O'REILLY"

Threat Modeling

A Practical Guide for Development Teams

|lzar Tarandach &

Matthew J. Coles
Foreword by Reeny Sondhi

O'REILLY"

Threat Modeling

Threat modeling is one of the most essential—and most
misunderstood—parts of the development life cycle. Whether
you're a security practitioner or a member of a development
team, this book will help you gain a better understanding of
how you can apply core threat modeling concepts to your
practice to protect your systems against threats.

Contrary to popular belief, threat modeling doesn't require
advanced security knowledge to initiate or a Herculean effort
to sustain. But it is critical for spotting and addressing potential
concerns in a cost-effective way before the code’s written—and
before it's too late to find a solution. Authors Izar Tarandach
and Matthew J. Coles walk you through various ways to
approach and execute threat modeling in your organization.

¢ Explore fundamental properties and mechanisms for securing
data and system functionality

e Understand the relationship between security, privacy, and
safety

¢ |dentify key characteristics for assessing system security

¢ Get anin-depth review of popular and specialized techniques
for modeling and analyzing your systems

¢ View the future of threat modeling and Agile development
methodologies, including DevOps automation

¢ Find answers to frequently asked questions, including how to
avoid common threat modeling pitfalls

Izar Tarandach is a senior security architect at Bridgewater Associates.

Previously he was lead product security architect at Autodesk.

Matthew J. Coles is a product security program lead and product
security architect at Bose. Previously he was a security architect at
Analog Devices and EMC.

“This should be
mandatory reading
for anyone involved in
systems development
and concerned with
reducing risk of those
systems.”

—Alyssa Miller
Hacker and Security Advocate

“This is the only book
that compares well-
known threat modeling
techniques for the
purpose of delivering
secure designs. It
aligns threat modeling
with the way modern
software is actually
produced.”

—BrookS.E. Schoenfield
Author of Securing Systems:

Applied Security Architecture and
Threat Models, and Secrets of a Cyber
Security Architect

SYSTEMS SECURITY

US $5999 CAN $7999
ISBN: 978 ‘l 492 05655 3

5999

Twitter: @oreillymedia
facebook.com/oreilly

Threat Modeling

A Practical Guide for Development Teams

Izar Tarandach and Matthew J. Coles

Bejing - Boston « Farnham - Sebastopol - Tokyo [@YRIIMNY

Threat Modeling
by Izar Tarandach and Matthew J. Coles

Copyright © 2021 Izar Tarandach and Matthew J. Coles. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institu-
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins Indexer: Sue Klefstad
Development Editor: Virginia Wilson Interior Designer: David Futato
Production Editor: Deborah Baker Cover Designer: Karen Montgomery
Copyeditor: Sharon Wilkey lllustrator: Kate Dullea

Proofreader: Kim Cofer
December 2020: First Edition

Revision History for the First Edition
2019-11-12: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492056553 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Threat Modeling, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-492-05655-3
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492056553

From Matt:

I dedicate this book to my wife, Sheila—before she agreed to apply her critical eye as a
technical writer to our content, she made the opportunity to work on this text possible
with her 100% support from the start of the concept through the many long night and
weekend writing sessions. I would also like to thank my other companions: Gunnar
(our dog), who reminded me to take much-needed breaks (to go out and play or take a
walk), and Ibex (one of our cats), who would sit next to me while I wrote, making sure I
was writing “good stuff.” And to Izar as coauthor and long-time friend and colleague—
a big thank you for helping me find my place in the world of threat modeling, and secu-
rity at large, and for being there to bounce ideas around. I look forward to the new
adventures you and I will have in the future.

From Izar:

I dedicate this book to my son, Shahak—put your ideas out there, let smart people work
them out with you, and make things happen. Many thanks go to my spouse, Reut, for
the patience and constant support. Couldn’t have done this without them. Speaking of
“couldn’t have done this without,” Matt, coauthor, co-thinker, co-tinkerer, and many
times corrector—I knew going in Matt was the right person to share the journey, and
can’t imagine anyone better to share this with. It’s been a long, interesting, inspiring,

and fun way since Security Toolbox!

Table of Contents

Foreword.ooiii iX
Preface. ..o Xi
Introduction.oooiiiiiiiii xvii
1. Modeling Systems.uueiiuniiiiiiiii i i i 1
Why We Create System Models 2
System Modeling Types 2
Data Flow Diagrams 4
Sequence Diagrams 16
Process Flow Diagrams 19
Attack Trees 21
Fishbone Diagrams 24
How to Build System Models 26
What Does a Good System Model Look Like? 31
Summary 32

2. AGeneralized Approach to Threat Modeling..............covvvviiiiiiiinnen... 33
Basic Steps 33
What You Are Looking for in a System Model 34
The Usual Suspects 35
What You Should Not Expect to Discover 39
Threat Intelligence Gathering 40
Summary 41

3. Threat Modeling Methodologies...........c.covviiiiiiiiiiiiiiiiiiiiiiiennnss 43

Before We Go Too Deep... 43
Looking Through Filters, Angles, and Prisms 47
To the Methodologies, at Last! 48
STRIDE 50
STRIDE per Element 55
STRIDE per Interaction 57
Process for Attack Simulation and Threat Analysis 57
Threat Assessment and Remediation Analysis 66
Trike 71
Specialized Methodologies 75
LINDDUN 75
Madness? This Is SPARTA! 80
INCLUDES NO DIRT 84
Shall We Play a Game? 86
Game: Elevation of Privilege 86
Game: Elevation of Privilege and Privacy 87
Game: OWASP Cornucopia 88
Game: Security and Privacy Threat Discovery Cards 88
Game: LINDDUN GO 90
Summary 91
4, Automated ThreatModeling..........cooviiiiiiiiiiiiiiiiiiiiiiiiiiiiennnns 93
Why Automate Threat Modeling? 94
Threat Modeling from Code 97
How It Works 98
Threat Modeling with Code 100
How It Works 101
pytm 117
Threagile 126
An Overview of Other Threat Modeling Tools 128
IriusRisk 128
SD Elements 129
ThreatModeler 129
OWASP Threat Dragon 129
Microsoft Threat Modeling Tool 131
CAIRIS 132
Mozilla SeaSponge 133
Tutamen Threat Model Automator 133
Threat Modeling with ML and AI 134
Summary 135

vi | Tableof Contents

5. Continuous ThreatModeling..........c.covvviiiiiiiiiiiiiiiiiiiiinienneennn, 137

Why Continuous Threat Modeling? 137
The Continuous Threat Modeling Methodology 138
Evolutionary: Getting Better All the Time 139
The Autodesk Continuous Threat Modeling Methodology 139
Baselining 143
Baseline Analysis 145
When Do You Know You Did Enough? 150
Threat Model Every Story 150
Findings from the Field 161
Summary 162
6. Own Your Role as a Threat Modeling Champion...............coovvviiinnnens, 163
How Do I Get Leadership On-Board with Threat Modeling? 163
How Do I Overcome Resistance from the Rest of the Product Team? 165

How Do We Overcome the Sense of (or Actual) Failure at Threat Modeling? 166
How Should I Choose a Threat Modeling Methodology from Many Similar

Approaches? 169
How Should I Deliver “the Bad News”? 170
What Actions Should I Take for Accepted Findings? 171
Did I Miss Something? 173
Summary and Closing 174
Further Reading 174

A. AWorked EXample.o.venieniiniii it i iie e enereneeneeeeneenns 175
B. The Threat Modeling Manifesto............covveruiiiiiiiiniiiinreninnnennn. 189
INdeX. ..o 195

Table of Contents | vii

Foreword

For the past 15 years, when I've talked to engineers about security in the development
life cycle, they’ve asked one question again and again: “Out of everything you security
professionals prescribe, what is the one most critical activity we should do?” I have
been amused, frustrated, and often jaded by this question because, frankly, no one
critical activity will guarantee security in the development life cycle. It is a process—
and, many times, even when every part of the process is followed, the application still
can be vulnerable and get exploited in production. There is no silver bullet to security
done right, just as there is no perfect bug-free software.

But one activity continues to deliver tremendous value, when done right, and that is
threat modeling. Threat modeling is certainly not a replacement for all the other secu-
rity activities we prescribe, and it comes with some baggage over what is meant by
“doing it right.” It has a reputation for being onerous, never-ending, and dependent
on the security expertise of the individual or teams doing the exercise. But, let me
share with you my experience of why this is a high-value activity every development
team should incorporate.

When I was leading Security at EMC and we had a few years of data from having our
secure software development program in place, we decided to do a deep dive into the
vulnerabilities that external researchers reported to our Product Security Response
Center (PSRC). The objective of this exercise was simple: figure out how many of
these reported vulnerabilities could have been identified by threat modeling. The data
overwhelmingly told us that a large majority (upwards of 80%) of these issues were
design-level issues that would have been found during a threat model.

We then did a similar exercise on penetration testing results to compare whether a
threat model could have identified what our external testing vendors identified in
their reports. The results were similar. Taking a data-driven approach led us to focus
on more actively developing and executing our internal threat modeling practice.

This is something I have carried forward in my current role at Autodesk. I find threat
modeling not just more effective, but also much less noisy than, say, running source

Foreword | ix

code analysis tools on our applications. This is not a judgment on the capability of
these tools to find security vulnerabilities, but, in my experience, less noise equates to
more satisfied engineers with less skepticism over incorporating security practices in
the development life cycle.

Developers are busy. They have full work plates and so either don’t want to change
the way they work or don’t want to slow down to incorporate what the security teams
want them to. Izar and Matt have years of experience working with developers, and
have gathered a host of practical tips for how to make threat modeling accessible to
all developers and how to apply the results from threat modeling toward effective risk
management. What Matt and Izar are proposing in this book takes us one step closer
to identifying the most egregious security flaws earlier in the life cycle so that devel-
opment teams can follow risk management practices when there is still time—before
the software goes into production.

Threat modeling may seem out of place in the cloud world, where it is critical to
adopt techniques for continuous integration and continuous deployment. This book
shows you what continuous modeling looks like so you can identify design risks
without spending hours whiteboarding. More work is needed on this front, and I
have continued to challenge Matt and Izar to come up with new techniques for incor-
porating continuous modeling and developing automation around it. At Autodesk,
we follow a simple mantra: automate everything. A few years back, automating threat
modeling would have seemed like a pipe dream. Today, with some of the concepts
laid out in this book, it seems like we are getting closer to this dream.

Now, when I am asked the question, “Out of everything you security professionals
prescribe, what is the one most critical activity we should do?” I answer, “Let’s start
with threat modeling and then we will tell you more.” This book shows you how to
do it right and how to incorporate it seamlessly into your product development life
cycle.

— Reeny Sondhi
Vice President and Chief Security Officer, Autodesk

x | Foreword

Preface

Welcome to our practical guide to real-world threat modeling. This book is the result
of 10 years of research, development, and practice in threat modeling and in secure
systems design over the course of our respective careers. We worked hard to make
sure the content is well supported, not only by our own observation, but also by the
experiences of our colleagues and associates in the application security community.

While we have tried to present a collection of methods and techniques that are cur-
rent and forward-looking, we know that changes will outpace the book over the com-
ing months and years. Threat modeling is ever evolving. At the time of this writing
(in 2020), close to two dozen distinct approaches to performing security modeling
and analysis are available. Active forums within security-focused organizations and
development communities worldwide are inventing new techniques or updating
existing ones all the time. With this in mind, our goal with this book is to provide you
information that is both actionable and accessible, with enough theory and guidance
for you to reach your own conclusions and to adapt these techniques for your team
and your systems.

Why We Wrote This Book

There’s a perception that you have to be part of the exclusive club of security experts
to perform threat modeling. But it shouldn’t be that way. It should be a function and
discipline of development. So our ultimate goal in this book is to change the percep-
tion of threat modeling so it is an accessible discipline that anyone can learn and
perform.

So why us? Years ago, we were where many of you are right now: feeling confused
about this whole “threat modeling” thing.

Over time, we came to know some of the methodologies out there, many of the pain
points, and much of the joy a good threat model can bring. Along the way, we met
many interesting, smart people who take threat modeling (and the meta knowledge

Preface | xi

that goes with it) to a whole new level, and we learned from them. We have devel-
oped our own ideas, and realized we could help others along the journey, give them a
leg up, and relieve them from much of the fear, uncertainty, and doubt (FUD)
around threat modeling. In short: we want people to be as excited about it as we are.

Who This Book Is For

We wrote this book for members of the system development team (developers, archi-
tects, designers, testers, DevSecOps) who are (or want to be) responsible for raising
the security posture of their designs, their development processes, and their released
systems. This includes people who are designing, building, or maintaining product or
IT systems.

Traditional security practitioners will also find value in this book—especially those
who aren’t yet experienced in threat modeling—but we wrote this material specifi-
cally with the system development team in mind. Product managers, program man-
agers, and other less technical functions should also be able to find value here—at
least to understand their own value in the process!

What Is (and Isn't!) in This Book

Our main focus is on how to use threat modeling to analyze system design so you can
identify the risk inherent in the system’s implementation and deployment and can
avoid that risk in the first place. We do not provide how-to recipes for secure design
or analysis of specific topologies, systems, or algorithms; we cite other books
throughout that do a fine job of these. Instead, we aim to equip you with the tools
you need to recognize risk conditions when they exist, give you concrete methodol-
ogy options for addressing those risk conditions, and point you to sources for further
information to help you broaden your threat modeling skills.

In the Introduction, we provide a background of security principles and secure
design techniques, and discuss fundamental properties and mechanisms for securing
your data and your system’s functionality. We examine the relationships among
security, privacy, and safety, and define risk. We also identify factors that determine
risk to your system. The security fundamentals covered in the Introduction are espe-
cially important for those who are new to application security, and those looking for
a refresher on principles and objectives, to read.

In Chapter 1, we look at system modeling techniques and show you how to identify
key characteristics that are crucial for assessing the security of your system. We iden-
tify exploitable weaknesses and the methods by which these weaknesses negatively
impact your system’s security.

xii | Preface

In Chapters 2 and 3, we present an overview of threat modeling as an activity during
your system’s development life cycle, and provide an in-depth review of popular
threat modeling techniques to consider using when you model and analyze your sys-
tems. We also discuss newer methodologies and touch on gamification of threat
modeling.

Chapter 2 and beyond should be valuable to all readers, including the seasoned secu-
rity practitioner who already understands why threat modeling is a crucial activity
and has command of the principles of secure design.

In Chapters 4 and 5, we discuss the future of threat modeling methodologies, auto-
mation, and Agile development methodologies (including DevOps automation). We
also cover specialized techniques to perform threat modeling in new and interesting
ways. These chapters should be especially interesting to the more advanced reader.

Chapter 6 presents frequently asked questions we often hear from development
teams embarking on a journey to adopt threat modeling in their organizations. We
offer advice and guidance to help users make progress and avoid common pitfalls
and roadblocks to success.

Appendix A contains a complete example of the use of pytm to construct and analyze
a system model for threats. Appendix B contains the Threat Modeling Manifesto—a
statement of direction on what makes threat modeling valuable and necessary in sys-
tem deployment today.

These Techniques Apply Across Various Systems

Throughout this book, we feature software-based systems because of their common-
ality in all scenarios and because we didn’t want knowledge of, for example, the Inter-
net of Things (IoT) or cloud technologies to be a prerequisite for understanding the
examples. But the techniques we discuss are applicable to all system types, whether
hardware based, cloud based, or almost any combination of systems and software
responsible for moving data from one end to another and storing it securely. We
even provide guidance for analyzing business processes to help you understand their
impact on the system.

Preface | xiii

Your Contribution Matters

If you have read other texts on how to conduct a threat model, you will probably
notice slight differences of opinion on the techniques, constructs, and approaches we
offer. This is by design (no pun intended!). If our work here instigates constructive
debate within the community over how to understand security and its effects on sys-
tem design, threat modeling will improve, and the individuals who rely on it will ben-
efit. As we’ve stated, threat modeling is ever evolving, and we encourage you to
contribute to its evolution. Perhaps some day we will meet you at a conference or
work with you on a development project, discuss our experiences, and learn from
each other.

You can reach us by opening a ticket at https://threatmodeling.dev.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

xiv | Preface

https://threatmodeling.dev

This element indicates a warning or caution.

\

0'Reilly Online Learning

o » For more than 40 years, O’Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata and any additional informa-
tion. You can access this page at https://oreil.ly/Threat_Modeling.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xv

http://oreilly.com
http://oreilly.com
https://oreil.ly/Threat_Modeling
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments

We would like to thank the following individuals for their experience, knowledge,
and time invested in the form of reviews, discussions, opinions, technical details, and
their prior work in the field. This text would have looked completely different
without their gracious input:

Aaron Lint, Adam Shostack, Akhil Behl, Alexander Bicalho, Andrew Kalat, Alyssa
Miller, Brook S. E. Schoenfield, Chris Romeo, Christian Schneider, Fraser Scott,
Jonathan Marcil, John Paramadilok, Kim Wuyts, Laurens Sion, Mike Hepple, Robert
Hurlbut, Sebastien Deleersnyder, Seth Lakowske, and Tony UcedaVélez.

Special thanks go to Sheila Kamath for lending her technical writing skills to help us
improve the quality and clarity of this book. As first-time authors, we learned
through her valuable comments that there is a big difference between dumping
thoughts on the page, writing whitepapers, and writing for the broad audience we
hope finds this book useful.

To our editor, Virginia Wilson, for your patience, dedication, professionalism, and
for pushing us forward.

If you are curious about the Security Toolbox mentioned in the
Dedication, check out the first work we co-presented, at SOURCE
Boston 2011.

Some of the concepts from Security Toolbox found their way into
our pytm project, which is still an area of active research for us.

xvi | Preface

https://oreil.ly/Ps9uw
https://owasp.org/www-project-pytm

Introduction

How you get to know is what I want to know.
—Richard Feynman, American physicist

In this introduction, we’ll explain the very basics of threat modeling. We’ll also cover
the most crucial security principles you need to know as the foundation for assessing
the security of the systems you are analyzing.

The Basics of Threat Modeling

Let’s begin by taking a bird’s-eye view of what threat modeling is, why it’s useful, and
how it fits into the development life cycle and overall security plan.

What Is Threat Modeling?

Threat modeling is the process of analyzing a system to look for weaknesses that come
from less-desirable design choices. The goal of the activity is to identify these weak-
nesses before they are baked into the system (as a result of implementation or deploy-
ment) so you can take corrective action as early as possible. The activity of threat
modeling is a conceptual exercise that aims to help you understand which character-
istics of a system’s design should be modified to reduce risk in the system to an
acceptable level for its owners, users, and operators.

When performing threat modeling, you look at a system as a collection of its compo-
nents and their interactions with the world outside the system (like other systems it
interacts with) and the actors that may perform actions on these systems. Then you
try to imagine how these components and interactions may fail or be made to fail.
From this process, you'll identify threats to the system, which will in turn lead to
changes and modifications to the system. The result is a system that can resist the
threats you imagined.

Introduction | xvii

But let’s make clear right from the beginning: threat modeling is a cyclic activity. It
starts with a clear objective, continues with analysis and actions, and then it repeats.
It is not a silver bullet—by itself it does not solve all your security issues. It is also not
a push-button tool, like a scanner that you point at your website or your code reposi-
tory that generates a punch list of items to be ticked off. Threat modeling is a logical,
intellectual process that will be most effective if you involve most, if not all, of your
team. It will generate discussion and create clarity of your design and execution. All
of this requires work and a certain amount of specialized knowledge.

The first rule of threat modeling might be the old maxim garbage in, garbage out
(GIGO).! If you make threat modeling part of your team’s toolbox and get everyone
to participate in a positive manner, you will reap its many benefits, but if you enter
into it half-heartedly, without a complete understanding of its strengths and short-
comings or as a compliance “check the box” item, you’ll see it only as a time sink.
Once you find a methodology that works for you and your team and put in the effort
needed to make it work, your overall security posture will grow substantially.

Why You Need Threat Modeling

You need threat modeling because it will make your work easier and better in the
long term. It will lead to cleaner architectures, well-defined trust boundaries (you
don’t know what those are yet and why they are important, but soon you will!),
focused security testing, and better documentation. And most of all, it will instill in
you and your team the superpower of security mindedness in an organized, orches-
trated way, leading to better security standards and guidelines across your develop-
ment effort.

As important as all those side benefits are, they are not the most important. Under-
standing what could possibly go wrong in your system and what you can do about it
will increase your trust in what you’re delivering, leaving you free to concentrate on
other facets of the system. And that is what’s really behind the need for threat
modeling.

Also important is to point out why you don’t need threat modeling. It is not going to
solve all your security problems by itself; it will also not transform your team into
security experts immediately. Most of all, you don’t need it for compliance. An empty
exercise that aims only at putting the check mark in the compliance list will lead you
to more frustration than knowing you do not have that specific requirement covered.

1 This phrase is accredited to Wilf Hey and to Army Specialist William D. Mellin.

xvii | Introduction

Obstacles

The trouble with programmers is that you can never tell what a programmer is doing until
it’s too late.

—Seymour R. Cray, creator of the Cray line of supercomputers

This maxim holds true to this day. Give a developer a specification or a reasonably
well-documented set of requirements, and stand back, and many interesting things
may happen.

Honestly, we know that development teams can be stressed-out overachievers who
work under heavy demands and heavy responsibility. You have to deal with an
almost constantly changing landscape of learning, becoming proficient, and then for-
getting whole subdisciplines. It is unfair to pressure you on “not knowing some secu-
rity thing that’s really basic and important.” Consider that the entire training content
industry is mostly focused on delivering business-oriented objectives such as compli-
ance and meeting training goals and other assorted metrics. There is significant room
for improvement in actually delivering effective, useful content that development
teams can translate into knowledge and practical use.

One of the tasks of security professionals is to further the security education of devel-
opment communities. This includes how to implement secure systems and how to
assess the security of code and systems, post facto. It may seem easier to rely on an
expensive set of tools to supplement (and to a large extent, hide from view) the orga-
nization’s security expertise. The challenge is that the expertise built into the tools is
often hidden from the user; development teams would benefit greatly if the methods
of detection were transparent to them. Here are some examples:

« Computer-based training (CBT) is the scourge of every new worker. Sets of 45
minutes of boring voices reading tired-looking slides, in the usual standard fonts,
with the same stock pictures and images? And worse still, the innocuous, “solve
by exclusion,” teach-nothing multiple-choice questions?

o Overreliance on “silver bullet” scanners and static code analyzers that promise to
use artificial intelligence, machine learning, taint analysis, attack trees, and the
Powers of Grayskull, but fail to consistently produce the same results, or give
more false positives than actual useful answers. Or the analysis tools expect the
whole system to exist before they can run a scan, not to mention inserting long
times in the build process that are anathema to the continuous integration/
continuous development (CI/CD) values.

Introduction | xix

https://oreil.ly/vg51w

+ Consulting services where, upon request, a security practitioner will swoop in,
execute remediation work (or “directed training”), and disappear (we call this
seagull consulting; they swoop in, poop on you, and then fly off), leaving the team
to deal with the consequences. Relying on a just-in-time security consultant car-
ries significant downsides: they have no vested interest in the outcome of their
actions, they are external to the team (if not to the enterprise), they bring a per-
sonal bias, and they perform “magic,” leaving the team feeling that something
happened but without a sense of what transpired. Cargo cult? behavior follows, as
the team tries to constantly replicate that subset of results the consultant left

behind.

We security professionals have also created a false sense of developer expectations
within organizations:

+ An organization can buy its way to a strong security posture. If it invests enough
money in tools, it will solve all of its security problems.

o Thirty minutes of mandatory training a quarter is sufficient for the organization
to pass the audit. These 30 minutes should be sufficient for development teams to
learn what is expected of them. Since development teams have access to top-
notch training content, the expensive tools they use will only “look over their
shoulders” and validate that they have, indeed, done their job in a perfectly
secure manner.

Lately (since mid-2019) the industry of security has been consumed by the idea of
shifting left. Imagine a workflow that you read from left to right. The start of the
workflow is on the left. When we say “shifting left,” we mean that we want the secu-
rity processes to move as far “left,” to the beginning of the development workflow (of
whatever development methodology is in use) as possible. This allows security events
to happen and be dealt with as early as possible. An activity such as threat modeling,
which is closely associated with design, should happen as early as possible in the life-
time of a system. And, if it didn’t happen then, it should happen right now.

We don’t subscribe to the “shift left” phenomenon, preferring
instead to start left by using methodologies that begin with design,
or sooner—with requirements—as the foundation for the security
of a system.

2 “A cargo cult is a millenarian belief system in which adherents practice rituals which they believe will cause a
more technologically advanced society to deliver goods.” Wikipedia, accessed 10/24/2020.

xx | Introduction

https://oreil.ly/DWAiY

With changes to the process resulting in a less linear “left-to-right” development
cycle, shifting left may not be capable of addressing all security needs in a system.
Instead, the security community will need to shift even further left into the lives of
developers and designers as individuals, before a system is being considered. There
we will need to focus on training development teams to make secure choices, and
bring capabilities along with them, to avoid threats at a much more fundamental
level.

Then, there is the implementation, where security is supposedly shifted left by the
industry’s collective training efforts, and is expressed semantically and logically by
secure code. But if training has failed to deliver on the promised expectations, what
possible corrective measures are available to correct for the failed assumptions?

Let’s look at another angle of the problem and then connect the pieces into a coher-
ent response to this rant (an invitation to a crusade!). Some speak about “a place at
the table” when discussing security strategy. Security teams and executives want the
“stakeholders” to hold “a place” for security in the “ongoing discussion.” This allows
them to justify their need to take that slice of the resources pie. But there’s another
important resource that is not as recognized, because it is obfuscated by “extensive
training” and “silver bullet tools.” And that resource is the developer’s time and
focus.

Let’s consider a web developer. Infinite numbers of memes reflect the fact that if
today a web developer learns everything they can about the LAMP stack® before
breakfast, that knowledge becomes useless right after lunch because the whole indus-
try will have moved to the MEAN stack.* And the MEAN stack will be superseded
two grande lattes later by yet another shiny new thing until it comes right around
again to the new, improved (and totally non-backward-compatible!) version of where
we just started. Each one of these new stacks brings about a new set of security chal-
lenges and security-related idioms and mechanisms that must be understood and
incorporated to effectively protect the system they are developing. And of course,
each stack requires a distinct security contract that the web developer must learn and
become fluent in quickly.

But the website can’t be down, and its administration is supposed to happen at the
same time the developer is learning their new tey tool. How can security possibly
expect to share the same pie (i.e., the developer’s time and attention) and receive any-
thing but a sliver of a slice?

3 The LAMP stack consists of the collection of Linux OS, Apache web server, MySQL database, and PHP
scripting language.

4 The MEAN stack consists of MongoDB, Express.js, Angular.js, and Node.js.

Introduction | xxi

And this is where the crusade begins—as Richard Feynman tells us: “Teach princi-
ples, not formulas.” In this book, we will focus on principles to help you understand
and think through what threat modeling is for you, how it can help in your specific
case, and how you can best apply it to your project and your team.

Threat Modeling in the System Development Life Cycle

Threat modeling is an activity performed during the system development life cycle
that is critical to the security of the system. If threat modeling is not performed in
some fashion, security faults will likely be introduced through design choices that are
possibly easily exploited, and most definitely will be hard (and costly®) to fix later. In
keeping with the “build in, not bolt on” principle of security, threat modeling should
not be considered a compliance milestone; real-world consequences exist for failing
to perform this activity when it matters most.

Most successful companies today don’t execute projects the way they did even a cou-
ple of years ago. For example, development paradigms like serverless computing,® or
some of the latest trends and tools in CI/CD,” have made a deep impact on how
development teams design, implement, and deploy today’s systems.

Because of market demand and the race to be first, you rarely have the opportunity
nowadays to sit down prior to the development of a system and see a fully fleshed-out
design. Product teams rely on “minimum viable product” versions to introduce their
new ideas to the public and to start building a brand and a following. They then rely
on incremental releases to add functionality and make changes as issues arise. This
practice results in significant changes to design occurring later in the development
cycle.

Modern systems are of a complexity not seen before. You might use many third-party
components, libraries, and frameworks (which may be open or closed source) to
build your new software, but the components are many times poorly documented,
poorly understood, and poorly secured. To create “simple” systems, you rely on intri-
cate layers of software, services, and capabilities. Again, using serverless deployments
as an example, to say “I don’t care about the environment, libraries, machines, or net-
work, I only care about my functions” is shortsighted. How much machinery is hid-
den behind the curtain? How much control do you have over what’s happening

5 Arvinder Saini, “How Much Do Bugs Cost to Fix During Each Phase of the SDLC?,” Software Integrity Blog,
Synopsis, January 2017, https://oreil.ly/NVuSf; Sanket, “Exponential Cost of Fixing Bugs,” DeepSource, Janu-
ary 2019, https://oreil.ly/ZrLvg.

6 “What Is Serverless Computing?,” Cloudflare, accessed November 2020, https://oreil.ly/7L4A].

7 Isaac Sacolick, “What Is CI/CD? Continuous Integration and Continuous Delivery Explained,” InfoWorld,
January 2020, https://oreil.ly/tDc-X.

xxii | Introduction

https://oreil.ly/NVuSf;
https://oreil.ly/ZrLvg
https://oreil.ly/7L4AJ
https://oreil.ly/tDc-X

“under” your functions? How do these things impact the overall security of your sys-
tem? How do you validate that you are using the most appropriate roles and access
rules?

To answer those questions reliably and obtain immediate results, you might be
tempted to use an external security expert. But expertise in security can vary, and
experts can be expensive to hire. Some experts focus on specific technologies or areas,
and others’ focus is broad but shallow. Of course, this by no means describes every
consultant, and we will be the first to attest to having had some great experiences
with threat modeling consultants. However, you can see that there is a huge incentive
to develop in-house knowledge of threat modeling and try to adapt it as much as pos-
sible to your team’s development methodology.

Developing secure systems

Regardless of the development methodology you use, the way your system develops
must pass through some very specific phases (see Figure I-1).

o Idea inception
» Design
 Implementation
o Testing

o Deployment

Development process
Requirements N Threat modeling “ g c
Idea Design Implementation
Development tools,
Playbooks, codingpstatements
security controls
Automated tools,
pentesting
Deployment Testing

Figure I-1. Development loop and related security activities

In the waterfall methodology, for example, these phases naturally follow each other.
Note that documentation plays an ongoing role—it must happen in parallel with the

Introduction | xxiii

other phases to be truly efficient. When using this methodology, it is easy to see that a
threat model provides the most benefit at design time.

This is an affirmation you will see many times in this book. We meticulously link
threat modeling with design. Why is that?

A much-quoted® concept indicates that the cost of solving an issue rises significantly
the closer it happens to or after deployment. This is quite obvious for people familiar
with making and marketing software; it is much cheaper to apply solutions to a sys-
tem in development than the one already deployed at thousands or, in some extreme
cases, millions of places.” You don’t have to deal with the liability of some users not
applying a patch, or the possible failures in backward compatibility introduced by
patching a system. You don’t have to deal with users who cannot for one reason or
another move forward with the patch. And you don’t have to incur the cost of sup-
porting a lengthy and sometimes unstable upgrade process.

So, threat modeling by its nature looks at a design, and tries to identify security flaws.
For example, if your analysis shows that a certain mode of access uses a hardcoded
password, it gets identified as a finding to be addressed. If a finding goes unaddressed,
you are probably dealing with an issue that will be exploited later in the life of the
system. This is also known as a vulnerability, which has a probability of exploitation
and an associated cost if exploited. You might also fail to identify an issue, or fail to
make a correct determination of something that can be exploited. Perfection and
completeness are not goals of this exercise.

The key objective of threat modeling is to identify flaws so they
become findings (issues that you can address) and not vulnerabili-
ties (issues that can be exploited). You can then apply mitigations
that reduce both the probability of exploitation and the cost of
being exploited (that is, the damage, or impact).

Once you identify a finding, you move to mitigate, or rectify, it. You do this by apply-
ing appropriate controls; for example, you might create a dynamic, user-defined
password instead of a hardcoded one. Or, if the case warrants, you might run multi-
ple tests against that password to ensure its strength. Or you might let the user decide
on a password policy. Or, you might change your approach altogether and entirely
remove the flaw by removing the password use and offer support for WebAuthn'
instead. In some cases, you might just assume the risk—you decide that for the

8 Barry Boehm, Software Engineering Economics (Prentice Hall, 1981).
9 Kayla Matthews, “What Do IoT Hacks Cost the Economy?,” IoT For All, October 2018, https://oreil.ly/EyTé6e.

10 “What is WebAuthn?,” Yubico, https://oreil.ly/xmmL9.

xxiv | Introduction

https://oreil.ly/EyT6e
https://oreil.ly/xmmL9

manner in which the system will be deployed, it could be OK to use a hardcoded
password. (Hint: It is not. Really. Think about it.) Sometimes you have to determine
that a risk is acceptable. In those cases, you need to document the finding, identify
and describe the rationale for not addressing it, and make that part of your threat
model.

It is important to emphasize (and we will return to this throughout the book) that
threat modeling is an evolutionary process. You may not find all the flaws in your
system the first time it is analyzed. For example, perhaps you didn’t have the appro-
priate resources or the correct stakeholders examining the system. But having an ini-
tial threat model is much better than having no threat model at all. And the next
iteration, when the threat model is updated, will be better, identify other flaws, and
carry a higher level of assurance that no flaws were found. You and your team will
acquire the experience and confidence that will lead you to consider new and more
complex or subtle attacks and vectors, and your system will constantly improve.

No more waterfalling

Let’s move forward to the more modern Agile and CI/CD approaches.

Because these are faster ways of developing and deploying software, you may find it
impossible to stop everything, initiate a proper design session, and agree on what
needs to happen. Sometimes your design evolves with requirements from customers,
and other times your design emerges from the ongoing development of your system.
In these situations, it can be hard to predict the overall design of the complete system
(or even to know what the complete system is), and you may not be able to make
wide-ranging design modifications beforehand.

Many design proposals outline how to perform threat modeling under these circum-
stances—from Microsoft’s proposal of “security sprints” to applying threat modeling
against smaller system units, iteratively, at every sprint. And, unfortunately, claims
have been made that threat modeling “reduces the velocity” of an Agile team. Is it
better to reduce the velocity of an Agile team, or that of a team of hackers who are
trying to access your data? For right now, the important thing is to recognize the
issue; we will point at possible solutions later.

Once you address security in the design process, you will see how security impacts all
other phases of development. This will help you recognize how threat modeling can
have an even bigger impact on the overall security posture of the system, which is a
collective measure of:

o The current state of security within the system

« Attack vectors, or intrusion points, or opportunities to change the system behav-
ior, available for an actor to explore and exploit (also known as the attack
surface)

Introduction | xxv

https://oreil.ly/LWesA

« The existing vulnerabilities and weaknesses within the system (also known as the
security debt) and the combined risk to the system and/or the business resulting
from these factors

Implementation and testing

It is hard not to consider implementation and testing as the most important aspect of
security in development. At the end of the day, security problems come (mostly!)
from issues or mistakes made when putting lines of code into place. Some of the most
infamous security issues—Heartbleed, anyone?—and most buffer overflow issues
stem not from bad design, but from lines of code that didn’t do what they were sup-
posed to do, or did it in an unexpected way.

When you look at classes of vulnerabilities (for example buffer overflows and injec-
tion issues), it is easy to see how a developer may inadvertently introduce them. It is
easy to cut and paste a previously used stanza, or fall into the “who would possibly do
that?” belief when considering bad input. Or the developer may simply introduce
errors due to ignorance, time constraints, or other factors without any consideration
of security.

Many tools out there identify vulnerabilities in written code by performing static
analysis. Some tools do this by analyzing the source code; others do it by running
code through simulations of input and identifying bad outcomes (this technique is
known as fuzzing). Machine learning has recently emerged as another alternative for
identifying “bad code.”

But does threat modeling influence these code-related issues? That depends. If you
look at a system as a whole and decide you are able to completely remove an entire
class of vulnerabilities by addressing the root flaw, then you have an opportunity at
design time to address code-related issues. Google did this with cross-site scripting
(and other vulnerability classes) by instituting libraries and patterns to be used in all
products that deal with the issue.’! Unfortunately, choices made to address some
types of issues may cut off any avenue to address other concerns. For example, let’s
say you are working on a system with primary requirements for high performance
and high reliability. You may choose to use a language that offers direct memory con-
trol and less execution overhead, such as C, instead of languages like Go or Java that
offer better memory management capabilities. In this case, you may have limited
options to influence the breadth of potential security concerns that need to be
addressed by changing the technology stack. This means that you have to use
development-time and testing-time tools to police the outcome.

11 Christoph Kern, “Preventing Security Bugs through Software Design,” USENIX, August 2015, https://oreil.ly/
rcKL_.

xxvi | Introduction

https://oreil.ly/rcKL_
https://oreil.ly/rcKL_
https://heartbleed.com

Documentation and deployment

As systems are developed, the teams responsible for them may go through a self-
development process. Tribal knowledge, or institutional knowledge, exists when a set
of individuals comes to learn or understand something and retains that knowledge
without documenting it. However, as team membership changes over time, with
individuals leaving the team and new ones joining, this tribal knowledge can be lost.

Luckily, a well-documented threat model is a great vehicle to provide new team
members with this formal and proprietary knowledge. Many obscure data points, jus-
tifications, and general thought processes (e.g., “Why did you folks do it like this
here?!”) are well suited for being captured as documentation in a threat model. Any
decisions made to overcome constraints, and their resulting security impacts, are also
good candidates for documentation. The same goes with deployment—a threat
model is a great place to reference an inventory of third-party components, how they
are kept up-to-date, the efforts required to harden them, and the assumptions made
when configuring them. Something as simple as an inventory of network ports and
their protocols explains not only the way data flows in the system, but also deploy-
ment decisions concerning authentication of hosts, configuration of firewalls, etc. All
these kinds of information fit well into a threat model, and if you need to respond to
compliance audits and third-party audits, locating and providing relevant details
becomes much easier.

Essential Security Principles

The remainder of this Introduction gives a brief overview of the
foundational security concepts and terminology that are critically
important for both development teams and security practitioners
to have at least some familiarity with. If you wish to learn more
about any of these principles, check out the many excellent refer-
ences we provide throughout this chapter and the book.

Familiarity with these principles and terminology is key as a foundation for addi-
tional learning—as an individual or as a team, learning as you go through your secu-
rity travels.

Basic Concepts and Terminology

Figure I-2 highlights crucial concepts in system security. Understanding these rela-
tionships and the nomenclature of security are key to understanding why threat
modeling is critically important to a secure system design.

Introduction | xxvii

 CEEE—
Creates Informs .
Data Value ! Risk
q)
F W Y A A
Generates
Exposes
SRR
H @
‘ System = ‘ Threat — |e—=22—
reates
N— S
Exploits Actor
r Y \ Contains —— ——
Functionality Breaks Weakness Vulnerability
“— “——/
Exploitable

Figure I-2. Relationships of security terminology

A system contains assets—functionality its users depend upon, and data accepted,
stored, manipulated, or transmitted by the system. The system’s functionality may
contain defects, which are also known as weaknesses. If these weaknesses are exploita-
ble, meaning if they are vulnerable to external influence, they are known as vulnera-
bilities, and exploitation of them may put the operations and data of the system at
risk of exposure. An actor (an individual or a process external to the system) may
have malicious intent and may try to exploit a vulnerability, if the conditions exist to
make that possible; some skilled attackers are capable of altering conditions to create
opportunities to attempt exploitation. An actor creates a threat event in this case, and
through this event threatens the system with a particular effect (such as stealing data
or causing functionality to misbehave).

The combination of functionality and data creates value in the system, and an adver-
sary causing a threat negates that value, which forms the basis for risk. Risk is offset
by controls, which cover functional capabilities of a system as well as operational and
organizational behaviors of the teams that design and build the system, and is modi-
fied by probabilities—the expectations of an attacker wishing to cause harm and the
likelihood they will be successful should they attempt to do so.

Each concept and term requires additional explanation to be meaningful:

Weakness

A weakness is an underlying defect that modifies behavior or functionality
(resulting in incorrect behavior) or allows unverified or incorrect access to data.
Weaknesses in system design result from failure to follow best practices, or
standards, or convention, and lead to some undesirable effect on the system.
Luckily for threat modelers (and development teams), a community initiative—
Common Weakness Enumeration (CWE)—has created an open taxonomy of
security weaknesses that can be referenced when investigating system design for
concerns.

xxviii | Introduction

http://cwe.mitre.org

Exploitability
Exploitability is a measure of how easily an attacker can make use of a weakness
to cause harm. Put another way, exploitability is the amount of exposure that the
weakness has to external influence."

Vulnerability

When a weakness is exploitable (exploitability outside the local authorization
context is nonzero),it is known as a vulnerability. Vulnerabilities provide a
means for an adversary with malicious intent to cause some sort of damage to a
system. Vulnerabilities that exist in a system but that are previously undiscovered
are known as zero-day vulnerabilities. Zero days are no more or less dangerous
than other vulnerabilities of a similar nature but are special because they are
likely to be unresolved, and therefore the potential for exploitation may be eleva-
ted. As with weaknesses, community efforts have created a taxonomy of vulnera-
bilities, encoded in the CVE database.

Severity

Weaknesses lead to an impact on a system and its assets (functionality and/or
data); the damage potential and “blast radius” from such an issue is described as
the defect’s severity. For those whose primary profession is or has been in any
field of engineering, severity may be a familiar term. Vulnerabilities—exploitable
weaknesses—are by definition at least as severe as the underlying defect, and
more often the severity of a defect is increased because it is open to being exploi-
ted. Methods for calculating severity are described in “Calculating Severity or
Risk” on page xxx.

Unfortunately, the process of determining the severity of a weak-
ness is not always so cut and dried. If the ability to leverage the
defect to cause an impact is unrecognized at the time of discovery
of the weakness, how severe is the issue? What happens if the
defect is later determined to be exposed, or worse becomes exposed
as a result of a change in the system design or implementation?
These are hard questions to answer. We’ll touch on this later when
we introduce risk concepts.

Impact
If a weakness or vulnerability is exploited, it will result in some sort of impact to
the system,such as breaking functionality or exposing data. When rating the
severity of an issue, you will want to assess the level of impact as a measure of
potential loss of functionality and/or data as the result of successful exploitation.

12 “External” is relative when used here, and is specific to what is known as the authorization context; for exam-
ple, the operating system, application, databases, etc.

Introduction | xxix

https://cve.mitre.org

Actor
When describing a system, an actor is any individual associated with the system,
such as a user or an attacker. An actor with malicious intent, either internal or
external to the organization, creating or using the system, is sometimes referred
to as an adversary.

Threat
A threat is the result of a nonzero probability of an attacker taking advantage of a
vulnerability to negatively impact the system in a particular way (commonly
phrased in terms of “threat to...” or “threat of...”).

Threat event
When an adversary makes an attempt (successful or not) to exploit a vulnerabil-
ity with an intended objective or outcome, this becomes known as a threat event.

Loss
For the purpose of this book and the topic of threat modeling, loss occurs when
one (or more) impacts affect functionality and/or data as a result of an adversary
causing a threat event:

o The actor is able to subvert the confidentiality of a system’s data to reveal
sensitive or private information.

« The actor can modify the interface to functionality, change the behavior of
functionality, or change the contents or provenance of data.

o The actor can prevent authorized entities from accessing functionality or
data, either temporarily or permanently.

Loss is described in terms of an asset or an amount of value.

Risk
Risk combines the value of the potentially exploited target with the likelihood an
impact may be realized. Value is relative to the system or information owner, as
well as to the attacker. You should use risk to inform priority of an issue, and to
decide whether to address the issue. Severe vulnerabilities that are easy to exploit,
and those that lead to significant damages through loss, should be given a high
priority to mitigate.

Calculating Severity or Risk

Severity (the amount of damage that can be caused by successful exploitation of a
vulnerability), and risk (the combination of the likelihood of initiation of a threat
event and the likelihood of success to generate a negative impact as a result of exploi-
tation)—can be determined formulaically. The formulas are not perfect but using
them provides consistency. Many methods exist today for determining severity or
risk, and some threat modeling methodologies use alternative risk-scoring methods

xxx | Introduction

(not described in this book). A sample of three popular methods in general use (one
for measuring severity, two for risk) are presented here.

CVSS (severity)

The Common Vulnerability Scoring System (CVSS) is now in version 3.1, and is a
product of the Forum of Incident Response and Security Teams (FIRST).

CVSS is a method for establishing a value from 0.0 to 10.0, that allows you to identify
the components of severity. The calculation is based upon the likelihood of a success-
ful exploitation of a vulnerability, and a measurement of potential impact (or dam-
age). Eight metrics, or values, are set in the calculator to derive a severity rating, as
shown in Figure I-3.

Exploitability metrics Impact metric

Network (N)
Attack AV Adjacent (A) Scope SC Changed (C)
vector Local (L) changed Unchanged (U)
Physical (P)
Attack AC Low (L) Confidentiality C I\IL%W((S)
complexity High (H) High (H)
. None (N) . None (N)
Privileges Integrit
requirged PR Low (L) grity Low (L)
High (H) High (H)
N N
~ User. ul None (N) Availability A Lc:)lxz((L))
interaction Required (R) High (H)

Figure I-3. Common Vulnerability Scoring System metrics, vector, and score

Likelihood of success is measured on specific metrics that are given a numeric rating.
This results in a value known as the exploitability subscore. Impact is measured simi-
larly (with different metrics) and is known as the impact subscore. Added together,
the two subscores result in an overall base score.

Introduction | xxxi

https://www.first.org/cvss

Remember, CVSS does not measure risk but severity. CVSS can tell
you the likelihood that an attacker will succeed in exploiting the
vulnerability of an impacted system, and the amount of damage
they can do. But it cannot indicate when or if an attacker will
attempt to exploit the vulnerability. Nor can it tell you how much
the impacted resource is worth or how expensive it will be to
address the vulnerability. It is the likelihood of the initiation of an
attack, the value of the system or functionality, and the cost to mit-
igate it that drives the risk calculation. Relying on raw severity is a
good way to communicate information about a defect, but is a very
imperfect way to manage risk.

DREAD (risk)

DREAD is an older,” yet foundationally important, method for understanding the
risk from security concerns. DREAD is the partner to the STRIDE threat modeling
methodology; STRIDE is discussed in depth in Chapter 3.

DREAD is an acronym for:

Damage
If an adversary conducted an attack, how much destruction could they cause?

Reproducibility
Is a potential attack easily reproduced (in method and effect)?

Exploitability
How easy is conducting a successful attack?

Affected users
What percentage of the user population might be impacted?

Discoverability
If the adversary does not already know of the potential for an attack, what is the
likelihood they can discover it?

DREAD is a process for documenting characteristics of a potential for an attack
against a system (via a vector by an adversary) and coming up with a value that can
be compared to other such values for other attack scenarios and/or threat vectors.
The risk score for any given attack scenario (combination of a security vulnerability
and adversary) is calculated by considering the characteristics of exploitation of a vul-
nerability by an attacker and assigning them a score in each dimension (i.e., D, R, E,
A, D), for low-, medium-, and high-impact issues, respectively.

13 Some say DREAD has outlived its usefulness; see Irene Michlin, “Threat Prioritisation: DREAD Is Dead,
Baby?,” NCC Group, March 2016, https://oreil.ly/S]nsR.

xxxii | Introduction

https://oreil.ly/SJnsR

The total of the scores for each dimension determine the overall risk value. For exam-
ple, an arbitrary security issue in a particular system may have scores of [D =3,R=1,
E =1, A =3,D = 2] for a total risk value of 10. To have meaning, this risk value can
be compared to other risks that are identified against this particular system; it is less
useful to attempt to compare this value with values from other systems, however.

FAIR Method for risk quantification (risk). The Factor Analysis of Information Risk
(FAIR) method is gaining popularity among executive types because it offers the
right level of granularity with more specificity to enable more effective decision mak-
ing. FAIR is published by the Open Group and is included in ISO/IEC 27005:2018.

DREAD is an example of a qualitative risk calculation. FAIR is an international stan-
dard for quantitative risk modeling and for understanding the impact to assets from
threats using measurements of value (hard and soft currency costs) and probability of
realization (occurrences, or threat events) of a threat by an actor. Use these quantita-
tive values to describe to your management and business leaders the financial impact
to the business from risks identified in your systems, and compare them against the
cost to defend against threat events. Proper risk management practices suggest the
cost to defend should not exceed the value of the asset, or the potential loss of an
asset. This is also known as the $50 lock on a $5 pen paradigm.

FAIR is thorough and accurate, but also complex, and requires spe-
cialized knowledge to perform the calculations and simulations
correctly. This is not something you want to do live in a threat

. modeling review session, nor something you want to hoist on your
security subject matter experts (SMEs), if you have them. Security
experts have expertise in finding weaknesses and threats, not mod-
eling financial impact valuations. Hiring individuals with skills in
computational methods and financial modeling, or finding a tool
that does the hard math for you, is a better course of action if you
plan to adopt FAIR.

Core Properties

Three core properties—confidentiality, integrity, and availability—form the founda-
tion on which all other things in security are built. When someone wants to know if
something is secure, these properties and whether they are intact determine a
response. These properties support a key goal: trustworthiness. In addition, fourth
and fifth properties (privacy and safety), are related to the first three but have slightly
different focuses.

Introduction | xxxiii

https://oreil.ly/hkpLy
https://oreil.ly/hkpLy
https://www.opengroup.org
https://oreil.ly/IZF9v
https://oreil.ly/eVWyp

Confidentiality

A system has the property of confidentiality only if it guarantees access to the data
entrusted to it exclusively to those who have the appropriate rights, based on their
need to know the protected information. A system that does not have a barrier stop-
ping unauthorized access fails to safeguard confidentiality."

Integrity

Integrity exists when the authenticity of data or operations can be verified and the
data or functionality has not been modified or made unauthentic through unauthor-
ized activity.”

Availability

Availability means authorized actors are able to access system functionality and/or
data whenever they have the need or desire to do so. In certain circumstances, a sys-
tem’s data or operations may not be available as a result of a contract or agreement
between users and system operators (such as a website being down for regular main-
tenance); if the system is unavailable because of a malicious action by an adversary,
availability will have been compromised.*®

Privacy

While confidentiality refers to the controlled access to private information shared
with others, privacy refers to the right of not having that information exposed to
unauthorized third parties. Many times when people talk about confidentiality, they
really expect privacy, but although the terms are often used interchangeably, they are
not the same concept. You could argue that confidentiality is a prerequisite to pri-
vacy. For example, if a system cannot guarantee the confidentiality of the data it
stores, that system can never provide privacy to its users.

14 NIST 800-53 Revision 4, “Security and Privacy Controls for Federal Information Systems and Organizations”:
B-5.

15 NIST 800-53 Revision 4, “Security and Privacy Controls for Federal Information Systems and Organizations™:
B-12.

16 NIST 800-160 vol 1, “Systems Security Engineering: Considerations for a Multidisciplinary Approach in the
Engineering of Trustworthy Secure Systems”: 166.

xxxiv | Introduction

Safety

Safety is “freedom from unacceptable risk of physical injury or of damage to the
health of people, either directly, or indirectly as a result of damage to property or to
the Environment.”"” Naturally, for something to meet safety requirements, it has to
operate in a predictable manner. This means that it must at least maintain the secu-
rity properties of integrity and availability.

Fundamental Controls

The following controls, or functional behaviors and capabilities, support the develop-
ment of highly secure systems.

Identification

Actors in a system must be assigned a unique identifier meaningful to the system.
Identifiers should also be meaningful to the individuals or processes that will con-
sume the identity (e.g., the authentication subsystem; authentication is described
next).

An actor is anything in a system (including human users, system accounts, and pro-
cesses) that has influence over the system and its functions, or that wishes to gain
access to the system’s data. To support many security objectives, an actor must be
granted an identity before it can operate on that system. This identity must come
with information that allows a system to positively identify the actor—or in other
words, to allow the actor to show proof of identity to the system. In some public sys-
tems, unnamed actors or users are also identified, indicating that their specific iden-
tity is not important but is still represented in the system.

Guest is an acceptable identity on many systems as a shared
account. Other shared accounts may exist, although use of shared
accounts should be carefully considered as they lack the ability to
trace and control actor behavior on an individual basis.

Authentication

Actors with identities need to prove their identity to the system. Identity is usually
proven by the use of a credential (such as a password or security token).

All actors who wish to use the system must be able to satisfactorily provide proof of
their identity so that the target system can verify that it is communicating with the
right actor. Authentication is a prerequisite for additional security capabilities.

17 “Functional Safety and IEC 61508,” International Electrotechnical Commission, https://oreil.ly/SUC-E.

Introduction | xxxv

https://oreil.ly/SUC-E

Authorization

Once an actor has been authenticated—that is, their identity has been proven satis-
factorily—the actor can be granted privileges within the system to perform opera-
tions or access functionality or data. Authorization is contextual, and may be, but is
not required to be, transitive, bidirectional, or reciprocal in nature.

With authentication comes the ability for a system, based on the offered proof of
identification provided by an actor, to specify the rights of that actor. For example,
once a user has authenticated into a system and is allowed to perform operations in a
database, access to that database is granted based only on the actor’s rights. Access is
usually granted in terms of primitive operations such as read, write, or execute.
Access-control schemes that govern an actor’s behavior within a system include the
following:

Mandatory access control (MAC)
The system constrains the authorizations for actors.

Discretionary access control (DAC)
Actors can define privileges for operations.

Role-based access control (RBAC)
Actors are grouped by meaningful “roles,” and where roles define privilege
assignments.

Capability-based access control
An authorization subsystem assigns rights through tokens that actors must
request (and be granted) in order to perform operations.

Guest accounts are usually not authenticated (there is no identity
to prove), but these accounts may be authorized explicitly with a
minimal level of capability.

