

Edited by Reet Kaur and Yabing Wang

97 Things Every Application
Security Professional

Should Know
Collective Wisdom from the Experts

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-16945-9

97 Things Every Application Security Professional Should Know
Edited by Reet Kaur and Yabing Wang

Copyright © 2024 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Simina Calin
Development Editor: Rita Fernando
Production Editor: Christopher Faucher
Copyeditor: nSight, Inc.

Proofreader: Helena Stirling
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

June 2024: First Edition

Revision History for the First Edition
2024-06-18: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098169459 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 97 Things Every Application
Security Professional Should Know, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s
views. While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the
authors disclaim all responsibility for errors or omissions, including without limitation respon‐
sibility for damages resulting from the use of or reliance on this work. Use of the information
and instructions contained in this work is at your own risk. If any code samples or other tech‐
nology this work contains or describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that your use thereof complies with
such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098169459

Table of Contents

Preface. xiii

Part I. Program & Practice

1. Secure Code for Tomorrow’s Technology. 2
Alyssa Columbus

2. Pragmatic Advice for Building an Application
Security Program. 5
Andres Andreu

3. AppSec Must Lead. 7
Brook S.E. Schoenfield

4. Solving Problems for Application Security. 9
Caroline Wong

5. Securing Your Enterprise Applications. 11
Chadi Saliby

6. Developers as Partners in Application Security
Strategy. 13
Christian Ghigliotty

7. Be an Awesome Sidekick. 15
Daniel Ting

iii

8. Understanding the True Boundaries of Modern
Applications. 18
Erkang Zheng

9. Common Best Practices in Application Security. 21
Laxmidhar V. Gaopande

10. AppSec Is a People Problem—Not a Technical One. 23
Mark S. Merkow

11. Empowering Application Security Professionals
Through Cybersecurity Education. 25
Michael Bray

12. Why You Need a Practical Security Champions
Program. 28
Michael Xin and Sandeep Kumar Singh

13. The Human Firewall: Combat Enemies by Improving
Your Security-Oriented Culture. 31
Periklis Gkolias

14. Shifting Everywhere in Application Security. 34
Sounil Yu

15. Beyond Barriers: Navigating the Path to a Successful
AppSec Program. 37
Yabing Wang

Part II. Secure SDLC

16. Building an Application Security Preparation Mindset. . . 41
Andrew King

17. How to Assess Security Mindset in Application
Design. 44
Anuj Parekh

18. Getting Your Application Ready for the Enterprise. 47
Ayman Elsawah

Table of Contentsiv

19. Reductio Ad Applicationem Securitatis. 50
Darryle Merlette

20. Automating the Risk Calculation of Modern
Applications. 52
Erkang Zheng

21. A Coordinated Approach to a Successful DevSecOps
Program. 55
Han Lievens

22. What Makes Someone a Developer?. 57
Helen Umberger

23. Total AppSec. 59
Hussain Syed

24. You’re More Than Your Job. 61
Izar Tarandach

25. TAP Into the Potential of a Great SSDLC Program
with Automation. 63
Jyothi Charyulu

26. Vulnerability Researcher to Software Developer: The
Other Side of the Coin. 66
Larry W. Cashdollar

27. Strategies for Adding Security Rituals to an Existing
SDLC. 68
Laura Bell Main

28. Challenges and Considerations for Securing
Serverless Applications. 71
Manasés Jesús

29. Using Offensive Security to Defend Your Application. . . 73
Nathaniel Shere

Table of Contents v

30. Beyond “No”: The Modern Paradigm of Developer-
Centric Application Security. 76
Nielet D’mello

31. Security Paved Roads. 79
Nielet D’mello

32. AppSec in the Cloud Era. 82
Sandeep Kumar Singh

33. Code Provenance for DevSecOps. 85
Yashvier Kosaraju

Part III. Data Security & Privacy

34. Will Passwordless Authentication Save Your
Application?. 89
Aldo Salas

35. Securing Your Databases: The Importance of Proper
Access Controls and Audits. 92
Dave Stokes

36. DataSecOps: Security in Data Products. 94
Diogo Miyake

37. Data Security Code and Tests. 96
Diogo Miyake

38. Data Security Starts with Good Governance. 98
Lauren Maffeo

39. Protect Sensitive Data in Modern Applications. 100
Louisa Wang

40. Leverage Data-Flow Analysis in Your Security
Practices. 103
Manuel Walder

Table of Contentsvi

41. Embracing a Practical Privacy Paradigm Shift in App
Development. 105
Maria Nichole Schwenger

42. Quantum-Safe Encryption Algorithms. 108
Rakesh Kulkarni

43. Application Integration Security. 110
Sausan Yazji

Part IV. Code Scanning & Testing

44. Modern Approach to Software Composition Analysis:
Call Graph and Runtime SCA. 114
Aruneesh Salhotra

45. Application Security Testing. 117
David Lindner

46. WAF and RASP. 120
David Lindner

47. Zero Trust Software Architecture. 123
Jacqueline Pitter

48. Rethinking Ethics in Application Security: Toward a
Sustainable Digital Future. 126
Pragat Patel

49. Modern WAF Deployment and Management
Paradigms. 128
Raj Badhwar

50. Do You Need Manual Penetration Testing?. 131
Shawn Evans

51. Bash Your Head. 133
Shawn Evans

Table of Contents vii

52. Exploring Application Security Through Static
Analysis. 136
Tanya Janca

53. Introduction to CI/CD Pipelines and Associated Risks. 138
Tyler Young

Part V. Vulnerability Management

54. Demystifying Bug Bounty Programs. 142
Aldo Salas

55. EPSS: A Modern Approach to Vulnerability
Management. 145
Aruneesh Salhotra

56. Navigating the Waters of Vulnerability Management. . . 148
Luis Arzu

57. Safeguarding the Digital Nexus: “Top 25 Parameters
to Vulnerability Frequency”. 151
Lütfü Mert Ceylan

58. Unveiling Paths to Account Takeover: Web Cache to
XSS Exploitation. 154
Lütfü Mert Ceylan

59. Sometimes the Smallest Risks Can Cause the
Greatest Destruction. 157
Lütfü Mert Ceylan

60. Effective Vulnerability Remediation Using EPSS. 159
Reet Kaur

61. Bug Bounty—Shift Everywhere. 161
Sean Poris

Table of Contentsviii

Part VI. Software Supply Chain

62. Integrating Security into Open Source Dependencies. . 164
Alyssa Columbus

63. Supplier Relationship Management to Reduce
Software Supply Chain Security Risk. 167
Cassie Crossley

64. Fortifying Open Source AI/ML Libraries: Garden of
Security in Software Supply Chain. 170
Chloé Messdaghi

65. SBOM: Transparent, Sustainable Compliance. 173
Karen Walsh

66. Secure the Software Supply Chain Through
Transparency. 176
Niels Tanis

67. Unlock the Secrets to Open Source Software
Security. 178
Travis Felder

68. Leverage SBOMs to Enhance Your SSDLC. 181
Viraj Gandhi

Part VII. Threat Modeling

69. Learn to Threat Model. 184
Adam Shostack, Matthew Coles, and Izar Tarandach

70. Understanding OWASP Insecure Design and
Unmasking Toxic Combinations. 186
Idan Plotnik

71. The Right Way to Threat Model. 189
Josh Brown

Table of Contents ix

72. Attack Models in SSDLC. 192
Vinay Venkatesh

Part VIII. Threat Intelligence & Incident Response

73. In Denial of Your Services. 196
Allen West

74. Sifting for Botnets. 198
Allen West

75. Incident Response for Credential Stuffing Attacks. 200
Fayyaz Rajpari

76. Advanced Threat Intelligence Capabilities for
Enhanced Application Security Defense. 203
Michael Freeman

Part IX. Mobile Security

77. Mobile Security: Domain and Best Practices. 206
Aruneesh Salhotra

78. Mobile Application Security Using Containerization. . . . 209
Reet Kaur

Part X. API Security

79. API Security: JWE Encryption for Native Data
Protection. 212
Andres Andreu

80. APIs Are Windows to the Soul. 215
Brook S.E. Schoenfield

81. API Security: The Bedrock of Modern Applications. 218
Charan Akiri

Table of Contentsx

82. API Security Primer: Visibility. 221
Chenxi Wang

83. API Security Primer: Risk Assessment, Monitoring,
and Detection. 223
Chenxi Wang

84. API Security Primer: Control and Management. 225
Chenxi Wang

Part XI. AI Security & Automation

85. LLMs Revolutionizing Application Security:
Unleashing the Power of AI. 229
Alexander James Wold

86. Mitigating Bias and Unfairness in AI-Based
Applications. 232
Angelica Lo Duca

87. Secure Development with Generative AI. 234
Heather Hinton

88. Managing the Risks of ChatGPT Integration. 237
Josh Brown

89. Automation, Automation, and Automation for
AppSec. 240
Michael Xin

90. Will Generative and LLM Solve a 20-Year-Old
Problem in Application Security?. 243
Neatsun Ziv

91. Understand the Risks of Using AI in Application
Development. 245
Yasir Ali

Table of Contents xi

Part XII. IoT & Embedded System Security

92. Secure Code for Embedded Systems. 249
Jason Sinchak

93. Platform Security for Embedded Systems. 252
Jason Sinchak

94. Application Identity for Embedded Systems. 254
Jason Sinchak

95. Top Five Hacking Methods for IoT Devices. 256
Manasés Jesús

96. Securing IoT Applications. 258
Manasés Jesús

97. Application Security in Cyber–Physical Systems. 260
Yaniv Vardi

About the Editors. 263

Contributors. 265

Table of Contentsxii

Preface

Cybersecurity, or information security, has always been a very broad and
comprehensive field and has been a fast-evolving area for the past 10–20
years. Within, there are many domains, such as risk management, security
operations, network and infrastructure security, identity access management,
and others. This book focuses on one particular domain called application
security (AppSec). That’s because, in today’s modern world, software devel‐
opment has become the core of any product or service. As such, ensuring the
security of any product or application development is critical to the success
of your business.

This book is a collection of wisdom from 77 security experts in application
security across various industries. Organized into 12 topics, the book covers
web applications, mobile applications, APIs, and the Internet of Things (IoT)
(embedded systems). It also expands the safeguards to both on-prem and in-
cloud development. More importantly, it explains all angles of AppSec such
as secure software development life cycle (SDLC) practice, threat modeling,
code scanning and testing, vulnerability management, and how to run a suc‐
cessful application security program. The book also provides insight into two
emerging topics: software supply chain security and AI security. It is a treas‐
ure trove of those security practitioners’ practical advice, distilled into bite-
sized essays for both beginners and seasoned professionals in application
security and cybersecurity.

You should read this book if you are:

• New to security and want to learn more about application security
• A developer and want to learn how to secure your application
• Interested in running a successful application security program

xiii

We hope you find this book valuable to meet your needs, and that you can
take the lessons learned from other practitioners and apply them in your
world to make your applications resilient against evolving threats. Get ready
to absorb expertise from some of the best in the field—your go-to guide for
application security success!

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided
technology and business training, knowledge, and
insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training cour‐
ses, in-depth learning paths, interactive coding environments, and a vast col‐
lection of text and video from O’Reilly and 200+ other publishers. For more
information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/97-things-
app-security.

For news and information about our books and courses, visit https://
oreilly.com.

Find us on LinkedIn and watch us on YouTube.

Prefacexiv

https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/97-things-app-security
https://oreil.ly/97-things-app-security
https://oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

Acknowledgments
We would like to thank all contributors for volunteering their time and shar‐
ing their wisdom and insights with the community. The security community
will never be stronger if we don’t have people devoting their time to helping
each other!

We also would like to thank O’Reilly editors Rita Fernando and Simina
Calin. They collaborated with us and with all contributors through the whole
process, and finally helped make the book available to all O’Reilly learning
platform users. Your dedication is highly appreciated by both of us, and we’re
so happy to have you along with us!

Finally, we thank our families for providing strong support to us while we
worked on this book. Without them, we would not have been able to com‐
plete this book on time!

Preface xv

PART I

Program & Practice

Secure Code for
Tomorrow’s Technology
Alyssa Columbus

The software we build today has the potential to power critical systems for
years to come. To ensure the longevity and security of tomorrow’s technol‐
ogy, developers must adopt a security-focused mindset and consider security
as part of the quality of the code. Writing secure code requires meticulous
attention to detail. To assist you in this endeavor, I have compiled the follow‐
ing checklist of fundamental principles and important items to keep in mind:

Start by learning secure coding standards.
Many common vulnerabilities result from a lack of awareness. Familiar‐
ize yourself with leading authorities such as the Open Web Application
Security Project (OWASP) Top 10 and CWE/SANS Top 25. Study guide‐
lines for your specific languages and frameworks. Understand basic
security principles like least privilege, defense in depth, and secure by
default. Reference these standards early when designing applications to
build in security from the start.

Adopt a secure development life cycle.
Integrate security practices into all phases of development, from concep‐
tion to deployment. Conduct threat modeling to identify risks. Define
abuse cases. Perform static analysis security testing to catch issues in
code. Run dynamic analysis to test for vulnerabilities in running applica‐
tions. Automate processes such as policy compliance checks, depend‐
ency upgrades, and credential rotation to reduce mistakes.

Use frameworks carefully.
While frameworks (e.g., Django for Python, Express for Node.js, Laravel
for PHP) boost productivity, they also introduce risks. Keep frameworks
updated to avoid known vulnerabilities. Properly configure frameworks
and disable unnecessary features. Extend frameworks securely rather
than overwriting insecure defaults. Continuously monitor for

2

vulnerabilities in all dependencies. Lock down functionality to what
your app actually requires.

Never trust inputs.
Validate and sanitize all data entering your application, including from
users, files, databases, third-party APIs, and internal services. Practice
zero trust by assuming all inputs are malicious until validated otherwise.
Limit exposure through compartmentalization and minimization.
Escape outputs properly to prevent injection attacks. Sign and encrypt
sensitive data end to end and at rest.

Promote a culture of security.
Advocate for secure coding as a team effort, not just the developer’s job.
Instill a sense of shared accountability through training, mentoring,
incentives, and leading by example. Make security reviews a regular part
of the development process. Empower all team members to call out
potential issues. Automate policy enforcement where possible.

Foster developer empathy.
Understand that developers are often undertrained in security and over‐
burdened with competing priorities under tight deadlines. Help them
succeed by providing useful security libraries, user-friendly tools, and
clear guidance baked into the software development life cycle. Reward
secure coding efforts.

Prioritize appropriately.
Focus first on security issues that pose the most significant risks based
on your threat model and business context. Eliminate entire classes of
vulnerabilities where possible. Build basic security capabilities before
adding advanced features.

Take a long view.
Consider how software architecture and design decisions today could
impact security far into the future. Seek designs that are adaptable, resil‐
ient, and sustainable as both technology and threats evolve.

Stay current.
Monitor emerging threats, revisit past assumptions, and keep your skills
sharp through ongoing education. Contribute to open source security
projects. Attend events and training. Learn from peers.

Collective Wisdom from the Experts 3

Teach others what you know.
Share your security knowledge with teammates through mentoring, code
reviews, and organizational training. Write for publications and speak at
events. Learning and progress accelerate when we all help each other.

Writing secure code requires knowledge, skill, and vigilance. By embracing
these disciplines now, you can safeguard against tomorrow’s breaches. While
challenges may persist, you have the power to create resilient and trustwor‐
thy applications by keeping security at the forefront of your mind through‐
out development. The effort is not only worthwhile but essential in
protecting our future.

97 Things Every Application Security Professional Should Know4

Pragmatic Advice for
Building an Application
Security Program
Andres Andreu

Application security (AppSec) is a never-ending journey. The goal is to posi‐
tively influence the relevant software engineering culture and stakeholders to
willingly participate. A shift left approach, for instance, should become a
mutually desired business enabler.

The first step of a successful AppSec program is to set up common goals and
gain alignment from the engineering side. This requires tactful education,
communication, and storytelling from cybersecurity leadership to engineer‐
ing leaders. Therefore, getting their buy-in on how the security team is try‐
ing to achieve the common goals while enabling them to produce software
becomes the key.

Ideally, application security is just silently there. This is ultimately the goal of
security as a business enabler. The challenge is that security hurts and it costs
(time, money, effort, etc.). As such, many organizations see security as a nec‐
essary evil. Weaving a security-first mindset into an organization’s culture is
foundational. It will take time, but it is the secret sauce of success.

A key area for positive impact will be the software development life cycle
(SDLC). This needs to be transformed into a secure SDLC (SSDLC). Depend‐
ing on resources, a great approach is to embed AppSec talent or champions
into the engineering teams/squads. This will create institutional knowledge
and domain expertise. Adjusting your program to be aligned with your engi‐
neering team’s SDLC becomes another key. Don’t apply a waterfall approach
when your development team has an agile culture.

Maturity matters, and there should be formal tracking of progress. One
framework (in regard to establishing a baseline and measuring this over
time) is OpenSAMM (open framework Software Assurance Maturity Model),
an open framework to help build security into the software development

5

process. Maturity scores may drop every now and then, as this space is sensi‐
tive to certain events. Take a Mergers and Acquisitions (M&A) event for
example—you have little control over what you inherit.

Focus on solving problems and building solutions, not implementing prod‐
ucts. The goal is to positively impact an entire ecosystem from the left and
right. On the left, there is the SSDLC. On the right, there are architectural
components and other initiatives that range from systems thinking to active
protection.

The scope of your AppSec program will be critical. Scope is very subjective
per organization. In order to set your team up for success, set the boundaries
early. For example, is your program going to cover database security?

Make sure your AppSec team gains intimacy with all relevant software engi‐
neering processes. This will facilitate the implementation of an SSDLC. Inti‐
macy also has a direct impact on relationships. Building relationships is
critical. Bidirectional communication will prove invaluable. Getting into the
weeds with software engineering teams, quality assurance teams may quickly
identify who will be a champion for your AppSec program.

Take every opportunity to show how some security initiatives can be seam‐
less. For example, if you have an engineering team that creates compiled
code, why not build a library (shared or static) that performs security-related
functions (i.e., input validation, header setting, encoding/decoding, etc.)?

You will need to relay the effectiveness of your AppSec program to corporate
executives. Focus on metrics that matter, as not all will be relevant.

Security leaders set strategies and create programs, but more importantly,
advise the organizations on risks and risk mitigation. A solid AppSec pro‐
gram is one of those advisory areas. Factor in the people, processes, technol‐
ogy, and culture of the organization. Make this a continuous process as
things change; your program must adapt and overcome accordingly.

97 Things Every Application Security Professional Should Know6

AppSec Must Lead
Brook S.E. Schoenfield

Someone must take responsibility and be accountable for security, especially
for AppSec. Foremost, most people who have some role related to the pro‐
duction and operation of software often have limited or even no AppSec
knowledge. Couple that reality with the complexity of our state-of-the-art
AppSec requirements and practices, and what we have is a vacuum that can‐
not be filled simply by telling engineering, product management, project
managers, and developers to “make code secure.”

Someone has to lead.

Leadership is earned, never merely given. While many roles will specify a
“leadership” component or requirement, true leadership is recognized by
what each of us does. Leaders are those people who take responsibility and
put themselves forward as accountable for the impacts and consequences,
not just of their own actions but the results of collective effort. I don’t mean
just taking credit for successes; in fact, great leaders are happy to assign
credit to everyone who contributes.

Leadership may not be about holding decision-making power. In fact, a task
typically enacted by a security team is identifying and rating risks. But the
risk decisions often must not be taken by those same people; it is their very
independence from accountability for risk decisions that allows security folk
the freedom to accurately build a risk picture.

How do we manifest leadership? By never sweeping security problems under
the rug. And by fostering a drive to find security problems and then seek sol‐
utions, even in the face of resistance. We show leadership by helping others
struggle with challenges and by sharing what we know so that security skills
radiate throughout a development organization. We lead by building a “cul‐
ture of security” so that security becomes part of how software is made and
run.

7

How does a leader facilitate a culture of security? Executive mandates do
serve a purpose. But mandates don’t change the culture. A leader creates the
conditions that foster the culture that they envision.

The most important change agent will be what the leader does. This is called
pro-social modeling. We enact the behavior we wish to encourage. We model
how we want things to be. A security leader can’t expect others to take secu‐
rity seriously unless the leader unceasingly drives toward improving security
practices, knowledge, and standards. Leaders demonstrate their care through
what they do and what they prioritize.

If we want threat modeling to be performed from idea through design (at
least), a leader proactively identifies new ideas and changes and then asks to
be included. Once participating, the leader demonstrates the value of early
threat modeling by identifying security requirements and then helping those
to be designed into the software. Demonstrate value. Others will notice and
want some of that value, too.

Leaders can also create forms where others are included, where diverse input
is obviously valued, and where both successes and failures can be openly dis‐
cussed. In other words, a culture (security and others) lives and breathes
through human interaction that the participants find useful and worth their
time. For a security culture, this may mean creating a “community of prac‐
tice” where any and all interested parties are welcome to talk security “shop.”

Something is obviously happening; the advancements taking place are very
attractive. Many workers love to “hitch their wagon”—in this case, their
career growth—to efforts that demonstrate success and improvement. As
leaders, it’s our job not only to make things happen, but also to welcome
whatever help each person can offer. Eventually, there will be so many
involved that the tipping point will be reached, whereby security is “just how
we make software.” In other words, security will be part of organizational
culture.

Without leadership, AppSec will fail. With leadership, we can achieve our
common objectives together.

97 Things Every Application Security Professional Should Know8

Solving Problems for
Application Security
Caroline Wong

Fundamentally, application security is about designing, building, and main‐
taining secure software. Good software helps organizations, and bad soft‐
ware hurts organizations.

There are four main categories of application security activities: governance,
finding security problems, fixing security problems, and preventing security
problems. This essay will provide a high-level description of each of these
four categories, with an emphasis on fixing security problems:

Governance
There are several high-level factors to consider when developing an
application security program. These include compliance and regulatory
requirements, contractual relationships with other organizations, and a
solid understanding of what you’re supposed to be securing in the first
place. It’s also important to define metrics up front so that the success of
the program can be measured and demonstrated over time.

Finding security problems
There are many ways to find security problems at different points in any
software development life cycle, whether an organization follows a
waterfall, Agile, or DevOps methodology. Security testing types include
threat modeling, code review, and penetration testing. A combination of
manual and automated security testing is likely to result in the most effi‐
cient and effective identification of true positive security vulnerabilities
in software applications.

Fixing security problems
Fixing security issues is not just a technical problem; people and pro‐
cesses are also required to get it done. Once security testing has been
performed in order to find as many true positive issues as possible, the
next step is to engage with the teams that can actually fix the issues. The

9

quality of software does not improve until the problems are addressed or
eliminated. Fixing security issues requires effective communication,
coordination, and integration with development teams and processes.

Security teams must recognize that developers are focused on building
new features and meeting deadlines and have limited bandwidth to
remediate security issues. It is certainly not possible to fix all the security
issues at once. They must be prioritized in the context of business values
and goals and addressed over time.

I recommend that security teams get curious about development team
priorities and look for areas of common interest. They should ask ques‐
tions about how development teams work and how much time they have
to realistically spend on fixing security issues.

One of the best ways to get security bugs fixed is to integrate with devel‐
oper tools and processes. Security teams should ask about the tools
developer teams use to do their work and the processes they follow to
manage it. For example, how frequently do they release code? This
should influence the frequency of security testing. What bug tracking
system(s) are they using to manage bug fixes? Make sure security bugs
are included and don’t get lost in separate systems or PDF reports.

Preventing security problems
The people who build software must understand why vulnerable code is
insecure. Developers must be empowered with tech stack-specific
knowledge and tools to help them avoid creating security bugs and flaws
in the first place. Ideally, good programming practices and well-designed
frameworks make it easier for developers to write secure software by
default and harder for them to make mistakes. Cloud environments
must be configured correctly to prevent security vulnerabilities from
being exploited, and attacks must be discovered and stopped as early as
possible to minimize damage.

The ways in which development and operations teams interact are
changing, and security must keep pace. Security teams working effec‐
tively with DevOps teams, processes, and tools are absolutely critical to
getting application security done right. Security teams sometimes place
heavy emphasis on finding issues, without enough focus on engaging
with the development teams and building the cross-functional relation‐
ships that are actually required to get security issues fixed.

97 Things Every Application Security Professional Should Know10

Securing Your Enterprise
Applications
Chadi Saliby

Enterprise applications are used to streamline business processes, manage
data, and enhance collaboration. However, with the growing reliance on digi‐
tal systems, the security of enterprise applications has become a paramount
concern for businesses and governments.

Security for enterprise applications implies that there are measures and prac‐
tices in place to safeguard these applications from various threats and vul‐
nerabilities. The primary goal is to protect sensitive data, maintain business
continuity, and ensure that the applications are available, reliable, and resil‐
ient against the inevitable attacks by cybercriminals.

Security is important for enterprise applications for the following reasons:

Data protection
Enterprise applications will handle at some stage a vast amount of sensi‐
tive and confidential information, such as personally identifiable infor‐
mation (PII), protected health information (PHI), and/or intellectual
property. A security breach can result in severe financial and reputa‐
tional damage to any organization.

Compliance and regulations
Many industries are subject to strict data protection regulations and laws
(e.g., GDPR, HIPAA, PCI DSS). Adhering to these regulations is not
only a legal requirement, but also demonstrates the organization’s com‐
mitment to data privacy and security.

Business continuity and recovery
Cybersecurity incidents, such as data breaches or ransomware, can dis‐
rupt business operations, leading to downtime and significant financial
losses. Strong security measures help ensure business continuity and
minimize the impact of such incidents.

11

The following are practical steps to protecting your enterprise application:

• Incorporate security at the early stages of your software development life
cycle (SDLC) by conducting regular code reviews, vulnerability assess‐
ments, and penetration testing. Applications that do not properly vali‐
date user input are vulnerable to injection attacks, such as SQL injection
and cross-site scripting (XSS). These attacks can lead to unauthorized
data access or manipulation. Therefore, adopting static or dynamic code
analysis capability in the SDLC is a fundamental step to protect your
applications.

• Threat modeling is another control to add to the secure SDLC to verify
that you haven’t missed any gaps in any stage of your SDLC.

• Develop a thorough incident response plan to quickly detect, respond,
and recover from security incidents. It’s a fact that we cannot prevent
attacks all the time, so preparing a detailed incident plan is a
requirement.

• Applications are the gateways to access our data. Ensure that only
authorized users have access to the specific parts of the application
required for their role. This requires robust authentication, authoriza‐
tion, and access control mechanisms to be in place.

• Implement multifactor authentication (MFA) with role-based access con‐
trol (RBAC) to ensure only authorized users can access specific function‐
alities and data; here you can utilize data masking.

• Encrypt sensitive data in transit and at rest to prevent unauthorized
access. Secure storage and data masking techniques are often employed
to mitigate these risks. As this will be a second layer of defense in the
event the data is successfully exfiltrated, it will be useless to whoever
stole it.

• Implement firewalls, intrusion detection/prevention systems (IDS/IPS),
and secure network configurations to protect applications from
network-based attacks.

• Implement a zero trust architecture (ZTA) principle, where you verify
explicitly, use least privilege access, and always assume breach; conduct‐
ing regular security training is essential to mitigate those risks.

• Regularly conduct security awareness training and tabletop exercises for
employees to educate them about social engineering methods, so they
won’t fall victim to such attacks.

97 Things Every Application Security Professional Should Know12

Developers as Partners in
Application Security
Strategy
Christian Ghigliotty

With the emergence of public cloud providers, developers now have more
responsibilities than just writing software to power the business. In many
cases, they now have direct responsibilities over security and infrastructure.
The additional responsibilities create new challenges for developers, as they
are likely operating in spaces they don’t possess deep domain knowledge.
These challenges create an opportunity for security teams to foster relation‐
ships and feedback loops with development teams to inform a successful
long-term application security strategy.

A guiding principle in customer-focused cultures is meeting your customers
where they are. If developers are our primary customers, understanding how
they build and ship products is crucial to creating experiences that incentiv‐
ize collaboration and produce positive security outcomes. The continuous
integration and continuous delivery/deployment (CI/CD) pipeline—the auto‐
mated workflow that encourages repeatability, iteration, and code quality—is
one of our primary areas of opportunity. Adding select tools to scan code for
insecure code patterns, secrets, and vulnerable dependencies creates a set of
signals for your program. A well-informed developer’s experience with those
findings leads to nuanced discussions that form the basis for a more mature
risk-based remediation strategy. That experience should not include longer
build times or false positives that could erode trust.

Automated tooling also generates data, which can be queried for analysis to
further drive investment areas. If secrets are frequently committed to code,
should we add precommit hooks for quicker detection time or build wrap‐
pers around secrets management APIs to make management easier? If cross-
site scripting is a common static code analysis finding, can the security team
identify frameworks to abstract that responsibility away? Further

13

opportunities to create touchpoints also exist in communication platforms
such as Slack and in local development toolkits, but the CI/CD pipeline is the
most critical.

In the same way that the cloud expands the bounds of velocity and responsi‐
bility, considering threats and encouraging systems thinking broadens devel‐
oper mental models to understand risks beyond code. This is typically
described as threat modeling, the structured exercise of assessing systems to
understand threats and mitigations. Through discussion, patterns (and
potential antipatterns) emerge. If systems are using varying Transport Layer
Security (TLS) cipher suites, can an agreed-upon set of algorithms become
“secure defaults” embedded within infrastructure? Are teams using well-
worn standards like Security Assertion Markup Language (SAML) and
OpenID Connect (OIDC) for authentication? Threat modeling also culti‐
vates a culture of discourse and curiosity that can scale with an organization.

In these discussions, you’ll likely begin to identify people who are passionate
about security and are interested in expanding personal knowledge. These
candidates could be a great fit for yet another strategic initiative that depu‐
tizes security advisory to close collaborators—also known as a Security
Champions program. With support from the security team, a strong Security
Champions program takes the observed behaviors and lessons learned and
infuses them into interactions across the company.

An effective application security strategy must be driven by meaningful part‐
nerships where two-way communication is productive and continuous. This
approach ensures that decisions aren’t made in silos but in context, with cus‐
tomers always being part of the program. A key success factor is for security
teams to work closely with the development team, not only to demonstrate
“what’s in it for them,” but also to find all opportunities to enable them to do
their work more effectively.

97 Things Every Application Security Professional Should Know14

Be an Awesome Sidekick
Daniel Ting

Imagine you have a horrible flu and visit the doctor for immediate relief. But
instead of providing medicine, the doctor starts discussing weight loss,
which might help prevent future health issues. However, it doesn’t address
your current flu symptoms.

Or, what if the doctor tells you to wear a hazmat suit so you won’t get the flu
again? It would improve your safety and security from the flu. Yet would you
do it? Probably not. Why? It’s impractical.

How would you feel about that experience? I’d feel upset that my priorities
were ignored and that the prevention advice was impractical. I’d never return
to that doctor. I’d look for a doctor who is empathetic and understands my
priorities.

Similarly, dev and business teams need to be supported with empathy and an
understanding of priorities. Our ability to do this as AppSec professionals
makes us indispensable sidekicks. The dev and business teams as a whole are
the heroes here; we play the essential role of supporting them in making
informed decisions and minimizing harm. To be an awesome sidekick, there
are three things we need to remember for success. Let’s unpack them.

It’s About Them, Not You.
AppSec is a support role. It does not exist without an application to secure.
Although risky and concerning, developers can still build applications
without security. Understanding this puts into focus that, as AppSec profes‐
sionals, we’re here to support the developers and the business in building a
trustworthy application that behaves as intended.

That means we must first seek to understand their goals and priorities. Focus
on the help they want, and then opportunistically find ways to deliver on
what they need. Our role is often to advise, influence, and support. Focus on
the wrong priorities, and you would likely be excluded from future

15

conversations—like what happened with the doctor. Like a good sidekick, it’s
about the hero, not you.

Balanced Priorities (and Constraints)
As supporters, it is important that we understand the priorities of the appli‐
cation team and the business to help them accomplish their goals. This often
means putting yourself into your teammates’ shoes, untangling competing
priorities and constraints, and helping the whole team make informed deci‐
sions. Understanding these priorities helps us be sensible in the support we
provide as AppSec professionals. It is useful to understand how teams priori‐
tize work and how constraints are considered. Understanding methods like
the reach, impact, confidence, and effort (RICE) technique; the must have,
should have, could have, won’t have (MoSCoW) technique; and backlog
grooming activities, we can consider AppSec within the team’s workflow and
priorities.

Like in the doctor example (although theoretically, avoiding the risk of death
from severe flu is important to any rational person), the affordability, avail‐
ability, and convenience of not being in a hazmat suit took greater priority.
However, a different outcome may be likely if we’re in a biohazard site.

It’s almost always a “good enough” decision, as there’s always more to do.
Being safer from the flu isn’t great if you die from starvation; likewise with
AppSec. We need to continually improve AppSec smartly—through evolu‐
tion, not revolutions.

Easier Is Easier
When presented with two options, we have a bias for choosing the easier of
the two. Despite the risks, we still jaywalk if it means walking a shorter dis‐
tance. Leverage this behavior and make the secure workflow way easier to
adopt than the alternative. Use a modern development framework, such as
ReactJS or Ruby on Rails, over coding boilerplate from scratch, as it “comes
with batteries” and security is built-in. It’s easier, faster, and reduces bugs,
including security ones.

Conversely, it imposes meaningful costs on unwanted behaviors, like making
the person who introduced the bug or security weakness the person to fix it.
This creates an accountability feedback loop that helps encourage teams to
do the right thing easier. Like most good sidekicks, they make the best option
the easiest choice.

97 Things Every Application Security Professional Should Know16

These lessons helped me empathize and collaborate more effectively with my
development teams. I hope these will help you build amazing things, safely,
with security built-in.

Collective Wisdom from the Experts 17

Understanding the True
Boundaries of Modern
Applications
Erkang Zheng

In the dynamic landscape of software development, the concept of an appli‐
cation has undergone a significant transformation. Gone are the days of
monolithic architectures that encompassed all functionalities within a single
codebase. Instead, modern applications have embraced a microservices
architecture, offering increased flexibility, scalability, and resilience. How‐
ever, this shift has made defining the application’s boundaries more complex
than ever before.

To understand the true boundary of a modern application, you need to con‐
sider three factors: components, infrastructure, and ownership.

Components
In the modern software landscape, applications are composed of a multitude
of interconnected components. An application is no longer made up of a sin‐
gle codebase. Additionally, it is assembled by leveraging many layers of
nested libraries, components, and dependencies, both private and public
open source code modules.

The components of a software application are defined as the software bill of
materials (SBOM), which is a nested inventory for the software and a list of
ingredients. That’s an in-depth topic by itself.

Infrastructure
The shift toward cloud- and software-defined infrastructure introduces a
high degree of complexity and dynamism. We must consider the following
factors:

18

Code to infrastructure
To define the boundary, we need to encompass not only the application’s
codebase, but also the infrastructure required to run it. Modern applica‐
tions are closely tied to their underlying infrastructure, often employing
infrastructure as code practices.

Distributed nature
Modern applications span multiple microservices, each operating inde‐
pendently yet as part of an interconnected web. The application’s bound‐
ary must encompass all the interconnected microservices involved in
delivering the desired functionality.

API endpoints and external integrations
Applications expose various API endpoints, which are an integral part of
the application boundary. Additionally, external integrations with third-
party services, both upstream and downstream, contribute to the com‐
plexity of defining the application.

Middleware and communication channels
The middleware components that facilitate communication between
microservices and handle data transformation must be considered as
part of the application boundary. Understanding how these components
fit into the overall architecture is crucial.

Data stores and workloads
Data stores and distributed workloads form an essential part of modern
applications. Including these elements in the application boundary is
necessary to ensure comprehensive visibility and understanding.

Ownership
With multiple microservices, code repos, modules, and infrastructure
resources, each potentially owned by different teams or individuals, estab‐
lishing clear ownership becomes nontrivial. We must consider:

Distributed responsibility
Microservices are often developed and maintained by different teams,
each responsible for their specific functionality. Determining who owns
the application as a whole can become challenging.

Interdependencies
Services and resources rely on each other to deliver the desired function‐
ality. Ownership of the application should encompass these interdepen‐
dencies to avoid potential gaps in responsibility.

Collective Wisdom from the Experts 19

Cross-functional collaboration
Defining application ownership requires collaboration among various
stakeholders. Building shared understanding and communication chan‐
nels is crucial to ensure effective ownership.

The Foundation of Modern Cybersecurity
Understanding the modern application boundary is not merely an academic
exercise; it forms the foundation of modern cybersecurity. In today’s
software-defined world, where software as a service (SaaS) is prevalent,
applications’ security posture relies on a comprehensive understanding of
their boundaries:

Threat and attack surface
By delineating the application boundary, cybersecurity professionals can
identify the potential attack vectors and areas of vulnerability.

Access control
Properly defining application boundaries aids in establishing effective
access control mechanisms. Access can be limited to specific microser‐
vices, APIs, or data stores, reducing the attack surface and minimizing
unauthorized access.

Incident response
When security incidents occur, understanding the application boundary
allows for targeted incident response and efficient mitigation. Incident
response teams can quickly identify affected components, evaluate
impact, and take appropriate measures to contain and resolve the inci‐
dent.

Compliance and auditing
By understanding which components fall within the scope of the appli‐
cation, organizations can ensure adherence to relevant security and pri‐
vacy regulations.

Being able to connect the dots with context across all of the dependencies
and infrastructure of a software application allows us to understand the true
boundaries of a software application and therefore its threat model. Being
able to identify the right owners is critical to the efficiency and efficacy of the
product incident response process and software vulnerability management
program.

97 Things Every Application Security Professional Should Know20

Common Best Practices
in Application Security
Laxmidhar V. Gaopande

Cyber threats are increasing every day. The damages are phenomenal in
terms of loss of brand reputation and loss of important data to the hackers.
Banking, finance, insurance, healthcare, and ecommerce sites are highly vul‐
nerable to hackers. Globally, digitization has increased the risk of cyberat‐
tacks, more due to an increase in cloud-based development, use of open
source technologies, and new insecure development tools other than poor
coding practices.

Code Scanning and Reviews
It is important that, during coding, developers ensure that they write code
that is secured and not vulnerable to cyberattacks. MITRE and the OWASP
have published a list of critical coding errors that cause security risks.

Developers must ensure that various vulnerabilities are not open, such as
unencrypted data, dangerous file upload, no validations on harmful data
while uploading, poor strength of passwords, unchanged passwords, use of
open source code without checking its integrity, broken algorithms, redirec‐
tion to untrustworthy websites from URLs, avoiding the use of non-TLS for
the website access, network misconfigurations, unpatched systems, and so
on.

Application scanning tools must be regularly used to detect vulnerabilities,
including improper configurations, poor quality of programming, remote
code execution (RCE), SQL injection, command injection, cross-site script‐
ing (XSS), cross-site request forgery (CSRF), broken authentication and ses‐
sion management, weak key generation, inadequate password hashing, hard-
coded passwords, improper system resource allocation, flaws in business
logic, improper restriction of XML external entity (XXE) references, path
traversal, null pointer references, insecure direct object references, buffer
overflows, insecure cryptographic storage, and unauthorized access.

21

Leverage AI for Better Detection and Automation
The use of AI in cybersecurity has increased for detection, prediction,
response, vulnerability management, improvements in authentications,
behavioral analysis, controlling phishing, and threat hunting. AI can increase
the detection rate by almost 95% by replacing traditional methods.

AI-driven security operations centers (SOCs) are used by enterprises to tackle
threats efficiently by detecting unusual behavior in the traffic. A sudden
increase in traffic or abnormal traffic can indicate the possibility of cyberat‐
tacks. Developers must use tools and/or build the inherent functionalities in
their software to detect such abnormalities and identify mechanisms to pro‐
tect their applications.

AI-based cybersecurity tools are available in the market, such as AI-based
firewalls, AI and ML to analyze the network traffic, AI software to detect
email cybersecurity threats, neural networks to find code that bypasses secu‐
rity measures, etc. Developers and AppSec professionals must constantly
watch various products, platforms, and tools to protect their applications and
websites from cyber threats.

Build a Bug Bounty Program
Enterprises are using either in-house teams to test the applications or out‐
sourcing to external vendors for testing against cyber threats; in both cases,
there is upfront cost, limited resources, and limited testing. Hence, the adop‐
tion of bug bounty platforms and their usage are increasing globally.

Bug bounty is a process where the companies list their digital assets on bug
bounty platforms to detect the vulnerabilities and then partner with skilled
hackers enrolled on the platforms. Companies then pay the bounty (the
reward), for valid vulnerabilities reported. This makes the testing almost
24-7 and there is no upfront fixed cost because you pay as per bug reported.
It’s a win-win situation for both the companies and hackers (who get paid for
their work). Bug bounty programs can be private or public. As the bug
bounty industry matures, we will see specialized bug bounty programs in
application testing, the Internet of Things (IoT), cloud security, and
blockchain.

No doubt, AppSec is important to protect against cyber threats and vulnera‐
bilities. Apply the AppSec best practices based on your organization’s risks,
culture, and resources.

97 Things Every Application Security Professional Should Know22

AppSec Is a People
Problem—Not a Technical
One
Mark S. Merkow

Bootstrapping a new or low-maturity AppSec program using security tech‐
nology alone is a guaranteed recipe for failure or suboptimal outcomes.
Throwing technology into an environment that expects developers to
address findings but fails to prepare them technically and psychologically
with the knowledge and skills needed is a recipe for bad results.

It’s people who are responsible for all aspects of software—from inception to
design to development, testing, and implementation. They’re also responsible
for software security—whether they realize it or not; no one other than the
person developing the software can effectively secure it. Ignoring this
responsibility or ignoring the human aspects of software development when
introducing new security-focused tools in developer workflow quickly leads
to chaos, anger, missed deadlines, and bewildered management.

There are few more effective ways to demoralize an entire development orga‐
nization than by running security scanners on their applications, throwing
the results over the wall, and mandating those developers to “deal with it”
somehow. Making matters worse, traditional education that prepares pro‐
grammers and IT roles for new technologies, new languages, and new plat‐
forms doesn’t arm learners with the skills they need to meet the demands of
organizations that require resilient, high-quality applications that can be
constructed quickly at acceptable costs. Many development team members
may enter the workforce never hearing the term nonfunctional requirement,
also known as quality or supplementary requirements, which are aspects of a
software system describing its characteristics, attributes, or properties
without specifying specific behaviors. Unlike functional requirements, which
define what the system should do, nonfunctional requirements focus on how
well the system performs its functions.

23

Since the foundation of any successful AppSec program is the people who
compose it, a better bet is to start with the development community itself to
understand its mandates, mechanics, structures, and “hooks” where AppSec
can be tailored.

People are the lubricant in all software development projects—without
required training, support structures, and commitment to its people, organi‐
zations have little chance at building (and operating) a useful and practical
secure development life cycle that naturally produces secure software.

Software development management, not just the application security team,
needs to own the responsibility to break old bad habits, instill good new hab‐
its, and educate the workforce adequately to fill these gaps. To start the pro‐
cess, awareness of software security as an institutional issue is needed to set
the stage for everything that follows. Awareness drives interest and curiosity
and places people on the path to wanting to learn more. This awareness
greases the skids that enable smooth engagement in software security educa‐
tion and ongoing involvement in AppSec-related activities that “keep the
drumbeat alive” throughout the year. The security team should assist in
bringing up security awareness and training developers with the right knowl‐
edge and skill sets to take ownership of developing secure code.

Focusing and including the people whose lives you’re planning on changing
will carry through all the aspects of software development. Once converted,
these people will go to great lengths to make sure your program is successful
—they have “skin in the game” and want to make sure everything is (eventu‐
ally) achieved. These people will serve as your evangelists and flip on its head
the notion of “us versus them” for the chief information security officers
(CISOs) charged with secure software programs. Some of these people will
become part of your Security Champion network of security-minded engi‐
neers who will help to make sure the software factory is secure from end to
end and can be relied upon to produce secure applications—every time!

97 Things Every Application Security Professional Should Know24

Empowering Application
Security Professionals
Through Cybersecurity
Education
Michael Bray

In today’s technology-driven world, where data breaches and cyberattacks
are becoming increasingly prevalent, the role of AppSec professionals has
never been more critical. These experts are entrusted with safeguarding digi‐
tal assets, sensitive user information, and the overall integrity of software
applications. To fulfill this crucial responsibility effectively, AppSec profes‐
sionals must prioritize continuous education and deep understanding of
cybersecurity principles. This essay explores the reasons why investing time
in cybersecurity education is essential for these professionals, how it can ele‐
vate their capabilities, and practical ways to embrace this knowledge into
their AppSec principles.

The cyber threat landscape is in a constant state of flux, with adversaries
developing sophisticated techniques to exploit vulnerabilities in software
applications. As technology advances, so do the methods used by malicious
actors to breach security defenses. By staying informed about the latest
cybersecurity threats, trends, and countermeasures, AppSec professionals
can better anticipate and respond to potential attacks. Education equips
them with the knowledge necessary to adopt proactive measures and
strengthen their organization’s security posture.

Strive to enhance your problem-solving skills! A well-rounded education in
cybersecurity may help professionals understand the intricacies of different
attack vectors and vulnerabilities, allowing them to think critically and stra‐
tegically when developing security solutions. It enables them to analyze com‐
plex security challenges, identify potential weaknesses, and implement

25

effective security controls. The ability to approach problems from various
angles is crucial in staying one step ahead of cyber adversaries.

Building a strong foundation in cybersecurity education provides AppSec
professionals with a solid foundation in security principles, standards, and
frameworks. From the fundamental concepts of secure coding to in-depth
knowledge of industry-recognized frameworks such as OWASP, this knowl‐
edge forms the backbone of their security practices.

Understand your role in effective incident response and recovery. No organi‐
zation is immune to cyber incidents, making incident response and recovery
capabilities critical for AppSec professionals. Cybersecurity education equips
them with the skills to detect, analyze, and respond promptly to security
incidents. Understanding incident response best practices enables them to
mitigate the impact of an attack and restore operations swiftly.

Embrace and seek out continuous learning. Cybersecurity is an ever-evolving
field and staying up-to-date with the latest developments is essential for
AppSec professionals, allowing them to remain relevant and adapt to emerg‐
ing threats effectively. Engaging in webinars, workshops, and conferences
and reading industry publications are some ways to expand their knowledge
base.

Integrate cybersecurity education into your application security principles
with the following:

• Training and certifications such as Certified Ethical Hacker (CEH), Cer‐
tified Information Systems Security Professional (CISSP), and Certified
Secure Software Lifecycle Professional (CSSLP) may validate the exper‐
tise and commitment of the security professionals to the field.

• Collaborative learning can establish cross-functional collaboration
between application development, operations, and security teams, foster
knowledge sharing, and encourage the adoption of cybersecurity princi‐
ples throughout the development life cycle.

• Capturing lessons learned encourages professionals to share experiences
from past security incidents, facilitates collective learning, and helps pre‐
vent similar incidents in the future.

• Security awareness education on a regular cadence helps cultivate a
security-conscious mindset and instills a sense of responsibility for
AppSec among professionals.

97 Things Every Application Security Professional Should Know26

The importance of cybersecurity education for AppSec professionals cannot
be overstated. Armed with comprehensive knowledge and continuous learn‐
ing, these experts can confidently face the challenges posed by an ever-
changing cyber landscape. By embracing cybersecurity education and
incorporating it into their AppSec principles, professionals are well-equipped
to protect their organizations, users, and data from cyber threats, ensuring a
safer and more resilient digital future.

Collective Wisdom from the Experts 27

Why You Need a Practical
Security Champions
Program
Michael Xin and
Sandeep Kumar Singh

As a security professional, you may have been challenged by application
teams that couldn’t make your priority their priority, and security controls in
the software development process that were not as great as you wanted. You
may want to test out Security Champions practices! A Security Champions
program is an effective way to scale and distribute security across develop‐
ment teams. A Security Champions program is a collaboration between a
security team, development teams, and an executive sponsor who supports
and promotes the program. High-performing individuals within develop‐
ment teams are nominated as Security Champions, undergoing additional
security training to act as ambassadors for security.

The Security Champion program offers several benefits. It improves security
awareness and the adoption of secure coding practices during software
development. It also enhances collaboration and knowledge-sharing between
security champions and the security team, resulting in more effective secu‐
rity reviews and testing. Additionally, it improves the working relationship
between the security and engineering teams, fostering a culture of continu‐
ous improvement and integration of security measures.

Effective deployment of a Security Champions program requires careful
planning and preparation. Before launching the program, it is crucial to
identify potential challenges related to the organization’s culture, readiness,
bandwidth limitations, training requirements, and resource allocation. Cre‐
ating a centralized hub to store program information, such as an overview,
roles and responsibilities, timeline, roster of security champions, success
metrics, and training details can be highly beneficial. Encouraging top lead‐
ership support by discussing the program in staff meetings and motivating

28

departments and leaders to participate and nominate participants helps in
expanding the program’s reach.

Determining the required bandwidth commitment is also important. Devel‐
oping a year-long plan that outlines the activities security champions will
undertake can help calculate the average weekly hours per person. For exam‐
ple, security champions may dedicate about 25% of their time, allowing flexi‐
bility for teams with a minimum availability of 10%. Initially, the focus in the
first year should be primarily on training, application review, and collabora‐
tion on static application security testing (SAST) to reduce the backlog of
security defects. Subsequent years can involve additional collaboration on
software composition analysis (SCA) and dynamic application security testing
(DAST), threat modeling, and penetration testing (pen testing). It is advisa‐
ble to limit the responsibilities in the first year to establish a strong founda‐
tion for the program and enable security champions to adapt comfortably to
their roles.

For a Security Champions program to succeed, it is important to promote it
effectively. Target teams need to be aware of the program’s existence and its
benefits. Promotion strategies can include creating posters, discussing the
program in team meetings, and presenting an overview (led by executive
leaders) to the entire organization.

To ensure ongoing participation and engagement, various techniques can be
employed. This includes conducting quizzes and knowledge-sharing sessions
on security and Secure Development Lifecycle (SDL), establishing dedicated
communication channels, scheduling regular learning and collaboration
meetings, providing guidance materials, and encouraging participation in
security-focused events. Before launching the program, security champions
should be familiar with various training topics. This can include an overview
of the program, the organization’s security policy, SDL activities, and security
assessment tools.

Motivation can be maintained by rewarding and recognizing the achieve‐
ments of security champions. This can be done through custom swags, allo‐
cating budget for external security training for top performers, highlighting
accomplishments through newsletters and company-wide content, and uti‐
lizing internal recognition tools to increase awareness of their impact.

