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      Foreword

      Systems Engineering is an often-misunderstood discipline that integrates various aspects of engineering to successfully develop Systems. Lack of knowledge creates and feeds myths. In fact, it is not so easy to understand what Systems Engineering is. A Mechanical Engineer can show mechanical parts, an Electrical Engineer can show electrical components, and a Software Engineer can show source code and running software to demonstrate their discipline. If Systems Engineers show the System to demonstrate their discipline, the other engineers would complain that all the System parts were developed by them. Often, the discipline of Systems Engineering is noticed primarily when it is not present. So, there are a lot of good breeding grounds for myths.

      Fortunately, Jon Holt is a brilliant writer who explains Systems Engineering in a vivid, concise, and clear way. In this book, he dispels these myths and clarifies the concepts and principles of Systems Engineering in a simple and engaging way. He covers the essential topics of Systems Engineering and emphasizes the importance of model-based Systems Engineering, which is the most effective and efficient way to realize Systems Engineering. However, this book is not a SysML textbook; it focuses on the underlying ideas and methods of Systems Engineering rather than the notation and syntax of a specific modeling language. A modeling language is only a small building block of an MBSE environment. Besides other topics, Jon covers life cycles, Systems Engineering techniques, and Systems Engineering processes, especially the management and deployment of Systems Engineering into the organization.

      This book is suitable for anyone who wants to learn more about Systems Engineering, whether they are beginners or experts. Even experienced Systems Engineers can benefit from revisiting the basic concepts and refreshing their knowledge. By reading this book, you will gain a deeper understanding of Systems Engineering and how it can help you create better Systems.

      Tim Weilkiens

       MBSE Consultant, Trainer, and Executive Board Member at oose.

       Founder of MBSE4U
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    Preface

    Systems Engineering allows us to develop successful systems whilst managing complexity and brings together all aspect of Systems Engineering in a concise, clear and consistent way.

    This book is a comprehensive introduction for those who are new to Systems Engineering, as well as experienced practitioners. Complete with examples and self-assessment questions, this easy-to-follow guide will teach you all the concepts and techniques for modern Systems Engineering.

    We provide an overview of Systems Engineering and describe why we may need such an approach in our complex world. We will then cover the essential aspects of Model-Based Systems Engineering, systems, life cycles, and processes, along with techniques, to render Systems Engineering successfully.

    By the end of this book, you will be in a position to start applying a Systems Engineering approach in your organization.

    Who this book is for

    This book is aimed at Systems Engineers, Systems Managers, Systems Modelers, and anyone with an interest in Systems Engineering or modeling.

    The book is suitable for anyone, from newcomers to more experienced Systems Engineers.

    What this book covers

    Chapter 1, Introduction to Systems Engineering, this chapter provides a brief history of Systems Engineering and what differentiates it from other disciplines of engineering. The real-world need for Systems Engineering is explored by considering the increased complexity of today’s systems, the need for effective and efficient communication, and the need for a clear context-based understanding of different stakeholders’ views of our systems.

    Chapter 2, Model-Based Systems Engineering, this chapter introduces the most effective and efficient way to realise Systems Engineering in the form of Model-based Systems Engineering (MBSE). The System and its model are discussed, along with the importance of a framework that provides the blueprint for the model and the various visualisation techniques, such as SysML. This is then expanded to include tools and best practice to ensure that the model is as effective as possible.

    Chapter 3, Systems and Interfaces, this chapter describes exactly what we mean by a System and the different types of System that exist, including Systems of Systems. We also look into the structure of Systems and their System elements: subsystems, assemblies, and components are discussed along with how they are arranged in hierarchies. The importance of understanding the relationships between these System elements is explained as well as how this impacts on the System behaviour. Behavioural concepts such as states, modes and interactions are then defined. The key concept of the interfaces that connect a System together and to other Systems is explained and the requirements for such interfaces are defined.

    Chapter 4, Life Cycles, this chapter introduces the concept of life cycles and the evolution of a System. Different types of life cycle are introduced along with the importance of the potentially complex relationships between them. The basic construct of a life cycle, the stage, is introduced and an example System life cycle based on best practice is defined. The behaviour of life cycles is then described by considering life cycle models and some of the different types of execution of models. The international best practice model of ISO 15288 and its processes are used as a reference for these life cycle stages.

    Chapter 5, Systems Engineering Processes, this chapter introduces the concepts of processes and their related elements, such as activities, artefacts, stakeholders, and resources, and the four different categorisations of processes. We also describe each of these four categories and their associated processes. We emphasise the importance of effective processes that define the overall approach to Systems Engineering. The international best practice model of ISO 15288 and its processes are used as a reference for these processes.

    Chapter 6, Needs and Requirements, the importance of needs is introduced along with different types, specifically requirements. The whole are a of stakeholder needs identification and analysis is described along with the views necessary to understand the different aspects of needs. Describing needs using text is introduced and then how to define contexts that may be used for the basis of use cases, followed by how these use cases may be validated by describing scenarios. There is then a discussion of how needs fit into the Systems life cycle and which processes are relevant and how to comply with them.