Logging

When an actor (human or process) performs a system operation, such as executing a
feature or accessing data stores, a record of that event should be recorded. This sup-
ports traceability. Traceability is important when trying to debug a system; when the
recorded events are considered security relevant, the traceability also supports the
ability for critical tasks such as intrusion detection and prevention, forensics, and evi-
dence collection (in the case of a malicious actor intruding upon a system).

xxxvi | Introduction

Auditing

Logging creates records; audit records are well-defined (in format and content),
ordered in time, and usually tamper resistant (or at least tamper evident). The capa-
bility of “looking back in time” and understanding the order in which events occur-
red, who performed which operations, and when, and optionally to determine
whether the operations were correct and authorized, is critical for security operations
and incident response activities.

Basic Design Patterns for Secure Systems

When you are designing a system, you should keep certain security principles and
methodologies in mind. Not all principles may apply to your system. But it is impor-
tant for you to consider them to ensure that they hold true if they apply to you.

In 1975, a seminal article by Jerome Saltzer and Michael Schroeder, “The Protection
of Information in Computer Systems,”'® was published. Although much has changed
since its publication, the basic tenets are still applicable. Some of the fundamentals we
discuss in this book are based on the principles laid out by Saltzer and Schroeder. We
also want to show you how some of those principles have become relevant in differ-
ent ways than originally intended.

Zero trust

A common approach to system design, and security compliance, is “trust, but verify,”
or zero trust, which is to assume the best outcome for an operation (such as a device
joining a network, or a client calling an API) and then perform a verification of the
trust relationship secondarily. In a zero trust environment, the system ignores (or
never establishes) any prior trust relationship and instead verifies everything before
deciding to establish a trust relationship (which may then be temporary).”

Also known as complete mediation, this concept looks amazingly simple on paper:
ensure that the rights to access an operation are checked every time an object is
accessed, and that the rights for that access operation are checked beforehand. In
other words, you must verify that an actor has the proper rights to access an object
every time that access is requested.

18 J. Saltzer and M. Schroeder, “The Protection of Information in Computer Systems,” University of Virginia
Department of Computer Science, https://oreil.ly/ MSJim.

19 “Zero Trust Architecture,” National Cybersecurity Center of Excellence, https://oreil.ly/P4E]s.

Introduction | xxxvii

https://oreil.ly/MSJim
https://oreil.ly/P4EJs

John Kindervag created the concept of zero trust in 2010,%° and it
has been commonly applied to network perimeter architecture dis-
cussions. The authors decided to import the concept into the secu-
rity principles, and believe it also applies with no modifications to
the security decisions that need to happen at the application level.

Design by contract

Design by contract is related to zero trust, and assumes that whenever a client calls a
server, the input coming from that client will be of a certain fixed format and will not
deviate from that contract.

It is similar to a lock-and-key paradigm. Your lock accepts only the correct key and
trusts nothing else. In “Securing the Tangled Web,”* Christoph Kern explains how
Google has significantly reduced the amount of cross-site scripting (XSS) flaws in
applications by using a library of inherently safe API calls—by design. Design by con-
tract addresses zero trust by ensuring that every interaction follows a fixed protocol.

Least privilege

This principle means that an operation should run using only the most restrictive
privilege level that still enables the operation to succeed. In other words, in all layers
and in all mechanisms, make sure that your design constricts the operator to the
minimum level of access required to accomplish an individual operation, and noth-
ing more.

If least privilege is not followed, a vulnerability in an application might offer full
access to the underlying operating system, and with it all the consequences of a privi-
leged user having unfettered access to your system and your assets. This principle
applies for every system that maintains an authorization context (e.g., an operating
system, an application, databases, etc.).

Defense in depth

Defense in depth uses a multifaceted and layered approach to defend a system and its
assets.

When thinking about defense of your system, think about the things you want to
protect—assets—and how an attacker might try to access them. Consider what con-
trols you might put in place to limit or prevent access by an adversary (but allow

20 Brook S. E. Schoenfield, expert threat modeling practitioner and prolific author, reminds us that the idea of
“observe mutual distrust” was already posited by Microsoft in 2003-04, but unfortunately we were unable to
locate a reference. We trust Brook!

21 Christoph Kern, “Securing the Tangled Web,” acmqueue, August 2014, https://oreil.ly/ZHVrI.

xxxviii | Introduction

https://oreil.ly/ZHVrI

access by a properly authorized actor). You might consider parallel or overlapping
layers of controls to slow down the attacker; alternatively you might consider imple-
menting features that confuse or actively deter an adversary.

Examples of defense in depth applied to computer systems include the following:

o Defending a specific workstation with locks, guards, cameras, and air-gapping

o Introducing a bastion host (or firewall) between the system and the public inter-
net, then an endpoint agent in the system itself

 Using multifactor authentication to supplement a password system for authenti-
cation, with a time delay that raises exponentially between unsuccessful attempts

« Deploying a honeypot and fake database layer with intentionally priority-limited
authentication validation functions

Any additional factor that acts as a “bump in the road” and makes an attack costlier
in terms of complexity, money, and/or time is a successful layer in your defense in
depth. This way of evaluating defense-in-depth measures is related to risk manage-
ment—defense in depth does not always mean defense at all costs. A balancing act
occurs between deciding how much to spend to secure assets versus the perceived
value of those assets, which falls into scope of risk management.

Keeping things simple

Keeping things simple is about avoiding overengineering your system. With com-
plexity comes the increased potential for instability, challenges in maintenance, and
other aspects of system operation, and a potential for ineffectual security controls.?

Care must be taken to avoid oversimplification as well (as in dropping or overlooking
important details). Often that happens in input validation, as we assume (correctly or
not) that an upstream data generator will always supply valid and safe data, and avoid
(incorrectly) our own input validation in an effort to simplify things. For a more
extensive discussion of these expectations, see Brook S. E. Schoenfield’s work on
security contracts.”® At the end of the day, a clean, simple design over an overengi-
neered one will often provide security advantages over time, and should be given
preference.

22 Eric Bonabeau, “Understanding and Managing Complexity Risk,” MIT Sloan Management Review, July 2007,
https://oreil.ly/CfHAc.

23 Brook S. E. Schoenfield, Secrets of a Cyber Security Architect (Boca Raton, FL: CRC Press, 2019).

Introduction | xxxix

https://oreil.ly/CfHAc

No secret sauce

Do not rely on obscurity as a means of security. Your system design should be resilient
to attack even if every single detail of its implementation is known and published.
Notice, this doesn’t mean you need to publish it,** and the data on which the imple-
mentation operates must remain protected—it just means you should assume that
every detail is known, and not rely on any of it being kept secret as a way to protect
your assets. If you intend to protect an asset, use the correct control—encryption or
hashing; do not hope an actor will fail to identify or discover your secrets!

Separation of privilege

Also referred to as separation of duties, this principle means segregating access to
functionality or data within your system so one actor does not hold all rights. Related
concepts include maker/checker, where one user (or process) may request an opera-
tion to occur and set the parameters, but another user or process is required to
authorize the transaction to proceed. This means a single entity cannot perform mali-
cious activities unimpeded or without the opportunity for oversight, and raises the
bar for nefarious actions to occur.

Consider the human factor

Human users have been referred to as the weakest link in any system,” so the concept
of psychological acceptability must be a basic design constraint. Users who are frustra-
ted by strong security measures will inevitably try to find ways around them.

When developing a secure system, it is crucial to decide just how much security will
be acceptable to the user. There’s a reason we have two-factor authentication and not
sixteen-factor authentication. Put too many hurdles between a user and the system,
and one of these situations will occur:

« The user stops using the system.
o The user finds workarounds to bypass the security measures.

o The powers that be stop supporting the decision for security because it impairs
productivity.

24 Except when using copyleft licenses and open source projects, of course.

25 “Humans Are the Weakest Link in the Information Security Chain,” Kratikal Tech Pvt Ltd, February 2018,
https://oreil.ly/INf8d.

xI | Introduction

https://oreil.ly/INf8d

Effective logging

Security is not only preventing bad things from happening, but also about being
aware that something happened and, to the extent possible, what happened. The
capability to see what happened comes from being able to effectively log events.

But what constitutes effective logging? From a security point of view, a security ana-
lyst needs to be able to answer three questions:

« Who performed a specific action to cause an event to be recorded?
o When was the action performed or event recorded?

« What functionality or data was accessed by the process or user?

Nonrepudiation, which is closely related to integrity, means having a set of transac-
tions indicating who did what, with the record of each transaction maintaining integ-
rity as a property. With this concept, it is impossible for an actor to claim they did
not perform a specific action.

As important as it is to know what to log and how to protect it,
knowing what not to log is also crucial. In particular:

« Personally identifiable information (PII) should never be log-
ged in plain text, in order to protect the privacy of user data.

« Sensitive content that is part of API or function calls should
never be logged.

o Clear-text versions of encrypted content likewise should not

be logged.

« Cryptographic secrets, such as a password to a system or a key
used to decrypt data, should not be logged.

Using common sense is important here, but note that keeping
these logs from being integrated into code is an ongoing battle
against the needs of development (mostly debugging). It is impor-
tant to make it clear to development teams that it is unacceptable
to have switches in code that control whether sensitive content
should be logged for debugging purposes. Deployable, production-
ready code should not contain logging capabilities for sensitive
information.

Fail secure

When a system encounters an error condition, this principle means not revealing too
much information to a potential adversary (such as in logs or user error messages)
and not simply granting access incorrectly, such as when the failure is in the authen-
tication subsystem.

Introduction | xli

But it is important to understand that there is a significant difference between fail
secure and fail safe. Failing while maintaining safety may contradict the condition of
failing securely, and will need to be reconciled in the system design. Which one is
appropriate in a given situation, of course, depends on the particulars of the situa-
tion. At the end of the day, failing secure means that if a component or logic in the
system falters, the result is still a secure one.

Build in, not bolt on

Security, privacy, and safety should be fundamental properties of the system, and any
security features should be included in the system from the beginning.?

Security, like privacy or safety, should not be considered an afterthought or rely
solely or primarily on external system components to be present. A good example of
this pattern is the implementation of secure communications; the system must sup-
port this natively—i.e., should be designed to support Transport Layer Security (TLS)
or a similar method for preserving confidentiality of data in transit. Relying on the
user to install specialized hardware systems to enable end-to-end communications
security means that if the user does not do so, the communications will be unprotec-
ted and potentially accessible to malicious actors. Do not assume that users will take
action on your behalf when it comes to the security of your system.

Summary

After reading this Introduction, you should have all the foundational knowledge you
need to get the most out of the chapters that follow: the basics of threat modeling and
how it fits into the system development life cycle, and all the most important security
concepts, terminology, and principles that are fundamental to understanding the
security of your system. When you perform threat modeling, you will be looking for
these security principles in your system’s design to ensure your system is properly
protected from intrusion or compromise.

In Chapter 1 we discuss how to construct abstract representations of a system’s
design to identify security or privacy concerns. In later chapters, we will introduce
specific threat modeling methodologies that build on the concepts in this Introduc-
tion and the modeling techniques in Chapter 1 to perform complete security threat
assessments using the threat modeling activity.

Welcome aboard the security train!

26 Some security features or functionality may have negative effects on usability, so it may be acceptable to dis-
able some security capabilities by default if users can enable them when deploying the system.

xli | Introduction

CHAPTER 1
Modeling Systems

All models are wrong, but some are useful.

—G. E. P. Box, “Science and Statistics,” Journal of the American Statistical Association,
71 (356), 791-799, d0i:10.1080/01621459.1976.10480949.

System modeling (creating abstractions or representations of a system) is an impor-
tant first step in the threat modeling process. The information you gather from the
system model provides the input for analysis during the threat modeling activity.

In this chapter we’ll cover different types of system models, the reasons why you
might choose to use one model type over another, and guidance for creating the most
effective system models. Expert proficiency of system model construction will inform
your threat models and lead to more precise and effective analysis and threat identifi-
cation.

Throughout this chapter, we use the words model or modeling to
mean an abstraction or representation of a system, its components,
and interactions.

Why We Create System Models

Imagine, if you will, a group of Benedictine monks looking at the monastic church of
St. Gall and then at a manuscript, back and forth. At some point, one turns to the
others and says, “Well, listen, it was not a plan per se. It was more like a ‘two-
dimensional meditation on the ideal early medieval monastic community.”" Such is
the purpose associated with the Plan of St. Gall, currently recognized as the oldest
preserved 2D visualization and plan of a building complex. The church looks very
different from the plan.

Humans create models to plan ahead or to decide what resources might be needed,
what frameworks need to be put in place, what hills need moving, what valleys need
filling, and how independent pieces will interact once put together. Humans create
models because it is easier to visualize changes on a schematic, smaller scale than to
embark on construction right away. It is easier and cheaper to make changes to that
schematic, and change the ways these pieces interact, than to move walls, frames,
screws, engines, floors, wings, firewalls, servers, functions, or lines of code, after the
fact.

We also recognize that while the model and the final outcome may differ, having a
model will always help understanding nuances and details relevant to the process of
making and building. For security purposes, we model software and hardware sys-
tems, in particular, because it enables us to subject the systems to theoretical stress,
understand how that stress will impact the systems before they are implemented, and
see the systems holistically so we can focus on vulnerability details as needed.

In the rest of this chapter, we’ll show you the various visual forms your threat model
can take and explain how to gather requisite information to support system analysis.
The specific actions you take after you have constructed your model will depend on
the methodology you choose to follow; we’ll get to the methodologies in the next cou-
ple of chapters.

System Modeling Types

As you know, systems can be complex, with many moving parts and interactions
occurring among components. Humans are not born with extensive security knowl-
edge (although we know a few who may well have been), and most system designers
and developers are not intimately familiar with how functionality can be abused or
misused. So those who want to make sure their system analysis is both practical and
effective need to reduce the complexity and amount of data to consider for analysis
and maintain the right amount of information.

1 “The Plan of St. Gall,” Carolingian Culture at Reichenau and St. Gall, https://oreil.ly/-NoHD.

2 | Chapter 1: Modeling Systems

https://oreil.ly/-NoHD

This is where system modeling, or an abstraction of a system describing its salient
parts and attributes, comes to the rescue. Having a good abstraction of the system
you want to analyze will give you enough of the right information to make informed
security and design decisions.

Models have been used to express ideas or deliver knowledge to others for centuries.
The tomb builders of ancient China would create models of buildings,? and architects
since the Ancient Egyptians have routinely created scale models to demonstrate the
feasibility and intentions of a design.’

Creating a system model—an abstraction or representation of a system to be analyzed
for threats—can make use of one or more model types:*

Data flow diagrams
Data flow diagrams (DFDs) describe the flow of data among components in a
system and the properties of each component and flow. DFDs are the most used
form of system models in threat modeling and are supported natively by many
drawing packages; shapes in DFDs are also easy for humans to draw by hand.

Sequence diagrams
These are activity diagrams in Unified Modeling Language (UML) that describe
the interactions of system components in an ordered fashion. Sequence diagrams
can help identify threats against a system because they allow a designer to under-
stand the state of the system over time. This allows you to see how the system’s
properties, and any assumptions or expectations about them, change over the
course of its operation.

Process flow diagrams
Process flow diagrams (PFDs) highlight the operational flow through actions
among components in a system.

Attack trees
Attack trees depict the steps along a path that an attacker might try as part of
reaching their goal to perform actions with nefarious intent.

2 A. E. Dien, Six Dynasties Civilization (New Haven: Yale University Press, 2007), 214.
3 A. Smith, Architectural Model as Machine (Burlington, MA: Architectural Press, 2004).

4 There are other methods of producing graphical models suitable for analysis, such as using other UML model
types, or the System Modeling Language (SysML), and other model types that may be useful for performing
an effective analysis, such as control flow graphs and state machines. But those methodologies are beyond the
scope of this book.

System Modeling Types | 3

Fishbone diagrams
Also known as cause-and-effect or Ishikawa diagrams, these show the relation-
ships between an outcome and the root cause(s) that enabled such an effect to
occur.

Separately or together, you can use these system-modeling techniques to effectively
see the changes in security posture that make an attacker’s job easier. This is impor-
tant to help designers recognize and eliminate potential issues by changing their
designs or assumptions of the system. Use different model types for the purposes for
which they are best suited. For example, use DFDs to describe relationships between
objects, and use sequence diagrams to describe ordering of operations. We'll explore
each of these in some detail, so you can understand the benefits of each.

Data Flow Diagrams

When modeling a system to perform security analysis, experts identified DFDs as a
useful way to visually describe a system. DFDs were developed with a symbology that
expresses the complexity of systems.

Using models to understand the components of a system and how they relate to each
other came about in the 1950s with the functional flow block diagram. Later, in the
1970s, the structured analysis and design technique introduced the concept of a DFD.
> DFDs have become a standard way to describe a system when performing threat
analysis.

DFDs Have Levels

Data flow diagrams often result in multiple drawings, each of which indicate a layer
or level of abstraction. The top layer is sometimes referred to as the context layer, or
layer 0 or simply L0, and contains the system from a high-level view and its interac-
tions with external entities such as remote systems or users. Subsequent layers,
referred to as LI, L2, and so on, drill down into more detail on individual system
components and interactions, until the intended level of detail has been reached or
no additional value can be achieved from further decomposition of system elements.

While there is no formal standard that defines the shapes used when modeling the
data flow of a system, many drawing packages use a convention to associate shapes
and their meaning and use.

When constructing DFDs, we find it useful to highlight particular architectural ele-
ments alongside the data flows. This additional information can be helpful when

5 “Data Flow Diagrams (DFDs): An Agile Introduction,” Agile Modeling Site, https://oreil.ly/h7Uls.

4 | Chapter 1: Modeling Systems

https://oreil.ly/h7Uls
https://oreil.ly/A8fms
https://oreil.ly/Umez5

trying to make accurate decisions while analyzing the model for security concerns, or
while using the model to educate people new to the project. We include three non-
standard extension shapes for your consideration; they function as shortcuts that can
make your models easier to create and understand.

An element (shown in Figure 1-1) is a standard shape that represents a process or
operating unit within the system under consideration. You should always label your
element, so it can be referred to easily in the future. Elements are the source and/or
target for data flows (described later) to and from other units in the model. To iden-
tify human actors, use the actor symbol (refer to Figure 1-4 for a sample).

Figure 1-1. Element symbols for drawing data flow diagrams

You should also annotate each object with a description of its basic properties and
metadata. You can put the annotation on the diagram itself, or in a separate docu-
ment and then use the label to associate the annotation to the object.

The following is a list of potential information that you might want to capture in
annotations for objects in the model:

This list of potential metadata to obtain regarding an element, as
annotations to the model, is not comprehensive. The information
you need to know about the elements in your system depends on
the methodology you eventually decide to use (see Chapters 3
through 5) as well as the threats you are trying to identify. This list
presents a few of the options you may encounter.

« Name of the unit. If it is an executable, what is it called when built or installed on
a disk?

o Who owns it within your organization (the development team, usually)?

o If this is a process, at what privilege level is it running (e.g., always root, or
setuid’d, or some nonprivileged user)?

o If this is a binary object, is it expected to be digitally signed, and if so, by what
method and/or which certificate or key?

o What programming language(s) are used for the element?

« For managed or interpreted code, what runtime or bytecode processor is in use?

System Modeling Types | 5

People often overlook the influence of their choice of program-
ming language. For example, C and C++ are more prone to
memory-based errors than an interpreted language, and a script
will more easily lend itself to reverse engineering than a (possibly
obfuscated) binary. These are important characteristics that you
should understand during the design of the system, especially if
you identify them while you are threat modeling, to avoid common
and serious security concerns. If you don’t know this information
early enough in the system development process to include it in the
threat model (because, as you may know by now, threat modeling
should be done early and often), this is a perfect example of why
threat models should be kept up to date as the system evolves.®

There is some additional metadata, which provides context and opportunities for
deeper assessment, as well as the discussion between development teams and system
stakeholders, you may want to consider:

Is the unit production ready or a development unit or does the element only exist
part-time? For example, does the unit exist only in production systems but not in
development mode? This may mean that the process represented by the element
may not execute or be initialized in certain environments. Or it may not be
present, for example, because it is compiled out when certain compile flags are
set. A good example of this is a test module or a component that only applies in a
staging environment to facilitate testing. Calling it out in the threat model would
be important. If the module operates through particular interfaces or APIs that
are open in staging to facilitate testing, but remain open in production even

though the test module has been removed, then this is a weakness that needs to
be addressed.

Does information on its expected execution flow exist, and can it be described by
a state machine or sequence diagram? Sequence diagrams can aid in identifying
weaknesses, as we will discuss later in this chapter.

Optionally, does it use or have enabled specific flags from compilation, linking,
or installation,” or is it covered by an SELinux policy distinct from the system
default? As mentioned earlier, you may not know this when you construct the
first threat model, but it provides you with another opportunity to add value by
keeping the threat model up to date over the course of the project.

6 For an extensive discussion of the subject, see Brook S.E. Schoenfield, Securing Systems: Applied Security
Architecture and Threat Models (Boca Raton, FL: CRC Press, 2015).

7 Common flags include for ASLR or DEP support or stack canaries.

6

Chapter 1: Modeling Systems

Use the element symbol to show a self-contained unit of processing, such as an exe-
cutable or a process (depending on the level of abstraction), where subdividing the
element into representative components is unlikely to help people understand how
the unit operates and to which threats it may be susceptible. This may take some
practice—sometimes you may need to describe the subelements of the processing
unit to better understand the interactions it contains. To describe subelements, you
use a container symbol.

A container, or containing element, shown in Figure 1-2, is another standard shape
that represents a unit within the system under consideration that contains additional
elements and flows. This shape is usually used in the context layer (see “DFDs Have
Levels” on page 4) of a model, highlighting the major units within the system. When
you create container elements, you are signaling a need to understand the contained
elements, and that the container represents the combined interactions and assump-
tions of all the included elements. It is also a good way to reduce the busyness of a
model when drawn. Containers can be the source and/or target for data that flows to
and from other model entities when present in any given level of abstraction.

Container

Figure 1-2. Container symbols for drawing data flow diagrams

As with the element described earlier, you should assign a label to your container
objects, and include metadata for the object in its annotations. Metadata should
include (at least) any of the metadata items from the element as described earlier,
plus a brief summary of what is contained within (i.e., the major subsystems or sub-
processes that might be found inside).

Unlike an element, which represents a unit within the system under consideration, an
external entity shape, shown in Figure 1-3, represents a process or system that is
involved in the operation or function of the system but is not in scope for the analy-
sis. An external entity is a standard shape. At the very least external entities offer a
source for data flows coming into the system from a remote process or mechanism.
Examples of external entities often include web browsers used to access web servers
or similar services, but may include any type of component or processing unit.

External entity

Figure 1-3. External entity symbol for drawing data flow diagrams

System Modeling Types | 7

Actors (see Figure 1-4), which represent primarily human users of the system, are
standard shapes that have connections to interfaces offered by the system (directly, or
through an intermediate external entity such as a web browser) and are often used at
the context layer of the drawing.

Actor

Figure 1-4. Actor symbol for drawing data flow diagrams

The data store symbol, shown in Figure 1-5, is a standard shape representing a func-
tional unit that indicates where “bulk” data is held, such as a database (but not always
the database server). You could also use the data store symbol to indicate a file or
buffer holding small amounts of security-relevant data, such as a file containing the
private key to your web server’s TLS certificate,® or for an object data store such as an
Amazon Simple Storage Service (S3) bucket holding your application’s logfile output.
Data store symbols can also represent a message bus, or a shared memory region.

Datastore

Figure 1-5. Data store symbols for drawing data flow diagrams

Data stores should be labeled and have metadata such as the following:

Type of storage
Is this a file, an S3 bucket, a service mesh or a shared memory region?

Type and classification of data held
Is the data that is being sent to or read from this module structured or unstruc-
tured? Is it in any particular format; for example, XML or JSON?

Sensitivity or value of data
Is the managed data personal information, security relevant, or otherwise sensi-
tive in nature?

Protections on the data store itself
For example, does the root storage mechanism offer drive-level encryption?

8 Asin Apache Tomcat’s use of this mechanism.

8 | Chapter 1: Modeling Systems

Replication
Is the data replicated on a different data store?

Backup
Is the data copied to another place for safety, but with potentially reduced secu-
rity and access controls?

If you are modeling a system that contains a database server (such
as MySQL or MongoDB), you have two choices when it comes to
rendering it in a model: (a) use the data store to represent both the
DBMS process and the data storage location, or (b) an element for
the DBMS and a connected data store for the actual data storage
unit.

Each option carries benefits and trade-offs. Most people would
choose option (a), but option (b) is especially useful with effective
threat analysis for cloud and embedded system models in which
data may live on shared data channels or temporal storage nodes.

If an element is self-contained and has no connection to external entities, the element
describes a secure, but probably pretty useless, piece of functionality within the sys-
tem (hopefully, this is not your only unit within the system!). For an entity to have
value, it should at least provide data or create a transformative function. Most entities
also communicate with external units in some fashion. Within a system model, use
the data flow symbols to describe where and how interactions are made among enti-
ties. The data flow is actually a set of symbols that represent the multiple ways system
components can interact.

Figure 1-6 shows a basic line, which indicates a connection between two elements in
the system. It does not, and cannot, convey any additional information, making this
symbol an excellent choice when that information is not available to you at the time
of the modeling exercise.

Figure 1-6. A line symbol for basic undirected data flow

System Modeling Types | 9

Figure 1-7 shows a basic line with an arrow on one end, which is used to represent a
unidirectional flow of information or action.

Figure 1-7. An arrow symbol for basic directed data flow

In Figure 1-8, the lefthand side of the image shows a basic line with arrows at both
ends that represents a bidirectional communication flow. The righthand side of the
image shows an alternate symbol for bidirectional communication flow. Either is
acceptable, although the version on the right is more traditional and easier to recog-
nize in a busy diagram (at the risk of making the diagram too busy as a result).

Figure 1-8. Two-headed arrows for bidirectional data flow

Figures 1-6, 1-7, and 1-8 are standard shapes in data flow diagram construction.

Keep in mind that we are presenting conventions, not rules. These
shapes and what they represent or how they are used in a diagram
come from collective practice, not an official standard document.’
In our practice of threat modeling, we sometimes find it useful to
extend the conventional shapes and metadata to better suit our
requirements. You will see some of these extensions in this chapter
and throughout the book. But you should be comfortable, once you
are familiar with the objectives and expected outcomes of the activ-
ity, to make modifications as you see fit. Customization can make
the activity, the experience, and the information gained through
this activity valuable to you and the team members involved.

Figure 1-9 shows a nonstandard extension shape (see prior note) that we propose
above and beyond the normal set of DFD shapes. This shape is a single-headed arrow
that indicates where the communication originated. We have circled it to highlight
the mark. The mark is available in engineering stencils for transmission flows in the
major graphics packages.

9 Adam Shostack, “DFD3,” GitHub, https://oreil.ly/OMVKu.

10 | Chapter 1: Modeling Systems

https://oreil.ly/OMVKu

Figure 1-9. Optional initiator mark

Data flows should have a label for reference, and you should provide the following
critical metadata:

Type or nature of communication channel
Is this a network-based communication flow or a local interprocess communica-
tion (IPC) connection?

Protocol(s) in use
For example, is the data transiting over HTTP or HTTPS? If it uses HTTPS, does
it rely on client-side certificates to authenticate an endpoint, or mutual TLS? Is
the data itself protected in some way independently of the channel (i.e., with
encryption or signing)?

Data being communicated
What type of data is being sent over the channel? What is its sensitivity and/or
classification?

Order of operations (if applicable or useful for your purposes)
If flows are limited in quantity within the model, or the interactions are not very
complex, it may be possible to indicate the order of operations or flow order as
part of the annotations on each data flow, rather than creating a separate
sequence diagram.

Be careful expressing authentication or other security controls on
the data flow itself. Endpoints (servers or clients) are responsible
for, and/or “offer,” access controls independent of any potential
data flows between them. Consider using the interface extended
modeling element, described later in this section, as a “port” to
simplify your drawing and facilitate a more effective analysis for
threats.

Keep the following considerations in mind when using data flows in your models.

System Modeling Types | 11

First, use arrows to indicate the direction of data flows in your diagram and in your
analysis. If you have a line that starts at element A and goes to element B where it
terminates in an arrow (as shown in Figure 1-7), it indicates the flow of meaningful
communications goes from A to B. This is the exchange of data that is of value to the
application, or to an attacker, but not necessarily individual packets and frames and
acknowledgments (ACKs). Likewise, a line starting at B and ending in an arrow at A
would mean communication flows from B to A.

Second, you can choose from two basic approaches to show bidirectional communi-
cation flows in your model: use a single line with an arrow at each end, as shown in
Figure 1-8 (left), or use two lines, one for each direction, as shown in Figure 1-8
(right). The two-line method is more traditional, but they are functionally equivalent.
The other benefit of using the two-line method is that each communication flow may
have different properties, so your annotations may be cleaner in the model using two
lines instead of one. You can choose to use either method, but be consistent through-
out your model.

Lastly, the purpose of a data flow in a model is to describe the primary direction of
travel of communications that is relevant for the purposes of analysis. If a communi-
cation path represents any standard protocol based on Transmission Control Proto-
col (TCP) or User Datagram Protocol (UDP), packets and frames pass back and forth
along the channel from source to destination. But this level of detail is usually not
important for threat identification.

Instead, it is important to describe that application-level data or control messages are
being passed on the established channel; this is what the data flow is meant to convey.
However, it is often important to understand for analysis which element initiates the
communication flow. Figure 1-9 shows a mark you can use to indicate the initiator of
the data flow.

The following scenario highlights the usefulness of this mark in understanding the
model and analyzing the system.

Element A and element B are connected by a unidirectional data flow symbol, with
data flowing from A to B, as shown in Figure 1-10.

Figure 1-10. Sample elements A and B

Element A is annotated as service A, while element B is the logger client. You might
come to the conclusion that B, as the recipient of data, initiated the communication
flow. Or, you may alternatively conclude that A initiated the data flow, basing your

12 | Chapter 1: Modeling Systems

analysis on the label for each endpoint. In either case, you may be correct, because
the model is ambiguous.

Now, what if the model contains the additional initiator mark, attached to the end-
point at element A? This clearly indicates that element A, not element B, initiates the
communication flow and that it pushes data to B. This may happen in cases you are
modeling; for example, if you were modeling a microservice pushing log information
to a logger client. It is a common architectural pattern, shown in Figure 1-11.

Figure 1-11. Sample elements A and B, with initiator mark at element A

However, if the initiator mark is placed on B rather than A, you would reach a differ-
ent conclusion on the potential threats with this model segment. This design would
reflect an alternate pattern in which the logger client, being perhaps behind a firewall,
needs to communicate outbound to the microservice instead of the other way around
(see Figure 1-12).

Figure 1-12. Sample elements A and B, with initiator mark at element B

The symbol shown in Figure 1-13 is traditionally used to delineate a trust boundary:
any elements behind the line (the curvature of the line determines what is behind the
line versus in front) trust one another. Basically, he dotted line identifies a boundary
where all of the entities are trusted at the same level. For example, you might trust all
processes that run in behind your firewall or VPN. This does not mean flows are
automatically unauthenticated; instead a trust boundary means that objects and enti-
ties operating within the boundary operate at the same trust level (e.g., Ring 0).

This symbol should be used when modeling a system in which you wish to assume
symmetric trust among system components. In a system that has asymmetric compo-
nent trust (that is, component A may trust component B, but component B doesn’t
trust component A), the trust boundary mark would be inappropriate, and you
should use an annotation on the data flow with information describing the trust
relationship.

System Modeling Types | 13

SN
\

- -~

-

’
’

Figure 1-13. Trust boundary symbols for drawing data flow diagrams

The same symbol is also sometimes used, as shown in Figure 1-14, to indicate the
security protection scheme on a particular data flow, such as marking the data flow as
having confidentiality and integrity through the use of HTTPS. An alternative to this
symbol and annotation, which could lead to a lot of clutter in models with a signifi-
cant number of components and/or data flows, is to provide an annotation to the
data flow itself.

The necessary metadata for a trust boundary, if used in the traditional sense (to
denote a boundary beyond which all entities are of the same trust level), is a descrip-
tion of the symmetrical trust relationship of the entities. If this symbol is used to indi-
cate a control on a channel or flow, the metadata should include the protocol(s) in
use (e.g., HTTP or HTTPS, mutual TLS or not), the port number if not the default,
and any additional security control information you wish to express.

HTTPS,”

- <3

-

\

~

Figure 1-14. Symbol for an annotated trust boundary

14 | Chapter 1: Modeling Systems

An interface element, circled in Figure 1-15, is another nonstandard extension shape
that indicates a defined connection point for an element or container. This is useful
for showing ports or service endpoints exposed by the element. This is especially
helpful when the specific use of the endpoint is undefined or indeterminate at design
time, or in other words, when the clients of the endpoint are unknown ahead of time,
which means drawing a particular data flow is difficult. While this may seem a trivial
concern, an open listening endpoint on a service can be a major source of architec-
tural risk, so having the ability to recognize this from the model is key.

o
y
]
g
G

Figure 1-15. Interface element symbol

Each interface should have a label and metadata describing its core characteristics:

o If the interface represents a known port, indicate the port number.

o Identify the communications channel or mechanism—e.g., PHY or Layer 1/Layer
2: Ethernet, VLAN, USB human interface device (HID), or a software-defined
network—and whether the interface is exposed externally to the element.

« Communication protocol(s) offered by the interface (e.g., protocols at Layer 4
and above; or TCP, IP, HTTP).

o Access controls on incoming connections (or potentially outbound data flows),
such as any type of authentication (passwords, or SSH keys, etc.) or if the inter-
face is impacted by an external device such as a firewall.

Knowing this information can make analysis easier, in that all data flows connecting
to the interface can inherit these characteristics. Your drawing will also be simpler
and easier to understand as a result. If you don’t want to use this optional element,
create a dummy entity and data flow to the open service endpoint, which can make
the drawing appear more complex.

The shape in Figure 1-16—the block—is not part of the accepted
collection of DFD shapes. It is included here because Matt finds
this useful and wanted to demonstrate that threat modeling need
not be bound solely to the traditional stencil when there is an
opportunity to add value and/or clarity to one’s models.

System Modeling Types | 15

A block element, shown in Figure 1-16, represents an architectural element that selec-
tively alters the data flow on which it is attached. Blocks can also modify a port at the
connection of a data flow or process boundary. This shape highlights when a host
firewall, another physical device, or a logical mechanism as a function of the architec-
ture, and important for analysis, exists. Block elements can also show optional or
add-on equipment that may impact the system in a way outside the control of the
project team, yet are not external entities in the traditional sense.

Figure 1-16. Block symbols

Metadata that you should collect for blocks include the usual labels as well as the
following:

The type of block
A physical device or logical unit, and whether the unit is an optional component
for the system.

Behavior
What the block does and how it may modify the flow or access to the port or
process. Use a sequence diagram or state machine to provide additional detail on
the behavior modification supported by the unit the block represents.

When developing a model of your system, always be sure to decide
whether you and the project team will use a particular symbol, and
whether you decide to alter its meaning (effectively making your
own house rules for threat modeling, which is perfectly accepta-
ble!). Be consistent with the symbol’s use, which will result in the
activity being effective and showing value.

Sequence Diagrams

While DFDs show interactions and interconnections among system components and
how data moves between them, sequence diagrams show a time or event-based
sequence of actions. Sequence diagrams come from the UML, and are a specialization
of the interaction diagram type in UML. Supplementing DFDs with sequence dia-
grams as part of modeling in preparation for threat analysis can be instrumental in
providing necessary context about the way your system behaves and any temporal

16 | Chapter 1: Modeling Systems

https://oreil.ly/U_9q-

aspects required for proper analysis. For example, DFDs can show you that a client
communicates with a server and passes some form of data to the server. A sequence
diagram will show you the order of operations used in that communication flow.
This may reveal important information, such as who initiates the communication
and any steps in the process that may introduce security or privacy risk, such as a
failure to implement a protocol correctly or some other weakness.

There has been some discussion in the security community as to whether the
sequence diagram is actually more important for performing this activity than devel-
opment of DFDs. This is because a properly constructed sequence diagram can pro-
vide significantly more useful data than DFDs. The sequence diagram not only shows
what data is involved in a flow and which entities are involved, but also explains how
the data flows through the system, and in what order. Flaws in business logic and
protocol handling are therefore easier to find (and in some cases are the only possible
way to find) with a sequence diagram.

Sequence diagrams also highlight critical design failures such as areas that lack excep-
tion handling, or failure points or other areas where security controls are not consis-
tently applied. It can also expose controls that are suppressed or inadvertently
defeated, or potential instances of race conditions—including the dreaded time of
check time of use (TOCTOU) weakness—where simply knowing that data flows, but
not the order in which it flows, does not identify these weaknesses. Only time will tell
if using sequence diagrams as an equal partner in threat modeling becomes popular.

The formal definition of a sequence diagram in UML includes a significant number
of modeling elements, but for the purposes of creating a model suitable for threat
analysis, you should be concerned only with the following subset.

System Modeling Types | 17

https://oreil.ly/G1E8o
https://oreil.ly/G1E8o

Figure 1-17 shows a sample sequence diagram simulating a potential communication
and call flow of a mythical system.

:0bjectA :0bject B

1
1 CallA 1
: Return A |

GallC
Return B

(a)

1
1
1
CallB |
1
1
1

TTTETITITTT T A

@) i:_rJSeIfcaII

1
1
1
(@), (Call D (authenticated == true)
1
1

~

I
I
I
I
I
I
I
I
I
I
9
>
I
I
'

Figure 1-17. Sequence diagram shapes

The modeling elements shown in Figure 1-17 include the following:

Entities (objects A and B)
Within the scope of the system being considered, and their “lifeline” for connect-
ing to interactions with other entities.

Actors (humans)
Not represented here, but they reside externally to the system components and
interact with the various entities within the system.

Messages

Messages containing data (“Call A”, “Return B”) being passed from one entity to
another. Messages may be synchronous or asynchronous between entities; syn-
chronous messages (represented by solid arrowheads) block until the response is
ready, while asynchronous messages (represented by open arrowheads, not
shown) are nonblocking. Dashed lines ending in arrow heads represent return
messages. Messages may also initiate and terminate from an entity without pass-
ing to another entity, which is represented by an arrow that circles back on the
lifeline for the entity from which it initiated.

18 | Chapter 1: Modeling Systems

Conditional logic
This may be placed on message flows to provide constraints or preconditions,
which help identify problems introduced by business logic flaws and their impact
on data flows. This conditional logic (not shown in Figure 1-17) would have the
form of [condition] and would be placed inline with the message label.

Time
In a sequence diagram, time flows from top to bottom: a message higher up in
the diagram occurs sooner in time than the messages that follow.

Constructing a sequence diagram is fairly easy. The hard part is deciding how to draw
one. We recommend that you find a good drawing tool that can handle straight lines
(both solid and dashed), basic shapes, and arrows that can curve or bend. Microsoft
Visio (and any of the Libre or open alternatives such as draw.io or Lucidchart) or a
UML modeling tool like PlantUML should do fine.

You will also need to decide what actions you plan to model as a sequence. Good
choices include authentication or authorization flows, as these involve multiple enti-
ties (at least an actor and a process, or multiple processes) exchanging critical data in
a predefined manner. You can successfully model interactions involving a data store
or asynchronous processing module as well as any standard operating procedure
involving multiple entities.

Once you have decided on the actions you want to model, identify the interaction
and operation of elements within your system. Add each element to the diagram as a
rectangle toward the top of the diagram (shown in Figure 1-17), and draw a long line
straight downward from the lower center of the element’s rectangle. Finally, starting
toward the top of the diagram (along the long vertical lines), use lines ending in
arrows in one direction or another to show how the elements interact.

Continue to describe interactions, moving further down the model, until you reach
the natural conclusion of interactions at the expected level of granularity. If you are
using a physical whiteboard or similar medium to draw your model and take notes,
you may need to continue your model across multiple boards, or take a picture of the
incomplete model and erase it to continue going broader and deeper in your model-
ing. You would then need to stitch the pieces together later to form a complete
model.

Process Flow Diagrams

Traditionally used in process design and chemical engineering, process flow diagrams
(PFDs) show the sequence and directionality offlow of operations through a system.
PFDs are similar to sequence diagrams, but are generally at a higher level, showing
the activity chain of events in the system rather than the flow of specific messages and
component state transitions.

System Modeling Types | 19

https://oreil.ly/5AWOZ

We mention process flows here for completeness, but the use of PFDs in threat mod-
eling is not common. The ThreatModeler tool uses PFDs as its primary model type,
however, so some may find it of value.

PFDs may be complementary in nature to sequence diagrams. You can sometimes
describe the activity chain from a PFD with a sequence diagram using labels that
indicate which segments of message flow are bound to a specific activity or event.
Figure 1-18 shows a PFD for the events of a simple web application.

Reset control state
Lambda

Deliver state Control | Send control state

service

Get state

Figure 1-18. Sample process flow diagram

Figure 1-19 shows the same PFD redrawn as a sequence diagram with activity frames
added.

| loT device I | Control service I | Database I | Lambda I
(it 1 Getstate)
I il
| PR Return_________ |
N e /
e
|
—— e e ——————————— 5 ~——— r === J
Get (et state |
control Sl
| parameters Return '
| L REEEEEEEEEEEEEEEEEEEET |
e e e ———————— _:J

Figure 1-19. Sequence diagram as PFD

20 | Chapter 1: Modeling Systems

https://oreil.ly/ifk00

Attack Trees

Attack trees have been used in the field of computer science for more than 20 years.
They are useful for understanding how a system is vulnerable by modeling how an
attacker may influence a system. Attack trees are the primary model type in threat
analysis when using an attacker-centric approach.

This type of model starts at the root node that represents the goal or desired out-
come. Remember, in this model type the result is a negative outcome for the system
owners, but a positive outcome for the attackers! The intermediate and leaf nodes
represent possible ways of achieving the goal of the parent node. Each node is labeled
with an action to be taken, and should include information such as the following:

o The difficulty in performing the action to accomplish the parent node’s goal
« The cost involved to do so

« Any special knowledge or conditions required to allow the attacker to succeed

o Any other relevant information to determine overall capability for success or
failure

Figure 1-20 shows a generic attack tree with a goal and two actions and two subac-
tions an attacker uses to reach the goal.

Goal

Subaction A Subaction B

Figure 1-20. A generic attack tree diagram

System Modeling Types | 21

https://oreil.ly/3PDpY

Attack trees, which can be valuable for threat analysis, and for understanding the
actual level and degree of risk to a system from attackers, need a couple of things to
be well constructed and to provide the correct analysis of impact:

« Complete knowledge of how something can be compromised—favoring com-
pleteness and “what is possible” over “what is practical”

+ An understanding of the motivations, skills, and resources available to different
types and groups of attackers

You can construct an attack tree relatively easily, using the following steps:

1. Identify a target or goal for an attack.
2. Identify actions to be taken to achieve the target or goal.

3. Rinse and repeat.

Identify a target or goal for an attack

For this example, let’s say that an attacker wants to establish a persistent presence on
a system via remote code execution (RCE) on an embedded device. Figure 1-21
shows what this might look like in an evolving attack tree.

Perform remote

code execution
(RCE)

Figure 1-21. Sample attack tree, step 1: identify high-level target or goal

Identify actions to be taken to achieve the target or goal

How do you get to RCE on this system? One way is to find an exploitable stack buffer
overflow and use it to deliver an executable payload. Or you could find a heap over-
flow and use it in a similar fashion. At this point, you might be thinking, “But wait,
we don’t know anything about the system to know if this is even feasible!” And you
are right.

When performing this exercise in real life, you want to be realistic and make sure you
identify only targets and actions that make sense to the system under evaluation. So
for this example, let’s assume that this embedded device is running code written in C.
Let’s also make the assumption that this device is running an embedded Linux-like
operating system—either a real-time operating system (RTOS) or some other
resource-constrained Linux variant.

22 | Chapter 1: Modeling Systems

So what might be another action needed to gain RCE capability? Does the system
allow a remote shell? If we assume this device has flash memory and/or bootable
media of some kind, and can accept over-the-air updates (OTAs), we can add file
manipulation and OTA firmware spoofing or modification as actions to achieve RCE
as well. Any possible actions you can identify should be added as elements to the
attack tree, as shown in Figure 1-22.

Perform remote
code execution
(RCE)

~——
'y

: Deliver [Deliver) : -
Modify contents Open remote Deliver malicious
executable executable A

[of memory] [payloadtostack] payload to heap [shell] [ﬁrmwareOTA]

Figure 1-22. Sample attack tree, step 2: identify actions required to achieve the goal

Rinse and repeat

Here is where it really gets interesting! Try to think of ways to achieve the next order
of outcomes. Don’t worry about feasibility or likelihood; analysis and decisions made
from such analysis will happen later. Think outside the box. Remember, you're
putting on your hacker hat, so think like they would. No matter how crazy your ideas
are, someone might try something similar. At this stage, an exhaustive list of possibil-
ities is better than a partial list of feasibilities.

Your tree is done when no additional substeps are needed to complete an action.
Don’t worry if your tree looks lopsided; not all actions need the same level of com-
plexity to achieve results. Also don’t worry if you have dangling nodes—it may not be
easy to identify all possible scenarios for an attacker to achieve a goal (it’s good to
think of as many scenarios as you can, but you might not be able to identify all of
them). Figure 1-23 shows an evolved (and possibly complete) attack tree indicating
the methods by which an attacker may reach their goal.

System Modeling Types | 23

Perform remote

code execution
(RCE)

; Deliver . L
Modify contents Open remote Deliver malicious
[of memory] [e’é%i,‘fg%?jle] [shell] [ﬁrmwareOTA]

: . 3 f Change
Find stack-based Find heap-based| | Find exploitable : A
[buf‘fer overﬂow] [buffer O\Berﬂow] [buffer gverﬂow] [Cog? gﬁgon]

Subvert admin
Fuzz APls web form input
fields

Figure 1-23. Sample attack tree, step 3 and beyond: identify subactions to achieve sub-
targets

Learning how to break something or accomplish prerequisite goals is easier as a
group brainstorming exercise. This lets individuals with technical and security
knowledge add their expertise to the group so that you can identify all the attack
tree’s possible nodes and leaves. Understanding your organization’s risk appetite, or
the amount of risk your organization is willing to accept, will clarify how much time
you should spend on the exercise and if the organization is willing to take the neces-
sary actions to address any concerns identified.

Knowing how attackers behave is a significant challenge for most businesses and
security practitioners, but community resources such as the MITRE ATT&CK frame-
work make identification and characterization of threat actors’ techniques, skills, and
motivations much easier. It is certainly not a panacea, as it is only as good as the
community that supports it, but if you are unfamiliar with how attacker groups
behave in the real world, this blog entry by Adam Shostack, summarizing a talk by
Jonathan Marcil, is an excellent resource for you to consider.

Fishbone Diagrams

Fishbone diagrams, also known as cause-and-effect, or Ishikawa, diagrams, are used
primarily for root cause analysis of a problem statement. Figure 1-24 shows an exam-
ple of a fishbone diagram.

24 | Chapter 1: Modeling Systems

https://attack.mitre.org
https://attack.mitre.org
https://oreil.ly/xizOp
https://oreil.ly/xizOp
https://oreil.ly/B8Xbe

Similar to attack trees, the fishbone diagrams can help you identify weaknesses in the
system for any given area. These diagrams are also useful for identifying pitfalls or
weaknesses in processes such as those found in the supply chain for a system where
you may need to analyze component delivery or manufacturing, configuration man-
agement, or protection of critical assets. This modeling process can also help you
understand the chain of events that lead to exploitation of a weakness. Knowing this
information allows you to construct better DFDs (by knowing what questions to ask
or what data you seek), and identify new types of threats as well as security test cases.

Constructing a fishbone diagram is similar to creating attack trees, except instead of
identifying a target goal and the actions to achieve the goal, you identify the effect
you want to model. This example models the causes of data exposure.

First, define the effect you want to model; Figure 1-24 demonstrates the technique
with data exposure as the effect to model.

Data
exposure

Figure 1-24. Sample fishbone diagram, step 1: main effect

Then you want to identify a set of primary causes that lead to the effect. We’ve identi-
fied three: overly verbose logs, covert channels, and user error, as shown in
Figure 1-25.

[Overlyverboselogs] [User error]

Y Y . Data
4 "| exposure

| Covert channel I

Figure 1-25. Sample fishbone diagram, step 2: primary causes

Finally, you identify the set of causes that drive the primary causes (and so on). We
have identified that a primary cause for user error is a confusing UI. This example
recognizes only three threats, but you will want to create larger and more expansive
models, depending on how much time and effort you wish to expend versus the gran-
ularity of your results. Figure 1-26 shows the fishbone diagram in a complete state,
with the expected effect, primary, and secondary causes.

System Modeling Types | 25

[Overlyverboselogs] [User error]

Developer mistake—
Malicious insider (developer)—» le—Confusing Ul
Configuration error—»
¥ Y . Data
4 "| exposure

Alternate code path—
Untrusted component —»

Malicious insider—»}

| Covert channel I

Figure 1-26. Sample fishbone diagram, step 3: secondary causes

How to Build System Models

The basic process for creating system models starts by identifying the major building
blocks in the system—these could be applications, servers, databases, or data stores.
Then identify the connections to each major building block:

« Does the application support an API or a user interface?
o Does the server listen on any ports? If so, over what protocol?

o What talks to the database, and whatever communicates to it, does it only read
data, or does it write data too?

« How does the database control access?

Keep following threads of conversation and iterate through every entity at this con-
text layer in the model until you have completed all necessary connections, interfaces,
protocols, and data streams.

Next, choose one of the entities—usually an application or server element—that may
contain additional details you need to uncover in order to identify areas for concern,
and break it down further. Focus on the entry and exit points to/from the application,
and where these channels connect, when looking at the subparts that make up the
application or server.

Also consider how the individual subparts may communicate with each other,
including communication channels, protocols, and the type of data passed across the
channels. You will want to add any relevant information based on the type of shape
added to the model (later in the chapter you will learn about annotating the model
with metadata).

26 | Chapter 1: Modeling Systems

When building models, you will need to leverage your judgment and knowledge of
security principles and technology to gather information to enable a threat assess-
ment. Ideally, you would perform this threat assessment immediately after your
model is built.

Before you begin, decide which model types you may need and the symbol set for
each model type you intend to use. For example, you may decide to use the DFD as
your primary model type but use the default symbol set defined by whatever drawing
package you are using. Or you may decide to also include sequence diagrams, which
would be appropriate if your system uses nonstandard interactions between compo-
nents where exploitable weaknesses can hide.

As the leader of a modeling exercise (which, for the purposes of this chapter, we
assume is you—lucky you), you need to make sure you include the right stakeholders.
Invite the lead architect, the other designers, and the development lead(s) to the
modeling session. You should also consider inviting the quality assurance (QA) lead.
Encourage all members of the project team to provide their input to the construction
of the model, although as a practical matter, we recommend keeping the attendee list
to a manageable set to maximize the time and attention of those who do attend.

If this is the first time you or your development team are creating a system model,
start slowly. Explain the goals or expected outcomes of the exercise to the team. You
should also indicate how long you expect the exercise to take, and the process that
you will follow, as well as your role in the exercise and the role of each stakeholder. In
the unlikely event that team members are not all familiar with each other, go around
the room to make introductions before you begin the session.

You should also decide who is responsible for any drawing and note-taking required
during the session. We recommend you do the drawing yourself because it puts you
in the center of the conversation at all times and provides attendees an opportunity to
focus on the task at hand.

A few points are worth mentioning as you explore the system:

Timing of the exercise is important
If you meet too early, the design will not be formed sufficiently, and a lot of
churn will occur as designers with differing viewpoints challenge each other and
take the discussion off on tangents. But if you meet too late, the design will be
fixed, and any issues identified during threat analysis may not be resolved in a
timely fashion, making your meeting a documentation exercise rather than an
analysis for threats.

How to Build System Models | 27

Different stakeholders will see things differently

We have found it common, especially as the attendee count increases, that stake-
holders are not always on the same page when it comes to how the system was
designed or implemented; you need to guide the conversation to identify the cor-
rect path for the design. You may also need to moderate the discussion to avoid
rabbit holes and circling conversation threads, and be wary of sidebar conversa-
tions, as they provide an unnecessary and time-consuming distraction. A well-
moderated conversation among stakeholders in the system-modeling process
often leads to “eureka!l” moments, as the discussion reveals that the expectation
from the design and the reality of the implementation clash, and the team can
identify the spots where constraints modified the initial design without control.

Loose ends are OK

As we mentioned previously, while you may strive for perfection, be comfortable
with missing information. Just make sure to avoid or minimize knowingly incor-
rect information. It is better to have a data flow or element in the model that is
filled with question marks than it is to have everything complete but some
known inaccuracies. Garbage in, garbage out; in this case, the inaccuracies will
result in poor analysis, which may mean multiple false findings, or worse, a lack
of findings in a potentially critical region of the system.

We recommend that you present system modeling as a guided exercise. This is espe-
cially important if the project team is unfamiliar with the model construction pro-
cess. It is often beneficial for someone external to the product development team to
facilitate the modeling exercise because this avoids a conflict of interest with respect
to the system design and its potential impact on delivery requirements.

This is not to say that someone facilitating the construction of a model should be
totally impartial. The leader will be responsible for gathering the necessary partici-
pants and working with this team to define the system the team intends to build with
sufficient detail to support later analysis. As such, the leader should be an enabler of
outcomes, not a disinterested third party. They do need to be removed enough from
the design (and assumptions or shortcuts made or risks ignored) to provide a critical
look at the system and be able to tease out tidbits of information that will be useful
for the threat analysis.

As a leader, it’s important that you have accurate and complete information, as much
as possible, when analyzing your model; your analysis may lead to changes to the sys-
tem design, and the more accurate the information you start with, the better analysis
and recommendations you can make. Keep an eye on the detail and be willing and
able to overturn “rocks” to find the right information at the right time. You should
also be familiar with the technologies under consideration, the purpose of the system
being designed, and the people involved in the exercise.