While implementing a Security Champions program, valuable insights can
be derived from past experiences. The OWASP Security Champions project
serves as a helpful guide to provide consistent direction. At the same time, it’s
important to understand that different organizations have unique cultural

Collective Wisdom from the Experts 29

needs and challenges, so a customized approach is necessary. Regularly
engaging in conversations with security champions is essential for ongoing
evaluation and overcoming any obstacles. Ultimately, a Security Champions
program can greatly contribute to the success of the application security pro‐
gram and to the overall success of your security team, making it an indispen‐
sable asset.

97 Things Every Application Security Professional Should Know30

The Human Firewall:
Combat Enemies by
Improving Your Security-
Oriented Culture
Periklis Gkolias

In cybersecurity, tech dams alone are not enough to defend against the ever-
evolving landscape of threats. We all agree that network firewalls, web appli‐
cation firewalls (WAFs), security information and event monitoring (SIEM)
solutions, and other related software are essential layers of protection.

But there is another crucial line of defense that often goes overlooked: the
human firewall.

What do I mean by the term human firewall? I am referring to the collective
awareness and security knowledge of an organization. A defense is formed
when every individual actively participates in the defense strategy. It’s similar
to a firewall: one open port can expose the internal network to the attackers,
and one individual can become the weakest link and allow the bad actors to
come through.

We create defense when everyone understands that the weakest link can
wreak havoc in an otherwise perfect creation. From the CEO to the newest
intern, all are equally essential parts of the firewall.

As you try to add many technical controls in the application development,
fix vulnerabilities in different places, or apply security policies in the envi‐
ronment, be aware that those tasks were done mainly by human beings.
Understanding that human beings are a crucial part of security controls will
help you shift the paradigm on how to get the security done right!

31

Recognizing External Threats
External threats are risks that most of us are familiar with. These come from
entities outside the company that aim to attack it, with varying motives. They
can use numerous tools, tactics, and techniques to achieve their goals, such
as exploiting vulnerabilities in applications, leveraging open source intelli‐
gence, or launching phishing attacks. Such actions can lead to data breaches,
intellectual property theft, financial losses, or reputational damage. Building
a human firewall against these external threats will make employees more
vigilant and better prepared.

Recognizing Insider Threats
Insider threats come in various forms, for example: disgruntled employees,
unintentional errors, or manipulated staff. As with external threats, they can
lead to similar classes of damage. Building a human firewall requires
acknowledging that insiders have the potential to be attack vectors causing
security breaches to help understand that proactive measures are necessary.

The problem with insider threats is that there is a thin line between being
cautious and not trusting your people.

Empowering Employees Through Education
A security-aware culture begins with education. Employees should receive
comprehensive security training. That should include best practices for han‐
dling sensitive data, recognizing phishing attempts, and adhering to security
policies. Of course, find fun ways to engage people instead of providing them
boring training materials.

Empower them with the knowledge to identify suspicious activities and the
confidence to report potential threats promptly. Remember, only when
everyone takes security as part of their own responsibility will the human
firewall work properly.

Promoting Open Communication
A flourishing human firewall relies on a culture of open communication.
Employees should feel comfortable reporting security concerns or incidents
without fear of disciplinary action. “Say something when you see something”
should be a common practice in a good security culture.

97 Things Every Application Security Professional Should Know32

Engaging Leadership
Leadership sets the tone for the organization’s culture, including its approach
to cybersecurity. Leaders should participate in security training and lead by
example by adopting the security measures as expected by others in the orga‐
nization. For instance, because you are a CEO, this doesn’t mean you are
allowed to escape multifactor authentication (MFA) or skip security training.

Conducting Regular Security Drills
Reinforce security awareness through regular security drills and simulations.
Conducting mock phishing exercises, incident response scenarios, and social
engineering tests can help keep employees alert and prepared to tackle real-
world threats.

Rewarding and Recognizing Secure Behavior
Positive reinforcement goes a long way in strengthening the human firewall.
Ensure that you reward employees who consistently demonstrate security-
aware behavior and contribute to maintaining a safe digital environment.
Public recognition for security-conscious employees can motivate others to
follow them.

Collective Wisdom from the Experts 33

1 All Things Distributed (blog); “The Story of Apollo—Amazon’s Deployment Engine,” Werner
Vogels. Posted November 12, 2014.

Shifting Everywhere in
Application Security
Sounil Yu

The Changing Landscape of Application Security
Mark Andreessen’s observation from a decade ago that “software is eating the
world” perfectly captures the pivotal role software now plays in almost every
organization’s success. In this age of rapid digital transformation, nearly
every company is a software company, driving a rapid expansion of the soft‐
ware attack surface and redefining the landscape for AppSec.

With software taking on such a prominent role, there’s a race to produce
more and release it faster. From 2011 to 2014, Amazon went from deploying
software every 11 seconds to less than one per second.1 Today, it’s safe to
infer that the deployment cycle is nearly continuous. This breakneck pace
not only produces a vast volume of software code but also presents security
challenges, as the volume of code to inspect for vulnerabilities explodes.

The Traditional Shift Left Paradigm
To deal with these software vulnerabilities, the security community has ral‐
lied around the need to shift left, a strategy which, in health terms, is akin to
preventing disease instead of treating disease. By enforcing security-by-
design principles before software is deployed, security flaws could be
addressed early in the development phase, where they are relatively cheaper
and easier to fix.

However, the shift left concept originally emerged when software deploy‐
ments had much longer timeframes and would occur every few months (or
years). As with disease, the relative cost of fixing defects grows dramatically

34

https://a16z.com/2011/08/20/why-software-is-eating-the-world/
https://youtu.be/dxk8b9rSKOo?t=610
https://www.allthingsdistributed.com/2014/11/apollo-amazon-deployment-engine.html

2 See the National Institute of Standards and Technology (NIST) report: Gregory Tassey, The Eco‐
nomic Impacts of Inadequate Infrastructure for Software Testing, (National Institute of Standards
and Technology, 2002).

3 See the IBM article: Maurice Dawson et al., “Integrating Software Assurance into the Software
Development Life Cycle (SDLC),” IBM System Science Institute, 2010.

with time, reaching 60 times to 100 times2,3 what it would have cost had it
been addressed earlier in the life cycle, so businesses were incentivized to
focus on prevention.

Today, the modern development process iterates so quickly that the relative
cost to fix flaws after deployment is minimal, thus removing much of the
incentive to shift left. This means that the cost imperative for shifting left is no
longer there, but we still have a security imperative to avoid building software
without vulnerabilities. Although building security in may seem important
to security practitioners, this security-first mindset often loses out to the
more compelling business need to release software faster, even if the software
contains vulnerabilities. In this new world, the goals for security now need to
be about “shifting everywhere,” injecting security measures throughout the
entire development life cycle, not just in the beginning.

The Role of Infrastructure and Automation
A major change that has enabled developers to incorporate security checks
throughout the development life cycle has been the adoption of an
“everything-as-code” approach. This includes both how software is built and
where it is run. The infrastructure layer has become an integral part of soft‐
ware delivery and the software’s attack surface. This requires additional
checks on containers, Kubernetes, cloud configurations, and infrastructure
as code. This everything-as-code approach stores all information in code
repositories, promoting versioning, drift detection, change control, and
more. Crucially, automation is at its heart. In a fully automated software
development pipeline, any manual steps stand out and slow the process.
Application security teams need to adopt security automation wherever
development teams have also incorporated some form of automation.

Collective Wisdom from the Experts 35

Re-envisioning Application Security
This paradigm shift calls for a new approach to AppSec that shifts every‐
where. In summary, these changes include:

Accelerated delivery
Seamlessly integrated security checks throughout the entire development
life cycle that perform the necessary checks without derailing the devel‐
opment process

Everything as code
Security automation that aligns with the increasing prevalence of every‐
thing defined by code, from infrastructure to operations to security
governance

Rapid feedback loops
Immediate feedback systems that allow for swift diagnosis and recovery
when something goes amiss

The future of AppSec is exciting because these changes, which improve secu‐
rity, are often embraced by the business because they usually lead to better
code quality and speedier deliveries. Our goal with AppSec should not be just
to keep pace but to proactively anticipate and adapt, ensuring that as the
software world evolves, security isn’t just an afterthought but an integral,
seamless part of the entire process that helps propel the business forward.

97 Things Every Application Security Professional Should Know36

Beyond Barriers:
Navigating the Path to a
Successful AppSec
Program
Yabing Wang

I started my career as a Java developer and switched to security after five
years. In my 20+ years of cybersecurity, I’ve run several successful applica‐
tion security assurance programs (ASAPs). Here are some lessons learned
that may give you some insights.

What Are the Core Components of the AppSec
Program?
As with other successful programs, the AppSec program should consist of
people, processes, and technology:

Introduce an SSDLC process.
Develop, publish, and communicate a policy or standard on this process.
This is a proactive step toward bolstering the overall security posture of
your software development practices. This structured approach inte‐
grates security considerations seamlessly throughout the software devel‐
opment life cycle, ensuring that security is not an afterthought but an
inherent part of the entire process.

Evaluate threat modeling.
Threat modeling is a step that can guide the architecture and the security
controls implemented. However, it could become cumbersome, espe‐
cially in big companies with traditional waterfall processes. You may
want to test it out, automate it, and determine if this may work in your
company or find another way, such as security reviews, to accommodate
this.

37

Include automated testing capabilities.
Based on your company’s situation, you may not need all types, whether
they are static, dynamic, integrated, runtime application security testing,
or pen testing. Consider at least one testing tool in the software develop‐
ment life cycle (SDLC) process, and pen testing outside of the SDLC
process. It is highly recommended to adopt runtime protection capabili‐
ties, for example, a WAF is a great defense capability.

Define the SSDLC governance process.
This includes a security architecture review in the design phase, a shift
left approach, and a sign-off before it’s deployed to production. How‐
ever, automating those reviews and sign-offs is more effective! This also
includes creating metrics to measure the vulnerabilities discovered and
remediated, especially for each team. Report out to the management
above the chief information security officer (CISO) and the development
leaders and track the progress as the risk mitigates.

Include API security in the program.
APIs are vital connectors between different software systems, enabling
seamless data exchange and interaction. However, they also present
potential vulnerabilities that malicious actors may exploit. By incorpo‐
rating robust API security measures into your program, you fortify your
system against various cyber threats and ensure the integrity, confiden‐
tiality, and availability of the data being exchanged. This involves imple‐
menting authentication protocols, authorization mechanisms, and
encryption standards to safeguard sensitive information from unauthor‐
ized access.

Continuously train developers.
Figure out a fun, interesting, and attractive way to educate developers to
learn about vulnerabilities and how to avoid them. To support the idea
that security is part of software quality, we should equip them with the
right tools as well as the right mindset.

What Are the Success Factors of the AppSec
Program?
I’ve seen how AppSec programs ran in waterfall SDLC, adapted to Agile
SDLC, and extended to DevSecOps. The most successful programs are the
ones where security can be automated in every phase of SDLC, from initial
design through integration, testing, deployment, and software delivery:

97 Things Every Application Security Professional Should Know38

Make the development leadership your advocate and partner.
The AppSec program is not just a security initiative; it has to be a devel‐
opment initiative. When it’s a key performance indicator (KPI) or objec‐
tives and key results (OKR) for both departments, the priority is set and
the adoption is easier.

Take the opportunity to raise the security culture; that is, security is everyone’s
responsibility.

The key is to deliver a clear message that the success of the program
relies on everyone in the SDLC to play an important role. Figure out a
way that works in your culture, to hold everyone in the SDLC accounta‐
ble for including security in their day-to-day job, especially as part of the
definition of code or product quality.

Start the program small, and don’t introduce too many changes at one time.
Mature and optimize the program by introducing incremental changes
over time.

Make the process as simple as possible and as automated as possible.
Developers have their priorities to focus on features and other parts of
quality. So apply automation wherever you can and enforce the policy-
as-code, such as “no code with critical vulnerability should be deployed
to production.” Go toward DevSecOps.

Leverage security champions.
It can be challenging to spread security practices across large develop‐
ment teams, and it can be difficult for the security and development
teams to fully understand each other. Bridge the gap by developing a
security champion role. This is typically a developer who has an interest
in security and can help communicate between the two teams.

Be agile, be simple, and be there with them! Remember, security is there to
enable business, not to block business!

Collective Wisdom from the Experts 39

PART II

Secure SDLC

Building an Application
Security Preparation
Mindset
Andrew King

Applications are building blocks of functionality within an organization’s
infrastructure. These are software components that perform critical func‐
tions to meet an organization’s needs, and as such, require special considera‐
tion. Applications are one of the weakest links in infosec systems due to the
potential exploitation of known and unknown vulnerabilities. Roughly 70%
of external attacks come from exploiting software or web applications. When
you buy a product and insert it into your organization, you have a proverbial
scapegoat when things go wrong. However, when you build the product, the
responsibility lies solely on the creating team. As such, you should have secu‐
rity in mind before even beginning to build your application.

There are four concepts you need to consider before you build security in
applications: mindset, logging and monitoring, scope, and best practices.

Mindset: How Can You Prepare?
Application security has a major impact on business operations—both good
and bad. From project conception, it is key to build a security mindset. Secu‐
rity as an afterthought always takes exponential effort to retrofit.

It is essential to create a playbook for when things go wrong, because they
will. Come armed with preventative reactability. Bad things are going to hap‐
pen, and you don’t want to chase issues in retrospect. Anticipate and plan for
them. How will you and the team respond to a security event? What data will
you bring to that conversation? Who are the system users? What systems and
third parties do you interact with? Can you immediately shut off access and
continue to operate the business? Can you roll back versions quickly? Can
you audit all behavior, user access, and traffic or usage? This preparation can
come from threat modeling if you think of answers for everything that arises.

41

This assessment includes identifying all information assets, categorizing
them, identifying all possible threats, and outlining all vulnerabilities and
risks based on impact and probability of occurrence. Now you have a frame‐
work of what you can expect when issues come up.

Logging and Monitoring: Do You See What
Happened?
Assume compromise. During the threat modeling, think through how you
would measure all the risks and ensure those use cases are covered with log‐
ging. These logs are your figurative eyes, offering analysis tools that security
analysts access to trace actions and determine what occurred in retrospect.
Monitoring is next, but you need to understand what to look for to detect
anomalous behavior. Define, measure, baseline, and know deviations from
expected behavior to flag for analysis.

Scope: Can You Do It All?
Keenly understand the purpose of your product and only build to that. What
does your application do that others don’t? What data does it have? How
does that need to be protected? Amazon Web Services (AWS) has a notion of
only adding features that deliver value to the customer and nothing else. This
is an effective abstraction since anything extra is also an additional threat. By
deliberately not adding superfluous code, you remove adding something
potentially harmful. Every organization has finite resources, so by only tak‐
ing on what adds value to the customer, thereby reducing risk, you allow
your limited resources to work exclusively on the most critical features. It’s a
win-win.

Best Practices: Can You Borrow from Others’
Experience?
You do not need to rebuild what others have built; instead, build upon it.
Best practices already exist, such as using an SSDLC, strong authentication,
least privilege, data sanitization, end-to-end encryption, API security, secure
architectures, patching, and pen testing to validate controls and give artifacts
for auditors to ensure due diligence. These can be the difference in fines and
penalties. And if at all possible, you should switch to a continual patching
cadence with the ability to patch at any time, to address zero-days.

Have fun. The more you enjoy your work, the better you perform, which will
be reflected in your products and innovation.

97 Things Every Application Security Professional Should Know42

By planning the security of your application from the very beginning—
before you even build the application—you can establish a robust foundation
for safeguarding sensitive data, mitigating potential vulnerabilities, and
ensuring a resilient defense against security threats throughout the entire
application development cycle.

Collective Wisdom from the Experts 43

How to Assess Security
Mindset in Application
Design
Anuj Parekh

We all want our applications and organizations to be secure. We come up
with different processes and implement different tools to secure our applica‐
tions and organizations, but sometimes we overlook the most important
aspect of application security: to build a security-focus mindset of individu‐
als and teams in an organization.

We often hear that security is everyone’s responsibility, and that is true.
When we are able to raise the security culture and build the security mindset
within the product and engineering team, it will be more efficient than
adding more tools or gates in the process. When they become the security
champions in protecting applications and data, that’s what a successful appli‐
cation security program would be!

You can start assessing your organization’s security mindset from multiple
aspects. The following are some sample questions that may guide you on the
assessment and even help you build the security mindset in your product,
engineering, and data groups.

Data exposure and minimization
What type of data exposure and severity of data exposure is there in case
the application, data, or accounts get compromised?

Are we doing everything we can to minimize data exposure (especially
sensitive data such as personally identifiable information) and is product
design taking privacy by design into consideration?

Secure coding practices
Are developers following secure coding practices?

44

Are developers evaluating their implementation for logical vulnerabili‐
ties that can allow someone to circumvent authentication, authorization,
and access controls within the applications?

Are developers writing test cases to validate that the applications are not
vulnerable to attacks that could compromise applications?

Least privilege and infrastructure security
Is the engineering team following the least-privilege methodology when
writing applications and building infrastructure?

Security tools and deployment
Does the organization have security tools such as SAST/DAST deployed
as part of CI/CD to prevent certain vulnerabilities from making it into
applications?

Is the CI/CD pipeline properly secure from data leakage and supply
chain attacks?

Are there security tools such as WAF/network firewall deployed and
configured to protect the application from attacks postdeployment?

Patch management
Is there an established patch management process to patch vulnerabili‐
ties in applications and infrastructure?

Application monitoring and alerting
What type of application monitoring and alerting controls are imple‐
mented to detect attacks against the application?

User training and awareness
Are the users properly trained to handle sensitive data that could poten‐
tially be accessible from the application?

Are the internal users properly trained so they don’t fall victim to phish‐
ing attacks or download malicious software on their machines that could
compromise sensitive data?

Endpoint security
Are there antimalware tools deployed and properly configured to pre‐
vent malicious software from being installed on endpoints?

Incident response
What is the incident response process to contain and investigate
incidents?

Collective Wisdom from the Experts 45

These questions should give you some idea of where your organization
stands when it comes to the security mindset, and these are some of the
aspects of application security that should be embedded in the thought pro‐
cess of individuals and teams when working with applications and data. We
want to get to a place where application and data security become second
nature for individuals and teams in an organization; the way to achieve this
is by continuously training them on various standards, processes, attack vec‐
tors, and any security issues we might have come across in our applications
in the past.

97 Things Every Application Security Professional Should Know46

Getting Your Application
Ready for the Enterprise
Ayman Elsawah

Selling upmarket to enterprises has become ever so important for many
startups. Selling to enterprises, however, is starkly different from selling to
the consumer market or even other startups.

For one thing, enterprises have security teams, and oftentimes a long list of
security requirements. Getting past the gauntlet of security questionnaires
and scrutiny is a hurdle in itself. However, if your application does not have
key security-focused features, it may be a nonstarter for the enterprise.

The following are some features you may want to consider when building
your product.

Enterprise Single Sign-On
Enterprise single sign-on (SSO) in this case does not mean supporting Google
or Twitter login. This means that you are allowing the enterprise to integrate
your product into its internal enterprise user directory, which can often be
Okta, Ping Identity, OneLogin, or similar.

Your application will need to support SAML and OIDC. A majority of enter‐
prises use SAML, so if you had only one to pick, then start there. OIDC is a
more modern approach, and it will just look good on your organization if
you support both.

The benefits of SSO integration include a better user experience for custom‐
ers, less product friction, and more importantly, relief from storing any cre‐
dentials (passwords or security questions) outside the enterprise, which
reduces your application attack surface. The customer is now managing
authentication, so you absolve yourself of that responsibility. SSO also
improves the deprovisioning of user access. When a user or customer is leav‐
ing, there is only one place to disable the user, not everywhere!

47

Roles and Access Controls
Enterprises will need to manage authorization, which dictates what privileges
a particular user may have in a system. Enterprises will expect at least four
roles, but more often than not, they would like a way to create custom roles
with specific privileges.

If you had to pick just four roles, the following table is what I would suggest.

Role Privileges

Administrator Full privileges

Power user All privileges except for user management

Standard user Everyday user role for using your application

Read-only Read-only access to the entire application

You can do it yourself or use standard libraries for these four roles, but make
sure you always keep them updated and keep a lookout for vulnerabilities.
There are plenty of third-party applications that do the heavy lifting for you
as well, but, of course, come at a cost.

Audit Logging
Another feature enterprises are often looking for is audit logging. Enterprises
want to know who did what and when in all their applications. There are a
few parts to having a good audit logging feature in your application.

First, you need audit logging functionality. Not sure what to log? Here are
some examples of artifacts to capture:

• Username
• Action performed

— i.e., Login, Logout, Read/write actions
• Context

— IP address (required)
— User-agent

Second, audit logs will need to be available for at least 90 days. For a
business-critical system such as a human resources information system
(HRIS) or similar, it may be at least one year or an indefinite amount. Of
course, it’s hard to have all these logs available online, so you can have a
function that requests archived logs on demand, for example.

97 Things Every Application Security Professional Should Know48

Third, many enterprises will want to have the ability to integrate audit logs
programmatically into their own log management or security information
and event monitoring (SIEM) system. A manual export of logs to comma-
separated values (CSV) will not be sustainable for most enterprises, so it’s a
recommended option.

Finally, there are many ways to allow companies access to your audit logging
system. I won’t go into detail here, but here are the options many providers
can provide:

• HTTP(S) endpoint
• Direct API
• Webhook
• S3 bucket using AWS cross-account roles

Aside from ensuring your entire company is securely aligned with a cyberse‐
curity framework, having your application be enterprise ready will reduce
friction on your sales team, is good security, and will impress security teams
on enterprises.

Collective Wisdom from the Experts 49

Reductio Ad
Applicationem Securitatis
Darryle Merlette

Early in my career, a wise man once told me: “There are only three things
you can do with a computer: read, write, and change (RWC) data.” At first, I
didn’t appreciate this reduction to the field of computer science—reductio ad
computatrum scientia—where I had just devoted more than six years study‐
ing. But as time went by, I realized he was actually correct. Although data‐
bases teach us the notion of create/read/update/delete (CRUD), the
correspondence to his trifecta classification is clear.

The history of computer security shows that databases are a prime target for
exploitation through attacking applications. What are the implications of the
RWC classification? Whenever a new exploit or attack is disclosed, it can be
instructive to examine where and how the three processes come into play—a
reduction to application security or reductio ad applicationem securitatis so to
speak—can provide insight to developers and help them apply proper con‐
trols to the applications and databases.

Read
When data is read by an application, it is used as input to a process that
allows the application to do that for which it was intended. For example, an
unsorted list of numbers will be used to create a sorted list in a sorting appli‐
cation. However, some applications can be given data that allows it to do that
for which it was not intended. A good example is the critical Shellshock Vul‐
nerability of 2014 (CVE-2014-6271), which affected the Bash shell that
comes standard with most Unix/Linux distributions. This allowed attackers
to execute arbitrary code via specially crafted environment variables contain‐
ing function definitions. There are other types of attacks, such as SQL injec‐
tion (SQLi) and cross-site scripting (XSS), that are similarly made possible
by reading crafted input. The lesson to be learned when building applications
is to be sure to validate and/or sanitize data before passing it on for further

50

processing. The lesson to be learned when testing applications is to check
that malformed or unexpected input doesn’t lead to undesired behavior.

Write
When data is written internally or externally by an application, it should be
done in such a way as to maintain the integrity of the application itself. A few
decades back, the most common form of application exploits came from
buffer overflows—when specially crafted data is written to internal addresses
in such a way that it overwrites the expected commands so that malicious
commands can be run instead. Thankfully, modern architectures contain
protections such as address space layout randomization (ASLR), which
makes it hard for attackers to predict the execution address layout. Going
back to the sorting application example above, if the output is still unsorted,
then it would not be considered a very good sorting application! But suppose
the sorting application actually gave the expected output, and in addition,
also overwrote critical files with garbage data and then printed a message to
the screen instructing you to pay in cryptocurrency to get your files back?
Such would be the case of ransomware disguised as a sorting application.
The lesson learned when building applications, even with ASLR, is to guard
against using unbounded writes. The lesson learned when testing applica‐
tions is to make sure the application is signed by a trusted entity and has not
been modified.

Change
The bulk of complexity in computer science has to do with data being
manipulated. The act of sorting or putting a list in order, analyzing patterns
in data using tools like Fast Fourier Transform, making predictions with a
nonlinear regression, training a large language model (LLM), etc., all have to
do with changing data. The difficulty here is that malware and exploits also
perform data changes that are often indistinguishable from valid manipula‐
tions. This is where more advanced techniques, such as running debuggers,
disassemblers, and other static or dynamic code analysis tools, come into
play. One must inspect the innards of the code and figure out where it is
doing things that will lead to malicious results.

It is clear that principles of AppSec must be taken into account throughout
the life cycle of data—whether the data is being read, written, or manipu‐
lated. Diligent attention to such details will ensure your applications are as
secure as possible.

Collective Wisdom from the Experts 51

Automating the Risk
Calculation of Modern
Applications
Erkang Zheng

When it comes to assessing the security risk of a software application, relying
solely on automated testing tools can provide an incomplete view. Security
teams often employ tools such as static application security testing (SAST),
dynamic application security testing (DAST), and software composition
analysis (SCA) scanners, which generate a number of findings and assign
severity ratings. These findings are then used to determine the risk associated
with the application.

However, this approach fails to consider crucial factors. Merely comparing
the number of findings or the severity of those findings between applications
does not necessarily indicate their relative security or risk. For instance, an
internal application used by 10 users with more numerous or severe findings
may be less risky than a public-facing production app with a million users
and with much fewer findings. The context in which the application operates
greatly influences its risk profile.

Similarly, the frequency of testing and the application’s history play crucial
roles in assessing its security.

In order to achieve a comprehensive and accurate measurement of an appli‐
cation’s security risk, a holistic approach is necessary. I’d like to introduce an
automated application risk modeling process, continuous application risk
evaluation (CARE). The concept of CARE is to continuously measure a soft‐
ware application’s maturity and security on an ongoing basis and calculate a
risk score that provides a holistic measurement of multiple aspects that con‐
tributes to the overall risk of a software product:

• What is the nature of the application? (design and business context)
• How is it built/maintained? (implementation and operations)

52

• Who is building and maintaining it? (team and maturity)

Design and Business Context
The design and business context of an application encompasses various fac‐
tors that influence its security risk. This domain includes considerations
such as the application’s intended purpose, the sensitivity of the data it han‐
dles, and its overall architecture. For example, an application that processes
financial transactions or stores personally identifiable information (PII) is
likely to have a higher security risk than a simple informational website.
Additionally, the business context, such as compliance requirements or
industry regulations, must be taken into account to evaluate the application’s
risk accurately. The more business value an application provides, the higher
its inherent risks are. Threat modeling is essential to assess the risk. Given
the nature of the application, many of the risks are inherent and may not be
avoidable.

Technology Implementation and Operations
This domain examines the technical aspects of the application’s architecture,
development, deployment, and maintenance. It involves assessing the
robustness of the underlying technology stack, including programming lan‐
guages, frameworks, libraries, and third-party components. Vulnerabilities in
these technologies can introduce security weaknesses into the application.
This is where vulnerability scanning comes in, for both applications and
infrastructure. Additionally, operational protection and monitoring play an
important factor here as well; for example, the deployment and operations of
WAFs, API protection, or other forms of runtime protection.

Maturity of Team and Process
This maturity refers to the proficiency and experience of the development
team and the effectiveness of the SDLC processes in place. An experienced
and well-trained team that follows secure coding practices, such as threat
modeling and secure code reviews, can significantly reduce the application’s
security risk. Additionally, a mature DevOps process that incorporates secu‐
rity checkpoints at various stages of the SDLC helps ensure that security is
considered throughout the application’s life cycle. Regular security assess‐
ments, pen testing, and incident response procedures are indicators of a
mature security process.

Collective Wisdom from the Experts 53

The maturity of the team and process also extends to the organization’s secu‐
rity culture and awareness. The presence of security training programs, clear
security policies and procedures, and a proactive approach toward address‐
ing security issues contribute to reducing the overall security risk.

By considering these three domains, security teams can evaluate an applica‐
tion’s security risk more comprehensively. This holistic approach acknowl‐
edges that security is not solely dependent on the code but encompasses
various interconnected elements that must be evaluated in conjunction to
form an accurate assessment of an application’s security posture. Further, a
score can be calculated based on attributes from these domains for bench‐
marking and risk profiling, similar to the FICO credit score used for
consumers.

A version of this approach is described in a Google patent.

97 Things Every Application Security Professional Should Know54

https://patents.google.com/patent/US10740469B2/en

A Coordinated Approach
to a Successful
DevSecOps Program
Han Lievens

Introduced over 10 years ago, DevSecOps has been accepted as one of the
most important security practices today. Yet very few companies have been
able to truly infuse security into every phase of their CI/CD pipeline.

Most companies I’ve worked with do understand the importance of the six
pillars of DevSecOps, as defined by the National Institute of Standards and
Technology (NIST):

• Collective responsibility
• Collaboration and integration
• Pragmatic implementation
• Bridging compliance and development
• Automation
• Measure, monitor, report, and action

And yet most organizations are unable to fully instantiate these principles
into practice. Is achieving these seemingly reasonable principles really hard
or are these concepts too idealistic and impractical? There’s a lot of talk about
changing mindsets and instilling the right culture. Does good DevSecOps
truly require a company culture overhaul? And what or who would it take to
get this done?

When we talk about infusing security into every step of the pipeline, the keys
are visibility, correlated detections, and automated actions. The first prereq‐
uisite, of course, is collaboration between the development, security, and
operations teams. Only when all teams are talking to each other will we
achieve full visibility into processes, logs, and traces generated from tools

55

and a clear understanding of how and when automated actions can take
place.

What’s been missing for this complete cohesion to solidify is unified coordi‐
nation in the form of a program manager. Not unlike the role of an insider
threat program manager working with all the various teams involved, a Dev‐
SecOps governing person or team would be intimately familiar with the
inner workings of each phase of the CI/CD pipeline and their corresponding
teams. Led by the program manager, a working group would be responsible
for identifying all appropriate data sources and working with each team to
develop correlated detections and automated actions while being mindful of
compliance and governance requirements.

Gaining visibility at each phase of the pipeline could be less challenging than
you’d think. Most tools are already generating logs and are probably stored in
disparate locations. It’s just a matter of talking to the right person(s) to find
out where everything lives. Once a data platform or some automated means
to gather the data is in place, correlated detections can be put in place and
automated actions set up to remediate and improve. A good DevSecOps
practice requires security to be fully baked into the CI/CD pipeline. This
means focused coordination between teams and a centralized data platform
to detect, correlate, and act.

Let’s not forget why we’re here in the first place:

• Early identification and mitigation of security risks
• Faster response to security incidents
• Compliance with regulatory requirements
• Holistic risk management
• Cost-effective security measures
• Continuous improvement

It’s time we take DevSecOps a little more seriously and hopefully start seeing
organizations develop and build dedicated DevSecOps roles. The six pillars
(or principles) are not unrealistic and impractical to achieve. A company cul‐
ture overhaul should not be required. A successful DevSecOps program can
be achieved with focused coordination from a program manager leading a
working group, with support from leadership and access to the right teams.

97 Things Every Application Security Professional Should Know56

What Makes Someone a
Developer?
Helen Umberger

The definition of a software developer has changed in recent years. Tradi‐
tionally, applications are developed by people who have specialized expertise
in writing code. They have the training and the know-how to secure their
apps. Today, apps can be developed by people without technical expertise. By
using powerful no-code/low-code platforms, ChatGPT, and other generative
AI tools, nontechnical people can create applications without actually writ‐
ing code. Although it enables and empowers more people to create apps, it is
also a cause for concern regarding security. Citizen developers are not
trained to develop secure code. As such, application security professionals
must pick up the responsibility of citizen programmers.

Now AppSec must pick up responsibility for all the new developers regard‐
less of background, training, and—well, if they are even human. How can
AppSec create security champions beyond their normal playground? How do
we deliver security training beyond our normal annual “don’t fall for phish‐
ing emails” training that we roll out to our companies? How do we make
every employee and AI security aware? Because soon all our employees will
be potential programmers. The genie is out of the bottle and cannot be put
back.

AppSec needs to ensure that code from nontraditional developers still goes
through pipelines and gets scanned, versioned, and controlled just like that
of traditional developers. There is a need to create guidelines for code devel‐
opment and deployment for apps from nontraditional sources.

Code that accesses sensitive data and sources should be codified into libraries
so that non-IT developers can use preexisting code for security-sensitive
operations. Guidelines enforced by tools are needed to prevent code develop‐
ment for certain logic.

57

Guidelines that lock down generative AI code dictate which libraries can be
scanned for code samples, put in rules based on OWASP, and require the use
of the same type of pipeline your IT developers use for code promotion.

In addition, your new developers are not familiar with all the nonfunctional
requirements that need to be followed, such as standards on data handling,
standards on logging, and so on. Now the AppSec teams need to share this
information with a wider audience, providing training on the how and why
of the business.

Low-code/no-code still has code that can be hacked or poorly coded. The
issue is that the developer is usually a business super user who can create
functions by drag-and-drop logic flows, but behind the scenes, it is still code.
Before it’s released into your environment and manipulates your sensitive
corporate data, it still needs to be scanned, reviewed, and versioned. AppSec
needs to be involved in product selection, and the criteria is how easy it is to
plug it into existing monitoring, libraries, repositories, and scanning. Low-
code/no-code is not an excuse for poor practices.

Regulators don’t care who created the code that causes a breach, exposes PII
data, or creates erroneous outputs. The corporation is responsible. Make sure
all requirements imposed on IT are also imposed on nontraditional develop‐
ers. Make sure they have the training and awareness to be successful.

Without proper controls and guardrails, widespread citizen development
could result in chaos. Because citizen-developed systems typically link to,
change, or extract and analyze data from existing transactional systems, their
developers also typically need an understanding of corporate IT architecture
and guardrails for safe data access and usage. At the very least, someone in
the organization should keep track of what applications have been developed
and who developed them.

Why risk it? Because without low-code/no-code citizen development, you
end up with shadow IT. Software as a service (SaaS) usage without corporate
approval is at an all-time high. A citizen development platform is centralized,
fills the need for shadow IT, monitors, trains, provides libraries, enforces
data rules…and allows it to be brought under AppSecOps controls.

Segregation of duties still applies, and governance still applies! Having one
source for AI code development, or low-code/no-code, selected by AppSec
with control of the environment will help mitigate the negatives of this
democratization of IT and data usage. It will allow monitoring, continuous
deployment, the ability to triage outages, data compliance, logging for audit‐
ing, and so on.

97 Things Every Application Security Professional Should Know58

1 Vikram Mansharamani, “All Hail the Generalist,” Harvard Business Review, June 4, 2012.
2 Vikram Mansharamani, Think for Yourself (Harvard Business Review Press, 2020).

Total AppSec
Hussain Syed

You may have heard the phrases “software is eating the world” or “every busi‐
ness is a software business.”

In other words, software plays a huge role in how we live today. You may also
have seen many companies claim they are tech companies because their
products or services are software! Today, we have technology at our disposal
that we have never had before. Sadly, in the world of software development,
we struggle to keep up with this relentless change, leading to confusion and
failure when we adhere to old ways of thinking and doing things.

We still have “buckets” of specializations where development, ops, and secu‐
rity teams do not work with things beyond their subject matter. Concepts
and methodologies such as Lean, Agile, and DevOps/DevSecOps are all well-
intentioned movements, but they are often used superficially, digressing to
become a veneer of commercial productization or tooling.

In Vikram Mansharamani’s famous HBR article, “All Hail the Generalist,”1

and paraphrased in his book, Think for Yourself, he said, “The future might
belong to those who are skilled not only at generating the proverbial dots of
specialized information but also at connecting them. Those who see the big
picture and tap into appropriate expertise when needed, would likely rule the
future.”2

So, it is time to realize that it is up to us to remove the barriers and expand
our domain of expertise to have a better and deeper holistic understanding
of the complete system. When you add security to the mix, it will start build‐
ing a culture of awareness, and diligence will be reflected during the early
phase of product management itself. AppSec or cybersecurity will truly
become everyone’s responsibility, and the stronger the collaboration, the
more secure and reliable the ecosystem is.

59

https://hbr.org/2012/06/all-hail-the-generalist

To restate the significance of this way of thinking, let’s talk about soccer. Tra‐
ditionally, each team member had a clearly defined role; that is, a defender
was a defender, a midfielder was a midfielder, and an attacker was an
attacker. Every position acted as a silo that had to interact with other silos. I
hope by now you realize where I am going.

Then, at the 1974 World Cup, the Netherlands team stunned everyone and
won hearts all over the world with their beautiful style of playing, called Total
Football. With this style, no player—save for the goalkeeper—has a fixed
position. Any player could take over any position as needed, and their
knowledge of other positions aided their ability to play their primary role.
Attackers would help with defending, and defenders would help with attack‐
ing. It resulted in many wins for the Dutch team. Think of what could hap‐
pen if development, ops, and security teams learned more about each other.

I am not proposing such a radical approach toward modern product devel‐
opment, but a certain amount of curiosity and keenness to learn, share, and
collaborate beyond each other’s area of expertise will go a long way toward a
stable and efficient AppSec community. Could we have imagined a day
where, with the progress of the LLM, we have the option of collaborating—
pair programming of sorts—with technologies like Copilot where the future
has surely turned into today?

97 Things Every Application Security Professional Should Know60

1 Janna Koretz, “What Happens When Your Career Becomes Your Whole Identity,” Harvard Busi‐
ness Review, December 26, 2019.

You’re More Than
Your Job
Izar Tarandach

One day at the end of a particularly busy quarter, I woke up at the usual
dark-o’clock and realized it was a national holiday. I did not need to start get‐
ting ready for a busy day ahead. I did not need to caffeinate and get myself in
the right mindset to tackle the latest challenge.

Without the usual agenda, I didn’t know what I would do with myself that
day, nor did I know what I wanted to do. Or what I could do. Or what was
important to get done. Or that the option to not do the important thing also
existed.

And so it dawned on me (pun not intended!) that my profession had finally
turned into my identity. Without something to break, to protect, to analyze,
or a crisis to respond to, I was lost in the woods without a compass. I had
spent so much time training my head to think, “What could possibly go
wrong and what do we do about it?” that now my fight-or-flight mechanism
was deeply connected to conscious, constant threat modeling. I became my
function, and I lacked a framework without doing it.

In psychology, the term for what I experienced is enmeshment, which
describes a “situation where the boundaries between people become blurred,
and individual identities lose importance.”1 But, according to Janna Koretz’s
article, enmeshment doesn’t need to be only between people—it also happens
between people and their jobs.

AppSec is a high-pressure, fast-paced domain. We measure ourselves by the
amount of influence we yield, the criticality of the findings we identify and
solve, and the fast time responses we strive for when people need us. It is

61

https://hbr.org/2019/12/what-happens-when-your-career-becomes-your-whole-identity
https://hbr.org/2019/12/what-happens-when-your-career-becomes-your-whole-identity

easy to lose ourselves in the urgency of our processes and the responsibility
of our defense roles. We guard the crown jewels of the realm.

This, together with the already high stress of the technology world at large,
the need to constantly keep pace with new developments, and the inherent
context-switching we are under, can certainly lead to burnout and, definitely,
to enmeshment. An often cited stat is that there is 1 AppSec engineer per 100
developers, but “your mileage may vary.”

If you describe yourself in terms of your work (“I am an application security
person!”), find yourself thinking all the time about work (to the point of
waking up with a solution to the problem you went to sleep thinking about),
become anxious about your capabilities and talents when you know you have
them, find it hard to spend time and energy on anything not related to your
job or to AppSec, or feel lost at the thought of not being able to do your job
anymore—you’re dealing with professional enmeshment.

I am not going to embark on a list of tools and practices that can help here.
After all, “I am an application security person,” not a mental health person.
But I will suggest you take proactive steps away from the path to enmesh‐
ment. We cannot be the best at what we do if we are not also at our personal,
non-work-linked, best selves. If you have them, use mental health tools pro‐
vided to you by your employer. Have a nonsecurity hobby (Brazilian jiu jitsu
is ridiculously helpful there—nothing makes you more mindful and aware of
the moment than someone else trying to separate you from your limbs).
Find joy outside of the dopamine hit of finding that next vulnerability. Read
something other than a Request for Comments (RFC) or a Top Ten list. Dive
into the pool and not into source code.

Put yourself first, so you can be of better service to others.

97 Things Every Application Security Professional Should Know62

TAP Into the Potential of
a Great SSDLC Program
with Automation
Jyothi Charyulu

A successful secure software development life cycle (SSDLC) depends on hav‐
ing intentional thought, taking action, and persevering. Remember TAP:
think, act, and persevere for success.

Think
First, create a vision and strategic multiyear road maps. Your vision defines
why you do something.

Own the mission, strategy, product life cycle, and value creation for SSDLC
and enterprise teams. Create a strong why based on industry trends, business
drivers, threat landscape, and enterprise architecture and systems. Here are
the top three points to consider when defining your vision:

Gather customer feedback.
Ask what works, what behaviors are encouraged, and what the biggest
bottlenecks are. Digest the data, analyze it, and create a customized gap
analysis based on your company’s threat landscape and inventory.

What are the drivers?
Business cases help show why your project is worth the company’s or cli‐
ent’s time, money, and resources.

Think about platform engineering, internal pipelines, and automation.
How easy are these to use, configure, scale, and deploy? How can the
vision/strategic road map drive down the overall risk of the firm by pro‐
actively scanning, identifying, mitigating, and remediating security vul‐
nerabilities across all the applications?

63

Act
Second, act on your vision and turn it into a workable plan. This could mean
implementing automation, threat detection, vulnerability management, a
platform engineering model, a road map for scaling across the enterprise, or
integrating security within CI/CD pipelines.

Here are the top three points to act on your plan:

• Consider using a payoff matrix. Conduct a cost-benefit analysis that will
help determine the necessity of a robust AppSec program. What percent‐
age of your budget is allocated back to AppSec? What is the charge-back
model? Who pays for the AppSec program? Does each business unit get
a percentage of costs based on usage or scope of high-risk applications?

• Involve automation at all stages of your pipelines. For example, this
includes automation of internal platforms, infrastructure, testing cover‐
age, cloud or on-prem deployment, and use of patterns or provisioning.
Consider how your SSDLC action plan will help developers prevent
security vulnerabilities in their applications.

• For example, you can integrate training, security guidance (require‐
ments), scanning automation, continuous integration (CI) automation,
and vulnerability management that include open source software flaws.

In addition, think about your source code repository system. Is it possible to
integrate security at this level—really, to the left of the pipeline? Can you
automate your build tools? Assess your testing coverage, including test cycle
time, velocity, and customer satisfaction. Integrate packaging code artifacts
within pipelines. All CI steps should be automated and integrated with the
development pipeline.

Persevere
Third, persevere against challenges such as having a lack of time, standardi‐
zation, and technical skills within your teams. Remember, you are stronger
than these challenges, and you have a secret weapon: automation!

Here are the top three points to consider when persevering against
challenges:

• A product mindset that correlates with the usage of platform engineer‐
ing will help address the challenges faced in SSDLC.

97 Things Every Application Security Professional Should Know64

• Automation will help conquer challenges dealing with organizational
mindset, culture, manual integration, lack of standardization, and lack of
time.

• Standardization, consistent security training, automation integrated
within pipelines, and vulnerability management all assist in dealing with
challenges. Having consistent communication and easy-to-use road
maps that clearly show the prioritized backlogs and deliverables, includ‐
ing incremental implementation of product releases without tight cou‐
pling of application architecture, help persevere against challenges as
well.

This is how you use TAP for a successful SSDLC program: think, act,
persevere.

Collective Wisdom from the Experts 65

Vulnerability Researcher
to Software Developer:
The Other Side of the
Coin
Larry W. Cashdollar

I’ve been finding vulnerabilities in software since 1999. I’ve reported over
300 vulnerabilities in that time, ranging from format string vulnerabilities to
cross-site scripting. I also started developing a web server in C around 1994.
The web server has been tweaked, patched, and modified over the years since
I started using it to serve traffic to my website in 2002.

My site only served static content, as the HTTP server I developed was much
too simple to provide dynamic content. In 2010, one of the top vulnerability
and bug curators in the infosec community mentioned that my site should be
searchable, and that he’d had trouble finding vulnerabilities I had published
while he was building his database. So I added the ability to execute PHP
code and put all of my advisories in a MySQL database.

In April 2013, I had the opportunity to put my website behind Akamai’s mas‐
sive content delivery network (CDN) and enlist some of our security prod‐
ucts to help my site. As time passed, I ran into bugs when fixing the code or
adding features.

I eventually ran my code through Valgrind and fixed various null pointer
dereferences, memory corruption issues, and leaks. I mentioned my Valgrind
adventures to my friend, who is a seasoned C developer. He works as a pene‐
tration tester and participates routinely in Capture the Flag (CTF) chal‐
lenges. I decided to email him a copy of my HTTP server code named
Bunyip. This was the first time anyone other than myself had seen the ball of
C code I had been tempering over the years.

66

After a few days, my friend returned saying he had found some buffer over‐
flows and a path traversal attack. I’m now shocked and embarrassed as to
where I went wrong. Then I remembered disabling the attack checking code
when testing my server with Akamai’s CDN and Kona WAF. I knew I made a
major mistake with that code being disabled.

That wasn’t the worst of it; in my code, I had been checking that the exe‐
cutable bit was set on files for execution. If that bit was set, then the exe
cve() function was called on the file requested. This, coupled with the path
traversal, meant that my friend was able to get remote command execution
on my server via my HTTPd process. He could execute commands as www-
data, the user that the HTTPd server dropped its root privileges to.

I’ve made many changes to the code, running it through Valgrind and audit‐
ing all of the functions of the system and my own to ensure I’m checking
return values correctly. I no longer check the executable bit, but instead
check the file extension. The code now executes cleanly and I can build it
with compiler optimizations set (-O2), which would have caused a crash
before due to the memory corruption issues I had. I’ve been running the
code on my production web server for years now with no issues whatsoever.

It’s easy to lose sight of all the important things in a programming project
when you’re focused on getting a specific task completed. In my situation, I
was working on stability and functionality and lost the hacker mindset along
the way. How can I break this? How can this be abused? If I were looking to
get this to behave differently how would I do it? If I had taken a step back
and looked at my code from a hacker’s point of view like I had when I started
writing it, I think I could have prevented most of my friend’s attacks.

So, the moral of the story is that if you’re developing software, try to take a
step back and examine your code from an adversary’s perspective.

Collective Wisdom from the Experts 67

Strategies for Adding
Security Rituals to an
Existing SDLC
Laura Bell Main

From time to time, we stumble upon a new approach, ritual, process, or tool
that can potentially improve our software’s cybersecurity and can be embed‐
ded into our software development lifecycle (SDLC). Of course, we want to
try it.

So how can you successfully implement new processes, tools, or rituals in an
existing SDLC? Here are some lessons I have learned over the years that I
would like to share.

You Can’t Change What You Don’t Understand
This probably seems obvious, but if you are hoping to influence or change
something, it’s a great idea to understand it first. If you aren’t actively part of
the software team or using these processes day to day, now is the time to
learn.

You can start understanding the following:

• What tools and processes are currently in this SDLC?
• Who runs them? How much time does it take?
• What is an acceptable completion time for each phase? This is especially

important for tools embedded into deployment pipelines.
• What is currently working well?
• What is hurting the team, and what would they change if they could?

This process is valuable, not only for you as you prepare to weave cyberse‐
curity through it, but also for your relationships with your engineering

68

teams. Security is about collaboration, which starts with understanding and
empathy.

Start with Experiments, Not Solutions
The rollout of a new process, tool, or ritual must start as an experiment, as
you run the minimum viable product (MVP). By doing this, we encourage
fail fast and create room for the engineering team to provide feedback and
assess it from their perspective. It also gives you time as a leader to under‐
stand if this is the right approach.

Like any experiment, you need to start with a hypothesis and some criteria
that you can measure. Additionally, you will need to understand what suc‐
cess and failure would look like.

For example, an experiment for rolling out a source code review tool into the
CI/CD pipeline would need the following:

• Hypothesis. Using a source code review tool in the CI/CD pipeline
would:
— Allow the team to review all source code on commit.
— Identify cybersecurity vulnerabilities in our specific language set and

technology stack.
— Reduce the time taken to check code for cybersecurity issues.

• Criteria:
— Run time. The tool must run in less than 10 minutes so that the

deployment pipeline is not compromised.
— Run frequency. The tool can run on every commit and be triggered

from our existing tools.
— Output. The tool output can be automatically raised with engineers

and also recorded in our ticketing or issue-tracking system.
— Exceptions. The tool can be configured to allow exceptions that are

specific to our environment.

Experiments will typically run for between one and three months to allow for
testing over a sustained period and a wide range of development milestones.
In the best case, experiments include brand-new code, projects, and legacy
systems to ensure the range of the capability is understood.

Collective Wisdom from the Experts 69

Create a Rollout Plan with the Engineering Team
If the experiments succeed and you (and the team) are satisfied with the out‐
comes, it’s time to roll out.

Rather than just turning things on and calling it a job well done, consider the
following:

Training
Ensure this links to clear explanations of the tool’s purpose, outcomes,
and impacts.

Support
Have a plan for what happens if things change, if there are issues, or if
the team needs help. If people find it is no longer working and you don’t
have a clear support system, the process or tool will be removed or
avoided.

Review
Have an annual process for reviewing the effectiveness of the tools and
processes you have in place.

Collaboration Is the Key
No matter how big or mature your team is, introducing new elements to an
existing SDLC can take time and effort. Remember, however, you can make
these changes together by collaborating with your engineering team and
focusing on the purpose, outcome, and impacts of the proposed changes.

97 Things Every Application Security Professional Should Know70

Challenges and
Considerations for
Securing Serverless
Applications
Manasés Jesús

With the recent cloud computing advancement, serverless applications came
to light and became more and more attractive. At its core, serverless comput‐
ing is a model of cloud computing where the cloud provider manages the
infrastructure and automatically provisions and scales the resources as
required. This means that developers can focus on writing code without hav‐
ing to worry about managing servers or infrastructure.

Security in serverless applications is a topic of great importance in the
modern digital landscape. The rise of serverless computing has brought
about a new set of challenges when it comes to security. In this essay, we will
explore the key considerations for securing serverless applications.

One of the biggest challenges is the fact that serverless applications are event
driven, which means that they are triggered by events such as user requests,
database updates, or file uploads. This makes it difficult to predict when and
where the application will be executed, which can make it harder to imple‐
ment security measures.

