to be able to carry out core business functions.

Tools
When developing your incident response plans, you’ll realize that your team will
need some tools to implement those plans. In a traditional environment, many inci‐
dent response tools tend to be physical bags carrying laptops, cables, and similar
materials (the “jump bags” mentioned earlier). A cloud environment offers virtual
cloud equivalents of some of these items.

The tools needed will depend somewhat upon what your environment looks like and
what your cloud provider offers, but at a minimum your team should probably have
virtual images containing forensic analysis tools and a cloud account to create foren‐
sic infrastructure. Cloud accounts typically don’t cost anything to own if nothing is
provisioned in them, so you should keep a separate incident response cloud account
active that can be connected to your production account. Some cloud providers also
offer documentation on performing investigations and digital forensics in their envi‐
ronments that may point to specific tools.

Create detailed, tested procedures for the most common incident response tasks. For
example, you may want a procedure for collecting memory and disk forensic infor‐
mation from a compromised Linux virtual machine in a cloud environment. Such a
procedure should contain the exact commands to accomplish this, such as running
LiME to capture a memory dump, generating a hash of the dump, verifying the dump
with Volatility, performing a hard power-off of the compromised machine to prevent

Preparing for an Incident | 183

https://oreil.ly/_AXmF
https://oreil.ly/_AXmF

any malicious programs from cleaning up prior to reboot, and taking a snapshot of
the disks.

Here are some other tools that may be helpful:

• Cloud-aware forensic analysis tools, such as Cloud Forensic Utils, which can help
you understand what happened in a cloud environment during a security
incident.

• Up-to-date diagrams showing network configuration, data locations, and event
logging locations.

• Tested communications systems. Will you be able to respond to a threat if your
instant messaging platform, email, or telephone systems are down? In an emer‐
gency, perhaps you will permit people to use personal email and cell phones for
work activities, even if that’s normally disallowed. It’s better to think about those
decisions ahead of time.

• Contact lists, for both people internal to the organization and external contacts
such as cloud providers, incident response firms, or other suppliers that may be
involved in incident response.

• A war room. In cloud environments, you won’t be physically touching the equip‐
ment in most cases, but you still need a physical or virtual war room where the
team can meet, exchange information, and make decisions. If you may have
remote attendees, make sure you have meaningful ways for them to participate,
such as screen sharing and a reasonable audio system.

• Checklists. I’m not a fan of “checklist security” at all, where you tick off that you
have a firewall, antivirus software, and similar items without actually verifying
that they’re being used effectively. However, incident response can be exhausting
and very stressful. In these situations, checklists that help you implement plans
are essential to ensure you haven’t forgotten something really important. For
example, one online checklist suggests a useful set of logs to review during an
incident.

• Forms for documenting incident response activities. For example, the SANS
Institute offers some forms that can be customized for your organization.

• Incident response software, which has components that can track incidents and
built-in playbooks for incident response.

184 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

https://oreil.ly/PHIXx
https://oreil.ly/aejnb
https://oreil.ly/krCsC

Responding to an Incident
Hopefully, you’re not in the middle of an active security incident when you read this.
If you are, and you have no incident response team, plan, tools, or checklists yet, your
first priority should be containing the incident as much as possible without destroy‐
ing evidence. Typically, you do this by some combination of shutting down or quar‐
antining systems, changing passwords, revoking access, and blocking network
connections. At the same time, you should probably call an incident response com‐
pany for help, and take a few seconds here and there to jot down notes on what you
need in order to be better prepared next time.

OK, so you’ve found something that looks like a real attack. Now what? Your
response will largely be dependent upon what the attacker is doing and what your
threat model looks like, but there are a few guidelines that will help.

First, mobilize at least part of your incident response team to do triage. You don’t
want to get 30 people out of bed for a malware infection that, after a few minutes’
investigation, appears to be completely contained. It’s easy to both overreact and
underreact, so this is where having some predefined severity levels and response
guidelines for each level can be helpful.

Then, start executing the plans you’ve implemented, trying to anticipate what the
attacker’s objectives are likely to be based on a kill chain or on an attack chain.

Cyber Kill Chains and MITRE ATT&CK
As mentioned in the sidebar at the beginning of this chapter, one of the most popular
kill chains today is the Lockheed Martin Cyber Kill Chain. According to this model,
threats pass through the following phases:

Reconnaissance
The attacker does research to figure out what to get into and identify vulnerabili‐
ties that may help them. This might involve anything from Google searches to
dumpster diving to social engineering to network port scans.

Weaponization
The attacker comes up with some malware to exploit the vulnerabilities. More
advanced attackers may write something custom, but less advanced attacks may
use something already available.

Delivery
The attacker gets the victim to execute that malware, either by a network attack,
by emailing it, or by some other means.

Exploitation
The malware runs and gains unauthorized access.

Responding to an Incident | 185

Installation
The malware gains persistence, or staying power, by installing itself in some way
that the attacker hopes makes it difficult to find and remove. Often the first piece
of malware downloads and installs a second piece for this part. In some cases this
persistent malware is better supported and updated than your legitimate
programs!

Command and control
The malware creates some sort of communication channel so that the attacker
can remotely control it—a remote shell, an outbound web connection, or even
reading commands from a legitimate cloud file storage service. At this point,
access to your systems might be sold on the black market at a good price to
someone who really wants it.

Actions on objective
An attacker (who may not even be the original attacker) does whatever they
want—steals your data, defaces your website, attacks your customers, extorts
money, etc.

Other popular resources, such as MITRE ATT&CK, view attacker actions as falling
into distinct tactics used to accomplish their goals:

Initial access
The attacker gains initial access, often through stolen credentials or exploiting an
unpatched vulnerability.

Execution
The attacker runs malicious code on your systems.

Persistence
The attacker installs code or similar functionality to allow access in the future.

Privilege escalation
The attacker uses existing access to get more access.

Defense evasion
The attacker hides from the defenders.

Credential access
The attacker uses techniques to gain passwords or API keys.

Discovery
The attacker pokes around, looking for vulnerabilities or paths to the objective.

Lateral movement
The attacker moves from one part of the environment to another.

186 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

Collection
The attacker finds information in your environment.

Exfiltration
The attacker steals data from your environment.

Impact
The attacker does damage to your systems.

The MITRE ATT&CK tactics tend to be both less linear and more detailed than the
Lockheed Martin Cyber Kill Chain phases, and the framework lists specific tech‐
niques that may be used to accomplish those tactical goals. Regardless of which you
use, it’s a good idea to be familiar with at least one of them so you have some idea of
what the attacker might have already done and might do next.

The OODA Loop
You have your plans, and you may have some idea of the progress and objectives of
your attacker. It’s time to respond. A popular concept in incident response is the
OODA loop—observe, orient, decide, and act:

1. In the observe phase, gather information from your systems, such as your cloud
provider logs, firewalls, operating system logs, metrics, and other locations, to
find odd behavior that may indicate an attacker is doing something.

2. In the orient phase, try to understand what is going on and what might happen
next. This might involve both internal knowledge of where your most important
assets are and external threat intelligence about who may be behind the attack
and why. Not all threat intelligence costs money. For example, the US Cyberse‐
curity and Infrastructure Security Agency (CISA) regularly releases alerts on
malicious activities. If you’re seeing suspicious behavior and CISA has released
an alert indicating that your industry is being targeted by particular threat actors
using particular tactics, techniques, and procedures, that may help you orient
yourself.

3. In the decide phase, choose the next tactics you’ll use for minimizing damage or
enabling recovery. For example, you may decide to take certain systems offline,
revoke access, quarantine systems, or build a new environment.