28 | Chapter 1: Modeling Systems

While you don’t need to be a security expert to build a good system model, model
building is usually conducted as a prerequisite to the threat analysis phase. This usu-
ally happens in rapid succession, which suggests you should probably be the security
leader for that part of the project as well. The reality is that, with modern develop-
ment projects, you may not be an expert in everything involved with a system. You
have to rely on your teammates to shore up your knowledge gaps, and act more as a
facilitator to ensure that the team efficiently develops a representative and accurate
model. Remember, you don’t need to be an auto mechanic to drive a car, but you do
need to know how to drive your car and the rules of the road.

If you are the leader charged with delivering a system model for
analysis, you should be OK with imperfection, especially when
starting a new model of a system. You will have an opportunity to
improve the model over successive iterations.

No matter how skilled you are at drawing models, or interrogating designers about
the systems they present to you, it is highly likely that the information you need in its
entirety will be missing or unavailable, at least initially. And that is fine. System mod-
els represent the system under consideration and do not need to be 100% accurate to
be of value. You must know some basic facts about the system and each element in
the system for you to be effective in your analysis, but do not try for perfection or you
will be discouraged (unfortunately, we know this from experience).

You can improve your chances of success in leading this activity by keeping in mind
a few simple things:

Establish a blame-free zone
Individuals with a strong attachment to a system being analyzed will have opin-
ions and feelings. While you should expect professionalism from attendees, con-
tention and heated arguments may create sour working relationships if you don’t
avoid getting personal in a system-modeling session. Be prepared to moderate
the discussion to prevent singling out individuals for mistakes, and redirect the
conversation to recognizing the great learning opportunity you now have.

No surprises
Be up front about what you intend to accomplish, document your process, and
give your development teams plenty of notice.

Training
Help your team help you by showing them what needs to be done and what
information will be required of them so that they can be successful. Hands-on
training is especially effective (e.g., “show one, do one”), but in this age of video
logs (vlogs) and live-streaming, you may also consider recording a live modeling
session Critical Role-style and making the video available for your development

How to Build System Models | 29

https://critrole.com/videos

teams to review. This could be the best two to three hours of time spent in
training.

Be prepared
Ask for information about the target system ahead of your system-modeling
exercise, such as system requirements, functional specifications, or user stories.
This will give you a sense of where the designers might go when considering a set
of modules, and help you to frame questions that can help obtain the necessary
level of information for a good model.

Motivate attendees with food and drink
Bring donuts or pizza (depending on the time of day) and coffee or other snacks.
Food and drink goes a long way toward building trust and getting attendees to
discuss hard topics (like that big security hole that was introduced by accident!).

Gain buy-in from leadership
Attendees will feel more comfortable being present and sharing their thoughts
and ideas (and uncovering skeletons in the closet, so to speak) if they know their
management team is on-board with this activity.

At the time of this writing, the COVID-19 pandemic is making us
think creatively about how to meet safely and build virtual comra-
dery with shipped (or locally sourced) snacks and group video
calls. These are lessons you can apply to distributed team collabo-
ration any time.

When you create a system model, regardless of the type, you may choose to draw it
out on a whiteboard or in a virtual whiteboard application and translate it into your
favorite drawing package. But you don’t have to always do it by hand. Know that
online and offline utilities are available today'" that enable you to create models
without manually drawing them first.

If you use any of these drawing packages, you should come up with your own method
of adding metadata annotations for each element as described earlier. You can do this
within the diagram itself as a textbox or callout, which might clutter the diagram.
Some drawing applications perform automatic layout of objects and connections,
which on complex diagrams can look like spaghetti. You can also create a separate
document, in your favorite text editor, and provide the necessary metadata for each
element shown in the diagram. The combination of diagram(s) and text documents
becomes the “model” that allows a human to perform analysis that can identify
threats and weaknesses.

10 draw.io, Lucidchart, Microsoft Visio, OWASP Threat Dragon, and Dia, to name a few.

30 | Chapter 1: Modeling Systems

What Does a Good System Model Look Like?

Despite your best efforts, complexity may occur because you have too much informa-
tion, or worse, incorrect information. Sometimes, the potential level of detail in the
model itself and subsequent amount of effort you need to perform analysis on the
model is a welcome diversion from all the fires you're fighting. Alternatively, an
extreme level of detail might be a requirement of your environment or market seg-
ment. For example, some industries, such as transportation or medical devices,
require a higher degree of analysis to address a higher degree of assurance. For most
of us, however, threat modeling is often seen as unfamiliar, unnerving, or an unwel-
come “distraction” from other seemingly more critical tasks. But by now you already
know: a good threat model will pay for itself.

But what makes a good model? It depends on various factors, including the method-
ology you use, your goals, and how much time and energy you can to devote to build-
ing out the model. While a good model is difficult to describe, we can highlight key
points that form a good system model. Good models at a minimum have the follow-
ing properties:

Accurate
Keep your models free of inaccurate or misleading information that will result in
an imperfect threat analysis. This is hard to do alone, so it is critical to have sup-
port from the system designers, developers, and others on the project. If the
project team wonders aloud “What is that?” when everything is said and done,
something bad happened during the system model’s construction and should be
revisited.

Meaningful

Models should contain information, not just data. Remember that you are trying
to capture information that points to “conditions for potential compromise”
within your system. Identifying those conditions depends on the threat modeling
methodology that you ultimately select. The methodology you use identifies
whether you are looking for only exploitable weaknesses (aka vulnerabilities) or
want to identify different parts of the system that have the potential to contain
weaknesses, exploitable or not (because in theory they will likely become exploit-
able in practice while not so on paper).

Sometimes people want to capture as much metadata about the system as possi-
ble. But the point of modeling is to create a representation of the system without
re-creating it, providing sufficient data to make inferences and direct judgments
on the characteristics of the system.

What Does a Good System Model Look Like? | 31

Representative
The model should attempt to be representative of either the design intentions of
the architect or the realized implementation by the development teams. The
model can tell us what to expect from the system’s security posture as designed
or as implemented, but usually not both. Either way, the conversation around the
conference room table will be the corporate equivalent of “he said, she said.” The
team should clearly recognize their system in the model created.

Living
Your system isn’t static. Your development team is always making changes,
upgrades, and fixes. Because your systems are always changing, your models
need to be living documents. Revisit the model on a regular basis to ensure it
remains accurate. It should reflect the currently expected system design or the
current system implementation. Model “what is” instead of “what should be.”

Deciding when your model is “good” is not easy. To determine the quality and
“goodness” of a system model, you should develop guidelines and make them avail-
able to all participants. These guidelines should spell out which modeling constructs
(i.e., shapes, methods) to use and for what purposes. They should also identify the
granularity level to strive for and how much information is too much. Include stylis-
tic guidance such as how to record annotations or use color in the model diagram.

The guidelines are not rules, per se. They are there to provide consistency in the
modeling exercise. However, if team members deviate from the guidelines but are
effective in developing a quality model, take them all out for a drink. Declare success
for the first model created by a team when the participants—the designers and other
stakeholders of the system, and yourself—agree that the model is a good representa-
tion of what you want to build. Challenges may remain, and the stakeholders may
have reservations about their creation (the system, not the model), but the team has
cleared the first hurdle and should be congratulated.

Summary

In this chapter, you learned a brief history of creating models of complex systems and
the types of models commonly used in threat modeling. We also highlighted techni-
ques that will help you and your team get the right amount of information into your
models. This will help you find the needles (data) in the haystack of information
while also avoiding analysis paralysis.

Up next, in Chapter 2, we present a generalized approach to threat modeling. In
Chapter 3, we'll cover a collection of industry-accepted methodologies for identifying
and prioritizing threats.

32 | Chapter 1: Modeling Systems

CHAPTER 2
A Generalized Approach to Threat Modeling

If you always do what you’ve always done, you’ll always get what you’ve always got.
—Henry Ford

Threat modeling as an exercise in analyzing a system design for threats follows a con-
sistent approach that can be generalized into a few basic steps; this chapter presents
that general flow. This chapter also provides information on what to look for in your
system models, and what you may never be able to discover as a result of threat
modeling.

Basic Steps

This section shows the basic steps that outline the general flow of threat modeling.
Experienced modelers perform these steps in parallel and, for the most part, automat-
ically; they are continuously assessing the state of the system as the model is being
formed, and they may be able to call out areas for concern well before the model has
reached an expected level of maturity.

It may take you some time to achieve that level of comfort and familiarity, but with
practice these steps will become second nature:

1. Identify objects in the system under consideration.

Identify the elements, data stores, external entities, and actors, present in and
associated with the system you are modeling, and gather characteristics or
attributes as metadata about these things (later in the chapter we provide some
sample questions you can use to ease metadata collection). Make note of the
security capabilities and controls each object supports or provides, and any clear
deficiencies (such as an element exposing a web server on HTTP, or a database
that does not require authentication to access).

33

. Identify flows between those objects.

Identify how data flows between the objects described in step 1. Then record
metadata about those flows, such as protocols, data classification and sensitivity,
and directionality.

. Identify assets of interest.

Detail relevant or interesting assets that are held by the objects or communicated
by the flows identified in step 2. Remember that assets may include data—either
internal to the application (such as control flags or configuration settings) or
related to the function of the application (i.e., user data).

. Identify system weaknesses and vulnerabilities.

Understand how the confidentiality, integrity, availability, privacy, and safety of
the assets identified in step 3 may be impacted, based on the characteristics of the
system objects and flows. In particular, you are looking for violations of the secu-
rity principles described in the Introduction. For example, if an asset were to
include a security token or key, and the key may be accessed incorrectly (result-
ing in loss of confidentiality) in certain conditions, then you have identified a
weakness. If that weakness is exploitable, you have a vulnerability that may be
under threat.

. Identify threats.

You will need to associate vulnerabilities against the system’s assets with threat
actors to determine how likely each vulnerability is going to be exploited, which
drives risk to the system.

. Determine exploitability.

Lastly, identify paths through the system an attacker may take to cause an impact
against one or more assets; in other words, identify how an attacker may exploit
a weakness identified in step 4.

What You Are Looking for in a System Model

Once you have a model to work from, in any state of completeness (or accuracy), you
can begin to review the model for vulnerabilities and threats. This is where you move
from system modeling to threat modeling. At this point, you might be asking your-
self: “What exactly should I be looking for among this mess of boxes and lines and
text?”

34

Chapter 2: A Generalized Approach to Threat Modeling

The short answer is: you are looking for the means and opportunity an attacker would
need,' should they also have the motive, to conduct an attack against your system.
What does this mean?

Means
Does the system present a vector for attack?

Opportunity
Does the use or deployment of the system (or on a more granular level, an indi-
vidual component) result in a path or access that a suitably motivated attacker
may use to conduct an exploit?

Motive
Does an attacker have a reason to conduct an attack against your system? A suffi-
ciently motivated attacker may also create opportunities for exploitation beyond
your expectations.

Means and opportunity form the basis of a threat. Motivation of an adversary is the
most difficult to know precisely, which is why risk exists as a concept—motivation
can be known only with some level of confidence, and actual exploitation attempts
can be rated reliably only by probability. Risk, by definition, is a measure of likeli-
hood (what are the chances an adversary has a motive, opportunity, and means?) and
impact. In addition to motivation, you also have to assess a potential attacker’s capa-
bility to cause a threat event.

Because so many factors contribute to the likelihood of an attack and the likelihood
of its success, it’s not possible to accurately quantify risk except under specific (and
potentially unique) circumstances.

The Usual Suspects

The following is a nonexhaustive checklist of terms to look out for as you learn to
recognize areas for concern in the models you produce:

Any nonsecure protocol
Some protocols come in two flavors, one with security and one without (and
those with security often have names that end in “s”). Alternatively, protocols
may be known to be weak through changes in security knowledge, attack or anal-

ysis techniques, or flaws in the design or popular implementations. For example:

http
ftp
telnet
ntp

1 Peter J. Dostal, “Circumstantial Evidence,” The Criminal Law Notebook, https://oreil.ly/3yyB4.

What You Are Looking for in a System Model | 35

https://oreil.ly/3yyB4

snmpv1l
wep
sslv3

If you see any of these or similar insecure (nonsecure, impossible to secure, or no
longer capable of meeting security expectations) or weak protocols and your
assets of interest are being communicated or accessed through one of them, flag
this as a potential vulnerability and loss of confidentiality (primarily) and integ-
rity (secondarily).

Any process or data store without authentication

Processes that expose critical services, such as a database server or web server,
and that do not require authentication are an immediate red flag, especially if
one of these components houses, transmits, or receives your critical assets (data).
Lack of authentication exposes your data just as easily as an insecure protocol.

It is important to look for compensating controls in this case that can help miti-
gate the impact from threats. These controls usually rely on identification of an
attacker, but in this case, you would not have an identity assigned by your sys-
tem. You may, though, have identification in the form of a source IP address
(which, of course, any smart attacker would spoof to throw your Security Opera-
tions Center off their scent). Be sure to highlight any capabilities to detect mali-
cious access; if no controls are available, lack of authentication will be one of
your highest priorities to address (good find!).

Any process that fails to authorize access to critical assets or functionality

Similar to lack of authentication, processes that expose critical services that fail to
properly authorize access—either by granting the same privileges to all users
regardless of identity, or granting excessive privileges to individual actors—is a
hot spot attackers will try to leverage to compromise your sensitive assets. Cre-
dential stuffing, brute-forcing, and social engineering can deliver credentials to
malicious actors who will then use them to access key functionality with access to
your system’s “crown jewels,” and having a weak authorization model means
effectively any account will do.

Instead, if your system erected virtual walls and enforced an authorization model
based on least privilege and separation of duties, then an attacker’s path to the
target assets would be much more challenging. Using effective access-control
schemes (such as RBAC for users and MAC for processes) makes administration
easier and less error prone, and provides visibility that enables security verifica-
tion more effectively than a piecemeal approach.

36

| Chapter2: A Generalized Approach to Threat Modeling

Any process with missing logging

While the primary goal for any developer or system designer who is trying to
enforce security principles is to prevent an attacker from getting into the system
in the first place, a secondary goal is to make it hard for an attacker to move
around in a system (causing them to spend more effort and time, and maybe take
their attacks elsewhere). Traceability is a key capability that a system should
have, so any attempts by attackers to take advantage of system vulnerabilities can
be identified, and proper behavior can be audited after the fact. A process that is
missing logging of critical system events, especially security-relevant events,
should be a cause for concern. Without the visibility into the behaviors of the
system and actions of actors within it (or attempts at actions), the operators of
the system will suffer from the “fog of war”, which puts them at a severe disad-
vantage against skilled adversaries.

Sensitive assets in plain text
If you consider an asset such as data to be sensitive, would you write it down on a
piece of paper and tape it to your computer monitor?? So why would you want to
let it reside “in the clear” on a computer disk or nonvolatile storage? Instead, it
should be protected in some fashion—encrypted or hashed, depending on its
usage.

Sensitive data assets without integrity controls

Even if you cryptographically secure your assets, protecting them from being
accessed (read), you need to protect them from being tampered with. If tamper
evidence or tamper resistance is not a feature of your system when it comes to
your sensitive assets, this should be a red flag. Tamper evidence can mean having
sufficient logging when modifications are made to an asset, but we also recom-
mend performing an integrity check in addition. Digital signatures and crypto-
graphic hash algorithms use keys to generate information that can be used to
verify the integrity of data, and this information can be verified for integrity and
authenticity as well. Tamper resistance is a harder feature to support. And, in
software, usually involves the use of a security reference monitor—a specially
protected process that can enforce integrity verification on all assets and opera-
tions—to guard against malicious modification. Physical security options for
tamper-evidence and tamper-resistance capabilities exist as well.?

2 This is a common way computer users store their passwords!

3 Such as defined in the US NIST FIPS 140-2, https://oreil.ly/N_pfq.

What You Are Looking for in a System Model | 37

https://oreil.ly/N_pfq
https://oreil.ly/UIF6Y

In some systems, like embedded devices, you can store certain
assets in memory locations in plain text as long as access to the
location is severely restrictive. For example, a key stored in one-
time programmable (OTP) memory is in clear text, but access is
often available to only a segregated security processor such as a
cryptographic accelerator, and an attacker would almost certainly
need to completely destroy the device to gain access to the key,
which may make the risk “acceptable” to you and your leadership.

Incorrect use of cryptography
Cryptography is critical to protecting sensitive assets, but using it incorrectly is
so very easy. It may be difficult to know when cryptography is not being used
correctly, but looking out for the following will tell you if there is a potential for
concern:

 Hashing information that needs to be read or used in its original form (such
as when authenticating to a remote system)

 Encrypting using a symmetric cryptographic algorithm (such as Advanced
Encyption Standard, or AES) when the key resides on the same component
as the data

« Not using a cryptographically secure random number generator

« Using your own homegrown cryptographic algorithm*

Communication paths transiting a trust boundary

Any time data moves from one system component to another, an attacker could
possibly intercept it to steal it, tamper with it, or prevent it from reaching its des-
tination. This is especially true if the communication path leaves the confines of a
trust relationship between components (where each component is considered
trustworthy among the collection of components); this is what is meant by tran-
siting a trust boundary. As an example, consider corporate communications—if
the messages are passed between individuals within the company, each individ-
ual is generally trusted, and the trust boundary has not been crossed. But if the
message leaves the organization, such as through email to an outside actor, the
message is no longer protected by trusted actors or systems, and requires protec-
tive measures to ensure that the trustworthiness, integrity, and confidentiality of
the messages are maintained.

The previous checklist is weighted toward looking for security concerns, but could
easily be expanded to include privacy or safety hazards as well; some of the security

4 Please, unless you are a cryptographer or math savant, just don’t do it!

38 | Chapter2: A Generalized Approach to Threat Modeling

https://oreil.ly/Ld4wm

red flags to look out for may directly lead to privacy or other issues, depending on the
assets and goals of the system in its design and operation.

Some system model types, such as sequence diagrams, make it easy to spot insecuri-
ties. For example, to identify a TOCTOU security concern, look for a sequence of
interactions between two or more entities and data (either a store or a buffer). Specif-
ically, you want to locate where a single process interacts with the data twice, but a
separate entity interacts with the data in between the two interactions. If the interven-
ing access results in a change of state to the data, such as locking memory or chang-
ing the value of the buffer or deleting the data store contents, this may result in bad
behavior from the other entity.

Figure 2-1 shows a sample sequence diagram that highlights a common scenario for
TOCTOU weaknesses to exist.

| loT device I |C0ntr0lservice| l Database I I Lambda I
(et state N
PR Return_________
' P Reset state
Time passes <

Get state R
)
DR Return________. E
)
)

Figure 2-1. Sample sequence diagram showing TOCTOU

Can you spot the issue?®

What You Should Not Expect to Discover

System models are abstractions or approximations of a system and its properties.
Threat modeling is best done “early and often,” and will mostly focus on architecture
and design aspects of the system. As a result, the key thing you will not be able to find
through this exercise are flaws based on the implementation, due to language con-
straints, embedded components, or developer choices.

5 Answer: the control service gets the control state variable from the database too early, and does not update its
local copy, which results in an incorrect value being returned to the device when it asks for the state variable.

What You Are Looking for in a System Model | 39

https://oreil.ly/l3Jaq

For example, while it is possible to know you are using the correct form of cryptogra-
phy for protecting a sensitive asset, it is difficult to know at design time whether dur-
ing key generation the random number generator is being seeded correctly. You can
predict there may be a cause for concern, and may simulate the impact from poor
seeding should it occur in practice, but your finding would be theoretical, and there-
fore nonactionable, at this point.® Likewise, you may know from the model that a par-
ticular piece of functionality is written in a language that makes memory safety
difficult (e.g., by the use of the C programming language), but it will be difficult to
know that of your two hundred APIs, three of them have remotely exploitable stack-
based buffer overflows. You should take care to not be the person in your organiza-
tion that “cries wolf” and instead focus on actionable and defensible results.

Threat Intelligence Gathering

The idea of predicting which specific actors may want to attack your system, exploit-
ing the vulnerabilities you have identified to gain access to the assets in your system,
may seem daunting—but fear not. Yes, you could do the research to identify specific
hacking groups, learn about their modus operandi, and convince yourself and your
team that doom is coming for your assets. The MITRE ATT&CK framework makes
that research project easier.

But before you go that far, consider threats in terms of what someone might do and
then what type of attacker might do that something. In a sense, you might almost
think of it like the high-tech version of the Field of Dreams idea, in that simply having
a vulnerability is not a perfect predictor of exploitation. But you can almost certainly
determine how someone might go about exploiting your system, and you can just as
likely determine the qualifications, motivations, and level of interest that an attacker
may have and how that translates to a potential impact against your system.

In Chapter 3, you will learn more about the threat modeling methodologies that do
exactly this. These methodologies formalize these things as tactics, techniques, and
procedures (TTPs).

6 Continuous threat modeling (CTM), presented in Chapter 5, offers a potential solution to this conundrum.

40 | Chapter2:A Generalized Approach to Threat Modeling

https://oreil.ly/fVc3L
https://attack.mitre.org
https://oreil.ly/hN2tW

Summary

In this chapter, you learned about a generalized flow to threat modeling. You also
learned how to look for data from the information gathered as a result of creating a
system model. Finally, you learned what can and cannot be determined from threat
modeling, and sources of threat information.

In the next chapter, you will learn about specific threat modeling approaches in com-
mon practices, pros and cons of each methodology, and how to choose one specific to
your needs.

Summary | 41

CHAPTER 3
Threat Modeling Methodologies

So since all models are wrong, it is very important to know what to worry about; o, to put
it in another way, what models are likely to produce procedures that work in practice
(where exact assumptions are never true).

—G. E. P. Box and A. Lucefio, Statistical Control: By Monitoring and Feedback Adjust-
ment (John Wiley and Sons)

This chapter introduces some of the many available threat modeling methodologies,
highlighting the many facets of the discipline. We discuss our personal views and
experiences (and where appropriate, borrow opinions from trusted sources) on these
methodologies’ advantages and drawbacks, so you can identify a methodology that
may work for you.

Before We Go Too Deep...

It is important to make one point clear from the start: there isn’t a best methodology.
A particular methodology will work successfully in some organizations and teams, or
for specific technologies or compliance requirements, and yet will completely fail in
others. The reasons are as varied as the team’s organizational culture, the people
involved in the threat model exercise, and the constraints put upon the team by the
current state of the project (which will vary over time).

Consider, for example, a team that begins without security-oriented goals, then
evolves to appointing a security champion representing security interests for the
whole team, and finally achieves the state in which every developer, architect, and
tester has enough security knowledge to be individually responsible for the product’s

83

https://oreil.ly/KQfS3

overall security. In each of the three stages, this team faces a distinct set of issues that
affect the choice of threat modeling methodology differently:

Stage 1, no previous security goals (and little knowledge)
The team should opt for a methodology that offers educational values and focu-
ses on low-hanging fruit. This allows the team to incorporate security fundamen-
tals into its routines and initial decisions, and bakes in security knowledge so that
it becomes an intrinsic part of the overall development methodology.

Stage 2, a security champion is appointed
The team may be more successful using a more structured threat modeling
methodology that requires a more experienced security practitioner to guide the
team to achieve more granular and action-oriented results.

Stage 3, all individuals own product security equally
The team can move to a more documentation-oriented approach: identified risks
are immediately mitigated and documented as a “we thought this bad thing
might happen, so here is what we did about it” way. Or the organization may
come up with a handcrafted methodology that can be used across the various
product teams, and that is fine-tuned to the organization’s needs.

Whichever stage you and your team find yourselves in right now, you want to con-
sider a threat modeling methodology that helps take your current security posture to
the next level. Your methodology should be compatible with any development meth-
odology currently in use and should also allow for any resources you may have at
your disposal or be able to acquire.

Adam Shostack, threat modeling guru and one of the principal proponents of the
field, has famously said that “a good threat model is one that produces valid find-
ings.” The difference between a good threat model and a bad threat model is that the
good one has valid findings. What is a valid finding? It is a conclusion, an observa-
tion, or a deduction about the security state of your system. The finding is timely and
relevant, and can be translated into actions that allow you to mitigate a possible vul-
nerability, document a piece of system-specific knowledge, or verify that a potentially
delicate aspect of the system was evaluated and found to be “OK to live with.”

Yet another fundamental contribution by Shostack that is extremely helpful in deter-
mining how to threat model is the four-question framework. For the purpose of these
questions, “we” refers to the team or organization performing the threat model:

1 In our experience, this final state is the necessary end goal for making threat modeling an accessible discipline
that anyone can learn and apply.

2 Paraphrased: we (including Adam!) don’t remember exactly where it was said first, but it bears repeating
because it’s true.

44 | Chapter3: Threat Modeling Methodologies

https://oreil.ly/g0zx8

What are we working on?
Understand what the system is right now and what it needs to be, meaning, where
its development is leading.

What could go wrong?
In light of understanding the composition and the objectives of the system, come
up with those things that might interfere with its purpose by altering its confi-
dentiality, integrity, availability, and privacy properties, as well as any other
security-related property the system has defined.

What are we going to do about it?
What are the mitigation steps that we can take to reduce the liability created by
what we identified in the previous question? Can we change design, add new
security controls, perhaps remove altogether the more vulnerable parts of the
system? Or should we accept the risk in the context of where and how the system
will operate, and chalk it up to the cost of doing business?

Did we do a good job?

Understanding this is less an aspect of threat modeling itself, but nonetheless
important for the overall success of the practice. It is important to look back and
understand how well the threat modeling exercise reflected the security posture
of the system: did we identify “what could go wrong” and did we make good
decisions regarding “what we did about it” (aka did we mitigate the threat effec-
tively)? By closing the loop and understanding our performance in threat model-
ing, we are able to measure how we applied the methodology, identify whether
we need to refine the approach, and which details we should pay more attention
to in the future.

These four questions should be enough to help you decide whether your threat mod-
eling effort will be successful. If the methodology you choose and the way it was used
do not answer any of these questions to your satisfaction, then perhaps it is better to
consider a different methodology.

So how do you go about finding a methodology that works in your situation? Do not
hesitate in choosing one methodology and trying it out by yourself; if it doesn’t work
for you, choose a different one to try until you find one that works or that you can
adapt to your needs. Once you have some personal experience under your belt, you
easily can tailor or customize an existing method to make it more suitable for your
team and organization.

Note that organizational culture and individuals’ cross-cultural differences are
important in the process of threat modeling. As we said earlier, what works for one
team may not work for another for various reasons, and you should take that into
consideration, especially in global enterprises. For some, asking “what could possibly
go wrong” is a more comfortable process than for others, and this might be one of the

Before We GoToo Deep... | 45

deciding factors between using a more free-form methodology or one based on threat
catalogs and long checklists of items. The availability of security experts (see the fol-
lowing note) that work hand in hand with the team can be a valuable mitigation for
these issues, as security experts can significantly reduce any uncertainty created by
the many possibilities in a “what could possibly go wrong” paradigm.

When we say security experts, we mean those people who have the
necessary training and experience and who can deliver that knowl-
edge, guidance, and support when called upon. The range of capa-
bilities a security expert may bring to bear will be context
dependent, but may include playing the role of the adversary, or
identifying additional areas of research for the team to follow and
learn on their own, or to call on other experts to bring their exper-
tise on board for specific problems. When threat modeling, experts
should have the experience and knowledge to demonstrate credible
threats to the system under analysis.

Ask two threat modeling experts what methodology they prefer and you will proba-
bly get three different answers. Once you get some threat models under your belt,
especially if you stay in the same technology area for long enough, you will start to
develop a sense of where things happen (or don’t) and how things should look (or
not), and be able to apply a “smell test” approach to your threat modeling. Even
though their importance to the process is well understood, security experts, security
architects, and others who can effectively perform threat modeling are still a rare
breed. Not many organizations have access to these experts that allows a professional
touch for every single threat model.?

Another important issue with threat modeling methodologies is that some apply the
threat modeling term to more than actual start-to-end threat modeling methods. For
example, many times methodologies that perform only threat elicitation are conflated
with full threat modeling methodologies. Sometimes risk classification methodolo-
gies are also lumped into the threat identification category. A methodology that focu-
ses solely on threat identification will build a catalog of possible threats and stop
there. A full threat modeling methodology will rank those threats, understand which
ones are relevant to the system at hand, and give a road map for which one should be
solved first. In other words, a threat identification methodology plus a risk classifica-
tion methodology equals a full threat modeling methodology. We tried to be mindful
of this and present the methodologies from a real-work perspective, in the way they
are commonly adopted by practitioners even if a formal definition discrepancy is in
place.

3 Which is one more reason you should keep scaling in mind when deciding on your methodology!

46 | Chapter3: Threat Modeling Methodologies

Looking Through Filters, Angles, and Prisms

You can translate a system into a representative model in many ways, decomposing
the whole into parts according to the views that interest you. In threat modeling,
three main approaches have been identified that help clearly highlight threats that
may be present in your system. They do this primarily by asking a simple question:
“What could possibly go wrong?”

System-centric approach

The system-centric approach is arguably the most prevalent in threat modeling,
especially when performing the activity manually. It is the approach you will see
most distinctly used across this whole book, in part because it is the approach
that is easiest to demonstrate. The approach considers the system and its decom-
position into a set of its functional parts—software and hardware components—
together with how those components interact. The approach also considers
external actors and elements that interface with the system and its components.
This approach is usually expressed with DFDs that show how data goes through
the system during its operation (and using a modeling convention such as we
highlighted in Chapter 1). This approach is also commonly referred to as
architecture- or design-centric.

Attacker-centric approach

In this approach, the modeler (you) adopts the point of view of the attacker to
identify how vulnerabilities in the system enable an attacker to act on their moti-
vation (“State actor wants to extract confidential information”) to reach their
goals (“State actor reads classified reports stored in the system”). This approach
typically uses attack trees (also highlighted in Chapter 1), threat catalogs, and
lists to identify entry points in the system based on the motivation and resources
available to the attacker.

Asset-centric approach
An asset-centric approach, as the name indicates, focuses on important assets
that should be defended. After mapping and listing all involved assets, each one
is examined in the context of its accessibility to an attacker (e.g., to read or tam-
per with the asset) to understand any threats that may be pertinent and how they
affect the system as a whole.

Each methodology we illustrate in this chapter encompasses one or more of these
approaches.

Looking Through Filters, Angles, and Prisms | 47

To the Methodologies, at Last!

To present a casual yet descriptive overview of these many methodologies, we deci-
ded to apply an unscientific metric to each one. We don’t intend to pit one against
the other, but simply to help you understand how these methodologies fare in cate-
gories that we recommend as useful. These values reflect our personal experience and
our understanding of each methodology, and are not the result of any kind of survey
or data collection. We will use a 0 to 5 (with 0 being “not really,” and 5 being “close to
an absolute yes”) scale along the following attributes:

Accessible

Can development teams use this methodology independently, without significant
security expertise? Can they do it correctly? Are resources available that they can
refer to if they get stuck? For example, a methodology based on a threat library
might be more accessible than one that is open-ended and expects the team to
know all about attack vectors and techniques.

Scalable

Can the same methodology be applied to many teams and products in the same
organization? In this context, scalability is a function of throughput—the more
team members, security or otherwise, who are able to use this methodology, the
more system models that can be analyzed. Scalability suffers when the methodol-
ogy is accessible only to those who specialize in security, because it minimizes
throughput and creates a bottleneck that depends on specialists. This also leads
to increased security technical debt. If an organization is process-heavy and fail-
ure to conduct a threat model results in projects being held up, you might “miss
the boat” for threat modeling to be part of the system development life cycle.

Educational

Is its focus on teaching rather than forcing a correction for a perceived violation
(auditing)? Can the threat modeling exercise advance the overall security under-
standing and culture of the team?

Useful

Are the findings useful and applicable to both the system and security teams?
Does the methodology reflect what is actually significant for the modeled system?
In other words, does the methodology match the intent of the threat modeling
process? In this context, significant and intent are subjective and depend on the
specific situation:

« Can you derive value from the results of the threat modeling exercise—in
terms of relevant findings, or from bringing multiple stakeholders (e.g., secu-
rity, privacy, and engineering) together? Can you manage it through your
DevOps pipeline—or all together, or even from the fact that a threat model
now exists?

48

Chapter 3: Threat Modeling Methodologies

 Does the methodology make describing the system easier and clearer?
o Does it help the team identify weaknesses and/or threats?

« Does it generate good reports and help the team manage issues?

Agile
Does the methodology negatively impact the product team’s velocity? Does it
make the threat model a resource drain (when compared to the benefits it pro-
duces), or does it actually help with the ongoing secure development of the prod-
uct? Does the methodology allow for changes during threat modeling?

Representative
How well does the abstraction of the system compare to the implementation of
the system? Does the result truly reflect the system as implemented?

Unconstrained
Once the “known suspects” are evaluated, does the methodology support, or pos-
sibly lead to, further exploration or identification of other possible flaws?

We will provide a short explanation behind our grading for each category of each
methodology. Again, this is not the result of scientific research (although where pos-
sible, academic studies were consulted and quoted). This is the result of our experi-
ence and understanding, and we welcome discussion of our views (open an issue at
https://www.threatmodeling.dev).

This is by no means a catalog of all existing methodologies, but we
tried to be all-encompassing in the ways we approach the problem.
We also wanted to present methodologies that span various indus-
tries, including software development, government acquisitions,
enterprise risk management, academia, and other sources where
system risk needs to be evaluated and minimized. Some of these
methodologies are current, and others border on being outdated,
but each expresses important aspects of the science of threat mod-
eling.* We tried to be representative and comprehensive in choos-
ing the more popular methodologies, which are those that have
been widely applied, and are generally recognized as effective in
their proposed objectives. We apologize to the authors for any mis-
construction when presenting these methodologies—any mistake
is ours alone in our understanding of them.

We do not provide an in-depth exploration of each methodology, but we describe
each methodology enough for you to get the gist of it. We also present supporting

4 You can see a different list, comparing 12 of the existing methodologies, by Natalya Shevchenco of the CMU
Software Engineering Institute at https://oreil.ly/j9orl.

To the Methodologies, at Last! | 49

https://oreil.ly/j9orI
https://www.threatmodeling.dev

references that will give you a starting point to investigate any of the methodologies
we go over. Where applicable, we call out the uniqueness of the methodology or give
our personal interpretations. You should definitely question our interpretations and
build your own opinions of the methodologies we discuss here.

STRIDE

It is safe to say that STRIDE has attained a somewhat unique place in the pantheon of
threat modeling methodologies and tools, even though it is by itself more of a threat
analysis and classification methodology than threat modeling per se. (In the past few
years, it has become common to approach STRIDE as a framework rather than a full
methodology.®) As such, it is fitting that we look at it first.

STRIDE was formalized at Microsoft in 1999, and the first published mention of it
comes from a paper by Loren Kohnfelder and Praerit Garg, “The Threats To Our
Products™:

The STRIDE security threat model should be used by all [Microsoft] products to iden-
tify various types of threats the product is susceptible to during the design phase.
Threats are identified based on the design of the product.

This is what STRIDE stands for:

S: Spoofing
Spoofing threats imply that an attacker can mimic the identity of an element of
the system, which could be another user, another system, or another process.
Spoofing also assumes the element’s privileges in the system.

T: Tampering
Tampering threats directly impact the property of integrity by causing changes
(arbitrarily, intentionally or not) to the data or functionality manipulated by the
system.

R: Repudiation
Another aspect of the trust imparted to a system is its ability to assert with full
confidence that an operation was performed by the actor who declares having
performed it, in the manner and time declared. Different from tampering, threats
of this category give an attacker the ability to negate that certain operations took
place and/or were initiated by the actor in question.

5 Adam Shostack, “The Threats to Our Products,” Microsoft, https://oreil.ly/n_GBD.

6 Loren Kohnfelder and Praerit Garg, “The Threats to Our Products,” April 1999 (.docx file), https://oreil.ly/
wo6YKi.

50 | Chapter3: Threat Modeling Methodologies

https://oreil.ly/n_GBD
https://oreil.ly/w6YKi
https://oreil.ly/w6YKi

I: Information disclosure
Threats of this category are those that cause information that should remain
restricted and controlled to leak outside its assigned trust boundaries, threaten-
ing the system’s confidentiality property.

D: Denial of service
These threats, which go against the availability property of the system, consist of
making the system unavailable or its performance degraded to a point where it
interferes with its use.

E: Elevation of privilege
Well worthy of a category of their own, these threats involve the authorization
mechanisms of the system and the attacker’s goal of gaining a higher level of
privilege than they may normally be granted (which may be none).

From a cursory reading of the categories listed, it is easy to see that while they offer
good coverage of the types of threats a system may be subject to, they lack enough
definition to perfectly force-fit all possible threats into a specific area. This is where
STRIDE starts showing some of its deficiencies. In fact, if we step back and take a
critical look, we see that as long as a specific threat has been identified and brought
out, it is less important that it be classified in a perfectly labeled category—but on the
other hand, that ambiguity can severely impact how we formally assess the risk asso-
ciated with that threat.

Another, more pressing issue with STRIDE is that in order to make optimal use of it,
a product team or practitioner needs to be aware of what can actually be a threat, and
how that threat becomes a vulnerability by being exploited. For example, if a devel-
oper is not aware that leveraging a buffer overflow in a privileged process to run arbi-
trary code is possible, classifying “memory corruption” as one of these possible
threats is difficult:

1. Elevation of privilege by running arbitrary code

2. Tampering if the attacker is able to change any arbitrary memory address that
holds data

3. Denial of service if the memory corruption “merely” causes a crash instead of
code execution

As a member of a development team, you are asked to “think like a hacker” when
performing threat classification, but you may either lack the necessary knowledge or
receive training that makes it difficult to think outside the box when it comes to secu-
rity. This makes it understandably difficult for you to extrapolate examples into
actual issues that are relevant to your own systems. Unfortunately, STRIDE does not
offer a guiding framework.

To the Methodologies, at Last! | 51

STRIDE begins with a representation of the system that can help you examine its
characteristics. The most common way to represent a system is by creating a DFD,
which contains the parts of the system (elements) and their intercommunication
(data flows), with trust boundaries that separate areas of the system with distinct trust
values, as seen in Figures 3-1 and 3-2, and as explained in Chapter 1.

In the basic example in Figure 3-1, we see three trust boundaries, represented by the
boxes around Alice, Bob, and the key repository. This representation is a pytm (see
Chapter 4) artifact; trust boundaries are more commonly represented by a single line
across the data flows that cross them. Effectively, the trust boundaries separate this
system in three trust domains: Alice and Bob, as distinct users, and the key reposi-
tory, which needs yet another level of trust to be accessed.

(1) Alice requests Bob's keys (4) Request Bob's keys
(6) Blob with Bob'skeys | Keyserver | (s)keyblob

Al
1 A A

Private Alice Key storage

] ‘l

1 1

1 1

. i) |
Alice ! (2)Serverrequests (3) Permission Key repository | !
i Bob's permission granted ;

e ——————

’ .
(7) Alice sends encrgpted 1 Private Bob
message to Bo R

i
g Bob i
j

Figure 3-1. DFD representation of a simple system: naive message encryption

Because threat identification depends on the completeness of the DFD, it is impor-
tant for you to create one that is simple yet as complete as possible. As you saw in
Chapter 1, a simple symbology of squares for external elements, circles for processes
(and double circles for complex processes), double lines for data stores, and arrow-
headed lines to signify data flows is enough to express most of what’s needed to
understand the system. And this does not preclude the use of other symbols to make
the diagram more representative. In fact, in pytm, we extended the symbology to
include a dedicated lambda symbol, which added to the clarity of our diagrams.
Annotations like the kind of protocol used by a data flow, or the underlying OS of a
given set of processes, can help to further clarify aspects of the system. Unfortunately,
they can also make the diagram overcrowded and harder to understand, so balance is
important.

52 | Chapter3: Threat Modeling Methodologies

Extending STRIDE into a full threat modeling methodology then becomes an exer-
cise in creating the threat classification (according to the acronym), ranking the risk
of all identified threats (refer to the Introduction for options for rating severity and
risk), and then suggesting mitigations that eliminate or reduce the risk for each threat
(see Figure 3-2).

Continue to apply STRIDE

Begin threat Builda Apply New threats
modeling H e system. STRIDE identified?

-~

List threats

A

Rank by
criticality

Apply
mltlgatlons

Iterate

—_—

Figure 3-2. STRIDE workflow

For example, using the DFD in Figure 3-1 to represent a system of web comments in
a forum, we could identify some basic threats (with some assumptions):

To the Methodologies, at Last! | 53

Spoofing

The user Alice can be spoofed when submitting a request, as there is no indica-
tion that the user is authenticated to the system at the time the request is submit-
ted. This can be mitigated by creating a proper user authentication scheme.

Tampering

Tampering could occur between the key server and key repository. An attacker
could intercept the communication and change the value of the key blob being
transacted by impersonating one of the endpoints (which might lead to further
impersonation or capturing sensitive information). This can be mitigated by
establishing mutually authenticated communication over TLS.

Repudiation

An attacker could directly access the key repository database and add or alter
keys. The attacker could also ascribe a key to a user who would have no way to
prove that they did not alter it. This can be mitigated by logging the operation
and a hash of the key at creation time on a separate system that cannot be
accessed with the same trust level as that of the database.

Information disclosure

An attacker could observe the traffic between Alice and the key server and estab-
lish that Alice is communicating with Bob. Even without access to the contents of
the message (because they do not traverse this system), there is potential value in
knowing when two parties are communicating. A possible mitigation would be
masking the identities of Alice and Bob in the identifiers that the system uses, so
they would have ephemeral meaning and could not be derived in case the infor-
mation is observed—together, of course, with encryption of the communication
channel by means of TLS or IPsec.

Denial of service

An attacker could create an automated script to submit thousands of random
requests at the same time, overloading the key server and denying proper service
to other, legitimate users. This can be mitigated by flow-rate limitation at the ses-
sion and network levels.

Elevation of privilege

An attacker might use the exec()-like functionality in the database to execute
commands in the server under the database’s level of privilege (which might
potentially be higher than a common user). This can be mitigated by hardening
the database and reducing the privileges it has when running, as well as validat-
ing all input and using prepared statements and an object-relational mapping
(ORM) access mode in order to prevent SQL injection issues.

54

Chapter 3: Threat Modeling Methodologies

Brook S.E. Schoenfield makes this strong point about STRIDE:
remember that a single technique can be used against multiple ele-
ments in a system. When performing STRIDE, it is important to

\ stress that just because a single issue has been identified (for exam-
ple, an instance of spoofing), it doesn’t mean that the same issue
will not be present in other parts of the system, either through the
same attack vector or another one. To think otherwise would be a
grave mistake.

How does STRIDE fare under our (unscientific) grading parameters? See Table 3-1.

Table 3-1. STRIDE and our grading parameters

Parameter Score Explanation

Accessible 2 Once presented with the framework, many teams are able to execute it with varying degrees of
success, depending on their previous knowledge of security principles.

Scalable 3 While the framework can be used by many products and teams in the same organization, the
efficacy of its use will vary wildly by team.

Educational 3 The framework provides many opportunities for you and your team to develop security education,
but only if a security practitioner is available to help. The team will likely end the process with more
security knowledge than when it started.

Useful 4 By definition of its categories STRIDE lends itself to working best on software systems; in that sense,
the team will get useful results that apply to its system, and be focused on what the team at that
time sees as relevant threats.

Agile 2 STRIDE is best performed when many team members can participate at the same time while using
the same set of assumptions. It also helps to have a security practitioner present to direct the
dialogue, while focusing on the system as a whole. In this sense, STRIDE does not lend itself well to
Agile processes and is seen as a big resource drain by some organizations.

Representative 2 The framework “fires” when a truthful representation of the system is available, but as we have
discussed under Agile, it does have issues when following the progress of the development process.
An effort not unlike the initial threat model may be necessary to make sure that the resulting threat
model correctly corresponds to the changes that the system went through during its development.

Unconstrained 5 By working on impacts, the framework puts no constraints on the source of a threat or which views
of the system you must use to explore it. You can explore the system freely with no biases,

generating threats based on your own experience and research. In this sense, STRIDE is
unconstrained.

STRIDE per Element

One of the advantages of STRIDE is that it is unconstrained. Unfortunately, this is
also one of its main disadvantages, especially when used by inexperienced teams or
practitioners. It’s easy to get bogged down in the “have I considered everything” and
“what could possibly go wrong” possibilities and never reach an accepted state of
“doneness.”

To the Methodologies, at Last! | 55

STRIDE per Element is a variation of STRIDE, developed by Michael Howard and
Shawn Hernan, that adds structure to address the lack of constraints by observing
that some elements are more susceptible to specific threats than others. For example,
consider an external entity (like a user, administrator, or an external system) that
provides a different set of services to the system. This external entity is more suscepti-
ble to being spoofed (as in an attacker taking their identity) than a data flow. In fact,
external entities can often be subject to completely different sets of security measures
and might even have an elevated security posture. On the other hand, a data flow is
more open to attacks that tamper with its contents than an external entity.

As seen in Figure 3-3, STRIDE per Element limits the set of attacks that target spe-
cific classes of elements and considerably focuses the analysis of possible threats. In
this way, it is considerably less open-ended than the original STRIDE.

Different threats affect each type of element
Element S T R [) E
Externalentity | X X X
Process X X X X X X
Data store X | X | X | X
Data flow X X | X

Figure 3-3. STRIDE per Element chart (source: https://oreil.ly/3uZH2)

During related discussions with Brook S.E. Schoenfield, he drew from his experience
to point out that STRIDE per Element has another disadvantage: threat models are
not additive; you can’t just smash two or more threat models together and consider it
a threat model of the whole system. STRIDE per Element, in that sense, provides
many benefits but might lead to ignoring the holistic approach to the system during
the analysis, even if the system is completely represented.

STRIDE per Element allows your team to focus on individual elements more than on
the overall system. A smaller portion of the team can focus solely on those members’
elements as they develop, and have “mini-threat-modeling” sessions that focus on
those threats. For that reason, scalable, Agile, and representative scores also go up,
becoming 4, 3, and 4, respectively (see Table 3-2).

56 | Chapter3: Threat Modeling Methodologies

https://oreil.ly/3uZH2)

Table 3-2. STRIDE per Element

Parameter Score Explanation

Accessible 2 Once presented with the framework, many teams are able to execute it with varying degrees of
success, depending on their previous knowledge of security principles.

Scalable 4 While many teams and products in the same organization can use the framework, the efficacy of
STRIDE per Element will vary wildly by team.

Educational 3 The framework provides for a great deal of security education, but requires that a security
practitioner is available to help the team through threat classification. A high probability exists that
the team will complete the process with more security knowledge than when it started.

Useful 4 By definition of its categories STRIDE per Element lends itself to working best on software systems;
in that sense, the team will get useful results, and will be focused on what the team identifies as
current and relevant threats.

Agile 3 STRIDE per Element picks up one point over STRIDE because of the focus on the specific traits of
elements, allowing the team to be more effective and, thus, cover more ground.

Representative 3 For the same reason as Agile, STRIDE per Element picks up one point over STRIDE. Focusing on
specific elements allows truer representation of the system in its current form.

Unconstrained 3 STRIDE per Element modifies the STRIDE Unconstrained score to a 3, since it somewhat binds what
each element will be subject to, giving you a smaller set of possibilities to focus on.

STRIDE per Interaction

When Microsoft made its Microsoft Threat Modeling Tool publicly available, it was
based on a variation of STRIDE called STRIDE per Interaction. Developed by Larry
Osterman and Douglas Maclver at Microsoft, this approach to STRIDE tries to iden-
tify threats as a function of the interaction between two elements in the model.

For example, in this framework, an external process (perhaps a client call to a server)
has the interaction “sends data to server.” In this case, the interaction “client sends
data to server” may be subject to spoofing, repudiation, and information disclosure
threats, but not an elevation of privilege. On the other hand, the server can take input
from a process, in which case the interaction “client receives data from server” is sub-
ject only to spoofing threats. For example, the server could be an impersonator claim-
ing to be the real server, in what’s commonly known as a man-in-the-middle attack.

The chart containing all the possible threat classes per interaction is extensive, and
beyond the scope of our needs here. For a full reference, please refer to Threat Model-
ing: Designing for Security by Adam Shostack (Wiley), page 81.

STRIDE per Interaction comparison results are equivalent to our STRIDE per Ele-
ment results.

Process for Attack Simulation and Threat Analysis

Process for Attack Simulation and Threat Analysis (PASTA) is a “risk-centric threat
modeling methodology aimed at identifying viable threat patterns against an applica-

To the Methodologies, at Last! | 57

https://oreil.ly/sbhWK

tion or system environment” coauthored by Tony UcedaVélez of VerSprite Security
and Dr. Marco Morana of CitiGroup in 2012.7 While a truly in-depth approach to
this methodology is beyond the scope of this book, interested readers can refer to
Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis by
UcedaVélez and Morana (Wiley), for more details.

PASTA is a risk-centric methodology. It quantifies risk that might impact a business
or a system, by beginning with contextual references to the inherent importance that
an application and its components, underlying infrastructure, and data have on busi-
nesses (stages 1, 2, and 7; see the stage definitions that follow). Stages 3-6 are more
germane to architecture, development teams, and application security professionals
who are seeking to understand inherent flaws in design, use cases, permissions,
implicit trust models, and call flows.

PASTA reinterprets some of the terms we have been using so far, as shown in
Table 3-3.

Table 3-3. PASTA terms

Term Meaning in PASTA

Asset A resource that has an intrinsic value to the business. This could include, among others:
—Information the business uses, trades, or needs
—Hardware, software, frameworks, libraries the business relies on for a subject application
—The reputation of the business

Threat Anything that can unfavorably impact an asset.

Weakness/vulnerability ~ What an attack (supporting a threat) leverages to make its way into the system, either a tangible
issue (like a badly configured firewall, cloud component, third-party framework, or RBAC model) or
a poor business logic or process (lack of financial oversight on expenses).

Use cases Expected design behavior of the system.

Abuse cases Manipulation of use cases in order to yield ulterior motives of the user (e.g., bypass, injection,
information leakage, etc.).

Actor Anything able to perform or use a use case or an abuse case.

Attack Any action that supports a threat motive against a target asset by exploiting a vulnerability/
weakness.

Attack vector An interface through which an attack traverses.

Countermeasures Mitigations of a weakness that reduce the probability an attack will be successful.

Attack surface The set of all possible attack vectors, both logical and physical.

Attack trees A representation of the relationship between threats, target assets, associated vulnerabilities,

correlating attack patterns, and countermeasures. Use cases can serve as metadata associated with
assets, and abuse cases similarly can serve as metadata for attack patterns.

Impact The direct or indirect financial value of the damage caused by an attack.

7 Tony UcedaVélez, “Risk-Centric Application Threat Models,” VerSprite, accessed October 2020, https://
oreil.ly/w9-Lh.

58 | Chapter3: Threat Modeling Methodologies

https://oreil.ly/w9-Lh
https://oreil.ly/w9-Lh

PASTA uses these “ingredients” (pun sort of intended) by implementing a seven-
stage process that quantifies the impact to the application and enterprise:

Define business objectives.
Define technical scope.
Decompose the application.
Perform threat analysis.
Detect vulnerabilities.

Enumerate attacks.

Nk » N

Perform risk and impact analysis.

Let’s take a brief look at these steps and see how they build the definitions into a pro-
cess. Please note: these are by no means exhaustive explanations of the process, its
artifacts, and their use. By the end of this explanation, you’ll have a basic understand-
ing of PASTA.

Define business objectives

The point of the define business objectives stage is to set the risk context for the threat
modeling activity, since the understanding of the business objectives supported by
the application or system leads to better understanding the risk variable of impact.
When you define business objectives, you capture the requirements for the analysis
and management of the risks in your scope. Formal documents like requirements,
security policies, compliance standards, and guidelines help you to divide these
actions into subactivities like these:

1. Define business requirements.
2. Define security and compliance requirements.
3. Perform a preliminary business impact analysis (BIA).

4. Define a risk profile.

The outputs of this activity are, among others, a business impact analysis report
(BIAR), which is a description of the application functionality and a list of the busi-
ness objectives, constrained by the requirements defined in the subactivities listed.

For example, if during this activity a business objective of creating a user community
was identified, then registering customers with their personal data would be a func-
tional requirement, and a security requirement around storing PII would be entered
into the BIAR.

The input of participants with knowledge of the business processes, application
requirements, and business risk posture is taken into consideration, so it is required

To the Methodologies, at Last! | 59

that product owners, project managers, business owners, and even C-level executives
participate in the activity.

It is safe to say that at this stage, the focus is on establishing a reason based on gover-
nance, risk, and compliance (GRC) for the remainder of the activities, which include
security policies and standards, security guidelines, etc.

Define technical scope

The formal definition of the define technical scope stage is “defining the scope of tech-
nical assets/components for which threat enumeration will ensue.” High-level design
documents, network and deployment diagrams, and technology needs (libraries, plat-
forms, etc.) are used to perform these subactivities:

1. Enumerate software components.

2. Identify actors and data sources: where data is created or originates and data
sinks; where it is stored away.

3. Enumerate system-level services.
4. Enumerate third-party infrastructures.

5. Assert completeness of secure technical design.

This analysis will generate lists of all assets involved in the system, their mode of
deployment, and the dependencies between them, and it will permit a high-level end-
to-end overview of the system.

For example, in a simple web application writing to a database hosted in a cloud pro-
vider, the analysis that we get at this stage could be as simple as the following:

» Browser: Any

o Web server: Apache 2.2

 Database: MariaDB 10.4

o Actors: User (via browser), Administrator (via browser, console)
o Data sources: User (via browser), Imported (via console)

o Data sinks: Database, Log Sink (via cloud provider)

o Protocols in use: HTTP, HTTPS, and SQL over TLS

o System-level services: Fedora 30 running as an image on the cloud provider
hardened using CIS Benchmarks for hardening

o At this time, the system is thought to be sufficiently secured

8 Tony UcedaVélez, “Real World Threat Modeling Using the PASTA Methodology,” https://oreil.ly/_VY6n, 24.

60 | Chapter3: Threat Modeling Methodologies

https://oreil.ly/_VY6n
https://oreil.ly/4ae7Y

Decompose the application

During application decomposition, you must identify and enumerate all the platforms
and technologies in use and the services they require, down to physical security and
the processes that govern these. Here are the subactivities:

1. Enumerate all application use cases.
2. Construct data flow diagrams for identified components.’

3. Perform security functional analysis and use trust boundaries in the system.

In this stage, PASTA considers where abuse cases may turn into many different
attacks. Notice that the DFD we previously discussed also plays a central part in this
stage, mapping the relationships among different components via the data flows
between them and how they cross trust boundaries.