Another challenge is the fact that serverless applications are composed of
multiple functions that are executed independently and asynchronously. This
means that each function needs to be secured individually, which can be
time-consuming and complex.

Because it is a multitenant cloud service model, serverless computing is sus‐
ceptible to security risks that can be categorized into five groups. External
attacks on applications from malicious users are part of the first group, such
as injection and cross-site scripting attacks. The second group consists of
applications attacked internally by insiders, such as sniffer attacks. For

71

instance, in an ehealth application, a distinct series of fired functions may
represent a particular patient’s health status. The last three groups are hori‐
zontal attacks between tenants, vertical attacks on serverless infrastructures
from malicious tenants, and vertical attacks on applications from malicious
platforms.

So, what are the key considerations for securing serverless applications? Well,
it is important to implement several strong mechanisms. In a nutshell:

Authentication and authorization mechanisms
Users should be required to authenticate themselves before they can
access the application, and access should be restricted to only those users
who have the necessary permissions.

Encryption mechanisms
All data should be encrypted both at rest and in transit. This can be
achieved through the use of SSL/TLS certificates, encryption algorithms,
and secure key management practices.

Access controls
Access to the application should be restricted to only those users who
have the necessary permissions, and those permissions should be
reviewed regularly to ensure that they are still appropriate.

Monitoring and logging mechanisms
All events should be logged and monitored for suspicious activity, and
alerts should be triggered when suspicious activity is detected.

Testing and validation mechanisms
All code should be thoroughly tested and validated to ensure that it is
free from vulnerabilities and meets the necessary security requirements.

Securing serverless applications is a complex and challenging task, but it is
essential in order to protect against the growing threat of cyberattacks.
Whether you are a developer, a security professional, or a business owner, it
is paramount to take the necessary steps to secure your serverless applica‐
tions and protect your business from cyberattacks.

97 Things Every Application Security Professional Should Know72

Using Offensive Security
to Defend Your
Application
Nathaniel Shere

Developers are often at a disadvantage when it comes to defending their
applications from attackers. But the reason is simple: their focus is different.

Developers focus on functionality, performance, and ease of use for custom‐
ers, while hackers focus on vulnerabilities, data exfiltration, and how users
can be manipulated. This disconnect in focus can lead, through no direct
fault of the developers, to security issues that attackers regularly target and
exploit.

The key to giving the advantage back to developers is to think like attackers
when designing, implementing, and testing application features. To highlight
just a few examples of this type of thinking, let’s look at various features that
are common in most applications.

Helpful Response Messages
Because developers attempt to assist users as much as possible, they will
often add helpful response messages based on the user’s input. One example
of this is when a user forgets their password and the application tells the user
whether or not the submitted email address is valid.

Unfortunately, these helpful responses also assist an attacker in identifying
valid accounts within the application, a prerequisite to performing password
and other authentication attacks. So, in the end, the feature that helps users
troubleshoot their own issues also helps attackers learn more about the
application and how to attack it.

73

API Endpoints
Developers often fall into the trap of believing that API endpoints are more
secure than standard web pages because they are nearly invisible to standard
users. These endpoints have gained popularity with the advent of jQuery and
advanced JavaScript frameworks that handle all of the application interface
rendering. However, attackers know to use proxy tools such as Burp Suite or
Postman to see those backend requests that go unnoticed by others.

Developers who understand this attack vector, though, can plan accordingly
and ensure that appropriate security controls and features are implemented
at those endpoints.

Administrative Features
A lot of trust is placed in administrator users. They are usually given the
most features, the most access, and the most ability to destroy everything. As
a result, developers often assume that only trusted individuals will ever be
administrators and, thus, administrator features aren’t as vulnerable as lower
privileged ones.

Hackers are always interested in advanced features, though, and many types
of attacks have been developed to target them. From cross-site request for‐
gery (CSRF) and clickjacking attacks where an active administrator is tricked
into taking an action they didn’t intend, to outright phishing and social engi‐
neering. If a cross-site scripting vulnerability is discovered elsewhere in the
application, it can also often be used to target administrators who visit the
infected page. Finally, hackers are experts at finding and analyzing adminis‐
trative functionality, even from lower-privileged user accounts, by enumerat‐
ing endpoints, studying JavaScript code, and reviewing help desk and
developer documentation.

As with the other examples, developers who understand the types of attacks
that can target administrators are better prepared to defend against those
attacks, without necessarily limiting the ability of administrators to manage
the application. Using appropriate request headers and application configu‐
rations mitigates the risk of CSRF and clickjacking attacks, for example, and
ensuring that administrative functionality is appropriately protected against
privilege escalation attacks can limit potential exposure to lower privileged
users.

The examples can go on and on, but they all demonstrate the value of think‐
ing like an attacker so that application features can be designed with these
attacks in mind, appropriate defenses can then be implemented during

97 Things Every Application Security Professional Should Know74

development, and relevant attacks can actually be tested against the applica‐
tion before deployment.

Collective Wisdom from the Experts 75

1 Maximum yesness embodies the role of an AppSec engineer as an ally to developers, fostering col‐
laboration and transformation through a holistic approach that integrates security into every facet
of modern software engineering.

Beyond “No”: The Modern
Paradigm of Developer-
Centric Application
Security
Nielet D’mello

In the rapidly evolving landscape of modern software development, AppSec
engineers like me, find ourselves operating in an environment of high agility
and velocity. Securing things at scale and pace where security debt can
potentially loom large as vulnerabilities and defects find their way into the
product pipeline is a reality to account for. Naturally, AppSec professionals
need to redefine their approach to working with engineering teams. This
essay delves into the concept of maximum yesness.1 Yesness refers to having a
willingness or desire to succeed; to remove the boundaries that would ulti‐
mately cause you to fail. Applying this concept, and maximizing it to its full
potential, is an approach that bridges the gap between security and develop‐
ment, fostering an environment where security becomes an enabler rather
than an impediment. Maximum yesness signifies not just a willingness to say
yes but doing so strategically and optimally by creating an environment
where measures are not merely restrictive but contribute positively to the
development process, ultimately fostering a culture of innovation and
success.

Traditional security operates with the opposite paradigm. It defaults to say‐
ing no to ensure protection. As a result, security becomes a harsh, negative
thing. It becomes an impediment and a gatekeeping practice.

76

Now, what if you adopt the opposite approach to thinking about when to say
yes? This looks at what is acceptable, rather than what is prohibited.
Although it ultimately achieves the same thing, it has a positive connotation
that puts a new spin on security culture. It depends on having a streamlined
intersection of technology, people, and processes.

These days, with the pace of change, security teams have to lead their work
with a focus on an acceptable risk posture, leveraging a holistic approach
through best practices guidance, developer-centric technology, people, and
processes in the development life cycle.

Crucial to this transformation is the selection of tools and security programs,
which play a pivotal role in shaping a culture where application security acts
as an enabler (the “yes” factor). Aligning with engineering teams’ aspirations
for seamless operations, AppSec teams must construct reliable solutions.

For instance, transitioning from conventional vulnerability management,
characterized by scans leading to an abundance of remediation tickets, to
developing or acquiring products that empower developers through preset
safety mechanisms, forms a critical strategy. By creating security paved roads,
organizations can substantially mitigate application risks and enhance over‐
all security.

Consider the scenario of developers crafting infrastructure as code (IaC) to
generate resources. Instead of grappling with securing resources, the
approach shifts to providing easily customizable and secure modules, simpli‐
fying the process. Furthermore, the integration of SAST/SCA scanning into
CI/CD pipelines, operating in both nonblocking and blocking modes to
guide developers during pull requests, empowers developers while maintain‐
ing security standards.

Additionally, a successful approach is the introduction of an engineering-
focused Security Champions program. This program, thoughtfully struc‐
tured with defined roles and responsibilities, offers tailored threat modeling
training for internal technology stacks, guidance on vulnerability manage‐
ment, and more. Empowered engineers can conduct security design reviews,
perform secure code reviews, and address vulnerabilities’ remediation, fos‐
tering trust and organic risk management.

The key to the success of the application security program is a transforma‐
tional shift in communication and engagement. In essence, maximum yes‐
ness is not synonymous with granting approval to every request from the
AppSec team. Rather, it involves reshaping communications and engage‐
ments through careful inclusion of caveats and considerations, with a

Collective Wisdom from the Experts 77

resolute emphasis on constructing security paved roads. You can start by
aligning with the engineering team on common goals, understanding their
priorities, and supporting their objectives. This helps AppSec professionals
provide a win-win solution, instead of throwing a no as an answer to their
solutions. The shift in mindset will naturally shift your communication and
engagement model.

By incorporating AppSec at the design phase, there’s a better understanding
of the problem statement, a shared language of the business goals, and a
lower cost of securing the solution much earlier in the SSDLC. After all, out‐
comes are directly related to the processes that support it.

97 Things Every Application Security Professional Should Know78

Security Paved Roads
Nielet D’mello

If you don’t know where you are going, any road will get you there.
—Lewis Carroll

In modern software companies, there are usually centralized platform teams
and various product teams. The challenge that many security teams face is to
empower developers to ship or develop things as quickly and efficiently as
possible while maintaining an appropriate level of security that minimizes
the business risk.

As AppSec engineers, we embrace the philosophy of paved roads to introduce
well-supported and smooth security controls that are automated and integra‐
ted across the SDLC.

What Are Security Paved Roads?
A concept first popularized by Netflix, security paved roads involve building
software, libraries, tools, and processes (very close to the developer’s work‐
flow) to ensure that developers can build secure things by default. The goal is
to make security as transparent as possible and as easy as possible for devel‐
opers—not to make security a roadblock for them to adopt. An ideal paved
road would allow engineers to be fully autonomous in designing, building,
and deploying with little to no bottlenecks from security teams because the
security baseline requirements are already baked in.

When it comes to AppSec reviews and vulnerability remediations, the paved
roads support developer autonomy and accelerate velocity because mitiga‐
tions can be accounted for centrally via self-serve guidance. This helps engi‐
neers focus on delivering their core business value and reduces friction with
security teams. In a nutshell, it means aiming to make the quickest path to
production the most secure.

79

Some common examples I’ve seen or contributed to in terms of paved roads
are:

Continuous integration and delivery/deployment (CI/CD)
Coupled with a continuous integration pipeline to provide mechanisms
for automated releases to environments with capabilities like rollouts,
rollbacks, and configurations as code that avoid drifts

Software life cycle management
Providing secure, hardened and up-to-date container base images; a
common internal store for retrieving third-party dependencies, a soft‐
ware bill of materials (SBOM)

Authentication
Centralized mechanisms incorporating authentication standards, proto‐
cols, rate limiting, monitoring, and auditing for web applications and
APIs

Secret storage
Secure storage and granular access control mechanisms for secrets and
credentials across the infrastructure and applications

Similar security paved roads can be built for access control, automated threat
modeling, vulnerability scanning tools, continuous monitoring and
response, compliance and regulatory considerations, and so on.

How to Decide What Security Paved Roads Are
Needed?
AppSec engineers should begin by identifying common insecure usage pat‐
terns and vulnerabilities across teams in the applications and services they
are reviewing. They should also consider the business risk profile for the
applications and other factors, such as exposure to the internet, business crit‐
icality, types of users, types of data handled, and so on.

Additionally, focusing on large strategic initiatives (e.g., partnering with a
central platform team responsible for authentication, access, and identity in
building these components) yields a huge return on investment.

Adoption and Effectiveness
The effectiveness of paved roads is hugely dependent on adoption. Some
ideas that I’ve found work well are sharing/advertising in technical circles or

97 Things Every Application Security Professional Should Know80

brown-bag talks, evaluating outreach efforts for different teams and organi‐
zations, and improving guidance around self-service use of these controls.

Product-Centric Approach and Feedback Loops
A product-centric approach is crucial to adopting paved roads as it helps to
build the solutions by scoping the problem, outlining use cases, focusing on
the developer experience, gathering feedback, and measuring success.

With feedback loops, these can be either balancing (by providing easy-to-use
paved roads and minimizing the probability of insecure software and reduc‐
ing security incidents) or reinforcing loops (by building easy-to-use, smooth
paved roads that accelerate velocity, making the safe path the default path).

Conclusion
Overall, security paved roads provide a framework for integrating security
into the software development process, enabling developers to build secure
applications efficiently. By leveraging security paved roads properly, we as
AppSec engineers can further enhance our approach to application security
and effectively mitigate risks.

Collective Wisdom from the Experts 81

AppSec in the Cloud Era
Sandeep Kumar Singh

Over the past few years, there has been significant growth and adoption of
cloud-based applications. The shift to cloud computing has been driven by
its many benefits, including scalability, agility, cost savings, and global acces‐
sibility. This adoption has also brought about significant changes in applica‐
tion security. Traditionally, AppSec focuses on protecting applications within
an organization’s premises. However, the move to cloud computing has
pushed applications and their associated data outside the organization’s
perimeter, leading to new security challenges and considerations. As an
AppSec professional, learning the cloud challenges and adopting new con‐
trols is a must for protecting applications in the cloud.

Learn Shared Responsibility Model
One of the fundamental changes that cloud computing brings to application
security is the shared responsibility model. In traditional on premises environ‐
ments, organizations had full control over the security of their infrastructure
and applications. With cloud computing, the responsibility for securing the
underlying infrastructure shifts to the cloud provider, while the organization
is responsible for securing applications and data through access controls,
authentication, secure coding, and managing third-party risks.

It’s important to note that the exact division of responsibilities can vary
depending on the cloud service model being used (IaaS, PaaS, SaaS) and the
specific offerings of the cloud provider. Each model presents its unique secu‐
rity challenges. For example, in the infrastructure as a service (IaaS) model,
where organizations have more control over the infrastructure, they need to
ensure proper configuration and hardening of virtual machines, network
security groups, and storage accounts. On the other hand, in the platform as
a service (PaaS) and software as a service (SaaS) models, organizations rely
on the cloud provider for many underlying security controls, such as secur‐
ing the platform or application stack.

82

Secure Configurations
Cloud service providers typically provide a secure baseline configuration for
their services, but it is up to the organization to customize and optimize
those configurations to align with their specific security requirements. This
includes configuring access controls, network settings, storage configura‐
tions, encryption, logging and monitoring, and other security-related set‐
tings. Cloud providers often offer documentation, best practice guides, and
security recommendations to assist organizations in securely configuring
their services.

Continuous Logging and Monitoring
Another significant impact of cloud computing on application security is the
need for continuous logging and monitoring. Implementing comprehensive
logging mechanisms enables organizations to track user access, data trans‐
fers, configuration changes, and security incidents within their cloud infra‐
structure. Real-time monitoring of logs facilitates prompt detection and
response to threats and suspicious activities, while the analysis of logged data
provides insights into system performance and vulnerabilities. Additionally,
logging and monitoring assist in compliance by providing an audit trail of
activities.

Data Protection in Multitenant Environments
Risk mitigation in multitenant environments is also crucial for organizations
to protect their data and maintain privacy. To mitigate risks, organizations
should focus on strategies such as data isolation, encryption, access control
and authentication, vulnerability management, security monitoring and log‐
ging, SLAs, contractual agreements, and regular security assessments. Ensur‐
ing the logical separation of data, implementing robust encryption, and
adhering to strict access control practices safeguard against unauthorized
access to sensitive data.

Adopt Cloud Security Services
Additionally, cloud security services and tools provide essential measures to
enhance application security. Secure WAFs protect against common web vul‐
nerabilities, while cloud access security brokers (CASBs) offer control and
visibility over cloud data and applications. CASBs enhance security with data
encryption, access control, and threat prevention. They tackle shadow IT,
enforce data loss prevention (DLP) policies, and ensure compliance with
industry regulations.

Collective Wisdom from the Experts 83

Container security tools ensure the integrity of containerized applications,
and identity and access management (IAM) solutions manage user access to
cloud resources. Encryption and tokenization tools protect sensitive data,
while SIEM solutions collect and analyze security event data. By leveraging
these services and tools, organizations can implement robust security con‐
trols and detect and respond to threats in real time.

Conclusion
Application security is crucial in the cloud era to protect sensitive data and
defend against cyber threats. Cloud computing offers numerous benefits but
also introduces unique security challenges. By implementing these security
measures, organizations can mitigate risks and enhance AppSec in the cloud.
With a strong focus on AppSec and the adoption of robust security practices,
organizations can confidently embrace the cloud and leverage its benefits
while maintaining the integrity, confidentiality, and availability of their appli‐
cations and data.

97 Things Every Application Security Professional Should Know84

Code Provenance for
DevSecOps
Yashvier Kosaraju

The term provenance alludes to the original source or historical lineage of
ownership. When approached from the realm of application security, the
concept of code provenance or code ownership emerges as the foremost chal‐
lenge that every AppSec team must confront before entering the captivating
realm of DevSecOps automation and advanced tooling. This prelude is cru‐
cial, as it entails discerning the appropriate individuals to designate or alert
when AppSec tools unearth vulnerabilities.

Picture this: you find a deadly SQLi (or pick your favorite bug), in a piece of
code through the various practices in your AppSec program (internal code
review, external security review, etc.). How do you go from here to figuring
out if this code is deployed into production, which team owns it, who needs
to fix it, and who it needs to be escalated to if the need arises? Now repeat
this for every code bug you find in your code. You are going to spend the
majority of your time finding owners rather than finding issues to fix or
reviewing designs.

The solution to this is to figure out a way to have ownership information of
code (and other systems) either in a separate system with APIs or by throw‐
ing a simple file into every code repo that has the information you need.
Once you have this information, you can quickly go from a bug to alerting
the relevant team to fix things, reducing the time from “finding to fixing,”
which also helps reduce the time for which your assets are at risk. You can
also build automation on top of your tools that provides high-confidence
results (i.e., file tickets for the issues and assign them to the owner based on
the system that maintains ownership).

There are multiple solutions to help you accomplish this. Consider Spotify’s
centralized software catalog, the innovative approach by Twilio through the
introduction of an about.yaml file adorning each repository, replete with per‐
tinent insights, or enterprise AppSecOps tools which also help you maintain

85

https://backstage.io/
https://www.twilio.com/blog/determine-code-ownership-about-yaml-gordon

ownership information. Regardless of the chosen modus operandi, one must
possess a firm grasp on which team commands dominion over a specific
code fragment, the product to which it contributes, and its stage of develop‐
ment, be it within the crucible of development, staging, or the grand theater
of production.

Wait, why not use CODEOWNERS you ask?

The problem I have had with CODEOWNERS is that I cannot tell you which
team owns the code, what feature it deploys to, what stage of development it
is in, which product group or business unit in your company it belongs to,
and any other information you might want.

Once you start down the path of figuring out code ownership, and maintain‐
ing this for future code in your organization, there are a few roadblocks you
will face, two of the most common ones being:

Shared ownership
There is a lot of code in companies that have shared ownership, aka, no
clear owner. This is a problem because when stuff hits the fan, you need
to know who is responsible. (This is similar to asking if five people own
a car. Who pays when the car needs to be taken to the shop?)

Legacy code
This is another common problem where the code has been written and
deployed by folks who are no longer at the organization. (This is similar
to you driving a car but not knowing whose it is, except that it belongs to
someone in your family.)

In conclusion, effectively managing code ownership intricacies is crucial for
successful software development and maintenance. Solutions such as Spoti‐
fy’s Backstage, Twilio’s about.yaml approach, and enterprise AppSecOps tools
provide valuable means to establish and handle ownership information.
While CODEOWNERS is a widely recognized tool, its limitations in offering
comprehensive insights into code ownership, deployment features, and
development stages highlight the significance of exploring alternative
strategies.

As you embark on the journey of unraveling code ownership complexities,
you may encounter challenges such as shared ownership and legacy code.
The former poses difficulties in pinpointing responsibility during critical sit‐
uations, while the latter involves managing code left behind by individuals
no longer with the organization. Addressing these challenges is crucial for
maintaining transparency, accountability, and efficiency in the software

97 Things Every Application Security Professional Should Know86

development life cycle. By overcoming these roadblocks, organizations can
cultivate a culture of clarity and responsibility—ensuring smoother collabo‐
ration and more effective code management.

Collective Wisdom from the Experts 87

PART III

Data Security &
Privacy

Will Passwordless
Authentication Save Your
Application?
Aldo Salas

Web applications can use a number of different options when it comes to
authentication schemes. Without a doubt, and historically, usernames and
passwords have been the preferred method of authentication for the last few
decades.

The shortcomings of password-based authentication have been discussed at
length, and almost every week we keep hearing of a new breach that involved
or resulted in a password compromise.

Passwordless and WebAuthn
Thankfully, we now have stronger authentication mechanisms, such as pass‐
wordless systems. Specifically for web applications, we now have the Web
Authentication (WebAuthn) specification that uses public key cryptography
in order to authenticate any given user to a web application. The Fast Identity
Online (FIDO) Alliance is the association behind this specification.

WebAuthn allows consumers to use strong authenticators such as security
keys, biometrics, and mobile devices to prove their identity. Essentially,
WebAuthn is a set of browser-based APIs that allow web applications to
authenticate users by using the aforementioned authenticators.

Most modern devices have at least one of these authenticators already built
in. For instance, you can use biometrics for mobile devices (fingerprint, face
recognition, etc.), Touch ID for MacOS, and Windows Hello on Microsoft
devices, to name a few.

These authenticators are phishing-resistant, which means that even if a bad
actor somehow manages to trick users into providing their login information
and, for instance, the user tries to use a security key to authenticate to a fake

89

website, this will not work since the FIDO authenticators are tied to a spe‐
cific domain or website. These websites are referred to as relying parties
(RPs) under the FIDO specification, and a web application can have multiple
RPs.

Passwordless Pros and Cons
This sounds amazing, and it would appear that this is the solution to all of
our authentication problems. Just think about it: when using WebAuthn, it’s
impossible for an attacker to conduct any of the following attacks:

• Brute force
• Phishing
• Password spray
• Dictionary attacks

Furthermore, it wouldn’t make sense if an attacker wanted to target one spe‐
cific application, since the web application only stores the public keys to
authenticate users—which is meaningless by itself. An attacker would be
forced to target users one by one and try to compromise their devices one at
a time in order to try and extract the private key needed to authenticate that
specific user to a specific website. As you can imagine, this is not cost-
effective for bad actors.

However, WebAuthn is not something that can be leveraged and deployed
instantly. For instance, think of an application that has 10 million users, and
the company decides they want to start requiring physical security keys for
everyone. This represents a challenge since not everybody would be willing
or able to procure a security key. And let’s not forget the cost of acquiring
such devices.

Implementation challenges aside, it’s really important for any organization
that is considering using a passwordless (WebAuthn) solution to be aware of
the risks that this paradigm involves.

Passwordless Vulnerabilities
The main concern when implementing WebAuthn is making sure the web
application is performing all the authorization and authentication checks at
every single endpoint and preventing tampering in every single parameter.

If a web application using passwordless authentication does not perform the
proper server-side checks, this can lead to serious vulnerabilities such as:

97 Things Every Application Security Professional Should Know90

• Account takeover
• Privilege escalation
• Username impersonation
• Unauthenticated access
• Insecure direct object references (IDORs)
• Etc.

At the end of the day, we have to remember that web applications using
WebAuthn, or any other passwordless solution, are still susceptible to all the
web vulnerabilities we are already familiar with.

Other Recommendations
Passwordless authentication is powerful, but it won’t save your application by
itself. It is important to keep in mind other crucial AppSec components, such
as SSDLC, automated and manual testing, application firewalls, and others.

Collective Wisdom from the Experts 91

Securing Your Databases:
The Importance of Proper
Access Controls and
Audits
Dave Stokes

Databases are the core of every project or product and are a critical piece that
every AppSec professional should understand and pay attention to. However,
very rarely do you hear of security steps taken to secure that data. Usually,
the databases are firewalled away from the general world, which limits vul‐
nerabilities from outside exploitation. This means much of the ability to
adversely affect the data will come from insiders.

Like securing applications, securing databases starts with the basic security
requirements, especially on access management. Databases, like their under‐
lying operating systems, have usernames and, hopefully, passwords. Most
databases no longer support “anonymous” accounts where there is neither a
username nor a password. So what is needed are good passwords and restric‐
tions on account access to schemas. It is unsurprising to find an organization
with several projects using the same server for multiple separate schemas
with the same account name and password. And many times, that will sadly
be the root account.

It should be obvious that using the root account for all database access is a
potential ticking time bomb waiting for the wrong delete or a data breach.
However, this is unfortunately a common occurrence. Restricting root
account access is always countered with claims of stifled creativity by those
who do not have it. Root access should be reserved for administrative func‐
tions only. The lower the number of persons with the ability to perform
potentially catastrophic actions the better.

Separating access to individual schemas by unique usernames and passwords
contains that data to a known group. This greatly reduces the possibility of

92

confusion where Project A does function X while Project B does function Y
and mistakenly uses the wrong function. It is even advisable to have separate
accounts for reading only and for writing only—especially in cases where it is
imperative to have short-duration transactions. It is too easy to lock many
rows and block others from access while doing the SQL equivalent of a scav‐
enger hunt.

Auditing account permissions is a thankless task until after a painful inci‐
dent. It is a common practice to copy permissions from a known senior
developer to a junior when that junior probably does not need higher-level
privileges. Most databases now have roles where you set the privileges needed
for a job function and then users are assigned a role. So a lower-privileged
role may have read, write, and delete permissions on a set of tables, but they
may not have created schema or drop abilities. Being stingy with permissions
may seem harsh unless you have had to restore large schemas from backup
repeatedly.

Another part of auditing is removing accounts that are no longer needed. In
most organizations, the closest thing to immortality is a database account
that will survive well past the account user’s tenure. This is a vulnerability
waiting to happen. Most relational databases have a way to lock accounts in
cases where a developer changes projects but may eventually return.

It helps to think of the login credentials as the last bastion of the defense of
your database. If the credentials are used maliciously, then there is nothing
between that bad actor and your data or what was your data. Do all the
things you do with operating system credentials, such as password rotation
schedules, complexity and length requirements, and decommissioning upon
employee exit. These credentials are often the last line of defense of your
data.

Of course, logging and monitoring activities in the database is a great detec‐
tive control. Whether it’s insider threats or external threats, the recommen‐
dation is to always implement a solid alerting and auditing capability for the
databases. Protecting your application is ultimately protecting your data,
which goes hand in hand with securing your database.

Collective Wisdom from the Experts 93

DataSecOps: Security in
Data Products
Diogo Miyake

As the world is moving toward data-centric security, data security operations
(DataSecOps) is an evolving approach that emphasizes integrating security
throughout the data life cycle. DataSecOps involves collaboration between
security teams, data scientists, and engineers to ensure that appropriate secu‐
rity is considered at all stages of the data life cycle, including data creation,
storage, processing, sharing, and disposal. Similar to DevSecOps, this para‐
digm recognizes that all teams involved in data management and use must
take responsibility for maintaining security.

Several components contribute to the implementation of DataSecOps. These
components include:

Security operations center
A security operations center (SOC) is a dedicated team or facility
responsible for monitoring, detecting, and responding to security inci‐
dents in real time. The SOC uses various tools, technologies, and pro‐
cesses to identify and mitigate security threats, aiming to protect an
organization’s information assets and infrastructure.

DevSecOps
DevSecOps is a software development approach that integrates security
practices into the DevOps process. It emphasizes the collaboration
between developers, operations teams, and security professionals
throughout the SDLC. By incorporating security early on and automat‐
ing security checks, DevSecOps aims to build secure and reliable sys‐
tems. Application security through DevSecOps becomes the core of the
DataSecOps.

Data privacy
Data privacy concerns the protection of personal information and how it
is collected, stored, processed, and shared. It focuses on ensuring that

94

individuals’ personal data is handled securely and in compliance with
applicable privacy laws and regulations. Organizations implement data
privacy measures, such as data encryption, access controls, consent
management, and data breach notification, to safeguard sensitive infor‐
mation and respect individual privacy rights.

Chaos engineering
This practice involves deliberately introducing failures into a system to
test its resilience and recovery capabilities, helping identify weaknesses
and improve system design.

Data governance
Data governance encompasses policies, procedures, roles, and responsi‐
bilities for managing data assets throughout their life cycle. It includes
components such as data architecture, data stewardship, data quality,
metadata management, and data security.

Data quality
Data quality refers to the health of data at any stage in its life cycle. Vari‐
ous metrics, such as incident counts, response and resolution times,
table uptime, and query performance, help measure and improve data
quality.

Data classification
Data must be categorized and labeled based on its sensitivity, impor‐
tance, and regulatory compliance requirements for implementing robust
security measures.

In summary, DataSecOps is a paradigm that integrates security into Data‐
Ops, ensuring that security is considered at every stage of the data life cycle.
It involves collaboration between various teams and incorporates practices
and tools from cybersecurity, big data, and product management to protect
data and minimize security risks.

Collective Wisdom from the Experts 95

Data Security Code
and Tests
Diogo Miyake

Securing data code and tests is essential to protect data, maintain data integ‐
rity, prevent cyberattacks, ensure business continuity, uphold trust, and com‐
ply with legal and regulatory standards. One way to do this is to secure data
pipelines. The importance of securing data pipelines lies in some steps and
processes that must be taken before simply trying to solve the problem. For
example, making a security assessment in data pipelines helps to understand
risks and vulnerabilities to mitigate them before deploying data pipelines.

A data pipeline is an automated method in which data processes are used to
fetch, transform, or make data available, either via API, frameworks, or in-
house created systems; the sources can be diverse, such as SQL, NoSQL, files,
and videos.

To secure data pipelines, consider asking some questions before simply deliv‐
ering a certain code that performs a certain operation. For example, if it per‐
forms data ingestion or data transformation, in order to deliver it is needed
to check what the business needs, to deliver more quality and security. The
following are examples of questions:

• What is the demand of the business area?
• Do we have a sensible default describing the best practices and processes

for the technology area?
• Do we have an SOC area? If yes, how can we create a product that is in

conformity with SOC processes?
• What regulatory rules do we need to follow?
• What is the deliverable? a data product? a dashboard? reports?

Based not only on these questions but also on what is to be delivered, let’s
orient the security of the data pipelines either to the ingest, transformation,
aggregation, IaC codes, or even the CI/CD pipeline codes for creating a data

96

platform (these encompass codes for the infrastructure, identity and access
management [IAM], and so on).

Besides being data driven, the data pipeline needs to be security driven.

There are several tools that help secure much of what needs to be protected,
such as SCA, SAST, DAST, and interactive application security testing
(IAST). Techniques like hardening (for the clusters, container images, and
used machines), IAM, CI/CD, security as a code, policy as code, data quality
tests, data contracts, unit tests, and integration tests also help to mitigate
risks and improve the quality of the code.

Along with these techniques, it is important to pay attention to the General
Data Protection Regulation (GDPR), a privacy and security law required in
European countries, and local data protection laws to maintain PII. Some‐
thing that is necessary to understand is that it is almost impossible to have a
secure data project without governance because both technology and data
governance will guide the team to use the best means to work and make
decisions.

Remember that security is not a job only for the company’s security team but
for each developer, because protecting the client’s data is the responsibility of
everyone who has contact with it, whether in the creation of a system, appli‐
cation, or analytical or reporting dashboard.

To ensure the security of a data pipeline, it’s crucial to confirm that the
appropriate logs are being transmitted to the monitoring tool, eliminate any
exposed credentials, adhere to legal requirements for handling PII, and
employ all necessary security measures. This comprehensive approach may
help prevent vulnerabilities that could be exploited and lead to incidents,
potentially causing business disruptions and financial losses due to data
breaches.

Collective Wisdom from the Experts 97

Data Security Starts with
Good Governance
Lauren Maffeo

In some ways, walking through Vancouver Convention Centre in May 2023
felt like déjà vu: I had attended the same summit (The Linux Foundation
Open Source Summit North America in the same location (beautiful British
Columbia) five years earlier. Many of the same sights, projects, and faces
graced my presence. Still, I saw a distinct difference from 2018, when there
was little to no talk of open source’s role in application security.

By 2023, security had its own track at the OS Summit, and a brand new
project, the Open Source Security Foundation (OpenSSF), had a full day of
programming along with a new home under the Linux Foundation’s
umbrella. The surge in recent breaches caused by insecure coding practices,
lack of encryption, and inadequate access controls means that AppSec can no
longer be ignored. Likewise, AppSec teams can’t ignore the role of data gov‐
ernance in their efforts. I suspect that five years from now, data governance
won’t be swept under the AppSec rug like it is today.

Data governance—your strategy for the people, processes, and tools to man‐
age big data at scale —can sound like a buzzkill. It’s often conflated with
legalese, or it is made the scapegoat for why teams can’t innovate. The truth
is much more optimistic: done well, data governance engages colleagues
across silos to cocreate the standards for keeping your data safe. It gives sub‐
ject matter experts ownership of data in their respective domains, and the
autonomy to help define the standards for each domain.

This doesn’t mean that your marketing director will start leading your two-
factor authentication (2FA) strategy. It does mean that as your organization’s
most senior marketing lead, this colleague has the expertise to define mar‐
keting data, metadata, definitions, and hierarchies within databases. When it
comes to security, your marketing director also helps you define access to the
marketing data domain within your architecture.

98

Let’s say that your chief technology officer adopts the data-as-a-product
approach and asks your data team to start building data mesh architecture.
This involves designing the architecture to support each predefined data
domain as its own mini data lake with its own respective catalog. All domain
data lakes integrate with a mesh catalog, which consuming apps connect with
to receive the data they need.

During this design process, you’ll work with your data stewards—the lead
subject matter experts per data domain—to define levels of access for each
data domain. In this case, colleagues are the core users of your data mesh—
but not all colleagues need (or should have) the same levels of access. This
could cause data privacy breaches by exposing protected data to those who
shouldn’t have it.

Part of data governance involves defining levels of access based on user
needs. In this case, your marketing director might propose these levels of
access based on which users will need to pull marketing data from the data
mesh:

Level 1: Sub-Domain Marketing Leads
Search engine optimization (SEO), content, brand, etc., can pull data
within their respective subdomains and view data in other marketing
subdomains.

Level 2: Superuser
Heads of marketing at the director level and above can pull data from all
subdomains and approve access requests from colleagues.

Level 3: Admin
Data architects, colleagues in the CISO, and your own data team main‐
tain the system and uphold your governance standards.

Although simplistic, this example shows how data governance involves
everyone in application security. Too much data exists today for one team or
colleague to manage it all.

Under data governance, AppSec can take a role-based approach to user
access based on distinct user needs for specific data. It also improves data lit‐
eracy by engaging colleagues across the organization, encouraging them to
consider who should access the data in their domains. As an app develop‐
ment expert, your job is to keep data safe in the right hands. Data governance
defines whose hands those should be.

Collective Wisdom from the Experts 99

Protect Sensitive Data in
Modern Applications
Louisa Wang

In the application security world, other than security design, code scanning,
and WAFs, there are other security controls that developers should know
and apply as needed, such as encrypting data and managing crypto keys
properly.

Learn Key Management
Key management involves the procedures and systems for the generation,
exchange, storage, use, crypto-shredding (destruction), and replacement of
encryption keys. Meticulous key management is vital, as it ensures the secu‐
rity of even the strongest encryption solutions. However, designing and
implementing a key management system (KMS) can be complex at times. For
example, you can pick a hardware security module (HSM), which is a physical
device specifically built to securely store and manage encryption keys. Or
you can choose Trusted Platform Module (TPM), which is the computer chip
built into endpoints (e.g., laptops) that securely stores encryption keys and
certificates. Knowing what they are and where to apply them is the key.

Additionally, learn the crypto ecosystem. Systems like TLS use fundamental
elements such as ciphers, hashes, blockchaining modes, and key agreement
protocols for security. Avoid creating your own cryptographic primitives; it’s
time-consuming, demanding of expertise, and crucial for correctness and
effectiveness. Pay attention to key storage, application integration, and secu‐
rity integration, which are the core components of a crypto ecosystem.

Security Needs During the Data Life Cycle Vary
Data in transit is often mandated, using TLS, while encrypting data in use is
complex and less common. Data at rest can be encrypted at storage or data‐
base layers, with storage layer encryption being the simplest and usually
available through major cloud providers. Application layer encryption is a

100

fallback for cases where neither storage nor database layer encryption is
possible.

Design and Implement a Combination of
Technical and Administrative Controls
To enhance data security, combine technical and administrative controls. Use
data encryption alongside measures such as network segmentation, access
control, auditing, and secure SDLC. Application-level encryption adds extra
security but comes at a cost, with trade-offs to consider. Avoid building your
own key management solution; use established services or libraries. Effective
communication between application owners and security architects is key for
finding solutions that meet typical use cases and design patterns, fostering
collaboration and strong security practices.

Insights and Security Recommendations
Follow these suggestions for the best results:

Prioritize data classification and threat modeling.
Start by identifying your application’s data classification and conducting
thorough threat modeling before embarking on data encryption. This
proactive approach helps tailor your security measures to effectively mit‐
igate risks.

Leverage cloud native services.
For applications hosted in the cloud, consider utilizing cloud native
services. They offer built-in encryption support, seamless interoperabil‐
ity, straightforward implementation, and easy maintenance. This not
only reduces costs but also enhances security.

Consult database vendors.
Before implementing transparent database encryption (TDE) or data‐
base encryption, always reach out to your database vendors to confirm
native supportability. This ensures you’re making the most of existing
solutions.

Balance secure design.
Secure design is a delicate balance, where security is just one aspect
among several. Application security professionals often navigate trade-
offs between cost, performance, scalability, ease of use, and security,
especially in data encryption design.

Collective Wisdom from the Experts 101

Keep data protection as your goal.
Keep in mind that the ultimate objective is not merely encryption, but
robust data protection. Encryption is a means to this end, and it should
align with broader security goals within a well-architected framework.

97 Things Every Application Security Professional Should Know102

Leverage Data-Flow
Analysis in Your Security
Practices
Manuel Walder

In pen testing, it is a standard practice for testers to record and analyze the
HTTP-based data flow of an application to gain an understanding of the
application and its function. This is usually done using tools such as the open
source Zed Attack Proxy (ZAP) or similar tools. The browser’s traffic is
intercepted and stored in the tool and is then available visually. However, the
same methodology is rarely used in other security practices, although it can
provide significant added value with little effort.

However, recording and visualizing the HTTP data flow across all functions
of a web application has proven to be a value-add for us in many practices. In
this context, a record of the data flow between the browser and the backend
creates transparency and visualizes the real interaction with a function in a
more understandable way. Let me share some examples.

In threat modeling sessions of already existing functions, the implementation
of a function may significantly diverge from the developer’s description or
the function’s documentation. Initiating threat modeling sessions with a
recording of the data flow provides participants with an overview. This
recording can serve as a foundational basis to create a data flow diagram
showing the real implementation of a functionality and also showing the
parameters that are transferred during the execution, as well as the business
logic of a functionality. Quite often, I have seen that the developers them‐
selves were surprised about the implementation of the function, and also that
obvious business logic errors were already revealed at the beginning of the
session.

Another example involves security code reviews. A human brain is simply
not built to read complex programming code over a longer period of time
without significantly decreasing its performance. Furthermore, if the code is

103

https://www.zaproxy.org/

written by someone else or in a language that you don’t usually develop in,
you are more likely to experience rapid fatigue and miss vulnerabilities. A
visual representation of the data flow between the browser and the backend
can serve as a welcome addition in many code reviews, providing a comple‐
mentary understanding of the logic and creating an additional perspective.

In addition, the data flow can help the brain focus longer on a function by
visually assisting. For various types of vulnerabilities, an HTTP data flow
dump from a tool like ZAP can be the missing piece of the puzzle that leads
to the discovery of a vulnerability that would otherwise be overlooked.

Also, when working in the field of WAF security policy engineering, a data
flow can be of enormous help. The use of a WAF has become common in
many organizations. When writing a WAF security policy, data flow analysis
has proven invaluable. After the entire application has been used via the
browser and the data flow has been recorded in the tool, it is transparently
visible how the application interacts with the backend. All required HTTP
methods are clear, as well as which content types are used and which uni‐
form resource identifiers (URIs) or endpoints are required. Also, the used
parameter data types can be determined. This helps write a WAF security
policy, which protects more efficiently against attacks and leads to fewer false
positives on the WAF. As an additional benefit, it is not unusual, with some
routine in the analysis of the data flow, that vulnerabilities and attack points
are discovered, which can then be protected by an appropriate policy.

Recording and storing the HTTP data flow can be of great help in many
security practices. It visualizes, simplifies otherwise complex and obscure
flows, and uncovers weaknesses in systems that would otherwise be over‐
looked.

To get started with the practice, I recommend simply letting all web traffic
flow through a ZAD to develop a feeling for the topic and to understand the
protocol. Many application purposes then become apparent step by step.

97 Things Every Application Security Professional Should Know104

Embracing a Practical
Privacy Paradigm Shift in
App Development
Maria Nichole Schwenger

In the era of digital transformation, data has emerged as the fundamental
asset propelling contemporary societies and economies. The pivotal role of
application development in data collection, storage, and utilization is unde‐
niable. However, conventional perspectives on data privacy and security
often tend to prioritize protection over innovation, impeding progress and
advancement. DevSecOps and Agile methodologies advocate for a pioneer‐
ing approach that harmonizes user data safeguarding with the increasing
demands of an ever-evolving technological landscape.

The Paradox of Privacy and Innovation in Data
Security
Historically, data privacy has been associated with the imposition of stringent
measures and limitations to forestall data breaches and mitigate misuse.
While well-intentioned, this mindset inadvertently creates a paradox: exces‐
sive privacy constraints stifle innovation by obstructing access to valuable
data insights that could propel technological breakthroughs and augment
user experiences. Today, reconciling data privacy with innovation presents a
multifaceted challenge, necessitating a radical reimagining of traditional
frameworks and ideologies. Federated learning, privacy-preserving frame‐
works like PySyft, and early-stage privacy impact assessments are key tools
for building a balanced approach to data privacy.

Reconceptualizing Data Ownership
An innovative approach to data privacy and security in application develop‐
ment revolves around reconceptualizing data ownership. Departing from the
conventional dichotomy of exclusive ownership vested in users or service

105

providers, a pioneering paradigm must advocate for shared data ownership
between users and providers. This grants users control over their personal
information, permitting them to specify access permissions to different
applications. Simultaneously, service providers gain access to anonymized
and aggregated data, enabling innovation and service improvements without
compromising individual privacy. Emerging technologies like generative AI
(Gen AI) lend support to this transformative initiative. Integrating attribute-
based access control (ABAC) and self-sovereign identity (SSI) solutions, or
using tools like DataWallet and Solid, may empower users to manage and
share data attributes selectively. Data trusts may offer further control through
independent governance.

Leveraging Privacy-Enhancing Technologies
Contrary to popular belief, innovation and privacy are not mutually exclu‐
sive; they can coexist in synergy. Privacy-enhancing technologies (PETs)
offer a cutting-edge approach to application development, preserving user
data privacy while still providing valuable insights to developers. Techniques
like differential privacy, homomorphic encryption libraries (e.g., HElib or
SEAL), and secure multiparty computation frameworks (e.g., SecureML) can
safeguard sensitive information and enable data analysis for trends and pat‐
terns throughout data processing.

Transparency and Informed Consent
Data privacy concerns in application development stem from a dearth of
transparency concerning data collection and usage. A progressive resolution
to this issue entails the adoption of a policy of full transparency and
informed consent by application developers. Forging trust requires replacing
complex terms of service engagements with clear, concise explanations of
data usage and explicitly seeking user consent. Such transparency fosters
trust between users and organizations, cultivating a mutually beneficial rela‐
tionship. Verifiable consent records on blockchains like Ethereum or user-
centric consent management platforms like OneTrust alongside interactive
dashboards can empower users in their data journey.

Data Minimization and Purpose Limitation
While historically gathering vast amounts of data for potential future uses
was seen as the gold standard, the data minimization and purpose limitation
principles offer a more secure and sustainable path. By collecting only essen‐
tial data, exclusively for its intended purpose, and avoiding making copies

97 Things Every Application Security Professional Should Know106

everywhere, developers mitigate the risk of data breaches and misuse, ensur‐
ing user privacy while effectively extracting valuable data insights. By using
Gen AI to create synthetic test data, employing tools like ARx or Mondrian
AI for data anonymization, storing data in dedicated solutions like Single‐
Store, and utilizing zero-knowledge proofs for user verification, we can
ensure privacy-centric data practices.

Exploring Decentralized Data Storage
While centralized data storage has long been the conventional standard for
data security, recent advancements in blockchain technology introduce a dis‐
ruptive alternative—decentralized data storage. By distributing data across
multiple nodes, blockchain-based systems prevent data breaches through a
single point of attack. This empowers users, giving them greater control over
their data and fostering a more secure and private application environment.
Some innovative approaches include IPFS’s peer-to-peer data sharing, Storj’s
distributed cloud infrastructure, and blockchain-enabled data ownership
models from Ocean Protocol and Filecoin.

Data Privacy as a Competitive Advantage
Challenging traditional notions of data privacy and security demands an
acknowledgment of privacy as a competitive advantage. Privacy-conscious
consumers increasingly favor organizations that prioritize data privacy.
Embracing “privacy by design” as a core value sets companies apart from
competitors, attracting a more loyal user base and boosting brand reputa‐
tion. For a competitive edge in the data-driven market, integrate privacy by
design, leverage differential privacy frameworks (e.g., TensorFlow), adopt
consent-driven personalization tools (e.g., Twilio’s Segment), and conduct
regular risk audits to identify vulnerabilities and demonstrate commitment
to user data protection.

In a Nutshell
Shifting the landscape of data privacy and security in application develop‐
ment necessitates embracing an innovative, balanced approach that respects
user privacy while nurturing innovation. Striking this equilibrium empowers
developers to create applications that simultaneously uphold data privacy
and drive progress in the digital era.

Collective Wisdom from the Experts 107

Quantum-Safe Encryption
Algorithms
Rakesh Kulkarni

In the realm of application security, asymmetric encryption plays a pivotal
role in securing applications through SSL/TLS, digital signatures, and secure
key exchange—ensuring the integrity and confidentiality of data. The foun‐
dation of this security lies in the presumption that cryptographic keys are
both random and resistant to guessing. However, the advent of quantum
computing poses a booming threat, particularly to widely adopted asymmet‐
ric algorithms like RSA and elliptic curve cryptography (ECC). As quantum
capabilities advance, security experts and AppSec professionals should pro‐
actively look for innovative solutions for quantum-resistant cryptography
such as quantum random number generators (QRNGs).

QRNGs generate truly random numbers that are unpredictable and nonrep‐
roducible, leveraging the inherent uncertainty in quantum states. Incorporat‐
ing QRNG in asymmetric key generation significantly bolsters the security
against computational attacks, including threats from powerful quantum
computers.

As many of the Fortune 500 companies are investing in building quantum
computing capabilities. It is evident that we will be seeing exponential
growth in quantum computers as well as the adoption of the technology. The
concept of decrypt later quantum technology suggests that, once powerful
enough, quantum computers could potentially break current cryptographic
algorithms like RSA and ECC, compromising the security of data transmis‐
sion and storage in applications.

Quantum computers, with their ability to perform complex calculations
exponentially faster than classical computers, have the potential to solve
these mathematical problems much more efficiently. As a result, they could
render conventional cryptographic methods ineffective, leading to the
decryption of sensitive information in applications that were previously con‐
sidered secure.

108

The threat of quantum attacks on conventional cryptographic systems has
led to the field of post-quantum cryptography (PQC), which focuses on devel‐
oping quantum-resistant algorithms. Organizations and governments are
investing in research and transitioning to quantum-safe cryptography stand‐
ards to ensure data security in the era of quantum computing. Proactively
addressing this threat is crucial to safeguarding sensitive data and ensuring
the privacy of digital communication.

From an application security standpoint, integrating a QRNG with an exist‐
ing public key infrastructure (PKI) can enhance key generation. This ensures
that the cryptographic keys are truly random, a critical attribute for securing
them against potential quantum computing attacks. Most importantly, this
integration doesn’t alter the fundamental PKI but revolutionizes the way keys
are generated to make them secure and quantum-resistant.

The United States government, through NIST, has been conducting research
and standardization processes to endorse quantum-safe cryptographic algo‐
rithms. The move is a proactive step to secure digital communications in the
era of quantum computing.

As of May 31, 2023, NIST has chosen CRYSTALS-Kyber for general encryp‐
tion due to its speed and small encryption keys, and CRYSTALS-Dilithium,
Falcon, and SPHINCS+ for digital signatures in applications.

For example, in the case of CRYSTALS-Kyber, randomness plays a crucial
role:

• During the key generation phase, the secret key components are gener‐
ated randomly.

• In the encryption phase, a random matrix is used in the process to
ensure that the same plaintext will not result in the same ciphertext
when encrypted multiple times.

• The decryption phase, while deterministic, relies on the secret key that
was generated with randomness.

Collective Wisdom from the Experts 109

Application Integration
Security
Sausan Yazji

With the rising need for data democratization and data availability, sharing
data between systems internally and externally becomes a definite require‐
ment for the success of any business. Understanding and applying the con‐
trols needed to protect data is one of the key areas for application security
and product security. Those controls should also comply with all data pri‐
vacy laws and data security regulations, such as GDPR, PiplL, Brazilian Gen‐
eral Data Protection Law (LGPD), FedRAMP, SOX, and more.

The following is a list of best practices that should be followed by application
developers to reduce data security risks of application integration:

Data classification
All data assets and data attributes should be classified based on their sen‐
sitivity and criticality following the classification guidelines provided by
your organization. Data classification helps in determining the appropri‐
ate security measures to be applied to different types of data.

User persona
All systems should have a user persona built to identify the right level of
access to these systems. These personas should have a clear representa‐
tion of all users, internal and external, including people and automatic
system interfaces.

Encryption
Strong encryption techniques should be implemented to protect data at
rest, in use, and in transit.

Access control
Define and implement access control processes to restrict unauthorized
access to sensitive data. Map user personas to the appropriate level of
access for each data set. Regularly review and update access privileges.

110

Authentication and authorization
Per defined user persona, develop the correct level of access for each
integrated system.

The following are application integration-specific rules:

Secure APIs
All APIs should be designed with security in mind. Implement authenti‐
cation and authorization mechanisms for each API access. Apply rate
limiting and throttling to protect against API abuse and potential denial-
of-service (DoS) attacks. Regularly update and patch API frameworks to
address security vulnerabilities.

Secure communication
Ensure secure communication between integrated applications by using
encrypted channels such as HTTPS/TLS. Implement SSL/TLS certifi‐
cates from trusted authorities to establish secure connections and pro‐
tect against man-in-the-middle (MITM) attacks.