4. In the act phase, actually execute those tactics. This is where using cloud infra‐
structure can really be helpful, particularly if you have invested in repeatable
methods to build your cloud environments rather than having them grow organ‐
ically over time. Here are some examples:

Responding to an Incident | 187

https://www.cisa.gov
https://www.cisa.gov

• Most cloud environments have a stronger division between the compute infra‐
structure and storage than traditional environments. It’s much harder—but not
impossible—for attackers to persist (retain unauthorized access) just by modi‐
fying content in your data stores. Every instance of compute infrastructure
contains thousands of executables and configuration entries, but these can typ‐
ically be rebuilt much more easily than the data can. Given this division, you
may be able to apply fixes to your images to close the vulnerability that allowed
the attacker in, shut down all compute instances, replace them with fixed
instances, and connect the new instances to your data stores with minimal
downtime.

• You may also be able to easily quarantine systems, using scripts to invoke APIs
that lock down security groups or network ACLs. In a traditional environment,
you might have to manually log in to many different routers or firewalls, or
start unplugging cables, to get the same effect.

After you act, the loop begins again—observe to see what the attacker is doing in
response to what you’ve done, orient, decide, and act again. These loops should be
relatively quick and should continue until your observations indicate that the incident
is resolved.

You will almost never be prepared enough. Each incident will be messy in its own
way, even if you’re really well prepared. Take 15 seconds to jot down reminders of les‐
sons learned while you’re going along, because it can be difficult to remember
afterward.

Don’t be afraid to call an incident response firm if things seem to
be getting out of hand or if you can’t make progress. Most attackers
have a lot more experience attacking than defenders have
defending!

Cloud Forensics
Cloud forensics might inspire images of the CSI television show, but unfortunately
the reality is a little less exciting. Essentially, you just want to make a forensic copy of
anything that might be important, and then use tools to analyze it.

It’s important to make the copies in a documented, repeatable fashion so that you can
always demonstrate that you have a good copy of the original data that hasn’t been
altered. This usually involves generating a verification string (cryptographic hash)
that can be used to show that you have a copy of the uncorrupted data. A crypto‐
graphic hash, such as SHA-256, is designed to be fast to calculate but nearly impossi‐
ble to use to create another piece of data that has the same hash. With a copy of the
data and a cryptographic hash, anyone can quickly generate a hash and compare it

188 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

against the original to ensure that their copy is the same as what the initial investiga‐
tor collected. In addition, nobody can change the data (intentionally or accidentally)
without the change being easily discoverable. You could also write the original copy
to some read-only media and do a bit-for-bit comparison of the copies every time,
but that would take a lot longer!

The sample procedure in “Tools” on page 183 showed one way to obtain forensic
images for virtual machine memory and disk images, but you may need other foren‐
sic artifacts during an investigation. For example, you may want to take snapshots or
backups of databases, to compare to see whether the attacker made any database
changes. You may also want to look at network packet or flow captures to see what an
attacker or malware was doing on the network.

Blocking Unauthorized Access
This may seem like a no-brainer, but it’s often harder than it looks, particularly if an
attacker has been in the system for a while and has gotten administrative access.
Hopefully you’ve followed the instructions in Chapter 6 and have some internal seg‐
mentation so that the attack may be contained to a particular part of the network.

A common response here is to reset everyone’s passwords and API keys (including
automation), which can be disruptive to normal operations, as well as blocking
inbound and outbound network access.

You should have pre-created tools and processes for blocking access quickly and all at
once.

Stopping Data Exfiltration and Command and Control
If you didn’t shut down network communications as part of blocking unauthorized
access, you may still need to shut down outbound communications in order to stop
connections attackers make to command-and-control servers, or to stop ongoing
data loss.

Recovery
You’ve found the attack and you think you’ve stopped it, so now it’s time to clean up
and make sure that there are no leftover ways for the attackers to get back into your
systems.

Redeploying IT Systems
By far, the simplest and most effective way to recover from an IT standpoint is to
redeploy all affected systems. Again, this is a little easier in the cloud, because you
don’t have to purchase new physical hardware; your cloud provider will have capacity.

Recovery | 189

Any compromised cloud systems should be re-created, and the production traffic
should be switched over to the new systems. Any affected workstations should be
wiped and re-created from known good images. In the immortal words of Ellen Rip‐
ley in Alien, “Nuke the entire site from orbit. It’s the only way to be sure.”

If that’s not possible, you need to have executive acknowledgment that you’re accept‐
ing a substantial risk in continuing to operate systems that an attacker had control of
for a time. You can run malware scanners, keep extra tabs on the network and pro‐
cesses for indicators of compromise, and enact some other security measures, but a
single altered registry entry may be enough to let an attacker get back into your sys‐
tem, and a single piece of missed malware may be able to call out and provide an easy
way back in.

Notifications
You may have regulatory or contractual obligations to notify your customers or
report the breach to law enforcement authorities.

Even if you aren’t required to notify the world, you may want to do so anyway to
avoid a PR nightmare if word eventually gets out. For obvious reasons, we don’t have
good metrics on how many successful cover-ups there are, but there are some well-
known examples of unsuccessful cover-ups by Yahoo!, Cathay Pacific, Uber, and
others.

Lessons Learned
As soon as possible, after everyone’s had a good night of sleep, you should look at les‐
sons learned and make any updates to your team composition, plans, procedures,
tools, and checklists that will help next time. Hopefully, during the incident you took
the opportunity to jot down some quick notes and reminders that can be used.

Building an entire incident response team and process is a large topic. While I’ve cov‐
ered the high points for cloud environments here, for further reading I recommend
AT&T’s Insider’s Guide to Incident Response and NIST SP 800-61.

Example Metrics
As with other business processes, if you can’t provide some measurements on your
detection, response, and recovery activities, it’s difficult to know whether you’re
improving.

190 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

https://oreil.ly/w11VM
https://oreil.ly/GkXaN

Here are a few example metrics that you may want to consider collecting:

Detection
Number of events collected per month, number of alerts triggered per month,
percentage of alerts that are confirmed incidents, percentage of alerts that are
false positives

Response
Time from when an alert was triggered to a review of the alert, time from a con‐
firmed incident to closure of that incident

Recovery
Time required to redeploy affected systems

Overall
Estimated cost of each incident, including time, expenses, and damage to
reputation

Example Tools for Detection, Response, and Recovery
The following is a listing of some representative solutions in the cloud detection,
response, and recovery space. Just as in Chapter 5, I’m not endorsing any of these
tools by including them, or snubbing other tools by excluding them. These are just
examples of different tools that are popular as of this writing:

• Amazon GuardDuty can look for unusual or suspicious activity in your AWS
account or systems.

• Amazon CloudWatch Logs, Azure Monitor, Google Cloud’s operations suite log‐
ging, and IBM Log Analysis all allow you to store and search through your logs.

• Amazon CloudWatch, Azure Monitor, Google Cloud’s operations suite, and IBM
Cloud Monitoring provide performance metrics.

• AWS CloudTrail, Azure Monitor, and IBM Cloud Activity Tracker can monitor
privileged user activity in cloud accounts.

• Azure Security Center can collect security data into a central location, as well as
performing file integrity monitoring and other security functions.

• Cisco, McAfee, and Snort are popular network intrusion detection service pro‐
viders that have cloud-based appliances available.

• Cloudflare, Akamai, and Signal Sciences provide cloud-based web application
firewall solutions.

• OSSEC, Tripwire, AIDE, Netwrix Change Tracker, Fidelis CloudPassage Halo,
Qualys, and many other products and services provide traditional or cloud-based
file integrity monitoring solutions.

Example Tools for Detection, Response, and Recovery | 191

• CyberArk and Delinea are typically considered privileged identity management
or privileged access management solutions, and can perform session recording
and alert when privileged credentials are checked out.

• IBM QRadar, ArcSight Enterprise Security Manager, Splunk Enterprise Security,
LogRhythm, and other SIEM providers collect log events, analyze them, and raise
alerts.