These DFDs tie together the items listed in the previous stage, “Define technical
scope” on page 60, into a cohesive representation of the system. Actors, technology
components, and all of the elements in the system start expressing a security posture
that can be tested with abuse cases. By placing trust boundaries for the first time in
the process, the data flows start expressing how they may be vulnerable to abuse, or
how certain abuse cases do not apply to the system.

In addition to data flows, the decomposition reaches down to the smallest details of
the system, in a way that many times gets confused with “define technical scope.” For
example, a system may be expected to run on a certain brand of Intel-based server.
That may lead to the unexpected presence of many subsystems that may not have
been evaluated fully in the technical scope phase. For example, a baseboard manage-
ment controller (BMC) may go ignored in the technical scope phase but on applica-
tion decomposition, it will show up (for example, when listing all subsystems of the
motherboard) and will have to be evaluated accordingly.

Perform threat analysis

In the words of its creators, “PASTA diverges from other application threat models,
as it attempts to focus on the most viable threats both inherent to the technology
footprint of the environment as well as the industry segment and the data managed
by the application environment.”™ The threat analysis stage of PASTA supports this
assertion by giving you the background necessary to identify those viable threats. It

9 Recall we referred to elements in our description of DFDs in Chapter 1; these elements can include system
components.

10 Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis, Tony UcedaVélez, Marco
M. Morana, Chapter 7.

To the Methodologies, at Last! | 61

does this by using all available sources of knowledge to build attack trees and threat
libraries that are relevant to the system being modeled:

Analyze the overall threat scenario.

Gather threat intelligence from internal sources.
Gather threat intelligence from external sources.
Update the threat libraries.

Map the threat agents to assets mapping.

A

Assign probabilities to identified threats.

The value of this stage comes from identifying those threats that are actually applica-
ble and relevant to the system in question, preferring quality of threat identification
over quantity of results.

Detect vulnerabilities

In the vulnerability detection stage, you focus on identifying areas of the application
that are open to risks or vulnerable to attacks. From the information gathered in pre-
vious stages you should be able to find tangible and relevant threats by mapping that
information into the attack trees or libraries built earlier. One of the main objectives
here is to limit (or remove) the amount of false threat findings identified against the
system:

Review and correlate existing vulnerability data.
Identify weak design patterns in the architecture.
Map threats to vulnerabilities.

Provide context risk analysis based on threats and vulnerabilities.

A

Conduct targeted vulnerability testing.

Lastly, you should review the architecture of the system security, looking for those
issues such as missing or sparse logging, data unprotected at rest or in transit, and
failures in authentication and authorization. Review trust boundaries to verify that
access control is properly placed and that levels of information classification are not
breached.

Enumerate attacks

In the attack enumeration stage, you analyze the vulnerabilities that you identified
previously, according to their probability of turning into attacks. To do this, you use
a probability calculation that involves the probability of a threat (remember that in
PASTA, a threat is anything that can unfavorably impact an asset) and weakness

62 | Chapter3: Threat Modeling Methodologies

(which is a tangible fact or event that realizes a threat) coexisting and generating an
impact, mitigated by the countermeasures in place.

The following are the steps for performing attack enumeration analysis:

1.

4.
5.

Update the attack library and vectors and the control framework by using the lat-
est entries in threat intelligence sources—like the United States Computer Emer-
gency Readiness Team, known as US CERT, and CVE—in order to keep up with
latest identified vectors.

. Identify the attack surface of your system and enumerate the attack vectors

matching the previous analysis.

. Analyze identified attack scenarios in the previous steps by correlating them with

the threat library, and validate which attack scenarios are viable by cross-
checking paths in the attack trees that match the attack scenarios.

Assess the probability and impact of each viable attack scenario.

Derive a set of cases to test existing countermeasures.

The use of previously built attack trees and libraries is central here, especially in iden-
tifying how those might overcome the assets and controls in place to generate a possi-
ble impact. At the end of the day, you want to finish this stage with a measurement
and understanding of the probability of an attack for each vulnerability identified.

Perform risk and impact analysis

At the risk and impact analysis stage, you mitigate the threats that you have identified
as those most probable to result in attacks. You do this by applying countermeasures
that are effective and relevant to your system. But what does effective and relevant
mean in this context? That decision is reached by a calculation that includes the
following:

To the Methodologies, at Last! | 63

https://www.us-cert.gov
https://www.us-cert.gov
https://cve.mitre.org/

1. Determine the risk of each threat being realized.
2. Identify the countermeasures.

3. Calculate the residual risks: do the countermeasures do a good enough job in
reducing the risk of the threats?

4. Recommend a strategy to manage residual risks.

You should not determine the risk by yourself. For example, you may want to include
risk assessment and governance professionals, depending on the possible impact of
the threats. You and your team will review artifacts generated in the previous stages
(attack trees and libraries, attack probabilities, etc.) to come up with a proper risk
profile for each threat and calculate the immediacy of countermeasures and the resid-
ual risk after the countermeasures are applied. Once you know these risks, you can
calculate the overall risk profile of the application, and you and your team can sug-
gest strategic direction to manage that risk.

If we consult the RACI (responsible/accountable/consulted/informed) diagram for
PASTA," we can see the complexity inherent to the process—at least in terms of the
people/roles involved and the information flow among them.

As an example, let’s look at stage 3, “Decompose the application” on page 61, with its
three activities:

« Enumerate all application use cases (login, account update, delete users, etc.).
— Responsible: Threat modeler (a specific role defined by PASTA)
— Accountable: Development, threat modeler
— Consulted (two-way): Architect, SysAdmin

— Informed (one-way): Management, project manager, business analyst, quality
assurance, security operations, vulnerability assessment, penetration tester,
risk assessor, compliance officer

« Construct data flow diagram of identified components.
— Responsible: Threat modeler
— Accountable: Architecture, threat modeler
— Consulted (two-way): Development, SysAdmin

— Informed (one-way): Management, project manager, business analyst, quality
assurance, security operations, vulnerability assessment, penetration tester,
risk assessor, compliance officer

11 UcedaVélez, Morana, Risk Centric Threat Modeling, Chapter 6, Figure 6.8.

64 | Chapter3: Threat Modeling Methodologies

o Perform security functional analysis and use trust boundaries.
— Responsible: None
— Accountable: Development, SysAdmin, threat modeler
— Consulted (two-way): Architect

— Informed (one-way): Management, project manager, business analyst, quality
assurance, security operations, vulnerability assessment, penetration tester,
risk assessor, compliance officer

Of course, these information flows also occur in other methodologies. This descrip-
tion provides an overview, covering the whole set of roles responsible for a project’s
development. Nevertheless, when the process is strictly followed, we can see how
these interactions might result in a somewhat tangled web over time.

Even from this brief and incomplete view of PASTA, we can already reach some con-

clusions by using our parameters to classify it as a methodology (see Table 3-4).

Table 3-4. PASTA as a methodology

Parameter Score Explanation

Accessible 1 PASTA requires the continued involvement of many roles, and a sizeable time investment to be
completed properly. Teams may have difficulty budgeting this time.

Scalable 3 Much of the framework can and should be reused across instances of PASTA in the same
organization.
Educational 1 PASTA relies on a “threat modeler” role that is responsible or accountable for most of the activities.

In this sense, any educational benefits the team receives come via its interaction with the final
threat model, its findings and recommendations, and, as such, it is of limited value.

Useful 4 A well-executed and documented PASTA threat model offers views from many angles, including the
most viable and probable attacks and attack vectors as well as useful mitigation and risk acceptance.

Agile 1 PASTA is not a lightweight process, and performs better when all the design and implementation
details of the system are known beforehand. Imagine how much work needs to be redone if
components get refactored or a new technology is introduced.

Representative 2 This one is a bit problematic. If the whole design, architecture, and implementation are well-known
beforehand, and changes are limited and incorporated well in the process, then PASTA could offer
some of the most representative threat models out there. On the other hand, if the development
process is anything but a completely efficient waterfall, the changes will result in a system model
that may not reflect the complete, final state of development. Since nowadays this situation is rare,
we chose to move forward with the Agile assumption.

Unconstrained 2 The PASTA coauthors take a deep look at CAPEC as a source for attack trees and threat libraries, and
suggest heavy reliance on CVE and CWE libraries to identify vulnerabilities and weaknesses,
respectively. There is little consideration of system-specific threats, and the calculus of risk relies a
lot on previously identified vulnerabilities. In this sense, the process feels constrained and limited.

To the Methodologies, at Last! | 65

https://capec.mitre.org

Threat Assessment and Remediation Analysis

The Threat Assessment and Remediation Analysis, was developed at MITRE by Jack-
son Wynn et al. in 2011. He describes it as an “assessment approach [that] can be
described as conjoined trade studies, where the first trade identifies and ranks attack
vectors based on assessed risk, and the second identifies and selects countermeasures
based on assessed utility and cost.”*? It has been used in many assessments by the US
Army, Navy, and Air Force since its adoption.

One of the many things that makes TARA stand out is its aim to protect against mid-
to-high state-sponsored adversaries, in order to maintain what it calls “mission assur-
ance” of systems under attack. This approach assumes that the attacker has enough
knowledge and resources to bypass perimeter controls like firewalls and intrusion
detection, and so the methodology focuses on what to do after the adversary has
crossed the moat. How does the system survive and continue to function when the
attacker is already inside?

TARA is focused on the acquisition phase of a traditional system development life
cycle. As a government-sponsored activity, it assumes that development happens
elsewhere, with assessment performed by the body aiming to absorb the system.

During the acquisition program, architecture analysis is performed to build a repre-
sentative model of the system. This model provides the foundation for a list of plausi-
ble attack vectors against the system (with their associated mitigations), which are
then ranked based on their risk level, producing a vulnerability matrix. This process
is called a Cyber Threat Susceptibility Assessment. By the end of the CTSA phase, it
should be possible to create a table mapping TTPs and their potential impact against
each identified component. Each row of the table would contain the following:

o The target TTP name

« A source of reference for the TTP (such as the attack pattern being considered, as

an entry from the Common Attack Pattern Enumeration and Classification, or
CAPEC?)

« And for each component in the system, two entries:

— Plausible?: Is the TTP plausible when considering the component in question?
(Yes, No, or Unknown.)

— Rationale?: What is the rationale or reasoning behind the answer to the ques-
tion of plausibility?

12 J. Wynn, “Threat Assessment and Remediation Analysis (TARA),” https://oreil.ly/1rrwN.

13 Common Attack Patterns Enumeration and Classification, https://capec.mitre.org.

66 | Chapter3: Threat Modeling Methodologies

https://oreil.ly/1rrwN
https://capec.mitre.org
https://oreil.ly/EWtgz

For example, consider a system component—a local area network (LAN) Network
Switch. The TTP “target programs with elevated privileges,” which is sourced from
CAPEC-69, may indicate that plausibility exists (which will be marked in the table as
“Yes”), and a rationale or reasoning states that “the switch runs a flavor of Unix as its
operating system, which supports the use of scripts and programs that may elevate
their own privileges.” Clearly the LAN switch is at risk.

By associating mitigations to each identified vulnerability, the analysis generates a list
of countermeasures, which are then ranked according to their effectiveness and cost
to implement. The result of this ranking is a mitigation mapping table, which is then
fed back to the acquisition program by using a “solution effectiveness table.” This
table shows the extent to which each mitigation adds protection to the system, and
prioritizes those that add the most value and effectiveness. This analysis is referred to
as the Cyber Risk Remediation Analysis (CRRA) step of the process.

Paraphrasing the paper’s author, TARA is similar to other threat modeling method-
ologies, but its uniqueness derives from basing itself on a catalog of mitigation map-
ping data and the way it is used in selecting countermeasures so that the overall risk
is reduced to an acceptable level of risk tolerance."

A word about threat catalogs, also known as threat libraries: In our
experience, threat modeling methodologies based exclusively on
threat libraries, especially if these are the result of a statistical anal-
ysis of past issues encountered in the systems being analyzed, will
intrinsically create a mindset in the analysis team of “threat model-
ing via rearview analysis.” Considering that technologies are con-
stantly changing and new attack vectors are regularly being
introduced, it is myopic to use only a past history of identified
threats as a guide to the future. Without a doubt, such a collection
has immense value as an educational device, in order to illustrate
past issues to the development team, set a reference point of
“unforgivable” security concerns, and guide the choice of security
training to be made available to the team. But as a conceptual exer-
cise, it is valuable for you to analyze threats as they may appear,
and not only as they once did. On the other hand, you could inter-
pret threat libraries as a different approach to an attack tree, in
which case they are used as starting points to derive further attack
vectors and methodologies to which the system may be subjected.
In the threat modeling realm, the real value is in how the catalog is
used rather than in its existence or lack thereof.

14 Wynn, “Threat Assessment and Remediation Analysis.”

To the Methodologies, atLast! | 67

https://oreil.ly/Wsi17
https://oreil.ly/uz2Ci

The key features of TARA are as follows:"®

1.

You can perform TARA assessments on deployed systems or on systems still in
their acquisition life cycle.

Use of stored catalogs of TTPs and countermeasures (CMs) promote consistency
from one TARA assessment to the next.

. TTP and CM catalog data is derived from open source and classified sources, and

can be selectively partitioned/filtered based upon the scope of the TARA
assessment.

. TARA is not a one-size-fits-all approach; the level of rigor applied in the assess-

ments can be adjusted up or down as necessary.

The TARA toolset provides default scoring tools to quantitatively assess TTP risk
and CM cost-effectiveness. These tools can be tailored or omitted entirely based
on the assessment scope and/or the needs of the program.

Since we are using TARA as an example of a threat library-based approach, it is help-
ful to look at how the TTP and CM catalogs are constructed and kept current and
how TTPs are scored to create a ranking model.

The mission assurance engineering (MAE) catalog of TTPs and CMs is based on
threat intelligence available in open sources like MITRE ATT&CK, CAPEC, CWE,
CVE, the National Vulnerability Database, or NVD, and others,'® as well as special-
ized and classified sources that would include electronic warfare (using attacks in the
electromagnetic spectrum to disrupt system operations), state-level cyberwarfare vec-
tors, and supply-chain attacks less familiar to the civilian public (see Table 3-5).

15 Wynn, “Threat Assessment and Remediation Analysis.”

16 For example, NIST 800-30 contains a very extensive list in Appendix E: https://oreil.ly/vBGue.

68

| Chapter 3: Threat Modeling Methodologies

https://oreil.ly/vBGue
https://attack.mitre.org/
https://capec.mitre.org
https://cwe.mitre.org/
https://cve.mitre.org/
https://oreil.ly/oCpaU

Table 3-5. Default TTP risk scoring model (source: https://oreil.ly/TRNFr)

Factor Range 1 2

Proximity: What proximity No physical or Protocol

would an adversary need in network access through

order to apply this TTP? access DMZ and
required firewall

Locality: How localized are Isolated single ~ Single unit

the effects posed by this TTP? unit and
supporting
network

Recovery time: How long <10 hours 20 hours

would it take to recover from

this TTP after the attack was

detected?

Restoration cost: What is the ~ <$10K $25k

estimated cost to restore or

replace the affected cyber

asset?

Impact: How serious an No impact Minimal

impact is loss of data from TTP impact

confidentiality resulting from

successful application of this

TTP?

Impact: How serious an No impact Minimal

impact is loss of data from TTP impact

integrity resulting from

successful application of this

TTP?

Impact: How serious an No impact Minimal

impact is loss of system from TTP impact

availability resulting from

successful application of this

TTP?

Prior use: Is there evidence of ~ No evidence Evidence of

this TTP in the MITRE threat ~ of TTP usein ~ TTP use

DB? MITRE DB possible

Required skills: What level of No specific Generic

skill or specific knowledge is
required by the adversary to
apply this TPP?

skills required

Required resources: Would No resources Minimal

resources be required or required resources

consumed in order to apply required

this TTP?

Stealth: How detectable is Not Detection

this TTP when it is applied? detectable possible with
specialized
monitoring

technical skills

3

User account to
target system (no
admin access)

External networks
potentially
impacted

30 hours

§50k

Limited impact
requiring some
remediation

Limited impact
requiring some
remediation

Limited impact
requiring some
remediation

Confirmed
evidence of TTP
use in MITRE DB

Some knowledge
of targeted system

Some resources
required

Detection likely
with specialized
monitoring

4

Admin access to
target system

All units in
theater or region

40 hours

§75k

Remediation
activities detailed
in continuity of
operations
(COOP) plan

Remediation
activities detailed
in COOP

Remediation
activities detailed
in COOP

Frequent use of
TTP reported in
MITRE DB

Detailed
knowledge of
targeted system

Significant
resources
required

Detection likely
with routine
monitoring

5

Physical access
to target system

All units globally
and associated
structures

>50 hours

>$100k

coop
remediation
activities
routinely
exercised

coop
remediation
activities
routinely
exercised

coop
remediation
activities
routinely
exercised

Widespread use
of TTP reported
in MITRE DB

Knowledge of
both mission and
targeted system

Resources
required and
consumed

TTP obvious
without
monitoring

To the Methodologies, at Last! | 69

https://oreil.ly/TRNFr)
https://oreil.ly/jxltf
https://oreil.ly/jxltf

Factor Range 1 2 3 4 5

Attribution: Would residual ~ No residual Some residual Attribution Same or similar Signature attack

evidence left behind by this evidence evidence, possible from TTPs previously ~ TTP used by

TTP lead to attribution? attribution characteristics of ~ attributed adversary
unlikely the TTP

This scoring model used by TARA is based on 12 separate measurements. Apart from
the more common ones (impact, how difficult it is to realize the attack, likelihood,
etc.), it is worth paying attention to more unique ones, like restoration costs and
stealth, which refer to the initial assumption that the attacker was successful in
breaching the external defenses and is now inside the system.

Likewise, it is interesting to note how impact is divided in the confidentiality, integ-
rity, and availability (CIA) triad, but unlike CVSS (which measures impact as None,
Low, Medium, High, and Critical), TARA is interested in the amount of remediation
needed to overcome the impact (see Table 3-6).

Table 3-6. TARA scoring model

Parameter Score Explanation

Accessible 5 TARA depends on a threat modeling individual or team taking a system over the whole process. As
such, it presupposes the existence of these resources, and by definition should be fully accessible to
them.

Scalable 5 By definition, the process can be reused as is in all model tasks across the assessing organization. If

there are resources to execute the assessment, the process should be fully available to them.

Educational 2 TARA relies on a modeling individual or team that is responsible or accountable for most of the
activities. As with PASTA, the development team receives a list of to-dos in the form of
recommended countermeasures, and as such it is of limited value as a knowledge-expanding device.
But the catalog itself serves to educate what is possible as attacks, and can be used to train the
team.

Useful 2 A well-executed and documented TARA threat model will offer views from many angles, including
the most viable and probable attacks and attack vectors as well as useful mitigation and risk
acceptance in the “solutions effectiveness table.” On the other hand, being part of an acquisitions
model, TARA operates on fully formed systems and is less suited to influence design choices during
development time.

Agile 1 TARA is not a lightweight process, and performs better when all the design and implementation
details of the system are known beforehand. Imagine how much work needs to be redone if
components get refactored or a new technology is introduced.

Representative 5 For the same reasons as PASTA, TARA looks at fully formed systems in its analysis of the attack
surface.

Unconstrained 2 TARA builds on the TTPs and CMs catalog for its analysis. This imposes a predefined view of the
threats the system may be subject to, somewhat limiting the flexibility of the analysis. On the other
hand, the catalog is supposed to be a living entity constantly updated, but its sources move slowly
and additions come from past-observed events. For a TTP catalog example, see this ENISA page.

70 | Chapter3: Threat Modeling Methodologies

https://oreil.ly/uC6KTENISA

Trike

Developed in 2005 by Paul Saitta, Brenda Larcom, and Michael Eddington, Trike v1
stands out from other threat modeling methodologies by trying to generate threats
semiautomatically, without an explicit need for brainstorming. This directly targets
the inexperienced developer, who is not asked to “think like a hacker” because it
relies uncharacteristically on the use of a tool."”

Trike positions itself as a “framework for security auditing from a risk management
perspective”. Version 2, which remains a work in progress for documentation,
appears to have ceased development of the methodology and associated tool(s) as of
2012. This is an important detail—Trike version 2 brings forward interesting and
useful concepts, yet it should be treated as experimental and unproven in the field. So
we focus here on Trike version 1.

The methodology tries to be well-defined regarding what to analyze and when to stop
the analysis (trying to stay out of rabbit holes). While it tries to put a lot of analysis
power in the hands of the developer, it approaches security as a separate technical
domain, and a subject matter expert is required to take the analysis “to the next
level.”

By formalizing system design, Trike allows the use of both tools (a desktop version
and an Excel-based one) to (semi-)automatically identify threats and most important,
provide a guarantee that all threats covered by the analysis have indeed been evalu-
ated. Another unique characteristic of Trike is its point of view, which focuses on the
defender instead of the attacker.

Requirements model

The first activity, as in many of the other methodologies we have discussed, is to
understand the purpose of the system being threat modeled and how it achieves those
goals, by examining the interactions of actors and the environment with the system
assets. This is the requirements model phase. Build a table that includes the assets, the
actors, and the actions possible.

In Trike, actions follow the CRUD (create, read, update, delete) model of atomic
access, and these (and their chaining) are the only possible actions. Each system
action is represented by a tuple of <actor, asset, rules>, with the rules acting as limits
on which actors or roles may affect the action. Actions are added to the list if they are
part of the normal functioning state of the system—that is, if an action is not a fully
expected part of the system (i.e., is not documented), it does not count for the pur-
pose of this analysis. In other words, only valid use cases for the system go in this list,

17 The name Trike has no specific meaning—the authors say in the FAQ, “If anyone asks, invent a story—it is
probably what we’d do.”

To the Methodologies, at Last! | 71

https://oreil.ly/YagrU
https://oreil.ly/YagrU

while no misuse or abuse cases are added. The resulting set of actions serves to com-
pletely describe, in a formal way, the system under evaluation.

This translates into analyzing every asset and actor pair in sequence, and evaluating
each CRUD action. Once these are understood, rules are enunciated by using
Boolean logic declarative sentences, as in “actor must be in Admin role and asset
must be in Suspended state.”

We examined Trike by running the Trikel.1.2a tool on a Squeak virtual machine
running on Ubuntu. Your mileage may vary. Unfortunately, the Squeak-based tool
doesn’t seem to have been kept up-to-date with the methodology, since the authors
appear to prefer that practitioners to use the spreadsheet-based tool.

The tool comes with a sample threat model of a blog system, which sufficiently exem-
plifies its use.

We encourage you to check out the Trike project on SourceForge
for more images and details about this methodology.

Implementation model

Once you collect actors and rules and create a formal definition of requirements, it is
time to assess the implementation. This is done by excluding actions that do not
belong in the action framework—these are not the actions we are looking for!—and
understanding how the remaining actions interact with the rest of the system.

Trike distinguishes between supporting and intended actions. Supporting actions are

those that move the system along from a bookkeeping and infrastructural point of
view, supporting the workings of the system. The example given is the login opera-
tion, which takes a user from one state (not logged in) to another (logged in). We do
not delve into the creation of these supporting actions here, as the process is complex
and does not add much to our discussion. You may want to examine the explanation
in the Trike documentation. Intended actions and the state machine that is created
from them are considered experimental features by the Trike authors, and have
undergone changes across the versions of the methodology.

Next, the system is represented, as is the case for many threat modeling methodolo-
gies, using DFD. This follows the same symbology and approach as when describing
STRIDE, including the partitioning of the system into more detailed separated DFDs
providing more in-depth information in particular areas. The important point here is
that for Trike, the “definition of done” of DFD representation is “until there are no
longer any processes which cross trust boundaries.”

72 | Chapter3: Threat Modeling Methodologies

https://oreil.ly/kM3od

The diagram is again annotated, building a complete representation of the system,
and looking to capture the technology stack used by the elements—OS, types of data
stores, etc. As needed, you can complete the DFD with a network deployment
diagram.

Gather all this data and compile a list of all possible use flows for the system. These
map actions into the implementation, showing how assets in the system are impacted
by actor actions affecting changes into the application state.

Gathering data and compiling use flows is achieved by tracing the paths of both
intended and supporting actions into the DFD; every time an external actor is in the
path, the use flow is segmented. Since the changes to the system state correspond to
states in a state machine (which might be more clearly represented with a sequence
diagram, as seen in Chapter 1), there might be pre- and post-conditions that are also
part of the flow. As an example, submitting a blog entry to a mythical blogging plat-
form has two stages. The first stage is writing the post and approving its entry into
the system, so that flow adds a “post submitted” state to the system. This then
becomes a precondition to the “post allowed” state.

Again, use flows are (based on the information available from the Trike project page
on SourceForge) considered experimental in the Trike methodology. In fact, the
Trike authors identified them as prone to be cumbersome and a possible way to
introduce errors in the model.

The threat model

Having the requirements and the implementation models, the next step is to generate
threats. In Trike, threats are events (not technology or implementation specific) and
express a deterministic set derived from the actor-asset-action matrix and the associ-
ated rules. All threats are either denial of service or elevation of privilege, another
unique feature of Trike. A denial of service happens when an actor cannot execute an
action, and an elevation of privilege happens when an actor either performs an action
they are not intended to in a particular asset, or when an actor performs an action
even though rules disallow it, or when an actor co-opts the system to perform an
action.

To the Methodologies, at Last! | 73

How do you generate a list of threats? Create one denial-of-service threat for each
intended action; then invert the set of intended actions and remove the set of
disallowed actions, which creates a set of elevation-of-privilege threats. These sets
comprehend the full set of threats against the system.

Using the implementation model and the derived set of threats, you can decide which
of those threats can be successfully translated into an attack. You can do this by using
attack trees, by identifying threats at the root of each tree.

Even though automation is a central tenet of Trike, the generation of attack trees and
graphs is not fully automated, and human intervention in the form of subject matter
experts is required at this step.

The risk model

In- and out-of-scope risks are central to Trike. When evaluating risk, you must con-
sider the exact part of the system and the risks it is under before you can decide
whether a risk applies to the system. Assets are given a monetary value, based on their
business value to the enterprise, which is decided by the business, not the threat mod-
eling leader. Next, you must rank the set of intended actions by assigning a value of 1
to 5 to the undesirability of any given action being prevented (the value of a denial-
of-service threat), with 5 meaning it is most undesirable to have this action preven-
ted. Then rank all actors with a trust level between 1 and 5, with 1 being a highly
trusted actor and 5 being an anonymous one.

Trike defines exposure as the value of an asset times the action-specific risk, and this
index ranks threats in order of seriousness of their impact to the organization.

The probability that a weakness will be exploited is also part of the calculus of Trike.
It is a function of reproducibility (how easy it is to reproduce an attack), the exploita-
bility (how easy it is to perform the attack), and the actor trust value. This value cur-
rently is purely informational.

For each threat, the exposure value multiplied by the largest applicable probability
risk gives you a threat risk value, which relates business impact to technical execution
of the threat.

The authors of Trike realize that this is a coarse and naive approach to risk modeling,
but maintain that it is enough to produce an expressive set of capabilities. With the
generation of threats and their associated values, you can derive which mitigations to
those threats you should apply, in which order, and the extent to which the threats
will be removed or at least diminished (see Table 3-7). You can see an interesting
overview of Trike in a presentation by one of its authors, Brenda Larcom, at Mozilla.

74 | Chapter3: Threat Modeling Methodologies

https://oreil.ly/S44fV

Table 3-7. The scoring model

Parameter Score Explanation

Accessible 1 Trike proposes a sound approach to threat modeling, and some of its basic ideas are sound.
Unfortunately, the execution of the methodology is poorly documented, and discussion of it seems
to have stopped. Available tools offer partial implementation or convoluted workflows.

Scalable 5 By definition, the process can be reused as is in all model tasks across the assessing organization. If
there are resources to execute the assessment, the process should be fully available to them.

Educational 3 By cataloging all possible threats into two categories (elevation of privilege and denial of service),
Trike encourages discussion as rules are created and actors and assets are examined. This dialogue
and deep dive should generate additional security education to the team (guided by the security
lead).

Useful 2 Too many dangling points remain in the methodology, which makes for an interesting intellectual
exercise but offers limited practical value.

Agile 2 Trike focuses on all being known about the system at the time of modeling. As such, it is less suited
to systems whose development (or at least design) isn't complete and whose capabilities and
characteristics can be fully examined at the time of modeling. The Trike authors claim the
methodology “adapts easily to piecemeal expansion, and as such fits just as easily into spiral
development or XP/Agile models,” but we respectfully disagree. Even if the information flow does
support revising the model, the operational cost of applying the differences between the previous
and new models is too high.

Representative 5 For the same reasons as TARA—Trike looks at fully formed systems in its analysis of the attack
surface.
Unconstrained 2 Trike builds on attack trees and graphs for attack generation, and highly supports the notion that

attack trees are “one of the more useful time-saving features of the Trike methodology.” While that
is true, it also acts as a constraint on the threats being evaluated. Dynamic generation of threats is
seen as an operational concern, and not one linked to the methodology itself.

Specialized Methodologies

In addition to the methodologies we’ve presented, several are more focused on spe-
cific aspects of product security than straightforward development and protection.
Straying into the domain of threat modeling, some of these focus on looking for
privacy-related issues rather than strictly security-related ones. We mention some
here for completeness and for comparison—to show how you can apply the same
basic ideas from this chapter in different manners in order to identify threats to other
categories of sensitive assets, classified data, and other forms of “crown jewels.”

LINDDUN

As a privacy variation, LINDDUN (linkability, identifiability, nonrepudiation, detect-
ability, disclosure of information, unawareness, and noncompliance) is a systematic
approach to privacy threat modeling. The LINDDUN site provides extensive tutorial
and guidance material, and is a valuable resource. The methodology was developed at
the DistriNet Research Group at KU Leuven, a university in Belgium, by Dr. Kim

Specialized Methodologies | 75

https://linddun.org/

Wuyts, Professor Riccardo Scandariato, Professor Wouter Joosen, Dr. Mina Deng,
and Professor Bart Preneel.

Unlike a traditional security-focused threat model, which is primarily concerned with
the CIA triad, LINDDUN assesses threats against unlinkability, anonymity, pseudo-
nymity, plausible deniability, undetectability and unobservability, content awareness,
and policy and consent compliance—all with a focus on the data subject’s privacy.
This thus not only involves the point of view of an (external) attacker, but also an
organizational perspective as certain system behavior could violate the privacy of data
subjects. Without extending too much (a full discussion of each property can be seen
in the LINDDUN paper'®), the properties are as follows:

Unlinkability
Two or more actions, elements, identities, or other pieces of information cannot
be linked together—that is, a relationship between them cannot be safely estab-
lished based on available information.

Anonymity
The actor’s identity cannot be established.

Pseudonymity
An actor can use a separate identifier than the one that (directly) identifies the
actor (i.e., the pseudonym does not directly lead to the natural person).

Plausible deniability
An actor can deny having performed an action, and other actors are not able to
confirm or deny that affirmation.

Undetectability and unobservability
An attacker cannot sufficiently distinguish whether the item of interest (action,
data, etc.) exists. Unobservability means that an item of interest (IOI) is unde-
tectable and that the subjects involved in the IOI are anonymous against the
other involved subjects.

Content awareness

Users should be aware of the information they are making available to service
providers by using the more dynamic elements of web interaction (forms, cook-
ies, etc.), or by inviting into their systems content not available at installation
time (like ad networks downloading executables after installation). The property
of content awareness maintains that “only the minimum necessary information
should be sought and used to allow for the performance of the function to which
it relates.”

18 Mina Deng et al., “A Privacy Threat Analysis Framework: Supporting the Elicitation and Fulfillment of Pri-
vacy Requirements,” June 2010, https://oreil.ly/S44fV.

76 | Chapter3: Threat Modeling Methodologies

https://oreil.ly/S44fV

Policy and consent compliance
The system is aware of the privacy policy offered and the data it stores and pro-
cesses, and actively informs the owner of the data about compliance with legisla-
tion and policy, before accessing that data

Many of the steps in Figure 3-4 will look familiar—they operate the same as the pha-
ses of STRIDE, so focus on where LINDDUN differs from the security-focused
methodology.

Problem space Solution space

prlvacy 3. Identify 5. Elicit 6. Select
1 Deﬁne threats threat 4. tP rrlgglttslze mitigation corresEondmg
toDFD scenarios strategies
elements

Figure 3-4. The steps of LINDDUN (Figure 6.12 in Kim Wuyts, “Privacy Threats in
Software Architectures” (Ph.D. thesis, KU Leuven, 2015), 135.)

The LINDDUN authors created a distinct mapping of privacy-oriented threats into
the DFD elements, as shown in Figure 3-5.

Entity X X X
Datastore | X | X | X | X | X X
Data flow X | X | X | X | X X

Process X[X | X | X | X X

Figure 3-5. Mapping of DFD elements to LINDDUN threats

You can see the full definitions of the threat categories in “LINDDUN: A Privacy
Threat Analysis Framework™:

o L: Linkability threats against unlinkability

o I Identifiability threats against anonymity and pseudonymity

« N: Nonrepudiation threats against plausible deniability

o D: Detectability threats against undetectability and unobservability

o D: Disclosure of information threats against confidentiality

o U: Unawareness threats against content awareness

Specialized Methodologies | 77

https://www.linddun.org/
https://www.linddun.org/

+ N: Noncompliance threats against policy and consent compliance

Consider this mapping when examining use cases the system personifies. For exam-
ple, a user writing a blog entry would result in the user of the entry form as an “exter-
nal entity” and the blog system as a process storing the entry in a data store via two
data flows (user to blog system, blog system to data store).” In a process parallel to
STRIDE per Element, the intersections between each DFD element and a privacy
threat that contain an “X” mean that the related element is susceptible to that threat.

An extensive discussion of how each threat affects each element is outside the scope
of this book, but is addressed in the LINDDUN paper.

Once you've identified the threats, you use attack trees again to understand the
approach an attacker may take to reach a specific goal. As shown in Figure 3-6, if an
attacker’s goal is to force noncompliance of consent policies, they may direct their
efforts in a couple of ways.

Consent policy

noncompliance

NC
Atk taprs wlth Privacy policies are
privacy policy; I 0de
consents become Inconsistent or
inconsistent incorrect
NC.1 NC 2

v v

A 4

Policy data store

Policy management

Privacy policies contain

can be tampered with i#gg;@ﬁi:{ gr insufficient or incorrect
(security) insufficient notices
NC3 NC 4

Figure 3-6. Threat tree for noncompliance threats (source: based on https://oreil.ly/

afYUj)

The direct route is to tamper with the data store that houses the policies by leveraging
a security concern; if they are successful, they can create a situation that makes com-
pliance difficult or impossible (by altering key aspects of the policies themselves or
changing the way consent is obtained or managed). Indirectly, they can influence the
organization into making mistakes or subvert internal practices to force a noncom-
pliance situation. In addition to this attacker-centric perspective, compliance

78 | Chapter3: Threat Modeling Methodologies

https://oreil.ly/afYUJ)
https://oreil.ly/afYUJ)

violation can also occur from the organizational perspective, by, for instance, not
respecting data protection principles such as minimization and purpose limitation
and thereby processing more personal information than would be strictly required.

The LINDDUN site contains a catalog of privacy threat trees including a generic
explanation of the tree and detailed discussion of its leaf nodes. Each threat tree
includes guidance for the consumer of the trees on how to interpret the information
for each leaf.”” Each guidance block usually ends with a standard disclaimer indicat-
ing that the tree describes potential areas for concern at a high level, and that users
should seek legal advice to ensure compliance.

LINDDUN does not suggest a risk classification technique or taxonomy, instead rely-
ing on existing methodologies like the ones we mentioned in the Introduction. You
need to construct a misuse case (MUC) that translates the information gathered in
the previous steps and translates it into a usable story that you can compare to other
stories so you can rank them. From the LINDDUN paper, we show an example of
noncompliance that will be familiar to any user of social media:

Title
MUC 10: Policy and consent noncompliance

Summary
The social network provider doesn’t process the user’s personal data in compli-
ance with user consent; e.g., disclose the database to third parties for secondary
use.

Assets, stakeholders, and threats
PII of the user

1. The user: revealed identity and personal information

2. The system/company: negative impact on reputation

Primary misactor
Insider

Basic flow
1. The misactor gains access to social network database.
2. The misactor discloses the data to a third party.

Trigger
A malicious actor; can always happen.

19 See https://oreil.ly/afYUJ for an example of guidance provided for each leaf node.

Specialized Methodologies | 79

https://oreil.ly/afYUJ

Preconditions
1. The misactor can tamper with privacy policies and makes consents inconsistent.
or

2. The policies are not managed correctly (not updated according to user’s request).

Prevention capture points
1. The design system is in compliance with legal guidelines for privacy and data
protection and keeps internal policies consistent with policies communicated to
the user.

2. Legal enforcement: users can sue the social network provider whenever their per-
sonal data is processed without consent.

3. Employee contracts: employees who share information with third parties will be
penalized (fired, pay fine, etc.).

Prevention guarantee
Legal enforcement will lower the threat of an insider leaking information, but it
will still be possible to breach user’s privacy.

Note that the preconditions come directly from the threat tree. Once you describe a
misuse case, you can extract requirements from it in the form of prevention capture
points and prevention guarantees. LINDDUN steers threat mitigation toward the use
of privacy-enhancing technology (PET) solutions, rather than purely legal or contrac-
tual devices. The LINDDUN paper does a great job of listing PET solutions and map-
ping them to the privacy properties that they address. We do not reproduce that
mapping here, and you should be sure to read the paper to become familiar with the
method, should you decide to use it. Given LINDDUN’s similarity with STRIDE per
Element, reapplying our measurement parameters would not be logical, as they
would be equal to STRIDE’s parameters. On the other hand, LINDDUN is a great
illustration of how you can apply the processes of threat modeling to domains other
than security (i.e., C, I, and A), and generate similarly valuable results.

Madness? This Is SPARTA!

Security and Privacy Architecture Through Risk-Driven Threat Assessment, or
SPARTA, is a framework and tool to facilitate continuous threat elicitation that we
“discovered” during research for this book. Originating at KU Leuven (University) in
Belgium, this framework was created by Laurens Sion, Koen Yskout, Dimitri Van
Landuyt, and Wouter Joosen. (As you can see from SPARTA and LINDDUN, great
research is being done at this university in the threat modeling space!)

80 | Chapter3: Threat Modeling Methodologies

The premise of SPARTA is that while traditional methodologies like STRIDE are suc-
cessful in identifying threats, they lead to considerable effort because the threat mod-
eling activity happens separately from the development effort.” This creates artifacts
that may end up scattered and must be kept organized, which also require more
effort. This creates a barrier to reviewing the resulting threat model when changes are
made to the developing system or to the underlying security characteristics. In the
view of the SPARTA authors, these changes may have far-ranging effects that justify
reviewing the complete set of results in the threat model.

Presented as a tool, SPARTA provides a GUI (based on the popular Eclipse frame-
work) for DFD creation with the usual drag-and-drop workflow.?! SPARTA enriches
the DFD with metadata that provides enhancements in the following areas:

Semantics
Adding a representation of security solutions and their effects to a DFD pro-
motes verification of that data and of the consequences it forces on the system
you're representing.

Traceability
The relationship between a security mechanism and its consequences on the sys-
tem should be mappable.

Separation of concerns
A threat library and a catalog of possible security solutions and mitigations
should evolve independently from each other.

Dynamic and continuous threat assessment
Much like the continuous threat modeling methodology (which we describe in
Chapter 5), SPARTA believes that threat elicitation should happen whenever it is
necessary rather than at specific times in the development cycle; thus, as possible,
automatically.

Without going deeply into each area (rich and interesting academic discussion is pro-
vided in complementary papers by the SPARTA authors), it is relevant to say that the
model for the additional DFD security metadata adds instances of SecuritySolution
to enable capturing security solutions as part of the DFD. Each SecuritySolution
contains Roles, which list the DFD elements that are involved in that solution; a Role
can implement CounterMeasures that mitigate ThreatTypes, and can specify which
Roles that countermeasure applies to (see Figure 3-7).

20 “SPARTA: Security and Privacy Architecture through Risk-driven Threat Assessment,” SPARTA, https://
oreil.ly/1]ail.

21 As of October 2020, in closed access mode: contact the SPARTA authors for access.

Specialized Methodologies | 81

https://oreil.ly/1JaiI
https://oreil.ly/1JaiI

ThreatTypeCatang
(reusable)

0.* 0.* protect|0nRestrictedTo 0.1binds
0..* realizes 0 lblndsTo 0..1securitySolution

TDFDEIement
«Metaclass» «Metaclass»
RoIeBlndlng roleBinding 0. ||Solutioninstance

Figure 3-7. SPARTA UML representation of the security meta-model (from https://
oreil.ly/nNSm0)

Once the DFD reflects the system being represented and adequate instantiations are
provided in the security meta-model, the tool iterates over all ThreatTypes in the
threat library (part of the tool, expandable by the user). This allows it to identify
those DFD elements that may be susceptible to the ThreatType by verifying that they
do not execute a corresponding CounterMeasure.

At this step, we see one of the unique characteristics of the SPARTA threat identifica-
tion method: it doesn’t matter whether the ThreatType in a particular element is
mitigated by a specific SecuritySolution, as long as one exists and is defined that
will mitigate that particular threat. For example, if the threat is “data in transit over a
public network is not encrypted,” SPARTA will recognize the threat as mitigated if
the data flow is declared to be running over TLS, or if the whole system is declared to
be using a VPN for all its data flows. To us, that means that the architect is at liberty
to play “what if” with systemic or focused mitigations and understand how those
choices impact the security posture of the whole system.

82 | Chapter3: Threat Modeling Methodologies

https://oreil.ly/nNSm0)
https://oreil.ly/nNSm0)

Risk analysis in SPARTA uses FAIR, which is mentioned in the Introduction, and
adds Monte Carlo simulations for each risk component from FAIR:

 Countermeasure strength
o Threat capability

« Contact frequency

« Probability of action

« Vulnerability

o Threat event frequency

« Loss event frequency

« Loss magnitude and risk

To perform the risk analysis, add to the DFD (a) the security instances of the solu-
tion, which are specified according to the meta-model and (b) the estimates for each
ThreatType of each one of the FAIR factors; these are added by security experts and
system and risk stakeholders. The additions take into account attack profiles and val-
ues already in the security solution (for example, the capabilities of a possible
attacker, and countermeasures, respectively). Once you’ve identified all threats in the
DEFD, you perform a risk estimation for each one, generating a probability that an
attack defeats a countermeasure.

The statistical considerations are beyond the scope of this book—for those so
inclined, we heartily recommend the SPARTA authors’ academic papers. Take into
consideration defense in depth: if multiple countermeasures to a given threat exist,
the final probability is the probability of defeating all of the countermeasures.

SPARTA also utilizes distinct personas to represent attackers with varying capabili-
ties—for example, the risk evaluation when the attacker is an entry-level variety (a
script kiddie) will be different from the evaluation of an attacker as a nation-state.

Specialized Methodologies | 83

These are fully customizable, so a team could, for example, choose an “unskilled
external website user” or a “nation-state-level actor” (for an example, see Figure 3-8).

ipse - platform:/resource/contosofrepresentations.aird/Contoso - Obeo Designer Community

iD-B@i% 0 Qs

i G = E
& & *Contoso 23 ™ = B | P ThreatAnalysis 52 i p=08
T e S
% B-&- & 0O ¥ ¥ Q_ Threatcount: 24 ker Model organized ¥
8 R Risk reduction progress: 4.987,99 € of total risk 12.450,89 € reduced.
&
[ﬂ Mitigated annual 4.987,99 € Total annualized 12.450,89 €
| Residual annuali; 7.462,90 € Maximum single 15.597,75 €
65 Threatened type flow risk v SLE wuln
=2
(&
(o]

Figure 3-8. SPARTA example DFD and list of associated threats (source: https://
oreil .ly/VC3oh)

The goal is to continuously consider the probability, and the threats you identify,
when changes to the DFD, security meta-model, threat libraries, countermeasures,
etc., happen. This adds a real-time component to SPARTA via an instantaneous
impact analysis that we found intriguing. The user can sort the risk list in different
ways to help plan for optimal mitigation.

SPARTA continues to evolve as we write these lines, and we look forward to these
developments and hope to soon see a complete tool available to the community.

INCLUDES NO DIRT

INCLUDES NO DIRT has recently been made available publicly. This methodology
focuses on bridging the gaps between security, privacy, and compliance, and then
applying that construct to the world of clinical environments. It combines the best of
both STRIDE and LINDDUN, with a focus on healthcare. It could have been called
“SuperSTRIDE” since INCLUDES NO DIRT is an acronym that contains the LIND-
DUN and STRIDE acronyms, and then adds “C” and “O,” as shown in the following:

84 | Chapter3: Threat Modeling Methodologies

https://oreil.ly/VC3oh)
https://oreil.ly/VC3oh)
https://oreil.ly/0TepP

I: Identifiability
Avoid anonymity, support traceability of actions (domain: privacy).

N: Nonrepudiation
Avoid plausible deniability (domain: privacy).

C: Clinical error
Ensure correct application of clinical standards (domain: compliance).

L: Linkability
Relate information throughout the system (domain: privacy).

U: Unlicensed activity
Ensure users have proper credentials or licensure (domain: compliance).

D: Denial of service
Maintain availability (domain: security).

E: Elevation of privilege
Ensure correct authorization for actions (domain: security).

S: Spoofing
Avoid impersonation (domain: security).

N: Noncompliant to policy or obligation
Enforce policy or contractual obligation (domain: compliance).

O: Overuse
Enforce usage restrictions (domain: compliance).

D: Data error
Maintain data integrity from mistakes or component failures (domain: security).

I: Information disclosure
Maintain confidentiality of data (domain: security).

R: Repudiation
Reinforce association of user to action (domain: security).

T: Tampering
Maintain data integrity from misuse or abuse (domain: security).

This threat modeling methodology generally follows the approach of STRIDE, but it
also helps to guide the nonsecurity practitioner through an extensive questionnaire
and “choose-your-own-adventure” style process flow. However, in a sense, it is
inflexible in practice because of the rigid nature of how it is constructed. The docu-
mentation suggests the approach “must be accessible by non-security/non-privacy
practitioners,” at which it mostly succeeds because they have baked a ton of knowl-

Specialized Methodologies | 85

https://www.cyoa.com

edge into the process itself. Unfortunately, in order to tailor the methodology to an
area other than the clinical healthcare setting on which it focuses, extensive security
and/or privacy experience is required.

Shall We Play a Game?

Throughout this book, we have gone back to the problem of teaching developers and
architects what they need to know about security to be effective in their threat model-
ing activities. Many solutions out there aim to provide faster and more comprehen-
sive return on investment for this need—some of them taking the form of games and
game-like helping material that builds on the creativity, curiosity and competitive-
ness inherent to most people in the information field. We chose to address these in
this chapter because of their documented efficacy in some situations and their pairing
with established threat modeling technologies, while at the same time being in the
forefront of threat modeling as a discipline. We do not claim this to be an exhaustive
list, but these are the ones that we have encountered (and in some cases used, either
in a teaching environment or “in production”). If you explore on your own, youll
surely be able to find variants of these and others.

Adam Shostack, himself a pioneer in the gamification of threat modeling by author-
ing the Elevation of Privilege game, maintains a running list of these gamified helpers
on his personal blog site—you should visit it regularly if this approach is of interest.

We won’t discuss whether the game is exciting, deep, or even playable. We consider
that as educational tools, they are all valid, and their efficacy will vary widely depend-
ing on how they are used. We see gamification as a powerful tool that encourages
threat modeling and are intrigued by new developments in the area.

Game: Elevation of Privilege
Author: Adam Shostack
Threat methodologies implemented: STRIDE

Main proposition: The suits in this card deck follow the STRIDE methodology:
spoofing, tampering, repudiation, information disclosure, denial of service, and ele-
vation of privilege. Each card proposes a threat; for example, the Ten of Spoofing
proposes, “An attacker can choose to use weaker or no authentication.” If the player
of that card can apply that threat to the system, then that gets documented as a find-
ing; otherwise the game proceeds according to low/high value card rules (see
Figure 3-9).

Obtain from: https://oreil.ly/NRwcZ

86 | Chapter3: Threat Modeling Methodologies

https://oreil.ly/CkLhg
https://oreil.ly/NRwcZ

because it has weak ACLs or Repudiathn
An attacker can choose to use includes a group which is

weaker or no authentication

m Tampering
An attacker can alter
x e

You's
equivalent to everyone Pl
(“all Live ID holders”) Pudiati

¢
IO

ented a ey
ion attack

Denial of
Service
mformatlon An attacker can amplify a Denial Elevathn
- f Servi ro is =
Disclosure e of Privilege
An attacker can bru&jiol’h‘:re,s on the order of 100:1

file encryption l?eca(
fense in place :
Z‘Q{gisez passwcrd stretching)

.. ﬂ‘\ g

.

Figure 3-9. Elevation of Privilege sample cards®

An attacker

<an provi
Pointer acroeen Provide a
rather than da
be validateq

a trust bounda
tawhich can

-
CRLLLTT

Game: Elevation of Privilege and Privacy
Author: Mark Vinkovits

Threat methodologies implemented: STRIDE

Main proposition: As part of the threat modeling practice at LogMeln, a team identi-
fied the need of formalizing the brainstorming activity around threat modeling and
privacy-related discussions and decided to add a Privacy suit to the original Elevation
of Privilege game. The suit would have cards that were actionable and presented a

22 These are pictures of Izar’s personal collection of security games.

Shall We Play a Game? | 87

high privacy risk. For example, the Ten of Privacy reads, “Your system does not
implement erasure or anonymization for personal data once the legal ground for pro-
cessing has been withdrawn.”

Obtain from: https://oreil ly/rorks

Game: OWASP Cornucopia
Authors: Colin Watson and Dario De Filippis
Threat methodologies implemented: None specifically

Main proposition: Rather than identify threats, OWASP Cornucopia aims to identify
security requirements and create security-related user stories. As an OWASP project,
it does focus more on web-based development: it is a further modification of Eleva-
tion of Privilege, but in its current published form, OWASP Cornucopia values
threats that are relevant to ecommerce websites.

The suites in OWASP Cornucopia are derived from the OWASP Secure Coding
Practices cheatsheet and the OWASP Application Security Verification Standard.
The game has six suits: Data Validation and Encoding, Authentication, Session Man-
agement, Authorization, Cryptography, and a catch-all suit, Cornucopia. For exam-
ple, the Ten of Session Management reads, “Marce can forge requests because per-
session or per-request for more critical actions, strong random tokens (i.e., anti-
CSREF tokens) or similar are not being used for actions that change state.”

Obtain from: https://oreil ly/_iUIM

Game: Security and Privacy Threat Discovery Cards
Authors: Tamara Denning, Batya Friedman, and Tadayoshi Kohno
Threat methodologies implemented: None specifically

Main proposition: This card deck, created by a team of researchers at the Computer
Science department at the University of Washington, proposes four non-numbered
suits (dimensions): Human Impact, Adversary’s Motivations, Adversary’s Resources,
and Adversary’s Methods. Some activities are suggested to make use of the cards:
sorting them by threat importance to the system being analyzed, or combining cards
(“which Adversary’s Method best serves this specific Adversary’s Motivation?”), or
creating new cards exploring the dimensions, perhaps motivated by current events in
the news.

Less of a game and more of a directed educational activity, discussion and analysis of
the dimensions and of the cards in them supports understanding and exploration of
security issues. For example, a random card in the Adversary’s Resource dimension
reads, “Unusual Resources—What kinds of unexpected or uncommon resources

88 | Chapter3: Threat Modeling Methodologies

https://oreil.ly/rorks
https://oreil.ly/_iUlM

might the adversary have access to? How might unusual resources enable or amplify
attacks on your system?” Incidentally, while this deck does not promote it, it is used
in the Hybrid Threat Modeling Methodology, developed by Nancy Mead and Forrest
Shull at the Software Engineering Institute of Carnegie Mellon University, where the

cards are used to support brainstorming sessions to identify threats relevant to the
system being threat modeled (see Figure 3-10).

Obtain from: https://oreil.ly/w6GWI

The Security and Privacy Threat Discovery Cards
encourage you to think broadly and creatively about

sence computer security threats. Explore with 42 cards in A
ess Or ConVe“}e“ 4 categories: Adversary's Motivations, Adversary's Flltllre Woﬂd
Accd rsary'’s Motivations Resources, Adversary's Methods, and Human Impact,
Adve

Adversary's Resources
or use the included templates to make custom cards. A

jour
use or abuse Y
How might the adversaly 5 enience oF

e of

he purpos kind

system for o a resource? What = Developed by Tamara Denning, Batya Friedman, and
ccess. get V°th & Tadayoshi Kohno'

jent that

weni
re con\ the only Photography by Nell C. Grey, Daisy Yoo, and
J.P. Arsenault

Find further information and possible card activities
at: securitycards.cs.washington.edu

o
way to achieve their goal? ! il
ated Concep! 4
Example Relate appointment- . e
== 3 Example Contribuors
E “Nf = Yoer-physical o g,
r:a\ clectronics ‘
S
4 permission

s nsor-rich

ems -increas
ased technology,
adoption or relignee O 18

increasing
odi

with res! Connectivigy
jons: M o
e Xample Outcomes: ney
ersonal € cRCERIE
company filtering 'O

h ntial vict;
a

personal email - ¢

pm\ccled wireless

NS “New potentia]
0 s -] :

tim; cheaper or
o work

more efficient attacs
Societal Wellbeing
Human Impact

How might your system have direct

or indirect impact on the financial,
physical, or emotional wellbeing of a
society? How might data or system
unavailability, unauthorized alterations,
or confidentiality breaches cause harm?