Data minimization
Minimize the amount of data exchanged between applications to reduce
the risk of data exposure. Only transmit or share data that is necessary
for the integration process and avoid transferring sensitive data when it
is not needed.

Auditing and monitoring
Monitoring and auditing data logs is essential for data security. Review
logs regularly to identify any anomalous behavior. Document integration
points between systems on a quarterly basis. Remove integration points
when they are not needed anymore. Monitor access logs, API usage, and
system events to detect any suspicious activities or unauthorized access
attempts. Identify and address any weaknesses or vulnerabilities.

Data retention and disposal
Establish clear data retention policies. Once data is no longer needed,
ensure secure data disposal by permanently deleting or anonymizing it
to prevent unauthorized access.

Employee training and awareness
Develop a training program to educate employees involved in applica‐
tion integration about data privacy and security best practices. Conduct
regular training sessions to raise awareness about potential risks, social
engineering attacks, and the importance of adhering to security
protocols.

Collective Wisdom from the Experts 111

Risk assessment
Identify potential risks and vulnerabilities associated with application
integration.

Application patch
Keep integrated applications up to date with the latest security patches
and updates.

Outdated protocols
Before using any protocol in your application integration, review the val‐
idity of this protocol. Always opt for secure protocols and encryption
standards recommended by industry best practices.

Multilayer security
Perimeter security measures are not enough. Implement layered security
controls at multiple levels, including within integrated applications, to
provide defense in depth.

Third-party security
Always conduct due diligence for all third-party tools to ensure adher‐
ence to strong security standards and include data protection measures
in place.

Compliance and regulations
Ensure compliance with relevant data privacy regulations and industry-
specific standards. Stay updated with evolving regulations and ensure
your integration practices align with compliance requirements, such as
GDPR, California Consumer Privacy Act (CCPA), or industry-specific
standards like HIPAA or payment card industry Data Security Standards
(PCI DSS).

Remember, data privacy and security should be an ongoing process. Regu‐
larly assess risks, perform vulnerability assessments, and stay informed about
emerging threats and best practices in this field to ensure the highest level of
protection for your integrated applications.

97 Things Every Application Security Professional Should Know112

PART IV

Code Scanning &
Testing

Modern Approach to
Software Composition
Analysis: Call Graph and
Runtime SCA
Aruneesh Salhotra

Since the early 2000s, the industry has seen a rapid expansion in open source
adoption. Embracing open source is a strategic decision for cost savings and
innovation toward a more collaborative, flexible, and high-quality software
development paradigm.

Handling dependencies in software development is crucial and intricate.
Developers commonly use external libraries and packages to improve and
speed up their work, which can unintentionally lead to security weaknesses
and operational dangers in their code. Secure and verify these external ele‐
ments to keep a strong and safe software environment. A quick online search
on “open source risks exploited at Yahoo, Equifax, Linksys, Uber” highlights
the significance of meticulously managing the risks tied to open source libra‐
ries in your organizations.

SCA tools are designed to integrate seamlessly into development workflows,
providing real-time analysis, automated alerts, and remediation guidance.

Traditional Approach to SCA
SCA tools scan applications statically by analyzing dependency manifest files
to identify vulnerabilities associated with the included packages. They enable
organizations to respond swiftly to emerging vulnerabilities in open source
projects and ensure adherence to legal requirements in software licensing.

Until very recently, organizations have relied on the traditional SCA to miti‐
gate these risks effectively, playing a crucial role in dependency management,
license compliance, and security assessment.

114

The primary challenge that organizations face with traditional SCA tools is
the security scans report every potential vulnerability linked to the packages
in your software, regardless of whether or not these vulnerabilities are rele‐
vant or utilized by your applications. This approach can lead to a flood of
alerts, many of which might not be relevant, overwhelming developers and
leading to alert fatigue. SCA tools might communicate risks and vulnerabili‐
ties without sufficient context or guidance on remediation, leading to misun‐
derstandings or misalignment with the development team’s priorities and
workflows.

Modern Approach to Manage Open Source Risks
SCA is undergoing two paradigm shifts in the industry: the call-graph
approach and runtime SCA.

The call-graph approach statically analyzes the source code and all its used
packages to examine the call graphs and data flows.

Runtime SCA instruments the code to derive a dynamic call graph and then
combines it with the static call graph and vulnerable method call chains to
find more potentially exploitable vulnerabilities.

Call Graphs
Call graph–based SCA represents a significant advancement in software
security. This approach involves creating a call graph, a visual representation
of all function calls within a program. By mapping out these interactions, call
graph–based SCA provides a comprehensive view of the software’s structure
and behavior. This granularity is particularly effective in pinpointing the
exact locations within the code where vulnerabilities may exist based on the
actual usage of open source components.

The transformative aspect of call graph–based SCA lies in its precise and
context-sensitive analysis. Traditional SCA tools often provide a broad over‐
view of potential vulnerabilities based on the presence of open source com‐
ponents without considering how these components are used within the
application. Call graph–based SCA, by contrast, offers a detailed understand‐
ing of the software’s behavior, highlighting the areas where vulnerabilities
could be exploited.

Collective Wisdom from the Experts 115

Runtime SCA
Runtime SCA analyzes software dependencies in real time during the appli‐
cation’s actual running. This method dynamically detects and evaluates the
actively used open source components and dependencies, offering a live view
of the software’s behavior in its operational environment. Unlike traditional
SCA, which assesses dependencies at the development or deployment stages,
runtime SCA provides insights based on how the application utilizes these
components in real-world scenarios, leading to more precise and context-
specific vulnerability identification.

The key advantage of runtime SCA over traditional SCA lies in its enhanced
accuracy and relevance in identifying vulnerabilities. Focusing on the com‐
ponents used during the application’s runtime significantly reduces false pos‐
itives and irrelevant vulnerability reports, enabling developers and security
teams to concentrate on genuine threats.

Summary
Both of these approaches align well with DevOps practices, adapt to changes
in application use, and support a more proactive security posture. It stream‐
lines resource allocation, focusing efforts on fixing critical and directly
impactful security issues, thus making the management of software depen‐
dencies more efficient and targeted.

97 Things Every Application Security Professional Should Know116

Application Security
Testing
David Lindner

In the ever-evolving landscape of software development, ensuring the secu‐
rity of applications has become paramount to combat the ever-shifting threat
environment. Application security testing (AST) stands as a shield against the
growing array of threats that seek to exploit vulnerabilities within software
systems. Within the realm of AST there are three pivotal methodologies—
SAST, DAST, and IAST. These methodologies all bolster an organization’s
defense by assessing applications for vulnerabilities. Each offers advantages
and limitations, contributing unique dimensions to security strategy. By
understanding the nuances, organizations can ensure they are using the cor‐
rect AST for their environments.

Static Application Security Testing
SAST involves analyzing source code or an application’s binary. SAST exam‐
ines the codebase line by line, looking for security vulnerabilities. SAST can
identify issues early in the development life cycle and provide developers
with feedback to fix vulnerabilities before they make their way into the final
product. SAST is especially effective at detecting issues related to code logic
and design flaws.

Advantages of SAST:

• Early detection. SAST identifies vulnerabilities during the development
phase, allowing developers to address issues before code is deployed.

• Automation. SAST tools can scan large codebases, making it suitable for
ongoing integration and continuous deployment pipelines.

Limitations of SAST:

• False positives. SAST tools typically generate many false positives due to
their pattern-based analysis approach.

117

• Limited runtime context. SAST doesn’t consider the runtime environ‐
ment, so certain vulnerabilities may only manifest during runtime.

Where to apply SAST:

• SAST is typically performed preproduction either on developers’
machines or within the CI/CD or testing pipelines.

Dynamic Application Security Testing
DAST involves testing an application while it’s running to simulate real-
world attack scenarios. DAST tools interact with the application, sending
various inputs and observing the responses to uncover vulnerabilities. DAST
is effective at identifying issues that are tied to using a running application.

Advantages of DAST:

• Realistic testing. DAST mimics attack scenarios, providing insights into
how vulnerabilities might be exploited by malicious actors.

• Runtime context. It captures issues that only manifest during runtime,
such as configuration errors, authentication bypasses, and session man‐
agement flaws.

• Less false positives. DAST typically generates fewer false positives.

Limitations of DAST:

• Late detection. Vulnerabilities are identified after the code has been writ‐
ten, potentially delaying fixes and increasing the cost of remediation.

• Incomprehensive coverage. DAST might miss security issues that can
only be detected through code analysis, such as logic flaws and design
vulnerabilities.

Where to apply DAST:

• Generally, DAST is used against compiled code, especially on applica‐
tions. This can be used in a testing environment.

Interactive Application Security Testing
IAST is a hybrid approach that combines the best elements of SAST and
DAST. It instruments applications during runtime to capture data about its
behavior and interactions in real time. This data is then correlated with the
application’s source code to pinpoint vulnerabilities and their context within

97 Things Every Application Security Professional Should Know118

the code more accurately. IAST provides insights into the runtime context of
vulnerabilities, helping developers understand how security issues arise dur‐
ing execution.

Advantages of IAST:

• Unmatched accuracy. IAST’s runtime analysis and contextual awareness
results in more accurate identification of vulnerabilities with fewer false
positives.

• Deeper insight. IAST provides developers with a comprehensive view of
how vulnerabilities manifest during runtime.

• Optimized developer workflow. IAST integrates into the development
workflow seamlessly, providing insights directly to the developers as
they write and test code.

Limitations of IAST:

• Performance overhead. Instrumenting an application might introduce
some performance overhead.

• Deployment complexity. Setting up IAST tools and integrating them into
the development process can be more complex.

Where to apply IAST:

• IAST is a real-time security monitor that instruments running code, typ‐
ically used in the testing or staging environment.

In conclusion, SAST, DAST, and IAST are three application security testing
strategies. They each have their strengths and weaknesses, and organizations
often use a combination of these methodologies to achieve comprehensive
security coverage throughout the software development life cycle. SAST
helps catch vulnerabilities at the code level, DAST focuses on runtime behav‐
ior, and IAST offers a hybrid approach that combines the benefits of both
techniques for better accuracy and less total cost of ownership.

Collective Wisdom from the Experts 119

WAF and RASP
David Lindner

Web application firewalls (WAFs) and runtime application self-protection
(RASP) are both essential tools for protecting web applications from various
security threats, but they have different approaches and benefits. These are
the key features between a WAF and RASP.

Web Application Firewalls
A WAF is a security solution designed to protect web applications by analyz‐
ing incoming traffic and filtering out malicious requests and attacks. It acts
as a barrier between the web application and the external world, examining
HTTP requests and responses for suspicious patterns or known attack signa‐
tures. WAFs are deployed as hardware appliances, virtual appliances, or
cloud-based services.

WAF advantages:

Layered defense
WAFs provide an additional layer of security by sitting in front of the
web application and intercepting potentially harmful traffic before it rea‐
ches the application itself.

Ease of deployment
WAFs are relatively easier to deploy and manage, and they can be set up
to provide protection without requiring changes to the application’s
source code.

Signature-based protection
WAFs identify and block attacks based on known attack signatures,
which makes them effective against many well-known attacks.

Performance
A WAF is typically very efficient with very little noticeable speed
implications.

120

WAF downsides:

Tuning and patching
Due to the WAFs signature-based technology, they do require constant
upkeep and patching. Configuring and maintaining WAFs can be com‐
plex, especially for larger and more complex applications.

Alert fatigue
WAFs may generate many false positives, block legitimate traffic, and fail
to detect new and evolving attack patterns, leading to false negatives.
This tends to increase alert fatigue for security teams.

Limited context
WAFs do not understand the context of an application and its logic,
potentially leading to inadequate protection against certain attacks.

Runtime Application Self-Protection
RASP is a security approach that focuses on protecting web applications
from within. It is integrated directly into the application code or runtime
environment and monitors the application’s behavior for suspicious activities
or anomalies.

RASP advantages:

Deeper contextual insights
RASP understands the application’s internal behavior, allowing it to
detect and respond to attacks that do not trigger with traditional WAFs.

Real-time protection
RASP can respond to threats in real time, dynamically adapting to the
application’s behavior and the evolving threat landscape.

Accurate results
RASP’s context awareness reduces false positives, as it can better differ‐
entiate between legitimate application behavior and malicious activity.

Zero-day protections
Since RASP operates within the application itself and is detecting attacks
against classes of vulnerabilities, it can identify new attack vectors and
attacks that are designed to bypass perimeter defenses like WAFs.

Collective Wisdom from the Experts 121

Little to no tuning required
RASP does not require the same level of tuning as a WAF. RASP is not a
signature-based technology and instead focuses on tracking tainted data
entering a vulnerable class or function.

RASP downsides:

Performance
Depending on the implementation, RASP can introduce performance
overhead, as it requires monitoring and analyzing application behavior
in real time.

Integration challenges
Implementing RASP might require changes to the application’s source
code or runtime environment, which could be more complex than
deploying a WAF.

Lack of environment awareness
RASP primarily focuses on protecting the application layer. It might not
provide comprehensive coverage against attacks targeting other layers of
the technology stack.

Necessity of framework knowledge
True RASP requires knowledge of the underlying framework (e.g., Java’s
Spring). Protection from RASP may be limited without framework
knowledge.

In conclusion, both WAF and RASP are valuable tools for protecting web
applications, but they have distinct strengths and weaknesses. WAFs offer an
additional layer of protection at the network perimeter, while RASP provides
deeper, context-aware security, from within the application. Using both WAF
and RASP in tandem provides the most comprehensive and effective security
strategy, covering both signature detectable external threats and those that
require more contextual understanding within the application.

97 Things Every Application Security Professional Should Know122

Zero Trust Software
Architecture
Jacqueline Pitter

No doubt you’ve heard of zero trust, information security’s favorite buzz‐
word! Technology security vendors label everything as a zero trust solution
these days. And yet, since their implementations are so vastly different from
one another, it’s difficult to grasp what zero trust stands for.

The confusion is because, in short, zero trust is simply an idea.

NIST SP 800-207 laid out the components of a zero trust architecture in
2020, which is modeled after John Kindervag’s original think tank–generated
idea in 2008 of “never trust; always verify,” achieved by focusing on reducing
and protecting your attack surfaces:

• Shrink implicit trust zones with security boundaries as much as possible.
• Deploy reasonable security controls on all protect surfaces.
• Controls should include constant scrutiny of anything crossing a secu‐

rity boundary for verified authenticity and nonanomalous intent.

The zero trust concept applies to all technology architecture, including appli‐
cations and software. Software design can achieve improved security by
developing application environments with a zero trust mindset. In software
architecture, this would be achieved with the intentional creation of func‐
tional security boundaries and revalidation of any person or process that
attempts to cross it, as well as scrutinizing application data for indications of
compromise or incompatibility. Containers (e.g., Docker) make this easier by
bundling together an application and all its dependencies (i.e., reducing the
attack surface of the application), and yet, there are still additional security
boundaries that should be established to achieve best-practice container
security. Anything traveling between security boundaries should be abstrac‐
ted and/or tokenized to maintain integrity, nonrepudiation, and where
required, confidentiality. This includes having a mechanism that refreshes

123

that trust token regularly so it isn’t just “good” ad infinitum for conveying
trustability.

How can you identify where security boundaries and controls need to be
added?

Sound application security programs include threat modeling to analyze an
application’s architecture, design, and functionalities to identify potential
vulnerabilities that could impact the security of an application. Start with
known application threats.

The Open Web Application Security Project (OWASP) “Top 10 Web Appli‐
cation Security Risks” list establishes a decent foundation for a zero trust web
app architecture:

• Identity access should be verified through encryption protocols like
identity certificates. Enforce role-based access control (RBAC) for any
access beyond a security boundary with meaningful user accounts (i.e.,
don’t run things as root, limit capabilities beyond authorized administra‐
tive accounts, and implement two-factor authentication [2FA] wherever
feasible).

• Never trust data. Data validation mitigates injection flaws, XSS, and
XML vulnerabilities.

• Proactively test for security misconfigurations and verify that security
logging and monitoring functionality is in place to prevent broken
authentications, compromised credentials, and unintentional sensitive
data exposure.

Finally, if your application handles sensitive data, reducing the attack surfa‐
ces and focusing security controls on the protect surfaces must be a priority.

For example, the STRIDE AppSec threat modeling method (where you con‐
sider each of the categories of spoofing, tampering, repudiation, information
disclosure, denial of service, and elevation of privileges) could also be adop‐
ted with a zero trust mindset. Consider these threat categories to scrutinize
your design and systematically identify any vulnerabilities related to confi‐
dentiality, data integrity, availability, nonrepudiation, and IAM, and then fur‐
ther utilize this information to determine the additional security boundaries
and controls that need to exist within your application to address these vul‐
nerabilities. And of course, test everything to verify.

97 Things Every Application Security Professional Should Know124

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

AI is becoming increasingly useful in the identification of anomalous proto‐
cols and access behaviors crucial for implementing zero trust principles in
application security. However, it’s essential to remain mindful of a potential
issue with AI: the integrity of its training data. If the data used to train AI
systems is flawed (such as in cases of AI data set poisoning), it can compro‐
mise the accuracy of any AI-driven analysis. When integrating AI into soft‐
ware applications, it’s imperative to incorporate robust security metrics and a
stringent validation process. Defining what constitutes a successful metric is
vital. Adhering to the adage of “never trust; always verify” remains key in this
context.

Collective Wisdom from the Experts 125

Rethinking Ethics in
Application Security:
Toward a Sustainable
Digital Future
Pragat Patel

Unprecedented levels of connectivity have been made possible by the digital
era, but it has also created new ethical concerns for application security. To
ensure that our digital systems are not only secure but also ethical, we must
adopt a more inclusive approach to application security ethics as more and
more of our lives become digital.

In the past, ethical standards for AppSec have emphasized issues with per‐
sonal security and privacy. Unfortunately, professional associations fre‐
quently create these recommendations alone without receiving enough
feedback from a wider spectrum of stakeholders. We must include a wider
variety of voices in the creation process if we are to produce ethical standards
that accurately represent the interests of every member of society.

To ensure that their viewpoints are taken into consideration, this entails
interacting with representatives from marginalized populations, advocacy
groups, and civil society organizations. For instance, civil rights organiza‐
tions and populations disproportionately affected by facial recognition tech‐
nology, such as Black and Indigenous people, should be consulted in the
establishment of ethical guidelines for this technology. We may design ethi‐
cal standards that better represent the concerns of every member of society
by incorporating a broader range of stakeholders in the process. This will
contribute to ensuring that our digital systems are both just and equitable in
addition to being secure.

It is imperative to widen our attention beyond individual privacy and secu‐
rity issues in addition to involving a larger variety of stakeholders in the
establishment of ethical norms. The broader social effects of AppSec must be

126

considered. This covers concerns related to human rights, environmental
sustainability, and data sovereignty. For instance, the energy needed to run
cloud computing services may have a substantial negative impact on the
environment. AppSec experts need to be aware of these effects and take pre‐
cautions to leave as little of an environmental imprint as possible. The usage
of data in AppSec also creates significant issues with data sovereignty. Pro‐
vide training and guidance to application developers to use energy-efficient
code, reduce unnecessary computing resources, and adopt green practices to
help reduce the carbon footprint.

By broadening our focus to include these wider social impacts, we can ensure
that our digital systems are secure with contribution to a more sustainable
society. We can create digital systems that respect the rights and dignity of all
individuals and contribute to a more sustainable future. In order to stay
aware of new ethical issues, we must also commit to constant discussion and
introspection. This entails regular stakeholder engagements, ongoing devel‐
opment, and a readiness to face and resolve ethical issues as they emerge.
Because ethics in AppSec is not a one-time fix, this constant dedication to
discussion is crucial. New ethical problems will inevitably emerge since the
digital ecosystem is continually changing. We can make sure that our ethical
standards remain applicable to the interests and concerns of all societal
members by committing to constant debate.

To ensure that our digital systems are secure, we need to adopt a more coop‐
erative and inclusive approach to ethics in application security. This entails
engaging a broader spectrum of stakeholders in the creation of ethical prin‐
ciples, broadening our attention to encompass the broader social effects of
application security, and committing to continual reflection. By implement‐
ing these actions, we can create a more equitable and long-term digital future
that upholds the dignity of every person. The future is in our hands; what
matters now is what we do with it.

Collective Wisdom from the Experts 127

Modern WAF Deployment
and Management
Paradigms
Raj Badhwar

Given the business need and customer experience–driven digital transforma‐
tion of our applications and the rapid migration toward the (public) cloud,
the WAF is an important tool for CISOs and other cybersecurity professio‐
nals to protect these digitally transformed, internet-facing (high-risk) web
applications and services. As part of the application security controls, real-
time monitoring and blocking of threats becomes crucial. Understanding
WAF capability, and deploying and managing it, is a must-have skill set for
application security professionals.

This essay talks about the modern way of hosting WAFs and provides the
separation of roles and responsibilities between the security team and the
cloud providers on how best to operationally manage the WAF
infrastructure.

Some of the commonly used WAF deployment architectures are as follows.

On Premises WAF Infrastructure for Hybrid Cloud
In the case of a hybrid (public/private) cloud deployment, one legacy archi‐
tecture that has been used in the recent past is to use an on premises hosted
WAF to protect both on premises and cloud-hosted applications. This is gen‐
erally done by using Domain Name System (DNS) techniques to redirect any
application traffic destined for the cloud-hosted application through the on
premises hosted WAF, which is primarily configured inline to protect the on
premises hosted applications. This approach allows a common set of WAF
(access and protection) rules and on premises, full-time security operations
staff to protect both public and private cloud-hosted apps. In general, this
can cause serious application performance issues for cloud-hosted apps
depending on the network connectivity—virtual private network (VPN),

128

Oracle’s FastConnect, or AWS Direct Connect—between the on premises
application and the cloud provider. In this paradigm, the on premises opera‐
tional staff performs all the WAF maintenance activities, including but not
limited to monitoring, incident response, and application and vulnerability
patching.

Cloud Native WAF Infrastructure
for the Public Cloud
In the public cloud, the most common paradigm now is to use the WAF pro‐
vided and operationally maintained by the cloud provider (e.g., Oracle Cloud
Infrastructure (OCI) or AWS). This separates the roles and responsibilities—
the WAF implementation, management, and maintenance would be per‐
formed by the cloud provider, and the WAF (access and protection) rules
would be written and maintained by the customer cloud security team.

Cloud provider responsibilities for cloud native WAF are:

• Configure vulnerability and threat detection and mitigation rules.
• Perform periodic infrastructure and software updates.
• Monitor logs for any suspicious or anomalous behavior in the logs.
• Monitor for distributed denial of service (DDoS) attacks.
• Enable local high availability and remote disaster recovery of the WAF

infrastructure.

Other advantages are:

• Use the power of the cloud provider’s access to real-time threat intel
from various open source and private sources.

• Detect and mitigate the malicious traffic and any attacks away from the
application network.

• WAF fits well with the managed security operations center (SOC), which
can also be provided by the cloud provider or a partner.

• There is faster ramp-up and onboarding of security talent and personnel
when needed.

• WAF allows the security team to focus on the detection and mitigation
of threats, and not on the patching or daily/weekly maintenance of the
(physical/virtual) WAF infrastructure.

Collective Wisdom from the Experts 129

• It reduces the security teams’ need for capital expenditure and
investments.

• The need for compliance with certain regulatory requirements and com‐
pliance paradigms (e.g., Service Organization Controls Type 2 [SOC2]
testing) stemming from timely vulnerability management and penetra‐
tion testing of the WAF infrastructure are provided by the cloud pro‐
vider.

Managed WAF Services
Managed WAF services are generally provided by the WAF original equip‐
ment manufacturers (OEMs), such as like Imperva, AWS, or Cloudflare, that
host WAF farms either in shared colocation data centers or leased cages from
public cloud providers within their data centers. They can use DNS-based
capabilities to protect both on premises and cloud-hosted applications. They
can provide fully managed services that can perform all the (configuration,
incident response, and operational management) services mentioned in the
two previous paradigms. While this scheme can work well (for less complex
applications), the services can become very expensive and are generally not
native to the public cloud. These can also bring customer experience issues
(from WAF blocks caused by false positives) if the security or application
team is not fully engaged on a continuous basis with the WAF managed ser‐
vice provider.

97 Things Every Application Security Professional Should Know130

Do You Need Manual
Penetration Testing?
Shawn Evans

The goal of web application penetration assessments is to enumerate and
exploit risk across all manner of web platforms via automated and manual
methods. The responsibility of the assessor is to cause unintended applica‐
tion behavior. This sounds simple, but it is the most basic thread that con‐
nects all vulnerabilities. Unintended behavior can manifest itself through
information disclosure, subtle variances in HTTP response size, command
injection on the client or server side, logical errors, and out-of-band interac‐
tions with other servers.

Reliably injecting faults and positively detecting risk is greatly enhanced if
the assessor has a fundamental understanding of the code that is being exe‐
cuted behind the scenes. AppSec professionals, even those without a software
engineering background, should be able to read and understand code. The
ability to read and understand code then lends itself to pseudocode. If you
can look at a few lines of code or an entire function and distill that function‐
ality into a concise logical description, then you can effectively describe an
entire application. The same is true of application users. By using an applica‐
tion and observing the submitted parameters and expected responses, it’s
possible to describe in plain language what discrete functions are likely being
called on the server side to satisfy a request.

Consider a component of a web application that facilitates account profile
updates. The profile update code should first verify that a request contains a
valid session identifier that is bound to an account with sufficient privileges.
The application then needs to verify that the request parameters or POST data
is valid. This could include the following highly granular validation checks:

• Is an email address in a valid format?
• Is the email address domain valid?
• Has the password satisfied complexity requirements?

131

• Do any of the parameters contain potentially malicious characters?
• Is the avatar URL pointing to a trusted domain?
• Did the username supplied with the update request match that of the

active session?

Security-conscious developers have a broad range of considerations to make
even when implementing basic features, and increasing complexity increases
the likelihood of security gaps. Thoughtfully analyzing the application from
the perspective of a developer establishes a direct connection to likely attack
paths and the potential to trigger unintended application behavior.

The wonderful aspect of this exercise is that it does not require familiarity
with the syntax of any language. Instead, it requires that the application secu‐
rity professional be able to visualize and explain the logical steps required to
execute a given function, such as updating a profile. All of this lends itself
well to efficient manual application pen testing.

Manual testing is slow, but greatly reduces instances of false positives. Dur‐
ing a time-boxed pen testing engagement, it’s impossible to manually evalu‐
ate an application’s response to every input permutation. By considering
parameter context and postulating server-side workflows, attack paths can be
significantly reduced on a per parameter basis. This not only improves the
efficiency of the assessment, but also highlights more subtle attack vectors
that aren’t caused by the blunt injection of malicious characters such as those
associated with SQLi, XSS, or command injection. It’s the subtle attack vec‐
tors that automated scanners are incapable of detecting.

Automated solutions are excellent for coverage but should never be relied
upon exclusively. Context is always a component of a successful attack chain.
Consider exploits that rely on the injection of negative numbers to change a
deduction into a deposit or the ability of an attacker to change the password
of other user accounts. These attack scenarios do not rely on the injection of
malicious code or metacharacters, but the injection of valid input that results
in an unintended application state. Vulnerabilities that fall into these cate‐
gories require logic to detect. It’s the ability to identify purpose and context
as it relates to request parameters that distinguish manual from automated
testing. This can only be achieved by penetration testers who take the time to
understand the application and the parameters being passed to it before they
ever start attacking it.

97 Things Every Application Security Professional Should Know132

Bash Your Head
Shawn Evans

I often compare security professionals to magicians. These are individuals
who retain such deep knowledge of protocols, networks, applications, and
security that the act of exploiting flaws in well-designed products is magic to
the untrained observer. It’s all sleight of hand to a certain degree. This is
mostly true for security professionals, but you’re probably in the wrong pro‐
fession if seeing a reverse shell doesn’t feel a bit like magic. Hollywood has
aided in perpetuating this persona. Traditional security professionals (aka
“hackers”) are portrayed as being forever engaged in a black and green ter‐
minal screen, furiously typing esoteric commands that result in page after
page of scrolling binary data.

While these analogies and stereotypes are a stretch, it’s worth acknowledging
that some of it is rooted in fact. I entered the field of cybersecurity more than
fifteen years ago having never familiarized myself with Linux or Unix sys‐
tems. I observed colleagues formatting unstructured data with a few Bash
commands and then sending that data to an HTTP proxy tool with a few
more. It might as well have been magic. Today, hardly a day passes without
me extensively utilizing a familiar black and green Bash terminal to carry out
penetration assessments with increased effectiveness.

Having a fundamental understanding of Bash basics provides significant effi‐
ciency gains for penetration testers and security professionals in general.

Consider a scenario where you generated a list of usernames and need to
convert that data into properly formatted email addresses. In Bash, this can
be accomplished in a single line of commands:

$ cat user_name_list.txt | awk '{print $0"@nopsec.com"}'

Let’s get more complex. Say we have a file that contains a list of email
addresses obtained through open source intelligence gathering and we iden‐
tified an application endpoint vulnerable to username enumeration. How
can we use Bash to identify the email addresses that correlate to a valid
account? We could use the following command:

133

$ for username in $(cut -d '@' -f 1 usernames.txt); do code=$(curl -I

'http://localhost:8083/authors/'$username 2>/dev/null | head -n 1 |

cut -d$'' -f2); if ["$code" == "200"]; then echo $username'

is a valid user!'; fi;

done

Output:

rfranklin is a valid user!

That is magic! Evaluating this command, we see that it combines a Bash for
loop, if...then, pipes (|), and variables to chain together the output of the
Bash commands curl, cut, and head and return valid user accounts. It exe‐
cuted a fairly complex sequence of events in a self-contained command line
that facilitated the enumeration of hundreds of potential valid accounts.
Sure, this kind of operation could be accomplished in an HTTP proxy tool
such as Burp, but how much time would have been wasted formatting data
and setting up the intruder attack? Oddball, one-off challenges like this
present themselves in nearly every AppSec assessment. The ability to live off
the land to quickly manipulate, isolate, and create data based on a few simple
commands increases engagement efficiency and helps identify use cases not
possible with any one tool. The most useful piece of code I ever created was a
Bash function to pull valid IP addresses from arbitrary input:

function ipgrab() {

read line; echo $line | grep -E -o

'(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9]

[0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|

[01]?[0-9][0-9]?)';

while read line ; do echo $line | grep -E -o

'(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9]

[0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|

[01]?[0-9][0-9]?)'; done

echo $line | grep -E -o

'(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9]

[0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|

[01]?[0-9][0-9]?)';

}

I use this function at least 10 times a day. It is included in the Bash configura‐
tion of every Linux machine I create, and I regularly pipe the output to other
security tools.

97 Things Every Application Security Professional Should Know134

At a high level, there are few limits to what can be accomplished in Bash. If
you want to send some data to a generic TCP connection, use Netcat. If you
want to send an HTTP request, use cURL or Wget. Want to carve up a *.csv
file? Use cut, grep, and awk. There exist tens of thousands of additional
command-line utilities available via “apt.” The potential for quick solutions is
unmatched. The command syntax can get ugly, especially when you’re deal‐
ing with conditional statements, piped commands, regular expressions, for
loops, and other languages such as Python. But the time saved is significant
once you hit a certain level of comfort with the syntax. Manually manipulat‐
ing disparate sets of data via text files or spreadsheets is inefficient. Not to
mention that when it works, a well-crafted Bash command is akin to magic.

Collective Wisdom from the Experts 135

Exploring Application
Security Through Static
Analysis
Tanya Janca

Start securing software by performing static application security testing
(SAST). Unlike dynamic analysis, which is performed when an application is
running and its state is changing constantly, static analysis is performed on a
version of code that is static and unchanging. You don’t need to run the
application, nor do you even need to build it or compile it. You can just point
a static analysis tool directly at your codebase and find out if there are poten‐
tial vulnerabilities. You can also do a manual code review, which is also a
form of static analysis.

Static analysis has changed a lot in the past few years. The first generation of
static analysis tools were slow, tedious, and full of false positives. These tools
used symbolic execution to parse your application in small chunks, just like a
compiler would, then go down every single possible avenue that could hap‐
pen to your application. Every potential outcome of your code is examined
for potential vulnerabilities. These types of systems are extremely thorough,
but also slow and prone to producing false positives. Unfortunately, with
DevOps and the need to develop software faster than ever before, it is diffi‐
cult to accept a high rate of false positives or wait several hours for a scan to
run. I generally only recommend these tools if you need an extremely high
level of precision and/or security assurance. These systems generally require
a security expert to validate the results and then explain what needs to be
done to the software developers.

Advances have been made over the past few years, and next-generation or
second-generation static analysis tools have come on the market. These
newer tools use flow analysis and antipattern matching to find
vulnerabilities.

136

Flow analysis, in its most basic form, tracks input to the application and sees
where that input is used. The static analysis tool wants to ensure the program
verifies the data is safe before it is used within your system. For instance, a
user could put a script into a search field, then press the search button, and if
your application used that data as part of a query to send to the database, it
could have dire consequences. Flow analysis shows software developers
where they have made an error in trusting user input before validating that it
is what they are expecting and safe for them to use. Note: first-generation
SAST tools sometimes use flow analysis as well as symbolic execution.

Antipatterns refer to something that is known for certain to be problematic.
With antipattern matching, the tool uses regular expressions to find functions
or other patterns that are certain to introduce a vulnerability. Antipattern
matching is extremely fast.

These newer versions of static analysis provide significantly faster and more
accurate results than ever before. They provide significantly fewer false posi‐
tives, almost none. That said, they do miss some vulnerabilities, occasionally.
No system is perfect.

When it comes to securing applications and APIs, be sure to test or verify
them from all three angles discussed in this essay (static, dynamic, and third-
party code). Starting with static analysis may be easier, as the static code tool‐
ing is mature enough, and developers are able to adopt them more readily as
part of the processes they already follow.

Collective Wisdom from the Experts 137

Introduction to CI/CD
Pipelines and Associated
Risks
Tyler Young

Continuous integration and continuous delivery (CI/CD) pipelines are an
essential part of modern software development processes. They provide a
streamlined way for development teams to manage code changes, automate
builds and testing, and deploy changes quickly and efficiently. However,
CI/CD pipelines also present unique risks and challenges to the security of
your software and infrastructure.

The following are notable risks of CI/CD pipelines:

Code injection
One of the most significant risks associated with CI/CD pipelines is the
possibility of code injection. Attackers can exploit vulnerabilities in your
pipeline to inject malicious code into your software, potentially compro‐
mising the security of your systems and data. This risk becomes more
significant when companies leverage open source software libraries, as
vulnerabilities can be identified and exploited at scale.

Secret/credential hygiene
CI/CD pipelines often require access to sensitive credentials, such as API
keys, database passwords, or other critical authentication tokens. If these
credentials are not adequately secured, they can be easily exposed to
threat actors, who can then use them to access systems and data. While
this isn’t unique to CI/CD security and is a persistent risk to AppSec in
general, any time you are deploying automated workflows that access
secrets there is an associated risk that needs to be scrutinized.

Pipeline poisoning
Similar to what we witnessed with the SolarWinds attack (malicious
code deployed as part of legitimate software), CI/CD pipelines can be

138

exploited to deploy malicious code at scale and automatically. Attackers
can insert malicious code into your pipeline, which can then be executed
during the build process, potentially compromising the security of your
entire system. Oftentimes, this goes undetected as code-scanning soft‐
ware looks for vulnerable code.

Misconfigurations
Another risk associated with CI/CD pipelines is the possibility of mis‐
configurations. If your pipeline is misconfigured, it can lead to uninten‐
ded access to sensitive data, insecure code deployment, or accidental
exposure of data. These types of risks can arise due to improper access
control or an accidental keystroke.

As with any risk, there is always a countering course of action to put your
organization in a better position to reduce the likelihood of the threat. The
following are a few security hygiene steps you can take to better secure your
CI/CD pipelines:

Implement access control
One of the most important steps to secure your CI/CD pipeline is to
implement strong access control measures. Only authorized personnel
should be able to access your pipeline, and you should use tools like
IAM to manage and control access.

Secure your credentials
Ensure that your credentials are stored securely and are not accessible to
unauthorized personnel. It’s imperative when working with automated
systems to avoid sharing. Leverage tools such as KMS or Key Vault to
protect your sensitive authentication data.

Secure build environments
As with any system, it’s important to ensure that your CI/CD pipelines
are maintained in your asset inventory. Knowing what systems are being
leveraged, where, and by whom is fundamental to securing any system.
In addition, ensure your build environments are isolated from the rest of
your network. Ensure that these environments are regularly updated
with security patches, access is monitored, and that they are properly
configured to minimize the risk of attacks.

Implement code reviews
Implement a code review process to ensure that code changes are thor‐
oughly reviewed for potential vulnerabilities and errors before they are
deployed. Creating “gold” images of your images and running hash

Collective Wisdom from the Experts 139

checks against them, ensures that any deviation in the code base is able
to be detected. This can help to catch potential security issues before
they become critical problems.

Use security best practices
Implement security best practices such as password management, least
privilege access, and regular software updates. These practices can go a
long way in securing your CI/CD pipeline and protecting your systems
and data from potential threats.

CI/CD pipelines are critical to modern software development processes, but
they also present unique risks and challenges to the security of your infra‐
structure. By implementing strong access control measures, securing your
credentials, using secure build environments, implementing code reviews,
and following security best practices, you can help secure your pipeline and
minimize the risk of attacks and vulnerabilities.

97 Things Every Application Security Professional Should Know140

PART V

Vulnerability
Management

Demystifying Bug Bounty
Programs
Aldo Salas

I’ve been involved in a couple of companies where the use of a bug bounty
program was generally perceived as negative. There are a number of reasons
I’ve heard many reasons why implementing a bug bounty program was not
sought after at that time, including:

• The program can be expensive.
• It takes several months before seeing results.
• It’s hard to manage.
• Researchers can be hostile.

The financial issue is a misplaced concern, since it’s significantly cheaper to
find a critical vulnerability by doing a routine pen test, or through a con‐
trolled bug bounty program than having one of your customers discover that
vulnerability and demand a fix as soon as possible.

The consequences of customers and prospects finding security issues in an
application can range from a customer reducing their confidence in your
product, to actually losing an opportunity because the prospect did not con‐
sider the application to be secure enough. This is vastly more expensive than
an average bug bounty program.

The results of a bug bounty program can be obtained almost instantly
because the researchers involved are usually highly motivated and work
across multiple time zones, allowing for continuous progress. Lastly, the
challenges of managing the program and coordinating with researchers can
be easily addressed by using a bug bounty partner or platform, which
streamlines the process and facilitates effective collaboration.

142

Preparing the Test Environment
For startups, it is usually easier to run a bug bounty program when the com‐
pany only has one main core product or a limited number of offers. When
you think of a larger company that has hundreds of applications and thou‐
sands of endpoints, providing full access for testers can become a challenge.

Ideally, it should be fairly easy to provide a new test environment that
researchers can freely use to run all the tests they want, but if this is not pos‐
sible, most applications already have a testing environment where there’s no
real data and can be used for providing access to researchers.

Testing in Production
I realize this sounds like a meme and that you probably have heard this as a
running joke about how tough developers run their testing in a production
environment.

The reality is that it is recommended to include all your production assets in
scope for a bug bounty program; otherwise, you most likely will be missing
several vulnerabilities that are only applicable to production applications and
configurations.

I actually was told by a coworker that we would look like amateurs if we were
to run our bug bounty program in production in case the researchers
brought down our system and our customers couldn’t use it.

This couldn’t be further from the truth.

Just think about it for a minute: wouldn’t you want to know if some random
person with their limited resources and an open source web scanner is able
to bring down your entire production environment? Wouldn’t it be really
concerning if this were the case? That’s something I’d like to fix if it
happened.

Recommendations
Here are some tips for a successful bug bounty program:

Use an existing platform.
Implementing a bug bounty program can be challenging, and that is why
I recommend using one of the many platforms that already exist. They
can help your organization get started in no time, and they will handle
all the communications, accounts, payouts, etc.

Collective Wisdom from the Experts 143

Implement guardrails.
If there are some assets/domains/vulnerabilities that you don’t want to
include for any reason, these can be marked as out of scope.

Define payouts.
Bounties are a great way to motivate researchers to participate in your
program; consider increasing the bounties whenever possible.

Test in production.
It may be risky, but this gives your company every reason to make sure
high availability is guaranteed for your application. You may mitigate the
risk of bug bounty testing in production by isolating environments,
adopting gradual rollouts, implementing feature toggles, and maintain‐
ing vigilant monitoring to ensure high availability while minimizing
potential disruptions.

97 Things Every Application Security Professional Should Know144

EPSS: A Modern
Approach to Vulnerability
Management
Aruneesh Salhotra

Making good predictions and intelligently foreseeing what might happen
next before acting is crucial for decision making. These goals are also essen‐
tial in managing security risks.

Cybersecurity is a high-stakes race, and the winner is the one who finds the
weakness first. Most security professionals work against the clock to find and
fix system holes before opportunistic malicious actors exploit them.

Traditional Approaches Are Dated
Traditional vulnerability management approaches, such as the Common
Vulnerability Scoring System (CVSS), are increasingly facing scalability chal‐
lenges in today’s rapidly evolving cybersecurity landscape.

The core issue with CVSS lies in its static nature: it assigns a severity score to
vulnerabilities based on a fixed set of criteria without considering the
dynamic context of each organization’s unique network environment. These
traditional approaches don’t account for the ever-changing tactics of threat
actors, making it challenging to prioritize vulnerabilities based on real-world
threat intelligence.

According to research by the Forum of Incident Response and Security
Teams (FIRST), businesses and technology vendors fix only 5%–20% of vul‐
nerabilities every month. Yet only 2%–7% of vulnerabilities are ever exploi‐
ted. But which ones should we focus on remediating exactly? Since we
cannot be sure which vulnerabilities must be remediated first, we must
prioritize.

145

https://www.first.org/epss/model

The World of EPSS
Fast forward to 2019. Exploit Prediction Scoring System (EPSS) was started
as an open community-driven effort to model and manage vulnerability risk
from a probabilistic perspective. EPSS is increasingly recognized by research
communities and a growing number of enterprises as a contemporary
method for managing vulnerabilities. This approach is seen as a way to over‐
come the limitations inherent in traditional vulnerability management
strategies.

EPSS scores range from 0% (lowest) to 100 % (highest) probability of exploi‐
tation. EPSS also provides percentile rankings; percentile rankings measure
EPSS probability relative to all other EPSS scores. The combination of proba‐
bility and percentile enables advanced prioritization inputs.

EPSS leverages machine learning algorithms to predict the likelihood of a
vulnerability being exploited in the wild in the next 30 days. By integrating
real-time data from various sources, including threat intelligence feeds and
active exploitation trends, EPSS provides a more dynamic and context-aware
assessment. This approach enables organizations to prioritize their remedia‐
tion efforts more effectively, focusing on vulnerabilities that are not just the‐
oretically severe but are also likely to be targeted by attackers. By doing so,
EPSS helps organizations optimize their “scarce” and usually “expensive”
security resources, ensuring that they address the most pressing threats, thus
enabling a more proactive and efficient vulnerability management process.

Key Aspects of EPSS
Here is what’s new in EPSS that makes it more attractive than CVSS:

• Gathers data from vulnerability databases, threat intelligence, and
exploit occurrences.

• Analyzes data using ML to identify exploitation patterns.
• Continuously refreshes data for current threat landscape relevance.
• Considers factors like exploitability, exploit code availability, and soft‐

ware popularity.
• Assigns probability scores to vulnerabilities, indicating exploitation

likelihood.
• Adapts scores based on specific network environments and exposure

levels.

97 Things Every Application Security Professional Should Know146

• Guides efficient response with emphasis on high-probability
vulnerabilities.

• Displays exploitation activity as evidence that exploitation of a vulnera‐
bility was attempted, not that it was successful against a vulnerable tar‐
get. The model collects data from honeypots, intrusion detection system
(IDS) sensors, intrusion prevention system (IPS) sensors, and host-
based detection methods.

The EPSS model is invaluable for prioritizing patching efforts based on vul‐
nerability exploitation likelihood. One of the primary benefits of the EPSS
model is its open source nature, allowing for widespread access, transpar‐
ency, and community contributions. Using vulnerable data to make predic‐
tions provides more accurate results than scoring systems relying solely on
severity ratings. However, given that EPSS relies on community feedback and
knowledge, it’s crucial to emphasize that companies should not solely rely on
it. It’s essential to consider CVSS scores and make decisions based on the
specific setup of their infrastructure, especially regarding asset exposure to
the internet. Integrating various sources of information ensures a more com‐
prehensive and informed approach to cybersecurity decisions. By imple‐
menting the EPSS model, organizations can enhance their cybersecurity
measures and protect their digital assets more effectively. It is not main‐
stream yet, but it’s worth your organization considering and trying it!

Collective Wisdom from the Experts 147

Navigating the Waters
of Vulnerability
Management
Luis Arzu

Vulnerability management is a cornerstone in the defense of modern applica‐
tions, ensuring the identification, prioritization, and mitigation of potential
weaknesses. While academia and industry frameworks provide valuable
guidance, the real-world challenges and experiences of a practitioner bring a
unique perspective to this critical discipline. In this essay, I will share insights
about vulnerability management, drawing from my own journey in the field.

Understanding the Dynamic Landscape
The world of vulnerabilities is ever evolving, with threat actors constantly
seeking new ways to exploit weaknesses. I have witnessed firsthand the shift‐
ing landscape of vulnerabilities, from the traditional network perimeter to
the realm of web applications, APIs, and cloud-based infrastructures. I have
learned to adapt and stay ahead of emerging threats through continuous
monitoring and vulnerability scanning.

Prioritization: The Art of Decision Making
One of the greatest challenges in vulnerability management is prioritizing
the multitude of identified vulnerabilities. Balancing the severity of a vulner‐
ability with its exploitability and potential impact on critical assets requires a
deep understanding of the organization’s risk appetite and business priori‐
ties. Through iterative cycles of assessment, validation, and remediation, I
have honed the ability to make informed decisions that align with an organi‐
zation’s unique requirements. For instance, when faced with limited
resources, I recall a time when we had to prioritize patching vulnerabilities
on servers hosting critical customer data over those on non-customer-facing
systems. Such an example highlights the importance of aligning vulnerability

148

management efforts with the organization’s goals, priorities, risks, and other
compensating controls in place.

Building Collaborative Relationships
Effective vulnerability management extends beyond the realm of technical
expertise. It requires building collaborative relationships with various stake‐
holders, including developers, system administrators, and business units.
Over the years, I have discovered that fostering open communication chan‐
nels and establishing trust is crucial for driving a security culture. That com‐
munication is also based on security professionals like us to understand
developers’ priorities and provide them guidance on the remediation. By
bridging the gap between security and development teams, I have been able
to advocate for secure coding practices and create a shared responsibility for
vulnerability management.

Leveraging Robust Vulnerability Management
Solutions
In today’s complex threat landscape, organizations can derive immense bene‐
fits from robust vulnerability management solutions. These tools offer auto‐
mation, scalability, and actionable insights, empowering practitioners to
efficiently handle vulnerabilities. By leveraging such solutions, organizations
can streamline vulnerability scanning, prioritize risks, and facilitate efficient
remediation efforts. These tools also facilitate integration with various sys‐
tems and provide comprehensive reporting capabilities, empowering practi‐
tioners with visibility and data-driven insights. Through their usage,
practitioners can drive vulnerability management initiatives with confidence,
effectively communicating the urgency and impact of vulnerabilities to
stakeholders and securing necessary investments from organizational
leadership.

Moreover, these solutions bring broader advantages beyond their technical
functionalities. They enable practitioners to demonstrate the value of vulner‐
ability management efforts to organizational leadership, fostering a culture
of security and securing buy-in for necessary investments. Additionally, by
effectively managing vulnerabilities, organizations can enhance their reputa‐
tion and build trust with customers, partners, and stakeholders. For instance,
by diligently addressing vulnerabilities and showcasing proactive security
measures, my organization was able to win the trust of a major client and
secure a long-term partnership.

Collective Wisdom from the Experts 149

Conclusion
Vulnerability management is a multifaceted discipline that requires a com‐
prehensive understanding of the dynamic threat landscape, the art of deci‐
sion making in prioritization, building collaborative relationships, and
leveraging robust tools. Through years of experience as a practitioner, I have
learned the importance of aligning vulnerability management efforts with
organizational goals and priorities, fostering open communication channels,
and advocating for a culture of security. At the same time, by leveraging
robust vulnerability management solutions, organizations can streamline
their processes, prioritize risks, and effectively communicate the urgency of
vulnerabilities to stakeholders. Furthermore, continuous improvement
through knowledge sharing and remaining adaptable ensures that practition‐
ers can navigate the evolving security landscape with proficiency and
resilience.

97 Things Every Application Security Professional Should Know150

Safeguarding the Digital
Nexus: “Top 25
Parameters to
Vulnerability Frequency”
Lütfü Mert Ceylan

In an era where the digital realm intertwines with our everyday lives, ensur‐
ing the security of our virtual ecosystems has become more vital than ever.
Enter the realm of “Top 25 Parameters to Vulnerability Frequency,” a com‐
prehensive initiative that dissects the intricate anatomy of web applications
to expose the most critical parameters vulnerable to exploits. Let’s embark on
a journey to unveil these parameters, understand their significance, and arm
ourselves with the knowledge to fortify our digital ramparts.

Exploring Vulnerability Categories: A Profound
Expedition to Parameter Frequencies
Within the complex architecture of web vulnerabilities, the “Top 25 Parame‐
ters” patterns reveal the most common parameters across six major vulnera‐
bility categories, each representing a vulnerability in the firewall that must be
addressed:

Cross-site scripting (XSS)
Our expedition commences with parameters susceptible to XSS attacks.
These vulnerabilities enable attackers to inject malicious scripts, bypass‐
ing security measures and potentially compromising user data:

?q=, ?s=, ?search=, ?id=, ?lang=, ?keyword=, ?query=, ?page=,

?keywords=, ?year=, ?view=, ?email=, ?type=, ?name=, ?p=, ?month=...

Server-side request forgery (SSRF)
Our journey then leads us to parameters enabling manipulation of
server-side requests. Attackers exploit these weaknesses to gain unau‐

151

thorized access to internal resources, undermining data integrity and
system confidentiality:

?dest=, ?redirect=, ?uri=, ?path=, ?continue=, ?url=, ?window=,

?next=, ?data=, ?reference=, ?site=, ?html=, ?val=, ?validate= ...