• EnCase, FTK, Sleuth Kit and Autopsy, and Cloud Forensics Utils are forensic
tools that have cloud capabilities.

Detection and Response in a Sample Application
Let’s take one last look at our sample application, this time from the point of view of
detection and response. Our threat model in this case involves large amounts of data
about our customers in our database, and a likely attacker who will attempt to steal
this data and sell it on the dark web. Note that our focus would be somewhat different
if we were primarily concerned about our brand image, and we thought it was most
likely that someone would try to deface our web pages to make us look bad.

Figure 7-2 shows sensitive systems that log security-related events, and how the secu‐
rity team handles them. The blue items (white text on a dark gray background if
you’re seeing this in black and white) run the functional parts of the application, the
orange items (dashed borders) are cloud provider or orchestration systems used to
create the application infrastructure, and the green items (black text on a light gray
background) run our auditing framework. As a reminder, these are our detection and
response security goals for the application:

1. Collect logs and metrics that will be useful both for operational troubleshooting
and for detecting and responding to security incidents. The IDS/IPS, WAF, fire‐
wall, servers, database, and consoles/APIs are all configured to record security-
relevant events and metrics.

2. Store those logs and metrics securely, where they can’t be erased by an attacker. In
practice, this means getting them off of the system quickly, to a system that’s
under separate administrative control. In this case, the logs are shown as going
through log and metrics aggregator systems, which are under separate adminis‐
trative control, but they might also go directly to a SIEM.

3. Analyze the collected data. This will let us see whether items require further
investigation. In this case, the analysis is performed by a combination of the
SIEM (using log parsing, correlation rules, machine learning, and other features
mentioned in most SIEM marketing brochures) and the security operator’s brain.

192 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

4. Automatically alert on items that require a human to investigate. In this example,
the SIEM is configured to send alerts to people with the security operator role.
These alerts might be false positives—there should be a separate feedback loop
(not pictured in the diagram) for the security operators to tune out false positives
where possible when they get a false alert, without masking any true positives.

5. Run through the incident response and recovery plans if an actual security inci‐
dent is suspected.

Figure 7-2. Sample application with detection capabilities

Monitoring the Protective Systems
First, let’s look at the logs created by our protective systems during normal use of the
system. In this picture, the IDS/IPS, WAF, and firewall systems generate logs, alerts,
and metrics as the system is used or abused. Here are some examples:

Detection and Response in a Sample Application | 193

• The IDS/IPS may log that someone appears to be port scanning or when it sees a
known malicious signature.

• The WAF may log that someone is attempting a SQL injection attack or a deseri‐
alization attack.

• The firewall (or a component of the IaaS performing firewall duties) routinely
logs accepted/denied connections, as well as tracking metrics indicating how
much data is entering and leaving the network per minute.

Monitoring the Application
Next, let’s look at the logs created by our application and infrastructure during nor‐
mal use of the system. These logs will depend highly on what the application does and
what components are used to create it. For illustrative purposes, I’ll assume we’ve
used many different technologies, although this may or may not be a good design for
a real application. Here are some examples:

• The web servers will log each request, including the source IP address and the
URL requested. In this case, the web servers are simply object storage instances
presenting objects in response to web requests. We configure the object storage
service to send its access logs (including when an object is modified) to the log
aggregation service and to send metrics on how many requests are serviced to the
metrics service. With an object storage service, we don’t need to worry about any
lower-level items such as operating system logs, because that’s the cloud provid‐
er’s job.

• The application servers in this example are pods hosted on a Kubernetes cluster.
The application running in the pods logs each request to standard output
(stdout) or standard error (stderr), with the URL of the component being
invoked and what the response is. In this case, the application also allows file
uploads, so one component of the application is an antivirus client that scans
each upload, quarantines any uploads that contain malware, and sends an alert. A
logging agent on the worker node will send the log information from each pod,
as well as for the worker node itself, to the log aggregator. We’ll also enable audit
logging on the Kubernetes master itself so that it will tell us when someone
authenticates to it or creates pods.

• The database is an as-a-service offering that will log any denied access attempts
to the database or particular tables within the database, as well as any changes to
the access settings for the database. It will also record metrics about how much
data it’s sending out at any given time. Given that we’re most concerned about the
theft of data from the database, we really need to pay attention to these items!

194 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

• The virtual private cloud networking infrastructure (not shown in Figure 7-2) is
configured to send network metrics to the metrics aggregator, which can send an
alert to the SIEM when network usage is high.

Monitoring the Administrators
We also need to monitor the administrators as they work. As I said before, this
doesn’t necessarily mean that we don’t trust our system administrators! It means that
we recognize that an attacker might have obtained valid administrative credentials via
some nefarious means, and we have to detect and respond to any such attack.

For educational purposes, we’ll assume the following:

• The admins are dealing with a combination of virtual machines and containers in
this environment.

• The admins will use the cloud provider and container orchestration capabilities
to run specific commands on VMs and containers where possible, but in emer‐
gencies may need to open an interactive session directly on the system.

• The admins go through a session recording service in order to reach the virtual
machines.

In Figure 7-2, toxic session recording logs (which may contain secret information)
and the normal sanitized logs are shown stored on separate systems. This is so that
we can limit access to the toxic logs to as few administrators as possible. If you store
both types of logs on the same system, ensure that all administrators of that system
are authorized to see the toxic logs and that access to them is controlled carefully.

Understanding the Auditing Infrastructure
Now let’s look at our auditing infrastructure. In this example application, the log
aggregator, metrics aggregator, and SIEM are all shown as separate systems, but many
products and services overlap in some or even all of these areas.

You may also have additional products or services sending alerts to the SIEM or
directly to security personnel. For example, you may use a network traffic analysis
system that watches for unusual network traffic patterns, or endpoint detection and
response agents that collect information on what your servers or workstations are
doing.

Detection and Response in a Sample Application | 195

Let’s take a closer look at these systems:

• The log aggregator may either be a cloud service (like Amazon CloudWatch Logs,
Azure Monitor, Google Cloud’s operations suite, IBM Log Analysis, or Splunk
Cloud) or a separate installed product like Splunk or Logstash.
The log aggregator should be under separate administrative control from the sys‐
tems being monitored so that an attacker with access to one of the monitored
systems can’t also access the aggregator and erase the logs using the same creden‐
tials. I recommend putting the audit and logging components in a separate audit‐
ing cloud account for increased separation.
The logs might contain both non-security-relevant information and security-
relevant information, but in general only security-relevant logs should flow to the
SIEM.

• The metrics aggregator may be a cloud service such as Amazon CloudWatch,
Azure Monitor, Google Cloud’s operations suite, or IBM Cloud Monitoring, or a
separately installed tool.

• Both the log and metrics aggregators feed security-relevant items into the SIEM.
For example, the log aggregator might feed in all authentication events, and the
metric aggregator might push an event any time a metric such as the transfer rate
exceeds a threshold for a specific amount of time.

• The SIEM has parsers to understand the different types of logs coming in, and it
has rules to decide when something is worth telling a human about. In this case,
the SIEM rules may alert when there are login failures for multiple accounts in
quick succession (password spraying), or when the database and network metrics
both show unusual activity, or when many other combinations of suspicious or
alarming events happen.

In this sample application, we’re now looking at anything our protective tools are
flagging as an issue, monitoring for unusual traffic or activity in the application com‐
ponents, watching what our administrators (or attackers impersonating our adminis‐
trators) are doing, and collecting evidence for forensic analysis and audits. With these
tools and processes in place, we now have a good chance of detecting an attack.

Conclusion
Even after you have put reasonable protections in place, your security isn’t complete
until you have confidence that you can detect attacks, respond to them promptly and
effectively, and recover.