Example Related Concepts

s - public

cyber-physica
government r

Figure 3-10. Security and Privacy Threat Discovery Cards®

23 These are pictures of Izar’s personal collection of security games.

Shall We Playa Game? | 89

https://oreil.ly/JTBzU
https://oreil.ly/w6GWI

Game: LINDDUN GO
Authors: The LINDDUN Team
Threat modeling methodologies implemented: LINDDUN

Main proposition: LINDDUN GO provides more lightweight support for the elicita-
tion phase by means of a simplified method and a set of privacy threat type cards
(inspired by the Elevation of Privilege cards). LINDDUN GO is therefore a good start
for those new to the field as well as for more experienced threat modelers who are
looking for a less heavy approach. For beginners, this serves as a great educational

tool to get started, not requiring privacy expertise (see Figure 3-11).

Obtain from: https://www.linddun.org/go

LINKABILITY OF CREDENTIALS

Threat source

INBOUND
USE

Actions and data can be linked by
re-using credentials
(for multiple system interactions).

L
one-time credenti

canimpact the
user (both negatively
and positively).

L1 LINDDUN

Figure 3-11. LINDDUN GO sample card: Linkability of credentials (https://www.lind

dun.org/go)

90 | Chapter3: Threat Modeling Methodologies

https://www.linddun.org/go
https://www.linddun.org/go
https://www.linddun.org/go

NON-REPUDIATION OF SENDING

Hotspot Threat source

INBOUND
USER

The user cannot deny
having sent a message.

? 1. s the origin of incomin rmmunication known and
ble to thi nde

Nr2 LINDDUN

Figure 3-12. LINDDUN GO sample card: Non-repudiation of sending (https://
www.linddun.org/go)

Summary

In this chapter, you learned of the wide variety of threat analysis approaches that are
well established and practical, since the birth of STRIDE until today. Through this
overview, you should have a good understanding of which technique tends to be used
in particular environments, development styles, organizational structures, or specific
challenges, or expectations from the threat modeling process. You also learned how
to play with your design in order to generate threats for your threat models.

We would like to ask something of you: if after trying to find a methodology for your
environment you still don’t have one that seems to fit, try some of the most popular
ones; then leverage your newfound experience to design your own approach to

Summary | 91

https://www.linddun.org/go
https://www.linddun.org/go

identifying threats from your models. Then come back to the threat modeling com-
munity (on Reddit’s r/ThreatModeling, or on OWASP’s Slack workspace on #threat-
modeling, or in “Birds-of-a-Feather” gatherings at popular security conferences that
explore threat modeling as a topic!) and show us what you came up with. We look
forward to learning from your experience.

In the next chapter, we show ways to perform threat modeling through the use of
automation—both to describe models and to “automagically” identify security and
privacy threats.

92 | Chapter3: Threat Modeling Methodologies

CHAPTER 4
Automated Threat Modeling

There didn’t seem to be any computer-driven process that couldn’t be improved upon by
humans crawling around on the actual structure and writing on it with grease pencils.

—Neal Stephenson, Atmosphcera Incognita

In Chapter 1 you got an in-depth look into the mechanics of building different types
of system models “by hand,” by drawing on a whiteboard or using an application like
Microsoft’s Visio or draw.io. You also saw the information you need to gather when
constructing those models. In Chapter 3, you got an overview of threat modeling
approaches that consume the system models you create, allowing you to identify
areas of security concern within your system under evaluation. You learned of meth-
ods that find high-level threats, with a consideration for the adversaries who have the
capability and intent to carry out an attack. You also saw methodologies that look
deeper in the threat “stack” to analyze the underlying causes that lead to threats (and
adversarial targets)—weaknesses and vulnerabilities, which alone or in combination
result in disaster for your system’s functionality and data (as well as your reputation
and brand).

These techniques and methodologies are an effective approach to both system and
threat modeling, if you have the time and energy, and can convince your organization
that this approach is important. However, in this age of continuous everything, and
everything as code, a lot of pressure is placed on development teams to deliver more
in less time. Therefore, security practices that were accepted as necessary evils
because they consumed more than a few minutes of developer time are being aban-
doned as too costly (perceived or otherwise). That leaves people who focus on secu-
rity in a difficult position. Do you try to influence your organization to bite the bullet
and be more rigorous in applying security engineering practices, or do you try to get
as much done as possible with your shrinking resources, knowing that the quality of
your results (and, by extension, the security of the end product) may suffer? How do

93

you maintain high security standards and the attention to detail that is necessary to
create a well-engineered system?

One way you can facilitate good security engineering is to limit the need to build sys-
tem and threat models by hand and turn to automation to help reduce the burden on
you, to meet the needs of the business and the security team. While the human ele-
ment is arguably an important part of a threat modeling activity, construction and
analysis of system models is something a computer can accomplish with ease; you, of
course, must supply the input.

Automation not only helps you to design the model, but also can assist with answer-
ing questions. For example, if you're not sure whether data flow A between endpoints
X and 'Y leaves your critical data exposed to the mythical Eve,' you can use a program
to figure that out.

In this chapter, we explore an evolution in the making. When it comes to creating the
state of the art in threat modeling techniques, performing threat analysis and defect
elicitation, you can use automation techniques dubbed threat modeling with code
and threat modeling from code.?

You may be wondering—how will threat modeling automation make your life easier,
and not one more tool/process/responsibility to care about in the long run? We won-
dered the same, too.

Why Automate Threat Modeling?

Let’s face it—threat modeling the traditional way is hard, for many reasons:

o It takes rare and highly specialized talent—to do threat modeling well, you need
to tease out the weaknesses in a system. This requires training (such as reading
this or other primers on threat modeling) and a healthy dose of pessimism and
critical thinking when it comes to what is and what could be (and how things
could go wrong).

o There is a lot to know, and that will require a breadth and depth of knowledge
and experiences. As your system grows in complexity, or changes are introduced
(such as the digital transformation many companies are going through these
days), the changes in technologies brings an accelerating number of weaknesses:

1 Randall Munroe, “Alice and Bob,” xkcd webcomic, https://xkcd.com/177.

2 Some people also use the encompassing phrase threat modeling as code to align to the DevOps jargon. Much
like DevOps (and its jargon!) a couple of years ago, the whole vocabulary is in transition—many people mean
many different things by it, but we feel that slowly a convention is coalescing.

94 | Chapter4: Automated Threat Modeling

https://xkcd.com/177

new weaknesses and threats are identified, and new attack vectors created; the
security staff must be constantly learning.

o There are myriad options to choose from.* This includes tools and methodolo-
gies to perform threat modeling and analysis, as modeled representations, and
how to record, mitigate, or manage findings.

+ Convincing stakeholders that threat modeling is important can be difficult, in
part because of the following:

— Everyone is busy (as mentioned previously).

— Not everyone in the development team understands the system as specified
and/or as designed. What is designed is not necessarily what was in the speci-
fication, and what is implemented may not match either. Finding the right
individuals who can correctly describe the current state of the system under
analysis can be challenging.

— Not all architects and coders have a complete understanding of what they are
working on; except in small, highly functioning teams, not all team members
will have cross-knowledge of one another’s areas. We call this the Three Blind
Men and the Elephant development methodology.

— Some team members (hopefully, only a small number) have less-than-perfect
intentions, meaning they may be defensive or provide intentionally mislead-
ing statements).

« While you may be able to read the code, that does not show you the whole pic-
ture. If you have code to read, you may have missed your chance to avoid poten-
tially serious mistakes introduced by the design that coding cannot mitigate. And
sometimes it can be hard to derive the overlaying design from code only.

o Creating a system model requires time and effort. And since nothing is ever
static, maintaining a system model takes time. A system’s design will change as
the system requirements are modified in response to implementation, and you
need to keep the system model in sync with any changes.

These are some of the reasons that some long-time members of the security commu-
nity have expressed concerns on the practical use of threat modeling as a defensive
activity during the development life cycle.* And to be honest, these reasons are
challenging.

But fear not! The security community is a hardy bunch who are never shy to take on
a challenge to address a real-world problem, especially those problems that cause you

3 At last check, we counted more than 20 methodologies and variations.

4 “DtSR Episode 362—Real Security Is Hard,” Down the Security Rabbit Hole Podcast, https://oreil.ly/iECWZ.

Why Automate Threat Modeling? | 95

https://oreil.ly/iECWZ
https://oreil.ly/9EJxo
https://oreil.ly/9EJxo

pain, anguish, and sleepless nights. And automation can help address these concerns
(see Figure 4-1).

Vicki B @yki
e -@I\.r‘:m:,'hs e M
1999: "Go away or | will replace you with a
very small shell script"

2019: "Go away or | will replace you with a
YAML file"

6:17 AM - 22 Feb 2019

27Rreveeis 167Lkes O S QP r GO

Q8 u oz Q 167

Figure 4-1. “Very small shell script” (source: https://oreil.ly/W0Lqo)

The difficult part of using automation is the complexity of systems and the relative
inability for a program to do something the human brain can do better: pattern rec-
ognition.” The difficulty is expressing the system in a way a computer can understand
without actually creating the system. As a result, two related approaches are available:

Threat modeling from code
Creating computer code in a programming language or in a newly defined
domain-specific language (DSL) that results, when executed, in analysis of
threats being performed on a model that represents the input data provided

Threat modeling with code (aka threat modeling in code)
Using a computer program to interpret and process information provided to it to
identify threats or vulnerabilities

Both approaches can be effective as long as you resolve the GIGO problem. The
results you get must bear a direct relationship to the quality of your input (the
description of the system and its attributes) for the automation. Both methods also
require the algorithms and rules used in the analysis to be “correct,” such that a given
set of inputs generates valid and justifiable outputs. Either implementation can elimi-
nate the need for specialized talent to interpret a system model and understand infor-
mation about elements, interconnections, and data to identify the indicators of a
potential security concern. Of course, this does require that the framework or lan-
guage supports this analysis and is programmed to do it correctly.

5 Ophir Tanz, “Can Artificial Intelligence Identify Pictures Better than Humans?” Entrepreneur, April 2017,
https://oreil.ly/Fe9w5.

96 | Chapter4: Automated Threat Modeling

https://oreil.ly/Fe9w5
https://oreil.ly/W0Lqo)

We will talk first about the construction of a system model in a machine-readable
format, and then present the theories for each type of automated threat modeling and
provide commercial and open source projects that implement them. Later in the
chapter (and in the next chapter), we leverage these concepts to deliver information
on further evolutionary threat modeling techniques that strive to work within the
rapidly accelerating world of DevOps and CI/CD.

Fundamentally, threat modeling relies on input in the form of information that con-
tains or encodes data sufficient for you to analyze; this information enables you to
identify threats. When using code rather than human intelligence to perform threat
modeling, you describe the system to be evaluated (e.g., the entities, flows, or sequen-
ces of events that make up a system, along with the metadata necessary to support
analysis and documentation of findings), and the application renders and analyzes
the system representation to produce results, and optionally render the representa-
tion as diagrams.

Threat Modeling from Code

Threat modeling from code processes information about a system stored in machine-
readable form to generate output information related to weaknesses, vulnerabilities,
and threats. It does this based on a database or set of rules of things it should be look-
ing for, and needs to be resilient to unexpected input (since these types of applica-
tions take input data to interpret). In other words, threat modeling from code is an
interpreted approach to create a system model from which to generate threats.

Threat modeling from code may also be referred to as threat modeling in code, such
as in the case of Threatspec (described in “Threatspec” on page 98).

The phrase “threat modeling from code” is an evolution of
thought, combining two concepts of how a system captures, main-
tains, and processes information to identify threats. The idea of
threat modeling in code came from conversations Izar had with
Fraser Scott (the creator of Threatspec, described later) around the
notion that code modules can store system representation and
threat information alongside code or other documentation and can
be maintained throughout the life cycle. Tooling that processes the
information can be executed to output meaningful data. In threat
modeling from code—came about from another conversation
between Izar and the creator of ThreatPlaybook, Abhay Bhargav—
threat information can be encoded but needs to be “wrangled” and
correlated by something to be meaningful. Collectively, these para-
digms form the basis for this evolving area of threat modeling as
code, whereby interpretation and manipulation of data from vari-
ous sources are the key operations.

Threat Modeling from Code | 97

How It Works

In threat modeling from code, you use a program (code) to analyze information cre-
ated in a machine-readable format that describes a system model, its components,
and data about those components. The program interprets the input system model
and data, and uses a taxonomy of threats and weaknesses, and detection criteria, to
(a) identify potential findings and (b) produce results that can be interpreted by a
human. Usually, the output will be a text document or PDF-type report.

Threatspec

Threatspec is an open source project geared toward both development teams and
security practitioners. It provides a convenient way to document threat information
alongside code, allowing you to generate documentation or a report that enables
informed risk decisions. Threatspec is authored and maintained by Fraser Scott at
https://threatspec.org.

Threatspec is called out here in this class of tool because of what it
does versus what it does not do:

« It does require code to exist.

o It does make documentation of threat information easier.

« It does not perform analysis or threat detection on its own.

Some of the benefits of using Threatspec include the following:

« Brings security to coders by using code annotations (with which they are proba-
bly familiar)

« Allows the organization to define a common lexicon of threats and other struc-
tures for development teams to use

« Facilitates the security discussion of threat modeling and analysis

« Automatically generates detailed and useful documentation, including diagrams
and code snippets

On the other hand, while Threatspec is an excellent tool for giving coders a way to
annotate their code with threat information and thus bring security closer into the
development process, it has a couple of downsides to keep in mind.

First, the tool first requires code to exist, or to be created together with annotations,
which may mean that the design is already solidified. In this case, the development
team is mainly creating security documentation, which is highly valuable but differ-
ent from threat modeling. Effectively, for these types of projects, threat modeling
“shifts right,” which is in the wrong direction.

98 | Chapter4: Automated Threat Modeling

https://threatspec.org

But the Threatspec documentation does make it clear that the most productive use of
the tool is in environments that have bought into the everything-as-code mentality,
such as DevOps. For those environments, the chicken-and-egg of design versus code
development is not a concern. Threatspec has also recently added the capability to
document threats and annotations without having written code, by putting this infor-
mation into plain-text files that can be parsed. This may help mitigate this potential
concern for teams that have more structure to their development life cycle or follow
more stringent systems engineering practices.

Second, the development team requires expert knowledge. The team needs guidance
from an expert, of what a threat is and how to describe it. This means you cannot
address the problem of scalability directly. This approach lends itself, as described by
the tool’s documentation, to discussions or guided exercises between the develop-
ment team and security personnel. But in doing so, scalability is further challenged,
by adding back the bottleneck of the security expert. Extensive training of develop-
ment teams may overcome this hurdle, or having security embedded within the
development group may help facilitate conversations closer to where and when code
is being developed.

In the future, Threatspec may be especially suited for taking the
output of static code analysis tools and generating annotations
describing threats from the nature of the code (rather than just
what the coders are able or willing to document themselves).
Because Threatspec has direct access to source code, it may, as an
enhancement, perform verification activities and provide feedback
directly into the source code when it discovers threats, risks, or
weaknesses. Finally, extending threats into functional safety and
privacy domains can produce a comprehensive view of the secu-
rity, privacy, and safety posture of a system, which is especially
important when dealing with compliance officers or regulators
(e.g., for PCI-DSS compliance, GDPR, or other regulatory environ-
ments) or for guiding root cause or hazard analysis as follow-up
activities.

You can obtain Threatspec from GitHub at https://oreil.ly/NGTIS8. It requires Python
3 and Graphviz to run and generate reports. The creator/maintainer of Threatspec is
active in the security community, especially the OWASP Threat Modeling working
group and in the Threatspec Slack, and encourages contributions and feedback on
the tool.

Threat Modeling from Code | 99

https://oreil.ly/NGTI8
https://www.graphviz.org

ThreatPlaybook

ThreatPlaybook is an open source project brought to you by the folks at we45, led by
Abhay Bhargav. It is marketed as a “DevSecOps framework [for] collaborative Threat
Modeling to Application Security Test Automation.” It is geared toward development
teams to provide a convenient way to document threat information and to drive
automation of security vulnerability detection and validation. ThreatPlaybook has a
stable release (V1) and a beta release (V3); there is no V2 release.

ThreatPlaybook’s specialty is to facilitate the use of threat modeling
information:

« It makes documentation of threat information easier.

« It connects with other security tools for orchestration and vali-
dation of vulnerabilities, such as through security test
automation.

« It does not perform analysis or threat detection on its own.

ThreatPlaybook uses GraphQL in MongoDB, and YAML-based descriptions of use
cases and threats with descriptive constructs, to support test orchestration for vulner-
ability verification. It also offers a full API, a capable client application, and a decent
report generator. For test automation integrations, it has two options: the original

Robot Framework Libraries” and in V3 its own Test Orchestration Framework func-
tionality. The documentation suggests that ThreatPlaybook has good integration (via
Robot Framework) with OWASP Zed Attack Proxy, Burp Suite from PortSwigger,
and npm-audit.

You can obtain ThreatPlaybook from GitHub at https://oreilly/Z2DZd or via
Python’s pip utility. A companion website has good, although somewhat sparse, doc-
umentation, and videos explaining how to install, configure, and use ThreatPlaybook.

Threat Modeling with Code

Unlike Threatspec and ThreatPlaybook described previously, which are examples of
using code to facilitate the threat modeling activity in the system development life
cycle, threat modeling with code takes an architecture or system description that is
encoded in a form such as one of the description languages described previously, and
performs analysis for automated threat identification and reporting. Utilities follow-
ing the “with code” paradigm are tools that can read system model information and

6 See the ThreatPlaybook documentation for more details, at https://oreil.ly/IhSPc.

7 See the Robot Framework, an open source framework for testing, at https://oreil.ly/GWGKP.

100 | Chapter4: Automated Threat Modeling

https://oreil.ly/lhSPc
https://oreil.ly/GWGKP
https://graphql.org
https://oreil.ly/-MRM1
https://oreil.ly/59620
https://oreil.ly/ZvpkT
https://oreil.ly/Z2DZd
https://oreil.ly/KVrxC

generate meaningful results that encapsulate the knowledge and expertise of security
professionals, and enable security pros to scale across a larger development
community.

How It Works

A user writes a program in a programming language to construct a representation of
a system and its components, and information about those components. This pro-
gram describes information about the system in code and provides constraints to
performing the analysis. The resulting process uses a set of APIs (functions) to per-
form threat analysis on the modeled system state and properties. When the “source
code” is compiled and executed (or interpreted, depending on the specifics of the lan-
guage in use), the resulting program produces security threat findings based on the
characteristics and constraints of the modeled system.

The concept of creating models without drawing on a whiteboard has been around
since at least 1976, when A. Wayne Wymore, then a professor at the University of
Arizona, published Systems Engineering Methodology for Interdisciplinary Teams
(Wiley). This book, and others that followed, set the groundwork for the technical
domain known as model-based systems engineering (MBSE). Lessons the industry
learned from MBSE influenced the system-modeling constructs referenced in Chap-
ter 1, and the languages of describing systems for computational analysis that we will
briefly discuss.®

Architecture description languages (ADLs) describe representations of systems.
Related to ADLs are system design languages, or SDLs. Within the set of ADLs, two
related languages provide the ability to build and analyze system models that look for
security threats:’

o Architecture Analysis & Design Language, or AADL

o The Acme description language for component-based system modeling

Systems engineering uses AADL, which is larger and more expressive, when creating
system models of embedded and real-time systems. This is true especially in the fields
of avionics and automotive systems, which require functional safety—the property of
preserving health and life of human occupants when it comes to system behavior.
ACME is less expressive and therefore more applicable for systems that are less com-
plex or smaller in size (defined by number of components and interactions). ACME
is also a freely available language specification, while AADL requires a paid license,

8 A. Wymore’s autobiography is available on this University of Arizona site.

9 A survey of ADLs is available from “Architecture Description Languages” by Stefan Bjornander, https://
oreil.ly/AKo-w.

Threat Modeling with Code | 101

https://oreil.ly/mPG3s
https://oreil.ly/AKo-w
https://oreil.ly/AKo-w
https://oreil.ly/oPYSL
https://oreil.ly/BbyQZ
https://oreil.ly/lZdg0
https://oreil.ly/rVV2G
https://oreil.ly/zotv4

although some training material is available for free so you can become familiar with
the language.”

These languages introduce simple concepts that system and software engineers still
use today. You may notice similarities to the concepts we described in Chapter 1:

Components
Represent functional units such as processes or data stores

Connectors
Establish relationships and communication pipelines among components

Systems
Represent specific configurations of components and connectors

Ports
Points of interaction between components and connectors

Roles
Provide useful insights into the function of elements within the system

Properties, or annotations
Provide information regarding each construct that can be used for analysis or
documentation

In both ACME and AADL, ports exist as connection points
between objects and flows. Our discussion of modeling techniques
uses this concept, both through drawings and manual analysis
techniques, and through automated methodologies using objects
with properties. We recommend this as an enhancement on the
traditional DFD (as described in Chapter 1) to improve readability
of the system model. This concept also supports the inclusion of
architectural constraints or capabilities into the system model,
where holding protocols or protection schemes on the data flows
alone is not easy to process for complex systems with multiple data
flows that are harder to analyze. Using ports helps with this analy-
sis and to render your diagram.

Minimalist architecture description language for threat modeling

What information is necessary to describe and analyze a system model? Let’s refresh
your memory of what you learned in Chapter 1 about building a representative draw-
ing “by hand.” You need information on the following:

10 “AADL Resource Pages,” Open AADL, http://www.openaadl.org.

102 | Chapter4: Automated Threat Modeling

http://www.openaadl.org
https://oreil.ly/yKn-I

o The entities that exist in the system

o How these entities interact—which elements connect to one another via data
flows

o Characteristics of the elements and data flows

These are the core requirements for describing a system model so that automation
can identify patterns that represent potential weaknesses and threats. More specifi-
cally, the language or constructs that describe the system must allow you to specify
basic entity relationships and describe the core units of elements (and collections of
elements), ports, and data flows.

Additionally, you should include metadata in the properties of the objects—the who,
what, and why—of the systems and its elements. There are multiple reasons that this
is necessary when you build a representation of the system, as metadata does the
following:

o Metadata provides background information that helps to identify gaps in security
controls and processes, as well as to generate a report or document that the
development team will use. This metadata includes items such as the name of the
object within the system model, application or process name, who or which team
is responsible for its implementation and/or maintenance, and the object’s gen-
eral purpose within the system.

« Assigns each object a short identifier for easier reference in the future and to
facilitate documentation and the rendering of diagrams.

« Allows you to provide specific information such as the value (financial value, or
the importance of the data for users of the system, for instance) of the data man-
aged and/or stored by the system under consideration. You should also provide
the value that the system’s functionality provides, how much the system supports
risk identification and prioritization, and other information needed for docu-
mentation. This information is not strictly necessary to identify security con-
cerns, but it should be considered necessary when you perform risk assessment,
prioritization, and reporting.

Threat Modeling with Code | 103

Elements and collections

Objects connect to other objects within a system, and have properties pertinent for
threat analysis; these objects are referred to as elements. Elements can represent a
process, an object, or an individual (actor). Elements also represent data within a sys-
tem. Data is associated with elements or data flows (for details, see “Data and data
flows” on page 109).

Collections are a special form of element. Collections form an abstract relationship
grouping of elements (and by extension their data flows or any arbitrary orphaned
elements and/or ports) to establish commonality or a reference point for analysis.
They allow you to create a representation of a group of items, where the value or pur-
pose of the group is important to you in some way. Grouping may inform analysis
independent of the members of the group—if certain elements operate or exist as
part of a group, that may offer clues about their shared functionality that each ele-
ment by itself would not indicate. Recommended collections include the following:

System

This allows you to indicate that a set of elements comprises members of a larger
compound element. For the purposes of drawing, and for analysis at varying
degrees of granularity, a system can be represented both as a collection or as an
element. As we discussed in Chapter 1, when drawing system models, a process
exists for starting with an element and decomposing it into its representative
parts. Recall when creating the context, or initial layer, showing the major com-
ponents of the system, a single shape was used to represent a collection of sub-
component parts; when drawn at a higher level of specificity (i.e., zoomed in),
the representative parts become individualized. When creating a system model in
a description language, the representative parts need to be specified individually
and, for convenience, grouped together (usually by assigning a shared label or
indicator of their relationships to one another).

Execution context
It is critically important to be able to account for the context in which a process
executes, or the scope of a unit of data, during analysis. Use an execution context
collection to associate things like processes with other things such as virtual or
physical CPUs, compute nodes, operating systems, etc., in the scope in which it
operates. Understanding this helps you identify cross-context concerns and other
opportunities for abuse.

Trust boundary
A collection of elements may be purely abstract and/or arbitrary, not requiring
physical or virtual adjacency, to have meaning to you. At the time of defining the
objects in the system model, not all system components may be known. So it can
be helpful to be able to associate a set of elements as a collection that shares a

104 | Chapter4: Automated Threat Modeling

trust relationship, or for which trust changes between them and other elements
not in the collection.

Information associated with nodes—another name for elements—is encoded as
properties or characteristics of the object, and provides critical information for analy-
sis and documentation. To support correct system model checking and threat analy-
sis, elements need to have basic properties.!' A representative sample is shown here:

Element:
contains (1)
exposes

(2]
calls (3)
(4]

is_type:

cloud.saas

cloud.iaas

cloud.paas

mobile.1os
mobile.android
software
firmware.embedded
firmware.kernel_mod
firmware.driver
firmware

hardware
operating_system
operating_system.windows.10
operating_system.linux

operating_system.linux.fedora.23

operating_system.rtos

is_containerized
deploys_to:

windows
1inux
mac_os_X
aws_ec?2

provides

protection
protection.signed
protection.encrypted
protection.signed.cross
protection.obfuscated

packaged_as:

source
binary
binary.msi
archive

(5]

11 There are many possible ways to represent objects within a system; this shows an idealized or representative
set of properties based on our research. The list has been modified for placement in this text, and the original
can be found at https://oreil.ly/Vdiws.

Threat Modeling with Code

105

https://oreil.ly/Vdiws

source_language: (o]

- C

- cpp

- python
uses.technology: ®

- cryptography

- cryptography.aes128

- identity

- identity.oauth

- secure_boot

- attestation
requires: (1)

- assurance

- assurance.privacy

- assurance.safety

- assurance.thread_safety

- assurance.fail_safe

- privileges.root

- privileges.guest
metadata:

- name

- label

- namespace

- created_by

- ref.source.source

- ref.source.acquisition
source_type.internal
source_type.open_source
source_type.commercial
source_type.commercial.vendor
description

66

606

)

List (array or dictionary) of elements connected to this element (for a system of
systems, for example), which may include data

List of port nodes

One element to another, establishing a data flow

Elements have a type (generic or specific)

Boolean characteristics might be True or False, or (set) or (unset)
Generic protection scheme

Use of Microsoft Authenticode cross-signature support

© ©¢ © 6 6 o ©

What form is the element in use?

106 | Chapter4: Automated Threat Modeling

® 6 6 6 6 © 6 o

Elements should support particular relationships to other entities or objects:

If the system is or contains software, what language(s) is in use?
Specific technology or capabilities that are used by the component
What does the component need, or assume, to exist?

Set only values that apply. Be careful of conflicting attributes

General information for reporting, reference, and other documentation
Reference to where source code or documentation resides

Reference to where this component came from (project site, perhaps)
This component was internally source

Arbitrary user-defined information

Elements can contain other elements.
An element may expose a port (ports are described in the next section).

— Ports are associated with data.

Elements can connect to other elements by way of a port, establishing a data flow.

An element can make a call to another element (such as when an executable

makes a call into a shared library).

An element can read or write data. (Data objects are described in “Data and data

flows” on page 109.)

Ports

Ports provide an entry or connection point where interactions between nodes occur.
Ports are exposed by nodes (especially nodes representing processes) and are associ-
ated with a protocol. Ports also identify requirements on their security, such as any
expectation of security in subsequent communications that pass through the port.
Methods offered by the port protect exposed communication channels; some of these
methods come from the node exposing the port (such as a node opening a port for
traffic protected by TLS) or from the port itself (e.g., for a physically secure interface).

Threat Modeling with Code

107

For consumption and readability by a computer program,'? it is imperative to identify
and segregate communication flows per protocol. Since different protocols may offer
varied configuration options that can impact the overall security of the design, try to
avoid overloading communication flows. For example, an HTTPS server that allows
RESTful interactions as well as WebSockets through the same service and the same
port should use two communication flows. Likewise, a process that supports both
HTTP and HTTPS through the same interface should be described in the model with
distinct communication channels. This will facilitate analyzing the system.

Properties related to ports may include the following:

Port:
requires:
- security
- security.firewall
provides:
- confidentiality
- integrity
- gos
- qos.delivery_receipt
protocol:
- I2C
- DTLS
- ipvé6
- btle
- NFS
data:
- incoming
- outbound
- service_name
- port
metadata:
- name
- label
- description

60660000 (] o000

e

What does this port require or expect?

When set, this means some form of security mechanism is expected to be in place
to protect the port

© This port must have a firewall in place to protect it (as a specific security protec-
tion example)

O What capabilities does the port offer?

12 As in any good code, simplicity is best to make the program flow intelligibly to the “next maintainer.”

108 | Chapter4: Automated Threat Modeling

What protocol does the port use?"?

Bluetooth Low Energy

Network File System

What data is associated with this port?

Data being communicated fo this port (data nodes, list)

Data being communicated from this port (data nodes, list)

® 6 06 6 © o ©o

Describe the service that is exposed, especially if this object represents a well-
known service'

® Numeric port number, if known (not ephemeral)
® General information for reporting, reference, and other documentation

@ Arbitrary user-defined information

Data and data flows

Data flows (see Chapter 1 for examples of data flows) are sometimes referred to as
edges because they become connecting lines in a diagram."”” Data flows are the paths
upon which data objects travel between elements (and through ports).

You may be wondering why it is important or useful to separate data from data flows.
The answer is that a communication channel usually is just a path or pipe upon
which arbitrary information can travel, similar to a highway. The data channel itself
usually has no context regarding the sensitivity of the data that flows through it. Nor
does it have any sense of business value, criticality, or other factors that may impact
its use or protection requirements. By using data nodes and associating them with
data flows, you can create an abstraction that represents a system that passes different
types of data across data flows.

It may be obvious, but you should assign the most restrictive classification of the data
going through the data flow as the data classification for the data flow itself, as this

13 For readers unfamiliar with 12C, see Scott Campbell’s “Basics of the I2C Communication Protocol” Circuit
Basics page.

14 See “Service Name and Transport Protocol Port Number Registry,” IANA, https://oreil.ly/1XktB.

15 For a discussion on edges and graphs, see “Graph Theory” by Victor Adamchik, https://oreil.ly/tObYp.

Threat Modeling with Code | 109

https://oreil.ly/2YkQX
https://oreil.ly/1XktB
https://oreil.ly/t0bYp

will drive the requirements on the data flow to protect the data that passes within it.
This allows the system representation to be templated to support variant analysis,
which means testing various combinations of data associated with the data flows to
predict when a security issue may arise.

These are some suggested properties for data:

Data:
encoding:
- json
- protobuf
- ascit
- utfs
- utf16
- base64
- yaml
- xml
provides:
- protection.signed
- protection.signed.xmldsig
- protection.encrypted
requires:
- security
- availability
- privacy
- integrity
is_type:
- personal
- personal.identifiable
- personal.health
- protected
- protected.credit_info
- voice
- video
- security
metadata:
- name
- label
- description (6]

© 00 ©

(]

Type of data this object represents
Personally identifiable information (PII)
Protected health information (PHI)

PCI-DSS protected data

® 06 06 © o

General information for reporting, reference, and other documentation

110 | Chapter4: Automated Threat Modeling

O Arbitrary user-defined information

Services that expose the port define the capabilities and properties of the data flow
(the data flow inherits properties represented by the port). Data flows may still bene-
fit from having metadata, allowing them to differentiate each flow when, for example,
generating a diagram or report.

Other model description languages

To round out your knowledge, let’s discuss a couple of other languages, some of
which fit into the SDL category. We encourage you to investigate them if you are
interested.

The Common Information Model, or CIM, is a Distributed Management Task Force
(DMTF) standard for representing, at a granular level of detail, a computing system
and its properties. You can use CIM, and variants like SBLIM for Linux systems, to
understand and document the configuration of a system for tasks such as policy
orchestration and configuration management. For a guide on the type of data to use
when annotating system models, review the list of available properties the CIM offers
for systems the specification describes.

Unified Modeling Language, or UML is an Object Management Group, or OMG,
standard with a heavy lean toward describing software-centric systems. You may
already be familiar with UML, as it is commonly taught as part of a computer science
curriculum. The sequence diagram (which we discussed in Chapter 1) is a part of the
UML specification. Recently, research has been presented at the academic level that
uses UML more for the description of software systems when looking to identify
threats than for the analysis to identify those threats.'¢

Systems Modeling Language (SysML) is also an OMG standard. This variant of UML
is designed to be more directly applicable for systems engineering (rather than purely
software) than UML. SysML adds two diagram types to UML, and slightly modifies a
couple of the other diagram types to remove software-specific constructs, but overall
reduces the diagrams available from 13 to 9. In theory, this makes SysML “lighter”-
weight and more functional for general systems engineering use. Companies and
organizations that rely on highly structured systems engineering processes, and of
course academia, have published case studies on how to apply SysML for modeling

16 Michael N. Johnstone, “Threat Modelling with Stride and UML,” Australian Information Security Manage-
ment Conference, November 2010, https://oreil.ly/QVU8c.

17 “What is the Relationship Between SysML and UML?” SysML Forum, accessed October 2020, https://oreil.ly/
xL7I12.

Threat Modeling with Code | 111

https://oreil.ly/QVU8c
https://oreil.ly/xL7l2
https://oreil.ly/xL7l2
https://oreil.ly/TpaVq
https://oreil.ly/OuEvz
https://www.uml.org
https://oreil.ly/28YEs
http://www.omgsysml.org

systems for threats, although at the time of writing there is limited availability of case
studies showing the automation of analysis for threats.'®"

The types of system models, or abstractions, available, and the data that can be asso-
ciated with them, in both UML and SysML, are key for application in the area of
threat modeling, and specifically threat modeling via code. Both provide a means to
specify objects and interactions, and parameters about those objects and interactions.
Both also use XML as their data interchange format. XML is designed to be processed
by computer applications, which makes this ideal for creating system models that you
can analyze for threats.

Analysis of graphs and metadata

Let’s consider for a moment the simple example shown in Figure 4-2.

)

Figure 4-2. Simple client/server system model

These annotations accompany the system diagram in Figure 4-2:

o The client is written in C and calls out to the server on port 8080 to authenticate
the user of the client.

o The server checks an internal database, and if the information sent by the client
matches what is expected, the server returns an authorization token to the client.

Put your security hat on (refer to the Introduction if you need to brush up on authen-
tication and other applicable flaws) and identify the security concerns in this simple
system model.*® Now, think about how you came to the conclusion you did. You
(probably) looked at the system model, saw the information provided as annotations,
and determined potential threats. You performed pattern analysis against a database
of threat information stored in your memory. This is what security advisors for
development teams do regularly, and is one of the challenges of scalability—not
enough “memory” and “compute power” to go around.

This pattern analysis and extrapolation is easy for a human brain to do. Our brains,
given the right knowledge, can easily see patterns and make extrapolations. We even

18 Aleksandr Kerzhner et al., “Analyzing Cyber Security Threats on Cyber-Physical Systems Using Model-Based
Systems Engineering,” https://oreil.ly/0ToAu.

19 Robert Oates et al., “Security-Aware Model-Based Systems Engineering with SysML,” https://oreil.ly/Iri3g.

20 Hint: Using this system model carries at least five potential threats such as spoofing and credential theft.

112 | Chapter4: Automated Threat Modeling

https://oreil.ly/0ToAu
https://oreil.ly/lri3g

have a subconscious that allows us to have “gut feelings” about our analysis. We
make connections to and between things that seem random and ambiguous. We
don’t even process all of the steps that our brains take when working; our thoughts
“just happen.” Computers, unlike our brains, do things quickly, but they need to be
aware of every step and process that’s needed. Computers can’t infer or assume. So,
what we take for granted, computers need to be programmed to do.

So, how would a computer program analyze this scenario?

First, you need to develop a framework for analysis. This framework must be able to
accept input (from the model) and perform pattern analysis, draw inferences, make
connections, and occasionally guess, to produce an outcome that humans can inter-
pret as meaningful. Ready with that Al yet?

Actually, it is not that much of a challenge, and has not been for quite some time. The
basic approach is simple:

1. Create a format for describing a system representation with information, using
something like an ADL.

2. Create a program to interpret the system model information.

3. Extend the program to perform analysis based on a set of rules that govern the
patterns of information present in the system model.

So let’s look at that simple example again, in Figure 4-3.

— ®
=01

Figure 4-3. Simple client/server system model revisited

Now, let’s use our idealized description language from earlier in the chapter to
describe the information in the system model. To reference each object distinctly in
the system model, we use a placeholder identifier for each object, and connect prop-
erties to that identifier:

Describe 'Node1l' (the client)
Nodel.name: client
Nodel.is_type: software
Nodel.source_language: c
Nodel.packaged_type: binary

Describe 'Node?' (the server)
Node2.name: server

Node2.is_type: software

Describe 'Node3' (an exposed port)

Threat Modeling with Code | 113

Node3.is_type: port
Node3.port: 8080
Node3.protocol: http

Establish the relationships
Node2.exposes.port: Node3
Nodel.connects_to: Node3

Describe the data that will be passed on the channel

Datal.is_type: credential

Datal.requires: [confidentiality, integrity, privacy]
Datal.metadata.description: "Data contains a credential to be checked by
the server"

Data2.is_type: credential

Data2.requires: [confidentiality, integrity]
Data2.metadata.description: "Data contains a session token that gives/
authorization to perform actions"

Node3.data.incoming = Datal
Node3.data.outbound = Data2

Now, obviously, in the preceding example (which we completely made up and cre-
ated only for the purpose of explanation), you may notice one or two things of con-
cern. Your human brain is able to make inferences about the meaning of the
properties and what the system might look like. In Chapter 3, you learned how to
determine some of the vulnerabilities that may exist in a sample system.

But how will the computer program do this same task? It needs to be programmed to
do so—it needs a set of rules, and structures to piece information together to achieve
the results necessary for analysis.

Constructing rules means looking at available sources of threats and identifying the
“indicators” that reveal a threat is possible. The CWE Architectural Concepts list or
CAPEC Mechanisms of Attack are repositories that are excellent resources to
consider.

You may have noticed that we refer to the CWE and CAPEC data-
bases multiple times throughout the book. We are particularly fond
of using these as central resources because they are open, public,
and filled with consumable and applicable information that has
been contributed by experts across the security community.

For our demonstration, let’s take a look at two possible sources of a rule:

e CWE-319: Cleartext Transmission of Sensitive Information
o CAPEC-157: Sniffing Attacks

114 | Chapter4: Automated Threat Modeling

https://oreil.ly/pKzO4
https://oreil.ly/oulfi
https://oreil.ly/6psXE
https://oreil.ly/xg2A1

CWE-319 tells us the weakness occurs when “the software transmits sensitive or
security-critical data in cleartext in a communication channel that can be sniffed by
unauthorized actors.” From this simple description, you should be able to identify the
indicators that need to be present for a potential threat to exist in a system:

A process: This performs an action.
o “Transmits”: The software unit communicates with another component.
+ “Sensitive or security-critical data”: Data of value to an attacker.

« Without encryption: On the channel or protecting the data packets directly (one
of these conditions needs to exist).

« Impact: Confidentiality.

CAPEC-157 describes an attack against sensitive information as “in this attack pat-
tern, the adversary intercepts information transmitted between two third parties. The
adversary must be able to observe, read, and/or hear the communication traffic, but
not necessarily block the communication or change its content. Any transmission
medium can theoretically be sniffed if the adversary can examine the contents
between the sender and recipient.” From this description, we get details of how an
attacker may perform this attack:

o Traffic between two parties (endpoints) is intercepted.
o The attack is passive; no modification or denial of service is expected.

« The attacker (actor) requires access to the communication channel.

So with these two descriptions, we might consider the following unified rules (in
text):

« The source endpoint communicates to the destination endpoint.
o The data flow between endpoints contains sensitive data.

o The data flow is not protected for confidentiality.

The impact of having these conditions present in a system would enable a malicious
actor to obtain sensitive data through sniffing.

The code to identify this pattern and to indicate the condition of threat existence
might look like (in pseudocode, minus all the safety checks) the following:

def evaluate(node n, "Threat from CWE-319"):
if n.is_type is "software":
for 1 in range(0, len(n.exposes)):
return (n.exposes[i].p.data.incoming[0].requires.security)
and
(n.exposes[i].p.provides.confidentiality)

Threat Modeling with Code | 115

This is an extremely simplified example of what a tool or automation could accom-
plish. More efficient algorithms for performing this pattern matching certainly exist,
but hopefully this example gives you an idea of how threat modeling uses code to
perform automatic threat detection.

While threat modeling with code is a pretty neat trick, threat modeling from code
makes the technology potentially more accessible. In this paradigm, instead of using
code to assist in managing threat information, or using a program to analyze a textual
description of a model “with code” to match constructs to rules to determine threats,
an actual program is written that, when executed, performs the threat modeling anal-
ysis and rendering “automagically.”

For this to be possible, a program author needs to create program logic and APIs to
describe elements, data flows, etc. and the rules by which they will be analyzed.
Developers then use the APIs to create executable programs. Execution (with or
without precompilation, dependent on the language choice for the APIs) of the pro-
gram code results in these basic steps:

1. Translate the directives that describe objects to build a representation of the sys-
tem (such as a graph, or just an array of properties, or in an other representation
internal to the program).

2. Load a set of rules.
3. Walk the graph of objects performing pattern matching against the set of rules to
identify findings.

4. Generate results based on templates for drawing the graph as a diagram that is
(hopefully) visually acceptable to a human and for outputting details of findings.

Writing code to autogenerate threat information provides a few benefits:

« As a coder, you are already used to writing code, so this offers an opportunity for
you to have something actionable on your terms.

+ Threat modeling as code neatly aligns with the everything as code or DevOps
philosophies.

 You can check in code and keep it under revision control in tools you, as a devel-
oper, are already used to, which should help with adoption as well as manage-
ment of the information.

o If the APIs and libraries that are built to contain the knowledge and expertise of
security professionals support the capability to dynamically load rules for analy-
sis, the same program can service multiple domains. A program can re-analyze a
system previously described in code as new research or threat intelligence reveals

116 | Chapter4: Automated Threat Modeling

new threats so they are always up-to-date, without changing the model or having
to redo any work.

This method has a few detractions to consider as well, however:

o Developers such as yourself already write code every day to deliver value to your
business or customers. Writing additional code to document your architecture
may seem like an additional burden.

» With so many programming languages available today, the likelihood of finding
a code bundle that uses (or supports integration with) a language your develop-
ment team uses may be a challenge.

o The focus is still on developers who, as the keepers of code, need the skills to
understand concepts like object-oriented programming and functions (and call-
ing conventions, etc.).

These challenges are not insurmountable; however, the threat modeling from code
space is still immature. The best example we can offer for a code module and API for
performing threat modeling from code is pytm.

Disclaimer: we are really, really, really biased toward pytm, as crea-
tors/leaders of the open source project. We want to be fair in this
book to all the great innovations in the field of threat modeling
automation. But we do honestly feel pytm has addressed a gap in
methods that have been made available to security practitioners
and development teams trying to make threat modeling actionable
and effective for them.

pytm

One of the main reasons we wrote this book was the sincere desire for individuals
involved with development to have immediately accessible information that helps
them further develop their security capabilities in the secure software development
life cycle. This is why we talk about training, the challenge of “thinking like a hacker,”
attack trees and threat libraries, rules engines, and diagrams.

As experienced security practitioners, we have heard many arguments from develop-
ment teams against the use of threat modeling tooling: “It is too heavy!”, “It is not
platform-agnostic; I work in X, and the tool only works in Y17, “I don’t have the time
to learn one more application, and this one requires me to learn a whole new syntax!”
Apart from the presence of a lot of exclamation points, a common pattern in these
declarations is that the coder is asked to step outside their immediate comfort zone
and add one more skill to their toolbox or interrupt a familiar workflow and add an

Threat Modeling with Code | 117

extraneous process. So, we thought to ourselves, what if we were to instead try to
approximate the threat modeling process to one already familiar to the coder?

Much as can be seen in continuous threat modeling (which we describe in depth in
Chapter 5), reliance on tools and processes already known to the development team
helps create commonality and trust in the process. You are already comfortable with
these and use them every day.

Then we looked at automation. Which areas of threat modeling offered the most
challenges to the development team? The usual suspects stepped forward: identifying
threats, diagramming and annotating, and keeping the threat model (and by exten-
sion, the system model) current with minimum effort. We bantered about descrip-
tion languages, but they fell into the category of “one more thing for the team to
learn,” and their application felt heavy in the development process, while the teams
were trying to make it lighter. How could we help the development team meet its
(efficiency/reliability) goal and still achieve our security education goal?

Then it struck us: why not describe a system as a collection of objects in an object-
oriented way, using a commonly known, easy, accessible, existing programming lan-
guage, and generate diagrams and threats from that description? Add Python, and
there you have it: a Pythonic library for threat modeling.

Available at https://oreil.ly/nuPja (and at https://oreil.ly/wH-NI as an OWASP Incuba-
tor project), in its first year of life, pytm has captured the interest of many in the
threat modeling community. Internal adoption at our own companies and others,
talks and workshops by Jonathan Marcil at popular security conferences like OWASP
Global AppSec DC and discussions at the Open Security Summit and even use by
Trail of Bits in its Kubernetes threat model indicate that we are moving in the right
direction!

pytm is an open source library that has profited immensely from
the discussions, work, and additions of individuals including Nick
Ozmore and Rohit Shambhuni, co-creators of the tool; and Pooja
Avhad and Jan Was, responsible for many central patches and
improvements. We look forward to the community’s active
involvement in making it better. Consider this a call to action!

118 | Chapter4: Automated Threat Modeling

https://oreil.ly/nuPja
https://oreil.ly/wH-Nl
https://oreil.ly/yrf1q
https://oreil.ly/yrf1q
https://oreil.ly/SGrB0
https://oreil.ly/iWv7O

Here is a sample system description using pytm:

#!/usr/bin/env python3 (1)

from pytm.pytm import TM, Server, Datastore, Dataflow, Boundary, Actor, Lambda (2]

tm = TM("my test tm") (3]

tm.description = "This is a sample threat model of a very simple system - a /
web-based comment system. The user enters comments and these are added to a /
database and displayed back to the user. The thought is that it is, though /
simple, a complete enough example to express meaningful threats."

User_Web = Boundary("User/Web") (4]
Web_DB = Boundary('"Web/DB")

user = Actor("User") ()
user.inBoundary = User_Web (6]

web = Server("Web Server")
web.0S = "Cloud0S"
web.isHardened = True @

db = Datastore("SQL Database (*)")
db.0S = "Cent0S"

db.isHardened = False
db.inBoundary = Web_DB

db.isSql = True

db.inScope = False

my_lambda = Lambda('"cleanDBevery6hours")
my_lambda.hasAccessControl = True
my_lambda.inBoundary = Web_DB

my_lambda_to_db = Dataflow(my_lambda, db, "(λ)Periodically cleans DB") (8]
my_lambda_to_db.protocol = "SQL"
my_lambda_to_db.dstPort = 3306

user_to_web = Dataflow(user, web, "User enters comments (*)")
user_to_web.protocol = "HTTP"

user_to_web.dstPort = 80

user_to_web.data = 'Comments in HTML or Markdown'
user_to_web.order = 1

web_to_user = Dataflow(web, user, "Comments saved (*)")
web_to_user.protocol = "HTTP"

web_to_user.data = 'Ack of saving or error message, in JSON'
web_to_user.order = 2

web_to_db = Dataflow(web, db, "Insert query with comments")
web_to_db.protocol = "MySQL"

Threat Modeling with Code | 119

web_to_db.dstPort = 3306
web_to_db.data = 'MySQL insert statement, all literals'
web_to_db.order = 3

db_to_web = Dataflow(db, web, "Comments contents")
db_to_web.protocol = "MySQL"

db_to_web.data = 'Results of insert op'
db_to_web.order = 4

tm.process() ®

pytm is a Python 3 library. No Python 2 version is available.

In pytm, everything revolves around elements. Specific elements are Process,
Server, Datastore, Lambda, (Trust) Boundary, and Actor. The TM object contains
all metadata about the threat model as well as the processing power. Import only
what your threat model will use, or extend Element into your own specific ones
(and then share them with us!)

We instantiate a TM object that will contain all of our model description.

Here we instantiate a trust boundary that we will use to separate distinct areas of
trust of the model.

We also instantiate a generic actor to represent the user of the system.
And we immediately put it in the correct side of a trust boundary.

Each specific element has attributes that will influence the threats that may be
generated. All of them have common default values, and we need to change only
those that are unique to the system.

The Dataflow element links two previously defined elements, and carries details
about the information flowing, the protocol used, and the communication ports
in use.

Apart from the usual DFD, pytm also knows how to generate sequence diagrams.
By adding an .order attribute to Dataflow, it is possible to organize them in a
way that will make sense once expressed in that format.

After declaring all our elements and their attributes, one call to TM.process()
executes the operations required in the command line.

120

| Chapter 4: Automated Threat Modeling

Besides the line-by-line analysis, what we can learn from this piece of code is that
each threat model is a separate individual script. This way, a large project can keep
the pytm scripts small and colocated with the code that they represent, so that they
can be more easily kept updated and version controlled. When a specific part of the
system changes, only that specific threat model needs editing and change. This focu-
ses effort on the description of the change, and avoids the mistakes made possible by
editing one large piece of code.

By virtue of the process() call, every single pytm script has the same set of
command-line switches and arguments:

tm.py [-h] [--debug] [--dfd] [--report REPORT] [--exclude EXCLUDE] [--seq] /
[--1is] [--describe DESCRIBE]

optional arguments:

-h, --help show this help message and exit

- -debug print debug messages

- -dfd output DFD (default)

--report REPORT output report using the named template file /

(sample template file is under docs/template.md)
--exclude EXCLUDE specify threat IDs to be ignored
--seq output sequential diagram
--list list all available threats
--describe DESCRIBE describe the properties available for a given element

Of note are --dfd and - -seq: these generate the diagrams in PNG format. The DFD
is generated by pytm writing in Dot, a format consumed by Graphviz and the
sequence diagram by PlantUML. also has multiplatform support. The intermediate
formats are textual, so you can make modifications, and the layout is governed by the
respective tools and not by pytm. Working this way, every tool can focus on what it
does best.”!

See Figures 4-4 and 4-5.

21 Graphviz has packages for all major operating systems.

Threat Modeling with Code | 121

https://www.graphviz.org
http://plantuml.com

r— — — — — — — 1
Web/DB |
cleanDBevery6hours

(5) Lambda
| periodically | F— — — — 4

cleans DB | | User/Web

SQL Database User

L — —

(4) Comments
contents

(3) Insert query with

(1) User enters
comments

comments (*)

(2) Comments
saved (*)

Web Server

Figure 4-4. DFD representation of the sample code

0 0 -

User Web Server cleanDBevery6hours SQL Database

Lambda periodically cleans DB

>

User enters comments (*)

Y

Insert query with comments

Y

Comments saved (*)

<
<

Comments contents
-

-

User Web Server cleanDBevery6hours SQL Database

@, @, -

Figure 4-5. The same code, now represented as a sequence diagram

122 | Chapter4: Automated Threat Modeling

Being able to diagram at the speed of code has proven to be a useful property of
pytm. We have seen code being jotted down during initial design meetings to
describe the system in play. pytm allows team members to leave a threat modeling
session with a functional representation of their idea that has the same value as a
drawing on a whiteboard but can be shared, edited, and collaborated upon immedi-
ately. This approach avoids all the pitfalls of whiteboards (“Has anyone seen the
markers? No, the black markers!”, “Can you move the camera a bit? The glare is hid-
ing half of the view,” “Sarah is responsible for turning the drawing into a Visio file.
Wait, who’s Sarah?”, and the dreaded “Do Not Erase” signs).