Local file inclusion (LFI)
Our exploration shifts to unauthorized file access vulnerabilities. Attack‐
ers infiltrate these parameters to gain unauthorized access to critical
files, potentially leading to data breaches and unauthorized access:

?cat=, ?dir=, ?action=, ?board=, ?date=, ?detail=, ?file=,

?download=, ?path=, ?folder=, ?prefix=, ?include=, ?page=, ?inc= ...

SQL injection (SQLi)
Our quest continues with parameters vulnerable to SQLi attacks. Inade‐
quately sanitized inputs create gateways for attackers to manipulate data‐
bases, extract sensitive data, and compromise system integrity:

?id=, ?page=, ?dir=, ?search=, ?category=, ?file=, ?class=, ?url=,

?news=, ?item=, ?menu=, ?lang=, ?name=, ?ref=, ?title=, ?view= ...

Remote code execution (RCE)
Our expedition delves into vulnerabilities facilitating RCE. Exploiting
these vulnerabilities grants unauthorized access to an application’s back‐
end, allowing attackers to execute arbitrary code and compromise sys‐
tem security:

?cmd=, ?exec=, ?command=, ?execute=, ?ping=, ?query=, ?jump=,

?code=, ?reg=, ?do=, ?func=, ?arg=, ?option=, ?load=, ?process= …

Open redirect
Our journey concludes by examining parameters enabling manipulation
of URL redirection. Malicious actors orchestrate these manipulations to
deceive users and direct them to potentially harmful websites:

?next=, ?url=, ?target=, ?rurl=, ?dest=, ?destination=, ?redir=,

?redirect_uri=, ?redirect_url=, ?redirect=, /redirect/,

/cgi-bin/redirect.cgi?, ...

The full version of the patterns can be found in the official list.

97 Things Every Application Security Professional Should Know152

Empowering with Knowledge: The Path Forward
In the codex of vulnerabilities, the patterns emerge as a guide, orchestrating
the harmonious blend of knowledge and action. By revealing the vulnerabili‐
ties that undermine digital integrity, this project empowers us to secure our
applications, bolster our defenses, and champion a safer digital landscape.

This knowledge equips us to identify vulnerabilities and implement robust
countermeasures. It’s an invitation to adopt secure coding practices, embrace
stringent input validation, and conduct comprehensive security assessments.

As the lead behind the OWASP Top 25 Parameters project, I want to guide us
toward empowered digital spaces. With my unwavering commitment to digi‐
tal security, I strive to empower developers and security practitioners to act
with community awareness in our quest to protect digital creations.

These parameter patterns transcends being a mere compilation—it is an
embodiment of collective effort and shared purpose. It symbolizes our com‐
mitment to secure applications, elevate industry standards, and forge a
future where digital innovation thrives within the fortress of security.

To view the latest OWASP Top 25 Parameters list, visit the OWASP website.

Collective Wisdom from the Experts 153

https://owasp.org/www-project-top-25-parameters/

Unveiling Paths to
Account Takeover: Web
Cache to XSS
Exploitation
Lütfü Mert Ceylan

I am pleased to share with you a real-life experience on a security vulnerabil‐
ity that showcases the intricate interplay between seemingly benign technical
nuances and profound security implications. In 2023, I embarked on a jour‐
ney that led me to uncover a reflected XSS vulnerability within a video game
company’s infrastructure. My investigation traversed the realms of caching
mechanisms and vulnerability escalation, culminating in the discovery of a
pathway to account takeover. In this discourse, I illuminate the technical
underpinnings that drove this narrative.

Discovery of Vulnerability
At the heart of this narrative is a reflected XSS vulnerability lurking within
the language input field. At its inception, it might have appeared as a conven‐
tional XSS vulnerability; however, a closer examination unveiled nuances
that held the potential for drastic consequences. Upon accessing a specific
URL, the vulnerability could be exploited to compromise user sessions
through a meticulously crafted payload. The vulnerability stemmed from the
absence of critical security measures such as the HttpOnly and secure flags.

But What Is Reflected XSS Vulnerability?
Reflected cross-site scripting (XSS) is a subtype of XSS where malicious
scripts injected into a web application are reflected off the server, such as in
error messages or search results. This occurs when a user clicks a malicious
link or submits a form, causing the script to execute in their browser. It dif‐
fers from other XSS types, like stored XSS, where the script is permanently
on the server, or DOM-based XSS, which involves the web page’s document

154

object model without server interaction. Reflected XSS is unique, as the mali‐
cious script is not stored but reflected in response to user input:

HttpOnly
An HttpOnly cookie is a security mechanism that curtails scripts’ access
to sensitive cookie data, mitigating potential attacks.

Secure
A secure flag, when employed, confines cookie transmission exclusively
to secure HTTPS connections, bolstering data integrity and confidential‐
ity during transit.

Amplification Through Web Cache Exploitation
Deeper exploration revealed a noteworthy facet—the caching behavior of the
server in relation to the language parameter’s value. This revelation held a
pivotal implication: the potential for a vulnerability’s payload to be ubiqui‐
tously embedded across diverse pages within the site. Distinct from conven‐
tional web cache poisoning, this approach selectively cached sections
housing the payload, avoiding an all-encompassing page cache. To further
comprehend this mechanism, reference the illustrative framework I
formulated.

The Genesis of Account Takeover
The vulnerability’s magnitude was compounded by the glaring absence of
pivotal security measures—namely, the HttpOnly and secure flags—along‐
side the omission of a Content-Security-Policy (CSP) framework on the web‐
site. This compounded vulnerability permeated the site’s framework,
enabling potential breaches that could compromise sensitive user data.

Exploiting the Dynamics of Web Cache Poisoning
Web cache poisoning provided an avenue for exploitation that was as dis‐
creet as it was impactful. By incorporating the vulnerable URL within exter‐
nal requests, carefully camouflaged in seemingly innocuous elements like
images, attackers could systematically exploit the cached payload. On each
occasion a user accessed the target site, the payload was discreetly executed,
silently granting unauthorized access.

Collective Wisdom from the Experts 155

Mitigation and Beyond
Prompt action was initiated upon reporting the vulnerability, prompting an
acknowledgment of its gravity. Swift measures were enacted to address this
vulnerability and reinforce the security posture.

In summation, this journey weaves a tapestry that underscores the intricacies
of web security and the criticality of maintaining vigilance across technical
landscapes. As we navigate the digital frontier, it is essential to recognize that
even the minutest of vulnerabilities can reverberate with far-reaching
implications.

Embarking on this exploration has illuminated the dynamic intersection of
security, technology, and vigilance, paving the way for fortified digital
domains.

97 Things Every Application Security Professional Should Know156

Sometimes the Smallest
Risks Can Cause the
Greatest Destruction
Lütfü Mert Ceylan

In the intricate realm of cybersecurity, where digital fortresses are construc‐
ted to ward off looming threats, it’s easy to focus solely on the grand and
complex vulnerabilities. Yet, amid the labyrinth of sophisticated exploits, it’s
the unassuming vulnerabilities that can spark catastrophic consequences.
This phenomenon underlines the profound truth that sometimes the small‐
est risks can cause the greatest destruction.

In the dynamic landscape of cyber threats, security practitioners often priori‐
tize their efforts by focusing on high-profile vulnerabilities with elaborate
attack vectors. While this approach is undoubtedly crucial, it’s equally essen‐
tial to recognize the latent dangers concealed within seemingly minor secu‐
rity gaps. Hackers have a remarkable knack for exploiting the unexpected,
and even the most innocuous vulnerabilities can become a launching pad for
devastating attacks.

The interplay between seemingly insignificant vulnerabilities and larger
security weaknesses can create a domino effect of compromise. Cybercrimi‐
nals, armed with an intimate understanding of system intricacies, can weave
together multiple low-severity vulnerabilities to orchestrate a high-impact
breach. These smaller vulnerabilities might individually appear harmless, yet
their synergy can lead to an intricate chain reaction that eventually breaches
the digital bastions. Moreover, the art of blending distinct vulnerabilities—
like harmonizing a deceptively innocent melody into a symphony of chaos—
can enable attackers to traverse the security landscape unnoticed.

This concept also extends to the insidious practice of “risk layering” or “vul‐
nerability chaining.” Hackers recognize that a single vulnerability might not
suffice to breach a fortified system, so they ingeniously employ multiple vul‐
nerabilities in unison. By stacking these vulnerabilities like puzzle pieces,

157

they construct a composite threat that can dismantle even the most fortified
defenses.

In the intricate landscape of application security, it remains a truth that the
most inconspicuous vulnerabilities possess the potential to birth the most
devastating breaches. These vulnerabilities, often dismissed as mere after‐
thoughts, can sow the seeds of peril when interconnected or exploited in
unanticipated ways. This underscores the imperative for a comprehensive
cybersecurity strategy. Adopting a proactive stance toward risk identification
and mitigation becomes indispensable, ensuring that even the smallest risks
are addressed before they snowball into catastrophic events. Security profes‐
sionals must view the threat landscape through a nuanced lens, identifying
not only the glaring weaknesses but also the subtle interconnections that can
magnify their impact.

As the cybersecurity environment continues to evolve, I’d like to define this
situation with the following proverb: “Sometimes the smallest risks can cause
the greatest destruction.” This resonates more than ever. Armed with this
awareness, organizations can take a proactive stance by supporting the
smallest cracks in their digital armor and eliminating the potential for suc‐
cessive breaches.

In conclusion, the cybersecurity realm is a battleground where the most
inconspicuous vulnerabilities can serve as critical points of entry for mali‐
cious actors. Recognizing the potential harm that these seemingly minor
risks can inflict is paramount. With an unyielding commitment to under‐
standing the interconnectedness of vulnerabilities, security practitioners can
navigate the complex landscape and protect their digital domains from the
unexpected and potentially catastrophic threats that lurk within the shadows.

97 Things Every Application Security Professional Should Know158

Effective Vulnerability
Remediation Using EPSS
Reet Kaur

Every day, new software vulnerabilities are disclosed. However, due to a lack
of resources and conflicting business requirements, it is impossible for
organizations to patch all these vulnerabilities and perform effective vulnera‐
bility remediation within defined service-level agreements (SLAs). Most
companies can only fix between 5% and 20% of known vulnerabilities per
month.

We also know that only a small subset of these many vulnerabilities are ever
seen to be exploited in the wild. With a multitude of vulnerabilities to
address and limited resources, it’s essential to prioritize remediation efforts
while allocating resources more efficiently and effectively.

To tackle this issue, the FIRST (Forum of Incident Response and Security
Teams) organization developed the Exploit Prediction Scoring System
(EPSS). It is a community-driven effort to combine descriptive Common
Vulnerabilities and Exposures (CVE) information with evidence of actual
exploitation in the wild. By collecting and analyzing this information to
include in our vulnerability management platforms, we may improve vulner‐
ability prioritization by estimating the likelihood that a vulnerability may get
exploited. The EPSS model produces a probability score between 0 and 1.
The higher the score, the greater the probability that a vulnerability will be
exploited within the next 30 days.

EPSS gathers data from many sources, including CVE lists, text-based tags
from CVE descriptions, exploit codes from repositories like Metasploit and
GitHub, security scanners, CVSS v3 vectors, vendor information through
Common Platform Enumeration (CPE), and real-world exploitation data
submitted by researchers and the community. This rich data set, updated
regularly, is the basis for training the EPSS model and improving its accu‐
racy.

159

https://www.first.org
https://www.first.org

This data-driven approach is a significant step forward in focusing remedia‐
tion efforts where they are most needed.

Combining CVSS and EPSS helps with resource optimization, as it allows
focus on patching fewer, but critical, vulnerabilities that have a high likeli‐
hood of being exploited while maintaining or even improving efficiency and
coverage. By embracing EPSS, enterprises can enhance their resource alloca‐
tion and respond more effectively to potential threats.

To maximize the effectiveness of EPSS, it’s essential to evaluate vulnerability
reachability within your enterprise environment. This assessment entails
gauging how easily a hacker can exploit a security vulnerability in a system
or environment. Factors such as the accessibility of the system/application
with the vulnerability, its exposure to external threats, and the ease with
which attackers can exploit the vulnerability to compromise the software are
considered.

Key elements influencing vulnerability reachability include the effectiveness
of security controls, the capabilities and resources of potential attackers, sys‐
tem configurations, and the potential impact of an exploit. In essence, the
goal is to determine the likelihood of a successful breach by evaluating these
factors.

As cyber threats keep evolving, it’s important to rely on expert advice and
real-world context to make informed decisions. By considering both vulner‐
ability reachability—how likely a vulnerability is to be exploited—and EPSS,
companies can prioritize which issues to address first and allocate resources
effectively to tackle the most serious threats.

97 Things Every Application Security Professional Should Know160

Bug Bounty—Shift
Everywhere
Sean Poris

A bug bounty program is an initiative that organizations adopt to invite ethi‐
cal hackers to identify vulnerabilities in web applications, software, or even
hardware.

When I first started looking at bug bounty programs as a part of a holistic
AppSec program, business and legal teams at that time pushed back incredi‐
bly hard. Their response was somewhere between incredulity and blatant
aggressive defiance. A typical conversation with the legal department could
have easily ended with, “If anyone intentionally engages in hacking our web‐
sites, we will issue them a cease and desist letter immediately.” Clearly, the
hurdles were too great.

Fast forward to about 2019, and bug bounty programs were becoming a
mainstay in many programs. But with the shift left mantra of getting security
focused earlier in the development life cycle, where does a right-shifted bug
bounty program truly sit? The reality is that AppSec efforts aren’t perfect,
and internal corporate security programs simply don’t have the scale of
resources to bring the level of diversity necessary to execute testing to the
degree and duration a healthy bug bounty program does. So, in the classic
sense of security, bug bounty programs are part of a “belt and suspenders”
model of complementing shift left security activities, following today’s more
appropriate philosophy of “shift everywhere.”

With an active bug bounty program, you can have dozens, if not hundreds,
of eyes with unique techniques, tools, and perspectives to test your applica‐
tion’s resilience in ways you hadn’t had the time yourself. In fact, once you
build some loyalty with hackers in the community, they’ll come to know
your site as well as some of your developers do. At that point, they are an
invaluable resource to identify increasingly complex issues that might slip
through the pipelines you’ve built, the scans you execute, and the manual
reviews you conduct.

161

A bug bounty program is an excellent complement to a strong vulnerability
management program, and in fact, bug bounty cannot exist without a
vibrant vulnerability management capability. Why? First, if you can’t articu‐
late your vulnerability posture, or at least be sure that you’ve established
basic hygiene with a foundational program, you cannot expose yourself to
the hacker community. They will immediately deplete your budget by find‐
ing the low-hanging fruit your program should have identified. Rather, it
makes sense to invest in your product security and vulnerability manage‐
ment functions. Once you have the basic hygiene accounted for, you’ll be
much better able to adopt a bug bounty program and leverage hackers to
find the things you cannot.

Further, the concept of a bug bounty life cycle drives increased value to your
security program as a whole. As hackers find more interesting techniques,
internal security practitioners, corporate infrastructure, and application
development engineers can leverage those insights to fine tune scanners,
build better tests to include in subsequent test suite updates, and scour other
products for the same types of vulnerabilities. This uplevels and hardens the
security program as a whole. This drives hackers to identify more and differ‐
ent vulnerabilities, whose remediations also find their way into left-shifted
security practices. By combining a healthy vulnerability management and
product security function with a full round trip bug bounty life cycle, secu‐
rity programs can harness the power of hackers and the value of a healthy
bug bounty program.

97 Things Every Application Security Professional Should Know162

PART VI

Software Supply Chain

Integrating Security into
Open Source
Dependencies
Alyssa Columbus

Open source software has become ubiquitous in application development,
providing ready-made components that accelerate time-to-market, reduce
costs, and foster shared innovation. However, unchecked open source usage
creates significant security risks that must be proactively managed through‐
out the software life cycle. Here are some essential practices to mitigate these
risks and ensure the overall security of the software development process.

Selecting Secure Open Source Libraries
When selecting open source libraries, frameworks, and components, thor‐
oughly vet both code and community:

• Review the open source project’s public vulnerability history to assess
susceptibility to vulnerabilities and how quickly issues are addressed. An
engaged, responsive maintainer community adept at rapidly patching
flaws is essential.

• Evaluate the community. Look for a large and active community with a
diverse set of contributors. A healthy community is a good indicator of a
well-maintained project.

• Analyze the frequency of releases. Frequent, incremental updates indi‐
cate active maintenance. Go for libraries with recent releases over stale,
unsupported ones.

• Check for the use of sound engineering practices like input validation,
error handling, proper use of encryption, and the principle of least privi‐
lege. Avoid projects with insecure designs.

• Check for licensing. Make sure the open source library is licensed under
a permissive license that allows for commercial use. Avoid libraries with

164

restrictive licenses that could limit your ability to use or distribute your
software.

Auditing and Hardening Open Source
Dependencies
Before integrating any new open source dependency:

• Perform thorough audits of the source code, watching for SQLi, XSS,
insecure deserialization, broken authentication, insufficient authoriza‐
tion, and other issues.

• Use SAST, SCA, DAST, and pen testing tools to identify risks, address
discoveries in the open source software project itself, and wrap usage to
limit the attack surface.

• Evaluate how the dependency fits within the application’s secure archi‐
tecture and modify configurations to optimize for security.

Staying Current with Vulnerability Management
During development and in production:

• Closely monitor mailing lists and security advisories related to all incor‐
porated open source dependencies, regardless of how obscure or popular
they are.

• Maintain a comprehensive inventory of dependencies and versions in an
SBOM, and continuously scan for newly-disclosed issues.

• Conduct regular security assessments of your open source dependencies
to identify and address any potential vulnerabilities. These evaluations
can include pen testing, vulnerability scanning, and code reviews.

• Have a remediation plan to rapidly update open source components
with security fixes as they are released. Do not let applications lag behind
the latest secure versions.

Making Open Source Security a Priority
Integrating open source components securely requires upfront effort and
constant vigilance:

• Train your development team on secure coding practices and the impor‐
tance of open source security. This can help ensure that your team is

Collective Wisdom from the Experts 165

aware of the risks associated with unchecked open source usage and is
able to proactively manage those risks.

• Make security a primary criterion during open source evaluation and
selection, along with functionality, licensing, and support.

• Build a governance process such that all open source libraries can be
reviewed before they’re added to your application or environment.

• Build security practices deeply into processes for dependency integra‐
tion, monitoring, alerting, patching, and version update management.

• Know your open source dependencies inside and out. The health of an
open source project profoundly impacts its application security posture.

With rigorous processes in place, open source risks can be tamed. The wide‐
spread use of open source technology is a double-edged sword, but its bene‐
fits outweigh the dangers if open source security is made an ongoing priority.

97 Things Every Application Security Professional Should Know166

Supplier Relationship
Management to Reduce
Software Supply Chain
Security Risk
Cassie Crossley

Software suppliers introduce risk to application security, even if proper due
diligence is performed before selecting the commercial or open source sup‐
plier. Security professionals should know that AppSec is not just about writ‐
ing security code; it is also about understanding your software dependencies
and managing the risks introduced by your software supply chain.

A supplier relationship can either be one-sided, as is the case for open source
or a licensed product, or mutual, where you have a contract with the sup‐
plier. For the one-sided supplier relationship, you can monitor for patches,
updates, and vulnerabilities, but for mutual relationships, there is so much
more that can be done to reduce supply chain security risk.

Signing a contract with a supplier is like a marriage, which means the dating
process is just as important as the marriage. Unfortunately, suppliers are
sometimes selected as quickly as “swiping right”; in other words, the supplier
selection may occur without any investigation. Every supplier, however,
needs to be examined for all types of risk, because supply chain security risk
is much more than cybersecurity or technical risk. The MITRE Corporation’s
System of Trust is a free supply chain security framework that can help any
size organization identify risks in many different categories, including finan‐
cial stability, ethics, quality, and service resilience.

Risks to AppSec should be carefully reviewed. Evidence for reviews may
come from questionnaires, assessments, requests for information (RFIs), cer‐
tifications, or other information collected from the supplier. For example, a
cloud service provider should provide a SOC2 audit report to demonstrate

167

https://sot.mitre.org

that an external certified examiner has reviewed the security, availability,
processing integrity, confidentiality, and privacy of the platform or service.

By thoroughly examining a supplier—also known as due diligence—the deci‐
sion to select the supplier is well-informed and intentional. Once you select
the supplier, the contract process can be quite intensive and last for months.
During this process is when previously identified risks can be discussed and
addressed with the supplier—before something happens such as a data
breach, security incident, or critical vulnerability. The contract should have
clauses specific to the capability (i.e., product, application, or service) that is
being provided, the expected outcomes and SLAs, and how the contract’s ter‐
mination should be managed, including procedures for breach notification
in case of security incidents or noncompliance with agreed-upon terms. For
example, a contract for developer services should clearly specify the secure
development life cycle requirements before they start the services engage‐
ment and that any source code must be removed from supplier systems at
the termination of the contract.

Once the contract is signed and the capability is in use, the supplier relation‐
ship is usually forgotten. Regrettably, this is where the risk to AppSec truly
begins. If the capability is critical to your organization, then an ongoing sup‐
plier management process must be established. The following critical sup‐
plier management activities can reduce supply chain security risk to your
organization:

• Create a direct relationship between the supplier and your organization’s
cybersecurity leadership. This can be in the form of a CISO-to-CISO
meeting at a regular cadence or between leadership accountable for
cybersecurity in the two organizations. An established relationship will
be crucial in the event of a data breach, security incident, or critical
vulnerability.

• Schedule a review, at least annually, to discuss the supplier’s service level,
quality, and cybersecurity. The cybersecurity leadership from both
organizations should attend in order to maintain the previously estab‐
lished relationship.

• Monitor the supplier for any changes in business health and cybersecur‐
ity posture. You can use a separate third-party service, configure moni‐
toring tools, or create Google alerts to receive notifications for analysis
and review.

97 Things Every Application Security Professional Should Know168

As with any relationship, there might be challenges to overcome, but with
ongoing supplier management, you can continuously evaluate the supply
chain security risks to your organization. Even in the situation where you
might terminate the relationship, the termination decision can focus on the
facts and reasons and hopefully will occur without any need for legal
recourse.

Since managing third-party risks is very different from identifying and reme‐
diating application vulnerabilities, it’s recommended to have someone who
can focus on this and work with legal and procurement to continuously
monitor suppliers.

Collective Wisdom from the Experts 169

Fortifying Open Source
AI/ML Libraries: Garden
of Security in Software
Supply Chain
Chloé Messdaghi

In the domain of artificial intelligence and machine learning, open source
libraries play a pivotal role—comparable to the essential morning ritual of
sipping your favorite coffee or tea. However, navigating the extensive land‐
scape of open source AI/ML libraries isn’t a straightforward path; it’s like
coaxing a squirrel into performing the “Macarena”—full of unexpected turns
and fascinating complexities.

Exploring the world of open source AI/ML libraries unveils a multitude of
vulnerabilities. These open source projects, much like individual garden
plots in a shared space, might overlook potential intrusions. Vulnerabilities
range from unpatched bugs to overlooked security risks. Compounded by
outdated dependencies, these challenges demand vigilant attention and pro‐
active measures.

To successfully embark on your AI/ML journey, let’s dive deeper into the key
facets of this expansive landscape, equipping you with essential indispensa‐
ble knowledge and effective strategies.

Dependency Scanning
Automated dependency scanning and analysis serve as essential tools to mit‐
igate these risks. They function as vigilant sentinels, uncovering vulnerabili‐
ties and risks that might otherwise remain hidden within the system.
Reactivity won’t suffice; proactive measures are critical to preemptively
counter threats. Much like diligent gardeners inspecting every plant and
shrub for signs of pests or disease, these scanning tools scrutinize every nook
and cranny of the code, identifying areas of weakness and potential threats.

170

CI/CD for AI and ML
The incorporation of CI/CD practices in the AI/ML domain presents unique
challenges. Integrating open source AI/ML libraries requires meticulous
care. Every phase of the CI/CD pipeline potentially exposes the system to
vulnerabilities, emphasizing the need for robust security checks at each stage
to avoid potential risks. It’s like ensuring that each stage of the garden’s
growth process, from planting to harvesting, is safeguarded against bugs and
environmental factors to ensure the best possible yield.

Software Bill of Materials
The SBOM functions as a comprehensive inventory of software components,
including open source libraries. During security incidents, it serves as a
guide, expediting identification and resolution efforts. Much like a detailed
map leading to a crucial discovery, the SBOM accurately directs attention to
areas requiring immediate focus and resolution. Think of it as a detailed
record of the entire garden’s species and plant health, helping gardeners
swiftly identify areas requiring immediate attention or care.

Auditing and Verification
Transparent audit processes and verification mechanisms differentiate secure
components from potential threats. Audits function as evaluators, identifying
vulnerabilities, while verification mechanisms confirm the authenticity of
secure components. The objective is to ensure that open source AI/ML libra‐
ries claim their deserved spotlight, devoid of vulnerabilities. It’s akin to hav‐
ing expert horticulturists and botanists examine each plant, ensuring they
are healthy and free from any intruders or diseases before showcasing them
in the garden exhibition.

Community Collaboration
The open source AI/ML community thrives on collective teamwork.
Through unified endeavors, the community ensures seamless operations,
whether through coordinated vulnerability disclosure programs or fostering
a culture of security awareness. Much like a team of experienced gardeners
collaborating to maintain a beautifully landscaped garden, the community
works together to ensure that the shared environment is secure and thriving.

Securing open source AI/ML libraries in the software supply chain necessi‐
tates proactive measures, much like setting up defenses to safeguard a prized
garden against potential risks. Leveraging tools such as automated scanning,

Collective Wisdom from the Experts 171

CI/CD integration, SBOMs, audits, and community collaboration is akin to
establishing digital barriers within this virtual garden. It’s an endeavor to
protect against vulnerabilities and threats, where these protections act as a
shield to ensure secure data, similar to safeguarding valuable persimmon
trees from potential squirrels.

97 Things Every Application Security Professional Should Know172

1 NTIA Multistakeholder Process on Software Component Transparency Framing Working Group.
Framing Software Component Transparency: Establishing a Common Software Bill of Materials
(SBOM), 2nd ed. (NTIA, 2021).

SBOM: Transparent,
Sustainable Compliance
Karen Walsh

Modern, interconnected application ecosystems are much like coral reefs. A
single vulnerability can disrupt the delicate, symbiotic balance between open
source code and application security, poisoning entire systems. Just as regu‐
latory compliance sought to solve physical pollution, governmental initia‐
tives seek to limit digital pollution by establishing rules for supervising
digital contamination. As compliance initiatives start focusing on supply
chain security at the code and component levels, AppSec professionals will
increasingly be held accountable for maintaining a software bill of materials
(SBOM) to achieve the organization’s compliance objectives.

Building Transparency
Essentially, the SBOM is the software equivalent of the Nutrition Facts Label
on packaged food. With visibility into ingredients, organizations can make
informed, healthy decisions so they can monitor applications for vulnerabili‐
ties impacting the components.

In 2021, the National Telecommunications and Information Administration
(NTIA) updated their publication, Framing Software Component Transpar‐
ency: Establishing a Common Software Bill of Materials (SBOM). NTIA
defined SBOM as:

a nested inventory, a list of ingredients that make up software components…
[that] identifies and lists software components, information about those
components, and supply chain relationships between them.1

173

https://ntia.gov/sites/default/files/publications/ntia_sbom_framing_2nd_edition_20211021_0.pdf

2 CISA, “Apache Log4j Vulnerability Guidance,” CISA (April 8, 2022).

The NTIA noted that software supply chain transparency could increase
trust and trustworthiness while reducing cybersecurity risks and overall
costs.

Designing Sustainably
Through transparency, the SBOM enables AppSec professionals to design
cyber-sustainable systems.

Vulnerabilities are the digital equivalent of a chemical spill. A look at the rip‐
ple effect that Log4J vulnerabilities caused across organizations and their
ecosystems is a prime example. Although identified in December 2021, the
Cybersecurity & Infrastructure Security Agency (CISA) updated its publica‐
tion, “Apache Log4j Vulnerability Guidance” in April 2022, noting organiza‐
tions should plan for “long-term vulnerability management,” including
“newly vulnerable third-party software” because they may “lack insight into
certain applications.”2

By incorporating SBOMs into their workflows, developers build cyber resil‐
ience and sustainability into their processes with insights that help them
identify potential system pollution.

Developing Compliantly
Despite having ten letters, compliance is often considered a four-letter word.
As executive, legislative, and agency bodies seek to mitigate the digital pollu‐
tion arising from open source components, compliance mandates, and
national strategies increasingly turn to the SBOM as their solution.

Over the last few years, laws, draft legislations, and strategies incorporate
SBOMs as supply chain security risk mitigation tools. Some examples of
these include:

German Security IT Act 2.0 Section 9b(3)
Requires manufacturers of critical components to provide a declaration
of trustworthiness showing that the critical component does not have a
technical property that can undermine critical infrastructure security,
confidentiality, integrity, availability, or functionality

97 Things Every Application Security Professional Should Know174

https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance

3 The White House, National Cybersecurity Strategy (Washington, DC, 2023).

Proposed European Cyber Resilience Act (CRA) (2022), Annex 1, 2: Vulnerabil‐
ity Handling Requirements

Requires manufacturers of products with digital elements to identify and
document vulnerabilities and components in a product by drawing up
an SBOM

US National Cybersecurity Strategy Strategic Objective 3.4
Incentivizes secure software development practices by promoting fur‐
ther development of SBOMs3

The Future of Secure, Compliant Application
Ecosystem
As security shifts left, compliance mandates will follow. While compliance
will never equate to security, regulatory and legislative bodies will continue
to use the stick of compliance violation penalties rather than the carrot of
rewards as they attempt to establish a set of security best practices. AppSec
professionals will likely find that SBOMs become the required audit docu‐
mentation essential to their jobs.

Collective Wisdom from the Experts 175

https://www.european-cyber-resilience-act.com/Cyber_Resilience_Act_Annex_1.html
https://www.european-cyber-resilience-act.com/Cyber_Resilience_Act_Annex_1.html
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf

Secure the Software
Supply Chain Through
Transparency
Niels Tanis

At the beginning of my development career, I developed applications that
were solely built and used inside of an organization and run on premises.
That’s a big difference compared to today where software might be built and
released several times a day and deployed to a cloud-based infrastructure.
The development process has become a lot more complex. Starting with the
source and then going through different stages like building, testing, and
deploying artifacts (such as binaries or containers) can be referred to as the
software supply chain.

Because the whole process has become more complex, and even turned into the
software itself, it has become a main target for security attacks. This is because
its overall attack surface has increased. For example, it can vary from stolen
Git credentials from Canonical (the people behind the widely used Linux
Ubuntu distribution) to the compromised build servers in case of the Solar‐
Winds supply chain attack. In the latter case, it even resulted in the release of
a product that was an authentic cryptographically signed installation to
SolarWinds customers. It took some time and investigation to realize the
hack happened, and people with malicious intent added additional function‐
ality to it.

To secure our supply chain of applications in a better way, there is a need to
better understand what is inside and how it was built from source to
deployed binaries. An industry that solved this problem well is the automo‐
tive industry. On average, a car that gets built from scratch will have 10,000
parts manufactured by 3,500 different suppliers. To keep track of what’s been
put in a car, a bill of materials (BOM) will describe which different identifia‐
ble parts are used in which car. That’s why recalls of certain cars happen to

176

replace parts that turned out to be of bad quality or have a design flaw that
will make the car less safe.

In the case of software, we can achieve the same with the SBOM. On average,
our software consists of 80% of third-party libraries. For example, with a
project called CycloneDX, it’s possible to create an SBOM that describes the
full transitive tree of dependencies used. It supports a large list of different
technology stacks. When you rely on containers, Docker even has built-in
support for generating an SBOM of a Docker image. Having this kind of
information available gives the ability to act later if a vulnerability gets dis‐
closed in one of the used components. That problem could even originate
from a compromise of the supply chain of the component itself, because by
using it, you extend your own supply chain with the one used to produce the
component.

When you’re aware of what’s inside the build software, another good addition is
the build provenance. Build provenance of software describes details of the
build process, such as what materials were consumed, what build parameters
were set, and which source was used to build the software. For example, if
the software is built on Tekton, it can be achieved with the help of Tekton
Chains. On GitHub Actions, Google’s SLSA GitHub Action also creates non‐
forgeable provenance with the help of a project called Sigstore. This crypto‐
graphically signs the output and allows you to check its origin, who
produced the provenance file, and whether it was altered.

With this information at hand, you can create transparency by knowing
what’s inside software and how it’s being built. This will certainly not prevent
any supply chain incident from happening, but it will give you the right
information for handling the incident properly!

Collective Wisdom from the Experts 177

Unlock the Secrets to
Open Source Software
Security
Travis Felder

Open source software (OSS) refers to software whose source code is available
to the public, allowing anyone to view, use, modify, and distribute the soft‐
ware. While OSS offers numerous benefits, such as cost savings, flexibility,
and collaboration, it also raises security concerns. Historically, proprietary
software dominated the market, with developers closely guarding their
source code. However, the open source movement emerged in the 1990s,
advocating for the free sharing of software code. OSS has since grown expo‐
nentially, with major projects like Linux, Apache, and PostgreSQL becoming
industry standards.

Invisible Open Source Software
Neglecting OSS security in enterprise environments can expose organiza‐
tions to a range of risks, including increased vulnerabilities, compliance fail‐
ures, and reputational damage. The exploitation of these vulnerabilities by
malicious actors can lead to unauthorized access to sensitive data, opera‐
tional disruptions, and intellectual property theft.

As a result, organizations may face significant financial, legal, and reputa‐
tional consequences. To mitigate these risks and fully harness the benefits of
OSS, enterprises must invest in a comprehensive security program that
actively manages and addresses security risks while adhering to industry best
practices.

Establishing an OSS Program
Establishing an OSS program involves the following:

• Establish a security policy for OSS use and development.

178

• Assess the security of the OSS project, including its development process
and history.

• Conduct regular security audits of OSS code.
• Implement a patch management system to address known

vulnerabilities.
• Train developers in secure coding practices and the secure development

life cycle.
• Monitor and analyze OSS usage to identify potential security threats.
• Participate in OSS community forums to stay up to date on security best

practices and emerging threats.

Open Source Software Security Pro Tips
Choose mature, widely used OSS projects with active communities. Selecting
mature and popular open source projects is crucial for ensuring a strong
security foundation. These projects benefit from extensive community
involvement, which includes regular code reviews, vulnerability identifica‐
tion, and patch submissions. An active community indicates a higher likeli‐
hood of rapid security updates and improvements, resulting in more reliable
and secure software for your organization.

Consider using automated tools for vulnerability scanning and patch man‐
agement. Vulnerability scanners can help identify potential security risks in
your open source components, while patch management tools can stream‐
line the process of applying security updates. By utilizing automation, your
organization can stay up-to-date with the latest security patches and quickly
address vulnerabilities, reducing the risk of exploitation.

Common Open Source Software Security
Mistakes to Avoid
One of the most common mistakes in open source software security is failing
to regularly update components and apply security patches. This oversight
leaves systems exposed to vulnerabilities that malicious actors can exploit.

Relying solely on community-driven security measures without conducting
internal security audits is an issue to avoid. While the OSS community plays
a crucial role in identifying and addressing vulnerabilities, organizations
should not depend solely on external security efforts. Conducting internal
security audits is essential for uncovering potential risks specific to your
organization’s implementation of the software.

Collective Wisdom from the Experts 179

Failing to establish a clear security policy for OSS usage within an organiza‐
tion is a common mistake. Without a clear security policy, organizations may
struggle to consistently manage and secure their open source software
components.

Investing in a comprehensive OSS security program not only enhances the
security posture of an organization but also fosters a culture of collaboration
and innovation. By embracing a proactive approach to OSS security and
staying up to date with best practices, organizations can confidently leverage
the benefits of open source software while ensuring the safety and integrity
of their systems and data.

97 Things Every Application Security Professional Should Know180

Leverage SBOMs to
Enhance Your SSDLC
Viraj Gandhi

In today’s increasingly digitized and interconnected world, data breaches
have become a pervasive and costly concern, affecting businesses, govern‐
ments, and individuals alike. These breaches can lead to devastating conse‐
quences, including financial losses, reputational damage, and compromised
personal information. The rapid adoption of technology, coupled with the
interconnected nature of software applications, has created a vast attack sur‐
face for cybercriminals to exploit. As a result, organizations are increasingly
focusing on strengthening their security postures from the very beginning of
the software development life cycle; therefore, the importance of secure soft‐
ware development life cycle (SSDLC) practices cannot be overstated.

The SDLC is a systematic approach to designing, developing, testing, and
maintaining software applications. Integrating security measures into each
phase of the SDLC helps identify vulnerabilities early in the process, reduc‐
ing the likelihood of introducing security flaws that could be exploited by
malicious actors. By implementing SSDLC practices, organizations can pro‐
actively address security concerns, thereby minimizing the risk of data
breaches and other cyber threats.

One of the emerging challenges in software security is supply chain risk.
Organizations often rely on third-party vendors and components to build
their software products. However, this reliance introduces a potential weak
link in the security chain, as vulnerabilities in third-party components can be
exploited to compromise the entire software ecosystem. Recent high-profile
supply chain attacks have highlighted the need for robust mechanisms to
assess and manage the security of these components. This is where the
SBOM comes in, which plays a pivotal role in enhancing transparency, trace‐
ability, and overall cybersecurity. An SBOM is a comprehensive inventory of
all the components and dependencies used in a software application. It pro‐
vides a detailed list of the software elements, including libraries, frameworks,

181

and modules, along with their versions and sources. This transparency ena‐
bles organizations to gain better visibility into their software supply chain,
identify potential vulnerabilities, and take appropriate remediation actions.

The SBOM serves as a critical tool for risk management and decision mak‐
ing. It empowers organizations to assess the security posture of the software
components they rely on, ensuring that any known vulnerabilities are
promptly addressed. Furthermore, an SBOM facilitates effective communica‐
tion between developers, security teams, and third-party vendors, fostering
collaboration and accountability in maintaining software security. The sig‐
nificance of the SBOM has been underscored by regulatory initiatives and
industry standards. In the US, for instance, Executive Order 14028: Improv‐
ing the Nation’s Cybersecurity, emphasizes the importance of SBOMs in
enhancing software supply chain security. Similarly, NIST has published
guidelines that advocate for the integration of SBOMs into software develop‐
ment and procurement processes.

In conclusion, the escalating threat landscape marked by data breaches and
supply chain vulnerabilities necessitates a proactive and comprehensive
approach to software security. Secure SDLC practices, integrated with the
principles of transparency and traceability championed by the SBOM, offer a
potent strategy for safeguarding software applications against cyber threats.
By embedding security measures throughout the software development life
cycle and leveraging the insights provided by SBOMs, organizations can sig‐
nificantly reduce the risk of data breaches, mitigate supply chain vulnerabili‐
ties, and ultimately fortify their overall cybersecurity posture. As the digital
landscape continues to evolve, embracing these practices will be essential for
building resilient and secure software ecosystems.

97 Things Every Application Security Professional Should Know182

PART VII

Threat Modeling

Learn to Threat Model
Adam Shostack,
Matthew Coles,
and Izar
Tarandach

Every application security professional should know how to threat model. It
doesn’t have to be a big or complex process. The Threat Modeling Manifesto
says threat modeling focuses on four simple questions:

1. What are we working on?
2. What can go wrong?
3. What are we going to do about it?
4. Did we do a good enough job?

We ask, “What are we working on?” to focus our attention and scope our
analysis. Some people ask, “What are we building?” and accidentally make a
waterfall threat modeling process. Some people choose to “threat model
every story,” which is another approach to scoping and determining which
stories have security value and which do not.

The second question, “What can go wrong?” is the heart of threat modeling.
It is hard but essential, and you need to involve people with different per‐
spectives. You can also use structured approaches, like STRIDE or kill chains,
to be more systematic in which threats you discover. Free flow or unbounded
approaches like “think like a hacker” prove less effective and sometimes
daunting; if you don’t know how a hacker thinks, how are you supposed to
emulate the process? A structured process offers scaffolding to get you
through the first iterations.

Identifying “what we’re going to do about it” makes threat modeling, as a
whole, valuable by addressing the problems identified; to not do so is like
driving to a foreseeable car wreck. Fixing things often translates to “build
new features” or “change the design” (which sometimes may include your
deployment model and choices). Sometimes that’s reasonably obvious and
we don’t need to quantify or prioritize in a security-specific way: the bucket
holding data should be encrypted by default. Other times, the answer is more

184

https://threatmodelingmanifesto.org
https://en.wikipedia.org/wiki/STRIDE_(security)
https://www.computer.org/publications/tech-news/trends/what-is-the-cyber-kill-chain-and-how-it-can-protect-against-attacks

complex, and contextualizing the threat in a way that risk management pro‐
cesses can more easily ingest (probability, impact) becomes more important.

Asking, “Did we do a good enough job?” is crucial to ensure you reflect as
you do the work. There’s more than one way to bake a cake, after all, so it’s
important to know if the way you’re doing it is the best way for you. Another
way to look at this is to ask, “Did the things we did about the threat improve
the system?” and “Are our teams getting as much value from threat modeling
as they can?”

Many organizations want to do threat modeling, but it’s best when we focus
on the question: “Is this adding value to our development practices?” A ret‐
rospective may provide the answer. If the people involved are not extracting
actionable items or at least learning more about security and about their sys‐
tem, then there is no value to the process, and it should be reevaluated,
changed or dropped. But more likely, threat modeling will help elevate the
security posture, and the overall quality, of a system.

Threat modeling is a way of considering the security effects of your choices,
and tools help you do that and help a team show that it’s been done.

Collective Wisdom from the Experts 185

Understanding OWASP
Insecure Design and
Unmasking Toxic
Combinations
Idan Plotnik

In the constantly evolving world of application security, we are seeing unpre‐
cedented challenges that traditional testing tools like SAST, SCA, and DAST
alone cannot solve. They’re unable to keep up with the pace of Agile develop‐
ment and detect the new breed of interconnected, nuanced, and varied risks
that modern applications face.

Two often overlooked mechanisms for improving the efficacy and efficiency
of application security are the ability to programmatically identify potential
design flaws before code has even been written and the ability to connect the
dots between disparate types of application risks. The former helps AppSec
teams be more proactive and prevent ad hoc work down the line, while the
latter helps close the gaps left by siloed tools.

Understand the Implications of Insecure Design
A testament to our dynamic threat landscape is the addition of OWASP
A04:2021—Insecure Design as a new category to the OWASP Top 10 in
2021. This signals the need for more proactive and scalable defense strategies
to identify application risks stemming from inherent design oversights.

Incorporating threat modeling during the feature design phase and integrat‐
ing Agile pen testing during feature development is now essential to align
with OWASP A04:2021 but faces scalability challenges due to manual pro‐
cesses and AppSec professional-to-developer ratios.

The only way to proactively handle risky feature requests and code changes
is to shift security even further left to the design phase, ensuring ongoing vis‐
ibility throughout the development cycle. Programmatically identifying

186

insecure design issues triggers threat modeling and pen tests, optimizing
limited security resources. Prioritizing design risks based on application con‐
text and business needs prevents developer overload from manual forms or
questionnaires.

The top five examples of risky changes that you should focus on while run‐
ning threat models or Agile pen testing:

New endpoints
Introduction of new APIs, Protobuf services, serverless functions or
other services, especially without appropriate authentication or
validation.

Changes in data flow
New data models, data access objects and modifications in how data is
received, processed, stored, or transmitted.

Altered trust boundaries
Integrating new third-party components or changing data sharing with
external entities.

Misconfigurations
Leaving debug modes on, unprotected sensitive files, or opening unnec‐
essary ports.

Deprecated libraries and/or downgraded OSS dependencies
Using outdated software libraries or reverting to an older OSS depend‐
ency version due to compatibility issues can expose applications to
known vulnerabilities, enlarging the attack surface.

Unmask the “Toxic Combinations”
in Application Security
The industry is awash with guidelines and frameworks to detect vulnerabili‐
ties, weaknesses, misconfigurations, or risky changes in complex modern
applications expanding across application code, APIs, OSS, IaC, containers,
and even source control managers and CI/CD pipelines.

When vulnerabilities or other risky changes—that may or may not have been
a serious risk on their own—when connected, they can manifest into what is
known as a toxic combination, creating a whole new attack path or exponen‐
tially amplifying an existing risk.

Moreover, siloed alerts hinder the identification of toxic combinations,
demanding interconnected evaluation for better insights to identify,

Collective Wisdom from the Experts 187

prioritize, and remediate them before delivering the application to produc‐
tion. Some examples of toxic combinations are:

• Valid secrets that are being used to access AWS resources in a public
repository that contains a new API that writes PII to a storage bucket

• An internet-facing API that exposes PII data, missing input validation
that uses OSS dependency with a new known exploit

• CI/CD pipeline misconfiguration that builds code in a repository that
contains an API that exposes PII data and abnormal developer commit
behavior was identified

To help identify toxic combinations early within the SDLC, it is crucial to
have a continuous code inventory with all code components and their rela‐
tionships, map the application architecture as a graph, and augment these
siloed alerts on top of the graph. This is the only way we can identify these
toxic combinations.

97 Things Every Application Security Professional Should Know188

The Right Way
to Threat Model
Josh Brown

Threat modeling is a critical part of application security, and it is a proactive
and structured process used to identify and measure risks associated with a
system to determine any needed design changes or risk mitigations. There
are many different risk assessment (RA) frameworks and threat modeling
techniques. Most are incomplete and contradict the wider concept of secu‐
rity risk programs for an organization. There is not one correct framework
to be used for all RAs and threat models. If you understand which one to use
for different situations, you can build a healthy RA and threat modeling
program.

The following are indicators of a healthy RA and threat modeling program:

• It will not be a blocker.
• It will keep pace with high-velocity Agile development/project teams by

contributing vetted architecture blueprints to the organization’s library
for future use. This increases developer velocity by pulling from these
vetted designs. This also speeds up design reviews. This lowers costs by
reducing development effort and waste.

• It will reduce effort related to security incidents, mitigations, audit
responses, and certifications.

• It will, most importantly, build trust between security and other
departments.

Properly scoping questions are the most important part of threat modeling
engagements. The following are tips on how to properly scope questions:

• Don’t ask questions about things that could change tomorrow. Those
items are best handled by other continuous operations processes or capa‐
bilities. For example, organization-wide infrastructure, operating system
hardening, patching, vulnerabilities, etc.

189

• Don’t ask this project team about systems that are not theirs. Instead, ask
the team that “should” know how it works, such as authentication direc‐
tories, etc.

• Don’t ask detailed questions about things that haven’t been built yet. You
can ask about a major library if you need to, but logical questions and
minute details are not fruitful in the design phase of a project, such as
workflows, logic protections, application throttling, etc.

Data flow diagrams are everywhere and…they’re terrible. These are not use‐
ful for security as they don’t reflect the system’s actual attack surface. As an
example, you’ll see “trust boundary” as an abstract defensive layer. The risks
are completely different if that trust boundary represents a Windows server
on the internet versus an AWS load balancer and WAF. So, make sure that
you reflect the shared security responsibility model of all systems.

These tenets offer a robust framework for integrating security into system
design and maintenance, guiding developers and infrastructure teams,
including those managing their infrastructure. By adhering to these princi‐
ples at each development phase, teams can effectively avoid common secu‐
rity pitfalls and enhance overall system resilience.

Developers:

Tenet Phase

Use a mature authentication system Design

Use a mature authorization system

Use a mature session management system

Use good secrets management

Add application throttling for all inputs Development

Use mature input sanitization libraries for all inputs

Use mature crypto libraries

Use automated documentation practices Testing

Use the latest version of dependencies Maintenance

Continuous training on secure coding practices

97 Things Every Application Security Professional Should Know190

Infra team:

Tenet Phase

Maintain optimal blast radius Design

Enforce TLS 1.2+ on all data flows Deployment

Maintain security agent installs

Maintain mature accounting operations

Encrypt data at rest

Use least privilege design

Tune boundary devices Maintenance

Harden all computation systems

Maintain mature authentication systems

Maintain attack surface reduction operations

Maintain proper secrets hygiene

In summary, threat modeling is not a one-size-fits-all approach. A healthy
RA and threat modeling program aligns with Agile development, offering
vetted architectural blueprints that speed up design reviews and reduce costs.
Key to threat modeling is asking the right scope of questions, focusing on the
project at hand rather than external or future variables. I caution against the
misuse of data flow diagrams but rather urge teams to reflect the actual
attack surface. Using role-based tenets is a simple, succinct guide to use
through different phases of a project, aiming to build shared understanding
and trust between security and other departments.

Collective Wisdom from the Experts 191

1 Bruce Schneier, “Attack Trees,” Schneier on Security (website), December 1999.
2 Kelly Shortridge, “Creating Security Decision Trees with Graphivz,” Kelly Shortridge (blog), Janu‐

ary 25, 2021.

Attack Models in SSDLC
Vinay Venkatesh

For a long time—at least since the start of my product security career—
Secure Systems Development Lifecycle (SSDLC) has followed a four-step
process:

1. Define product security requirements at the beginning of the project.
2. Threat model the product and identify security controls.
3. Configure scanners to identify vulnerabilities in code as well as in open

source packages it uses.
4. Perform pen testing to confirm that the product is free of vulnerabilities

or to identify and address security weaknesses before deployment.

While this process provides a lot of feedback, it is missing one key ingredient
—there is no mechanism between threat modeling and code scanning to per‐
form a security analysis of the detailed design. Some have addressed this by
expanding the threat model to include component-level details. The useful‐
ness of this approach is limited because threat modeling, by nature, is an
architectural exercise where we model independent, interacting processes
and data flows between them to identify security gaps. Detailed analysis
involves a closer look at how the system should behave in every possible sit‐
uation and for all possible inputs. I’ve found attack modeling to be a better fit
here.

Attack modeling is not a new concept. It was first introduced by Bruce
Schneier in his 1999 paper, “Attack Trees.”1 Since then it has been used to
model different aspects of attacker behavior and associated impact. A few
years back, Kelly Shortridge wrote a blog on building security decision trees,2

which was later incorporated into the book Security Chaos Engineering

192

https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://kellyshortridge.com/blog/posts/security-decision-trees-with-graphviz/
https://www.oreilly.com/library/view/security-chaos-engineering/9781492080350/

(O’Reilly, 2020). For the remainder of this essay, I am going to call her
approach attack-defense modeling (ADM).

ADM encourages us to think from an attacker’s perspective and capture all
possible attacks and defenses. It can be built using a diagramming tool or
using some specialized as-code tools. The as-code tools can generate the dia‐
grams and enable semantic analysis of attacks and defenses. Immaterial of
the tool we choose, the first step is to create ADMs for every entity and flow
from your project.