Detection isn’t just about logging; you can’t just vacuum up every log source available
and hope that it’s useful for security. You need to figure out what is important to
watch given your environment and your threat model. In almost all environments,

196 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

you will have some privileged users, and it’s almost always important to watch their
activity. Ask yourself, “If some likely bad thing happened, would I see it?” If not, you
may need to collect additional information, or make sure the information you’re
already collecting gets to the right place to be visible. One excellent indication that
your detection abilities need to improve is if you perform a pentest and you don’t
detect the pentesters attacking your systems.

Once you have figured out what it’s important to watch, make sure that you’re effec‐
tively collecting those logs and metrics and looking through them. In larger environ‐
ments, that often means using a SIEM to help go through the large amounts of data.
Make sure you have synced your time across systems, and perform some simulated
attacks to make sure that you would notice the real thing.

Finally, you need to be prepared to deal with a successful attack when it happens.
That means putting together a team, some plans, and some tools ahead of time.
When an attack happens, your team needs to understand how attacks often unfold
and how to lock down the environment and clean up—and when it’s time to call for
additional help.

When you’re performing recovery actions, it’s very risky to attempt to clean your sys‐
tems. Once someone has obtained administrative access, you really have no way of
knowing you’ve gotten everything out, because there are so many places for malware
to hide. The safest option by far is to wipe and restore each compromised system, or
delete it and provision a new one. Fortunately, that’s easy to do in the cloud! Don’t
underestimate the risk of trying to clean up in-place; a single access control permis‐
sion, a single registry entry on Windows, or some other hard-to-find backdoor can
allow an attacker to walk right back in easily.

Cloud computing is a wonderful, innovative model that has enabled lots of people
with great ideas to get started quickly and scale up with very little capital investment.
We started this book by exploring some security concepts, and from there worked
through ways to protect data and assets in the cloud and how to implement controls
such as good access management, vulnerability management, and network controls.
Finally, we finished by examining ways to detect security issues and respond to them
effectively.

This is an incredibly deep and fast-moving field. My goal was to provide enough use‐
ful information, in an accessible form, so that readers can get started and also know
the right questions to ask to learn more. I hope you’ve enjoyed reading Practical
Cloud Security, and that you’ll find the information here both practical and useful for
enhancing the security of your cloud environments. Good luck!

Conclusion | 197

Exercises
1. Which of the following statements about logs, alerts, and metrics are true? Select

all that apply.
a. A log is a record of something that happened.
b. An alert is when the system notifies someone that something has happened.
c. Metrics refer to how many logs are generated per unit of time.
d. Most logs contain sensitive information such as personally identifiable

information.
2. Which of the following types of logs should you monitor? Select all that apply.

a. Logs of privileged user activity
b. Logs from detection and response tools
c. Logs from cloud services
d. Logs from operating systems

3. True or false: You must use the same tool for log aggregation and analysis.
4. What are some functions usually provided by a security information and event

manager (SIEM)? Select all that apply.
a. Parsing logs
b. Correlating events between different systems
c. Alerting humans when an event reaches a particular threshold
d. Automatic cleanup of affected systems

5. According to the MITRE ATT&CK framework and the Lockheed Martin Cyber
Kill Chain, what are some common attacker actions? Select all that apply.
a. Installation of malware, or persistence
b. Exploitation, or execution of code to make use of a vulnerability
c. Actions on objectives, or impact to the affected organization

6. What are some steps you can take to recover from an attack after it’s over? Select
all that apply.
a. Run antivirus software to clean up systems that have been controlled by

attackers.
b. Provide any notifications required by contractual obligations or regulations.
c. Review lessons learned.

198 | Chapter 7: Detecting, Responding to, and Recovering from Security Incidents

APPENDIX

Exercise Solutions

Here are the answers for the exercises at the end of each chapter.

Chapter 1
1. A, C, and D. Requiring multi-factor authentication is also a good idea, but it’s an

example of the principle of defense in depth, not least privilege.
2. A and D. Strict firewall controls may help, but they don’t demonstrate defense in

depth unless paired with another control. Trust boundaries are also important,
and may be used to define controls, but are not a defense in depth control.

3. A, B, C, and D. Threat actors may want to do all of these things, although histori‐
cally making money is by far the largest motivator. In addition, some threat
actors may be motivated simply by the challenge of breaking in or enhancing
their reputations in hacking circles.

4. A. Depending on the service delivery model, network security and operating
security may be the cloud provider’s responsibility, or may not be. Data access
security—choosing who gets access to the data—is almost always the consumer’s
responsibility.

5. A and B. Most risk assessment systems use some form of likelihood and impact
assessment to determine the overall risk level. Transferring a risk doesn’t deter‐
mine the severity of the risk, but may be a way to deal with the risk. Your risk
severity is also not directly affected by whether the attacker’s actions are legal or
not, although taking illegal actions may raise the attacker’s risk of going to jail.

199

Chapter 2
1. A. While you may need more than 3 data classification levels, 30 is excessive for

almost all organizations, and 300 is in there just to see if you read the question at
all before answering.

2. A, B, C, and D. While the IP addresses themselves are public information, when
linked to customer requests on your systems, they are considered personal infor‐
mation in many jurisdictions and need to be protected.

3. A, B, and C. While data can be cryptographically erased to make it unreadable,
that doesn’t involve encrypting the data at the time of deletion. Cryptographic
erasure works by deleting the encryption keys, so that the already encrypted data
can no longer be decrypted.

4. C. Hardware security modules have the benefit of being physically tamper-
resistant and are required for some high-risk areas or compliance regimes, but
you can perform proper key management without one. Storing encrypted (or
“wrapped”) encryption keys along with the data is a completely acceptable prac‐
tice, as long as the key encryption key (KEK) is stored elsewhere, but storing
unprotected encryption keys alongside the data is useless.

5. C. An attacker in the application or the database will request the data, and the
disk controller will decrypt the data on disk and provide it. This is required for
normal functioning of the system.

Chapter 3
1. A and B. Many organizations don’t have a single team that’s responsible for

deploying cloud assets, but having such a team would not making tracking the
assets more error-prone. Cloud APIs will allow you to use automation to export
lists of cloud assets, so they make tracking of cloud assets easier, not harder.

2. A, B, and C. Encryption is used to protect data at rest, in motion, and in use, but
is not a type of asset. A key management instance used to manage encryption
keys for your data could be a cloud asset, however.

3. False. Containers do have a larger attack surface by default than virtual machines,
and may not be a good choice for running untrusted code without additional
protections, but they are not inherently insecure.

4. A, B, and C. Having only known risks, and an acceptable quantity and severity of
them for the organization’s risk appetite, is a good goal and not an issue.

5. A, B, C, and D. These are all reasonable tags you can apply to assets that can be
helpful for tracking assets and creating security policies.

200 | Exercise Solutions

Chapter 4
1. A, B, C, and D. All of these are common access management life cycle activities.
2. A. Authentication followed by authorization is what allows you to access an

application, although some applications allow access to all authenticated users.
API keys are not multifactor authentication, but they are a stronger single factor
authentication method than simple passwords, and are often used by automation
that cannot perform multi-factor authentication. The final statement is also
incorrect, because following zero trust principles, internal communications also
require authentication and authorization.

3. A, B, and C. All of these are true about authorization; while centralized authori‐
zation has advantages and is becoming more popular, decentralized authorization
can still be very effective.

4. A, B, and D. While Cloud IAM systems often have methods for authenticating
and authorizing users and other entities, different cloud services such as secrets
management services and encryption key management services are generally
used for storing secrets and encryption keys.

5. B and C. A is not correct because federation is the concept, and single sign-on is
a technology that allows users to use federated identities. D is not correct because
single sign-on is generally more secure, because fewer applications see the user’s
password.