But while all of that is valuable, a threat modeling tool is quite lacking if it doesn’t,
well, reveal threats. pytm does have that capability, albeit with a caveat: at this stage in
its development, we are more concerned with identifying initial capabilities than
being exhaustive in the threats identified. The project started with a subset of threats
that roughly parallels the capabilities of the Microsoft Threat Modeling Tool
described in this chapter, and added some lambda-related threats. Currently, pytm
recognizes more than 100 detectable threats, based on a subset of CAPEC. You can
see some of the threats pytm is able to identify here (and all threats can be listed by
using the - -list switch):

INPO1 - Buffer Overflow via Environment Variables
INPO2 - Overflow Buffers

INPO3 - Server Side Include (SSI) Injection

CRO1 - Session Sidejacking

INPO4 - HTTP Request Splitting

CRO2 - Cross Site Tracing

INPO5 - Command Line Execution through SQL Injection
INPO6 - SQL Injection through SOAP Parameter Tampering
SCO1 - JSON Hijacking (aka JavaScript Hijacking)
LBO1 - API Manipulation

AAO1 - Authentication Abuse/ByPass

DSO1 - Excavation

DEO1 - Interception

DE®2 - Double Encoding

APIO1 - Exploit Test APIs

ACO1 - Privilege Abuse

INPO7 - Buffer Manipulation

ACO2 - Shared Data Manipulation

D001 - Flooding

HAO1 - Path Traversal

ACO3 - Subverting Environment Variable Values

D002 - Excessive Allocation

DSO2 - Try ALl Common Switches

INPO8 - Format String Injection

INPO9 - LDAP Injection

INP10 - Parameter Injection

INP11 - Relative Path Traversal

INP12 - Client-side Injection-induced Buffer Overflow
ACO4 - XML Schema Poisoning

Threat Modeling with Code | 123

DO®3 - XML Ping of the Death

ACO5 - Content Spoofing

INP13 - Command Delimiters

INP14 - Input Data Manipulation

DE®3 - Sniffing Attacks

CRO3 - Dictionary-based Password Attack

API02 - Exploit Script-Based APIs

HAO2 - White Box Reverse Engineering

DSO3 - Footprinting

ACO6 - Using Malicious Files

HAO3 - Web Application Fingerprinting

SCO2 - XSS Targeting Non-Script Elements

ACO7 - Exploiting Incorrectly Configured Access Control Security Levels
INP15 - IMAP/SMTP Command Injection

HAG4 - Reverse Engineering

SCO3 - Embedding Scripts within Scripts

INP16 - PHP Remote File Inclusion

AAO2 - Principal Spoof

CRO4 - Session Credential Falsification through Forging
D004 - XML Entity Expansion

DS04 - XSS Targeting Error Pages

SCO4 - XSS Using Alternate Syntax

CRO5 - Encryption Brute Forcing

ACO8 - Manipulate Registry Information

DSO5 - Lifting Sensitive Data Embedded in Cache

As mentioned earlier, the format pytm uses to define threats is undergoing a revision
to accommodate a better rule engine and provide more information. Currently, pytm
defines a threat as a JSON structure with the following format:

{

"SID":"INPO1",

"target": ["Lambda","Process"],

"description": "Buffer Overflow via Environment Variables",

"details": "This attack pattern involves causing a buffer overflow through/
manipulation of environment variables. Once the attacker finds that they can/
modify an environment variable, they may try to overflow associated buffers./
This attack leverages implicit trust often placed in environment variables.",

"Likelihood Of Attack": "High",

"severity": "High",

"condition": "target.usesEnvironmentVariables is True and target.sanitizesInp
ut is False and target.checksInputBounds is False",
"prerequisites": "The application uses environment variables.An environment/

variable exposed to the user is vulnerable to a buffer overflow.The vulnerable/
environment variable uses untrusted data.Tainted data used in the environment/
variables is not properly validated. For instance boundary checking is not /
done before copying the input data to a buffer.",

"mitigations": "Do not expose environment variables to the user.Do not use /
untrusted data in your environment variables. Use a language or compiler that /
performs automatic bounds checking. There are tools such as Sharefuzz [R.10.3]/

which is an environment variable fuzzer for Unix that support loading a shared/
library. You can use Sharefuzz to determine if you are exposing an environment/

124 | Chapter4: Automated Threat Modeling

variable vulnerable to buffer overflow.",

"example": "Attack Example: Buffer Overflow in $HOME A buffer overflow in

sccw allows local users to gain root access via the $HOME

environmental variable. Attack Example: Buffer Overflow in TERM A

buffer overflow in the rlogin program involves its consumption of

the TERM environment variable.",

"references": "https://capec.mitre.org/data/definitions/10.html, CVE-1999-090
6, CVE-1999-0046, http://cwe.mitre.org/data/definitions/120.html, http://cwe.mit
re.org/data/definitions/119.html, http://cwe.mitre.org/data/definitions/680.html

I3

The target field describes either a single or a tuple of possible elements that the threat
acts upon. The condition field is a Boolean expression that evaluates to True (the
threat exists) or False (the threat does not exist) based on the values of the attributes
of the target element.

Interestingly enough, the use of Python’s eval() function to evalu-
ate the Boolean expression in a condition introduces a possible vul-
nerability to the system: if pytm is installed system-wide, for

\ example, but the threat file’s permissions are too permissive and
any user can write new threats, an attacker could write and add
their own Python code as a threat condition, which would happily
be executed with the privileges of the user running the script. We
aim to fix that in the near future, but until then, be warned!

To complete the initial set of capabilities, we added a template-based reporting capa-
bility.?? While simple and succinct, the templating mechanism is enough to provide a
usable report. It enables the creation of reports in any text-based format, including
HTML, Markdown, RTF, and simple text. We have opted for Markdown:

Threat Model Sample

*k%k

System Description
{tm.description}

Dataflow Diagram
![Level 0 DFD](dfd.png)

Dataflows

Name|From|To |Data|Protocol|Port

B R B L |-
{dataflows:repeat:{{item.name}}|{{item.source.name}}|{{item.sink.name}}/
|{{item.data}}|{{item.protocol}}|{{item.dstPort}}

}

22 See “The World’s Simplest Python Template Engine” by Eric Brehault, https://oreil.ly/BEFIn.

Threat Modeling with Code | 125

https://oreil.ly/BEFIn

Potential Threats
{findings:repeat:* {{item.description}} on element "{{item.target}}"

}

This template, applied to the preceding script, would generate the report you can see
in Appendix A.

We truly expect to continue growing and developing more capabilities in the near
future, hopefully bringing down the entry barrier to threat modeling by development
teams while providing useful results.

Threagile

A new (as of July 2020) entry in the threat-modeling-as-code space, Threagile by
Christian Schneider is a promising system. It is currently in stealth mode but will
soon be made available, open source!

Much like pytm, Threagile falls under the category of threat modeling with code, but
uses a YAML file to describe the system it will evaluate. A development team is able
to use the tools that team members already know, in their native IDE, and that can be
maintained together with the code of the system it represents, version controlled,
shared, and collaborated on. The tool is written in Go.

Since at the time of this writing the tool is still under development, we advise you to
visit the Threagile’s author’s website to see examples of the reports and diagrams
generated.

The main elements of the YAML file describing the target system are its data assets,
technical assets, communication links, and trust boundaries. For example, a data
asset definition looks like this:

Customer Addresses:
id: customer-addresses
description: Customer Addresses
usage: business
origin: Customer
owner: Example Company
quantity: many
confidentiality: confidential
integrity: mission-critical
availability: mission-critical
justification_cia_rating: these have PII of customers and the system /
needs these addresses for sending invoices

At this time, the data asset definition is the main difference in approach between
Threagile and pytm, since the definitions of technical assets (in pytm, elements like
Server, Process, etc.), trust boundaries, and communication links (pytm data flows)

126 | Chapter4: Automated Threat Modeling

https://threagile.io
https://oreil.ly/A96sg

follow more or less the same breadth of information about each specific element in
the system.

Differences are more marked in that Threagile considers different types of trust
boundaries, like Network On Prem, Network Cloud Provider, and Network Cloud
Security Group (among many others) explicitly, while pytm does not differentiate.
Each type mandates different semantics that play a role in the evaluation of threats.

Threagile has a plug-in system to support rules that analyze the graph of the system
described by the YAML input. At the time of this writing, it supports around 35 rules,
but more are being added. A random pick of sample rules shows the following:

« cross-site-request-forgery

« code-backdooring

o ldap-injection
 unguarded-access-from-internet
« service-registry-poisoning

o unnecessary-data-transfer

Unlike pytm, which works as a command-line program, Threagile also provides a
REST API that stores (encrypted) models, and allows you to edit and run them. The
Threagile system will maintain the input YAML in a repository, together with the
code the YAML describes, and the system can be told to perform processing either
via the CLI or the APIL. Output of Threagile consists of the following:

o Arisk report PDF
o A risk tracking Excel spreadsheet
« A risk summary with risk detail as JSON

o A DFD automatically laid out (with coloring expressing the classification of
assets, data, and communication links)

o A data asset risk diagram

This last diagram is of particular interest, as it expresses, for each data asset, where it
is processed and where it is stored, with color expressing risk state per data asset and
technical asset. To the best of our knowledge, this is the only tool offering that view
right now.

The format of the generated PDF report is extremely detailed, containing all the
information necessary to flow risk up to management or for developers to be able to
mitigate it. The STRIDE classification of identified threats is present, as is an impact
analysis of risks per category.

Threat Modeling with Code | 127

We look forward to seeing more of this tool and getting involved with its develop-
ment, and heartily suggest you take a look at it after it is opened to the public.

An Overview of Other Threat Modeling Tools

We tried to represent these tools as impartially as we could, but overcoming confir-
mation bias can be difficult. Any errors, omissions, or misrepresentations are solely
our responsibility. No vendor or project participated in this review, and we do not
suggest one tool over another. The information presented here is simply for educa-
tional purposes and to help you start your own research.

IriusRisk
Methodologies implemented: Questionnaire-based, threat library

Main proposition: The free/community edition of IriusRisk (see Figure 4-6) provides
the same functionality as the Enterprise version, with a limitation on the kinds of
reports it can produce and the elements offered in its menu for inclusion in the sys-
tem. The free edition also does not contain an API, but it is enough to show the capa-
bilities of the tool. Figure 4-6 shows an example of the analysis results performed by
IriusRisk on the model of a simple browser/server system. Its threat library appears to
be based on CAPEC at least, with mentions of CWE; Web Application Security Con-
sortium, or WASC; OWASP Top Ten; and the OWASP Application Security Verifi-
cation Standard (ASVS) and OWASP Mobile Application Security Verification
Standard (MASVYS).

Freshness: Constantly updated
Obtain from: https://oreil ly/TzjrQ

ANALYSIS
® Alert Use of a random value in an e-mail or SMS to recover a password should be a last resort and is known weak.
® Info Sensitive data is received by the component
® Info Password reset functionality.
® Info Sensitive data is processed by the component
® Info Authentication required
Google Environment, Mobile Client, PCI DSS, EU GDPR, AWS, Microsoft Azure related questions and risk
@ Advice patterns are not avallable In the Community Edition
If you'd like to see a demo of the unrestricted edition of IriusRisk please contact us
@ Security Policy The security standard: PCI-DS5-v3.2 will be applied

Figure 4-6. IriusRisk real-time analysis results

A typical finding on an IriusRisk report would contain the component where it was
identified, the kind of flaw (“Access sensitive data”), a short explanation of the threat
(“Sensitive data is compromised through attacks against SSL/TLS”) and a graphic/
color representation of the risk and progress of countermeasures.

128 | Chapter4: Automated Threat Modeling

http://www.webappsec.org
http://www.webappsec.org
https://oreil.ly/TzjrQ

Drilling into a given threat shows a unique ID (containing CAPEC or other index
information), a division of impact into confidentiality, integrity, and availability, a
longer description and a list of references, associated weaknesses, and countermeas-
ures that will inform the reader on how to address the identified issue.

SD Elements
Methodologies implemented: Questionnaire-based, threat library

Main proposition: At the time of writing in version 5, SD Elements aims to be a full-
cycle security management solution for your enterprise. One of the capabilities it
offers is questionnaire-based threat modeling. Given a predefined security and com-
pliance policy, the application tries to verify the compliance of the system in develop-
ment to that policy by suggesting countermeasures.

Freshness: Frequently updated commercial offering

Obtain from: https://oreil.ly/On7q2

ThreatModeler

Methodologies implemented: Process flow diagrams; Visual, Agile, Simple Threat
(VAST); threat library

Main proposition: ThreatModeler is one of the first commercially available threat
modeling diagramming and analysis tools. ThreatModeler uses process flow dia-
grams (which we briefly mention in Chapter 1) and implements the VAST modeling
approach to threat modeling.

Freshness: Commercial offering

Obtain from: https://threatmodeler.com

OWASP Threat Dragon
Methodologies implemented: Rule-based threat library, STRIDE

Main proposition: Threat Dragon is a project recently out of incubator status at
OWASP. It is an online and desktop (Windows, Linux, and Mac) threat modeling
application that provides a diagramming solution (drag and drop), and a rule-based
analysis of the elements defined, suggesting threats and mitigations. This cross-
platform, free tool is usable and expandable (see Figure 4-7).

Freshness: In active development, led by Mike Goodwin and Jon Gadsden

Obtain from: https://oreil ly/-n5uF

An Overview of Other Threat Modeling Tools | 129

https://oreil.ly/On7q2
https://threatmodeler.com
https://oreil.ly/-n5uF

Th reat Dragon Logged in as izar C‘ 9 O

Main Request Data Flow

#OXx @ a4 @ 9 ¢ X

1

!
'_:
Browser] Message Queue
1
— '
Web Requespyt Message (
"d‘ . \.\“‘. MESSG&E‘:‘”’-“—‘\‘
‘-u
Web Response R4 =

’

Background
orker Process

-

/ Vieb App Query / \
Read web app config s’ Results :

/ ’1’ Queries Worker Quer;‘ Results/ Read worker config
Worker Queries ,r"
I [

1
Web Application Config Database Worker Config

Figure 4-7. A sample system, available as a demonstration

Notice in Figure 4-7, that the DFD conforms to the simple symbology presented
throughout the book; each element has a property sheet that provides details and
context about it. The element is shown in the context of the full system, and basic
information about whether it is in scope for the threat model, and what it contains,
and how it is stored or processed, is available.

Users also can create their own threats, adding a level of customization that enables
an organization or team to stress those threats that are particular to their environ-
ment or to the functioning of their system. There is a direct correlation with STRIDE
threat elicitation and a simple High/Medium/Low criticality ranking without direct
correlation to a CVSS score.

Threat Dragon offers a comprehensive reporting capability that keeps the system dia-
gram in focus, and provides a list of all findings (with their mitigations, if available)
sorted by elements, or the reason if a given element is part of the diagram but marked
out of scope for the threat model.

130 | Chapter4: Automated Threat Modeling

Microsoft Threat Modeling Tool
Methodologies implemented: Draw and annotate, STRIDE

Main proposition: Another major contribution of Adam Shostack and the SDL Team
at Microsoft, the Microsoft Threat Modeling Tool is one of the earliest appearances
in the threat modeling tool space. Initially based on a Visio library (and thus requir-
ing a license for that program), that dependency has been dropped, and now the tool
is a standalone installation. Once installed, it offers options to add a new model or
template, or load existing ones. The template defaults to an Azure-oriented one, with
a generic SDL template for systems that are not Azure-specific. Microsoft also sup-
ports a library of templates, which, although not extensive at the moment, is surely a
welcome contribution to the landscape. The tool uses an approximation of the DFD
symbology we used in Chapter 1, and offers tools that let you annotate each element
with attributes, both predefined and user-defined. Based on prepopulated rules (that
live in an XML file and can, in theory, be user-edited), the tool generates a threat
model report containing the diagram, the identified threats (classified based on
STRIDE), and some mitigation advice. Although the elements and their attributes are
heavily Windows oriented, the tool does have value for non-Windows users (see
Figure 4-8).

Freshness: Seems to be updated every couple of years.
Obtain from: https://oreil ly/YL-gI

Much as in other tools, each element can be edited to provide its properties. The
main difference here is that some element properties are very Windows-related; for
example, the OS Process element contains properties like Running As, with Adminis-
trator as a possible value, or Code Type: Managed. When the program generates
threats, it will ignore options that won’t be applicable to the targeted environment.

Reporting in this tool is closely tied to STRIDE, with each finding having a STRIDE
category, in addition to a description, a justification, a state of mitigation, and a
priority.

An Overview of Other Threat Modeling Tools | 131

https://oreil.ly/ygSun
https://oreil.ly/YL-gI

@ sample_Threat_Model - Microsoft Threat Modeling Too
File Edit View Settings Diagram Reports Help DiagramReader

(] R GCE DX Qas

Diagram 1 X . [stencis 7 X

Search Stencils Q

S R 4 [By cenercprocess
. D OS Process
D Thread
D Kernel Thread

D Native Application
—

Generid Data Flow)

Generic Data 0S Process

Store

Element Properties 1]

Generic Data Flow|

Generic Data Flow

HTTPS| 0S Process

Name 05 Process

Out Of Scope [}
Messages - Disabled
Description Severity Diagram Ignore | Reason For Out Of Scope

Configurable Attributes

As Generic Process

Code Type Not Selected
Messages - Disabled | Notes - no entries | Running As Not Selected

Figure 4-8. DFD for sample demo system provided with the tool

CAIRIS

Methodologies implemented: Asset-driven and threat-driven security design

Main proposition: Created and developed by Shamal Faily, CAIRIS, which stands for
Computer Aided Integration of Requirements and Information Security, is a plat-
form to create representations of secure systems focusing on risk analysis that is
based on requirements and usability. Once you define an environment (i.e., a con-
tainer in which the system exists—an encapsulation of assets, tasks, personas and
attackers, goals, vulnerabilities, and threats), you can define the contents of the envi-
ronment. Personas define users, and tasks describe how personas interact with the
system. Personas also have roles, which can be stakeholder, attacker, data controller,
data processor, and data subject. Personas interact with assets, which have properties
including Security and Privacy (like CIA), Accountability, Anonymity, and Unob-
servability, valued as None, Low, Medium, and High. Tasks model the work that one
or more personas perform on the system in environment-specific vignettes. CAIRIS
is able to generate UML DFDs with the usual symbology, as well as textual represen-
tations of a system. The system is complex, and our description will never do it jus-
tice, but during the course of our research, CAIRIS intrigued us enough to warrant
further exploration. A book that expands on the tool and the ways it should be used,
and that provides a complete course on security by design is Designing Usable and
Secure Software with IRIS and CAIRIS, by Shamal Faily (Springer).

Freshness: Under active development

132 | Chapter4: Automated Threat Modeling

Obtain from: https://oreil ly/BfW2l

Mozilla SeaSponge
Methodologies implemented: Visually driven, no threat elicitation

Main proposition: Mozilla SeaSponge is a web-based tool that works on any relatively
modern browser and provides a clean, good-looking UI, which also promotes an
intuitive experience. At this time, it does not offer a rule engine or a reporting capa-
bility, and development appears to have ended in 2015 (see Figure 4-9).

Freshness: Development seems to have stagnated.

Obtain from: https://oreil.ly/IOIh8

SeaSponge MFile - @Zoomdn @ Zoom-Out Example 1 2 Refresh Sharable Link
New Threat v Browser/Server =+ Diagram

Threat Name

Untitled Threat

Severity

Medium v

Description

Describe the threat

+ Add Threat

Threat Information > ©83-95b1-19c81e34e1e5-ce1-8595-e417a1c10cad

Stencils b3

Stencil Properties - Generic Trust Boundary

Figure 4-9. Mozilla SeaSponge user interface

Tutamen Threat Model Automator
Methodologies implemented: Visually driven, STRIDE, and threat libraries

Main proposition: Tutamen Threat Model Automator is a commercial software-as-a-
service (SaaS) offering (as of October 2019, in free beta) with an interesting approach:
upload a diagram of your system in draw.io or Visio formats, or an Excel spreadsheet,
and receive your threat model. You must annotate your data with security-related
metadata, zones of trust, and permissions you want to assign to elements. The gener-
ated report will identify the elements, the data flows, and the threats, and will propose
mitigations.

Freshness: Frequently updated commercial offering

An Overview of Other Threat Modeling Tools | 133

https://oreil.ly/BfW2l
https://oreil.ly/IOlh8

Obtain from: http://www.tutamantic.com

Threat Modeling with ML and Al

This is the age of “Al solves everything.”” However, the state of the security industry
is such that we’re not ready to make that leap (yet) for threat modeling.

Some research has been has been done in using machine learning (ML) and Al in
threat modeling. This is natural, given that today’s AI is an advancement of the
expert systems of the (recent) past. These systems were based on rules processed by
inference engines trying to satisfy a set of requirements to bring the system being
modeled into a satisfactory state. Or the systems would point out any discrepancies
that deemed the solution impossible. Sounds familiar, no?

Machine learning is built on the premise that after you classify enough data, patterns
emerge that allow you to classify any new data. Trying to translate that into the threat
modeling domain can be tricky. For example, in the field of network security, it is
easy to generate vast amounts of data carrying both “good” and “bad” traffic to train
a classification algorithm. However, in threat modeling, a sufficient corpus of data
may not exist, meaning you would be unable to train an algorithm to recognize
threats with fidelity. That immediately takes you back to the approach where a threat
is an expression of an unwanted state caused by the configuration of the system, in a
specific constellation of elements and attributes.

Machine learning approaches to threat modeling are primarily still an academic exer-
cise, with little in the way of published papers or proofs of concept that would allow
us to demonstrate a functioning AI/ML system.”* At least one patent already
addresses a generic machine learning threat modeling chain like the one described
previously, but as of today, we are not aware of a working prototype of a tool or a
dataset supporting it.

Even as they are called upon and leveraged to improve security in other systems, ML
systems have a need to be modeled for threats. Here are some examples of research
done in this area:

23 Corey Caplette, “Beyond the Hype: The Value of Machine Learning and AI (Artificial Intelligence) for Busi-
ness (Part 1),” Towards Data Science, May 2018, https://oreil.ly/324W3.

24 Mina Hao, “Machine Learning Algorithms Power Security Threat Reasoning and Analysis,” NSFOCUS, May
2019, https://oreil.ly/pzIQ9.

25 M. Choras and R. Kozik, ScienceDirect, “Machine Learning Techniques for Threat Modeling and Detection,”
October 6, 2017, https://oreil ly/PQfUt.

134 | Chapter4: Automated Threat Modeling

https://oreil.ly/324W3
https://oreil.ly/pzIQ9
https://oreil.ly/PQfUt
http://www.tutamantic.com

o The NCC Group has provided results of its research into this area and has devel-
oped threat models for ML systems that highlight how they can be attacked or
abused by unscrupulous adversaries.” The researchers at NCC Group used one
of the oldest non-ML tools available for threat modeling—Microsoft’s Threat
Modeling Tool, 2018 Edition—in their research.

+ Researchers at the Institute of Computer Engineering, Vienna University of
Technology, published their threat model for ML algorithm training and infer-
ence mechanisms, along with a good discussion on vulnerabilities, adversary
goals, and countermeasures to mitigate the threats identified.”

o Berryville Institute of Machine Learning, cofounded by famed security scientist
Gary McGraw, PhD, published an architectural risk analysis of ML systems that
reveals interesting areas of concern in the field of security when applied to ML
systems (some of which may themselves be applied to detecting security issues in
other systems).”

MITRE’s CWE is beginning to include security weaknesses for machine learning sys-
tems, with the addition of CWE-1039, “Automated Recognition Mechanism with
Inadequate Detection or Handling of Adversarial Input Perturbations”.

Summary

In this chapter, we took a longer look at some of the existing challenges of threat
modeling and how you can overcome them. You learned about architecture descrip-
tion languages and how they provided the foundation for the automation of threat
modeling. You learned about the various options for automating threat modeling,
from simply generating better threat documentation to performing full modeling and
analysis by writing code.

We discussed tools that use techniques from threat modeling with code and threat
modeling from code (collectively referred to in the industry as threat modeling as
code) while implementing threat modeling methodologies from Chapter 3. Some of
these tools also implement other features, such as security test orchestration. We
showed you our threat-modeling-from-code tool, pytm, and we finished by briefly
discussing the challenge of applying machine learning algorithms to threat modeling.

26 “Building Safer Machine Learning Systems—A Threat Model,” NCC Group, August 2018, https://oreil.ly/
BRgb9.

27 Faiq Khalid et al., “Security for Machine Learning-Based Systems: Attacks and Challenges During Training
and Inference,” Cornell University, November 2018, https://oreil.ly/2Qgx7.

28 Gary McGraw et al., “An Architectural Risk Analysis of Machine Learning Systems,” BIML, https://oreil.ly/
_RYwy.

Summary | 135

https://oreil.ly/BRgb9
https://oreil.ly/BRgb9
https://oreil.ly/2Qgx7
https://oreil.ly/_RYwy
https://oreil.ly/_RYwy
https://oreil.ly/2wT_M
https://oreil.ly/2wT_M

In the next chapter, you will get a glimpse into the near-future of threat modeling
with exciting new techniques and technologies.

136 | Chapter4: Automated Threat Modeling

CHAPTER 5
Continuous Threat Modeling

“Who are you?” said the Caterpillar.

This was not an encouraging opening for a conversation.

Alice replied, rather shyly, “I—I hardly know, Sir, just at present—at least I know who I was
when I got up this morning, but I think I must have been changed several times since then.”
“What do you mean by that?” said the Caterpillar, sternly. “Explain yourselfl”

“I can’t explain myself, I'm afraid, Sir,” said Alice, “because I am not myself, you see.”

—Lewis Carroll, Alice in Wonderland

This chapter introduces you to the process of continuous threat modeling. We also
present one implementation, and describe the results from use of this methodology
in the real world.

Why Continuous Threat Modeling?

Chapter 3 covered various threat modeling methodologies and pointed out some of
their advantages and shortcomings from our experience. When we discussed the
parameters used to “grade” those methodologies, you may have noticed that we were
leaning heavily toward, for the lack of a better label, something we all call Agile
Development.

What we mean by this is any of the existing development technologies that stray away
from the waterfall model (whereby a design is first developed, then implemented and
tested, with no further modification until the next iteration of the system). We are
also talking about those systems that get DevOps’ed a thousand times a day, with
developers making frequent changes in their constant drive to improvement. How
does threat modeling survive and thrive in these environments without slowing
everyone down?

137

In our experience, developers live at the speed of deployment.
Architects set the speed of progress. Security people run at the
speed of their caution.

How can you reconcile different speeds and rhythms, and make sure that you can
conduct threat modeling in a way that meets everyone’s points of view, expectations,
and requirements? You want to have a multispeed process, one that captures the sys-
tem as it initially exists, and then continues to capture it as it evolves, revealing
threats as they appear, evolve, and change. And, of course, you want this as you con-
tinue to address all of the other challenges we’ve discussed in the previous chapters!
To achieve all of this, you need continuous threat modeling.

The Continuous Threat Modeling Methodology

Still using the grading parameters we introduced in Chapter 2, the continuous threat
modeling (CTM) methodology relies on a simple set of guiding principles:

o A product team will always know its own system better than any security expert
that is not part of that team.

« A team cannot be expected to stop what it is doing to engage in threat modeling
(accessible, Agile).

o An individualized increasing-returns learning curve replaces training. The qual-
ity of the analysis of threats grows with experience (educational, unconstrained).

o The state of the threat model must reflect the present state of the system being
modeled (representative).

 Today’s threat model needs to be better than yesterday’s (scalable, educational).
o The findings need to match the system (useful).

It is not by chance that the educational parameter gets invoked twice in the princi-
ples. The whole idea is to enable a team with little or no security knowledge and with
or without access to a security expert to engage in effective threat modeling. It is also
not by chance that the first principle does not connect to any of the measurement
parameters we explored in Chapter 2: the whole methodology is based on the product
team taking ownership of its own threat model, in a way that will enable team mem-
bers to reap the benefits of the process and not be dependent on an external source of
knowledge. We had no measurement for that in Chapter 2.

138 | Chapter5: Continuous Threat Modeling

Evolutionary: Getting Better All the Time

One of our main propositions is that threat models must be evolutionary. This means
that the threat model gets better every day. This also means that a team does not need
to feel paralyzed by the need to “catch them all!” being comprehensively thorough
and effectively identifying all the possible threats in the system, before proceeding
with mitigation.

Knowing that your threat model will evolve over time also enables scalability by let-
ting different teams move at different speeds and interactions through the same steps.
While it is important to have a methodology that works for all your teams, they do
not need to be locked in step in order for that methodology to be immediately effec-
tive. You may let each team evolve as it will, and intervene (with advice, or expert
support) as needed.

The Autodesk Continuous Threat Modeling Methodology

Before we begin this section that highlights how the Autodesk
Continuous Threat Modeling (A-CTM) methodology embodies
the principles of CTM and its benefits and usage, we would like to
recognize and thank the people who directly contributed to the
development, deployment, and day-to-day betterment of A-CTM:
Reeny Sondhi and Tony Arous, who saw the value in an untried
solution and decided to pursue it, the valiant AppSec Team:
Hemanth Srinivasan, Esmeralda Nuraliyeva, Allison Schoenfield,
Rohit Shambhuni, John Roberts, and the product teams at Auto-
desk who embraced and improve the methodology daily.

A-CTM is a real-world instantiation of the continuous threat modeling approach. It
took the theory of CTM and applied it to a fast-changing organization, with many
teams located all over the world, and experienced all the growing pains of a new
methodology. Based on the results observed, corrections were made over time, and
the methodology continues to evolve, as do the threat models it fosters.

The methodology is described in operational detail in the “Continuous Threat Mod-
eling Handbook,” available in the Autodesk GitHub repository. It may be applied at
any time in the life cycle of a system, from design to deployment. The following is the
Autodesk continuous threat modeling mission statement from the handbook:

Evolutionary: Getting Better All the Time | 139

https://oreil.ly/MrDsa

The full threat modeling service that a security department typically provides for
development teams can be thought of as a good set of training wheels. We see an
increasing need to scale this process, and have taken the approach of transferring
knowledge to development teams. The approach outlined in this Handbook provides a
structure for teams to apply security principles to the threat modeling process, which
enables them to translate their product knowledge into security findings, following a
guided approach to questioning its security posture. The goal of this approach is to
support and strengthen the development team’s security capabilities across multiple
iterations to the point where the quality of the threat model executed by the develop-
ment team will require minimal involvement of your security team.

For the purposes of this chapter, we interchangeably use CTM, A-CTM, and Auto-
desk CTM to refer to the same methodology. By and large, mentions of CTM by itself
refer to the base methodology and philosophy, and A-CTM to the Autodesk
implementation.

To solve the dichotomy between “what do we have up to now” and “how it changes
over time,” CTM adopts a dual-speed approach. In this manner, you build a threat
model (the baseline threat model) by using whatever information is available for the
system at that moment, and then you and the team adopt a “Threat Model Every
Story” approach (covered in detail in the following sidebar): each developer evaluates
changes they make in the system from a security standpoint as they are planned,
applied, or tested, and appropriate action is then taken. The baseline threat model
becomes a living document that changes and evolves accordingly, and at the end (or
at any given milestone) of the process reflects the present status of the system with all
its changes. This idea is examined in deeper detail in the following sidebar, which
first appeared as an article by Izar in the Threat Modeling Insider Newsletter.

How Often Do Living Documents Need to Breathe?

The idea of a threat model report as a living document is not novel. It has been
championed repeatedly and famously by thought leaders in threat modeling includ-
ing Adam Shostack and Brook S.E. Schoenfield, and is reflected in many threat mod-
eling methodologies, implicit or explicitly, by their last step: now do it again.
Microsoft introduced the idea of security spikes to address changes in design during
Agile development, and many a threat modeling tool is based on the idea of facilitat-
ing the expression of on-the-fly changes into a current threat model. The currently
popular fast development and deployment philosophy expressed in DevOps sees sys-
tems deployed and redeployed a hundred (if not more) times a day, with small
changes moving from inception to customer-facing in record times. This would
surely tax even the most flexible threat modeling tool.

But between the “once and done, then again” and a “change at the speed of thought”
situations there lies a spot that appears to be promising. Here, changes to a system’s
design and implementation can be reflected in the threat model in a way that allows
reaping the benefits of this conceptual process and yet keeps the model reflecting the

140 | Chapter5: Continuous Threat Modeling

https://oreil.ly/cJCZn

system as it moves along, while offering the developer a consumable ramping up in
their experience of security as a programming subdiscipline. The fact is that if we wait
many scrums (or any other unit of development cycles) to address change in the
threat model, important and secure-significant details will likely be lost.

On the other hand, of the hundreds of changes a day that are enabled by DevOps,
only a very small number will be “security notable events” that modify the attack sur-
face, the security posture, or the secure configuration of the system. These events are
more effectively identified at the time they are, for the lack of a better word, designed
—at the time the architect or developer needs to add or modify the system in a way
that changes its security assertions and/or assumptions. This magic spot is the fea-
ture, fix, or story. As Schoenfield so aptly puts in Secrets of a Cyber Security Architect
(Auerbach Publications):

Threat modeling doesn’t have to take a long time. As I've noted in this book, if an
inexperienced team finds just one requirement that significantly improves a security
posture, this is a win and should be celebrated as such. This implies that threat mod-
els needn’t be the long, exhaustive exercise often promulgated by software security
programs. Rather, get developers thinking about credible attack scenarios. Over time,
they will likely get better at the analysis, identify more scenarios that apply, and thus
identify more security requirements.

My interpretation of Schoenfield’s experience is that we trust developers with
mission-critical decisions when they are writing their code, but for some reason we
decided that threat modeling is something better left to the experts—looking for the
big bang of a complete solution. But if we want incremental, evolutionary answers, we
must trust them, give them the tools, and more than that, give them the understand-
ing of security fundamentals so they can do their own threat modeling or at least
identify their own security notable events. By queueing these events and having that
queue addressed in able time by a curator—who ultimately decides what goes into the
threat model and what needs to be addressed in documentation, testing procedures,
or deployment changes—the threat model keeps apace with development. At all
times, the changes are reflected in the threat model, with fewer opportunities for lost
details and wrong assumptions and at a granularity that addresses only potential
security flaws rather than every little change in the system.

This is the basis of continuous threat modeling, or “Threat Model Every Story,” a
threat model methodology currently deployed at Autodesk and under consideration
by a few other companies. You can view the talk, “Threat Model Every Story: Practi-
cal Continuous Threat Modeling Work for Your Team”, from OWASP AppSec Cali-
fornia 2019.

At first look, CTM appears to be as “heavy” as other methodologies we’ve seen, but in
truth it tries to make things simple, and more than anything, collaborative. Threat
modeling is a team sport.

Everyone in the development team is a full stakeholder in the CTM process:

The Autodesk Continuous Threat Modeling Methodology | 141

https://oreil.ly/aSaXr
https://oreil.ly/aSaXr

o Product owners and product managers want to verify that security requirements
are met appropriately.

o Architects want to validate the design.

o Developers want to both receive guidance and provide feedback on changes
made to the design during implementation.

o Testers want to use it as a road map for security testing.

« DevOps uses it for architectural review and security controls on deployment.

While these are distinct roles with separate expectations from the threat modeling
exercise, they provide different views of the same system that creates a comprehen-
sive view of the system with enough detail to make appropriate security and risk
decisions.

At this time in the process, you should select one or more (but not too many!) cura-
tors. The role of threat model curator is more of a process minder than technical, but
it is important that the curator knows who is responsible for what in the team, and
can clearly communicate. This person will also need dedicated time during the whole
development process to perform CTM bookkeeping.

The curator will own a queue in the team’s bug repository (or any other mechanism
used to keep track of tasks and bugs). This queue is formed by items (for clarity, we
will refer to them simply as tickets) that are labeled according to their status relative
to the threat model:

security-tm
These are tickets that express and track findings in the threat model; that is, veri-
fied issues that need to be solved.

potential-tm-update
These are tickets that express changes in the design, implementation, deploy-
ment, documentation, or any other characteristic of the system development that
is deemed of potential interest to the threat model as a whole.

The curator will use potential-tm-update tickets and promote them to security-tm by
using their own judgment, or after discussion with others in the team, and if needed,
consultation with a security expert if one is available. With time, patterns will evolve
in the potential-tm-update tickets that will allow the process to flow faster.

There are two outcomes for the potential-tm-update consideration by the curator.
The ticket may become a security-tm ticket, which is tracked as a finding up to its full
resolution. Or the potential-tm-update is considered something that may be resolved
in another way, for example, a change in documentation, a notification to the
DevOps team that deployment needs have changed, or a new test case for quality

142 | Chapter5: Continuous Threat Modeling

engineering. This is where the methodology shines in transforming potential issues
into actionable tasks that improve the overall clarity of the system as it is developed.

Baselining

The first step of the CTM process includes building a baseline of the existing system
or design. Your team must come together and identify and investigate any known
characteristics of the system. This includes the following actions:

Define the scope
Are you threat modeling a full system or just a small design change? Decide
which elements of the system will be part of the threat model.

Identify all important assets
The model must include all relevant parts of the system. If you are worried about
too much detail, start with a top-level description of the system and repeat the
process for more detailed views of smaller parts.

Draw diagram(s)
Create diagrams of your system based on the scope. These should include, mini-
mally, the personas who use the system (e.g., users, administrators, operators),
and the way they interact with the system, browsers, desktop clients, servers,
load-balancers, and firewalls, etc.

Draw data flows
Picture the interactions between the system’s pieces in terms of data flow. Anno-
tate the interactions with details such as protocols and authentication.

Mark where the important data lives, transits, and is transformed
This is important, as here you’ll discover which assets you are trying to protect
and where they appear in the system. You can create a diagram on a whiteboard,
or in any of the many diagramming solutions we discussed in Chapter 1. To
make it easy to keep the diagram up-to-date, you might want to use an open
source toolchain using pytm, which we discussed in Chapter 3.

At this stage, the “definition of done” is that team members agree that the diagram
that you've just created correctly represents the system’s pieces and their interactions
to a level that satisfies the team’s understanding of all the relationships among the
elements.

It is important to note that the format of the DFD and the threat model report that
contains it is critical. If all of your organization’s teams follow the same format, it will
become easier to locate information in distinct threat models, and for members of
your security team to quickly absorb this information when working with multiple
development teams. CTM highly encourages the use of the basic DFD symbology we
discussed in Chapter 1.

The Autodesk Continuous Threat Modeling Methodology | 143

https://github.com/izar/pytm

At this point, your team learns what to present in the DFDs. As we have stated many
times in this book, we have found that as a rule, threat modeling is a GIGO activity.

You will get outcomes as good as the quality of the information available to you and
your team. For this reason, CTM leans heavily toward having the DFD as well anno-
tated as possible. If adding all of this detail to the high-level DFD (Level-0) gets too
dense for readability, the team can break the diagram into separate, more detailed
DEFDs (Level-1).

The methodology also requires that your team provide additional characteristics that
would allow an external observer to obtain the minimum amount of information
needed to make educated observations about the security of your system. You should
also suggest a standard format for the report. If the attending security expert is not
always the same person, or is dealing with many products at the same time, having a
standard format allows them to quickly and effectively context switch. The sample
threat model in Appendix A reflects these points. Using a consistent format for the
threat model is also beneficial when team members move between teams, and when
there is an interest in data mining the threat models to extract useful data.

The following is a DFD checklist for CTM:

Provide a complete diagram of your system, including deployment.

Label each component in the system overview DFD (L0).

Label the direction of each data flow by using arrows (to/from/bidirectional).
Label the main actions that each arrow represents.

Label the protocol used for each data flow.

Label the trust boundaries and networks.

N D

Label the main types of data and how they flow through the application (control
flow) in the detailed DFD (L1).

8. Describe the personas who use the system (users, administrators, operators, etc.)
and show how data flow/access differs for each person.

9. Label each part of the authentication process.
10. Label each part of the authorization process.
11. Label the order of these actions numerically.

12. Label the “crown jewels,” or the most sensitive data. How is it handled? What is
the most critical application functionality?

144 | Chapter5: Continuous Threat Modeling

The format for findings should follow a set structure:

A unique identifier
This is how the finding will be identified throughout its life cycle.

A fully descriptive attack scenario
Many times, findings get interpreted in more than one way by different members
of the team. Specifying a full attack scenario makes it easier for the team to
understand whether everyone is referring to the same issue or whether more
than one issue is lying under a single finding. Having enough information helps
establish the impact and likelihood of the finding, as does (if necessary) breaking
the finding into several smaller ones.

Severity

While not, strictly speaking, a risk rating system, CVSS is a viable, although
sometimes imperfect, way to establish a ranking of findings. CVSS offers a simple
way to quickly establish an indication of severity for an issue that can give you an
apples-to-apples comparison of findings." It is not the best for all use cases, but it
is easy to use and descriptive enough, and it is used as a standard by enough
tools, to make it a useful and representative metric. Nothing in CTM mandates
the use of CVSS, and the team is free to adopt a metric that speaks to them, or is
more representative of risk than severity—but it is crucial that all threat model-
ing efforts in an organization use the same method, so that prioritization can
occur and so that discussions center around the same standards for finding
“importance.”

Mitigation
A proposed solution to the problem identified. Together with the potential-tm-
update and the ticketing system, this field creates a space where the final conclu-
sion about the finding can be recorded and consulted as necessary.

Baseline Analysis

As we’ve discussed, the first problem that CTM tries to address is security education.
The second problem is the need for a security expert who conducts the threat model
exercise to identify flaws. The question always comes back to how can the team iden-
tify those flaws independently, if team members do not have the expert knowledge
themselves?

Threat modeling trainers usually open with the line “think like a hacker!” This is as
useful as pushing an inexperienced cook into a kitchen and telling them to just think
like a Michelin-rated chef. Better order those pizzas, or everybody will starve. Asking

1 CVSSis discussed in more detail in Chapter 3.

The Autodesk Continuous Threat Modeling Methodology | 145

a person to do this is more than addressing a knowledge issue; it is a mindset shift
that not everyone will be able or ready to undertake: stop “coding to spec” and start
“coding/designing/testing to break.” It requests that people change their point of
view, which isn’t easy to do.

With that in mind, CTM nudges the team to think in terms of security flaws, but with
an approach of “have we done the right thing?” We think that leading your team in a
discussion of the security aspects of its design will bring out findings, while increas-
ing team members’ security knowledge. It does that by requiring the team to go over
a subject list that points out domains of security and examine a couple of leading
questions to begin the discussion (see Table 5-1).2

Table 5-1. Leading questions to begin the discussion

Subject Sample questions under that subject

Authentication

o « How do users and other actors in the system, including clients and servers, authenticate each other so
and authorization

that there is a guarantee against impersonation?

« Do all operations in the system require authorization, and are these given to only the level necessary,
and no more (for example, a user accessing a database has limited access to only those tables and
columns they really need access to)?

Access control)) -) .
« Is access granted in a role-based fashion? Are all access decisions relevant at the time access is

performed (token/permissions updated with state-changing actions; token/permissions checked
before access is granted)?

« Are all objects in the system subject to proper access control with the appropriate mechanisms (files,
web pages, resources, operations on resources, etc.)?

« Is access to sensitive data and secrets limited to only those who need it?

Trust boundaries | Can you clearly identify where the levels of trust change in your model?

« (an you map those to access control, authentication, and authorization?

Auditing « Are security-relevant operations being logged?

« Are logging best practices being followed: no Pl secrets are logged. Logging to a central location,
compatible with industry standards such as SIEM, RFC 5424 and 5427, and OWASP. Is AWS CloudTrail
being properly used?

Cryptography

« Are keys of a sufficient length, and algorithms in use known to be good (no collisions, no easy brute-
forcing, etc.)?

Are all implementations of crypto well tested and up to their latest known secure patch, and is there
no use of cryptography developed in house?

- (an cryptography be easily configured/updated to adapt to changes?

2 Autodesk Continuous Threat Modeling Handbook, https://oreil.ly/39UsH.

146 | Chapter5: Continuous Threat Modeling

https://oreil.ly/39UsH

Subject Sample questions under that subject

Defense of secrets

Injection

Data encryption in
transit and at rest

Data retention

Data
minimization and
privacy

Resiliency

Denial of service

Configuration
management

« What are the tokens, keys, credentials, secrets, etc. in your system?
How are they protected?

Are any secrets distributed with the application (hardcoded)?

Are well-established and tested systems being used to store secrets?

Are any secrets (APl or SSH keys, client secrets, AWS access keys, SSL private keys, chat client tokens,
etc.) stored unencrypted in repositories, document shares, container images, local storage in browser,
etc.?

Are secrets passed in through environmental variables as part of any build/deploy procedures?

Are secrets and sensitive data scrubbed from memory as soon as they are used, or is there a possibility
that they would be logged?
(an keys be easily rotated?

Are all inputs coming from outside the system being inspected for malformed or dangerous input?
(This is especially relevant to systems accepting data files; input that gets displayed as part of web
pages, binaries, or scripts, or input that gets directly incorporated into SQL queries; and systems that
embed interpreters of, among others, Lua, JavaScript, and LISP).

« Isall the important data in the system, the crown jewels, protected when it is transmitted between
parts of the system and when it is being stored—both from external and internal attackers?

- Together with the issue of data protection in transit and at rest, are we saving and retaining more
data than we need?
Is data being retained for the time and in the manner required by compliance requirements?

- If we are saving personal data, are we protecting it according to all needed standards and compliance
requirements?
Do we need to minimize and/or anonymize retained data?

Does the system depend on any single point of failure that could suffer a denial-of-service attack?
If the system is distributed among many service nodes, is it possible to isolate a part of them,
degrading the service but not interrupting it, in case of a localized security breach?

Does the system provide feedback controls (monitoring) to allow it to call for help as a denial of
service or system probing takes place?

« Consider multitenancy—can one tenant generate a computation or I/0 that would preclude other
tenants from working?
Consider storage—can one tenant fill up all storage and stop others from working?

« Is the system set up to be managed by a centralized configuration management tool and/or process,
with backed-up and protected configuration files?

The Autodesk Continuous Threat Modeling Methodology | 147

Subject

Third-party
libraries and
components

Hardening

Cloud services

Dev/stage/prod
practices

API

Sample questions under that subject

« Are all dependencies (both direct and transitive):

— Updated to mitigate all known vulnerabilities?

— Obtained from trusted sources (e.g., published by a well-known company or developer that
promptly addresses security issues) and verified as originating from the same trusted source?

Code-signing for libraries and installers is highly recommended—nhas code-signing been

implemented?

Does the installer validate checksums for components downloaded from external sources?

Is there an embedded browser (embedded Chromium, Electron framework, and/or Gecko)? If so,

please see the “API” entry at the end of this table.

Has the system design taken into consideration that the system must run in a hardened environment
(closed egress ports, limited file system permissions, etc.)?

Do the installer and application processes require only the minimum privileges needed to run? Do they
drop privileges whenever possible?

Are hardened images being used on cloud platforms?

Does the app load libraries only using absolute paths?

Was isolation of the service (containerization, limiting consumption of host resources, sandboxing)
considered in the system’s design?

Have the known best practices been followed in design and use of cloud services?

Role requirements and secure policies

Use of MFA where appropriate

A plan for API key rotation

Has root access (to your cloud provider management system) been correctly hardened, managed, and
configured?

Have permissions been tightened for each cloud service?

Is all back-channel (server-to-server, internal APIs) communication being routed internally via VPC
peering (i.e., back-channel traffic does not go over the public internet)?

Are the environments adequately protected?

For nonproduction testing environments (especially staging/integration), is test data sourced from
production? If so, is sensitive data (e.g., personally identifiable information or customer data)
scrubbed or masked before nonproduction use?

Is email functionality always tested using company-managed email accounts (i.e., not using public
email providers such as test@gmail.com)?

Are code reviews performed per commit, by a qualified person (no direct commits to release or main
branches)?

Is any security feature (login, encryption, object rights management) not covered by unit/function
tests?

Should you be looking into CORS if your API will be made available to browsers?
Are you using the right mode of authentication and authorization?
Are you considering impersonation? Injection?

It is important to note that this is a list of leading questions, not a checklist. The team
is not expected to simply answer each question and move forward; instead, team

148 | Chapter5: Continuous Threat Modeling

mailto:test@gmail.com

members should discuss the question and responses in the context of the system they
are building. The goal is to elicit thoughts on “what could possibly go wrong,” while
nudging developers to surface those issues that were not addressed in the past, if the
system is already in place—the security debt that was created when the focal need was
to get the system up and running.

This has proven to be the hardest part of introducing the methodology to teams,
making them overcome the feeling that they need to answer these questions and it
will be sufficient. It will not. The point here is to encourage exploration, but rather
than thinking, “What could be a spoofing problem in this system?” we ask, “Regard-
ing authentication, after you have taken into consideration these initial points here
where people have traditionally had problems, what else could you consider?”

Once the team applies the subject list to its system, and if a security expert is avail-
able, the team reviews all findings identified, and if needed, the expert will point the
team to further inquiry. The idea is that the expert provides more ideas, but not cri-
tique, such as, “Oh here, you forgot this.” This also allows the expert to identify areas
where the team needs more formal education; for example, team members did a good
job on authentication and authorization, but their logging or hardening approaches
need more depth.

Consider the Socratic method, whereby a teacher leads the students to realization by
using argumentative dialogue, rather than just expanding on a given point. It is
widely believed that this approach is more stimulating of critical thinking and helps
single out erroneous presuppositions. By “nudging” the team in a direction and lead-
ing a dialogue around a possibility, the security expert creates an opportunity for
directed learning that is more effective than just listing possibilities one by one and
checking whether they stick.

If an expert is not available, the team needs to exercise introspection. For example,
were there no findings because the system is good, or because the team did not dig
deep enough? In any case, the curator or the team leader should use any weak knowl-
edge areas (when the team asks, “What do they mean by ‘what is the key length of
your keys?” or “What is authorization?”) to provide further specialized training to
the team. Once that is done, you may want to initiate a smaller discussion of that spe-
cific subject area, limiting the effort to those areas that were lacking in depth.

The results of applying the subject list as a guide to the analysis are as follows:

« Findings based on the design of the system in regard to a given subject
« Learning opportunities for subjects if the team feels unable to dig deeper

o Certainty that the basics of secure system design were evaluated over the scope of
the system

The Autodesk Continuous Threat Modeling Methodology | 149

https://oreil.ly/x9_Jj

When Do You Know You Did Enough?

A common question in threat modeling is when to stop. When do you know you
have examined enough, thought enough, and thrown enough questioning against
your system that you can consider the task done? It is quite the personal question.
We have repeatedly awoke in the middle of the night with a eureka moment, as we
realize we didn’t ask that question, or didn’t consider that vector quite the right way.
We are always aware that we may be forgetting something important. You don’t need
to be paranoid to threat model effectively. But it helps.

In CTM, the answer to the question is made easier because the threat model is by def-
inition evolutionary, and several opportunities remain for further inquiry. But day-
to-day guidelines are needed, and after much thought and trial-and-error, you should
consider a threat model complete when the following criteria are met:

o All of the relevant diagrams are in the document.

» You documented the background information and findings in the agreed format,
in the development team’s tracking system of choice.

A versioned copy of the threat model is stored in a central, access-controlled
location shared by the product team and the security team.

In the event a security team or security expert is not available for reviews, we suggest
that you choose a security-minded team member as the security “devil’s advocate”
who will question the security assumptions made in the threat model, poking holes in
any argument made toward finding mitigation. This way, at least, you will have
assurance that you thoroughly examined any weak areas.

If a security team or expert is ready to provide assistance, they should act in an edu-
cation and mentorship role, trying to elevate the product team’s security posture
rather than question it. You can do this by providing constructive criticism of the
team’s performance during the threat model, by pointing out unique and potentially
product-oriented subject areas for further exploration, and by making sure that the
development team examines all the crucial areas like authentication and authoriza-
tion, cryptography, and data protection.

Threat Model Every Story

So, hopefully, the baseline and the initial analysis solve the problem of figuring out
the state of the system and what you must fix right now. But how do you solve the
issue of the system progressing and the threat model falling behind? How do you pre-
vent the need to perform the same extensive baselining exercise at the end of another
development cycle?

150 | Chapter5: Continuous Threat Modeling

No matter how you look at it, only one element is responsible for getting bugs into
the system, and that’s the coder. Ultimately, the coder is the one who makes decisions
about which parameters to use, which order of operations a given flow will take,
where things go, and who can do what in the system. This means that if you want to
solve at least some of these issues, they have to be addressed at the developer level.

So how do you apply the solution framework of the subject list at the developer level
in a way that both respects the scope of a developer’s work and takes into considera-
tion that now only one mind is focusing on many aspects of the same issue, and not
the whole team trading information on already established facts? In other words, how
can CTM reduce the subject list into actionable items that any overtaxed developer
could immediately use? CTM’s response is the Secure Developer Checklist.

The use of checklists is not novel. As physicians and nurses started using checklists,
hospitals saw significant drops in surgery errors and infections.® Pilots have been
using them since before the first wheels-up landing. You can find checklists in so
many aspects of daily life that today most people barely recognize them as the
mnemonic devices they are.

Most of these checklists specify conditions to configure in order to achieve a target
state. For example, let’s take a look at the “Before Starting Engine” checklist of a
Cessna 152 aircraft:*

The “Before Starting Engine” checklist is as follows:

Preflight inspection complete

Seats adjusted and locked in position

Seat belts and shoulder harnesses fastened
Fuel shutoff valve on

Radios and electrical equipment off

Brakes test and hold

AR A

Phrases like “fuel shutoff valve on” describe a target state (“valve on”) that the pilot
must set, which is independent of the previous state. The important point here is that
no matter in which state the aircraft was left in the past, before starting the engine,
the pilot must turn the shutoff valve on. Otherwise, the pilot does not continue to the
next step in the checklist. This is also a basic example—imagine the pre-engine start
list of something incredibly complex, such as the space shuttle? It is huge!®

3 Atul Gawande, The Checklist Manifesto: How to Get Things Right (New York: Picador, 2010).
4 “Cessna 152 Checklist,” FirstFlight Learning Systems Inc., https://oreil.ly/ATr_k.

5 “STS-135 Flight Data Files,” Johnson Space Center, NASA, https://oreil.ly/tczMp.

The Autodesk Continuous Threat Modeling Methodology | 151

https://oreil.ly/ATr_k
https://oreil.ly/tczMp

The fact is, when things can go catastrophically wrong, a checklist with all the right
states in the right order is invaluable. On the other hand, in an activity like systems
development, the number of possible states is enormous, and creating a checklist for
every environment is impossible. CTM just can’t give developers a step-by-step list
that will cover all situations. It needs a different mechanism.

For that reason, the Secure Developer Checklist adopted a different approach, which
is known as the If-This-Then-That format. In this mode, the checklist doesn’t contain
step-by-step instructions, but rather call-out and response ones. The idea is that the
developer will be able to easily recognize the “if this” side and follow up with the
“then that” action that is appropriate.

The Secure Developer Checklist is also purposely short and concise. It doesn’t aim to
be a handbook or a guide to each one of the “then that” clauses, but a memory
refresher that points the developer in the right direction to more information.

The ultimate objective of the checklist is somewhat counterintuitive. Ultimately, it
must be dropped. Unused. Left alone.

Going back to the earlier training rant, one of the most egregious mistakes in security
training is that it doesn’t try to create a muscle memory mechanism in trainees.
There is an underlying assumption that by giving them massive amounts of informa-
tion and multiple-choice questions, they will be able to remember it and correctly
apply it in when needed. That simply doesn’t happen. Developers learn their craft by
developing a toolbox of algorithms, code snippets, and system configurations that
they understand and know when and how to apply. In every facet of their work, they
begin at the novice level, collect experience as journeymen, and eventually, after
enough application of the basics, become experts. But for some reason, security is
expected to be the exception to the rule, and they need to come out of their Object
Oriented Language of the Day 401, “Inner Workings of Object Introspection for
Security,” one-hour seminar with a complete understanding of how and when to use
the techniques presented.