Attacks typically involve a set of steps that form one or more cyber kill
chains. After all possible attack chains are defined, defenses that would miti‐
gate each attack step from each chain should be defined. Sometimes, there
may not be any defensive design that would mitigate the attack. In such
cases, a monitoring or incident-response procedure can be defined as a reac‐
tive defense.

When analyzing a system, you should create individual ADMs for each
entity and technology used in that system. When possible, it is a good idea to
create ADMs for each external package used in the product. These can be
built using information from security bulletins and CVEs associated with
each package. In this case, ADMs should capture how attackers can exploit
these vulnerabilities within the context of the product and what defenses the
product needs to mitigate them. At the end, you will have a bunch of ADMs
that can be copied to a central knowledge base for other security engineers in
your company to use.

Over time, the knowledge base will contain enough detailed information to
help everyone from a junior security engineer to the most senior analyst. The
knowledge base itself can be a folder full of specification documents along
with some code examples for clarity. Or, if you are using an as-code tool,
code files can be stored in a central location like a shared drive or a git
repository.

As of 2023, there are a few as-code tools available to build an ADM. Kelly’s
Deciduous.app uses YAML to capture attacks and defenses and generates the
graph in Graphviz, PNG, and SVG formats. I wrote another tool called adm
where attack and defense information is captured using a variant of Gherkin
language. The tool generates security decision graphs in Graphviz format.
This can then be loaded into graph processing tools for further analysis. A
companion tool, adsm, lets you associate ADMs to each entity and flow from
the threat model and generate a comprehensive attack-defense report from
it. Adsm also includes support for ADDB, the attack-defense database, which

Collective Wisdom from the Experts 193

https://www.eccouncil.org/cybersecurity-exchange/threat-intelligence/cyber-kill-chain-seven-steps-cyberattack/
https://www.eccouncil.org/cybersecurity-exchange/threat-intelligence/cyber-kill-chain-seven-steps-cyberattack/
https://www.deciduous.app
https://github.com/vinayprograms/adm
https://cucumber.io/docs/gherkin/reference/
https://github.com/vinayprograms/adsm
https://github.com/vinayprograms/adsm/blob/main/ADDB.md

is an external knowledge-base folder containing ADMs and entity
specifications.

97 Things Every Application Security Professional Should Know194

PART VIII

Threat Intelligence &
Incident Response

In Denial of Your Services
Allen West

The attack of disclosure to discourage further snooping is somewhat of a tra‐
dition now within the cybersecurity world. Old-timers in the vulnerability
research world can tell you that the ecosystem of getting paid for responsible
disclosure of findings used to be much riskier than it is today. Bug bounty
was designed for that. Without formal bug bounty programs, let alone bug
bounty hosting platforms like we have today, it was often a toss-up of how an
organization would react to the disclosure of vulnerabilities in their systems.
Many times, companies that were unsure how to handle situations like this
would often resort to legal action against the researcher, which inevitably led
to fear of disclosure and community backlash to the responding company. A
lose-lose scenario.

Over time, most companies have come to appreciate the contributions that
freelance vulnerability hunters provide and have tried to formalize the pro‐
cess, laying out clear guidelines of what they do and do not want researchers
to try when testing their applications. Some common off-limit items include
brute forcing, social engineering, purchase of compromised credentials on
the dark web, and commercial vulnerability scanners, just to name a few.
Basically, anything that would incentivize misbehavior or interrupt actual
business.

Security decisions are often made based on risks. In many situations where
the perceived risk of a specific vulnerability may be lower than the actual
risks revealed through vulnerability testing. Denial-of-service (DoS) vulnera‐
bilities are the perfect example of this. Almost every single bug bounty pro‐
gram on platforms like HackerOne or Bugcrowd puts DoS vulnerabilities out
of scope. This is because vulnerability disclosure requires a repeatable proof
of concept, and in order to do this for a DoS vulnerability, you must deny
service, which often costs the company money. The risk of this potential vul‐
nerability existing is therefore necessarily lower than a positive disclosure,
which would guarantee an interruption in service.

196

There are, however, still plenty of nondestructive ways to test for DoS vul‐
nerabilities, such as Nmap Scripting Engine’s test for slow loris–style attacks.
The scan tests whether conditions required for the attack to be successful are
present in the nonintrusive interactions with a server, and then indicates a
positive if they are found. In this case, however, a report of potential vulnera‐
bility is still not appreciated by companies, due to the fact that they don’t
want to spend time testing “maybe vulnerabilities” without a proof of con‐
cept (PoC) attached to them.

This is further exacerbated by the fact that disclosure reports are often tri‐
aged by the platform’s analysts, not the actual security engineers at the com‐
pany you are testing. These analysts have the luxury of following a given
organization’s scope to the letter when looking at reports, often simply
throwing disclosures out of scope without forwarding them to the impacted
company at all. It is also possible that since the researcher strayed from
scope, they could potentially lose platform reputation points as well, which
can impact future opportunities, and sort of bring us full circle to the old
days of vulnerability disclosure.

The takeaway here is that although the ecosystem of responsible vulnerability
disclosure has dramatically improved for the average researcher, there are
still gaps in our strategy to handle the touchier ones. If compromised creden‐
tials go unreported, they still pose a significant risk. If a DoS vulnerability
exists in a platform, it is possible that analysts won’t be able to figure it out
quickly when a threat actor takes advantage of this gap in defenses. There‐
fore, while security researchers must respect the laws and wishes of the
organizations they are testing, companies must thoroughly vet every risk
they are presented with, come up with internal or contracted ways to test for
the riskier security gaps, and reward responsible disclosure with the respect
and appreciation it deserves.

Collective Wisdom from the Experts 197

Sifting for Botnets
Allen West

Squeezing original intelligence from the unknown can be accomplished
through the process of methodical enrichment of application logs. Common
Vulnerabilities and Exposures (CVE) are a great way to track cybersecurity
vulnerabilities that most security professionals should already be familiar
with. This standardization allows for conversations to be had around impor‐
tant weaknesses within specific applications, but not all vulnerabilities are
known, and not all known vulnerabilities get CVE. The question then
becomes, How do you position yourself to defend threats that have not been
officially recognized by the security community?

As soon as you publish virtually any application on the internet, you quickly
start seeing an overwhelming amount of unsolicited traffic. The internet is
full of malicious actors, bots (often programs that perform automated
actions for their owners, but sometimes in the context of botnets, they can be
compromised endpoints), researchers, and organizations that are constantly
scanning the entire internet for various purposes. It is up to defenders to stay
current with threat trends, especially for applications, which are designed to
be accessible, often at the expense of security principles. This can be accom‐
plished by paying close attention to application traffic logs, using good auto‐
mation or even AI to find unique crumbs, giving you a better understanding
of the current threat landscape as it pertains to your specific applications’
technology stacks.

Filtering down the background noise of the internet is unfortunately not as
simple as classifying the interesting and ignoring the uninteresting. The
sheer volume is astounding, and what adds to this is widespread brute forc‐
ing, numerous exploit variants, credential spraying, application fingerprint‐
ing, and, of course, a lot of garbage. When combing through logs, however,
we can use some reliable tactics to make this mess a lot more manageable.

For starters, deduplicating and saving the date you first observed a given
request will be a massive time-saver. It also may make sense to have a mini‐
mum length of content to trigger analysis, as 2–3 character exploits are not

198

feasible. You can also require that at least a portion of the request appears
within a dictionary of sorts to get rid of spam. From here, you can set up
regex filtering to eliminate exploit variants, and you may even consider
implementing a system to generate these regex patterns automatically. With
these filters and others, you can start attempting to attribute requests, isolat‐
ing the interesting yet unknown artifacts.

With traffic attribution, you will want to at least focus on targeted technolo‐
gies, and known CVE if possible. You can incorporate third-party threat
intelligence tools, automated web searches, regex patterns, open source vul‐
nerability scanners scraping, vulnerability databases, and API calls to AI-
based systems such as ChatGPT. If we can deduce the CVE, we will know the
targeted technology, and if not, we can still try to identify if the traffic is rele‐
vant to our tech stack. What you will be left with is brand-new, non-CVE,
uncommon traffic that is likely to be targeted and relevant. Vetted unknowns
in this context have the potential to be exploits flying under the radar,
requests targeting little-known misconfigurations, or even zero-days. This
sort of intelligence is crucial to an organization, as it allows it to make educa‐
ted fixes, stay in tune with relevant threat actors, and prioritize follow-on
efforts.

As a proof of concept, I developed a tool utilizing this methodology to filter
down honeypot cluster traffic, and it had some impressive results. The intel‐
ligence gathered allowed us to prioritize the creation of targeted honeypots,
which shifted our focus to non-CVE exploits of misconfigurations in com‐
mon applications. By focusing on these weaknesses, we were able to unearth
multiple high-performing botnets that directly targeted customers and
industries we protect. We launched full investigations and subsequently pub‐
lished articles and gave conference talks on them. Most importantly, how‐
ever, we were able to develop controls and recommendations that improved
our defensive posture. This cemented in my mind the importance of generat‐
ing original intelligence through available resources when possible through
meticulous enrichment and smart filtering.

Collective Wisdom from the Experts 199

Incident Response for
Credential Stuffing
Attacks
Fayyaz Rajpari

In today’s remote world with defined perimeters, the cloud, and microser‐
vices, understanding how to respond to unique application attacks can be
impactful to any organization. As an application security professional, it is
important to understand and apply an incident response (IR) framework,
such as the one from the SANS Institute.

First, when a software vulnerability is exploited to gain access to systems for
malicious intent, it is known as an application security attack. The problem
gets worse when an attacker gains access to credentials via exploiting a vul‐
nerability and then compounds it with another attack. A credential stuffing
attack is a good example of this because it involves stealing compromised
credentials gained from an exposed database. Although it’s bad security
hygiene, it is common for people to use the same passwords for numerous
applications. The attacker will always use this to their advantage. Once an
exploit is found and used against the vulnerability, numerous credentials are
exposed on the database. The attacker then applies the username and pass‐
words to hundreds of websites that the victim frequently visits.

Let’s say that an adversary has successfully exposed a database and has stolen
credentials from that database to access other websites that share those cre‐
dentials. Furthermore, they discover that those credentials can be used on
other systems with that environment. Examples can be transactional systems,
S3, or Azure blobs holding confidential data.

200

https://owasp.org/www-community/attacks/

Now let’s apply the six steps of the SANS IR life cycle to a credential stuffing
application attack:

1. Preparation
The preparation step involves having a plan regarding how and when to
classify an incident before it has occurred. A great example of this can be
seen in the Florida Department of Transportation’s IR plan.

2. Identification
Identification involves detecting deviations from normal operations.
This gets easier with proper logging in place. It is just as important, if not
more, to look at successful logins than analyzing log failures for brute
force attacks. In the credential-stuffing application attack scenario, suc‐
cessful logins highlight compromised activity from an illegitimate user!
It’s important to do a sweep of the compromised accounts and check all
system logs that show signs of attempted, successful, and failed logins
after the date of the breach. You may find more logins and other systems
for illegitimate access to systems during the response efforts of
identification.

3. Containment
Containment is normally thought of as disabling network access to sys‐
tems so that communications are severed in the case of a bad actor com‐
municating outbound or exfiltrating data. It can also mean disabling
user accounts. In the credential-stuffing scenario, containment is done
via disabling access to the compromised users and/or resetting pass‐
words. Disabling network access is not always the best route. If internal
systems’ network access is cut off and the attacker is operating from a
system in Russia, the damage continues since access to public web appli‐
cations is still open!

4. Eradication
Eradication involves the removal of any malicious software from systems
so no further damage is done. In the credential-stuffing scenario, actual
systems may not be impacted, but the database and backend systems are
the culprit. What software was running that allowed the database to get
breached in the first place? Was it an older version, misconfiguration,
network? These are all important questions to ask. And also, make sure
that any software versions are not only up to date but also that all ver‐
sions of security software used for analysis are also on the latest version
in case any vulnerabilities exist.

Collective Wisdom from the Experts 201

https://www.sans.org/media/score/504-incident-response-cycle.pdf
https://www.fdot.gov/docs/default-source/it/OITManual/Chapter1ComputerSecurityIncidentResponse.pdf

5. Recovery
It should go without saying—patch, patch, and patch! In the credential-
stuffing situation, an application vulnerability existed. Compromise also
is possible via misconfigurations, simple passwords, or loosely defined
policies that let the intruder in.

6. Lessons learned
Any good incident response is never complete without studying the les‐
sons learned from the incidents. Always make sure to have a postmor‐
tem! This includes what, how, where, and when the compromise
occurred. What steps were taken, and how can the organization improve
its process in the response? This will call out various gaps in your cur‐
rent processes and capabilities and will help you prioritize the work to
improve your secure posture!

97 Things Every Application Security Professional Should Know202

Advanced Threat
Intelligence Capabilities
for Enhanced Application
Security Defense
Michael Freeman

In the digitally transformed world, the security of applications is constantly
threatened by many sophisticated cyberattacks in the ever-evolving cyber
landscape. Among the most valuable defenses an organization can imple‐
ment is a comprehensive threat intelligence program capable of providing
actionable intelligence on new Tactics, Techniques, and Procedures (TTPs)
and vulnerabilities being exploited in the wild. Developing these advanced
capabilities is critical for an organization to proactively detect, prevent, and
respond to these threats while protective and offensive security controls are
also developed for those applications.

Advanced threat intelligence capabilities for AppSec start with the intelli‐
gence life cycle, which starts with the question, What application security
flaws are being exploited right now? That will drive your collection and anal‐
ysis of information from a multitude of sources. These include open source
intelligence (OSINT), cyber threat intelligence feeds, industry-specific
threat-sharing groups, and even the dark web.

Leveraging AI and ML technologies can help target the correct sources, auto‐
mate the analysis process, and give you actionable and timely intelligence of
what to prioritize.

The first facet of actionable intelligence is understanding new TTPs. Cyber
adversaries constantly innovate their attack strategies to evade detection and
maximize damage. By staying abreast of new TTPs, an organization can
adjust its security posture and defenses to match these evolving threats.

A robust threat intelligence program should include a detailed analysis of the
TTPs used by threat actors and provide actionable insights on how to

203

counter them. For instance, if a new exploit for a software library was discov‐
ered being exploited in the wild, with actionable intelligence, the organiza‐
tion could quickly identify it in many applications in their environment and
address it.

The second part of actionable intelligence is identifying vulnerabilities
exploited in the wild. Vulnerabilities represent one of the primary attack vec‐
tors for cyber adversaries. Remediating an organization’s own vulnerabilities
is absolutely needed. However, recognizing which vulnerabilities are being
actively exploited allows an organization to prioritize its patch management
and application vulnerability mitigation efforts effectively. For example, sup‐
pose the vulnerability management team has a list of thousands of vulnera‐
bilities to address, knowing which ones are being exploited will help
prioritize those particular vulnerabilities first.

Effective asset management is imperative for organizational security. Beyond
simply gathering and evaluating data, entities must execute promptly on
insights gained. Seamless integration with robust asset management solu‐
tions facilitates swift action. These systems empower organizations to lever‐
age actionable intelligence efficiently, automatically implementing necessary
adjustments across their security infrastructure. For instance, upon detecting
a malicious IP address through threat intelligence, the asset management sol‐
ution can swiftly block it across all firewalls, enhancing response time and
mitigating the likelihood of successful cyberattacks.

Ultimately, advanced and targeted threat intelligence capabilities aim to
understand the threat landscape from both external and internal and to lev‐
erage that intelligence to be proactive to prevent future attacks. By using
actionable intelligence on new TTPs and vulnerabilities being exploited in
the wild, organizations can quickly move from a reactive security posture to
a proactive one, staying one step ahead of the threat actors.

In conclusion, developing advanced threat intelligence capabilities requires
an integrated approach that combines technology, processes, and people. It is
about collecting the correct data, analyzing it for actionable insights, and act‐
ing upon those insights swiftly and effectively. Together with other applica‐
tion security controls, this process will ensure organizations can keep pace
with the ever-evolving threat landscape, safeguarding their assets and ensur‐
ing business continuity.

97 Things Every Application Security Professional Should Know204

PART IX

Mobile Security

Mobile Security: Domain
and Best Practices
Aruneesh Salhotra

The inaugural iPhone marked a pivotal moment in mobile application evolu‐
tion, introducing groundbreaking hardware innovations, a user-centric
interface, and the centralized App Store. Today, mobile devices and applica‐
tions are integral to businesses’ digital presence, fostering global connections.

As application usage surges, addressing security becomes imperative for
ensuring business, revenue, and PII protection. This involves comprehensive
safeguarding of mobile applications to mitigate potential disasters. Enterpri‐
ses rely heavily on these applications, making risk management a top prior‐
ity. In a constantly evolving landscape, proactive security measures are
crucial. In summary, the iPhone’s debut reshaped mobile technology, and
now, application security is paramount for businesses to thrive and secure
their digital foothold.

Mobile applications commonly grapple with recurring challenges, which
include the following:

Inadvertent exposure of sensitive data
This pertains to the inadvertent storage or disclosure of confidential
information in a manner that permits access by other applications resid‐
ing on the user’s mobile device.

Laxation on authentication and authorization measures
The implementation of inadequate authentication and authorization
protocols poses vulnerabilities that can be exploited by malicious appli‐
cations or malevolent users, potentially leading to unauthorized access.

Susceptible data encryption techniques
The use of weak encryption algorithms, methods with known vulnera‐
bilities, or those susceptible to facile decryption introduces security
risks, compromising the confidentiality of data.

206

Unencrypted transmission of sensitive data
The transmission of sensitive data without encryption over the internet
represents a significant peril, as it exposes the information to intercep‐
tion by unauthorized parties.

OWASP publishes a Mobile Top 10 list, now in its third iteration, which
includes security vulnerabilities and provides best practices to help remedi‐
ate them. Organizations building mobile applications should minimally refer
to the list to build appropriate defenses that can handle static attacks based
on source code and dynamic attacks that exploit application functionality.

The following are best practices for mobile application development.

Fundamentals
There are several checks an application developer can implement to detect
any backdoors or extraneous functionality before releasing an application or
publishing an update to it. These include:

• Having a trusted third party manually review the code
• Examining and documenting all API endpoints
• Revising information in logs
• Removing all test code from final releases
• Checking configuration settings to ensure no easy access to extra func‐

tionality is inadvertently granted

Supercharging Your CI/CD Pipeline with Security
Incorporating security testing tools into your CI/CD pipeline is essential for
identifying and addressing security vulnerabilities early in the software
development process. This will allow organizations to proactively identify
and remediate security vulnerabilities and improve the overall security pos‐
ture of their applications.

These are some of the recommended security scans (although the list is not
exhaustive):

• Static application security testing
(SAST)

• Software composition analysis
(SCA)

• API security testing
• Secrets scanning
• Pen testing

Collective Wisdom from the Experts 207

https://owasp.org/www-project-mobile-top-10/

Navigating Privacy Concerns in Mobile
Application Development
Consider application compliance with regulations like the California Con‐
sumer Privacy Act (CCPA), GDPR, the Digital Operational Resilience Act
(DORA), etc., to protect user privacy and avoid penalties. Key points
include:

• Develop a data breach response plan for timely notifications to users and
authorities.

• Evaluate third-party service privacy compliance.
• Secure data transfers with safeguards like standard contractual clauses

(SCCs) or Privacy Shield.
• Enable user rights (access, rectify, delete).
• Use robust encryption for data protection.
• Implement secure authentication and authorization.
• Collect only the data necessary for the intended purpose and avoid col‐

lecting excessive data.

97 Things Every Application Security Professional Should Know208

Mobile Application
Security Using
Containerization
Reet Kaur

The remote working culture has led to more and more people using their
laptops, tablets, and smartphones for both work and personal use. Many
companies have developed Bring Your Own Device (BYOD) policies to allow
remote employees to use their personal devices to connect to corporate net‐
works. While these provisions in policy surely enhance workforce mobility, it
also brings several security and privacy challenges.

There is a direct risk of commingling personal and corporate data, including
potential exposure to sensitive corporate risk, which may lead to uninten‐
tional data leaks or security breaches caused by interaction between personal
and corporate applications containing sensitive, work-related information.

Containerization can help partition applications on mobile devices to sepa‐
rate corporate data and personal data, while preventing unauthorized access
by other applications or malicious actors on mobile devices. This ensures
better privacy, data protection, and control over sensitive information within
secure containers on the same mobile device, helping to be compliant with
regulations.

Separation between applications is done using virtualization or application
sandboxing techniques, by isolating each application within its own con‐
tainer, creating a boundary that separates it from other applications and the
underlying operating system. This isolation ensures that the application and
its data are independent of other apps running on the device, making it pos‐
sible to assess and manage your emails, documents, or business applications
securely, without the risk of interference or exposure to personal apps or
data.

Companies can enforce specific policies and restrictions on corporate appli‐
cations. For example, they can control data sharing between applications,

209

restrict copying or sharing of data outside the container, or enforce stronger
authentication measures like MFA for accessing corporate resources.

If a device is lost or stolen, or if an employee leaves the organization, con‐
tainerization makes it easy to do selective data wiping/erasing of company
data without affecting the personal data on the device.

The containerization of mobile applications is commonly used in enterprise
mobility management (EMM) or mobile device management (MDM) solu‐
tions. These solutions provide centralized administration and control over
corporate devices, including the ability to deploy and manage containerized
applications. Application containerization can be configured using the
mobile application management (MAM) functionality offered by MDM,
through granular control over application policies, data separation, and
application-specific security features. One important thing to note is that
your organization should have a clear policy on deploying
EMM/MDM/MAM to your employees’ personal devices and give them the
option to opt-out if they have any privacy concerns about putting work-
related applications on these devices.

While containerization may satisfy the operational needs of security, compli‐
ance, and mobile device trust, it’s important to also consider potential risks.

Containerization may not protect against all threats, as malicious applica‐
tions outside the container can still pose risks. Advanced malware can still
bypass or break out of containers, and insider threats can compromise the
security of applications within the container. Compatibility issues, complex‐
ity, and a false sense of security are additional concerns.

To address these risks, a layered security approach must be adopted to com‐
plement containerization security. Performing comprehensive application
vetting and risk assessments, network security, monitoring and threat detec‐
tion, secure coding practices, user training, and other security measures.
This is crucial for effective mobile application security in today’s evolving
threat landscape.

97 Things Every Application Security Professional Should Know210

PART X

API Security

API Security: JWE
Encryption for Native
Data Protection
Andres Andreu

In the spirit of zero trust, implementing encryption and decryption capabili‐
ties into an API ecosystem should be considered standard practice. APIs are
generally accessed remotely via a web protocol, such as HTTPS. Using any
version of HTTPS, including TLS, is not enough for protection at depth. It is
only effective for transport security or protecting the streams that carry your
data. This technology does not protect the data itself.

A better protection is to use native data-level, or payload, protection via an
orthogonal layer of encryption and decryption. This aims at protecting the
data itself no matter what happens in transit, even a successful MITM attack.
Moreover, it starts to push the API ecosystem toward a model where trust is
based on the fact that cryptographic key exchanges have taken place between
the two parties (e.g., zero trust) of a given request and response relationship
(e.g., an API call gets made). Obviously, the cryptographic keys need to be
protected on both sides of the relationship, but the use of this technology
raises the bar such that communication is only accepted if specific crypto‐
graphic keys have been used on it. This mode of operation facilitates native
data protection but also opens up the possibility for machine authentication
via mutual TLS (mTLS), obviously using different sets of private/public key
pairs (another example of zero trust).

Given the popularity of JSON Web Tokens (JWT) for both representational
state transfer (REST) and GraphQL models, let’s focus on natively protecting
it. JWTs are Base64 URL-encoded objects that can optionally be signed via
JSON Web Signatures (JWS). JWS does not provide confidentiality since
anyone can decode and read a payload. Enter JSON Web Encryption (JWE),
RFC 7516. JWE allows you to encrypt a JWT payload, making it so that only

212

the appropriate recipient with the appropriate cryptographic materials can
decrypt and read the protected data.

With the use of JWE, the protected data gets serialized. Two types of seriali‐
zations can be utilized when leveraging JWE for data protection: compact
serialization and JSON serialization. Typical implementations of JWE utilize
compact serialization. This data is structured as a Base64 encoded dot-
separated string with four dots and five parts.

Part 1 carries a header. This header consists of metadata describing:

• How the plain-text payload was encrypted to create the ciphertext (i.e.,
which algorithm was used to protect both the content-encryption key
[CEK] and the plaintext)

• The type of content that has been protected

This underlying data is not encrypted. The encoded header looks like the
following:

JSU0EtT0FFUC0yNTYiLCJjdHkiOiJKV1QiLCJlbmMiOiJBMjU2R0NNIiwiaWF0IjoxNTg1N

zAyMjg1LCJ0eXAiOiJKV1QifQ

Decoding the header yields this:

{

 "alg":"RSA-OAEP-256",

 "cty":"JWT",

 "enc":"A256GCM",

 "iat":1585702285,

 "typ":"JWT"

}

Part 2 carries the CEK that was used to protect/encrypt the plain-text pay‐
load via the symmetric encryption process. The CEK is unique per token and
generated for one-time use only. This key must never be reused.

Part 3 carries the initialization vector (IV) that gets used if the symmetric
encryption algorithm in use requires it. This is a randomly generated ele‐
ment of data.

Part 4 carries the actual ciphertext or the protected data. This is the end
result of the encryption algorithm using the CEK and the IV (if applicable)
on the unprotected plain text.

Collective Wisdom from the Experts 213

Part 5 carries the authentication tag. This is a value that gets generated dur‐
ing the encryption process and can be used for validation during the decryp‐
tion process.

A complete example of a JWE encrypted string that you would see as a pro‐
tected payload in an API call is provided below, with each part noted with a
numbered icon:

eyJhbGciOi JSU0EtT0FFUC0yNTYiLCJjdHkiOiJKV1QiLCJlbmMiOiJBMjU2R0NNIiwia

WF0IjoxNTg1NzAyMjg1LCJ0eXAiOiJKV1QifQ. HY8160chJ4VeWWQzPZzehFApkhUzhoL

Hg9pUvnnWRiW33bvsYUBNV3dKCLrV_KRosXnbnYgLgOp5nRV3Wj9GG2ZcEniJzRzZpDlgvN

0lmNwVRS1kiNw3s7-5eK0kmZz2hsVzGnvPS5Ng9-tzABVyerDi7USmp59lsfqtFCQHRk6ha

AW7PZ-YpynRWXl4mDseLKgwsGJBxiW-eymoIMJeOUENWbtiJXfEz5vVB1fhCPQo7INPiQTC

N9DPhzV2i4fES7cJZkDBO5SiSBZGgt_xTaIej0ZRdRkZjkqYUJtCJvCEeEGISSo9aM7UBEq

3wk_WIAGKU3xCuashZOhHQrw7gL9AeY4AXZQzph4Ny134fdZakJjWwJmyZD3EkfzVlM0_lW

jGUsje1POkZKoyej2OMF3bGK2_OPaMySZrvwYMRdEtZiQPGHFRJS42EYctcImuLHXt9KGa4

wBtsur5V-_ioaePaSAKv3es6xQTmdYRMDCVPZjckD7Gsy2ZQHAI9epN8zQttlhh2JATuLe1

o2FxtIc5xF_hYQ9ujxRQ0g-bHjeUwCN-huPuimazWZ5LycKYrd-rNqcoDDz8SzGv2no8KoO

UUIH7b7V4NjvMQ1oUM5Hahfi0Btuqg372s1qkUHRTGNuJRcmflxmBwRGRx1ds48kCbeTGjn

4YCh9FjmogSH4. BPVBQEv7z5hAhHf6. LV9A0irLOenlA_bSYWr2x5Ro8O7SS-lyyZqm

mmRomoLSWziBloWWYV8gGPGIFcqpiQJjf1evnfD41ZKkM1VQMwQTsLEJDU91ljkrfnuH504

arHQIKcgYrwp1bfEM-TJYdsSHmd5YdLNwkmczsEu8ZJ3DsLKxPGUzLcucxMVMDBtr5wF_5F

dAk0yEyAIP8mEnVa2XecReC-FJer0X-B8IPq9Hv3Zf7cmFBNqrc74vDu_0oC876HEnhLb7-

e1C6d4tRitWu8fq. cE1dqElIb8SEejRcbll9Xw

97 Things Every Application Security Professional Should Know214

APIs Are Windows to the
Soul
Brook S.E. Schoenfield

Too many times to count, developers, founders, and creators misunderstand
the importance of their APIs in application security. “It’s just our API.” An
API is the attacker’s gateway to all information processing and storage
behind or downstream from the API. If available through the internet, each
API routable address will be found, and then the API probed for weaknesses,
whether targeted or not. This has been the sad and unfortunate reality on the
internet for several decades: all routable addresses receive at least automated
attacker attention.

Risks
What can an attacker do with a poorly defended—or worse, undefended—
unmonitored API?

Each data mechanism has its own set of issues. Any protocol based on XML
will be subject to XML External Entity (XXE) attacks, which can expose
information and downstream processing and allow an attacker to redirect
processing to their URL. GraphQL might also allow XXE, but GraphQL
introspection reveals data, program logic, and data organization (schema).
Any API that fails to rigorously disallow unintended data may unwittingly
pass attacks to whatever services lie behind the API. Authentication and
authorization may not work as intended or include vulnerabilities.

These are just a few examples of the sorts of issues regularly found in APIs.

Orphaned APIs are routinely left receiving and passing data, but no longer
monitored and no longer tested. Old APIs are an attacker’s playground.

In threat modeling, we call the exposed, reachable attacker contact point to
our network or interfaces as an attack surface, exactly what APIs always
present. Defenses like firewalls can only do so much; these won’t usually
understand your data forms and expectations, or any proprietary message

215

formats and encapsulations. The API thus becomes your internal logic’s
“firewall.” Otherwise, the attacker will use your API as their vector of attack
and exploitation.

Defenses
Some absolutely required defenses include:

• Firewalls, network restrictions, and interprocess authentication
• Data validation against the schema, expected type, and expected range

and size

Access Management
It’s critically important that we restrict communications to only those
required to function. For public APIs that must endure internet exposure,
the best we may be able to do is authentication before allowing communica‐
tion. Most public APIs today require the user to apply for a credential. The
most common credential is an API key—that is, a nonpredictable value that
becomes the API user’s credential. The dangers inherent in API keys are
beyond the scope of this essay, but API keys are rarely sufficient, since
attackers may apply for keys—or even steal them.

However, if the use of the API can be restricted, it should be done by all
available means, including:

• Limiting to only the networks that must have access
• Providing user and interprocess authentication
• Authorizing only required actions
• Encrypting tunnels for point-to-point use cases

Input Validation
The utmost necessity to validate and sanitize API inputs remains—unfortu‐
nately—not well understood. Because attackers frequently obtain API keys, it
must be assumed that authenticated and authorized users include some
adversaries. These attackers will then “fuzz” the API to identify any vulnera‐
bilities or weaknesses by trying every known exploit and experimenting with
various combinations of unexpected input.

Hence, one of the most important protections that every API (and most
especially, publicly available APIs) must implement are input validations.
Limit every input solely to:

97 Things Every Application Security Professional Should Know216

• Allowed size or length of input data
• Expected data types
• Proper formats and form of data (schema)
• Expected ranges

Let nothing else pass on to downstream processing so that any exploitable
conditions behind the API cannot be reached. Log every abnormal input.
These might be the result of programming errors by users or one’s own func‐
tionality. But these abnormalities are one’s first warning of an attack. Bear in
mind that for message-encapsulated exploits, the API must function as one’s
proprietary “firewall,” since no firewall will have the details of how your API
and its messages work.

It’s been said that a person’s eyes are the window to the soul. In the same way,
each API provides a “window to the soul of your applications.” Don’t give
your soul to an attacker “devil.”

Collective Wisdom from the Experts 217

API Security: The
Bedrock of Modern
Applications
Charan Akiri

The evolution of software from monolithic architectures to microservices
has elevated the importance of APIs. APIs facilitate interactivity among soft‐
ware components, systems, and third-party services, and they have become
the gateways to a plethora of services and data. Thus, APIs have become
prime targets for cyber adversaries. Breached APIs can result in unauthor‐
ized data access, system infiltrations, and even complete system takeovers.
Their often subtle presence can lead to oversights during security assess‐
ments. These oversights can create many potential vulnerabilities. In this
world progressively defined by integration and connectivity, ensuring the
security of APIs is paramount.

API breaches can wreak havoc, revealing confidential data and core func‐
tionalities of an organization’s software infrastructure. Some significant
breaches within the past five years include:

Facebook (2019)
A third-party Facebook app’s API was exploited, compromising over 530
million users’ data.

LinkedIn (2021)
An open API led to a data breach affecting nearly 700 million users.

T-Mobile (2022)
A breach through one of T-Mobile’s APIs exposed 37 million customers’
personal details.

OWASP underscores API security’s significance by enumerating potential
API risks in its renowned OWASP Top 10 API list, including Broken Object
Level Authorization, Broken Authentication, and Excessive Data Exposure.

218

https://owasp.org/www-project-api-security/

Here are the top 10 key principles of API security that must be used by devel‐
opers as a definitive guide for safeguarding APIs in an increasingly intercon‐
nected digital landscape:

1. Authentication and authorization. Knowing who is accessing your API
and what they’re allowed to do is foundational. Implement robust
authentication mechanisms to ensure only authorized entities access
your API. Test authentication and authorization rigorously, verifying
that each identity gets appropriate access rights.

2. Zero trust approach. Zero trust is a security policy centered on the prin‐
ciple that companies should not trust anyone by default. Zero-trust
ideology should be applied to even authorized API endpoints, authenti‐
cated clients, and unauthenticated and unauthorized entities.

3. Rate limiting. This isn’t just for ensuring your API can handle traffic—
it’s a security measure. By limiting request frequency, you can mitigate
denial-of-service (DoS) attacks and slow malicious actors.

4. Input validation. Treat API input as potentially malicious. Data should
be strictly validated and sanitized, especially for dynamic APIs like
GraphQL, where queries can be complex and multifaceted.

5. API discovery. Maintain your API inventory and regularly update it
using automated tools, ensuring you’re aware of all active endpoints.

6. Error handling. Avoid exposing stack traces or detailed error messages.
Ensure your API returns generic error messages and logs details
securely.

7. Expose only limited data. Ensure APIs only expose as much data as
needed to fulfill their operation. Enforce data access controls and the
principle of least privilege at the API level.

8. Monitoring and logging. Establish a “normal” operational baseline
through continuous monitoring, facilitating the identification of
anomalies.

9. Security audits and pen testing. Conduct reviews and penetration tests
regularly to identify vulnerabilities, especially in authentication and
authorization mechanisms.

10. WAF integration. Embrace the WAF solution which has distributed
denial-of-service (DDoS) protection, bot management, and direct API
protection.

Collective Wisdom from the Experts 219

GraphQL is a query language developed by Facebook and released as an
open source project in 2015. It is used for developing APIs and a runtime for
executing those queries with existing data. While it offers flexible querying, it
can also inadvertently introduce vulnerabilities. Organizations must ensure
rigorous type checking for GraphQL endpoints and employ query complex‐
ity analysis to avert potential attacks.

Innovations like quantum computing will necessitate evolving security para‐
digms. The proliferation of internet-connected devices will lead to an expo‐
nential rise in APIs, broadening the potential threat landscape. Automation,
coupled with AI and ML, will be instrumental in safeguarding this expansive
digital terrain.

In conclusion, API security is a continuous endeavor. Given APIs’ pivotal
role in today’s software ecosystem, their fortification will consistently remain
at the forefront for enterprises and developers.

97 Things Every Application Security Professional Should Know220

API Security Primer:
Visibility
Chenxi Wang

APIs are a crucial component of modern application architecture. APIs play
a central role in enabling interoperability, communication, and data
exchange between diverse systems and applications.

Because of the pervasive nature of APIs, ensuring secure operations via APIs
is critically important for safeguarding data, maintaining the integrity of sys‐
tems, and protecting the proper functioning of applications in an intercon‐
nected digital ecosystem.

In practice, security professionals forming an API security strategy should
consider these major aspects. I’ll deep dive into each aspect in three essays:

Visibility and inventory
Knowing which APIs you have, what they are, and how long they have
been around, and then creating an inventory of APIs with context meta‐
data are some of the first steps of getting your hands around API secu‐
rity.

Chapter 83, “API Security Primer: Risk Assessment, Monitoring, and Detection”
After inventory, you need to assess whether the API endpoints conform
to security architecture/design requirements and policies. Further, you
need to monitor and detect any policy violations that may arise.

Chapter 84, “API Security Primer: Control and Management”
Once you know what APIs you have and what risks they carry, you need
to exercise control over the design, deployment, and management of
APIs to mitigate risks and secure your applications.

Visibility and Inventory
Many organizations do not have an up-to-date and accurate inventory of all
of their APIs. As such, the first task of an API security initiative is gaining

221

that visibility—what APIs you have, how many you have, whether they are
internal or external facing, and how long have they been around, etc. The
discovery and inventory aspects of this process is a must-have for any API
security strategy.

More specifically, the visibility tasks include:

Discovery
Scan and report which applications use APIs. The factors of considera‐
tion here include whether or not you need real-time and continuous dis‐
covery. If not, how often should you scan and update the inventory?

Classification
Categorize the list of APIs. Are they internal or external facing? Do they
process PII? Do they process your customer data? This classification step
provides a structured look into the list of APIs and serves as the founda‐
tion for risk exposure assessment and API management.

Metadata enrichment
This step provides further contextual data, such as the date the API went
live, team ownership, relevant usage metrics, date of the last update,
pointer to the repo, etc. It is always useful to know where an API end‐
point is. In the event of a breach or investigation, it is often the deeper
contextual information that provides the critical clues.

The requirements for visibility may vary from organization to organization.
For example, you may or may not need real-time discovery of APIs. Simi‐
larly, dynamic updates of inventory versus batch updates is another decision
that may or may not be critical for your use cases.

What is clear, though, is that everyone would need automation-based discov‐
ery, classification, and context enrichment. Manual discovery or manage‐
ment of an API inventory is a nonstarter.

Architecture consideration for API discovery is also relevant here—you may
care how intrusive the discovery function is. Some tools require deployments
deep into your network to process traffic in order to discover API usage. In
environments where span ports are readily available and siphoning network
traffic is generally acceptable, it is not a big deal. In other environments,
however, it can create conflict between security and the operations team.

DNS monitoring and firewall plug-ins are two alternative ways of discover‐
ing API endpoints. If a new DNS record is published, it could be that a new
API is created. Similarly, if a new firewall rule is created, this could mean the
network is opening up access to a new API.

97 Things Every Application Security Professional Should Know222

1 The other two aspects are discussed in “API Security Primer: Visibility” and “API Security Primer:
Control and Management.”

API Security Primer: Risk
Assessment, Monitoring,
and Detection
Chenxi Wang

The second aspect of forming an API security strategy1—after the discovery
of APIs in your environment—involves assessing whether the API endpoints
conform to your security architecture/design requirements and policies.

Of course, this assumes that you have an API secure design policy. Such poli‐
cies should cover these considerations:

Authentication
Does the API access have authentication? What kind of authentication?

API secrets management
Are the API tokens/keys managed? Do they have an expiration date?
Should secrets be rotated and refreshed periodically?

Decommissioning of APIs
Should obsolete APIs be decommissioned? What is the decommission‐
ing process?

Vulnerability management policy
What happens when a critical vulnerability is found associated with an
API? Do we report? Do we block its use? Do we mitigate threats by
enacting an API filter? When do you have to remediate this vulnerability
to be compliant with policies and any relevant SLAs?

Once you have a policy, you can detect violations such as unauthenticated
API endpoints, obsolete APIs, or those with high or critical vulnerabilities.

223

This step also allows you to understand your risk exposure, which is critical
to being able to manage or mitigate API-related risks.

To assess risk and detect errors and violations, continuous monitoring of the
API runtime environment is necessary. For instance, API usage and associ‐
ated metrics such as response times, throughput, and volume provide insight
into the normal functioning of APIs. On the other hand, tracking error rates
and the distribution of error codes aid in identifying potential vulnerabilities
or issues that may compromise system integrity.

Monitoring is also critical for defenses against malicious activities as well as
the prevention of data leaks. For example, monitoring data movements and
detecting anomalous patterns can help identify unauthorized data transfers,
ensuring compliance with data protection standards. By continuously moni‐
toring and assessing changes in API usage and system interactions, anoma‐
lies can be flagged and investigated promptly.

In addition, the monitoring system must generate and retain logs for a spe‐
cific retention period as per policy, compatible with major SIEM platforms.
This ensures that your security team can effectively gain insights into the
security posture of the system, launch investigations, and respond to inci‐
dents promptly.

Once your monitoring infrastructure is set up, you need to establish a detec‐
tion logic and engine. Detection can be done via rules or anomaly identifica‐
tion. Leveraging statistical analysis, ML, or other anomaly detection
techniques, your system can automatically detect deviations from normal
behavior. You may also create custom rules and alerts within your SIEM sys‐
tem to identify specific events or patterns indicative of malicious activity.

The final step in the analysis and detection process is to implement automa‐
tion to streamline the detection and response process. Automating routine
tasks and responses to known threats can expedite the remediation and
response process. You may also want to deploy an orchestration system to
ensure a coordinated and efficient response in the event of a security
incident.

97 Things Every Application Security Professional Should Know224

API Security Primer:
Control and Management
Chenxi Wang

The third aspect of effective API security, besides Chapter 82, “API Security
Primer: Visibility” and Chapter 83, “API Security Primer: Risk Assessment,
Monitoring, and Detection”, is implementing robust security controls to pro‐
tect APIs against potential risks and threats. Here are some key considera‐
tions for API security controls:

Manage the API life cycle
Properly managing the life cycle of APIs is an effective way of ensuring
your security posture. For example, timely decommissioning of unused
APIs is crucial to mitigate potential risks introduced by vulnerable and
obsolete APIs. Similarly, regularly updating and patching APIs is a must-
have in your API management strategy.

Enforce Data Encryption
Enforcing data encryption is crucial to protect data in transit. This
includes forcing the use of Secure Sockets Layer (SSL) to encrypt com‐
munication between clients and the API server. Additionally, you need
to ensure that sensitive data fields are never transmitted in clear text,
especially in API requests where parameters may be visible.

Implement authentication and access control
Authentication and access control are essential components of API secu‐
rity. Authentication ensures that the entity interacting with an API is
who it claims to be. By verifying the identity of users, systems can pre‐
vent unauthorized access and protect sensitive information. Access con‐
trol ensures that sensitive data is only accessible to authorized entities,
thereby preventing data exposure.

Adhere to deployment standards
Establishing strict standards for API deployment is essential. APIs that
do not meet defined standards or requirements should not be deployed.

225

This helps maintain consistency, reduces the risk of vulnerabilities, and
ensures that all APIs within the ecosystem adhere to a common security
posture.

Properly handle secrets
Secrets such as API keys or authentication tokens need to be properly
managed and secured. For instance, using a vault system to store and
rotate secrets can provide much-needed protection. Similarly, using
dynamic tokens instead of static ones can better prevent unauthorized
access to APIs and the applications behind them.

Validate API input
Input validation is a fundamental security measure to prevent API injec‐
tion attack, where malicious entities attempt to inject code into API
requests. Input validation includes defining and enforcing API schemas
that specify allowed methods, expected JSON/XML syntax, and individ‐
ual parameters. By validating inputs at the entry point, we can prevent a
range of common security vulnerabilities, such as injection attacks.

Use rate limiting
Rate limiting is often utilized to defend against DDoS, volumetric
attacks, content scraping, and credential stuffing. Rate limiting API calls
is a table-stake control today to prevent abuse and ensure fair usage.

Include hardening
Hardening the various components in an API infrastructure allows a
more robust security posture. Examples include ensuring the use of
secure TLS, implementing robust ciphers, and stripping unnecessary
headers to help reduce the attack surface. Careful management of error
responses is another hardening measure—the API should be configured
to hide detailed error messages that might reveal sensitive information.
Data masking could be applied to ensure that error messages do not dis‐
close sensitive or critical information, thereby minimizing the risk of
potential exploitation.

Protect existing APIs
Existing APIs that may not have been developed with security in mind
represent distinct risks to the organization. One approach to mitigate
such risks is to place a protective layer in front of the APIs. Often
referred to as an API proxy, this layer enforces security-specific controls,
such as authentication, authorization, and input filtering. For example,
ensuring that incoming requests adhere to predefined standards and

97 Things Every Application Security Professional Should Know226

requirements before reaching the actual API is critical to prevent poten‐
tial exploits.

API is the glue for today’s digital economy. Proactively addressing security
considerations at every stage of the API life cycle helps to safeguard data,
prevent unauthorized access, and ensure regulatory compliance. At the same
time, it also helps to foster trust among users and partners who rely on API-
driven applications in today’s interconnected digital landscape.

Collective Wisdom from the Experts 227

PART XI

AI Security &
Automation

LLMs Revolutionizing
Application Security:
Unleashing the Power
of AI
Alexander James Wold

The realm of application security has witnessed a pivotal advancement with
the emergence of large language model (LLM) security solutions driven by
AI. In this essay, we explore the transformative impact of LLMs on SAST and
threat hunting, showcasing their potential to revolutionize cybersecurity
practices.

LLMs and Static Application Security Testing
LLMs bring a paradigm shift to SAST methodologies by employing AI-
powered static code analysis. This enables a comprehensive scrutiny of
source code across diverse programming languages and frameworks, grant‐
ing a profound understanding of application structure and logic.

Unlike conventional SAST tools with rigid rulesets, LLMs leverage advanced
natural language processing capabilities to discern contextual semantics and
programming idioms. Consequently, they excel in identifying intricate secu‐
rity vulnerabilities that often evade rule-based systems. Furthermore, LLMs
continuously improve through learning from extensive data sets and the col‐
lective expertise of security professionals, enhancing their accuracy and
effectiveness over time.

LLMs and Predictive Threat Hunting
The predictive abilities of LLMs are a game-changer in threat hunting. Their
deep learning algorithms analyze historical threat data, patterns, and indica‐
tors of compromise (IoCs) to forecast potential zero-day vulnerabilities. This

229

proactive approach equips security teams to stay ahead of evolving attack
vectors.

By integrating LLMs into the threat-hunting process, organizations gain the
ability to detect and analyze sophisticated attack techniques. LLMs assimilate
knowledge from various sources, such as cyber threat intelligence feeds and
industry reports, refining their threat detection mechanisms to become val‐
uable allies in combating the ever-changing threat landscape.

Unique Advancement: LLMs and Intelligent
Security Patching
LLMs offer a unique feature—intelligent security patching. Leveraging their
in-depth understanding of code structure and vulnerabilities, LLMs provide
specific patch recommendations and code modifications to proactively
address security weaknesses. This goes beyond mere identification, enabling
LLMs to actively contribute to the remediation process.

In evaluating suggested patches, LLMs consider contextual factors, such as
application functionality and dependencies, to gauge potential impacts.
Automating patch management through LLMs streamlines the remediation
process, reducing the burden on development teams and minimizing the
exposure window for vulnerabilities.

Challenges and Considerations
While LLMs present numerous advantages, they also pose challenges that
warrant careful consideration. Ethical concerns arise from AI-based decision
making, demanding efforts to ensure fairness and impartiality in security
assessments. Bias in training data can propagate into LLMs’ recommenda‐
tions, leading to skewed results.

Moreover, LLMs’ predictive capabilities are not infallible. False positives may
occur and true positives may get missed in threat-hunting scenarios. Calibra‐
tion and validation with real-world testing are necessary to avoid overreli‐
ance on LLMs and potential misinterpretation of results.

Conclusion
In conclusion, large language model security solutions empowered by AI
have ushered in a new era of application security. Their proficiency in SAST,
predictive threat hunting, and intelligent security patching highlight their
unparalleled value in safeguarding applications against evolving cyber
threats.

97 Things Every Application Security Professional Should Know230

As AI technologies advance and human expertise complements LLMs, we
stand on the cusp of a safer digital future. However, vigilance is essential in
monitoring, addressing ethical considerations, and employing LLMs judi‐
ciously to unlock their full potential in application security. With this
approach, we pave the way for a more secure digital landscape, where appli‐
cations are fortified against even the most sophisticated attacks.

LLMs exemplify the symbiosis between AI and cybersecurity, empowering
organizations to build robust defense mechanisms. As AI continues to
evolve, LLMs are poised to become even more adept at identifying emerging
threats, enabling proactive security measures. However, to fully realize this
potential, continuous research and development are necessary to address
LLMs’ limitations, refine their accuracy, and tackle ethical implications. By
fostering interdisciplinary collaborations, the cybersecurity community can
unleash the full potential of LLMs, driving us toward a future where applica‐
tions and digital assets remain shielded from the ever-growing threat
landscape.

Collective Wisdom from the Experts 231

Mitigating Bias and
Unfairness in AI-Based
Applications
Angelica Lo Duca

AI continues to revolutionize the world, and there is a growing concern for
bias and unfairness in AI-based applications. In practice, bias in AI refers to
the presence of systemic and unjustified preferences or prejudices in AI sys‐
tems. Bias can be introduced to data sets in the traditional way, by being
present in the raw data (because of environmental circumstances, accidental
omission/addition, etc.). But it can also be introduced by malicious actors
who want to skew the results of an AI-based app. In contrast, unfairness
refers to the actual outcomes resulting from such biases, leading to unequal
and discriminatory treatment of individuals or groups. Bias is the underlying
issue, while unfairness is the consequence of that bias. As such, it’s important
to protect your AI-based apps against that added bias and unfairness in AI
training models.

Among the most popular threats in this field, there are poisoning attacks,
which are a significant concern for AppSec because they could compromise
the AI model. If an adversary understands the weakness of the biased model,
they can produce carefully crafted inputs to cause the model to make incor‐
rect decisions. You can also have malicious actors who inject unfair inputs
into training data to manipulate AI models to produce targeted responses,
such as manipulated text sentiment.

To mitigate bias and unfairness in AI development, the following can be a
good start, even though the industry is still learning.

Collaborate with Domain Experts
One possible solution to mitigate bias and unfairness in AI development is
collaborating with domain experts. Domain experts are individuals who
deeply understand the industry or field targeted by the AI application. Their

232

knowledge and expertise can help identify potential biases and discrimina‐
tion before they occur.

Collaborating with domain experts at every stage of the development process
ensures that all perspectives are considered, including those from underre‐
presented groups. This collaboration also enables developers to understand
better how their technology will impact different communities.