Chapter 5
1. B, C, and D. While physical security controls are very important, they are almost

always the IaaS cloud provider’s responsibility, and are not a significant factor in
known breaches. Everything else is your responsibility when using IaaS services.

2. A and B. Dynamic and static application scanners are useful to find security
issues with code that you maintain, but won’t find missing operating system
patches.

3. C and D. Agentless scanners and configuration management tools are generally
focused on the operating system and middleware layers, and not the application
layer. Container scanners will typically find vulnerable configurations and miss‐
ing patches in container images or running containers, but will not typically find
application-level issues unless combined with another tool type.

4. False. A network vulnerability scan will generally only find operating system or
middleware issues, and will not find application vulnerabilities unless the tool
also includes dynamic application scanner capabilities and you have specifically
configured it to test the web application.

Exercise Solutions | 201

5. False. Penetration testers will generally only find one or a few ways in, not all
possible ways into a vulnerable system. If your penetration test scope is the com‐
plete application and environment and it shows only minor issues, you can be
fairly confident. If the penetration test scope leaves out important parts of the
environment, or if major issues are found, you need to retest with a complete
scope after fixing those issues.

6. False. After looking at the likelihood and impact of someone exploiting a vulner‐
ability, you may decide to accept the risk, either as is or after applying additional
controls or mitigations. It’s important not to accept too much risk in aggregate (if
you have 100 things, each with a 1% chance of happening, one of them is likely to
happen) but you must usually accept a certain amount of risk to function.

Chapter 6
1. A, B, and C. While a few cloud providers allow you to rent physical network

appliances, for the most part you will rely upon security groups and network
access control lists, and occasionally on virtual firewall appliances.

2. A. In most cases, VPC offerings don’t provide dedicated storage, although you
are typically provided with isolation by encryption. VPCs also typically don’t
provide dedicated CPUs or bare-metal systems, although that is a separately
orderable option in many cases. Use of VPCs doesn’t affect encryption keys.

3. A, B, and C. A firewall will block network connections, but TLS will not.
4. False. Although a perimeter may not always be possible, and may require more

access than some traditional environments, many applications can still benefit
from having a perimeter as long as it’s not the only line of defense.

5. A, B, and D. Security groups are also useful, but they are like “host firewalls” and
operate independently from subnet creation.

6. False. While anti-DDoS appliances can mitigate denial-of-service attacks that
depend on sending traffic that’s difficult to service, a single appliance (or its net‐
work connection) will generally be overwhelmed by a large-scale volumetric
attack.

7. A, B, and D. Egress filtering is not typically very effective using IP-based controls,
because you will typically need to open up the same ports, such as tcp/443, that
attackers and malware use. Also, egress filtering is not an easy control to imple‐
ment in either cloud or traditional environments, because you often don’t have a
good inventory of all of the outbound calls that your application and its depen‐
dencies need to make.

202 | Exercise Solutions

Chapter 7
1. A and B. Metrics refer to any sort of count of activity over time, such as web

requests. In addition, most logs do not need to contain sensitive information or
personally identifiable information, although it may be unavoidable in a few limi‐
ted cases.

2. A, B, C, and D. All of these are good sources of security-relevant logs and
metrics.

3. False. You may use a combined tool to aggregate logs and analyze them, or you
may choose to use one tool to aggregate the logs and then feed security-relevant
logs to another tool for analysis. Both functions are very important, but do not
have to be performed by the same tool.

4. A, B, and C. As of this writing, there’s no reliable way to automatically clean up
an affected system other than rebuilding it.

5. A, B, and C. Attackers are very inconsiderate and will often try to do all of these
things.

6. B and C. Antivirus software and other tools generally cannot remove all persis‐
tent malware from a system with a high level of confidence, so rebuilding the sys‐
tems controlled by attackers is by far the safest route.

Exercise Solutions | 203

Index

A
access management, defined, 57
access policies

allowing administrative access, 144-148
deny by default, 2

ACLs (network access control lists), 138
administrative access, 144-148

bastion hosts, 145
VPNs, 145-148

administrative activity logs, 165
agent-based scanners, 105-106

choosing, 106
deployment, 105

agentless scanners, 104-105
choosing, 106
deployment, 105

alerts, 163, 176-177
allowlists, 127-128, 154
Amazon Inspector, 113
Amazon Macie, 19
Amazon Simple Storage Service (Amazon S3),

11
analog hole, 153
Ansible, 113
antivirus (AV) software, alerts from, 168
API keys, 69
application architectures, diagramming, 4-7
application code security, 95-97
Application Platform-as-a-Service (aPaaS), 42
application-level encryption, 30
asset management, 17
asset management pipeline, 49-52

(see also cloud asset management and pro‐
tection; data asset management and pro‐
tection)

findings leaks, 52
processing leaks, 51
procurement leaks, 50
tooling leaks, 52

attacks
on containers, 40
injection attacks, 96
man-in-the-middle attacks, 136
on middleware, 98-99
pass-the-hash attack, 172
POODLE attacks, 102
supply chain attacks, 152
on virtual machines (VMs), 37
watering hole attacks, 153

authentication (authn), 63-79
authorization versus, 57-58
business-to-consumer and business-to-

employee, 64-65
cloud IAM identity services, 63
defined, 57
federated identity, 71
instance metadata and identity documents,

73-75
multi-factor authentication, 65-68
overview of, 63
passwords, passphrases, API keys, 68-70
SAML and OIDC, 72-73
secrets management, 75-79, 172
shared IDs, 70
single sign-on (SSO), 71-73

authorization (authz), 79-82
authentication versus, 57-58
centralized authorization, 80
defined, 58
overview, 79

205

roles, 81-82
automated alert responses, 176-177
automated revalidation, 82
AV (antivirus) software, alerts from, 168
AWS Config, 113
AWS Instance Identity Documents, 137
AWS Systems Manager (AWS SSM), 113
AWS Trusted Advisor, 113
Azure Update Management, 113

B
backup and restore, 183
bare-metal systems, 39
bastion hosts, 145
benchmarking, 98
biometric authentication, 67
bits of entropy, 69
blacklists (see denylists)
block storage, 44
Burp Suite, 113

C
CADF (Cloud Audit Data Federation), 175
CASB (cloud access security broker), 171
CD (continuous delivery), 92
CDNs (content delivery networks), 48, 154
CEF (Common Event Format), 175
Center for Internet Security CIS Benchmarks,

99
centralized authorization, 80
certificate management system, 84
certificate storage, 47
change management, 118
Chef, 113
CI (continuous integration), 92
CIA triad security model, 18
ciphersuites, 137
CIS Benchmarks list, 171
CLF (Common Log Format), 175
client-side encryption, 28
client-to-site VPNs, 147-148
cloud access security broker (CASB), 171
cloud asset management and protection, 35-55

asset management pipeline, 49-52
compute assets, 37-43
network assets, 48-49
overview of, 54
storage assets, 43-48

tagging cloud assets, 52-54
traditional IT versus, 35
types of cloud assets, 36-49

cloud assets, 17
Cloud Audit Data Federation (CADF), 175
cloud databases, 46
cloud native application protection platforms

(CNAPPs), 107
cloud provider monitoring tools, 170
cloud service delivery models, 8
cloud service logs, 170-171
cloud shared responsibility model, 8-12
cloud workload protection platforms, 107
code reviews, 110
cold storage, 176
command-and-control servers, blocking access

to, 189
Common Event Format (CEF), 175
Common Log Format (CLF), 175
Common Vulnerability Scoring System (CVSS),