So, we hope that you use the checklist over and over, until you develop that muscle
memory that leads you (and your team!) to not need the checklist anymore. At that
time, you can stop using the checklist altogether, or it can be substituted for a check-
list more suited to a given stack or technology, but still following the same format.

The following is an excerpt of the Autodesk Secure Developer ChecKklist; refer to the
most current version (see Table 5-2).

152 | Chapter5: Continuous Threat Modeling

https://oreil.ly/BYTus

Table 5-2. Excerpt from the Autodesk Secure Developer Checklist

If you did this... ...then do that
...ad.ded . « Protect with authentication. You must make sure that all new functionality is protected with
functionality that - . A .) o)

S authentication. Validate that an individual, entity, or server is who it claims to be by using strong
changes sensitive

authentication mechanisms like SAML, or OAuth.

- Protect with authorization. Authorization enforces the permissions/authority a person has on an entity
or operation.

« You must make sure that you exercise least privilege access-control policies on all new functionality.
You may design for coarse-grained authorization, but keep the design flexible for fine-grained
authorization.

« Make sure secrets are not in clear text. A secret is only as good as its protection. When using
passwords or cryptographic keys, it is important to keep them protected at all times. Try to minimize
the amount of time they are available in memory by scrubbing variables right after use. Do not use
hardcoded secrets under any circumstances.

« Exercise least privilege. When deciding the level of privilege needed by a process or service, keep in
mind that it should be only as much as that process or service needs. For example, if you are only
querying a database, the credentials should not be the ones of a user who can write to the database.
A process that does not need elevated (root or Administrator) privileges should not be running as root
or Administrator.

« Account for all vectors for client bypass. Any logic used on the client side of the application is an easy
target for attack. Ensure that client-side controls cannot be bypassed by skipping steps of the
application, submitting incorrect values, etc.

properties or
objects in the
system

...Created a new

« Exercise least privilege. When deciding the level of privilege needed by a process or service, keep in
process or actor

mind that it should be only as much as that process or service needs. For example, if you are only
querying a database, the credentials you are using should not be owned by a user who can write to
the database. A process that does not need elevated (root or Administrator) privileges should not be
running as root or Administrator.

« Make sure credentials are securely stored. Store user credentials as a salted and hashed value in a
database. Ensure that a strong hash algorithm and sufficiently random salt is used.

- Exercise appropriate hardening. Harden your system or component (commercial, open source, or
inherited from another team) by reqularly patching, installing updates, minimizing attack surface, and
practicing the principle of least privilege. Minimize the attack surface by reducing the number of entry
points into the system. Turn off features, services, and access that is not strictly necessary. Practice the
principle of least privilege by providing the lowest amount of access and permissions necessary for a
role’s function. Audit each of these controls to ensure compliance.

The Autodesk Continuous Threat Modeling Methodology | 153

If you did this... ...then do that

...used

« Make sure you used a toolkit approved by the organization. When including outside content (libraries,
cryptography

toolkits, widgets, etc.), it is important to verify that these have been vetted for security issues.

« Make sure you don’t write your own crypto. Writing your own crypto can introduce new flaws, and a
custom algorithm may not have the necessary strength to protect against attack. Ensure that you are
using an industry standard cryptographic algorithm in the correct way, for the correct purpose. See the
OWASP Cryptographic Storage checklist for further details.

« Make sure you have the right algorithm and key size. Use an up-to-date industry standard
cryptographic algorithm and key size correctly. See OWASP Cryptographic Storage checklist for details.

« Make sure any secrets are correctly stored. A secret is only as good as how it is protected. When using
passwords or cryptographic keys, it is important to keep them protected at all times. Try to minimize
the amount of time they are available in memory by scrubbing variables right after use. Do not use
hardcoded secrets under any circumstances. Follow industry best practices for key and secret
management.

« Verify there are no hardwired keys or secrets that cannot be user-defined. Do not hardcode any keys.
Keep keys out of code, repos, team, and personal notes, and other plain-text storage. Ensure that keys
are properly stored in a password manager or as a salted and hashed value in a database.

...added an
embedded
component

« Exercise appropriate hardening. Every embedded component must be hardened. As part of your
hardening effort, you must:

1. Minimize the attack surface. Reduce the number of entry points into the system. Turn off features,
services, and access that is not specifically necessary.

2. When choosing a third-party component (commercial, open source, or inherited from another
team), become aware of its security requirements, configuration, and implications. Contact your
security team if you need help hardening a component.

« Consider a component threat model. When you use a third-party component, you also inherit the
risks/vulnerabilities associated with it, making it necessary to perform a threat model on third-party
components you want to use. Identify all the data flows to and from the third-party component in
your application and use the Autodesk Threat Modeling Handbook to generate threats.

« Some examples of things to look for when threat modeling a third-party component:

1. Make sure that the third-party component is not given more privileges than needed in the
application.

2. Make sure that you don't have unnecessary features (like debugging services) enabled in the third-
party component.

3. Make sure you followed any existing security and hardening guidance for the component.

4. Make sure you chose restrictive defaults for the component’s configuration.

5. Document the role of the component in the security of your complete system.

« Once the threats are identified for the third-party component, make sure to address them accordingly,

based on the risk/severity of those threats. Don’t ship your product if it has unaddressed critical or
high vulnerabilities in your third-party components.

« Add to the component inventory. Add the new embedded component to the inventory to monitor it
for updates and patches. This inventory must be kept up-to-date as a living document that can be
accessed quickly and easily during a security event.

154 | Chapter5: Continuous Threat Modeling

https://oreil.ly/Tk6Rh

If you did this... ...then do that

... received
uncontrolled
input from an
untrusted source

« Verify and limit the size of input. Verify the size of input (bounds checking), as failure to do so may
cause memory issues such as buffer overflows and injection attacks, etc. Failure to verify and limit
input size results in data being written past allocated space and overwriting contents of the stack/
heap. Implement input validation close to use (not just on the GUI!) to prevent malformed/
unexpected input.

« Assume all input is malicious and protect accordingly. Treat all input as malicious. At a minimum,
validate input and sanitize output before performing actions with it. This improves the overall security
posture of your application. Use a known-good approach as opposed to a known-bad approach when
validating input.

« Always perform input validation server-side, even if the input is validated client-side, because client-
side input validation can be easily bypassed.

« Consider encoding the input before it's output. When user input is appended to the response and is
displayed on the web page, context-sensitive encoding of the output assists in the prevention of cross-
site scripting (XSS). The type and the context in which the encoding is done is just as important as
having encoding, as it is possible for XSS to manifest despite encoding, if it is done incorrectly. Read
more about context-sensitive encoding in this brilliant OWASP article.

« Consider storing input in encoded form: for example, URL-encoded nonalphanumeric characters. When
user input is appended to the response and is displayed on the web page, context-sensitive encoding
of the output assists in the prevention of XSS. The type and the context in which the encoding is done
is just as important as having encoding, as it is possible for XSS to occur despite encoding, if it is done
incorrectly. Read more about context-sensitive encoding in this brilliant OWASP Article.

« Consider where and how input will be used down the processing chain. If potentially malicious input
originating or passing through your application is being sent to downstream applications, and if the
downstream applications implicitly trust data received from your application, this could lead to their
compromise. To prevent this, make sure that you treat all input as malicious. Validate the input
accordingly and encode it before data is output to downstream applications.

« Ensure that input is not used as is when it comes from an untrusted source. Validate input before
performing actions with it. This improves the overall security posture of your application. Use a
known-good approach as opposed to a known-bad approach when validating input.

« Verify that any interpreters using the data know they’ll be using tainted data. Some languages, like

Perl and Ruby, are able to do taint checking. If the contents of a variable can be modified by an

external actor, it is marked as tainted and will not participate in security-sensitive operations without

an error. This functionality is also present in some SQL interpreters, and if you happen to be
developing your own parser/interpreter, we advise you to implement this functionality.

Notify QA with your parsing specification to create fuzz tests. Fuzz tests throw random data of various

sizes—over, under, and just right—to test the ways that parsers and other functions accepting user

input behave under edge conditions. If you created a function that accepts and “understands” user
input, make sure to communicate with your QA team so it can develop the corresponding tests
necessary to validate your parsing.

The Autodesk Continuous Threat Modeling Methodology | 155

https://oreil.ly/IDNRy
https://oreil.ly/e_RlA
https://oreil.ly/hfW-f
https://oreil.ly/hfW-f
https://oreil.ly/EHT1H
https://oreil.ly/6aFPx

If you did this... ...then do that

...added web (or
web-like, REST)
functionality

« Protect with authorization. Authorization enforces what permissions/authority a person has on an
entity or operation.

+ You must make sure that you exercise least-privilege access-control policies on every new
functionality. You may design for coarse-grained authorization, but keep the design flexible for fine-
grained authorization.

« Protect with authentication. You must make sure that every new functionality is protected with
authentication. Validate that an individual, entity, or server is who it claims to be by using strong
authentication mechanisms like SAML or OAuth.

- Validate use of tokens, headers, and cookies, as uncontrolled input from an untrusted source. Never
trust input that comes from the request headers, as this data can be manipulated by an attacker on
the client side. Treat this data as you would treat any other potentially malicious data, and apply the
steps as described under “received uncontrolled input from an untrusted source” item.

« Make correct use of TLS, checking certificates appropriately. Don't use outdated versions of TLS. Don't

use broken or obsolete ciphers for your TLS connection. Make sure you are using encryption keys of

sufficient size. Make sure that the certificate itself is valid and that the common name on the
certificate matches the domain presenting the certificate. Make sure the certificate presented is not
part of the certificate revocation list (CRL). This is not an exhaustive list of things to look for in TLS and
certificates. Read this brief article to get more information on how to get TLS right.

Use POST instead of GET to protect arguments to calls from exposure. Using POST to send sensitive

data in the body of the request is safer than sending the data as arguments in the URL of a GET

request. Even if you are using TLS, the URL itself will not be encrypted and might get stored in logs,
browsers, etc., thus revealing the sensitive information.

« Ensure the session can't be fixated. A fixated session is one that is manipulated in a way that changes
an identifier in order to escape the valid scope of a user and enter another. For example, if a given URL
accepts any session IDs, taken from query strings with no security validation, then an attacker can
send an email to a user with that URL and append their own crafted session_1id: http://badurl/?
session_id=foo. If the target is fooled into clicking into the URL and entering their (valid and
preexisting) credentials, the attacker can use the preset session ID foo to hijack the user’s session. For
that reason, provide defense-in-depth: use TLS to protect the whole session from interception, change
the session ID after initial login, provide different IDs for each request, invalidate past sessions after
logout, avoid exposing the session ID on the URL, and accept only session IDs generated by the server.

« Ensure secure storage and accessibility of secrets. A secret is only as good as its protection. When using
passwords or cryptographic keys, it is important to keep them protected at all times. Try to minimize
the time they are available in memory by scrubbing variables right after use. Do not use hardcoded
secrets under any circumstances. Follow industry best practices for key and secret management.

« Ensure high-quality randomness of identifiers. Use a sufficiently random value for all identifiers to
ensure that they are not easily predicted by an attacker. Use a cryptographically secure pseudo-
random number generator to produce a value with at least 256 bits of entropy for the identifier.

156 | Chapter5: Continuous Threat Modeling

https://oreil.ly/GvalS
http://badurl/?session_id=foo
http://badurl/?session_id=foo

If you did this... ...then do that

...transmitted
data over the
network

...created a
computationally
or storage-bound
process

...Created an
install or patching
capability

Ensure that data cannot be sniffed in transit. To protect data in transit, you must encrypt sensitive
data prior to moving and/or use encrypted connections like HTTPS/SSL/TLS to protect the data from
being sniffed in transit.

Ensure that data cannot be tampered in transit. Depending on your use case, you may use hashing,
MACs/HMAGs, or digital signatures to make sure that data integrity is maintained. Read this article for
more information.

Ensure that data cannot be replayed. You may use a timestamp or a nonce to compute a MAC/HMAC
of the data before transmitting it.

Ensure that the session cannot be hijacked. Make sure that the session ID has sufficient length and is
cryptographically random. Make sure that the session D itself is transmitted over TLS. Wherever
possible, set the Secure and HTTPOnly flags on the session cookie. Also make sure that you are not
vulnerable to session fixation. Read this OWASP article for more information.

Make sure you are not depending on the client to protect, authenticate, or authorize. A client runs in
an environment that is fully under control of the user, and so also in control of the attacker. If your
security controls rely on the client, they can be bypassed and expose sensitive data and functionality.
For example, it is not enough to verify a credential or security property on the browser using
JavaScript, given that an attacker would be able to modify it by multiple mechanisms; for example, by
using a proxy. The client should not be responsible for security decisions, but pass the relevant data to
the server and use that as their security decision. A proper solution offers client-side validation for
feedback purposes but server-side application of security controls.

Make sure you will not provoke a denial of service to other users/actors if the process goes haywire for
any reason. Implement the following best practices to avoid a DoS Service situation:

— Use a fault-tolerant design that enables a system/application to continue its intended operation in

case of failure.

— Prevent single point of failure. Avoid/limit CPU consuming operations.

— Keep queues short.

— Correctly manage memory, buffers, and input.

— Implement threading, concurrency, and asynchronicity so as to avoid operations that block while

waiting for completion of large tasks to proceed.

— Implement rate-limiting (controlling traffic to and from a server or component).

Make sure your installer is signed: An installer by definition contains binaries to be installed in the
target host and scripts that are responsible for that installation: creating directories and files with their
permissions, making changes to the registry, etc. Many times these installers run with elevated
privileges. Therefore, take extra care when validating to the user that the installer they are about to
execute is indeed the one that contains only trusted software.

Make sure your keys can be rotated. Encryption keys must be rotated periodically, so that if a key is
compromised, only a small amount of data is leaked. Support the ability to perform key rotation:

— Periodically, because of compliance requirements like SOC2 or the PCI-DSS, keys must be rotated

once per year.

— Based on an event, when access provided by a key needs to be revoked.

The Autodesk Continuous Threat Modeling Methodology | 157

https://oreil.ly/ce0LA
https://oreil.ly/6Nejw

If you did this... ...then do that

...created a CLI
or execute, a
system command
as part of a
process

« Assume all input is malicious. At a minimum, validate input and sanitize output before performing
actions with it. This improves the overall security posture of your application. Use a known-good
approach as opposed to a known-had approach when validating input. Always perform input
validation on the server side even if you are doing it on the client side because client-side input can be
easily bypassed.

« Make sure you cannot inject extraneous commands as arguments. When building queries and
commands that will be eval()uated or exec()uted by any kind of interpreter, parser, etc., you
must make sure that you are applying the correct validation, escaping and quoting to the input to
avoid injection issues. On the interpreter side, make sure you are using the safest version of the
available calls, and that (if such exists) you are letting the interpreter know that the incoming data is
tainted.

« Make sure you are not providing an elevation-of-privilege vector to an attacker (least privilege). When
deciding the amount of privilege needed by a process or service, keep in mind that it should be only as
much as that process or service needs. For example, if you are only querying a database, your
credentials should not be those of a user who can write to the database. A process that does not need
elevated (root or Administrator) privileges should not be running as root or Administrator.

« Make sure you are limiting the reach of the command to those operations and areas of the filesystem
you intend to (input validation and least privilege). If, for example, you are accepting an input to a
file-related operation, make sure you are verifying, close to execution (not on the GUI!) that the full
path you are trying to access is, indeed, in the area where you intend the user to be. Make sure strings
that modify the scope of the path, like “..” and leading “/” are accounted for. Consider links when
accessing a file or directory. Always use the canonical format of a path (and not relative paths) to
perform a command.

« Make sure the language mechanism you are using to execute commands does not have unsafe side
effects: A popular example is the yam1. Load () function in the PyYAML library. It allows an attacker
to supply Python code inside a YAML file, which then gets executed. Even though it is the right
function for the needed use, instead use yaml.safe_load(). This difference is noted in the
documentation, but many do not pay attention to it. This is why you need to be aware of side effects
of any function that reads, parses, and executes code inside your code. Examples are exec(),
eval(), any kind of Load(), pickle(), serialization and deserialization functions, etc. See this
resource for an in-depth analysis of this popular issue, but in a Ruby environment.

« Prefer using a well-established command execution library instead of creating a new one. Chances are
that if you try to roll your own command execution library, you may end up forgetting a specific and
obscure way of character quoting, black- and white- listing, or another way to manipulate input to
bypass filters. Give preference to an established, tried, and tested library that takes that responsibility
off your hands. At the same time, of course, make sure to choose a good library and keep an eye open
for any caveats, updates, and bug fixes for it.

158 | Chapter5: Continuous Threat Modeling

https://oreil.ly/ucz3u
https://oreil.ly/ucz3u
https://oreil.ly/LDX5i
https://oreil.ly/bK8Fw

If you did this... ...then do that

...added a
capability that
can destroy, alter
or invalidate
customer data
and/or system
resources

- Consider adding two-factor authentication as a barrier before executing the procedure. Two-factor
authentication is an out-of-band method of providing an additional layer of protection against an
attacker performing unauthorized actions. Two-factor authentication must be out-of-band and a
different method of authentication than the primary authentication method (something you know,
are, or have). For example, if you log in with a password (something you know) by using a browser, a
method of two-factor authentication could be using a hard token (something you have that is out of
band, as in, not online or on your computer) to get a random value.

« Make sure you cannot inject extraneous commands as arguments. When building queries and
commands that will be eval()uated or exec()uted by any kind of interpreter, parser, etc. you
MUST make sure that you are applying the correct validation, escaping and quoting to the input in
order to avoid injection issues. On the interpreter side, make sure you are using the safest version of
the available calls, and that (if such exists) you are letting the interpreter know that the incoming data
is tainted.

« Verify the operation is being logged with a timestamp and the identity of the requester. To track
malicious actions of an attacker, it is important to log both the identity of the person making changes
and the time of the change. In this way, if an attacker takes over an account, malicious actions can be
pinpointed by verifying activity with the owner of the account.

...added a log

entry « Make sure you are not logging sensitive information (passwords, IPs, cookies, etc.). It is tempting to

log as much information as possible in the case something goes wrong. But, in many cases this
approach may fall short of compliance targets like GDPR, and in some cases, this may expose sensitive
information like clear-text forms of passwords, sensitive cookie contents, etc. Make sure that you are
not collecting more data from your users than what is strictly necessary. Ensure that your logging is
not saving more than what is needed or for longer than necessary, especially when dealing with
personal and/or sensitive data.

- Strive to provide nonrepudiation capabilities to the logged messages. A security event is not a matter
of if, but when. To be ready for that event, we want to provide timely and detailed information to
anyone investigating issues. To do that, we need to assure them that whatever message they see in
the logs is not only correct but also appears in the log, only as a result of the operation on which it is
reporting. Verify that the logs cannot be modified by an unauthorized user (configuration), that they
are received in order, and that their source is clearly established. If possible, implement signed log
entries.

Several aspects of this checklist apart from the If-This-Then-That format need to be
clarified. First, you will notice the concise use of guidance language. There are refer-
ences to the more complex issues, but not a lot. This is so that you can get enough to
start looking into the issue, but not too much to be overwhelmed.

Second, the list is as concise as it can be (but, hopefully, not more than that!). It fits
on a two-sided page with a reasonable-sized font when you print it off GitHub. The
idea is that a developer will print the list and have it laying around (even though it
contains URLs...) and consult it without having to interrupt their workflow.

Third, the repetition of actions for items is intentional. Remember that repeated use
helps the developer create muscle memory, so it is advantageous to have each “this”
totally encapsulated, which avoids internal referrals and jumping up and down the
text. The developer has to be able to say “here’s what I did” and see the totality of
“here’s what I need to do now” even at the price of a few trees.

The Autodesk Continuous Threat Modeling Methodology | 159

Fourth, and finally, the overuse of the language “make sure” is intentional. How do
you “make sure” of something? By becoming acquainted with it in detail. If you are
not able to “make sure,” then you have doubts, and those need answering—either by
contacting a security expert or by embarking into research, or even by consulting a
colleague that may offer insight. The use of “make sure” is there as an incentive to
further research and communication: you're not sure until you make sure.

Once a developer picks up a story to implement, they should evaluate it with the
Secure Developer Checklist in mind. If the story has a security value—that is, it alters
the threat model in any way or has security implications outside the immediate vicin-
ity of the implementation (for example, it creates an output that another system will
consume and therefore a security contract needs to be worked out)—then the story
receives a potential-tm-update label, which the threat model curator will consider,
with the outcomes we described previously. If the security value is contained, the
developer implements the story securely, adding enough information to its ticket to
permit documentation. The documentation in the threat model focuses on “this story
brought up these threats, and here is how the team mitigated them.” This ensures
that the threat is not reevaluated next time the full threat model is visited, and that
there is enough information if it does to establish the effectiveness of the mitigation.

Over time, we have seen that developers start implementing their stories before they
look at the checklist. However, as they become familiar with the list, they refer to it
before implementing. This lets them take into account what they can do differently to
either eliminate or more fully mitigate any issues identified.®

To put this in numerical terms, when a developer first begins to implement stories
without looking at the checklist, they need additional time, which includes identifica-
tion of issues and corresponding remediation. Let’s call that T1. Once the developer
gets comfortable using the checklist before they begin development, they still need
time that includes analysis and remediation. Let’s call that T2. Because the developer
uses the checklist before development, T2 < T1, simply because repeatedly using the
checklist has enabled the developer to quickly see and identify issues, as well as to
code securely. Over time, T2 will shrink even further, giving you and your organiza-
tion a bigger delta, allowing them to prove the efficacy of continuous threat model-
ing. But, alas, the reality is that an ever-changing environment always has a learning
curve, and developers are continually pulled in different directions. T2 will shrink,
but possibly bounce back as technology changes and developers need to adapt.

6 Similar results have been reported by Brook S.E. Schoenfield when documenting his work at McAfee, opening
the threat models as a general knowledge tool available in the Agile stand-up room—so from his experience
and ours, we learn the importance of making findings available to developers.

160 | Chapter5: Continuous Threat Modeling

Findings from the Field

Currently A-CTM has been in use at Autodesk for about two years (as of late 2020),
and it is starting to be used outside Autodesk. The feedback, especially from the
application security community, has mostly been positive; any criticism has been
overwhelmingly constructive, and it directly improved the methodology along the
way.

In January 2020, Allison Schoenfield and Izar presented some initial results of the use
of A-CTM.” Schoenfield is continuously collecting information to measure and
enhance the methodology, but now you can examine some initial findings:

+ Development teams seem to embrace CTM to varying levels of enthusiasm,
mostly based on their corporate culture. Teams that have a more independent,
research-oriented culture seem to embrace a do-it-yourself effort, while teams
with a more regimented background sometimes feel a lack of guidance or are
overwhelmed by what’s perceived as a lack of guidance offered by the methodol-
ogy. For those teams, the presence and intervention of a security expert from the
central AppSec team is many times invaluable and hard to replace.

o The AppSec team has less involvement in the day-to-day execution and review
cycle of threat modeling, which reduces the burden on a small team to serve
many product teams. The yearly (or upon-major-features) review times had to be
adjusted accordingly. Given that Autodesk currently maintains more than 400
products, once all teams adopt A-CTM, there will be an ongoing need for
reviews. This queue has to be managed and kept running smoothly, which does
impose a certain workload on the team. The AppSec Team had to create review
guidelines and agree on them with the product teams. The AppSec team also
tabulated previous findings, looking for patterns pointing to areas and issues to
focus on, in case those did not appear in the subject list.

o The use of a standard for the resulting report of threat models further reduced
the workload on the App Sec team, since it enabled security engineers and archi-
tects to move reviews among one another with minimal investment in finding
the details needed to understand the system being reviewed; security engineers
and architects have a facilitated dialogue because everything is always in the same
place.

o Most product teams expressed satisfaction at the evolutionary character of the
system. Since they can have a continuous discussion over threats and findings
when they are identified at “the right time” in the system, they feel able to

7 Allison Schoenfield and Izar Tarandach, “Scaling Up Is Hard To Do—The Threat Modeling Cover,” You-
Tube, February 2020, https://oreil.ly/xobBx.

The Autodesk Continuous Threat Modeling Methodology | 161

https://oreil.ly/xobBx

respond to issues at an efficient pace and time, reducing the amount of security
issues that land and then remain on the backlog.

o+ Because of the evolutionary nature of the approach, missed flaws generate less
blame, and a more supportive educational approach instead (“Take the win or
learn!”).

Opverall, we feel that CTM is achieving the results it set out to. The methodology is by
no means perfect, but we look forward to your participation to make it better. We
want your input!

Summary

In this chapter, you saw how to promote threat modeling from a single-point-in-time
activity to a continuous one. It can be meshed into the fabric of development, in a
way that many organizations can adopt, from those using waterfall methodologies to
those more oriented to the Agile ones, and to teams that have a more independent
culture or a more regimented, solidified one. We showed you how to overcome the
initial speed bump of creating a “how things look like right now” threat model by cre-
ating a two-speed process, and then how to iterate over new additions to the system
(at whichever speed they happen!) in order to maintain the threat model fresh and
up-to-date with development.

Hopefully, you’ll be able to use this methodology in your own environment. Fork the
Autodesk repository and add your own modifications—and don’t forget to share it
with the threat modeling community!

162 | Chapter5: Continuous Threat Modeling

CHAPTER 6

Own Your Role as a Threat
Modeling Champion

You can’t make people listen to you. You can’t make them execute. That might be a tempo-
rary solution for a simple task. But to implement real change, to drive people to accomplish
something truly complex or difficult or dangerous—you can’t make people do those things.
You have to lead them.

—Jocko Willink

In this chapter, we provide answers to common questions, and approach angles and
details that didn’t fit in the previous chapters. We use a Q&A style to address some of
the questions we get on a daily basis. These questions come to us from all sides: the
development teams we work with, our immediate management or theirs; peers both
experienced and novice; and sometimes, ourselves. We hope they will give you some
more thinking points to address what it means to be a threat modeler, a security prac-
titioner, and a leader for change.

How Do | Get Leadership On-Board with Threat Modeling?

Q: Our team’s leadership is not fully on-board with the value of threat modeling.
They don’t see the benefit of having this capability or making the investment neces-
sary to build it out. Are there things that I (as the security champion or expert) can
do to help facilitate this conversation and gain their buy-in?

A: Remind them of what happens if they don’t. Leadership may not appreciate the
impact that threat modeling can have on the security and/or quality of your system.

You can try to use two main arguments that do not depend on “the experts said we
should” (which is an argument more in favor of spending additional money on con-
sultants than on gaining value). Try telling your leadership the following:

163

o The development team members will be more knowledgeable about the nooks
and crannies of the system if they do the analysis. This will shorten the time it
takes for them to modify it when the need arises, and will foster the rise of a cul-
ture of security.

o The exercise itself is an educational tool to sharpen the development team’s
approach to what a secure system is. Even if no flaws are discovered during the
exercise, they’ll have a heightened sense of secure development going forward.

If you can, use existing data about your own product to shore up your position:

» Does your system have defects that are the result of design flaws?
+ Were these flaws identified too late to address them?
« Did they cause impact to the customer or to the business?

o How much, in time or material, did it cost to fix them?

If you maintain a risk register or simply have a defect list, capture this cost and value
information to use to build your case for deploying this capability. If you are able to
demonstrate value in reducing problematic issues in the system, and show it can be
done in a way that minimizes the cost to address them (i.e., by employing the capabil-
ity early enough to outright avoid the problems in the first place), then leadership is
likely to back your proposal.

In addition, use cross-industry sources like SAFECode or the Building Security In
Maturity Model (BSIMM), for example. While these may fall under the category of
“the experts say we should,” SAFECode is a consortium, and BSIMM is a collection
of survey results from companies existing in distinct verticals, with both pointing to
supporting data that shows threat modeling as a practice is central to an effective
product security program. In this way, the “who said so” becomes the observed expe-
rience of well-regarded companies, and less an exercise of appeal to authority.

At the end of the day, point out that the overall result will lead to measurably more
secure products by creating a framework to identify and mitigate issues at design,
while generating security tests and documentation. That approach should be a strong
argument to an educated leadership.

164 | Chapter 6: Own Your Role as a Threat Modeling Champion

https://www.safecode.org
https://www.bsimm.com
https://www.bsimm.com

How Do | Overcome Resistance from the Rest of the
Product Team?

Q: Management thinks threat modeling is a great idea. They have been shown, and
understand, the value of performing this critical activity early in the life cycle. But I
am encountering resistance from my fellow product teammates. What can I do to
overcome this resistance?

A: First, you need to understand the source of their resistance. Talk to other develop-
ers and understand their pain points. It could be that they don’t feel that they have
the necessary experience; perhaps they are afraid of missing something important
and being blamed afterwards. Perhaps the methodology proposed doesn’t match
their overall development methodology. Or perhaps they are overwhelmed with
other requirements and feel they simply don’t have the time to address one more
requirement.

Act on three fronts:

Remove the blame
Threat modeling should be a blameless journey of exploration over a system’s
design. Nobody consciously makes a decision that leads to a flaw (unless they are
a “malicious insider,” of course). Doing this kind of work requires a “Take the
win, or learn” mindset.

Adapt the approach

You may hear some common complaints: “It is too heavy,” “It will slow us
down,” “We can write code or we can document the design; what will it be?” “We
don’t know enough about security,” etc., if the team is not enthusiastic about the
methodology used. See if you can identify a different methodology that the team
can find (or be persuaded to be) acceptable. Understand that no methodology
out there may fit your need as is. Don’t be afraid to start small and grow as the
practice gets better acceptance—remember how we mentioned the process
should be evolutionary? The process should also evolve as it is better accepted in
addition to the depth of analysis or “goodness” of the findings.

» «

Bring in the expert

Especially when doing a first threat model of an existing, possibly complex sys-
tem, the task is daunting by the sheer amount of possibilities. Having an expert
threat modeler consult or at least deliver a presentation or demonstration to the
team can make a huge difference in pointing them in the right direction. Remind
the team that the expert’s role is not to criticize the design, but to help make it
more robust, resilient, and secure by facilitating the conversation around the
design, and providing input and guidance to the team.

How Do | Overcome Resistance from the Rest of the Product Team? | 165

Remember, it is better to start small and have something in place than to go big and
lose the opportunity of adding the practice to the secure development life cycle in
your organization.

How Do We OQvercome the Sense of (or Actual) Failure at
Threat Modeling?

Q: The team is on-board, and management is supportive, but we feel like we are fail-
ing at threat modeling. How can we know if we are really failing or if this is just panic
or uncertainty setting in? What can we do in either case to be successful with
confidence?

A: If you have the backing of management and the team is on board, you already
have the basic ingredients to build a successful threat modeling practice. But we
acknowledge that this is by far not enough. Let’s start by defining what success means
in this context. Ask yourself a few questions, and think carefully about the answers:

Do you
Feel like you are able to create a system model with its critical aspects of your
system with all its major pieces in place?

Have the agreement of the team that the system model (aka the abstraction of the
system) corresponds to the actual system as designed or implemented?

Are you able to
Point out where the crown jewels—the important assets, resources, and data of
the system—live, and how they are protected from attack?

Identify single points of failure, external dependencies, and “things that seem out
of place™?

As shown in Figure 6-1, if your answer is “no” to any of the questions posed earlier,
then you are feeling failure even before your threat analysis takes place. Instead, you
should look more closely at how you approach the task of system modeling.

166 | Chapter 6: Own Your Role as a Threat Modeling Champion

‘ Start \
Model crltlcal Model matches| Y .| Found critical Identlﬁed Y So far
aspects? system? assets? d” stuff? so0 good!

| Modelma
"| needwork

Many times, collecting the information and getting everyone to agree that what you
have put into the system model represents of the actual system under consideration is
more difficult than identifying threats against it. Remember when we mentioned the
eureka moment, when you find out that the implementation doesn’t match the docu-
mented design? If this is the case, perhaps it is time to get the whole team together to
update the abstraction of the system, rather than continuing the threat modeling
exercise. Be careful to avoid making this about GIGO when discussing the root cause
of the challenges in your team at this point; confusion or incompleteness in the sys-
tem model is not the same as intentionally misleading or junk data. Build confidence
in the team performing this exercise by pointing out discrepancies and get the team
to collectively take action to identify where things went wrong, identify the necessary
changes in the model to eliminate the discrepancies, and proceed with confidence,
knowing that you have a solid, representative model to work from.

Figure 6-1. Ask yourself a few questions

If your answer is “yes” to the questions asked previously, then you are building effec-
tive system models, but the analysis of the abstractions to identify threats may be an
area of concern. Each team member should ask themselves, or collectively as a team,
the following:

1. Is the threat modeling exercise generating valid findings?

2. Are you learning anything from the information collected that you didn’t know
before about your system?

3. Are you able to correct any flaws already identified?

Again it bears saying—it is that important—threat modeling is an evolutionary pro-
cess (refer to Chapter 5 to see the idea in practice). Rather than aiming for boiling the
ocean and trying to get everything right the first time, especially for a team that is
new to the practice, you should adopt a methodology that permits periodic and

How Do We Overcome the Sense of (or Actual) Failure at Threat Modeling? | 167

constant bursts of evaluation and discovery, so that you are constantly learning and
identifying flaws.

If you are able to answer “yes” to this latest set of questions, you are not failing. You
are already extracting value from the process! If you still have a sense of failure, you
need to build confidence in your capabilities to achieve success.

Confidence here comes from experience and a feeling of value; recognize when the
team’s findings are impactful. Identify the feedback loop—has there been a reduction
in quality issues from the QA team? Has the security scanner picked up fewer find-
ings in the last run? Has there been a change in the number of submissions against
your bug bounty program? Take the data from downstream functions and relate
them to the results of the threat modeling exercise and be confident that the result
you are already achieving is having a meaningful impact on the overall health and
security of the system. Completeness is not necessary for success, so don’t be con-
cerned at this point with perfection.

When thinking about what might have gone wrong that led to the challenge with the
system model (i.e., abstraction), consider a few common areas where teams get trip-
ped up:

« Not having the right people attend the creation of the system abstraction results
in hearsay, misremembering, or misunderstanding of the design. Recheck who is
contributing to the model and either bring others with direct knowledge' of the
system design, or conduct interviews with people in the know to build firsthand
experience by attendees.

o Unclear or ambiguous requirements can lead to assumptions or confusion in
design—this would be an exception to the preceding “no GIGO” rule, and is
something you should look at closely. If the design team is not able to reach a
correct realization of the system because of confusion caused by the require-
ments, success is nearly impossible. But don’t shift or assign blame to the product
managers or other stakeholders who are responsible for the requirement defini-
tion; engineering, as a stakeholder in the requirement elicitation process, has a
responsibility to identify areas for improvement, and to support the creation of
requirements that can lead to correctness in the ultimate design. Use the “failure”
to achieve success in threat modeling as a way to identify quality rules for
requirements that will support designability in the future. Build confidence by
showing that the results of threat modeling can be leveraged upstream in addi-
tion to downstream in the life cycle.

1 Assuming, of course, those individuals are still available.

168 | Chapter 6: Own Your Role as a Threat Modeling Champion

o When dealing with third-party components, uncertainty or confusion around
capabilities in hardware or software may result in poor assumptions of capability
in the resulting system design. Ensure that the system abstraction has correct
information based on the features and constraints from the system components
that are involved. Identify weak points based on the abstraction details. Build
confidence by having team members share this knowledge back out to other
team members (such as the Quality or Build teams). If confusion exists at the
designer or developer level, other members of the project likely are confused, and
knowledge sharing is a good way to demonstrate competence and show value in
the activity that leads to the construction of the abstraction and information
about the system. It may also open lines of communication that will provide
additional information to the system-modeling participants and lead to more-
effective threat modeling exercises.

If you feel that despite doing everything noted here, your threat modeling is still fail-
ing to generate valid findings, then perhaps it is time to bring in an expert to jump-
start the process by educating the team on possible flaws and vulnerabilities that the
team may not currently be identifying. The expert may also help you institute a train-
ing program that focuses on fundamentals rather than formulas (for example, why
mixing externally provided data and SQL queries may be a bad idea rather than “use
an object-relational mapper (ORM).” This will enable your team to go deeper into
the system’s functionality and identify more tactical threats, as well as be able to
include security in design by adding middle layers that “do away” with whole classes
of threats. Your team will gain confidence in actions being valued; in some cases, the
value may not be purely security related, and that is OK.

How Should | Choose a Threat Modeling Methodology
from Many Similar Approaches?

Q: Among all the threat modeling methodologies explored, what is the common
thread? What are the absolute needs of a Threat Model that can be identified in most,
if not all, methodologies?

A: Have you ever met Tim Toady? He is more popularly known as TIMTOWTDY, or
to new acquaintances, “there is more than one way to do it"—a guiding maxim of the
Perl programming language. By now, you know it definitely applies to threat model-
ing, taking into consideration your environment, team, development methodology,
and other factors we have explored in the previous chapters. But as varied as the
options are, a set of common needs must be answered in order to end up with a
proper, useful, and representative threat model:

2 M. Hoyos, “What Is an ORM and Why You Should Use It,” Medium, December 2018, https://oreil.ly/qWtbb.

How Should I Choose a Threat Modeling Methodology from Many Similar Approaches? | 169

https://oreil.ly/qWtbb

System modeling
The ability to translate the system into a descriptive representation that can be
manipulated as a function of the characteristics and attributes of each compo-
nent in the system

Risk identification
The ability to traverse the system model and identify the kinds of risks it is
under, and how they can be actualized as vulnerabilities

Risk classification and ranking
A formal approach to understanding which threat is more urgent than the other,
how so, and in which way they impact the system

Follow-up
A manner to reach the state where the threats identified are either solved or miti-
gated, or at least accepted as part of the risk appetite profile of the organization

Knowledge sharing
Every methodology by its nature facilitates communication among team mem-
bers and stakeholders that has an impact beyond the immediate security needs

Data collection on results
A feedback mechanism to measure the quality of the findings in relationship to
the effort to identify them; the average criticality of the findings; the areas and
subjects where they appear the most—in order to drive education and planning,
and ideally, mitigation by use of overarching secure design patterns, libraries,
and tools

If you are able to find or develop a methodology that works for your development
team and fulfills these objectives, you have found your way to do it. At the end of the
day, if you have useful findings (which apply to your system; are identified, classified,
and ranked; and mitigations have been identified), your team is learning and becom-
ing security-minded, and your system is being well represented and analyzed, then
you have fulfilled all the needs of threat modeling and reaped the benefits of a threat
model.

How Should | Deliver “the Bad News"?

Q: So I have a threat model and the findings it generated. How do I organize them for
presentation and follow-up? And what if I have to give everyone bad news?

A: Sometimes your threat model findings indicate that it is time to go back to the
drawing board and fix fundamental design flaws with the system. You can “soften the
blow” of bad news—negative results—with some basic recommendations:

170 | Chapter 6: Own Your Role as a Threat Modeling Champion

+ Maintain a clearly defined rating system that is understood by all stakeholders.

+ Build believable and achievable attack scenarios that enable a reader with limited
security background to understand how a flaw would be exploited in a
vulnerability.

« Present findings in terms that can be consumed by different levels of stakehold-
ers—management, QA, developers, and risk assessment professionals.

If appropriate for your audience, include a small business case describing the finding,
such as shown here:

Posing as an authenticated user, an attacker is able to inject malicious JavaScript code
in the Comments field of our product feedback pages. When other users (authentica-
ted or not) access these pages to read the posted feedback, that JavaScript code will run
in the context of their local browsers and be able to extract sensitive information like
session identifiers and in some extreme cases credentials.

The information could be written in a different way, with more technical lingo that
developers would immediately understand, such as, “you have a cross-site scripting
flaw in your Comments field.” That would be more concise, but would be lost to any
non-security-minded reader. In the same way, you could add the CVSSv3 score as a
measure of criticality (it is not, but for the purposes of this discussion, let’s roll with
the currently accepted industry standard) and add that the risk is “CVSS:3.0/AV:N/
AC:L/PR:N/ULR/S:U/C:H/I:N/A:N 6.5 Medium.” That might throw off a risk profes-
sional who is looking for a categorization of impact times likelihood.

Delivering bad news is never pleasant, but clear presentation can go a long way
toward promoting positive changes. Expose facts clearly, and include any assump-
tions that the finding may be relying upon, to make it easier for all the stakeholders to
understand the need for changes and fixes. Using the correct language and represen-
tation for each one of the target stakeholders will guarantee that there is no ambiguity
and that everyone has the data they need to drive their decision processes.

What Actions Should | Take for Accepted Findings?

Q: Once I have findings documented and ranked, it is time to establish a timeline for
remediation. How do I know what to fix and when, and how long do I have until it
needs to be fixed?

A: This will vary among organizations, and even among different environments; use
your organization’s risk-ranking system and risk-acceptance policy to address this
choice. Consider the example of a critical vulnerability in a web-based system with a
large number of users; this type of issue may be prioritized over a critical vulnerabil-
ity targeting a desktop client that cannot be reached from outside the local network
(because of the level of risk that differs from the two scenarios). The important thing

What Actions Should | Take for Accepted Findings? | 171

to keep in mind is consistency. For every given criticality rank, set a policy, or a
service-level objective, for the time allowed to address the issue. If you have an exter-
nal commitment to resolve defects within a certain time period (e.g., “every externally
reported critical vulnerability will be fixed in three business days”), use the same
period for internally identified vulnerabilities. Allow exceptions only in those cases
where they are truly necessary, lest you create a culture where “nonnegotiables” are
suddenly flexible.

Valid examples of exceptions could be a design flaw identified in the very core of an
application, which would necessitate major change to most components of the sys-
tem; in those cases, it might be necessary to indirectly mitigate the impact by adding
more “bumps in the road” to exploitation rather than stopping everything until the
flaw is corrected. Conversely, an example of an invalid exception would be “we don’t
have the time right now.” If you think time is short right now, imagine how much
more rushed things will be when the vulnerability gets popped, and you have to solve
things right now later. If you can make a valid case for the criticality of a particular
finding, it should be a corollary to extend that to the need to fix the finding inside of a
given time commitment. Otherwise, you are just creating documented security debt,
to be solved “at a later date.”

Treat findings as bugs, but maintain an extra layer of information. By keeping your
findings in a defect-tracking system, clearly labeled as originating from the threat
model, you’ll be able to keep a running history of their mitigation and also to look
back in time and extract enough information to better understand your performance
and that of your teams. Add metadata that helps you categorize the findings so you
can look for patterns. For example, if it turns out that most defects are labeled as
threat-model-sourced authorization issues, then perhaps it is time to slow down,
bring everyone to the table, and discuss the principles of authorization, and consider
committing to a design pattern that centralizes all authorization requests among all
parts of the system. This can lead to the establishment of a standard “this is how we
do authorization decisions for our product,” which then becomes a guideline for
development. New additions to the team receive that as an accepted standard, and
over time authorization issues will trickle down and disappear (or morph into differ-
ent authorization issues to be solved).

It is also important to consider that different roles will be interested in different views
of the same finding: quality assurance and developers will want as much detail as pos-
sible, while management may want only a running tab (hopefully declining!) of the
findings identified, and product owners and program managers may be more interes-
ted in the emerging patterns among the distinct findings. It is important to be able to
automate the production of these views as much as possible, by storing the details of
findings in a way that permits querying. And, of course—all of this data must be
behind strict access control.

172 | Chapter 6: Own Your Role as a Threat Modeling Champion

Did | Miss Something?

Q: Through penetration testing exercises, bug bounties, and real security incidents, I
keep finding things that are design-level issues—did I miss something during the
threat model?

A: Probably. And that’s OK. Threat models are far from the only source of findings.
Penetration testing, quality assurance that is focused on security issues, and (recently)
bug bounties are all sources of issues that necessitate the same ranking and mitiga-
tion. But there is always the question—if threat modeling is so great, why did it not
identify the problems that these other activities found, after they were already part of
the product?

There is a distinct difference between the threat model and its findings. A threat
model should not be a point-in-time activity; it is a living document that changes
with the system abstraction. Findings that are discovered by the threat model present
an opportunity for improvement. To facilitate communication and understanding of
the findings among versions and perhaps among different product teams, we recom-
mend you follow a consistent format that reduces the amount of effort when revisit-
ing the threat model, passing responsibility of threat models between people, and/or
when people move to other teams.

Most important, a complete threat model needs to be classified as sensitive and
treated accordingly after completed, since it contains practical blueprints about how
to attack the system.

Threat modeling as a process is evolutionary. Today’s threat model needs to be better
than yesterday’s, and tomorrow’s needs to be even better. For that to occur, team
members need to be constantly learning, and the findings after the threat model is
complete are a great source of new areas where the team needs to look harder when
threat modeling the next time. It is important to revisit your practice every few
months and try to identify those areas that need less attention (because the organiza-
tion has dealt with them appropriately, or at least learned how to) and new threat
areas that need more attention (either because they have been identified as weak
areas for the organization or because researchers have recently discovered them—or
because you previously thought they were out of scope, or part of the system’s secu-
rity debt, in earlier rounds of threat modeling).

Take the hit and learn; then go back to the beginning and start all over again.

Did | Miss Something? | 173

Summary and Closing

Our expectation is that these FAQs give you enough information and background to
help you lead relevant discussions with other stakeholders. And through those dis-
cussions, you can identify the most frequent impediments to starting a threat model-
ing practice, and can quickly deal with “but what about” questions.

We hope you have gotten some useful advice and suggestions while reading this
book. We close these pages with the feeling that if a text like this had been around
years ago when we embarked on our threat modeling journey, it would have helped
us. Other texts out there look at secure design and threat modeling with more
focused, deeper approaches to specific methodologies and design patterns, and we
wholeheartedly recommend that you use those texts.

We wish you an interesting and rewarding beginning, or continuation, of your threat
modeling journey. In the words of Adam Shostack: “The more I learn about threat
modeling,[...]”—we work with threat models constantly, write articles, publish
books, create methodologies, and present talks, and we are all still constantly learn-
ing. We look forward to your future contributions to the field.

Further Reading

Here are some prime recommendations for everyone interested in the field:

o Adam Shostack’s blog, “Adam Shostack & Friends”

o Securing Systems: Applied Security Architecture and Threat Models by Brook S.E.
Schoenfield (CRC Press)

o Threat Modeling: Designing for Security by Adam Shostack (Wiley)

The following are some methodology-specific recommendations for those with more
particular needs in their approaches:

o Designing Usable and Secure Software with IRIS and CAIRIS by Shamal Faily
(Springer)

o Risk Centric Threat Modeling: Process for Attack Simulations and Threat Analysis
by Tony UcedaVélez and Marco M. Morana (Wiley)

174 | Chapter 6: Own Your Role as a Threat Modeling Champion

https://oreil.ly/qEg2V
https://oreil.ly/n8axu

APPENDIX A
A Worked Example

We believe that we have given you a deep understanding of the process of threat
modeling from building a system model, eliciting information about the system, and
analyzing the abstraction for potential vulnerabilities and threats. Here, we walk you
through an example in order to solidify your understanding.

Since this is a static document that lacks the level of interactivity
threat modeling usually requires, the following process steps are
condensed to “set the stage” followed by “giving away the ending”
(no spoilers here!). From this approach, you should glean how you
might approach your own threat modeling exercise based on
whichever methodology you may choose.

High-Level Process Steps

As a reminder from Chapter 2, here are the high-level threat modeling steps that we
will follow in this sample:

1. Identify objects in the system under consideration.
2. Identify flows between those objects.

3. Identify assets of interest.

4. Determine the potential for impact on assets.

5. Identify threats.

6. Determine exploitability.

Following identification of threats would be filing defects, working out mitigations,
and coordinating with the system development teams to get mitigations in place; we

AWorked Example | 175

won’t go into these steps in this sample, as that is organization-specific and we are
not trying to change those aspects of your team (especially if those things work rea-
sonably well for you now).

Approaching Your First System Model

The basic process for modeling starts by identifying the major building blocks in the
system—these could be applications, servers, databases, data stores, or other things.
Then identify the connections to each major building block:

« Does the application support an API or a user interface?
o Does the server listen on any ports? If so, over what protocol?

o What talks to the database, and whatever communicates to it, does it only read
data, or does it write data too?

o How does the database control access?

Keep following threads of conversation and iterate through every entity at this con-
text layer in the system model until you have completed all necessary connections,
interfaces, protocols, and data streams.

Next, choose one of the entities—usually an application or server element—that may
contain additional details you need to uncover in order to identify areas for concern,
and break it down further. Focus on the entry and exit points to/from the application,
and the communication channels that carry data and other messages between the
component you are focusing on and other components or entities; be sure to identify
the protocols and type and sensitivity of data passed across the channels.

Update your system model with annotations based on the informa-
tion you identify during engagement with your team.

During your threat modeling exercise, you will need to leverage your judgment and
knowledge of security principles and technology to gather information to support
vulnerability and threat identification.

Before you begin, select a threat modeling methodology and define the symbol set
you intend to use if your selected methodology expects a graphical model. For this
sample exercise, we will use a data flow diagram (DFD) as our primary modeling
approach, and we’ll include the optional initiator mark; we will not use the optional
interface symbol or the trust boundary symbol in this example.

176 | Appendix A: A Worked Example

Leading a Threat Modeling Exercise

As the leader of the modeling exercise, make sure to include the right stakeholders.
Invite the lead architect, if one exists, to the session, as well as other designers and the
development lead(s). You should also consider inviting the QA lead. Encourage all
members of the project team to provide their input to the construction of the model,
although as a practical matter, we recommend keeping the attendee list to a managea-
ble set to maximize the time and attention of those who do attend.

If this is the first time you or your development team are creating a system model,
start slowly. Explain the goals or expected outcomes of the exercise to the team. You
should also indicate how long you expect the exercise to take, and the process that
you will follow, as well as your role in the exercise and the role of each stakeholder. In
the unlikely event that team members are not all familiar with each other, go around
the room (physically or virtually) to make introductions before you begin the session.

You should also decide who is responsible for any drawing required during the ses-
sion. We recommend you do the drawing yourself because it puts you in the center of
the conversation at all times and provides attendees an opportunity to focus on the
task at hand.

A few points are worth remembering as you explore the system:

Timing of the exercise is important
Too soon, and the design will not be formed sufficiently, and there will be a lot of
churn as designers with differing viewpoints challenge one another and take the
discussion off on tangents. Too late, and the design will be set, and any issues
identified during threat analysis may not be resolved in a timely fashion, making
your meeting a documentation exercise rather than an analysis for threats.

Different stakeholders will see things differently

We have found it common, especially as the attendee count increases, that stake-
holders are not always on the same page when it comes to how the system was
actually designed or implemented; you will need to be able to guide the conversa-
tion to identify the correct path for the design. You may also need to moderate
the discussion to avoid rabbit holes and circling conversation threads. Also be
wary of sidebar conversations as they provide an unnecessary and time-
consuming distraction. This also leads to eureka moments, where the expectation
from the design and the reality of the implementation clash, and the team is able
to identify those spots where constraints modified the initial design without
control.

AWorked Example | 177

Loose ends are OK

As we mentioned previously, while you may strive for perfection, be comfortable
with missing information. Just make sure to avoid or minimize knowingly incor-
rect information. It is better to have a data flow or element in the model that is
filled with question marks than it is to have everything complete but some
known inaccuracies. Garbage in, garbage out; in this case, the inaccuracies will
result in poor analysis, which may mean false findings, or worse, a lack of find-
ings in a potentially critical region of the system.

A Sample Exercise: Creating a System Model

For this sample exercise, we’ve chosen to demonstrate the process of a theoretical
industrial control system. Here is a basic description and simple details of the system,
from a product owner:

This system is an industrial control system for pressure relief valves; the product is
code-named Solar Flare. It consists of a device to control a valve, and a sensor to read
pressure levels in the pipe approaching the valve. This is a “smart” valve, so it takes
direction from the control plane to decide when to open the valve and how long to
keep it open. The valve and sensor communicate to the control plane, which is run-
ning on a cloud service we host in a public cloud provider, and which contains a data-
base for historical data trending and threshold settings and a device “shadow.” The
control plane exposes a device control protocol channel to the device for data collec-
tion and device command and control.

From this basic description, you probably have a couple of ideas as to where prob-
lems may exist, and probably many more questions you want to ask. Try to avoid div-
ing into “solution space” right away, and as part of facilitation of the modeling
exercise, stress that any questions that are asked are to gather more specific informa-
tion, not to make judgment calls at this point, although you may capture concerns in
preparation for later phases (i.e., in a “parking lot”). While you may see obvious areas
for concern, you should want (and to some extent need) the team you are working
with to want to be collaborative and open to get the best possible details from them to
describe this system.

As a guide for readers who may be unfamiliar with the acronyms used in this sample,
here are some quick definitions:

178 | Appendix A: A Worked Example

UART
Universal asynchronous receiver/transmitter

RS-232
A serial communication protocol

GPIO
General-purpose input/output

MQIT
Message Queuing Telemetry Transport

RTOS
Real-time operating system

Identifying Components, Flows, and Assets

At this point in the exercise, you have a basic description of the system—what it is,
what it should be doing, and what is in (and potentially what is not in) scope. The
next step is easy; all you have to do is interregate work with your team to understand
the specifics of the system and its components to build out the model and identify
assets worth protecting.

Since this exercise is noninteractive, we’ll save you the pressure and awkward conver-
sations and provide you the information you might have collected:

o This system contains the valve control device, a valve unit, a remote control ser-
vice, and a pressure sensor.

— The valve control device is called the Valve Controller and Sensor Array Unit.

— The device is connected to the sensor and valve units by serial communi-
cations via a UART, and GPIO lines, respectively.

— The device has IPv4 networking capabilities to a remote control service.

— The device initiates communications to the remote control service and to
the valve module, but communication for each is bidirectional.

— The private cloud-based remote control service has data analytics capabilities.

— The control service gets data from the Valve Controller and Sensor Array
Unit, and using this data makes a decision on when to open or close the
connected valve.

— The valve unit is a mechanical valve with an attached electronically controlled
pneumatic actuator.

— The sensor measures pressure in the pipe before the valve.