Improve Data Quality
Improving data quality and understanding the data used is another possible
solution to avoid bias and guarantee fairness in AI-based applications. The
performance of an AI model heavily relies on the quality of the data it is
trained on. Therefore, developers must ensure their data sets are diverse,
inclusive, and balanced. This means collecting data from different sources
while considering all demographic groups involved.

Monitoring and updating the data set is also crucial to ensure that the AI
model remains fair and unbiased as societal dynamics evolve. This iterative
process enables developers to adapt their algorithms and address potential
biases promptly, promoting an environment of continuous improvement and
striving for greater fairness in AI-based applications.

Perform User Testing
Performing user testing is another approach to reducing bias and unfairness
in AI-based applications. User testing enables developers to get direct feed‐
back from diverse users, helping to identify any potential biases or discrimi‐
natory outcomes that may have been overlooked during development. In
addition, user testing provides an opportunity to assess the application’s
effectiveness across different demographic groups, ensuring fair treatment
for all users.

As AI-based applications become more prevalent in our lives, it is crucial
that we address the potential issues of bias and unfairness before they
become more widespread in application development.

Collective Wisdom from the Experts 233

Secure Development with
Generative AI
Heather Hinton

With all of the attention given to generative AI (GenAI) and its potential use
within development, we cannot neglect the practice of secure development in
GenAI-assisted development environments. This essay proposes considera‐
tions for the adaptation of secure GenAI-assisted development and testing
practices, starting right at the initial “light bulb” moment and throughout the
development life cycle:

User stories
User stories are a key input to the design process, used to help define a
product or feature and how it is expected to be used. If using GenAI sol‐
utions to help identify user stories, these stories must be independently
reviewed by a human and modified and enhanced if necessary. Do not
assume that all required stories will be created by the AI or that these
stories will be accurate, complete, or correct.

Specifications
User stories (should) provide input to technical specifications. The spec‐
ifications must be clear, accurate, and comprehensive. This doesn’t
change with the use of GenAI-created user stories. If using GenAI to
create specifications from user stories, the specifications must be
reviewed: no one (and nothing) should write code if you do not have a
clear definition of what is expected of that code.

Development considerations
There is much evidence that (common) code can be “developed” much
faster with the assistance from GenAI tools. This savings in time should
be put to good use, enhancing the too-often-neglected testing phase. In
particular, focus on a human-in-the-loop explicit code review of any
code (regardless of authorship) to make sure that it can be supported by
a human and it meets the logical functionality expected by the design

234

specifications. This is likely easier and less time-consuming for common
functions but may require additional time for new or complex functions.

Testing considerations
Now is the time to reinvigorate the testing disciplines, including testing
for fail-safe, fail-secure, and (a new one) fail-private (no unintended
exposure of personal, private, or sensitive information). While test cases
may be created through GenAI, a human in the loop to lead and guide
the destructive and out-of-the-box testing phases is part of an overall
defense-in-depth strategy.

Creating data sets for testing
One area where many teams struggle is in the desire to use live data,
including customer data, for testing. Suppose a GenAI tool is going to
help redact personal or sensitive data from a live data set to create an
artificial data set for testing purposes. In that case, you may end up
breaching confidentiality requirements, doing exactly what you were
trying to avoid by creating the artificial data set in the first place. Instead,
consider using a limited, human-redacted set of data as a starter set, to
allow an internally hosted- and managed GenAI to build an enhanced
artificial data set.

Training considerations
When building a solution that embeds GenAI and requires an initial
round of training of an underlying large language model (LLM), an arti‐
ficial data set must be used instead of live customer data. Given that
training is an ongoing activity (as opposed to prerelease testing), multi‐
tenant products have additional considerations, as they may need to
enforce limited-tenancy, limiting or excluding individual customer data
sets, while allowing for multitenant training for those customers who
opt in to broader training. This will, of course, add its own complica‐
tions to the prerelease testing process (justifying our recommendations
that the time saved in development be put to good use in effective
testing).

At the end of the day, whether or how much of a product is generated by and
with GenAI, reused from another internal project, or written by an
employee, it must not skip the overall secure development disciplines ensur‐
ing security oversight at all stages including design, coding, and testing. Per‐
haps the biggest opportunity we see with the adoption of GenAI-assisted
development and testing is the ability to use the shortened development

Collective Wisdom from the Experts 235

times to focus on robust testing, including testing for fail-safe, fail-secure,
and fail-private.

97 Things Every Application Security Professional Should Know236

Managing the Risks of
ChatGPT Integration
Josh Brown

The integration of AI type systems and applications is bringing significant
changes. AI, particularly in the form of ChatGPT, offers unparalleled capabil‐
ities in natural language processing and reasoning skills. While these
advancements hold great promise for streamlining development, they also
introduce novel security risks. Let’s explore potential integration risks and
offer insights into managing these challenges.

ChatGPT represents a new frontier in human-computer interaction. Its abil‐
ity to understand and generate humanlike text, makes it a valuable tool for
developers and organizations looking to automate development efforts and
support business workflows. As ChatGPT finds its place in applications, it
introduces both opportunities and risks for AppSec.

The integration of ChatGPT into applications may expose them to several
security risks:

• To be useful, ChatGPT requires access to data, potentially including sen‐
sitive user information. Mishandling this data can lead to privacy
breaches and regulatory compliance issues.

• Just like any other software, ChatGPT models can have vulnerabilities
that malicious actors may exploit. There have been tests to produce bias
and to force hallucinations.

• Adversaries can misuse ChatGPT to generate attacks such as convincing
phishing content, automated spam, or even manipulate it for malicious
purposes.

• ChatGPT may inadvertently generate biased or offensive content if not
properly trained and monitored.

237

• Organizations using ChatGPT must navigate the legal landscape, consid‐
ering aspects like content generation rights, input training rights, and
intellectual property.

To mitigate these risks, developers and security professionals should con‐
sider the following strategies:

• Build your own proxy layer to detect communication that you deem not
safe or sensitive.

• Make sure you sanitize both input and output with this proxy layer; all
communication to and from the GPT system must be evaluated.

• Set up continuous monitoring for unusual chat behavior, enabling early
detection of security issues.

The rapid pace of development presents a significant challenge for AppSec
professionals. As development teams adopt GPT workflows, the velocity of
code deployment will accelerate. This acceleration will likely outpace security
measures, leaving systems vulnerable to emerging threats.

To address the disconnect between development speed and security, organi‐
zations should consider a new set of operations and capabilities to run along‐
side the normal core set of CI/CD, secure code training, etc.:

• Implement automated security testing workflows that communicate with
a GPT system to build security capabilities such as detections, new code
review models, and fuzzing.

• Implement auto GPT clients to build more intelligence into the conver‐
sation. You need to pull the human out of the loop. You must automate
all the steps of a process and write quality checks.

• Build memory into your conversations. At the time of this writing, the
conversations have limited memory, forgetting early parts of the conver‐
sation. This is a major limitation of the service. Redundant prompting
can help; another possibility is to build a memory source for your con‐
versation client side to allow for better retention.

• Make sure to measure the responses against metrics. When the metric
shows ineffective, make sure to send the prompt back to the GPT system
several more times. This is proving to be a highly effective process to get
better answers when the response misses on the first try.

97 Things Every Application Security Professional Should Know238

To stay ahead in this evolving landscape, organizations should:

• Invest in AI-specific security training.
• Stay informed about emerging AI-related security threats and best

practices.
• Press hard for good security hygiene. The GPT system could expose mis‐

takes without your knowledge. There’s research out there showing
forced hallucinations leaking another entity’s data.

• Accept that you’re not going to get quality tools to help you for a while.

By understanding the risks associated with external GPT systems and adopt‐
ing synchronized development and security practices, organizations can har‐
ness the benefits of AI-powered technologies while safeguarding their
applications and user data. In conclusion, the future of AppSec with AI and
ChatGPT integration is bright, provided organizations proactively address
the associated security challenges and adapt their practices to the evolving
development landscape.

Collective Wisdom from the Experts 239

Automation, Automation,
and Automation for
AppSec
Michael Xin

In the technology world, automation is the key to improving speed and effi‐
ciency, and the same is true in the security world. Automation in AppSec
refers to the use of special tools and techniques that can automatically per‐
form important security tasks for applications. These tasks include, but are
not limited to, scanning for vulnerabilities, finding weak points in security,
and testing how well an application can withstand potential attacks. Instead
of relying on manual and time-consuming processes, automation allows
developers and security professionals to quickly and efficiently identify and
fix security issues. Automating these processes saves time, improves accu‐
racy, and helps organizations proactively address security concerns in their
applications.

Automation is significant in application security for several crucial reasons.
First, the widespread adoption of CI/CD practices has revolutionized the
software development process, emphasizing the need for automation. With
CI/CD, organizations aim to release new features and updates quickly and
frequently to stay competitive. For instance, industry giants such as Amazon
and Airbnb deploy code changes over 125,000 times daily. It is nearly unima‐
ginable to manually ensure the security of each deployment in such a high-
volume environment. Automation allows you to perform efficient and
reliable security checks, scanning, and analysis of code, thereby mitigating
the risk of introducing vulnerabilities into production systems. Moreover,
the growth of cloud technology has further amplified the necessity for auto‐
mation in AppSec. With cloud-based infrastructures, applications are highly
dynamic, requiring rapid and seamless security updates. Automation enables
continuous monitoring, vulnerability assessment, and threat detection in the
cloud, ensuring the security of applications despite their constantly changing
nature. Additionally, the introduction of DevSecOps promotes better

240

collaboration between engineering and security teams. Automation facili‐
tates improved communication and coordination, enabling security meas‐
ures to be integrated early in the development process, ultimately enhancing
the overall security posture of applications. In summary, automation plays a
pivotal role in AppSec, enabling organizations to effectively protect their
applications while keeping pace with the demands of CI/CD, cloud technol‐
ogy, and collaborative DevOps practices.

Automating things in AppSec involves using technology and tools to stream‐
line and improve security processes. Here are some steps to get started:

Identify repetitive tasks
Begin by identifying security tasks that are time-consuming or require
manual effort. This could include tasks like vulnerability scanning, code
analysis, or access control management.

Research automation tools
Look for tools specifically designed for automating application security
tasks. For example, tools like OWASP ZAP, Arachni, or Brakeman can
help automate vulnerability scanning and pen testing.

Plan and design
Determine how you want to automate security tasks. This may involve
developing scripts or configuring tools to perform specific actions
automatically.

Implement automation
Once you have a plan, start implementing the automation. This could
involve writing scripts in languages such as Python or using specific fea‐
tures of security tools to automate tasks.

Test and monitor
Validate the automated processes to ensure they are functioning cor‐
rectly. Regularly monitor the automation to check for any errors or
issues.

Iterate and improve
Continuously refine and improve your automation processes. Address
any issues that arise and seek feedback from security professionals or
colleagues to make improvements.

While automated application security offers many benefits, it also comes
with challenges and pitfalls. Initial setup and configuration of automation
tools require time and effort to integrate into existing processes.

Collective Wisdom from the Experts 241

Maintenance and updates are necessary as security threats constantly evolve.
Overreliance on automation can create a false sense of security, as it cannot
catch all vulnerabilities. Human intervention and critical thinking are still
crucial. Poorly implemented automation may result in false positives/nega‐
tives, wasting resources. To overcome these challenges, careful planning, reg‐
ular testing, and continuous improvement are vital for effective and reliable
automation in AppSec.

Remember that automation is an ongoing process that requires regular
maintenance and updates as new security threats emerge. With time and
practice, you will become more proficient in automating AppSec tasks, opti‐
mizing your workflow, and enhancing the overall security of your
applications.

Embrace the power of automation and take control of your application secu‐
rity journey, starting today!

97 Things Every Application Security Professional Should Know242

Will Generative and LLM
Solve a 20-Year-Old
Problem in Application
Security?
Neatsun Ziv

In application security, we find ourselves at a crossroads where the integra‐
tion of GenAI and LLMs is redefining traditional approaches, offering solu‐
tions to the issues of fragmented workflows and excessive tool clutter.

Traditional AppSec models were great at classifying or clustering data based
on trained learning of synthetic samples. However, they struggle to keep pace
with the hyperactive landscape of techniques, tactics, and procedures used by
attackers to exploit any vulnerabilities. Let’s explore the significant impact
that GenAI and LLMs can have in transforming the field of application
security.

GenAI, with its advanced algorithms and ML capabilities, is proving to be a
powerful ally in the battle against vulnerabilities. By analyzing vast volumes
of data, including security reports and code samples, GenAI can detect suspi‐
cious activities, identify potential malware, and even generate automated fix
recommendations with the precision of a seasoned security professional. It is
like having an assistant who tirelessly scans and safeguards your applications
—and never takes a vacation.

Today’s LLMs are a huge advancement over older models used in ML algo‐
rithms that were great at classifying or clustering data based on trained
learning of synthetic samples. Modern, sophisticated models, like GPT-3 and
GPT-4, can analyze code snippets, comprehend complex programming lan‐
guages, provide developers with guidance, and even suggest fix snippets, all
rooted in contextual awareness. Equipped with the insights offered by
modern LLM, developers can confidently navigate the intricate terrain of
secure coding like seasoned experts in the field without years of training.

243

Here are just a few ways that GenAI may revolutionize application security:

Automated vulnerability detection
Traditional vulnerability scanning tools often rely on manual rule defini‐
tion or limited pattern matching. GenAI can automate the process by
learning from extensive code repositories and generating synthetic sam‐
ples to identify vulnerabilities, eliminating this manual analysis that can
often take weeks or even months.

Adversarial attack simulation
GenAI can generate realistic attack scenarios, including sophisticated,
multistep attacks, allowing organizations to strengthen their defenses
against real-world threats. A great example is BurpGPT, a combination
of GPT and Burp that helps detect dynamic security issues.

Intelligent patch generation
GenAI can analyze existing codebases and generate patches that address
specific vulnerabilities, saving time and minimizing human error in the
patch development process.

Enhanced threat intelligence
GenAI can analyze large volumes of security-related data, including vul‐
nerability reports, attack patterns, and malware samples. It uses this data
to improve threat intelligence capabilities by generating insights and
identifying emerging trends from an initial indication to a real actiona‐
ble playbook, enabling proactive defense strategies.

However, as we delve into the potential of GenAI and LLM models, we
should proceed cautiously. LLM models, like any nascent technology, have
areas in which they can further mature—particularly in aspects such as con‐
textual understanding and real-time response. And while GenAI demon‐
strates remarkable proficiency, it is not a panacea for all application security
woes. Moving forward, organizations will take a comprehensive approach to
application security and combine GenAI and LLM models with dedicated
security tools, external enrichment sources, and scanners to help bridge
these gaps and ensure a robust security posture for their applications.

We are at the forefront of an exciting era where the synergy between GenAI
and LLM models offers a path forward to conquer the persistent challenges
in application security. These include trivial challenges, like running AppSec
tools to very difficult challenges, such as protecting against new attack vec‐
tors. By cautiously embracing the transformative potential of GenAI and
LLM models we can protect our digital landscape with confidence.

97 Things Every Application Security Professional Should Know244

Understand the Risks of
Using AI in Application
Development
Yasir Ali

Generative AI in software development is going mainstream, evident by the
40K+ organizations using GitHub Copilot. These tools promise enhanced
productivity by automatically generating code snippets based on given
prompts but raises significant concerns about security vulnerabilities. A
Stanford study highlighted that developers using codex tend to produce
more insecure code, escalating risks in the SDLC.

Most industry studies show an average of 20–30 bugs per 1,000 lines of code
written in a given project. Multiply this by the probable billions of lines of
code that modern LLMs have been trained on and the odds of having real
security issues inadvertently introduced becomes absolutely massive.

Traditionally, vulnerability concerns were centered around software compo‐
nents. But, with the rise in popularity of transfer learning, the reuse of pre‐
trained models, and the use of crowdsourced data, these issues have
extended to AI systems. We are seeing a 49% increase in malware package
creation quarter on quarter (QoQ) in 2023, which points to this problem
becoming massive for 2024.

Main Risk Categories and Recent Incidents
Three main risk categories are identified with LLM use in software develop‐
ment:

• Security issues such as malicious code insertion and sensitive data
leakage

• Legal liabilities, including concerns over code ownership and licensing

245

• Supply chain vulnerabilities extending to AI systems beyond traditional
software components

Examples of malware insertions through LLMs have been documented, and
upcoming tools such as Polymer’s data loss prevention (DLP) with software
supply chain scanners aim to mitigate these risks.

Major Threat Vectors from LLM
The OWASP Top 10 list for LLMs pinpoints significant threat vectors,
including application vulnerabilities from LLM inputs, prompt injections,
denial-of-service (DoS) attacks, and data leakage.

The supply chain for LLM-based methods can be susceptible to vulnerabili‐
ties. The vulnerabilities compromise the integrity of various components
including training data, ML models, and deployment platforms. This can
result in biased outcomes, security breaches, or even complete system
failures.

Key Risks in the SDLC
The integration of LLMs into SDLC presents new security and legal chal‐
lenges. Key issues include:

• Security problems such as “package hallucinations,” where LLMs suggest
nonexistent or malicious packages

• Propagation of unintentional software defects, magnified by the vast
amount of code LLMs are trained on

• Legal complexities around AI-generated source code, especially regard‐
ing derivative outputs and licensing

Legal Concerns
There are emerging legal challenges regarding AI-generated code’s owner‐
ship and its sourcing from potentially restricted open source packages. Sam‐
sung and others have blocked all AI-assisted code writing once due to
inadvertent usage of noncommercial open source software packages.

LLM Concerns and Software Supply Chain Impact
While LLMs affect internal code security, their impact extends to third-party
packages and libraries, often less rigorously vetted. The use of generative AI
also enables more efficient attacks on software ecosystems.

97 Things Every Application Security Professional Should Know246

Increased Supply Chain Risks
Here are several real-world examples of vulnerabilities and attacks:

• A breach in OpenAI was traced to a supply chain vulnerability in the
Redis open source library, leading to unauthorized data access.

• Real-world supply chain attacks, akin to the SolarWinds breach, have
escalated, targeting software developers and CI/CD infrastructures.

• A study showed over 100K public GitHub repositories exposed secrets, a
concern amplified by the growing reliance on autogenerated codebases.

Remediative Controls
The SBOM is gaining traction with CISA and industry circles to gain some
visibility on this risk. This is a welcome step, and although we feel that this is
important, SBOMs are (at best) backward looking. If the application package
has been shipped with vulnerability, then it’s too late!

Inline supply chain controls in SDLC are the only method to secure your
supply chain risk.

Collective Wisdom from the Experts 247

PART XII

IoT & Embedded
System Security

Secure Code for
Embedded Systems
Jason Sinchak

Unlike web, mobile, or local applications that are designed to run on a vari‐
ety of platforms, applications for embedded systems are purpose-built for a
particular system, including a custom platform (operating system) and asso‐
ciated hardware. The application becomes part of the embedded device,
functioning as a key interface into the device and the orchestrator of many
backend processes working in concert to provide a critical function. As a
result of the marriage between an individual application and the entirety of
the embedded system, the manner in which an application is developed and
the associated cybersecurity concerns can have many downstream effects.

Coding
Speed and reliability are core tenets of an embedded system. These impera‐
tives generally require coding applications in native unmanaged languages,
such as C and C++ or interacting with associated libraries where this level of
complexity is present. Speed requires close integration with hardware and
the unescapable utilization of privileged operations. Cybersecurity consider‐
ations for coding on an embedded system focus on reducing vulnerabilities
common to unmanaged languages and ensuring the application sustains a
trust boundary between its primary interface with the outside world and the
underlying platform.

Injection
The application serves as a key trust boundary and interface to the operating
system, privileged functionality, or direct hardware. Protecting the applica‐
tion from becoming a vector through which a threat actor accesses these
privileged functions is paramount.

Developers must ensure all untrusted data is validated and sanitized to pre‐
vent unintended system execution. Various injection-related attacks exist in

249

AppSec, but due to the prevalence of an embedded application interfacing
with the platform, the most important category of vulnerability for an
embedded system is operating system (OS) command injection. The worst
scenario is when an application combines user input to a privileged call into
a supporting application, operating system, or hardware. This situation typi‐
cally arises when an application accepts untrusted/insecure input and passes
it as the application name or arguments without validation or proper
escaping.

Memory Corruption
Due to many embedded applications coded in C/C++, or any language that
doesn’t provide managed memory, developers should avoid the use of known
dangerous functions and APIs. In the event a threat actor fuzzes the applica‐
tion inputs, it’s possible for a memory corruption to occur, regardless of
whether the application intended to or not; it would execute code directly on
the operating system. Example functions to avoid include unsafe C functions
such strcat, strcpy, sprintf, and scanf. Memory-corruption vulnerabili‐
ties, such as buffer overflows, can consist of overflowing the stack (stack
overflow) or overflowing the heap (heap overflow). In the event a buffer
overflow is possible, the application will likely crash, but a threat actor will
write an exploit to take advantage of the situation. In the most classic exam‐
ple, a threat actor will overwrite the instruction pointer register via the over‐
flow to execute the arbitrary malicious code on the underlying operating
system. Additional considerations include knowing where your memory
buffers are, when it is freed, data that could leak, initializing to known values,
and where the buffer is stored (stack, static, or allocated structures).

Third-Party Code
Due to the nature of an embedded system, there are many moving parts and
associated third-party components that ship with the system. When not
properly evaluated, third-party components can put your own application
and system at risk. It is important to ensure that the kernel, software pack‐
ages, and third-party libraries are updated to protect against publicly known
vulnerabilities. Built chains should be checked against vulnerability data‐
bases to determine if and when an update is needed. The last thing a devel‐
oper or product owner wants is to ship an embedded device, which is hard or
impossible to update in the field, with a known vulnerability. Embedded
projects should maintain a bill of materials that includes third-party and
open source software included in the entire application and firmware. The

97 Things Every Application Security Professional Should Know250

bill of materials should be reviewed during development to confirm that
none of the third-party software included has any unpatched vulnerabilities.

Collective Wisdom from the Experts 251

Platform Security for
Embedded Systems
Jason Sinchak

Most embedded systems are devices that contain hardware from the era in
which it was designed; regardless of how cutting edge it may be at design, it
will eventually become legacy. Unlike applications designed to run on non‐
embedded systems, these applications cannot be moved; they live forever on
this hardware. As a result, applications developed for embedded systems
often have responsibility for the entire platform yet are constrained by the
hardware. Therefore, the developers need to understand and apply other
security controls to pair with AppSec practices.

Maintaining Data Security
As embedded systems can be physically accessed by a threat actor, such as
through purchasing on the aftermarket, reverse engineering is often per‐
formed to gain access to the firmware. Due to the physical risks associated
with storing data on embedded systems, applications must avoid critical mis‐
takes such as hardcoding passwords, usernames, tokens, or keys in firmware.
Globally default and hardcoded sensitive data will eventually be identified
and published. Once published, that information will impact the entire fleet
—all customers, or any device running the same firmware. Developers
should avoid authenticating users or components through hardcoded infor‐
mation that is globally the same across products. System designers should
enable the device owner to configure new sensitive material that is unique
and chosen. For example, allow a user to change the default credentials or
force a change of key material used to encrypt data at rest.

Secure Firmware Updates
The ability to perform updates of your own code and the underlying plat‐
form via a user application is critical. A firmware update procedure is a pro‐
cess for which a user or service technician can update the embedded system;
this functionality is often built into the core user application. Application

252

developers should ensure robust update mechanisms by building an update
procedure that requires and validates an update that has been cryptographi‐
cally signed. Cryptographic signatures allow for verification that files have
not been modified or otherwise tampered with since the developer created
and signed them. In the event a firmware update process does not require
authentication of the update, a threat actor can procure a firmware update,
backdoor it with malicious binaries, and update the embedded system.

Attack Surface Reduction
Where possible, the platform itself and associated applications should limit
components that are not necessary for operation. Removing insecure libra‐
ries and protocols minimizes the attack surface and provides a secure-by-
design approach to building software by thwarting potential future security
threats. For example, if you remove unnecessary functionality, when a zero-
day exploit is released in the future, you may not need to issue a firmware
update because your platform doesn’t have the impacted function.

Secure Communications
Embedded devices typically must communicate the output of their function
to components both internal to their own system and external. Defense in
depth is achieved through securing internal communications and ensuring
external communications employ mutual trust.

Embedded applications often communicate via a variety of potential
application-level buses or API. In many cases, a publisher/subscriber method
may be employed. While it is tempting and easier to create an information
highway accessible to all internal applications on the “trusted” embedded
device, developers should ensure that authorization and authentication exist
on all messages passed internally.

At the same time, external communications can only be trusted when an
embedded system’s incoming and outgoing communications are of high
integrity, authenticated, and authorized.

Collective Wisdom from the Experts 253

Application Identity for
Embedded Systems
Jason Sinchak

When embedded system software is shipped, it is shipped in an out-of-the-
box form that is the same for all users or customers. Identities used to
authenticate to user interfaces or the platform are typically managed locally
and uniquely for the system. As a result, the user or customer must be pro‐
vided a mechanism for managing these identities through the main applica‐
tion interface or an external component.

As embedded systems can be physically accessed by a threat actor, such as
through purchasing on the aftermarket, reverse engineering is often per‐
formed to gain access to the firmware. Once in the hands of a threat actor, it
can discover critical mistakes such as hardcoded passwords, usernames,
tokens, or keys in firmware. Globally default and hardcoded sensitive data
will eventually be identified and published. Once published, that information
will impact the entire fleet, all customers, or any device running the same
firmware.

Embedded systems should avoid storing secrets in a hardcoded or globally
default fashion. In addition, they should provide features that enable the sep‐
aration of user accounts for user interface, internal management, console
access, remote management, etc.

Where possible, service accounts should be avoided, and instead service-like
features should be afforded as privileges for various users. Providing various
levels of authorization and privilege at the identity level further mitigates
attacks on known user accounts, such as automated attacks over the network.

While enabling identity management for customers on accounts they should
have access to is ideal for cybersecurity, every embedded system manufac‐
turer typically needs some form of access that a customer may not necessar‐
ily be able to obtain. A level of access at this level is typically meant to enable
service technicians to recover a device from an error, debug an issue, or per‐
form a complicated update that a customer may not be trusted to perform. In

254

these situations, we recommend that systems designers create functionality
in the system where support/service accounts are derived uniquely on a per-
device basis. For example, a system based on device-specific criteria that can‐
not be guessed, such as the combination of hardware serial numbers that are
unique. Customers and users should still be afforded a mechanism to change
these credentials after knowledge of the risk is accepted, for example, that the
system could become unstable or unrecoverable.

In standing with best practices, the following are a few key identity manage‐
ment capabilities to implement on an embedded system:

• Static passwords should be avoided or removed as part of the release
process.

• Ensure users are forced to change their passwords upon device setup or
activation.

• Ensure that users have the option to change all secrets.
• Provide no built-in or service accounts.
• Enable specific service or privileged capabilities via identity-managed

privileges.
• Required service credentials should be unique to each device and not

guessable without internal information about the device.
• Implement account lockout threshold to prevent automated brute force

attacks.
• Provide a password complexity policy configurable by the user.
• Ensure that passwords are not displayed on the user interface and are

always masked, regardless of the user privilege required to view.
• Provide users with the option for password and certificate rotation

policies.

Collective Wisdom from the Experts 255

Top Five Hacking
Methods for IoT Devices
Manasés Jesús

In the realm of the Internet of Things (IoT), where a myriad of devices are
interconnected and woven into the fabric of our daily lives, the vulnerabili‐
ties that exist can be daunting. As technology advances, so do the methods
employed by hackers to exploit these devices. Let us delve into the top five
hacking methods for IoT devices, revealing the ingenuity and cunning of
those who seek to breach the interconnected world and look at potential sol‐
utions to protect against them.

The Trojan Horse
This method takes its name from the ancient tale of the Greeks infiltrating
the city of Troy. In the realm of IoT, it involves hackers embedding malicious
code within seemingly innocuous software updates or applications. Once
these updates are installed, the Trojan Horse (malicious code or software)
silently unleashes its payload, granting unauthorized access to the device.
Like a wolf in sheep’s clothing, this method preys on trust, exploiting the vul‐
nerability of users who unknowingly invite the enemy into their midst.

The Man-in-the-Middle
This method capitalizes on the weakness in communication protocols
between IoT devices and their corresponding servers. By intercepting and
altering the data transmitted between the two, hackers can gain control over
the device or even eavesdrop on sensitive information. Like a shadowy figure
lurking in the background, the man-in-the-middle (MITM) silently inserts
himself into the conversation, manipulating the flow of information for his
own nefarious purposes.

256

The Zero-Day Exploit
In the world of hacking, a zero-day exploit refers to a vulnerability in soft‐
ware that is unknown to the developer. Hackers who discover such vulnera‐
bilities can exploit them before the developers have a chance to patch them.
In the realm of IoT, this method is particularly insidious, as it allows hackers
to compromise devices without leaving a trace. Like a phantom slipping
through the cracks, the zero-day exploit takes advantage of the unknown,
leaving the victim vulnerable and unaware.

The Brute Force Attack
This method is as straightforward as it sounds. It involves hackers using
automated tools to systematically guess passwords until the correct one is
found. With weak or easily guessable passwords still prevalent in the IoT
landscape, this method remains a favorite among hackers. Like a battering
ram relentlessly pounding against a fortress, the brute force attack exploits
human fallibility, relying on the laziness of users who fail to protect their
devices with strong, unique passwords.

The Denial-of-Service (DoS) Attack
This method seeks to overwhelm a device or network with an influx of traf‐
fic, rendering it inaccessible to legitimate users. By flooding the target with
an overwhelming volume of requests, the hacker effectively cripples the
device, preventing it from carrying out its intended function. Like a wave
crashing against a fragile sandcastle, the DoS attack capitalizes on the vulner‐
ability of the device, exploiting its inability to handle the onslaught.

As we explore these top five hacking methods for IoT devices, we are
reminded of the ever-present threat that looms in the digital world. These
hacking methods are not only for IoT devices; they have been used also in
other systems. Like a masterful writer crafting a suspenseful tale, hackers
employ these methods with skill and finesse, exploiting the weaknesses of
technology and human nature alike. However, it is crucial to remember that
knowledge is power, and by understanding the methods employed by hack‐
ers, we can better protect ourselves in this interconnected landscape.

Collective Wisdom from the Experts 257

Securing IoT Applications
Manasés Jesús

The IoT has the potential to revolutionize the world as we know it, and it is
rapidly becoming an essential part of our daily lives. The concept of IoT is
built around the idea of interconnected devices and sensors that can commu‐
nicate with each other and perform various tasks automatically. From smart
homes and cities to industrial automation and healthcare, IoT offers count‐
less opportunities for innovation and growth. However, with great opportu‐
nities come great responsibilities and significant challenges, particularly in
the area of cybersecurity.

Securing IoT applications, including securing devices and networks, requires
multiple tiers of security controls. There is an increasing number of devices
and sensors that are connected to the internet as a result of the IoT’s explo‐
sive growth, and they are now more open to attacks and threats from cyber‐
criminals. As a result, IoT security is currently one of the most important
problems that governments, organizations, and end users must deal with.
The risk of cyberattacks and data breaches has greatly risen with the increas‐
ing number of connected devices. Therefore, it is paramount to understand
and implement the following best practices for IoT security:

Secure communication
One of the most critical aspects of IoT security is secure communication
between devices and networks. All communication channels should be
encrypted using strong cryptographic algorithms to prevent unauthor‐
ized access and data interception.

Authentication and authorization
IoT applications must use authentication services to reduce or minimize
network risks and breaches. Attackers can enter through the front door
due to improper device authentication, posing a security concern. The
privileges of IoT device components and applications are limited by
access controls—by specifying who is allowed access to the data and IoT
devices as well as how much access should be granted.

258

Access control
A key component of IoT security is access control. Making sure that only
authorized users have access to IoT devices and applications is crucial.
To prevent unwanted access, access control measures like passwords,
biometric authentication, and MFA should be used.

Regular updates
IoT devices are susceptible to security risks, and fresh flaws are regularly
found. For this reason, it is crucial to regularly install security patches
and upgrades to keep hardware and software up to date. This practice
aids in preventing vulnerabilities from being exploited by attackers.

Data protection
IoT devices gather and send private data, including location and per‐
sonal data. To maintain the confidentiality and privacy of data, it is cru‐
cial to use data protection measures including encryption, access
control, and anonymization during the phases of transition or storage of
the data.

Physical security
IoT security frequently overlooks physical security, despite the fact that it
is equally crucial. To avoid manipulation and theft, physical access to IoT
devices should be restricted. Devices should also be safeguarded from
external elements like temperature, humidity, and power surges.

Monitoring and logging
For identifying and responding to security issues, monitoring and log‐
ging are fundamental. IoT devices need to be monitored for unusual
activity, and logs need to be examined frequently to spot any security
risks.

In a nutshell, applying best practices for securing IoT applications and devi‐
ces can greatly lower the risk of cyberattacks and data breaches. Nevertheless,
IoT security is a complex and difficult endeavor. The aforementioned best
practices can help to maintain the safety and privacy of users and their data.
Knowing and implementing these best practices can help IoT applications
become more secure and reliable.

Collective Wisdom from the Experts 259

Application Security in
Cyber–Physical Systems
Yaniv Vardi

You’d be hard-pressed to find a physical process in our connected world that
isn’t controlled and managed over the internet. These so-called cyber–physi‐
cal systems (CPS) are prevalent everywhere—and behind every good CPS is
an application responsible for its intended purpose.

Factory floors, for example, are automated marvels where devices are pro‐
grammed to build the things central to our lives. Engineers and asset opera‐
tors use applications known as Engineering WorkStations (EWS) to upload
data from devices, download new instructions, and respond to failures in
order to ensure that critical services remain available and safe.

Treatment within hospitals and physicians’ offices is also increasingly reliant
on connected devices that share patient information that rapidly informs
diagnosis and treatment. Remote patient monitoring applications, medical
diagnosis software, imaging applications, and digital electronic health record
systems are just some examples of CPS and their impact on patient care and
safety.

Every modern building is essentially a connected device managed by soft‐
ware applications. Smart homes are rife with connected devices that can be
managed by an app that allows users to control climate conditions, oversee
home surveillance systems, or raise and lower shades. HVAC and elevators in
pharmaceutical settings, office buildings, apartments, hospitals, factories,
and elsewhere are also reliant on building management systems that are
online.

Securely designed applications are the hub of our connected world. The key
pivot around CPS and cybersecurity is that the CIA triad of confidentiality,
integrity, and availability isn’t completely applicable here. Instead, strategi‐
cally, CPS aims for safety, reliability, and productivity.

260

Operational technology (OT) at the core of CPS is often intolerant of the
downtime that a cyberattack would bring. Ransomware attacks against
energy companies, hospitals, and other critical infrastructure sectors have
already demonstrated devastating consequences to fuel production and
delivery in the case of the Colonial Pipeline, and negative impacts on patient
care in dozens of successful attacks against hospitals worldwide.

Threat actors, meanwhile, will always take the path of least resistance.
Attacking a device directly requires expertise that raises the cost of an attack
significantly for a criminal or state-sponsored group. However, a successful
exploit of a commodity vulnerability in a modern application or cloud-based
management system can allow an attacker to reach edge devices at scale.

On the OT side, engineering workstations and historian databases are a
crossover point sitting between an organization’s DMZ—which hosts appli‐
cations servers and other critical networking technology—and control sys‐
tems including connected human-machine interfaces (HMIs) and SCADA
systems.

A compromised Windows-based engineering workstation can allow an
attacker to pivot in either direction of the Purdue Model for ICS. By disrupt‐
ing an application server, for example, an attacker would impede an organi‐
zation’s ability to accurately understand and process data from field devices,
or properly update them with new instructions. A compromise of HMIs and
SCADA systems, meanwhile, could be devastating. An attacker who success‐
fully manipulates an HMI can present an asset owner with a false representa‐
tion of what’s really happening around pumps at a water treatment facility,
for example. Alterations of chemicals in such a process as a result of these
false readings could put human safety at risk.

In a healthcare scenario, an attacker who is able to exploit a known vulnera‐
bility to manipulate patient information in an application storing and trans‐
mitting that data could negatively impact patient care. Imagine a doctor
acting on a patient’s vital signs that have been manipulated by a hacker.

Security leaders must understand these gaps and potential consequences.
They must work with software and firmware vendors, as well as device man‐
ufacturers, to ensure the quality and safety of application code. Stress the
importance of dynamic and static code testing, pen testing, and urge vendors
and manufacturers to embrace the need for transparency around application
code. In healthcare, SBOMs will soon be a mandated facet of application
security, one that can bring visibility into programming components that

Collective Wisdom from the Experts 261

https://claroty.com/blog/ics-security-the-purdue-model
https://claroty.com/blog/medical-device-cybersecurity-provisions-included-in-omnibus-appropriations-bill

other industries can adopt to improve vulnerability management, and ulti‐
mately the safety and availability of cyber–physical systems.

97 Things Every Application Security Professional Should Know262

About the Editors

Reet Kaur
Reet Kaur is a seasoned information security professional
experienced in both public and private sectors. She is cur‐
rently an Executive Director of IT Risk Management & Secu‐
rity at Merck Co. & Inc. Formerly, she held the role of
Cabinet Executive VP and Chief Information Security Officer

(CISO) at a leading higher-ed institute, Portland Community College in
Portland, Oregon. She is also the board member of the audit committee for
the Higher Education Coordinating Commission (HECC) for the State of
Oregon.

With over 20 years of experience in IT, information security, and risk man‐
agement leadership roles at Fortune 100 and 500 companies like Merck,
Nike, Fidelity, AECOM, and CIBC, Reet has established herself as a respec‐
ted industry expert. Renowned for her expertise in organizational transfor‐
mation and a change agent, she adopts a unique, globally informed, risk-
based approach to information security, data privacy, IT, and digital
transformation.

Certified in CISSP, CRISC, CISM, and PMP, Reet is a trusted advisor to tech‐
nical, executive, and board-level teams. Reet is a champion of diversity and
inclusion initiatives and is deeply committed to addressing talent, gender,
and underrepresented minority gaps in cybersecurity. A compassionate
leader, she mentors aspiring professionals and actively contributes to the
industry through speaking engagements and content development on
LinkedIn.

In her strategic role, Reet specializes in developing and implementing suc‐
cessful programs in information security, risk management, and data privacy
across various industry verticals and geographies.

Chapter 60, “Effective Vulnerability Remediation Using EPSS”

Chapter 78, “Mobile Application Security Using Containerization”

Yabing Wang
Yabing Wang is the VP and Chief Information Security Offi‐
cer at Justworks, a tech-forward payroll company supporting
small businesses. She has been in the technology world for
over 25 years and has over 20 years of extensive leadership
experience in cybersecurity across different industries. Yab‐

ing thrives in transforming security into a business enabler through execu‐
tive leadership, program delivery, and partnership with all stakeholders. She
has built global security practices and strengthened cyber resilience at multi‐
ple Fortune 100 companies such as Allstate Insurance Company, Alight Solu‐
tions, Carrier Corporation, and H-E-B. Before her cyber journey, Yabing
studied philosophy and computer science, and during the early days of her
career, she worked in application development at Netscape.

Chapter 15, “Beyond Barriers: Navigating the Path to a Successful AppSec
Program”

Contributors

Adam Shostack
Adam Shostack is the author of Threat Modeling: Designing
for Security and Threats: What Every Engineer Should Learn
from Star Wars. As founder of Shostack + Associates, he focu‐
ses on teaching threat modeling. He has decades of experi‐
ence delivering application security. Early in his career, he

helped create the CVE. He serves as a member of the Blackhat Review Board,
an advisor to a variety of companies and academic institutions, and an Affili‐
ate Professor at the Paul G. Allen School of Computer Science and Engineer‐
ing at the University of Washington. You can learn more at
adam.shostack.org.

Chapter 69, “Learn to Threat Model”

Aldo Salas
With more than 15 years of experience, Aldo Salas has had the opportunity
to work on all stages of Application Security, from penetration testing to pro‐
gram management and everything in between. He is currently on a quest to
get rid of passwords by leading the application security program at HYPR.
Aldo has participated as an OWASP local chapter leader for many years, and
he has been active in the bug bounty community as well. Aldo has worked
with several technologies and businesses, including financial, healthcare,
media and entertainment, education, and information technology.

Chapter 34, “Will Passwordless Authentication Save Your Application?”

Chapter 54, “Demystifying Bug Bounty Programs”

265

https://shostack.org/books/threat-modeling-book
https://shostack.org/about/adam

Alexander James Wold
Alexander James Wold is a global cybersecurity manager with
over 14 years of experience in security. He has built multiple
security programs in complex environments across multiple
industries. He is constantly learning and staying on top of the
latest developments in the field.

Chapter 85, “LLMs Revolutionizing Application Security: Unleashing the
Power of AI”

Allen West
Allen West is a Security Researcher on Akamai’s Security
Intelligence Response Team who loves investigating threats
and building tools. He is currently pursuing his master’s in
information security and assurance from Carnegie Mellon
University. He received his undergraduate degree in cyberse‐

curity from Northeastern University and is a Marine Corps Veteran. During
his free time, Allen loves traveling, flying drones, hiking, swimming, or really
anything outdoors and adventurous.

Chapter 73, “In Denial of Your Services”

Chapter 74, “Sifting for Botnets”

Alyssa Columbus
Alyssa Columbus is a Vivien Thomas Scholar at Johns Hop‐
kins University and a member of the Spring 2018 Class of
NASA Datanauts. Her technical guides, tutorials, and articles
have been featured by leading organizations, including For‐
bes, Google, Microsoft, and the Association for Computing

Machinery (ACM). Previously, Alyssa has worked as an information security
analyst, data scientist, and machine learning researcher, and she is a contrib‐
utor to open source software with over 49 million downloads. Alyssa holds a
Bachelor of Science degree in Mathematics from the University of California,
Irvine, and a Master of Science degree in Applied and Computational Mathe‐
matics from Johns Hopkins University.

Chapter 1, “Secure Code for Tomorrow’s Technology”

Chapter 62, “Integrating Security into Open Source Dependencies”

Contributors266

Andres Andreu
Andres Andreu, CISSP-ISSAP, is the Deputy Chief Informa‐
tion Security Officer (CISO) at Hearst Corporation, ex-CISO
at 2U/edX and Bayshore Networks, and a Boardroom Certi‐
fied Qualified Technology Expert (QTE). Andres is an indus‐
try veteran and recognized industry leader whose career has

spanned federal government service, corporate America, global consulting,
the entrepreneurial journey in the cybersecurity product space, and execu‐
tive advising. He has won numerous industry awards and is the sole author
of Professional Pen Testing for Web Applications as well as numerous maga‐
zine articles. He holds an internationally granted patent.

Chapter 2, “Pragmatic Advice for Building an Application Security Program”

Chapter 79, “API Security: JWE Encryption for Native Data Protection”

Andrew King
Andrew King is a seasoned technical leader with over two
decades of expertise, possessing a 360-degree comprehensive
view of the computing landscape. His proficiency spans vari‐
ous domains, including software engineering, computing for‐
ensics, UI design, analytics, policy development, federal

standards creation, validation, compliance, security operations, corporate
infrastructure, and vendor management. With a wealth of experience in
diverse industries—commercial product development, higher education as a
professor, ecommerce, finance, federal, military operations in direct combat
zones—Andrew brings a unique perspective to technology and security. He
has served on non-profit and customer customer advisory boards, focusing
on the strategic direction of these organizations.

Having navigated roles as engineer and analyst, professor, corporate leader,
and cloud expert overseeing one of the world’s largest infrastructures in the
world, Andrew excels in both offensive and defensive strategies for network
and computing systems. His journey includes focusing on building high per‐
forming, diverse teams, building cohesion and operational direction among
conflicting teams, and leading large-scale technical transformation.

Andrew holds a master’s degree in information assurance from Norwich
University and a Bachelor of Science degree in computing and software sys‐
tems from the University of Washington. Beyond his professional achieve‐
ments, he is passionate about giving back to his community with the
volunteer fire and rescue services.

Contributors 267

Chapter 16, “Building an Application Security Preparation Mindset”

Angelica Lo Duca
Angelica Lo Duca is a researcher at the Institute of Informat‐
ics and Telematics of the National Research Council in Italy.
She is also an adjunct professor of Data Journalism at the
University of Pisa. She is the author of Comet for Data Sci‐
ence, published by Packt Ltd., coauthor of Learning and Oper‐

ating Presto (O’Reilly), and author of Data Storytelling with Generative AI
Using Python and Altair, published by Manning Publications.

Chapter 86, “Mitigating Bias and Unfairness in AI-Based Applications”

Anuj Parekh
Anuj Parekh has been in the cybersecurity realm working as a
security engineer for over six years and is a cybersecurity
enthusiast. Anuj specializes in product, infrastructure, and
enterprise security. Anuj enjoys hiking and is always up for
exploring new parks and hiking trails.

Chapter 17, “How to Assess Security Mindset in Application Design”

Aruneesh Salhotra
Aruneesh Salhotra is an experienced technologist/generalist
and servant leader with expertise in development, DevSec‐
Ops, cybersecurity, PMO, infrastructure, Kubernetes, AI, the
ethical side of AI, GRC, and technical sales. Aruneesh has a
deep proficiency in cybersecurity, cloud security, and project

management, with professional certifications including C-CISO, CISSP,
CKA/CKAD, AWS Security Specialist, and PMP. He serves on multiple advi‐
sory boards, including VirSec, Strategio, ICPS, and Dazz, providing valuable
counsel and contributing to critical decisions on cybersecurity and diversity
to business strategy and growth. Aruneesh is a highly effective communica‐
tor and industry thought leader, with numerous awards and recognition for
presenting, serving as a panelist, and authoring content for prominent indus‐
try events such as ADDO, Elevate, Ignite, QA Forum, RFG, SINET, PBC,
Tech Trek, and beyond. Furthermore, Aruneesh is known to foster produc‐
tive relationships with key industry security bodies, including CISA, EPSS,
CFF, and PBC, to help shape security policies and promote better cyberse‐
curity practices. He is also an active investor in the cybersecurity and GenAI
domain (angel investor, limited partner in VC firms).

Contributors268

Chapter 44, “Modern Approach to Software Composition Analysis: Call
Graph and Runtime SCA”

Chapter 55, “EPSS: A Modern Approach to Vulnerability Management”

Chapter 77, “Mobile Security: Domain and Best Practices”

Ayman Elsawah
Ayman Elsawah has managed and led security for startups of
all sizes and shapes. His technical focus areas are Identity and
access management, product security, and infrastructure
security. He is an active member of the cybersecurity com‐
munity, regularly speaking at industry events and sharing his

insights and expertise on social media.

Ayman is the author of Breaking In: A Practical Guide to Starting a Career in
Information Security, the host of the podcast Getting Into Infosec, runs a
newsletter called Last Week as a vCISO, and is a coffee enthusiast. Check out
his personal site at https://coffeewithayman.com or connect on social media
@coffeewithayman.

Chapter 18, “Getting Your Application Ready for the Enterprise”

Brook S.E. Schoenfield
Books by Brook S.E. Schoenfield include Building In Security
at Agile Speed (Auerbach, 2021, coauthored with James Ran‐
some), Secrets of a Cyber Security Architect (Auerbach, 2019)
and Securing Systems: Applied Security Architecture and
Threat Models (CRC Press, 2015). He coauthored The Threat

Modeling Manifesto (2020), Avoiding the Top 10 Security Design Flaws (IEEE,
2014) and Tactical Threat Modeling (SAFECode, 2017). He has technically led
five AppSec/software security programs and four consulting practices. Cur‐
rently, Brook is CTO and Chief Security Architect at Resilient Software Secu‐
rity. He also teaches at the University of Montana and regularly speaks at
conferences and on podcasts/webinars.

Chapter 3, “AppSec Must Lead”

Chapter 80, “APIs Are Windows to the Soul”

Contributors 269

https://coffeewithayman.com

Caroline Wong
Caroline Wong is the Chief Strategy Officer at Cobalt. She
has over 15 years of cybersecurity leadership, including prac‐
titioner, product, and consulting roles. Caroline authored the
popular textbook, Security Metrics: A Beginner’s Guide. She
teaches cybersecurity courses on LinkedIn Learning and

hosts the Humans of InfoSec podcast.

Chapter 4, “Solving Problems for Application Security”

Cassie Crossley
Cassie Crossley, Vice President of Supply Chain Security in
the global Cybersecurity & Product Security Office at
Schneider Electric, is an experienced cybersecurity technol‐
ogy executive in Information Technology and Product Devel‐
opment. She is the author of Software Supply Chain Security:

Securing the End-to-End Supply Chain for Software, Firmware, and Hardware
(O’Reilly). She has many years of business and technical leadership experi‐
ence in supply chain security, cybersecurity, product/application security,
software/firmware development, program management, and data privacy.

Cassie has designed frameworks and operating models for end-to-end secu‐
rity in software development lifecycles, third-party risk management, cyber‐
security governance, and cybersecurity initiatives. She is a member of the
CISA SBOM working groups and presents frequently on the topic of SBOMs
and supply chain security.

Cassie has an MBA from California State University, Fresno, and a Bachelor
of Science degree in Technical and Professional Communication with a spe‐
cialization in computer science.

Chapter 63, “Supplier Relationship Management to Reduce Software Supply
Chain Security Risk”

Chadi Saliby
Chadi Saliby is a cybersecurity subject matter expert with
extensive knowledge and experience in the field. He has
worked with diverse organizations ensuring the protection of
sensitive data and uplifting their cybersecurity posture. He
has designed, architected, and integrated complex security

solutions for private enterprises and government departments. He identifies
and implements cybersecurity controls, such as threat and vulnerability

Contributors270

management, incident response, digital forensics and incident response
(DIFR) capabilities, cyber threat hunting, and intelligence.

Chapter 5, “Securing Your Enterprise Applications”

Charan Akiri
Charan Akiri is a Senior Application Security Engineer at
Reddit, with over 13 years of experience in the software
industry. He began his career as a software developer and
later transitioned into security due to his strong passion for
the field. His main focus is on solving security, compliance,

and privacy issues within software architecture. He has a keen interest in
application security, cloud security, infra security, pen testing, cryptography,
and ML. In addition, Charan holds several security certifications and devel‐
oper certifications, including AWS Cloud Developer and AWS Security cer‐
tifications. Furthermore, he has obtained certifications such as GPEN,
GCSA, GWAPT, GSSP-Java, and he is a member of the GIAC Advisory
Board.