118
compliance, 19
compute assets, 37-43

Application Platform-as-a-Service (aPaaS),
42

containers, 40-42
serverless functions, 43
virtual machines (VMs), 37-39

confidential computing, 24
configuration management, 98
configuration management systems

agent-based scanners and, 105-106
agentless scanners and, 104-105
storing secrets with, 77

configuration storage, 46
container management systems, 22
containers

attacks on, 40
container firewalling/network segmenta‐

tion, 143-144
container scanners, 107
Mini-VM container model, 41
native container model, 40
orchestration systems, 42

content delivery networks (CDNs), 48, 154
continuous delivery (CD), 92
continuous integration (CI), 92
Contrast, 113

206 | Index

CPU usage metrics, 171
credential vault, 84
credentials, agent-based scanners and, 105
credit card information, 19, 20
criminals, 4
cryptographic erasure, 28
cryptography, quantum-safe, 31
cryptomining, 171
customer notifications, 190
CVSS (Common Vulnerability Scoring System),

118
cyber kill chains, 185
cybersecurity insurance, 179

D
DAST (dynamic application security testing),

108
data asset management and protection

data identification and classification, 17-20
locating and inventorying data in the cloud,

21-22
protecting data in the cloud, 23-32
strategic planning, 31
tagging cloud resources, 22-23

data assets, defined, 17
data encryption keys (DEK), 27
data exfiltration, 153, 189
data identification and classification

CIA triad security model, 18
example data classification levels, 18-19
industry and regulatory requirements,

19-20
data loss prevention (DLP), 155
data restoration, 183
database-level encryption, 30
DDoS attacks (see distributed denial-of-service

(DDoS) attacks)
deception technologies, 173
defense in depth, 2
defensive tooling logs, 167-170

anti-DDoS, 167
antivirus software, 168
cloud provider monitoring tools, 170
detection and response tools, 169
file integrity monitoring, 170
firewalls and IDSs, 168
web application firewalls, 168

demilitarized zone (DMZ), 126, 129

deny by default, 2
denylists, 127-128
deployment pipelines, 47
destination NAT (DNAT), 132
diagrams, 4-7
Diceware passwords, 69
directory service, 84
disk-level encryption, 29
distributed denial-of-service (DDoS) attacks

alerting, 167
anti-DDoS measures, 150-151

DLP (data loss prevention), 155
DMZ (demilitarized zone), 126, 129
DNAT (destination NAT), 132
DNS spoofing, 48
Domain Name System (DNS) records, 48
dynamic application security testing (DAST),

108

E
EDR (endpoint detection and response), 169
egress filtering, 152-155
ELF (Extended Log Format), 175
encapsulation, 130
encryption, 24-31

application-level, 30
confidential computing, 24
cryptographic erasure, 28
of data at rest, 25-28
of data in motion, 135-138
disk-level, 29
key management, 26-27
platform-level, 30
protection offered from various attacks,

29-31
quantum-safe cryptography, 31
server-side versus client-side, 27-28
strategic planning, 31
zero-knowledge encryption, 58

encryption key management system, 84
encryption key storage, 47
endpoint detection and response (EDR), 169
events, defined, 163
example applications, diagramming, 4-7
explicit proxies, 154
Extended Log Format (ELF), 175

Index | 207

F
face readers, 67
Federal Information Security Management Act

(FISMA), 20
Federal Risk and Authorization Management

Program (FedRAMP), 20
federated identity, 71
FIDO Universal 2nd Factor (U2F) standard, 67
file integrity monitoring (FIM), 170
file storage, 44
findings leaks, 52, 102
fingerprint readers, 67
firewalls, 138-144, 168

container firewalling/network segmenta‐
tion, 143-144

internal segmentation, 140
perimeter control, 139
security groups, 141-142
service endpoints, 142

FISMA (Federal Information Security Manage‐
ment Act), 20

forensic analysis tools, 188
forward proxies, 129

G
General Data Protection Regulation (GDPR),

20
global server load balancers (GSLBs), 154
Google Cloud Data Loss Prevention API, 19
Google Cloud Security Command Center, 113
Google Cloud Security Scanner, 113
groups, roles versus, 82

H
hacktivists, 4
hardening, 99
hardware security modules (HSMs), 25
hash-based one-time passcodes (HOTPs), 67
HashiCorp Vault, 137
health checking, 98
Health Insurance Portability and Accountabil‐

ity Act (HIPAA), 20
honeypots, 173
hot storage, 176
HOTPs (hash-based one-time passcodes), 67
HSMs (hardware security modules), 25
hypervisor breakout, 37

I
IaaS (Infrastructure as a Service), 8, 9, 100
IAST (interactive application security testing),

109
IBM Cloud Security and Compliance Center,

114
IBM Vulnerability Advisor, 114
identity access management system, 84
identity and access management (IAM)

authentication (authn), 63-79
authentication versus authorization, 57-58
authorization (authz), 79-82
cloud-based versus traditional, 59-60
create, delete, grant, or revoke, 63
IAM approvals, 62
IAM requests, 62
life cycle for identity and access, 60-63
overview of, 87
revalidation, 82-83
sample application, 85-87

identity documents, 73-75, 136
identity governance system, 84
identity provider (IdP), 71, 84
identity, defined, 57
Identity-as-a-Service (IDaaS), 64
IDS (intrusion detection system), 151-152, 168
images, 41, 45
in-memory encryption, 24
incident recovery

lessons learned, 190
notifications, 190
redeploying IT systems, 189

incident response
blocking unauthorized access, 189
cloud forensics, 188
cyber kill chains and MITRE ATT&CK, 185
OODA loop, 187-188
stopping data exfiltration and command

and control, 189
incident response firms, 179
incident response plans, 181-183
incident response teams, 180
incident response tools, 183-184
Infrastructure as a Service (IaaS), 8, 9, 100
injection attacks, 96
inside attackers, 4
InSpec, 113
instance metadata, 74

208 | Index

instances, 45
interactive application security testing (IAST),

109
internal segmentation, 140
International Traffic in Arms regulations

(ITAR), 20
Internet Protocol version 6 (IPv6), 133
internet-facing firewalls, 168
intrusion detection system (IDS), 151-152, 168
intrusion prevention system (IPS), 151-152
IP allowlists, 128, 154
Istio Auth, 137, 154
ITAR (International Traffic in Arms regula‐

tions), 20

J
JSON Web Tokens (JWTs), 73
judgment-based revalidation, 83
jump bags, 162
jump hosts, 145

K
key encryption key (KEK), 27
key management, 26-27

encryption key storage, 47
key management services (KMSs), 25
using identity documents, 136

key management services (KMSs), 25
kill chains, 162, 185
Kubernetes, 22, 42, 171

L
law enforcement notifications, 190
least privilege, 2, 80, 106
lessons learned (incident recovery phase), 190
Lockheed Martin Cyber Kill Chain, 162, 185
logs

aggregation and retention of, 174
alerts and automated responses, 176-177
application logs, 172
cloud service logs, 170-171
cloud service logs/metrics, 170-171
defensive tooling logs, 167-170
defined, 163
items to monitor, 163-173
middleware logs, 172
operating system logs and metrics, 171

parsing, 175
privileged user access, 165-167
searching and correlating log events, 176
secrets server, 172
security information and event manager

(SIEM), 177-179

M
malware, 168
man-in-the-middle attacks, 136
managed security service provider (MSSP), 177
manual code reviews, 110
masquerading (source NAT), 132
mean time to remediate (MTTR), 116
Meltdown vulnerability, 10
Mend, 114
message queues, 46
metrics

defined, 164
for security incidents, 190
for vulnerability management, 115-118

microservice architectures, 92
Microsoft Defender for Cloud, 114
middleware, 11, 98-99, 172
Mini-VM container model, 41
MITRE ATT&CK framework, 162, 185
monitoring process

aggregation and retention of logs, 174
alerting and automated responses, 176-177
parsing logs, 175
searching and correlating events, 176
security information and event manager