AWorked Example | 179

Based on this information, a drawing of the system components might look some-

thing like Figure A-1.
i

Control
+

Valve actuator
+

analytics

Sensor array services

Pressure

Figure A-1. Context drawing of system

Don’t worry if you are not an artist. No one will fault you for any
drawing when you find valuable security or privacy flaws. In our
experience, hand drawings help break the ice when meeting with
development teams.

Starting from the information collected previously, you will want to dive deeper into
the specifics of each component and flow to gain a refined understanding of the sys-
tem and its characteristics. You can do this with directed questions on the properties
of each entity you have within the system model. You should refer to Chapter 1 for
some questions you might ask for each type of object; also see the subject list in
Chapter 5 for more ideas.

180 | Appendix A: A Worked Example

Here is the information you might end up with after these follow-up conversations:

o The device uses an ARM processor and runs an RTOS and services written in C
for coordinating actions.

— Data messages to and control message from the remote service are over
MQTT (a common IoT message queue), and are handled by the Control
Proxy service.

— The Cloud Proxy service maintains a record of device state in a “shadow,” and
coordinates any changes locally and on the remote control service.

— The Sensor Reader service reads data from the sensor over a UART comm
line and updates the on-board shadow.

— The Valve Control service gets valve state over GPIO (in) and keeps the
device shadow up to date with this information. It also writes over GPIO (out)
to the valve to trigger an open or closed state. Finally, the service will trigger
the valve to open or closed based on a state change in the device shadow.

o The sensor is looking at pressure in the line ahead of the valve, measured in
pounds per square inch (psi); the data is sent to the valve actuator control device
via a serial (RS-232) line.

 The actuator can receive a signal to activate (open) the valve; the default state
when not receiving a signal is to deactivate (close) the valve.

— The actuator open/closed state is output over another set of GPIO lines,
which is then read by the Valve Control service on the device.

o The control service has two main functions—Shadow service and Decision Sup-
port service—and is written in Go.

— The Shadow service maintains a copy of the connected device state and can
collect data from the device over the MQTT channel, storing the data first in
the device shadow, then in the database, which is CockroachDB.

— The Decision Support service analyzes data in the database to determine when
to open or close the valve; it updates the device shadow with the device state
based on these calculations.

With this additional information about the components of the system, you might
have drawings as shown in Figures A-2 and A-3.

AWorked Example | 181

https://golang.org
https://oreil.ly/BybER

Valve actuator control device
GPIO (in))
Valve
GPIO (out) __J
C" Cloud Control
; oud [« ontro
Device shadow proxy = »| service
F N —
)
f’g;‘jg{ UART |51 | Sensor
| ———r
Figure A-2. Level 1 drawing of valve control device
Remote control service
Valve
Shadow : <
e Device shadow
A
A 4
Decision
service

Figure A-3. Level 1 drawing of remote control service

Lastly, you will need to identify assets of value and the security (or privacy) require-
ments that exist for the assets identified. Some of the assets in this sample system may
be obvious; others might be identified after conversation with the team.

Following are the assets of note for this sample system, and the security requirements
for each. Note that privacy is not a concern in this sample because of the nature of the
system (an industrial control application). Also note that the requirements are pre-
sented in semi-prioritized order, again based on the application’s purpose in this
sample:

182 | Appendix A: A Worked Example

Sensor data
Availability is crucial to the decision-making process, but integrity is important
as well; the sensor connection is physically verifiable.

Valve state data
Similar to sensor data.

Valve actuation signal
Availability is the critical property.

Device shadow
Data in the device shadow needs to be correct (integrity) and up-to-date
(available).

Device shadow data (in transit)
Data being transferred between the device and control service needs to be not
tampered with (integrity) and optionally confidential.

Analytics database
Data in the database needs to have integrity; because the database is in a public
cloud environment, it needs to be protected from being read by other tenants,
including the public cloud provider (confidentiality).

Valve control service
The service needs to operate correctly (integrity) and also in a timely way
(availability).

Sensor Reader service
The service needs to interpret the sensor data correctly (integrity).

Cloud proxy service
The service needs to operate correctly and communicate with the correct remote
control server (integrity, availability).

Shadow service
The service needs to operate correctly (integrity) and be available (availability).

Decision Support service
The service needs to operate correctly (integrity) and also in a timely manner
(availability).

Identifying System Weaknesses and Vulnerabilities

Using the information you have collected thus far, you now should be on the lookout
for potential areas of concern against the assets in your system. In particular, that
means looking for exploitable weaknesses that could impact one of the identified
assets (and one of the security requirements for each asset).

AWorked Example | 183

Here are some potential weaknesses for you to consider in this sample:

1.

Sensor data could be intercepted and modified, but this would require physical
access to the serial cable or connectors.

a. The sensor data format affords no integrity protection.

b. The sensor data communication line has no redundancy in the case of a
breakage.

c. The sensor does not authenticate to the device controller, but is physically
wired to the device controller so it can be visually inspected for authenticity
and for tampering.

. Valve state data could be intercepted and modified, but this would require physi-

cal access to the GPIO lines.
a. The valve state data format affords no integrity protection.

b. The valve state data communication line has no redundancy in the case of a
breakage.

¢. The valve module is not authenticated by the device controller, but is physi-
cally wired to the device controller so it can be visually inspected for authen-
ticity and for tampering.

. The valve actuation signal could be prevented from reaching the valve if the

GPIO line was severed (requires physical access to GPIO).

. The device shadow (device side) could be destroyed if power is lost to the con-

troller device.

a. The device shadow data is held in memory on the device controller under
control of a service written in a non-memory-safe language.

b. The device shadow is defined as a structure with fixed memory size.

. The analytics database is accessible to anyone with access to the cloud account.

a. The database does not support encryption for data.

b. The database is hosted on a storage node with built-in encryption.

6. The Valve Control service is given a high event priority.

7. The Sensor Reader service is given a high event priority.

8. The Cloud Proxy service could send device shadow data to the wrong cloud

service.
a. MQTT as a protocol has no protection for integrity or confidentiality.

b. The transport protocol is reliable.

184

| Appendix A: A Worked Example

Additionally, the MQTT data in transit could be intercepted and modified by anyone
with access to the network connection between the device controller and the cloud
service.

Reminder: for demonstration purposes, this is not a complete list
of all possible impacts to the system’s assets. Instead, we are trying
to give you a good representation of what you might discover and
show how to close out the threat modeling exercise.

Identifying Threats

Based on all the information you have identified from the system modeling exercise,
the following threats are revealed:

1. A malicious actor can spoof the remote control server to trick the valve actuator
control device into sending its data to a system under control of the adversary;
this requires being on the same subnet as the valve actuator control device, or
compromising or having access to the cloud account.

2. A malicious actor can spoof the remote control server to trick the valve actuator
control device into performing incorrect actions (e.g., opening the valve at the
incorrect time, or failing to open the valve at the correct time); this requires
being on the same subnet as the valve actuator control device, or compromising
or having access to the cloud account.

3. A malicious actor can prevent the pressure sensor data from reaching the valve
actuator control device or modify the reported values; this requires physical
access to the device or sensor.

4. A malicious actor can prevent the valve actuation signal from reaching the valve,
resulting in an unexpected change in the pressure before or after the valve.

5. A malicious actor can prevent valve state information from reaching the valve
actuator control device, potentially impacting how the Decision Support service
operates (resulting in future incorrect actions to open or close the valve).

Determining Exploitability

This list of five threats seem pretty serious, but which should be fixed first? Here is
where things get a little fuzzy. There is a difference between severity and risk. When
calculating exploitability, which is useful for prioritization of identified vulnerabilities
and threats, we can use a tool like the Common Vulnerability Scoring System (CVSS)
to generate a score. As a refresher, the following factors go into the CVSS score:

AWorked Example | 185

o AV: Attack vector

« AC: Attack complexity

« PR: Privileges required

o+ UL User interaction (required)
+ SC: Scope change

« C: Confidentiality

o I: Integrity

o A: Availability

Some of the threats have other qualitative-based severity values, which we will call
out when they occur.

Threats 1 and 2 involve a malicious actor spoofing the cloud service endpoint, which
is possible because of the MQTT channel not using a secure protocol. As with many
threats, there may be multiple ways to exploit the vulnerability and cause a negative
impact.

The CVSS v3.1 factors for one exploitation path of this threat—where the attacker
has a foothold on the local subnet of the valve actuator control device—are:

o AV: Adjacent network
o AC: Low

o PR: None

e UI: None

o SC: None

« C:High

« I: High

« A:High

The resulting CVSS v3.1 score, rating, and vector are 8.8/High (CVSS:3.1/AV:A/
AC:L/PR:N/ULN/S:U/C:H/I:H/A:H).

186 | Appendix A: A Worked Example

Alternatively, an attacker with account access can modify the entry point for the
remote control service to cause it to perform incorrectly (from the perspective of the
valve actuator control device at least). In this case, here are the factors:

e AV: Network
« AC: High

« PR: High

e UI: None

o SC: Yes

« C:High

. I: High

« A:High

The resulting CVSS v3.1 score, rating, and vector are 8.0/High (CVSS:3.1/AV:N/
AC:H/PR:H/UIL:N/S:C/C:H/I:H/A:H).

You should continue rating threats 3, 4, and 5 as an exercise on your own.

Wrapping Things Up

At this point in the threat modeling activity, you will have a good understanding of
the potential severity of the identified issues, and based on the characteristics of the
system under consideration, an estimation of risk could be performed. As you can
imagine, some of the threats will be easier and less costly to fix, or mitigate the impact
from, than others.

Adding mutual TLS to the MQTT communication channel will
mitigate threats 1 and 2, which are the most severe threats (when
using CVSS v3.1 to rate the severity).

AWorked Example | 187

APPENDIX B
The Threat Modeling Manifesto

Let’s begin by defining a subset in the security and privacy communities composed of
people with what we could call a “meta-interest” in threat modeling. These people
research methods in an academic setting, perform threat modeling as professionals in
companies or as consultants, speak on the subject at industry conferences, and evan-
gelize threat modeling regularly. These individuals believe and from experience know
that threat modeling is a worthy practice in developing more secure systems.

This collection of individuals is the threat modeling community. It has always been
vocal and prolific, but since 2017 it started seeing interest in threat modeling rise
among companies and product development teams. In 2019-2020, a feeling started to
permeate among the threat modeling community that it was time to cast off the com-
mon belief that threat modeling is an “art” practiced by a few experts and start con-
sidering it a discipline that can be taught (or, as Chris Romeo aptly puts it, “better
caught than taught”). Like other disciplines, threat modeling can be researched,
measured, explained, tested, improved, questioned, and discussed; all the processes
that make for a de facto discipline.

We have cited many members of the threat modeling community, and shared our
individual and collective experiences, to give you the background you need to move
forward. Throughout the book, we were careful to point out where our personal
beliefs and experience came into play.

In the middle of 2020 DC,' many well-known individuals in the threat modeling
community whom we came to know and respect as part of prior collaborations, came
together to create the Threat Modeling Manifesto. We are honored to be part of this
group and to be the first in print to share this resource and the background behind it.

1 “During COVID-19.”

The Threat Modeling Manifesto | 189

https://oreil.ly/4lVGI

Not by coincidence, you’ll recognize many of the values and principles as we have
discussed them in depth in this book.

Method and Purpose

These people wanted to put the house in order so that this demystification of threat
modeling could happen on a strong foundation. These individual authors collectively
have dozens of years of experience teaching, doing, and researching threat modeling.
We (the authors of the Manifesto, from here on, unless noted differently) found that
by taking inspiration from the successful previous experience of the Agile Manifesto,
we could perhaps distill that experience in a way that others would find valuable and
that would serve as a foundation for future improvement. In this way, the Threat
Modeling Manifesto is built in three parts:

1. A definition and scope
2. Threat modeling values

3. Threat modeling principles

Why start with a definition and scope? Don’t we all know what threat modeling is?
Well, we do. And now you do too. But...in the course of our initial discussions, it
became clear that at times we behaved like the blind men in the parable “The Blind
Men and an Elephant” (remember Chapter 3? It is a useful analogue!). While we all
“know” what threat modeling is, by virtue of our experience and individual
approaches, sometimes different aspects of it presented themselves as more impor-
tant, central, or defining than others. Some of us gave more centrality to eliciting
threats, others to creating realistic models, others yet to the meta-approach of how to
do the whole thing.

By converging (note we are not saying agreeing!) on a minimal definition we were
able to have a conversation around all these shared and individual opinions and
come down to the bare metal of what threat modeling actually may be. From there,
we were able to build.

The values appear in the format “We value x over y.” This is not to say that x is
intrinsically better than y, or that y should be avoided, always. It means that over the
period of our collected experience, we have observed that x usually brings better
results than y. At times y will be perfectly acceptable, and even z will surface as a dif-
ferent characteristic. But by and large, we have agreed that x is more desirable than y.
The principles aim to explain the values in light of the definition.

We (Matt and Izar!) are grateful to the other members of the Threat Modeling Mani-
festo group for this experience of collaboration, learning, and discussion. Without
further ado, we are proud to present the Threat Modeling Manifesto.

190 | Appendix B: The Threat Modeling Manifesto

https://agilemanifesto.org
https://oreil.ly/McFdH
https://oreil.ly/McFdH

The Threat Modeling Manifesto
What Is Threat Modeling?

Threat modeling is analyzing representations of a system to highlight concerns about
security and privacy characteristics. At the highest levels, when we threat model, we
ask four key questions:?

1. What are we working on?

2. What can go wrong?

3. What are we going to do about it?
4. Did we do a good enough job?

Why Threat Model?

When you perform threat modeling, you begin to recognize what can go wrong in a
system. It also allows you to pinpoint design and implementation issues that require
mitigation, whether it is early in or throughout the lifetime of the system. The output
of the threat model, which are known as threats, informs decisions that you might
make in subsequent design, development, testing, and post-deployment phases.

Who Should Threat Model?

You. Everyone. Anyone who is concerned about the privacy, safety, and security of
their system.

How Should I Use the Threat Modeling Manifesto?

Use the Manifesto as a guide to develop or refine a methodology that best fits your
needs. We believe that following the guidance in the Manifesto will result in more
effective and more productive threat modeling. In turn, this will help you to success-
fully develop more secure applications, systems, and organizations and protect them
from threats to your data and services. The Manifesto contains ideas, but is not a
how-to, and is methodology-agnostic.

The Threat Modeling Manifesto follows a similar format to that of the Agile Mani-
festo® by identifying the two following guidelines:

2 “Shostack’s 4 Question Frame for Threat Modeling” by Adam Shostack, a member of the Threat Modeling
Manifesto group.

3 The Manifesto for Agile Software Development created in 2001 identifies software development values and
principles, some of which align with this Threat Modeling Manifesto.

The Threat Modeling Manifesto | 191

https://oreil.ly/NlzOH

« Values: A value in threat modeling is something that has relative worth, merit, or
importance. That is, while there is value in the items on the right, we value the
items on the left more.

o Principles: A principle describes the fundamental truths of threat modeling.
There are three types of principles: (i) fundamental, primary, or general truths
that enable successful threat modeling, (ii) patterns that are highly recom-
mended, and (iii) anti-patterns that should be avoided.

Values

We have come to value:

o A culture of finding and fixing design issues over checkbox compliance.
« People and collaboration over processes, methodologies, and tools.

« A journey of understanding over a security or privacy snapshot.

« Doing threat modeling over talking about it.

« Continuous refinement over a single delivery.

Principles

We follow these principles:

o The best use of threat modeling is to improve the security and privacy of a sys-
tem through early and frequent analysis.

o Threat modeling must align with an organization’s development practices and
follow design changes in iterations that are each scoped to manageable portions
of the system.

o The outcomes of threat modeling are meaningful when they are of value to
stakeholders.

« Dialog is key to establishing the common understandings that lead to value,
while documents record those understandings, and enable measurement.

These patterns benefit threat modeling:

« Systematic Approach: Achieve thoroughness and reproducibility by applying
security and privacy knowledge in a structured manner.

+ Theory into Practice: Use successfully field-tested techniques aligned to local
needs, and that are informed by the latest thinking on the benefits and limits of
those techniques.

+ Informed Creativity: Allow for creativity by including both craft and science.

192 | Appendix B: The Threat Modeling Manifesto

o+ Varied Viewpoints: Assemble a diverse team with appropriate subject matter
experts and cross-functional collaboration.

o Useful Toolkit: Support your approach with tools that allow you to increase
your productivity, enhance your workflows, enable repeatability, and provide
measurability.

These anti-patterns inhibit threat modeling:

« Perfect Representation: It is better to create multiple threat modeling represen-
tations because there is no single ideal view, and additional representations may
illuminate different problems.

+ Hero Threat Modeler: Threat modeling does not depend on one’s innate ability
or unique mindset; everyone can and should do it.

o Admiration for the Problem: Go beyond just analyzing the problem; reach for
practical and relevant solutions.

+ Tendency to Overfocus: Do not lose sight of the big picture, as parts of a model
may be interdependent. Avoid exaggerating attention on adversaries, assets, or
techniques.

About

Our intention for the Threat Modeling Manifesto is to share a distilled version of our
collective threat modeling knowledge in a way that should inform, educate, and
inspire other practitioners to adopt threat modeling as well as improve security and
privacy during development.

We developed this Manifesto after years of experience thinking about, performing,
teaching, and developing the practice of, Threat Modeling. We have diverse back-
grounds as industry professionals, academics, authors, hands-on experts, and pre-
senters. We bring together varied perspectives on threat modeling. Our ongoing
conversations, which focus on the conditions and approaches that lead to the best
results in threat modeling, as well as how to correct when we fail, continue to shape
our ideas.

Authors
The working group of the Threat Modeling Manifesto consists of individuals with
years of experience threat modeling for security or privacy:

e Zoe Braiterman, @zbraiterman

o Adam Shostack, @adamshostack

« Jonathan Marcil, @jonathanmarcil

The Threat Modeling Manifesto | 193

o Stephen de Vries, @stephendv
o Irene Michlin, @IreneMichlin
« Kim Wuyts, @wuytski
o Robert Hurlbut, @RobertHurlbut
o Brook S.E. Schoenfield, @BrkSchoenfield
« Fraser Scott, @zeroXten
o Matthew Coles, @coles_matthew;j
o Chris Romeo, @edgeroute
o Alyssa Miller, @AlyssaM_InfoSec
e Izar Tarandach, @izar_t
 Avi Douglen, @sec_tigger
o Marc French, @appsecdude
The working group would like to thank Loren Kohnfelder and Sheila Kamath for

their technical edit review and expert feedback on the document content and
structure.

194 | Appendix B: The Threat Modeling Manifesto

A
A-CTM (see Autodesk Continuous Threat
Modeling)
access control
access-control schemes, xxxvi
authentication, xxxvi
separation of privilege, xl
ACME language specification, 101, 102
actors
attacker identification resources, 24, 40
attacker threats identified, 185
determining exploitability, 185
attacker-centric approach to threat model-
ing, 47
definition, xxx, Xxxv
identification for security, xxxv
authentication, xxxv
authorization, xxxvi
nonrepudiation in logging, xli
security basic concepts, xxviii
system modeling
data flow diagrams, 5, 8
sequence diagrams, 18
Advanced Encryption Standard (AES), 38
adversary, xxx
Agile development
about, 137
Agile Manifesto, 190, 191
threat modeling incorporated, xxv, 138
(see also continuous threat modeling)
Al and automated threat modeling, 134-135
Application Security Verification Standard
(ASVS), 128

Index

approach to threat modeling (see basics of
threat modeling)
Architecture Analysis & Design Language
(AADL), 101, 102
architecture description languages (ADLs), 101
Arous, Tony, 139
asset-centric approach, 47
attack surface, xxv
attack trees, 21-24
about, 3, 21
constructing, 22-24
goals and actions, 21
brainstorming for, 24
LINDDUN methodology, 78
catalog of privacy threat trees, 79
attacker-centric approach, 47
audit records as security control, xxxvii
authentication, xxxv
authorization
marker/checker separation of privilege, xI
security control, xxxvi
authorization context
external versus internal, xxix
least privilege, xxxviii
Autodesk Continuous Threat Modeling (A-
CTM)
about, 139
baseline, 143-145
about living documents, 140-141
baseline analysis, 145-149
Continuous Threat Modeling Handbook,
139
mission statement, 140
curators, 142

Index | 195

Secure Developer Checklist, 150-160
tickets for issues and changes, 142
when to stop, 150
automated threat modeling
about approaches to, 96, 116
ML and Al, 134-135
threat modeling from code
about, 97-97
how it works, 98
ThreatPlaybook, 100
Threatspec, 98-99
threat modeling with code
about, 96, 100
architecture description language, 102
data and data flows, 109-111
elements and collections, 104-107
graph and metadata analysis, 112-117
how it works, 101
model-based systems engineering, 101
ports, 107
pytm, 117-126
system design languages, 111-112
Threagile, 126-128
threat modeling with other tools, 128-135
why automate, 94-97
availability, xxxiv
Avhad, Pooja, 118

B
baselining for CTM, 143-149
basics of threat modeling
about threat modeling, xvii
about value of, ix, xviii
basic steps, 33-34, 175
cyclic activity, xviii, xxv
adapting approach, 165
evolutionary process, 139, 150, 167, 173
living document, 140-141, 173
system modeling, 29
design stage link, xxiv, xxvi
methodology selection, 169
(see also methodologies)
obstacles and obfuscations, xix
leadership brought on-board, 163
product team resistance, 165
reviewing system model, 34-35
what to look for, 35-39
security concepts, xxvii
(see also security)

security consultants
baseline, 144
baseline analysis, 145-149
constructive criticism from, 150
resistance from product team, 165
scalability challenge, 99
valuable mitigation, 46
warnings about, xx, xxiii
shifting left, xx
success defined, 166-169
system development life cycle, xxii
(see also system development life cycle)
system modeling as first step, 1, 176
(see also system modeling)
threat intelligence gathering, 40
open source sites, 24, 40, 68
worked example (see worked example)
Berryville Institute of Machine Learning, 135
Bhargav, Abhay
threat modeling in code, 97
ThreatPlaybook, 100
blind men parable, 190
brainstorming
attack tree goals and actions, 24
Elevation of Privilege + Privacy game, 87
Security and Privacy Threat Discovery
Cards, 89
Braiterman, Zoe
Threat Modeling Manifesto author, 193
Building Security in Maturity Model (BSIMM),
164
Burp Suite (PortSwigger), 100
business impact analysis report (BIAR), 59

C
CAIRIS threat modeling tool, 132
capability-based access control, xxxvi
CAPEC (Common Attack Pattern Enumera-
tion and Classification)
IriusRisk threat modeling tool, 128
PASTA methodology, 65
TARA methodology, 66, 68
CAPEC Mechanisms of Attack, 114
cause-and-effect diagrams, 4, 24-25
CBT (computer-based training), xix
checklist for continuous threat modeling,
150-160
CI/CD (continuous integration/continuous
development), xxv

196 | Index

CIA (confidentiality, integrity, availability)
LINDDUN methodology different, 76
TARA impact, 70

CIM (Common Information Model), 111

CIS Benchmarks, 60

CM (countermeasure) catalog, 68

Coles, Matthew J.

Threat Modeling Manifesto author, 194
collections in threat modeling with code,
104-105

Common Attack Pattern Enumeration and
Classification (see CAPEC)

Common Information Model (CIM), 111

Common Vulnerabilities and Exposures (see
CVE)

Common Weakness Enumeration (see CWE)

communication flows
data separated from data flows, 109
protocol segregation, 108

complete mediation, xxxvii

computer-based training (CBT), xix

confidentiality, xxxiv

context layer of DFD, 4

continuous threat modeling (CTM)
about, 138
about Autodesk CTM, 139

(see also Autodesk Continuous Threat
Modeling)
evolutionary threat models, 139, 150
known tools and processes, 118
why continuous threat modeling, 137

Continuous Threat Modeling Handbook
(Autodesk), 139

cross-site scripting (XSS) flaws, xxvi, xxxviii

cryptography incorrectly used, 38

CTM (see continuous threat modeling)

CTSA (see Cyber Threat Susceptibility Assess-
ment)

curators of continuous threat modeling, 142

CVE (Common Vulnerabilities and Exposures)
about, xxix
PASTA methodology, 63, 65
TARA methodology, 68

CVSS (Common Vulnerability Scoring System)
about, xxxi
exploitability, xxxi, 185
scoring factors, xxxi, 185

CWE (Common Weakness Enumeration)
about, xxviii

IriusRisk threat modeling tool, 128
machine learning systems, 135
mission assurance engineering, 68
PASTA methodology, 65
CWE Architectural Concepts list, 114
Cyber Risk Remediation Analysis (CRRA), 67
Cyber Threat Susceptibility Assessment
(CTSA), 66

D

data flow diagrams (see DFDs)
data flows
definition, 109
as edges, 109
ports, 107-109
elements exposing, 107
system modeling, 11-16
data flow diagrams, 9-16
security controls, 11
sequence diagrams, 18
threat modeling with code, 104, 109-111
data stores in system modeling
data flow diagrams, 8-9
database servers, 9
De Filippis, Dario, 88
de Vries, Stephen
Threat Modeling Manifesto author, 194
debugging
bad threat model findings, 170, 173
remediation actions, 171
CTM bug repository, 142
logging sensitive content, xli
traceability via logging, xxxvi
defense in depth, xxxviii
Deng, Mina, 75, 90
denial of service, 73
Denning, Tamara, 88
deployment
cost of issue resolution, xxiv
development overview, xxvii
design by contract security, xxxviii
design stage
about threat modeling link, xxiv, xxvi
Agile and CI/CD approaches, xxv
bad threat model findings, 170, 173
remediation actions, 171
cost of issue resolution, xxiv
design by contract security, xxxviii
programming language choices, xxvi, 6

Index | 197

security basic design patterns, xxxvii-xlii
built in, not bolted on, xlii
defense in depth, xxxviii
design by contract, xxxviii
fail safe, xli
fail secure, xli
human factor considered, xl
keeping things simple, xxxix
least privilege, xxxviii
logging effectively, xli
obscurity as security, x1
psychological acceptability, xI
separation of privilege, xI
zero trust, xxxvii
Designing Usable and Secure Software with
IRIS and CAIRIS (book; Faily), 132, 174
DEFDs (data flow diagrams), 4-16
about, 3, 4
annotations
block elements, 16
containers, 7
continuous threat modeling, 144
data flows, 11, 14, 15
data stores, 8
element shapes, 5-6
metadata in object properties, 103
SPARTA metadata, 81
block elements, 16
continuous threat modeling, 143
checklist, 144
conventions and extensions, 10, 15
data flow, 9-16
element shapes, 5-7
containers, 7
enhanced by port connection points, 102
external entity shapes, 7
actors, 5, 8
data stores, 8-9
fishbone diagrams supplementing, 25
layers of, 4
containers, 7
sequence diagrams supplementing, 16
simple symbology of OWASP Threat
Dragon, 130
discipline of threat modeling, 189
discretionary access control (DAC), xxxvi
Distributed Management Task Force (DMTF)
Common Information Model (CIM), 111
DistriNet Research Group, 75

documentation

development overview, xxvii

methodology of threat modeling, 44

obscurity as security, x1

parallel with other development, xxiii
Douglen, Avi

Threat Modeling Manifesto author, 194
DREAD (damage, reproducibility, exploitabil-

ity, affected users, discoverability), xxxii

E
Eddington, Michael, 71
edges as data flows, 109
education of product team
blameless journey of exploration, 165, 168
blind men parable, 190
continuous threat modeling, 138
baseline analysis, 145-149
leadership brought on-board, 163
resistance from product team, 165
security champions, 43
Socratic method, 149
system model gone wrong, 168
task of security professionals, xix
Threat Modeling Manifesto, 193
elements
about, 104
architecture description language, 102
collections, 104-105
data flow definition, 109
execution context, 104
ports exposed by, 107
properties, 105-107
relationships with other entities, 107
system, 104
trust boundary, 104
elements in threat modeling with code
ports exposed by, 107
elevation of privilege, 73
Elevation of Privilege + Privacy game (Vinko-
vits), 87
Elevation of Privilege game (Shostack), 86
encryption
incorrect use of, 38
logging and, xli
execution context, 104
exploitability
CVSS scoring, xxxi, 185
definition, xxix

198 | Index

security basic concepts, xxviii
worked example determining, 185

F

fail safe versus fail secure, xli

Faily, Shamal, 132, 174

FAIR (Factor Analysis of Information Risk)
about, xxxiii
SPARTA risk analysis, 83

FAQ (see questions commonly asked)

findings
bad news from, 170, 173
continuous threat modeling tickets, 142
development overview, xxiv
remediation actions, 171
threat model versus, 173

FIRST (Forum of Incident Response and Secu-
rity Teams), xxxi

fishbone diagrams, 4, 24-25

Forum of Incident Response and Security
Teams (FIRST), xxxi

four-question framework, 44, 191

French, Marc
Threat Modeling Manifesto author, 194

Friedman, Batya, 88

fuzzing, xxvi

G

Gadsden, Jon, 129

gamification
Adam Shostack’s curated list of games, 86
Elevation of Privilege, 86
Elevation of Privilege + Privacy, 87
LINDDUN GO, 90
OWASP Cornucopia game, 88
Security and Privacy Threat Discovery

Cards, 88

Garg, Praerit, 50

GDPR (General Data Protection Regulation),
99, 159

Goodwin, Mike, 129

grading parameters for methodologies, 48-49

graph and metadata analysis automated,
112-117

GraphQL, 100

guest accounts, Xxxv
authorization, xxxvi

H

healthcare threat modeling, 84
Heartbleed, xxvi
Hernan, Shawn, 56
Hey, Wilf, xviii
Howard, Michael, 56
human factor in security, x1
Hurlbut, Robert
Threat Modeling Manifesto author, 194
Hybrid Threat Modeling Methodology, 89

identification
actors, Xxxv
authentication, xxxv
authorization, xxxvi
guest accounts, XXxv
impact
CVSS impact subscore, xxxi, 70
definition, xxix
FAIR method of risk calculation, xxxiii
loss definition, xxx
PASTA impact analysis, 63
severity, Xxix
TARA
mapping TTPs and impact, 66
remediation to overcome, 70
Trike risk model, 74
INCLUDES NO DIRT methodology, 84
integrity, xxxiv
IriusRisk, 128
Ishikawa diagrams, 4, 24-25
ISO/IEC 27005:2018, xxxiii

J

Joosen, Wouter
LINDDUN GO game, 90
LINDDUN methodology, 75
SPARTA methodology, 80

K

Kamath, Sheila, 194

keeping things simple in security, xxxix
Kern, Christoph, xxvi, xxxviii
Kindervag, John, xxxviii

Kohnfelder, Loren, 50, 194

Kohno, Tadayoshi, 88

KU Leuven (Belgium)

Index |

199

LINDDUN methodology, 75
SPARTA methodology, 80

L
LAMP stack, xxi
language (see programming language)
Larcom, Brenda, 71, 74
leadership brought on-board, 163
least privilege, xxxviii
LINDDUN GO game, 90
LINDDUN methodology, 75-80
attack trees, 78
catalog of privacy threat trees, 79
LINDDUN GO game, 90
mapping threats into DFD elements, 77
misuse case, 79-80
privacy oriented, 75, 77
privacy-enhancing technology, 80
tutorials online, 75
living documents, 140-141, 173
logging
audit records, xxxvii
nonrepudiation, xli
security control, xxxvi
effective logging, xli
what not to log, xli
LogMeln, 87
loss definition, xxx

M

Maclver, Douglas, 57
MAE (mission assurance engineering), 68
mandatory access control (MAC), xxxvi
Manifesto (see Threat Modeling Manifesto)
Marcil, Jonathan
pytm, 118
Threat Modeling Manifesto author, 193
marker/checker separation of privilege, xI
MBSE (model-based systems engineering), 101
McGraw, Gary, 135
Mead, Nancy, 89
MEAN stack, xxi
Mellin, William D., xviii
metadata and graph analysis automated,
112-117
methodologies
about grading parameters, 48-49
about methodologies, 43
about methodologies presented, 49

Adam Shostack’s Four-Question Frame-
work, 44
approaches to threat modeling, 47
community feedback, 91
four-question framework, 191
Hybrid Threat Modeling, 89
INCLUDES NO DIRT, 84
keep trying, 45
LINDDUN, 75-80
PASTA, 57-65
resistance from product team, 165
resources, 174
security champions, 43
security experts to assist, 46
selecting among, 169
SPARTA, 80-84
stage of team and, 43
STRIDE, 50-55
STRIDE per Element, 55-57
STRIDE per Interaction, 57
TARA, 66-70
terminology difficulties, 46
Trike, 71-75
valid findings from threat model, 44
Michlin, Irene
Threat Modeling Manifesto author, 194
Microsoft
Authenticode, 106
Threat Modeling Tool, 57, 131, 135
Miller, Alyssa
Threat Modeling Manifesto author, 194
mission assurance engineering (MAE), 68
misuse case (MUC) in LINDDUN, 79-80
mitigation
CTSA of attack vectors and mitigations, 66
development overview, xxiv
LINDDUN privacy-enhancing technology,
80
PASTA risk and impact analysis, 63
security experts assisting, 46
STRIDE methodology, 53
TARA mitigation mapping, 67
worked example, 187
MITRE
ATT&CK framework, 24, 40, 68
Common Vulnerabilities and Exposures
(see CVE)
Common Weakness Enumeration (see
CWE)

200 | Index

TARA development, 66
ML and automated threat modeling, 134-135
Mobile Application Security Verification Stan-
dard (MASVS), 128
model-based systems engineering (MBSE), 101
modeling, 1
abstraction of system, 1, 2
system modeling as first step, 1, 176
(see also system modeling)
threat modeling basic steps, 33-34, 175
(see also basics of threat modeling)
MongoDB, 9, 100
Morana, Marco M., 57, 174
Mozilla SeaSponge, 133
MySQL, 9

N

National Vulnerability Database (NVD), 68
NCC Group, 135

nonrepudiation in logging, xli

npm-audit, 100

Nuraliyeva, Esmerelda, 139

0
Object Management Group (OMG)
Systems Modeling Language, 111
UML, 111
object-relational mapping (ORM), 54
obscurity as security, x
one-time programmable (OTP), 38
Open Security Summit, 118
Osterman, Larry, 57
OWASP
Application Security Verification Standard,
128
Cornucopia game, 88
Global AppSec DC, 118
Mobile Application Security Verification
Standard, 128
Threat Dragon, 129
Top Ten, 128
Zed Attack Proxy, 100
Ozmore, Nick, 118

P

PASTA methodology, 57-65
grading parameters, 65
process, 59

application decomposed, 61
attack enumeration, 62
business objectives defined, 59
risk and impact analysis, 63
technical scope defined, 60
threat analysis performed, 61
vulnerabilities detected, 62
RACI diagram, 64
terminology, 58
PCI-DSS (Payment Card Industry Data Secu-
rity Standard), 99, 110, 157
personally identifiable information (PII), xli,
110
PFDs (process flow diagrams), 19-20
Plan of St. Gall, 2
ports, 107-109
data flow definition, 109
elements exposing, 107, 107
PortSwigger Burp Suite, 100
Preneel, Bart, 75, 90
principles in threat modeling, 192-193
privacy
about, xxxiv
confidentiality versus, xxxiv
Elevation of Privilege + Privacy game, 87
LINDDUN methodology, 75, 77
LINDDUN GO game, 90
logging and, xli
process flow diagrams (PFDs), 3, 19-20
Process for Attack Simulation and Threat Anal-
ysis (see PASTA methodology)
programming language choices
automated threat modeling, 117
design stage, xxvi, 6
security concerns and, xxvi, 6
threats not manifested, 40
protected health information (PHI), 110
protocols and ports, 107
psychological acceptability, xI
pytm, 117-126
about, 117, 118
command-line switches and arguments, 121
continuous threat modeling, 143
diagram at speed of code, 123
download URL, 118
extension to symbology, 52
Python eval warning, 125
reporting template, 125
system description sample, 119-121

Index | 201

threat JSON structure, 124
threats revealed, 123

Q

questions commonly asked
bad threat model findings, 170, 173
failure looms, 166-169
further reading, 174
leadership brought on-board, 163
methodology selection, 169
product team resistance, 165
remediation actions, 171

R
RACI (responsible, accountable, consulted,
informed) diagram in PASTA, 64
RCE (remote code execution), 22
remediations, 171
resources
attacker identification and characterization,
24, 40, 68
author contact, xiv
Autodesk Secure Developer ChecKklist, 152
book web page, xv
Building Security in Maturity Model
(BSIMM), 164
CAPEC, 65, 66, 68
CAPEC Mechanisms of Attack, 114
community online, 91
Continuous Threat Modeling Handbook,
139
CVE, 63
CWE, 65, 68
CWE Architectural Concepts list, 114
further reading, 174
games running list online, 86
LINDDUN tutorials, 75
MITRE ATT&CK framework, 24, 40, 68
pytm, 118
Risk Centric Threat Modeling book, 57
SAFECode, 164
Threat Modeling Designing for Security
book, 57
ThreatPlaybook, 100
Threatspec, 98, 99
weakness taxonomy, xxviii
risk
calculating, xxx
DREAD, xxxii

FAIR method, xxxiii, 83

definition, xxx

PASTA risk analysis, 63

risk appetite, 24

risk register for leadership education, 164

security basic concepts, xxviii

security posture, xxv

severity versus, 185

SPARTA risk analysis, 83

Trike risk model, 74
Risk Centric Threat Modeling (book; UcedaVé-

lez and Morana), 57, 174
risk management and defense in depth, xxxix
risk-centric methodology PASTA, 58
Roberts, John, 139
Robot Framework Libraries, 100
role-based access control (RBAC), xxxvi
Romeo, Chris

threat modeling as discipline, 189

Threat Modeling Manifesto author, 194

S

SAFECode, 164

safety definition, xxxv

Saitta, Paul, 71

Saltzer, Jerome, xxxvii

scalability
automation needed for threat modeling, 112
evolutionary threat models, 139
methodology grading parameter, 48
security consultants challenging, 99

Scandariato, Riccardo, 75, 90

Schneider, Christian, 126

Schoenfield, Allison, 139, 161

Schoenfield, Brook S. E.
observing mutual distrust, xxxviii
security contracts, xxxix

Schoenfield, Brook S.E.
Secrets of a Cyber Security Architect book,

141
Securing Systems book, 174
STRIDE per Element warning, 56
STRIDE warning, 55
threat model report as living document,
140, 141

threat modeling during development, 160
Threat Modeling Manifesto author, 194
threat models up to date, 6

Schroeder, Michael, xxxvii

202 | Index

Scott, Fraser
threat modeling in code, 97
Threat Modeling Manifesto author, 194
Threatspec, 98
SD Elements, 129
SDLs (system design languages)
architecture description languages, 101
Common Information Model, 111
SysML, 111
UML, 111
Secrets of a Cyber Security Architect (book; B.
Schoenfield), 141
Secure Developer Checklist, 150-160
Securing Systems (book; B. Schoenfield), 174
security
basic concepts, xxvii-xxx
basic design patterns, xxxvii-xlii
champions representing, 43
(see also security champions)
consultants
baseline, 144
baseline analysis, 145-149
constructive criticism from, 150
resistance from product team, 165
scalability challenge, 99
valuable mitigation, 46
warnings about, xx, xxiii
controls for secure system, xxxv
core properties of, xxxiii
education as task, xix
baseline analysis, 145-149
blameless journey of exploration, 165,
168
continuous threat modeling, 138
leadership brought on-board, 163
security champions, 43
Socratic method, 149
system model gone wrong, 168
Threat Modeling Manifesto, 193
human factor, xl
programming language choices, xxvi, 6
risk calculations, xxx
DREAD, xxxii
FAIR method, xxxiii, 83
security debt, xxvi
severity calculations, xxx
CVSS, xxxi, 185
shifting left, xx
system modeling, 11

Security and Privacy Threat Discovery Cards
game, 88
security champions
bad threat model findings, 170, 173
failure looms, 166-169
leadership brought on-board, 163
methodology after appointment, 43
methodology selection, 169
product team resistance, 165
remediation actions, 171
Threat Modeling Manifesto, 193
(see also manifesto on threat modeling)
security posture, xxv
Security Toolbox, xvi
separation of privilege, xI
sequence diagrams, 16-19
about, 3, 16
constructing, 19
data flow diagrams supplemented with, 16
insecurities spotted, 39
severity
calculating, xxx
CVSS, xxxi, 185
definition, xxix
impact, xxix
risk versus, 185
Shambhuni, Rohit, 118, 139
shared accounts, xxxv
authorization, xxxvi
shifting left, xx
Shostack, Adam
attacker behavior, 24
blog URL, 174
Elevation of Privilege game, 86
four-question framework, 44, 191
games running list, 86
good threat model, 44
learning about threat modeling, 174
STRIDE as framework, 50
threat model report as living document, 140
Threat Modeling book, 57, 174
Threat Modeling Manifesto author, 193
Shull, Forrest, 89
simplicity in security, xxxix
Sions, Lauren, 80
Socratic method, 149
Sondhi, Reeny, 139
SPARTA methodology, 80-84
attacker personas, 83

Index | 203

DFD metadata enrichment, 81
real-time component, 84
risk analysis via FAIR, 83
threat identification method, 82
Srinivasan, Hemanth, 139
STRIDE methodology, 50-55
games
Elevation of Privilege, 86
Elevation of Privilege + Privacy, 87
grading parameters, 55
Microsoft Threat Modeling Tool, 131
OWASP Threat Dragon, 129
single issue in multiple elements, 55
Tutamen Threat Model Automator, 133
workflow, 53-54
STRIDE per Element methodology, 55-57
grading parameters, 56
threat models not additive, 56
STRIDE per Interaction methodology, 57
successful threat modeling, 166-169
SysML (Systems Modeling Language), 3, 111
system collection, 104
system design languages (see SDLs)
system development life cycle (SDLC)
about threat modeling in, xxii
acquisition phase and TARA, 66
Agile and CI/CD approaches, xxv
continuous threat modeling, 140-141
design stage (see design stage)
development overview, xxiii
documentation and deployment, xxvii
implementation and testing, xxvi
programming language choices, xxvi, 6
remediation actions, 171
Secure Developer Checklist, 150-160
system modeling
about, 1, 3, 102
about models, 2
abstraction of system, 2
about systems, xxviii
building system models, 26-30
approaching first model, 176
drawing the model, 30, 177, 180
guided exercise process, 27-30, 178-187
stakeholders involved, 27, 28, 30, 168,
177
training, 29
what can go wrong, 168
conventions and extensions, 10, 15, 52

data flows, 11-16
security controls, 11
good system model, 31-32
metadata, 103
port connection points, 102
successful threat modeling, 166
programming language choice, 6
threat modeling first step, 1, 176
reviewing the model, 34-40
types of system models
about modeling and analysis, 2
data flow diagrams, 3, 4-16, 16
fishbone diagrams, 4, 24-25
process flow diagrams, 3, 19-20
sequence diagrams, 3, 16-19
worked example of threat modeling
approaching first system model, 176
components identified, 179-183
creating a system model, 178-187
determining exploitability, 185
threats identified, 185
weaknesses identified, 183
system-centric approach, 47
Systems Engineering Methodology for Interdis-
ciplinary Teams (book; Wymore), 101

T
tactics, techniques, and procedures (see TTPs)
TARA (see Threat Assessment and Remedia-
tion Analysis)
Tarandach, Izar
Threat Modeling Manifesto author, 194
Threagile, 126-128
download URL, 126
YAML system description file, 126
Threat Assessment and Remediation Analysis
(TARA), 66-70
Cyber Risk Remediation Analysis, 67
Cyber Threat Susceptibility Assessment, 66
grading parameters, 70
key features, 68
risk scoring model, 68
threat catalogs, 67
threat catalogs, 67
threat event, xxx
loss definition, xxx
threat intelligence gathering
approach to threat modeling, 40
open source sites, 24, 40, 68

204 | Index

threat library-based methodology (see Threat
Assessment and Remediation Analysis)
threat modeling
about, xvii, 190-191
about value of, ix, xviii
automated (see automated threat modeling)
basics (see basics of threat modeling)
continuous (see continuous threat model-
ing)
design stage link, xxiv, xxvi
discipline of, 189
evolutionary process, 139, 150, 167, 173
failure looms, 166-169
FAQ (see questions commonly asked)
how to (see basics of threat modeling)
living document, 140-141, 173
(see also continuous threat modeling)
Manifesto (see Threat Modeling Manifesto)
methodologies (see methodologies)
online community, 91
success defined, 166-169
system modeling as first step, 1, 176
(see also system modeling)
threat catalogs, 67
worked example (see worked example)
Threat Modeling Manifesto
about, 189, 193
authors, 193
definition, 190-191
method and purpose, 190
principles in threat modeling, 192-193
scope, 190-191
use of, 191
values in threat modeling, 192
Threat Modeling: Designing for Security (book;
Shostack), 57, 174
ThreatModeler tool, 129
ThreatPlaybook, 100
threats
definition, xxx, 191
denial of service or elevation of privilege, 73
security basic concepts, xxviii
worked example identifying, 185
Threatspec, 98-99
TLS (Transport Layer Security)
security built in, xlii
system modeling data stores, 8
worked example mitigation, 187
TOCTOU (time-of-check time-of-use), 17

traceability via logging, xxxvi
Trail of Bits, 118
transiting trust boundaries, 38
tribal knowledge, xxvii
Trike methodology, 71-75
download URL, 72
grading parameters, 74
implementation model, 72
supporting versus intended actions, 72
requirements model, 71
risk model, 74
impact-ranked index, 74
threat model, 73
trust relationships
system modeling
data flow trust boundary, 13
pytm, 52
transiting trust boundaries, 38
trust boundary collection, 104
zero trust environment, Xxxvii
TTPs (tactics, techniques, and procedures)
acronym spelled out, 40
mapping with Cyber Threat Susceptibility
Assessment, 66
TARA key features, 68
TARA risk scoring model, 68
Tutamen Threat Model Automator, 133

U
UcedaVélez, Tony, 57, 174
UML (Unified Modeling Language)
automated threat modeling, 111
DEDs of CAIRIS, 132
Systems Modeling Language, 111
XML for data exchange, 112
system modeling, 3
sequence diagrams, 3,16
US CERT (United States Computer Emergency
Readiness Team), 63

v

values in threat modeling, 192

Van Landuyt, Dmitri, 80

Vinkovits, Mark, 87

Visual, Agile, Simple Threat (VAST) modeling,
129

vulnerabilities
definition, xxix
development overview, xxiv, xxvi

Index | 205

remediation actions, 171
security basic concepts, xxviii
severity, xxix

taxonomy of vulnerabilities, xxix
worked example identifying, 183
zero-day vulnerabilities, xxix

W
Was, Jan, 118
WASC (Web Application Security Consor-
tium), 128
waterfall methodology, xxiii
Agile and CI/CD instead, xxv
Watson, Colin, 88
we45, 100
weaknesses
definition, xxviii
security basic concepts, xxviii
severity, Xxix
taxonomy of weaknesses, xxviii
worked example identifying, 183
Web Application Security Consortium
(WASCQ), 128
WebAuthn (Web Authentication), xxiv
worked example of threat modeling
about the steps of threat modeling, 175
approaching first system model, 176
DFED symbols, 176
leading a threat modeling exercise
about leading, 177
creating a system model, 178-187

stakeholders involved, 177
methodology selection, 176
system modeling
approaching first, 176
components identified, 179-183
determining exploitability, 185
threats identified, 185
weaknesses identified, 183
Wuyts, Kim
LINDDUN GO game, 90
LINDDUN methodology, 75
Threat Modeling Manifesto author, 194
Wymore, A. Wayne, 101
Wynn, Jackson, 66

X

XML (Extensible Markup Language)
Microsoft Threat Modeling Tool rules, 131
UML and SysML data exchange, 112

XSS (cross-site scripting) flaws, xxvi, xxxviii

Y

YAML for Threagile system description, 126,
126

Yskout, Koen, 80

z

zero trust environment, xxxvii
zero-day vulnerabilities, xxix

206 | Index

About the Authors

Izar Tarandach is a senior security architect at Bridgewater Associates. Previously he
was lead product security architect at Autodesk and the security architect for enter-
prise hybrid cloud at Dell EMC, following a long stint in the Dell EMC Product Secu-
rity Office as a security advisor. He’s a core contributor to SAFECode and a founding
contributor to the IEEE Center for Security Design. Izar was an instructor in digital
forensics at Boston University and in secure development at the University of Ore-
gon.

Matthew Coles is a leader and security architect for product security programs in
companies such as EMC, Analog Devices, and Bose, where he applies his over 15
years of product security and systems engineering experience to build security into
the products and personalized experiences for customers worldwide. Matt has been
involved in community security initiatives including the CWE/SANS Top 25 list and
was an instructor in software security at Northeastern University.

Colophon

The animal on the cover of Threat Modeling is the red scorpionfish (Scorpaena
scrofa). This fish is found in the eastern Atlantic Ocean and the Mediterranean Sea.

The red scorpionfish can grow to a maximum length of 20 inches, and can reach a
maximum weight of almost seven pounds. Their coloring—which ranges from dark
red to pale pink, and shades of beige and white—helps them blend into their environ-
ment. They breed in the early summer months, and their eggs float to the surface to
hatch.

These fish have many envenomed defensive spines in their fins; a channel in the mid-
dle of the spine delivers the venom from glands at the base into the fish’s antagonist.
A nocturnal hunter, red scorpionfish at night swim along the sea floor, feeding on
other fish as well as crabs and mollusks.

Red scorpionfish are sought by commercial fishing trawlers. This fish is prized as an
ingredient in the traditional Provencal recipe for bouillabaisse (French recipes refer
to this fish as rascasse or scorpion de mer).

Despite commercial pressures, red scorpionfish are listed by the IUCN as being of
Least Concern. Many of the animals on O’Reilly covers are endangered; all of them
are important to the world.

The cover illustration by Karen Montgomery, based on a black and white engraving
from Wood’s Illustrated Natural History (1854). The cover fonts are Gilroy and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

O'REILLY"

There's much more
where this came from.

Experience books, videos, live online
training courses, and more from O'Reilly
and our 200+ partners—all in one place.

Learn more at oreillycom/online-learning

©2019 O'Reilly Media, Inc. O'Reilly

https://www.oreilly.com/online-learning/

	Copyright
	Table of Contents
	Foreword
	Preface
	Why We Wrote This Book
	Who This Book Is For
	What Is (and Isn’t!) in This Book
	These Techniques Apply Across Various Systems
	Your Contribution Matters
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Introduction
	The Basics of Threat Modeling
	What Is Threat Modeling?
	Why You Need Threat Modeling
	Obstacles
	Threat Modeling in the System Development Life Cycle

	Essential Security Principles
	Basic Concepts and Terminology
	Calculating Severity or Risk
	Core Properties
	Fundamental Controls
	Basic Design Patterns for Secure Systems

	Summary

	Chapter 1. Modeling Systems
	Why We Create System Models
	System Modeling Types
	Data Flow Diagrams
	Sequence Diagrams
	Process Flow Diagrams
	Attack Trees
	Fishbone Diagrams

	How to Build System Models
	What Does a Good System Model Look Like?
	Summary

	Chapter 2. A Generalized Approach to Threat Modeling
	Basic Steps
	What You Are Looking for in a System Model
	The Usual Suspects
	What You Should Not Expect to Discover

	Threat Intelligence Gathering
	Summary

	Chapter 3. Threat Modeling Methodologies
	Before We Go Too Deep…
	Looking Through Filters, Angles, and Prisms
	To the Methodologies, at Last!
	STRIDE
	STRIDE per Element
	STRIDE per Interaction
	Process for Attack Simulation and Threat Analysis
	Threat Assessment and Remediation Analysis
	Trike

	Specialized Methodologies
	LINDDUN
	Madness? This Is SPARTA!
	INCLUDES NO DIRT

	Shall We Play a Game?
	Game: Elevation of Privilege
	Game: Elevation of Privilege and Privacy
	Game: OWASP Cornucopia
	Game: Security and Privacy Threat Discovery Cards
	Game: LINDDUN GO

	Summary

	Chapter 4. Automated Threat Modeling
	Why Automate Threat Modeling?
	Threat Modeling from Code
	How It Works

	Threat Modeling with Code
	How It Works
	pytm
	Threagile

	An Overview of Other Threat Modeling Tools
	IriusRisk
	SD Elements
	ThreatModeler
	OWASP Threat Dragon
	Microsoft Threat Modeling Tool
	CAIRIS
	Mozilla SeaSponge
	Tutamen Threat Model Automator

	Threat Modeling with ML and AI
	Summary

	Chapter 5. Continuous Threat Modeling
	Why Continuous Threat Modeling?
	The Continuous Threat Modeling Methodology
	Evolutionary: Getting Better All the Time
	The Autodesk Continuous Threat Modeling Methodology
	Baselining
	Baseline Analysis
	When Do You Know You Did Enough?
	Threat Model Every Story
	Findings from the Field

	Summary

	Chapter 6. Own Your Role as a Threat
Modeling Champion
	How Do I Get Leadership On-Board with Threat Modeling?
	How Do I Overcome Resistance from the Rest of the Product Team?
	How Do We Overcome the Sense of (or Actual) Failure at Threat Modeling?
	How Should I Choose a Threat Modeling Methodology from Many Similar Approaches?
	How Should I Deliver “the Bad News”?
	What Actions Should I Take for Accepted Findings?
	Did I Miss Something?
	Summary and Closing
	Further Reading

	Appendix A. A Worked Example
	High-Level Process Steps
	Approaching Your First System Model
	Leading a Threat Modeling Exercise
	A Sample Exercise: Creating a System Model
	Identifying Components, Flows, and Assets
	Identifying System Weaknesses and Vulnerabilities
	Identifying Threats
	Determining Exploitability
	Wrapping Things Up

	Appendix B. The Threat Modeling Manifesto
	Method and Purpose
	The Threat Modeling Manifesto
	What Is Threat Modeling?
	Why Threat Model?
	Who Should Threat Model?
	How Should I Use the Threat Modeling Manifesto?
	Values
	Principles
	About

	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