Chapter 81, “API Security: The Bedrock of Modern Applications”

Chenxi Wang
Dr. Chenxi Wang is the founder and general partner of Rain
Capital, a Silicon Valley–based venture fund. A well-known
investor, technologist, and thought leader in the cybersecur‐
ity industry, Dr. Wang also serves on the Board of Directors
for MDU Resources, a critical infrastructure energy com‐

pany. Chenxi held executive positions at Twistlock, Intel, and Forrester
Research and as vice-chair for the OWASP Foundation. Chenxi was named
by Fortune as one of the top cyber investors in the world, and by CyberRisk
Alliance as Women Investor of the year. She was recognized as a Woman of
Influence by SC Media magazine.

Chapter 82, “API Security Primer: Visibility”

Chapter 83, “API Security Primer: Risk Assessment, Monitoring, and Detec‐
tion”

Chapter 84, “API Security Primer: Control and Management”

Contributors 271

Chloé Messdaghi
Chloé Messdaghi stands out as a distinguished security exec‐
utive, acclaimed for her exceptional expertise in advising and
shaping solutions that elevate security teams and set industry
standards ablaze. A highly sought-after speaker and a trusted
luminary in major publications such as Forbes and Business

Insider, Chloé has rightfully earned the title of a power player in cybersecur‐
ity, acknowledged by both Business Insider and SC Media.

Exemplifying an unwavering commitment to positive impact, she not only
excels but leads as an expert solutionist and strategist in the realms of cyber‐
security, sustainability, and human rights. Chloé’s exceptional career and
unyielding commitment to driving positive change not only position her as a
leader but as an unstoppable force in these dynamic fields, forging the future
with unparalleled expertise and purpose.

Chapter 64, “Fortifying Open Source AI/ML Libraries: Garden of Security in
Software Supply Chain”

Christian Ghigliotty
Christian Ghigliotty is a security technologist with over nine
years of experience across multiple disciplines within infor‐
mation security, serving as both practitioner and leader. He
has also served as a technical editor for publications and edu‐
cator in acadmedia and certificate programs. Christian was

part of the influential security program at Etsy, and helped build the security
organization at Compass, a tech-enabled real estate brokerage. He is cur‐
rently building the Security Architecture & Engineering function at the New
York-based tech company Justworks.

Chapter 6, “Developers as Partners in Application Security Strategy”

Daniel Ting
Daniel Ting is a cybersecurity sherpa by day who lives at the
intersection of human-centered design and cybersecurity,
helping teams safely navigate building amazing things in
cyberspace. By night, they have spoken multiple times at Def‐
Con Villages, BSides Melbourne, and many other industry

conferences. They are active contributors of the OWASP Education Commit‐
tee and leads the OWASP How to Get into AppSec project, the OWASP Mel‐
bourne chapter, and various cybersecurity community groups in Australia.

Contributors272

Chapter 7, “Be an Awesome Sidekick”

Darryle Merlette
Darryle Merlette, CISSP, is a computer scientist with over 25
years of experience in the software and security industry. He
is currently the Executive Director of Product Security at
NIKSUN, Inc., a private tech company specializing in net‐
work security and performance monitoring. He holds a BSE

from Princeton University and an MSE from the University of Michigan,
both in computer science with an emphasis in AI.

Chapter 19, “Reductio Ad Applicationem Securitatis”

David Lindner
David Lindner is an experienced application security profes‐
sional with over 20 years in cybersecurity. In addition to serv‐
ing as a chief information security officer, he has worked
within multiple disciplines in the security field—from appli‐
cation development to network architecture design and sup‐

port, to IT security and consulting, to security training, to application
security. He has worked with many clients across numerous industry sectors,
including financial, government, automobile, healthcare, and retail.

Chapter 45, “Application Security Testing”

Chapter 46, “WAF and RASP”

David Stokes
Dave Stokes is a Technology Evangelist for Percona. He is the
author of MySQL & JSON: A Practical Programming Guide.
Dave resides in Texas with the mandated pickup truck,
hound dogs, and guitars.

Chapter 35, “Securing Your Databases: The Importance of
Proper Access Controls and Audits”

Diogo Miyake
Diogo Miyake is a Senior Big Data Architect at Thought‐
works. He has worked since 2019 with big data helping com‐
panies to deliver data products in financial, marketing, retail,

Contributors 273

and airlines. He started to improve data products with security in 2021 when
he learned about using DevSecOps and SOC to create secure data pipelines
and improve deliveries with security standards to guarantee privacy and ano‐
nymization of customer data.

Chapter 36, “DataSecOps: Security in Data Products”

Chapter 37, “Data Security Code and Tests”

Erkang Zheng
Erkang Zheng is the founder and CEO of JupiterOne, which
helps customers proactively manage the risk and compliance
of their cyber assets. Additionally, he is a strategic advisory
board member to the Computer Science department at the
North Carolina State University and a CxO Trust Council

Advisor at the Cloud Security Alliance.

Previously, he was CISO of LifeOmic and Head of Software Security at Fidel‐
ity Investments Personal Investing. He has held several security leader and
practitioner roles at IBM, including Global Practices Leader, and GTM strat‐
egy and product management for Security Services.

Erkang is a strong supporter of making security a basic right that all compa‐
nies should have, at a cost they can afford, and in a way that allows them to
build a security program the right way over time. He is an engineer by train‐
ing, an entrepreneur at heart, and passionate about combining innovation
and execution to deliver practical solutions that address challenges at their
root cause.

Erkang earned a BS and an MS degree in computer science from North Car‐
olina State University. He holds five patents, multiple industry certifications,
and is a regular speaker at major security conferences including RSA, BSides,
and many community events.

Chapter 8, “Understanding the True Boundaries of Modern Applications”

Chapter 20, “Automating the Risk Calculation of Modern Applications”

Fayyaz Rajpari
Fayyaz Rajpari is the CEO and Managing Partner for Intelli‐
guards Corporation. The firm is focused on security opera‐
tions and advanced cybersecurity solutions. Fayyaz also sits
on numerous advisory boards for cybersecurity tech startups.

Contributors274

His expertise includes serving as an Incident Responder and then later driv‐
ing products for Symantec, Mandiant, FireEye, Recorded Future, and Giga‐
mon. He also led Optiv’s Global security consulting practice.

Chapter 75, “Incident Response for Credential Stuffing Attacks”

Han Lievens
Han Lievens has been contributing to the field of Informa‐
tion Security for over 20 years, with expert focus on engi‐
neering and threat response. As the field continues to rapidly
evolve, Han helps customers stay on top of the latest cyber
threats and new technologies. He currently spends most of

his time on all things SIEM, SOAR, and DevSecOps.

Chapter 21, “A Coordinated Approach to a Successful DevSecOps Program”

Heather Hinton
Heather Hinton is currently the CISO at PagerDuty, having
previously been the CISO at RingCentral and CISO of IBM’s
Cloud and Cognitive Systems divisions. Heather has been
involved in computer security for over 30 years. She has a
PhD in Electrical & Computer Engineering from the Univer‐

sity of Toronto. She has taught computer security at the University of Tor‐
onto, the Nortel Institute, and Harvard (through the Harvard Extension
School). Heather has over 75 published patents in various areas of computer
security, including identity management, federated identity management,
mobile security, governance, and security assessments.

Chapter 87, “Secure Development with Generative AI”

Helen Umberger
Helen Umberger is a software architect with over 20 years
experience on multiple platforms, business specialties, and
products. She has on-the-job experience with complete life
cycles of large projects.

Chapter 22, “What Makes Someone a Developer?”

Contributors 275

Hussain Syed
Hussain Syed is a pioneer in the successful designing, imple‐
mentation, and secure operation of large-scale enterprise IT
infrastructure (data networking, information security, hybrid
multicloud operations management. He is adept in managing
hybrid multicloud-based network security operations as part

of enterprise digital transformation strategy. Hussain is an Agile coach and
has worked very closely with application cloud native application moderni‐
zation.

Chapter 23, “Total AppSec”

Idan Plotnik
Idan Plotnik is cofounder and CEO of Apiiro, the leader in
application security posture management (ASPM). He is a
serial entrepreneur and product strategist, bringing more
than 20 years of experience in cybersecurity. Idan served at
the IDF in a cybersecurity elite unit and was Director of

Engineering at Microsoft following the acquisition of Aorato—a pioneer in
the UEBA space—where he served as the founder and CEO.

Chapter 70, “Understanding OWASP Insecure Design and Unmasking Toxic
Combinations”

Izar Tarandach
With more than 25 years of security experience, Izar Taran‐
dach is the coauthor of Threat Modeling: A Practical Guide for
Development Teams and a member of the Threat Modeling
Manifesto group of authors. He has extensive experience
exploring both the hard and soft skills of application security.

He is currently a Senior Principal Security Architect at SiriusXM.

Chapter 24, “You’re More Than Your Job”

Chapter 69, “Learn to Threat Model”

Jacqueline Pitter
Jacqueline Pitter, CISSP, is a Senior Strategic Consultant with
Vantage TCG. Prior to joining Vantage, Jacqueline was the
Chief Information Security Officer (CISO) and Senior Infra‐
structure Administrator at Reed College in Portland, OR, and
before that a Software Design Engineer with Hewlett-

Contributors276

Packard. She has more than 22 years of experience in higher education and
corporate IT arenas with a strong focus on information security, infrastruc‐
ture administration, and software design. Jacqueline holds an MS in Com‐
puter Sciences from University of Wisconsin–Madison, a BA in Mathematics
from Reed College, and certificates in Information Assurance and Informa‐
tion System Security from University of Washington. Jacqueline currently
lives in Portland, Oregon, where she spends too much time thinking about
sailboat racing.

Chapter 47, “Zero Trust Software Architecture”

Jason Sinchak
Jason Sinchak leads Level Nine’s Product Security and is the
Founder/CEO of Elton, a Medical Device Cybersecurity com‐
pany. Jason began his career as a penetration tester and has
brought that attacker mindset along with him for over 15
years of advising clients. Jason is regularly sought out as an

advisor, keynote speaker, and industry commentator who is able to connect
the deep technical aspects of security with insight at an executive decision-
making level.

Chapter 92, “Secure Code for Embedded Systems”

Chapter 93, “Platform Security for Embedded Systems”

Chapter 94, “Application Identity for Embedded Systems”

Josh Brown
Josh Brown brings a thoughtful and dedicated approach to
his role as an AppSec engineer at Datavant. With over two
decades in cybersecurity and system engineering, Josh has
contributed to a range of projects and teams, including
Patreon, Amazon Web Services, and Booz Allen Hamilton.

His focus has been on enhancing cloud security, refining threat modeling
processes, and creating secure system designs. Committed to lifelong learn‐
ing, he is currently furthering his education working on his Master of Sci‐
ence in Software Development degree at Grand Canyon University. An active
participant in DEF CON and various security competitions for over 20 years,
Josh values community and knowledge sharing in the ever-evolving land‐
scape of application security. He is known for his collaborative spirit and a
down-to-earth approach that has earned him respect in the field.

Chapter 71, “The Right Way to Threat Model”

Contributors 277

Chapter 88, “Managing the Risks of ChatGPT Integration”

Jyothi Charyulu
Jyothi Charyulu has led an enterprise SSDLC program and
revamped it with the use of automation and integration
within platform engineering processes and tools at two large
Fortune 500 companies. She is a published author at the Pur‐
ple Book of Software Security.

Chapter 25, “TAP Into the Potential of a Great SSDLC Program with Auto‐
mation”

Karen Walsh
Karen Walsh is a lawyer and former internal auditor-turned-
subject-matter expert in cybersecurity and privacy regulatory
compliance who provides consulting and content services for
cybersecurity startups, translating technology features into
business-oriented and compliance solutions. In 2023, she

published her newest book, Security-First Compliance for Small Businesses
(Taylor & Francis Group).

Chapter 65, “SBOM: Transparent, Sustainable Compliance”

Larry W. Cashdollar
Larry W. Cashdollar has been working in the security field as
a vulnerability researcher for more than 20 years and is cur‐
rently a Principal Security Researcher on the Security Intelli‐
gence Response Team at Akamai. He studied computer
science at the University of Southern Maine. Larry has docu‐

mented more than 300 CVEs and has presented his research at BotConf,
BSides Boston, Carnegie Mellon, and DEF CON. His research has been cov‐
ered by ZDNet, Slashdot, The Register, Ars Technica, Bleeping Computer,
Dark Reading, Yahoo, and MSN.

Chapter 26, “Vulnerability Researcher to Software Developer: The Other
Side of the Coin”

Contributors278

Laura Bell Main
With over 20 years of experience in software development
and application security, Laura Bell Main specializes in bring‐
ing application security and secure development practices
into organizations worldwide.

She is the cofounder and CEO of SafeStack, an online educa‐
tion platform offering flexible, high-quality secure development training for
fast-moving companies.

Laura is an experienced conference speaker, trainer, and regular panel mem‐
ber and has spoken at various events such as BlackHat USA, NDC, Render‐
ATL, and OSCON on application security, DevSecOps, secure development,
and security mindset. She is also the coauthor of Agile Application Security
and Security for Everyone.

Chapter 27, “Strategies for Adding Security Rituals to an Existing SDLC”

Lauren Maffeo
Lauren Maffeo is an award-winning author and designer who
currently works as a senior service designer at Steampunk, a
human-centered design firm serving the US federal govern‐
ment. She is also a founding editor of Springer’s AI and Ethics
journal and an adjunct lecturer in the Interaction Design

program at The George Washington University. Lauren has written for Har‐
vard Data Science Review, Financial Times, and The Guardian, among other
publications. Lauren is a fellow of the Royal Society of Arts, a former mem‐
ber of the Association for Computing Machinery’s Distinguished Speakers
Program, and a member of the International Academy of Digital Arts and
Sciences, where she helps judge the Webby Awards. Her first book, Designing
Data Governance from the Ground Up, is available from The Pragmatic Pro‐
grammers and was adapted into a LinkedIn Learning course.

Chapter 38, “Data Security Starts with Good Governance”

Laxmidhar V. Gaopande
Laxmidhar V. Gaopande has a bachelor’s degree in mechani‐
cal engineering from VNIT Nagpur India, a master’s degree
in technology from IIT Madras, and a management diploma
from Symbiosis Pune. Laxmidhar has been in the IT industry
for over 35 years and has worked in the US and UK. He has

operated at various CXO levels. Laxmidhar has three patents in the US and

Contributors 279

has published more than 10 papers in national and international conferen‐
ces. He was invited as visiting faculty to teach IT for Global MBA students in
Dubai, and he has mentored EMBA students at the Asian Institute of Man‐
agement in Manila, Philippines.

Chapter 9, “Common Best Practices in Application Security”

Louisa Wang
Louisa Wang is a Security Professional with expertise in
cutting-edge cloud security architecture, application security,
DevSecOps, IAM, and infrastructure security. Her strong
cloud and security skills have been utilized at Fortune 500
companies across a broad range of industries that include

software, aviation, financial services, pharmaceutical, ecommerce, IT serv‐
ices, and retail. She is a proven leader who drives successful business out‐
comes in cloud adoption, software security, risk governance, M&A security,
training awareness, vulnerability management, security operation, and so on.
Louisa is a lifelong learner, with an MS in Computer Science and BA in Busi‐
ness. She is a member of OWASP, CSA, ISACA, and ISC2. She has expertise
as an AWS, GCP, and Azure Solution Architect and trained/certified in
CISM, CCSK, CISSP, and CCSP. With her unique combination of technical
cloud expertise and business acumen, she builds relationships across silos in
highly matrixed organizations.

Chapter 39, “Protect Sensitive Data in Modern Applications”

Luis Arzu
Luis Arzu is currently the CISO at Urban One, Inc., the larg‐
est distributor of urban media content in the US. Key suc‐
cesses include improving security governance, reducing
security incidents, accelerating incident response, and
advancing critical systems security, scalability, availability,

and costs. In addition, he fostered a culture of security awareness by shaping
and delivering an enterprise cybersecurity awareness training program.

Luis merges a proactive approach with continual scanning of the industry
landscape to stay ahead of the curve in enterprise cybersecurity. His leader‐
ship and achievements at Urban One have been featured in industry media,
such as The Global Center for Cyber, NOPSEC, and Security Current.

Chapter 56, “Navigating the Waters of Vulnerability Management”

Contributors280

Lütfü Mert Ceylan
Lütfü Mert Ceylan is a security researcher who specializes in
the web application field of cybersecurity. He is an OWASP
Project Leader and owner of the OWASP Top 25 Parameters
project. He is also the OWASP Poland Chapter Board Mem‐
ber and the founder of TR Bug Hunters, Turkey’s active secu‐

rity researcher and bug hunter community. He is specifically focused on
server-side and client-side attacks. He is actively involved in the bug bounty
field and he has helped detect and exploit over 500 security vulnerabilities
over 75 web applications for companies such as Apple, Oracle, Adobe,
Mozilla, and more than 30 other prestigious companies and organizations.
He is currently pursuing a bachelor’s degree from the Warsaw University of
Technology. He can be reached via Twitter @lutfumertceylan, on his website
lutfumertceylan.com.tr and on LinkedIn https://www.linkedin.com/in/lutfu
mertceylan.

Chapter 57, “Safeguarding the Digital Nexus: “Top 25 Parameters to Vulnera‐
bility Frequency””

Chapter 58, “Unveiling Paths to Account Takeover: Web Cache to XSS
Exploitation”

Chapter 59, “Sometimes the Smallest Risks Can Cause the Greatest Destruc‐
tion”

Manasés Jesús
Manasés Jesús has been happily hacking since high school,
employing different programming languages, tech stacks, and
software development methodologies. He has architected and
implemented distributed systems, mobile and cloud native
applications, as well as led projects and delivered working

software to a range of international corporations in the IT, banking, and IoT
sectors. He enjoys learning, teaching, giving workshops, connecting with
communities, and helping developers discover their opportunities for inno‐
vation with APIs and ecosystems. He has trained fellow software engineers,
published scientific articles, spoken at international conferences, and has also
been featured in 97 Things Every Cloud Engineer Should Know.

Chapter 28, “Challenges and Considerations for Securing Serverless Applica‐
tions”

Chapter 95, “Top Five Hacking Methods for IoT Devices”

Chapter 96, “Securing IoT Applications”

Contributors 281

https://lutfumertceylan.com.tr
https://www.linkedin.com/in/lutfumertceylan
https://www.linkedin.com/in/lutfumertceylan

Manuel Walder
As a security engineer with a huge enthusiasm for the various
topics of application security, Manuel Walder supports devel‐
opment teams in developing secure software. He follows a
holistic approach, which includes perspectives from the
offensive, defensive, and technical as well as from the security

management complex, to achieve a sustainable defense against today’s cyber
threats. In addition, he helps operations teams run their applications
securely, implement attack mitigation measures, and respond quickly when
vulnerabilities arise.

Chapter 40, “Leverage Data-Flow Analysis in Your Security Practices”

Maria Nichole Schwenger
Maria Nichole Schwenger is a seasoned information security
executive. She leverages her deep expertise across cybersecur‐
ity, privacy and compliance, cloud modernization, and soft‐
ware development to spearhead transformative digital
journeys. Renowned for her leadership in integrating emerg‐

ing technologies like AI/GenAI, DevSecOps/SRE, Blockchain, IoT/Edge, and
cloud native optimization, she seamlessly delivers innovative business capa‐
bilities. The transformative results of her work demonstrate a substantial
increase in ROI, productivity gains, and enhanced business agility.

Chapter 41, “Embracing a Practical Privacy Paradigm Shift in App Develop‐
ment”

Mark S. Merkow
Mark S. Merkow, CISSP, CISM, CSSLP, works at Freeport-
McMoRan in Phoenix, Arizona, leading application security
architecture and engineering efforts in the office of the CISO.
Mark is a faculty member at the University of Denver where
he works instructing online courses in topics across the

information security spectrum, with a focus on secure software development.
He also works as an advisor to the University of Denver’s Information and
Computing Technology Curriculum Team for new course development and
changes to the curriculum. Mark has authored or coauthored 18 books on IT
and AppSec and is a contributing editor to 4 others.

Chapter 10, “AppSec Is a People Problem—Not a Technical One”

Contributors282

Matthew Coles
Matthew Coles is a product security architect and secure sys‐
tems engineering leader for connected devices and the eco‐
systems and processes that create, enable, and support them.
He is currently a Distinguished Member of Technical Staff in
the Product and Application Security team at Dell Technolo‐

gies and holds a CSSLP certification from ISC2. He coauthored Threat Mod‐
eling: A Practical Guide for Development Teams, is a member of the Threat
Modeling Manifesto group of authors and is active in security community
initiatives.

Chapter 69, “Learn to Threat Model”

Michael Bray
Michael Bray is a global award-winning cybersecurity profes‐
sional. He is the Chief Information Security Officer and
HIPAA Security Official for the Vancouver Clinic. Michael
actively participates in public/private sector GRC associa‐
tions, committees, and boards of directors.

Chapter 11, “Empowering Application Security Professionals Through
Cybersecurity Education”

Michael Freeman
Michael Freeman has over two decades of developing offensive and defen‐
sive capabilities for various government and Fortune 100 companies. He is
currently the Head of Threat Intelligence at Armis.

Chapter 76, “Advanced Threat Intelligence Capabilities for Enhanced Appli‐
cation Security Defense”

Michael Xin
Michael Xin is the Head of Product and Application Security
at FactSet, where he oversees a global team dedicated to
ensuring the security of FactSet products and applications.
Prior to joining FactSet, he held the position of Director of
Security Assessments and Risk Mitigation at McAfee. In that

role, he led a global team in identifying and addressing security vulnerabili‐
ties in McAfee products, as well as on-premises and public cloud infrastruc‐
ture, within specified timeframes to enhance their overall security landscape.

Contributors 283

Outside of work, Michael actively contributes as a leader in the OWASP San
Antonio chapter, where he helps educate others about security.

Chapter 12, “Why You Need a Practical Security Champions Program”

Chapter 89, “Automation, Automation, and Automation for AppSec”

Nathaniel Shere
Nathaniel Shere works as a security consultant specializing in
penetration testing and secure coding. He loves to teach oth‐
ers and dreams of a day when we will have a truly secure
internet. In his free time, he enjoys spending time with his
family, reading, and playing board games.

Chapter 29, “Using Offensive Security to Defend Your Application”

Neatsun Ziv
Neatsun Ziv is the CEO and cofounder of OX Security, the
first Active ASPM platform that integrates application secu‐
rity practices throughout the SDLC. Before OX Security, he
served as the Vice President of Cyber Security at Check Point,
responsible for leading all cyber initiatives. His team was

among the first to respond to SolarWinds and NotPetya, collaborating
closely with law enforcement agencies, including Interpol and Local CERT.
As a seasoned entrepreneur with extensive experience in cybersecurity, Neat‐
sun is a frequent speaker at global forums, including CPX. He served in the
Israeli Defense Forces Cyber Intelligence Unit, contributing his expertise to
national security efforts. Neatsun holds a Bachelor of Science degree with
honors from Israel’s Open University and an MBA, graduating magna cum
laude from the Technion.

Chapter 90, “Will Generative and LLM Solve a 20-Year-Old Problem in
Application Security?”

Nielet D’mello
Nielet D’mello is a security engineer at a leading observability
SaaS company where she focuses on secure design, imple‐
mentation, and deployment of products and infrastructures.
Formerly a software engineer, she likes to approach security
from a developer-centric lens.

Contributors284

She enjoys writing and public speaking and loves to share her learnings pub‐
licly. Outside of that, she mentors grad students on various career design and
growth topics.

Chapter 30, “Beyond “No”: The Modern Paradigm of Developer-Centric
Application Security”

Chapter 31, “Security Paved Roads”

Niels Tanis
Niels Tanis has a background in .NET development, pen test‐
ing, and security consultancy. He is Microsoft MVP and has
been involved in breaking, defending, and building secure
applications. He joined Veracode in 2015; currently he works
as a security researcher on a variety of languages and technol‐

ogies related to Veracode’s Binary Static Analysis service. He also is an inter‐
national speaker and loves to talk about software development, new
technologies, and, of course, application and software security. He is mar‐
ried, a father of two, and lives in a small village just outside Amersfoort, The
Netherlands.

Chapter 66, “Secure the Software Supply Chain Through Transparency”

Periklis Gkolias
Periklis Gkolias is a security engineer with more than 13
years of experience in the industry and in many aspects of
informatics, such as programming, DevOps, and technical
leadership. He is a technical blogger and has coauthored the
book Your First Year in Code. He is quite interested in exploit

development and in combining security with other informatics domains like
AI and Big Data.

Chapter 13, “The Human Firewall: Combat Enemies by Improving Your
Security-Oriented Culture”

Pragat Patel
Pragat Patel is a student at the University of Pennsylvania studying neuro‐
science and philosophy, with a passion for sparking change in health policy.
He aspires to work in healthcare, solving long-term issues in medicine. Pra‐
gat is currently working on projects in epidemiology and biostatistics, along‐
side a health tech startup he has founded.

Contributors 285

Chapter 48, “Rethinking Ethics in Application Security: Toward a Sustaina‐
ble Digital Future”

Raj Badhwar
Raj Badhwar has 28 years of experience working for large
firms where he held senior cybersecurity and IT leadership
roles, including CISO and CTO. Raj has the following certifi‐
cations: CISSP, CEH, OCP, and Finra Series 99. He has auth‐
ored four security books, coauthored 14 security patents, has

presented at various security conferences, and advises several boards on
cybersecurity strategy.

Chapter 49, “Modern WAF Deployment and Management Paradigms”

Rakesh Kulkarni
As a technology leader with 15 years of experience, Rakesh
Kulkarni has navigated the complexities of the tech industry
through leadership, strategy, and architecture roles in the
semiconductor, startups, retail, and healthcare sectors. He
has an engineering background in computer science and he

advocates the importance of quantum computing technology. Rakesh embra‐
ces the mantra that “change is the only constant; uncertainties lead to proba‐
bilities, which then lead to realities.” He is currently expanding his strategic
and entrepreneurial skills as an MBA student at CMU Tepper Business
School.

Chapter 42, “Quantum-Safe Encryption Algorithms”

Sandeep Kumar Singh
Sandeep Kumar Singh has over 18 years of extensive experi‐
ence involving the SDL, security automation, and develop‐
ment. Currently serving as a director, Sandeep oversees the
security assessment effort for FactSet’s applications and prod‐
ucts, ensuring robust security measures are in place to pro‐

tect the organization’s applications, products, and infrastructure. Before this
role, Sandeep spent 14 years at McAfee, where he successfully managed the
security team with a primary focus on implementing and enforcing the SDL
throughout the organization. Sandeep’s areas of expertise encompass secure
design, threat modeling, security automation, cloud security, the Product
Security Incident Response Team (PSIRT), SAST, DAST, SCA, and penetra‐
tion testing.

Contributors286

Chapter 12, “Why You Need a Practical Security Champions Program”

Chapter 32, “AppSec in the Cloud Era”

Sausan Yazji
Sausan Yazji is an executive advisor who aims to assist organ‐
izations and their C-level leaders realize their business value
through the adoption of emerging technologies, innovation
in the cloud, and utilization of AI/ML. Sausan has more than
25 years of experience in multiple industries. She led cross-

functional teams to build industry-specific solutions and to ensure that these
solutions meet the high bar for quality, performance, and security. Sausan
holds a PhD in Computer Engineering and is an Advisory Board member for
the MSIT program at Northwestern University.

Chapter 43, “Application Integration Security”

Sean Poris
Sean Poris has led information security functions including
product and application security, vulnerability management
operations, security engineering, cloud and container secu‐
rity, bug bounty, and a variety of other technical engineering
and IT roles. He’s been in security and IT leadership for years

at companies such as Yahoo, College Board, and IBM.

He’s passionate about providing the bedrock of security solutions that ensure
the protection of critical customer and company data at the enterprise scale.
The aspect of security he enjoys most is building solutions that guide the
delivery of resilient products and infrastructure.

At Yahoo and College Board, his teams equipped software development
groups with the critical tools, training, and processes to address information
security holistically throughout the product development lifecycle.

Sean currently serves on the Board of the Northern Virginia Chapter of
OWASP. In that capacity, he held the role of Global OWASP AppSec DC
Conference Co-Chair.

In his spare time, Sean loves riding his road bike, playing tennis, and listen‐
ing to great music, from classical to heavy metal and everything in between.

Chapter 61, “Bug Bounty—Shift Everywhere”

Contributors 287

Shawn Evans
Shawn Evans is an experienced cybersecurity professional
with more than 15 years of offensive security experience
across multiple industries with a focus on information secu‐
rity and a background in software development. Shawn has
authored a number of open tools, some of which are included

with various Linux distributions such as Ubuntu, Kali, Arch, and ParrotOS.
During the week, Shawn serves as the Head of Research at NopSec, a Cyber
Threat Exposure Management platform provider. There he leads NopSec’s
research and pen testing efforts, serving large enterprise companies.

Chapter 50, “Do You Need Manual Penetration Testing?”

Chapter 51, “Bash Your Head”

Sounil Yu
Sounil Yu is the creator of the Cyber Defense Matrix and the
DIE Triad, which are reshaping approaches to cybersecurity.
He’s a Board Member of the FAIR Institute, a visiting fellow
at GMU Scalia Law School’s National Security Institute, guest
lecturer at Carnegie Mellon, and advises many startups. Sou‐

nil is the cofounder and Chief AI Safety Officer at Knostic and previously
served as the CISO at JupiterOne, CISO-in-Residence at YL Ventures, and
Chief Security Scientist at Bank of America. Before Bank of America, he
helped improve information security at several Fortune 100 companies and
federal government agencies. Sounil has over 20 granted patents and was rec‐
ognized by multiple publications as a top CISO and one of the most influen‐
tial people in security. He is a recipient of the SANS Lifetime Achievement
Award and was inducted into the Cybersecurity Hall of Fame. He has an MS
in Electrical Engineering from Virginia Tech and a BS in Electrical Engineer‐
ing and a BA in Economics from Duke University.

Chapter 14, “Shifting Everywhere in Application Security”

Tanya Janca
Tanya Janca, also known as SheHacksPurple, is the best-
selling author of Alice and Bob Learn Application Security
(Wiley). She is also the Head of Education and Community at
Semgrep, sharing content and training that revolves around
teaching everyone to create secure software. Tanya has been

coding and working in IT for over 25 years, has won countless awards, and

Contributors288

https://shehackspurple.ca/
https://aliceandboblearn.com/

has been everywhere from public service arenas to tech giants, writing soft‐
ware, leading communities, founding companies and “securing all the
things.” She is an award-winning public speaker and active blogger and has
delivered hundreds of talks on six continents. She values diversity, inclusion,
and kindness, which shines through in her countless initiatives.

Tanya is an advisor to Nord VPN and Aiya Corp; on the faculty at IANs
Research; and founder of We Hack Purple, OWASP DevSlop, #CyberMen‐
toringMonday, WoSEC.

Chapter 52, “Exploring Application Security Through Static Analysis”

Travis Felder
Travis Felder is a forward-thinking cybersecurity consultant
skilled in information security and risk management, with a
particular focus on leveraging AI and ML to address security
challenges. His expertise spans cloud services, containers,
and DevOps, enabling him to drive the integration of

advanced security measures from the outset of development processes.

Chapter 67, “Unlock the Secrets to Open Source Software Security”

Tyler Young
As Chief Information Security Officer at BigID, Tyler Young
is responsible for the development and implementation of
BigID’s security strategy (Cyber and Product Security), as
well as developing security use cases for BigID’s products. He
also serves as a board member on CDO Magazine, Glilot

Capital, GTM Capital, and Merlin Capital’s Security Advisory Boards, as well
as an advisor for several early-stage security startups. Before joining BigID,
Tyler served as the Head of Security at Relativity, building out Relativity’s
security program, Calder7. He also held positions as Global Forensics Man‐
ager, Digital Forensics Incident Response consultant, as well as leading inter‐
nal incident response investigations. He gained a variety of cybersecurity and
strategy experience from BigID, Relativity, Zurich Insurance, RSM, Arete IR,
and a government agency.

Chapter 53, “Introduction to CI/CD Pipelines and Associated Risks”

Contributors 289

https://nordvpn.com/
https://wehackpurple.com/
https://www.youtube.com/owasp_devslop
https://twitter.com/search?q=%23cybermentoringmonday&src=typed_query&f=live
https://twitter.com/search?q=%23cybermentoringmonday&src=typed_query&f=live
https://www.womenofsecurity.com/

Vinay Venkatesh
Vinay Venkatesh has spent about eight years working on
product security/AppSec for products ranging from building
automation, and home automation to AI and web-based
offerings. Before that, he spent 12 years in software develop‐
ment covering everything from programming, testing, soft‐

ware design, and architecture.

Chapter 72, “Attack Models in SSDLC”

Viraj Gandhi
Viraj Gandhi is a results-oriented, data-driven, hands-on
security professional. She successfully led “shift-to-left” trans‐
formations of security programs to solve challenges in open
source software security, application security, cloud security,
and privacy domains. Her strengths include strategic plan‐

ning, building high-performance teams, analyzing security trends, reviewing
secure architecture design, performing code reviews, and penetration testing.

Chapter 68, “Leverage SBOMs to Enhance Your SSDLC”

Yaniv Vardi
Yaniv Vardi is Claroty’s Chief Executive Officer. Yaniv is a
highly accomplished entrepreneur with more than two
decades of executive leadership experience in the cybersecur‐
ity and enterprise solution industry. He has established a
long-standing and impressive track record of developing and

executing global business strategies and directing worldwide growth.

Chapter 97, “Application Security in Cyber–Physical Systems”

Yashvier Kosaraju
Yashvier Kosaraju is the CISO at Sendbird where he oversees
Security, Compliance & IT. He has worked with Twilio, Box,
and iSEC Partners in the past. He has been working in secu‐
rity for more than a decade. Yashvier has worked in a variety
of roles, ranging from consulting to enterprise security teams.

He is a big proponent of security through automation and defense in-depth
solutions.

Chapter 33, “Code Provenance for DevSecOps”

Contributors290

Yasir Ali
Yasir Ali is the founder and CEO of Polymer Data Loss Pre‐
vention for SaaS apps and AI. Before founding Polymer, Yasir
consulted with large financial institutions to solve problems
related to data, technology, and regulations. Prior to that, he
worked as a bond trader at Bear Stearns, Barclays, and vari‐

ous hedge funds. Yasir is passionate about risk management, data security,
and compliance. He regularly writes and speaks about data governance, ROI
of security investments, and how organizations can reduce the risk of inad‐
vertent or malicious leakage of PII, PHI, and other sensitive data.

Chapter 91, “Understand the Risks of Using AI in Application Development”

Contributors 291

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

_6
x9

	Cover
	Copyright
	Table of Contents
	Preface
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Program & Practice
	Chapter 1. Secure Code for Tomorrow’s Technology
	Alyssa Columbus

	Chapter 2. Pragmatic Advice for Building an Application Security Program
	Andres Andreu

	Chapter 3. AppSec Must Lead
	Brook S.E. Schoenfield

	Chapter 4. Solving Problems for Application Security
	Caroline Wong

	Chapter 5. Securing Your Enterprise Applications
	Chadi Saliby

	Chapter 6. Developers as Partners in Application Security Strategy
	Christian Ghigliotty

	Chapter 7. Be an Awesome Sidekick
	Daniel Ting
	It’s About Them, Not You.
	Balanced Priorities (and Constraints)
	Easier Is Easier

	Chapter 8. Understanding the True Boundaries of Modern Applications
	Erkang Zheng
	Components
	Infrastructure
	Ownership
	The Foundation of Modern Cybersecurity

	Chapter 9. Common Best Practices in Application Security
	Laxmidhar V. Gaopande
	Code Scanning and Reviews
	Leverage AI for Better Detection and Automation
	Build a Bug Bounty Program

	Chapter 10. AppSec Is a People Problem—Not a Technical One
	Mark S. Merkow

	Chapter 11. Empowering Application Security Professionals Through Cybersecurity Education
	Michael Bray

	Chapter 12. Why You Need a Practical Security Champions Program
	Michael Xin and Sandeep Kumar Singh

	Chapter 13. The Human Firewall: Combat Enemies by Improving Your Security-Oriented Culture
	Periklis Gkolias
	Recognizing External Threats
	Recognizing Insider Threats
	Empowering Employees Through Education
	Promoting Open Communication
	Engaging Leadership
	Conducting Regular Security Drills
	Rewarding and Recognizing Secure Behavior

	Chapter 14. Shifting Everywhere in Application Security
	Sounil Yu
	The Changing Landscape of Application Security
	The Traditional Shift Left Paradigm
	The Role of Infrastructure and Automation
	Re-envisioning Application Security

	Chapter 15. Beyond Barriers: Navigating the Path to a Successful AppSec Program
	Yabing Wang
	What Are the Core Components of the AppSec Program?
	What Are the Success Factors of the AppSec Program?

	Part II. Secure SDLC
	Chapter 16. Building an Application Security Preparation Mindset
	Andrew King
	Mindset: How Can You Prepare?
	Logging and Monitoring: Do You See What Happened?
	Scope: Can You Do It All?
	Best Practices: Can You Borrow from Others’ Experience?

	Chapter 17. How to Assess Security Mindset in Application Design
	Anuj Parekh

	Chapter 18. Getting Your Application Ready for the Enterprise
	Ayman Elsawah
	Enterprise Single Sign-On

	Chapter 19. Reductio Ad Applicationem Securitatis
	Darryle Merlette
	Read
	Write
	Change

	Chapter 20. Automating the Risk Calculation of Modern Applications
	Erkang Zheng
	Design and Business Context
	Technology Implementation and Operations
	Maturity of Team and Process

	Chapter 21. A Coordinated Approach to a Successful DevSecOps Program
	Han Lievens

	Chapter 22. What Makes Someone a Developer?
	Helen Umberger

	Chapter 23. Total AppSec
	Hussain Syed

	Chapter 24. You’re More Than Your Job
	Izar Tarandach

	Chapter 25. TAP Into the Potential of a Great SSDLC Program with Automation
	Jyothi Charyulu
	Think
	Act
	Persevere

	Chapter 26. Vulnerability Researcher to Software Developer: The Other Side of the Coin
	Larry W. Cashdollar

	Chapter 27. Strategies for Adding Security Rituals to an Existing SDLC
	Laura Bell Main
	You Can’t Change What You Don’t Understand
	Start with Experiments, Not Solutions
	Create a Rollout Plan with the Engineering Team
	Collaboration Is the Key

	Chapter 28. Challenges and Considerations for Securing Serverless Applications
	Manasés Jesús

	Chapter 29. Using Offensive Security to Defend Your Application
	Nathaniel Shere
	Helpful Response Messages
	API Endpoints
	Administrative Features

	Chapter 30. Beyond “No”: The Modern Paradigm of Developer-Centric Application Security
	Nielet D’mello

	Chapter 31. Security Paved Roads
	Nielet D’mello
	What Are Security Paved Roads?
	How to Decide What Security Paved Roads Are Needed?
	Adoption and Effectiveness
	Product-Centric Approach and Feedback Loops
	Conclusion

	Chapter 32. AppSec in the Cloud Era
	Sandeep Kumar Singh
	Learn Shared Responsibility Model
	Secure Configurations
	Continuous Logging and Monitoring
	Data Protection in Multitenant Environments
	Adopt Cloud Security Services
	Conclusion

	Chapter 33. Code Provenance for DevSecOps
	Yashvier Kosaraju

	Part III. Data Security & Privacy
	Chapter 34. Will Passwordless Authentication Save Your Application?
	Aldo Salas
	Passwordless and WebAuthn
	Passwordless Pros and Cons
	Passwordless Vulnerabilities
	Other Recommendations

	Chapter 35. Securing Your Databases: The Importance of Proper Access Controls and Audits
	Dave Stokes

	Chapter 36. DataSecOps: Security in Data Products
	Diogo Miyake

	Chapter 37. Data Security Code and Tests
	Diogo Miyake

	Chapter 38. Data Security Starts with Good Governance
	Lauren Maffeo

	Chapter 39. Protect Sensitive Data in Modern Applications
	Louisa Wang
	Learn Key Management
	Security Needs During the Data Life Cycle Vary
	Design and Implement a Combination of Technical and Administrative Controls
	Insights and Security Recommendations

	Chapter 40. Leverage Data-Flow Analysis in Your Security Practices
	Manuel Walder

	Chapter 41. Embracing a Practical Privacy Paradigm Shift in App Development
	Maria Nichole Schwenger
	The Paradox of Privacy and Innovation in Data Security
	Reconceptualizing Data Ownership
	Leveraging Privacy-Enhancing Technologies
	Transparency and Informed Consent
	Data Minimization and Purpose Limitation
	Exploring Decentralized Data Storage
	Data Privacy as a Competitive Advantage
	In a Nutshell

	Chapter 42. Quantum-Safe Encryption Algorithms
	Rakesh Kulkarni

	Chapter 43. Application Integration Security
	Sausan Yazji

	Part IV. Code Scanning & Testing
	Chapter 44. Modern Approach to Software Composition Analysis: Call Graph and Runtime SCA
	Aruneesh Salhotra
	Traditional Approach to SCA
	Modern Approach to Manage Open Source Risks
	Runtime SCA
	Summary

	Chapter 45. Application Security Testing
	David Lindner
	Static Application Security Testing
	Dynamic Application Security Testing
	Interactive Application Security Testing

	Chapter 46. WAF and RASP
	David Lindner
	Web Application Firewalls
	Runtime Application Self-Protection

	Chapter 47. Zero Trust Software Architecture
	Jacqueline Pitter

	Chapter 48. Rethinking Ethics in Application Security: Toward a Sustainable Digital Future
	Pragat Patel

	Chapter 49. Modern WAF Deployment and Management Paradigms
	Raj Badhwar
	On Premises WAF Infrastructure for Hybrid Cloud
	Cloud Native WAF Infrastructure for the Public Cloud
	Managed WAF Services

	Chapter 50. Do You Need Manual Penetration Testing?
	Shawn Evans

	Chapter 51. Bash Your Head
	Shawn Evans

	Chapter 52. Exploring Application Security Through Static Analysis
	Tanya Janca

	Chapter 53. Introduction to CI/CD Pipelines and Associated Risks
	Tyler Young

	Part V. Vulnerability Management
	Chapter 54. Demystifying Bug Bounty Programs
	Aldo Salas
	Preparing the Test Environment
	Testing in Production
	Recommendations

	Chapter 55. EPSS: A Modern Approach to Vulnerability Management
	Aruneesh Salhotra
	Traditional Approaches Are Dated
	The World of EPSS
	Key Aspects of EPSS

	Chapter 56. Navigating the Waters of Vulnerability Management
	Luis Arzu
	Understanding the Dynamic Landscape
	Prioritization: The Art of Decision Making
	Building Collaborative Relationships
	Leveraging Robust Vulnerability Management Solutions
	Conclusion

	Chapter 57. Safeguarding the Digital Nexus: “Top 25 Parameters to Vulnerability Frequency”
	Lütfü Mert Ceylan
	Exploring Vulnerability Categories: A Profound Expedition to Parameter Frequencies
	Empowering with Knowledge: The Path Forward

	Chapter 58. Unveiling Paths to Account Takeover: Web Cache to XSS Exploitation
	Lütfü Mert Ceylan
	Discovery of Vulnerability
	But What Is Reflected XSS Vulnerability?
	Amplification Through Web Cache Exploitation
	The Genesis of Account Takeover
	Exploiting the Dynamics of Web Cache Poisoning
	Mitigation and Beyond

	Chapter 59. Sometimes the Smallest Risks Can Cause the Greatest Destruction
	Lütfü Mert Ceylan

	Chapter 60. Effective Vulnerability Remediation Using EPSS
	Reet Kaur

	Chapter 61. Bug Bounty—Shift Everywhere
	Sean Poris

	Part VI. Software Supply Chain
	Chapter 62. Integrating Security into Open Source Dependencies
	Alyssa Columbus
	Selecting Secure Open Source Libraries
	Auditing and Hardening Open Source Dependencies
	Staying Current with Vulnerability Management
	Making Open Source Security a Priority

	Chapter 63. Supplier Relationship Management to Reduce Software Supply Chain Security Risk
	Cassie Crossley

	Chapter 64. Fortifying Open Source AI/ML Libraries: Garden of Security in Software Supply Chain
	Chloé Messdaghi
	Dependency Scanning
	CI/CD for AI and ML
	Software Bill of Materials
	Auditing and Verification
	Community Collaboration

	Chapter 65. SBOM: Transparent, Sustainable Compliance
	Karen Walsh
	Building Transparency
	Designing Sustainably
	Developing Compliantly
	The Future of Secure, Compliant Application Ecosystem

	Chapter 66. Secure the Software Supply Chain Through Transparency
	Niels Tanis

	Chapter 67. Unlock the Secrets to Open Source Software Security
	Travis Felder
	Invisible Open Source Software
	Establishing an OSS Program
	Open Source Software Security Pro Tips
	Common Open Source Software Security Mistakes to Avoid

	Chapter 68. Leverage SBOMs to Enhance Your SSDLC
	Viraj Gandhi

	Part VII. Threat Modeling
	Chapter 69. Learn to Threat Model
	Adam Shostack, Matthew Coles, and Izar Tarandach

	Chapter 70. Understanding OWASP Insecure Design and Unmasking Toxic Combinations
	Idan Plotnik
	Understand the Implications of Insecure Design
	Unmask the “Toxic Combinations” in Application Security

	Chapter 71. The Right Way to Threat Model
	Josh Brown

	Chapter 72. Attack Models in SSDLC
	Vinay Venkatesh

	Part VIII. Threat Intelligence & Incident Response
	Chapter 73. In Denial of Your Services
	Allen West

	Chapter 74. Sifting for Botnets
	Allen West

	Chapter 75. Incident Response for Credential Stuffing Attacks
	Fayyaz Rajpari

	Chapter 76. Advanced Threat Intelligence Capabilities for Enhanced Application Security Defense
	Michael Freeman

	Part IX. Mobile Security
	Chapter 77. Mobile Security: Domain and Best Practices
	Aruneesh Salhotra
	Fundamentals
	Supercharging Your CI/CD Pipeline with Security
	Navigating Privacy Concerns in Mobile Application Development

	Chapter 78. Mobile Application Security Using Containerization
	Reet Kaur

	Part X. API Security
	Chapter 79. API Security: JWE Encryption for Native Data Protection
	Andres Andreu

	Chapter 80. APIs Are Windows to the Soul
	Brook S.E. Schoenfield
	Risks
	Defenses
	Access Management
	Input Validation

	Chapter 81. API Security: The Bedrock of Modern Applications
	Charan Akiri

	Chapter 82. API Security Primer: Visibility
	Chenxi Wang
	Visibility and Inventory

	Chapter 83. API Security Primer: Risk Assessment, Monitoring, and Detection
	Chenxi Wang

	Chapter 84. API Security Primer: Control and Management
	Chenxi Wang

	Part XI. AI Security & Automation
	Chapter 85. LLMs Revolutionizing Application Security: Unleashing the Power of AI
	Alexander James Wold
	LLMs and Static Application Security Testing
	LLMs and Predictive Threat Hunting
	Unique Advancement: LLMs and Intelligent Security Patching
	Challenges and Considerations
	Conclusion

	Chapter 86. Mitigating Bias and Unfairness in AI-Based Applications
	Angelica Lo Duca
	Collaborate with Domain Experts
	Improve Data Quality
	Perform User Testing

	Chapter 87. Secure Development with Generative AI
	Heather Hinton

	Chapter 88. Managing the Risks of ChatGPT Integration
	Josh Brown

	Chapter 89. Automation, Automation, and Automation for AppSec
	Michael Xin

	Chapter 90. Will Generative and LLM Solve a 20-Year-Old Problem in Application Security?
	Neatsun Ziv

	Chapter 91. Understand the Risks of Using AI in Application Development
	Yasir Ali
	Main Risk Categories and Recent Incidents
	Major Threat Vectors from LLM
	Key Risks in the SDLC
	Legal Concerns
	LLM Concerns and Software Supply Chain Impact
	Increased Supply Chain Risks
	Remediative Controls

	Part XII. IoT & Embedded System Security
	Chapter 92. Secure Code for Embedded Systems
	Jason Sinchak
	Coding
	Third-Party Code

	Chapter 93. Platform Security for Embedded Systems
	Jason Sinchak
	Maintaining Data Security
	Secure Firmware Updates
	Attack Surface Reduction
	Secure Communications

	Chapter 94. Application Identity for Embedded Systems
	Jason Sinchak

	Chapter 95. Top Five Hacking Methods for IoT Devices
	Manasés Jesús
	The Trojan Horse
	The Man-in-the-Middle
	The Zero-Day Exploit
	The Brute Force Attack
	The Denial-of-Service (DoS) Attack

	Chapter 96. Securing IoT Applications
	Manasés Jesús

	Chapter 97. Application Security in Cyber–Physical Systems
	Yaniv Vardi

	About the Editors
	Reet Kaur
	Yabing Wang

	Contributors
	Adam Shostack
	Aldo Salas
	Alexander James Wold
	Allen West
	Alyssa Columbus
	Andres Andreu
	Andrew King
	Angelica Lo Duca
	Anuj Parekh
	Aruneesh Salhotra
	Ayman Elsawah
	Brook S.E. Schoenfield
	Caroline Wong
	Cassie Crossley
	Chadi Saliby
	Charan Akiri
	Chenxi Wang
	Chloé Messdaghi
	Christian Ghigliotty
	Daniel Ting
	Darryle Merlette
	David Lindner
	David Stokes
	Diogo Miyake
	Erkang Zheng
	Fayyaz Rajpari
	Han Lievens
	Heather Hinton
	Helen Umberger
	Hussain Syed
	Idan Plotnik
	Izar Tarandach
	Jacqueline Pitter
	Jason Sinchak
	Josh Brown
	Jyothi Charyulu
	Karen Walsh
	Larry W. Cashdollar
	Laura Bell Main
	Lauren Maffeo
	Laxmidhar V. Gaopande
	Louisa Wang
	Luis Arzu
	Lütfü Mert Ceylan
	Manasés Jesús
	Manuel Walder
	Maria Nichole Schwenger
	Mark S. Merkow
	Matthew Coles
	Michael Bray
	Michael Freeman
	Michael Xin
	Nathaniel Shere
	Neatsun Ziv
	Nielet D’mello
	Niels Tanis
	Periklis Gkolias
	Pragat Patel
	Raj Badhwar
	Rakesh Kulkarni
	Sandeep Kumar Singh
	Sausan Yazji
	Sean Poris
	Shawn Evans
	Sounil Yu
	Tanya Janca
	Travis Felder
	Tyler Young
	Vinay Venkatesh
	Viraj Gandhi
	Yaniv Vardi
	Yashvier Kosaraju
	Yasir Ali

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