(SIEM), 177-179
synchronizing timestamps, 174
threat hunting, 179

MSSP (managed security service provider), 177
MTTR (mean time to remediate), 116
multi-factor authentication, 65-68

N
native container model, 40
NDR (network detection and response), 169
negative confirmation, 83
network access control lists (ACLs), 138
network address translation (NAT), 132-133
network assets, 48-49

content delivery networks, 48
DNS records, 48

Index | 209

TLS certificates, 49
virtual private clouds (VPCs), 48

network defense tools, 148-152
anti-DDoS measures, 150-151
intrusion detection/prevention systems,

151-152
RASP modules, 149
web application firewalls, 148-149

network detection and response (NDR), 169
network functions virtualization (NFV), 130
network logs and metrics, 171
network security, 11, 125-157

agent-based versus agentless scanners, 106
allowing administrative access, 144-148
allowlists and denylists, 127-128
cloud-based versus traditional, 125-127
concepts and definitions, 127-133
data loss prevention, 155
demilitarized zones, 129
egress filtering, 152-155
encryption in motion, 135-138
firewalls and network segmentation,

138-144
IPv6, 133
network address translation, 132-133
network defense tools, 148-152
network functions virtualization, 130
overlay networks and encapsulation, 130
overview of, 156-157
proxies, 129
sample application, 134-156
software-defined networking, 130
virtual private clouds, 131
zero trust networking, 127

network segmentation, 138-144, 143-144
Network Time Protocol (NTP), 174
network vulnerability management, 100
network vulnerability scanners, 102-104
NFV (network functions virtualization), 130

O
OAuth 2.0, 73
object storage, 44
OIDC (OpenID Connect), 73

Authorization Code Flows, 73
Implicit Flows, 73

one-way hash, 69
OODA loop, 187-188

operating system security, 11, 99, 171
organized crime, 4
outbound IP allowlisting, 154
overlay networks, 130
OWASP Top 10 list, 96

P
PaaS (Platform as a Service), 8, 9
Palo Alto Prisma Cloud, 114
PAP (Policy Administration Point), 81
pass-the-hash attack, 172
password spraying, 70
password wallet, 84
passwords, 66, 68-70
patch management, 92
Payment Card Industry Data Security Standard

(PCI DSS), 19, 20, 168
PDP (Policy Decision Point), 81
penetration tests (pentests), 110-111, 120
PEP (Policy Enforcement Point), 80
percentage of false positives/false negatives

metric, 117
perimeter control, 139
perimeter network, 126
PHI (protected health information), 20
physical infrastructure, 100
PINs, 66
Pizza-as-a-Service analogy, 8
PKI (public key infrastructure), 136
Platform as a Service (PaaS), 8, 9
platform-level encryption, 30
Policy Administration Point (PAP), 81
Policy Decision Point (PDP), 81
Policy Enforcement Point (PEP), 80
POODLE attacks, 102
positive confirmation, 82-83
preparing for security incidents, 179-184

backup and restore plans, 183
incident response planning, 181-183
incident response teams, 180
incident response tools, 183-184

principle of least privilege, 2, 80, 106
principles and concepts

cloud service delivery models, 8
cloud shared responsibility model, 8-12
defense in depth, 2
least privilege, 2
risk management, 12-13

210 | Index

threat actors, diagrams, and trust bound‐
aries, 4-7

privileged access management system, 84
privileged identity management system, 84
privileged user access, 165-167
processing leaks, 51
procurement leaks, 50
production data, 183
protected health information (PHI), 20
proxies, 129
public key infrastructure (PKI), 136
publisher/subscriber models, 46
Puppet, 114
push notifications (to mobile device), 67

Q
Qualys, 114
quantum-safe cryptography, 31

R
ransomware, 18, 171
RASP (runtime application self-protection),

109, 149
RAT (remote access trojan), 145
red/blue teaming, 120
redeployment, 189
regulatory requirements, 19-20

customer and law enforcement notification,
190

Global PCI DSS, 168
remote access trojan (RAT), 145
retina readers, 67
revalidation step of IAM, 82-83
reverse proxies, 129
risk management, 12-13, 115
role-based access, 81
roles (trusted profiles), 79-82
runtime application self-protection (RASP),

109, 149

S
SaaS (Software as a Service), 8, 10
SAML (Security Assertion Markup Language),

72-73
sanitized logs, 166
SAST (static application security testing), 108
SBOM (Software Bill of Materials), 97

SCA (software composition analysis), 109
SDN (software-defined networking), 130
secrets configuration storage, 47
secrets management, 47, 75-79, 84, 172
secure erase feature, 26
Security Assertion Markup Language (SAML),

72-73
security fatigue, 108
security groups, 139, 141-142
security incidents, 161-197

cloud-based versus traditional, 162
importance of prompt identification, 161
items to monitor, 163-173
metrics for, 190
MITRE ATT&CK and kill chains, 162
monitoring process and tools, 173-179
overview of, 196-197
preparing for, 179-184
recovering from, 189-190
responding to, 185-189
root cause of many, 11
sample application, 192-196
tools for detection, response, and recovery,

191
security information and event manager

(SIEM), 177-179
security operations center (SOC), 177
separation of duties, 80
server-side encryption, 27-28
serverless assets, 43
service endpoints, 142
shared IDs, 70
shared responsibility model, 8-12
SIEM (security information and event man‐

ager), 177-179
single sign-on (SSO), 71-73

legacy applications and, 71-73
SAML and OIDC, 72-73

site-to-site VPNS, 146
SLSA (Supply-chain Levels for Software Arti‐

facts), 97
SMS text messages, as authentication device, 66
SNAT (source NAT), 132
SOC (security operations center), 177
Software as a Service (SaaS), 8, 10
Software Bill of Materials (SBOM), 97
software composition analysis (SCA), 109
software-defined networking (SDN), 130

Index | 211

solid state drives (SSDs), 26
source code repositories, 47, 76
source NAT (SNAT), 132
Spectre vulnerability, 10
SPIFFE, 74
SSDs (solid state drives), 26
SSL certificates, 49
SSL Labs, 137
SSO (see single sign-on)
state actors, 4
static application security testing (SAST), 108
storage assets, 43-48

block storage, 44
certificate storage, 47
cloud databases, 46
configuration storage, 46
encryption key storage, 47
file storage, 44
images, 45
message queues, 46
object storage, 44
secrets configuration storage, 47
source code repositories and deployment

pipelines, 47
supply chain attacks, 152
Supply-chain Levels for Software Artifacts

(SLSA), 97
syslog format, 175
systems/applications with open vulnerabilities

metric, 117

T
tag, defined, 22
tagging cloud assets/resources, 22-23, 52-54
Target breach (2013), 169
Tenable, 114
text messages, as authentication device, 66
threat actors, 4
threat hunting, 179
time zone information, 174
time-based one-time passcodes (TOTPs), 67
tokenization, 23
tool coverage metric, 116
tooling leaks, 52, 102
toxic logs, 165
transparent proxies, 154
Transport Layer Security (TLS), 48, 135
triage, 185

trust boundaries, 6-7
trusted profiles (roles), 79-82
two factor access (2FA), 65

U
Uber data breach, 112
user reports, 112

V
virtual firewall appliances, 139
virtual machines (VMs), 37-39
virtual network functions (VNFs), 130
virtual private clouds (VPCs), 48, 131
virtual private networks (VPNs), 145-148

client-to-site, 147-148
site-to-site, 146

virtualized infrastructure, 100
VM escape, 37
VMs (virtual machines), 37-39
vulnerability management, 91-123

agent-based scanners and configuration
management systems, 105-106

agentless scanners and configuration man‐
agement systems, 104-105

change management, 118
cloud workload protection platforms, 107
cloud-based versus traditional, 92-94
container scanners, 107
data access, 95
dynamic application scanners, 108
finding and fixing vulnerabilities, 101-115
interactive application scanners, 109
manual code reviews, 110
mean time to remediate metric, 116
metrics for, 115-118
middleware, 98-99
network management, 100
network vulnerability scans, 102-104
operating system security, 99
overview of, 123
patch management versus, 92
penetration tests, 110-111
percentage of false positives/false negatives

metric, 117
physical infrastructure, 100
risk management processes, 115
runtime application self-protection scan‐

ners, 109

212 | Index

sample application, 119-122
secure software standards/frameworks, 97
security of application code, 95-97
software composition analysis, 109
static application scanners, 108
systems/applications with open vulnerabili‐

ties metric, 117
tool coverage metric, 116
tools for, 112-114
user reports, 112
virtualized infrastructure, 100
vulnerability recurrence rate metric, 118
vulnerable areas, 94-101

vulnerability recurrence rate metric, 118

W
watering hole attacks, 153
web application firewalls (WAFs), 148-149, 168
whitelists (see allowlists)

X
X.509 certificates, 49, 154

Z
zero trust networking, 127
zero trust principles, 3
zero-knowledge encryption, 58

Index | 213

About the Author
Chris Dotson is an IBM Distinguished Engineer and an executive security architect
in the IBM CIO organization. He has 11 professional certifications, including the
Open Group Distinguished IT Architect certification, and over 25 years of experience
in the IT industry. Chris has been featured as a cloud innovator on the IBM home
page several times; his focus areas include cloud infrastructure and security, identity
and access management, networking infrastructure and security, servers, storage, and
bad puns.

Colophon
The image on the cover of Practical Cloud Security is the red kite (Milvus milvus).
Related to eagles, buzzards, and harriers, this bird of prey inhabits Western Europe
and parts of Scandinavia. It is seen as far east as the Ural mountains and migrates as
far south as Israel and Egypt.

Its plumage is orange-red (rufous) on much of the body and the upper layers of the
wing feathers (coverts). It averages 24 to 28 inches long (60 to 70 centimeters) with a
wingspan of 68 to 70 inches (175 to 179 centimeters). Thanks to its large wingspan
and light weight (about as much as a mallard duck), it soars gracefully in search of
prey. The red kite can be identified in flight by its forked tail. Like an eagle, it has a
hooked beak ideal for tearing meat. It feeds on small animals such as mice, voles,
shrews, and rabbits as well as carrion.

Red kites are monogamous birds, and the male and female work together to build
their nest and feed their chicks. They may return to the same nest year after year, and
the next generation tends to nest within a few miles of where it was hatched.

During the middle ages, the red kite was valued for keeping villages free from rotting
food and vermin. In the UK, it was later considered a pest and was hunted almost
into extinction by the early 20th century. It was reintroduced in the late 20th and
early 21st centuries and is now on the UK’s green list, regarded as among the least
threatened species.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover illustration is by Karen Montgomery, based on a black-and-white engrav‐
ing from Richard Lydekker’s The Royal Natural History. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://www.ibm.com
http://www.ibm.com
http://animals.oreilly.com

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

 7
x9

.19
75

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Navigating This Book
	What’s New in the Second Edition
	Conventions Used in This Book
	O’Reilly Online Learning Platform
	How to Contact Us
	Acknowledgments

	Chapter 1. Principles and Concepts
	Least Privilege
	Defense in Depth
	Zero Trust
	Threat Actors, Diagrams, and Trust Boundaries
	Cloud Service Delivery Models
	The Cloud Shared Responsibility Model
	Risk Management
	Conclusion
	Exercises

	Chapter 2. Data Asset Management and Protection
	Data Identification and Classification
	Example Data Classification Levels
	Relevant Industry or Regulatory Requirements

	Data Asset Management in the Cloud
	Tagging Cloud Resources
	Protecting Data in the Cloud
	Tokenization
	Encryption

	Conclusion
	Exercises

	Chapter 3. Cloud Asset Management and Protection
	Differences from Traditional IT
	Types of Cloud Assets
	Compute Assets
	Storage Assets
	Network Assets

	Asset Management Pipeline
	Procurement Leaks
	Processing Leaks
	Tooling Leaks
	Findings Leaks

	Tagging Cloud Assets
	Conclusion
	Exercises

	Chapter 4. Identity and Access Management
	Differences from Traditional IT
	Life Cycle for Identity and Access
	Request
	Approve
	Create, Delete, Grant, or Revoke
	Authentication
	Cloud IAM Identities
	Business-to-Consumer and Business-to-Employee
	Multi-Factor Authentication
	Passwords, Passphrases, and API Keys
	Shared IDs
	Federated Identity
	Single Sign-On
	Instance Metadata and Identity Documents
	Secrets Management

	Authorization
	Centralized Authorization
	Roles

	Revalidate
	Putting It All Together in the Sample Application
	Conclusion
	Exercises

	Chapter 5. Vulnerability Management
	Differences from Traditional IT
	Vulnerable Areas
	Data Access
	Application
	Middleware
	Operating System
	Network
	Virtualized Infrastructure
	Physical Infrastructure

	Finding and Fixing Vulnerabilities
	Network Vulnerability Scanners
	Agentless Scanners and Configuration Management Systems
	Agent-Based Scanners and Configuration Management Systems
	Cloud Workload Protection Platforms
	Container Scanners
	Dynamic Application Scanners (DAST)
	Static Application Scanners (SAST)
	Software Composition Analysis Tools (SCA)
	Interactive Application Scanners (IAST)
	Runtime Application Self-Protection Scanners (RASP)
	Manual Code Reviews
	Penetration Tests
	User Reports
	Example Tools for Vulnerability and Configuration Management

	Risk Management Processes
	Vulnerability Management Metrics
	Tool Coverage
	Mean Time to Remediate
	Systems/Applications with Open Vulnerabilities
	Percentage of False Positives
	Percentage of False Negatives
	Vulnerability Recurrence Rate

	Change Management
	Putting It All Together in the Sample Application
	Conclusion
	Exercises

	Chapter 6. Network Security
	Differences from Traditional IT
	Concepts and Definitions
	Zero Trust Networking
	Allowlists and Denylists
	DMZs
	Proxies
	Software-Defined Networking
	Network Functions Virtualization
	Overlay Networks and Encapsulation
	Virtual Private Clouds
	Network Address Translation
	IPv6

	Network Defense in Action in the Sample Application
	Encryption in Motion
	Firewalls and Network Segmentation
	Allowing Administrative Access
	Network Defense Tools
	Egress Filtering
	Data Loss Prevention

	Conclusion
	Exercises

	Chapter 7. Detecting, Responding to, and
Recovering from Security Incidents
	Differences from Traditional IT
	What to Watch
	Privileged User Access
	Logs from Defensive Tooling
	Cloud Service Logs and Metrics
	Operating System Logs and Metrics
	Middleware Logs
	Secrets Server
	Your Application

	How to Watch
	Aggregation and Retention
	Parsing Logs
	Searching and Correlation
	Alerting and Automated Response
	Security Information and Event Managers
	Threat Hunting

	Preparing for an Incident
	Team
	Plans
	Tools

	Responding to an Incident
	Cyber Kill Chains and MITRE ATT&CK
	The OODA Loop
	Cloud Forensics
	Blocking Unauthorized Access
	Stopping Data Exfiltration and Command and Control

	Recovery
	Redeploying IT Systems
	Notifications
	Lessons Learned

	Example Metrics
	Example Tools for Detection, Response, and Recovery
	Detection and Response in a Sample Application
	Monitoring the Protective Systems
	Monitoring the Application
	Monitoring the Administrators
	Understanding the Auditing Infrastructure

	Conclusion
	Exercises

	Appendix. Exercise Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

	Index
	About the Author
	Colophon