    Chapter 7, Modeling the Design, this chapter discusses how solutions may be defined by developing effective designs. Various levels of abstraction of design are discussed, such as architectural design and detailed design. Also, different aspects of design, such as logical, functional, and physical designs, are introduced and the relationships between them are defined. There is then a discussion of how design fits into the Systems life cycle and which processes are relevant and how to comply with them.

    Chapter 8, Modeling Verification and Validation, this chapter introduces how the system may be demonstrated to be fit for purpose by introducing the concepts of verification (the system works) and validation (the system does what it is supposed to do). We describe a number of techniques that show how verification and validation may be applied at different levels of abstraction of the system. There is then a discussion of how verification and validation fit into the systems life cycle and which processes are relevant and how to comply with them.

    Chapter 9, Methodologies, this chapter describes some of the most widely-used methodologies for Systems Engineering that are used in modern industry. Some of these use specific techniques whilst others are variations on standard life-cycle model. Each is described at a high level and examples given, along with a summary of the methodology’s effective use. There is then a discussion of how methodologies fit into the systems life cycle and which processes are relevant and how to comply with them.

    Chapter 10, Systems Engineering Management, this chapter provides an overview of some of the key management processes and associated techniques that need to be considered and how they can be implemented, as well as the relationship between the management techniques and the technical techniques. 

    Chapter 11, Deploying MBSE, this chapter discusses the all-important issue of how to deploy MBSE in a real organization. It introduces the Trinity approach to MBSE deployment, which covers three main areas: the reason why MBSE is needed, the current and target MBSE capability, and the current target MBSE evolution.

    Chapter 12, The Art of Modeling, this chapter takes a departure from the previous structure of the book by providing some insights, hints, and tips on how to apply MBSE effectively. The contents of this chapter is based solely on the author’s personal experiences of working in the field of MBSE for the last 30+ years. As such, the information presented here is often anecdotal and based on empirical evidence and should be taken in the form of general advice, rather than being carved in stone.

    Chapter 13, Best Practices, this short chapter provides a set of information that can be used by readers to continue their Systems Engineering in their own organizations. This includes modern standards and other best-practice sources such as guidelines and also a list of organizations who actively promote Systems Engineering and provide valuable resources.

    To get the most out of this book

    This book assumes no prior knowledge of Systems Engineering or Modeling and, therefore, is suitable for beginners in the field.

    Download the color images

    We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/ScG9b.

    Conventions used

    There are a number of text conventions used throughout this book.

    Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “A block is represented graphically by a rectangle with the word «block» in it.”

    Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: “Chassis, Body, Drivetrain, and Interior are all instances of Subsystem from the Ontology”

    
      Warnings or important notes appear like this.

    

    
      Tips and tricks appear like this.

    

    Get in touch

    Feedback from our readers is always welcome.

    General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

    Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

    Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

    If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

  

  
    Share your thoughts

    Once you’ve read Systems Engineering Demystified, Second Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

    Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.
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    Section I

    Introduction to Systems Engineering

    In this section, we will understand what Systems Engineering is and why there is a growing need for such an approach with today’s increasingly complex systems.

    This section has the following chapters:

    
      	Chapter 1, Introduction to Systems Engineering

      	Chapter 2, Model-Based Systems Engineering

    

  


  
    1

    Introduction to Systems Engineering

    This chapter focuses on the background of Systems Engineering, considering the history of the subject and why it is needed. This chapter will also provide an understanding of the main concepts associated with Systems Engineering and the terminology that will be adopted throughout this book, thus aiding our understanding of the topic as we progress. To do this, we will look at the following topics:

    
      	A brief history of Systems Engineering

      	Defining systems engineering

      	The need for systems engineering

    

    A brief history of Systems Engineering

    It may be argued that Systems Engineering has been employed ever since mankind started building and developing complex systems. It could also be said that the pyramids in ancient Egypt are examples of complex systems, along with simple stone structures, such as henges, which may actually form part of a larger astrological system. Furthermore, mankind has observed complex systems such as the Solar System since the ancient Greeks first observed the motion of the planets and created the model of the geocentric universe.

    In more recent times, the term Systems Engineering may be traced back to the early part of the 20th century in Bell Laboratories in the USA (Fagen, 1978). Examples of Systems Engineering may be observed in the Second World War, and the first attempt to teach Systems Engineering is claimed to have been in 1950 at MIT (Hall, 1962).

    The 1960s saw the formulation of the field of study known as systems theory, which was first postulated by Ludwig von Bertalanffy (Bertalanffy, 1968) as “general systems theory.”

    The main tenet of systems theory is that it is a conceptual framework based on the principle that the component parts of a system can best be understood in the context of the relationships with each other and with other systems, rather than in isolation (Wilkinson, 2011). This is essential for all Systems Engineering as it means that elements in a System, or the systems themselves, are never considered by themselves but in relation to other elements or systems.

    As systems became more complex, the need for a new approach to developing systems became more prevalent. Throughout the latter part of the 20th century, this need grew until it reached the point, in 1990, at which the National Council on Systems Engineering (NCOSE) was founded in the USA. Since then, this organization has evolved into the International Council on Systems Engineering (INCOSE), founded in 1995, which is the world’s foremost authority on Systems Engineering and has over 70 chapters throughout the world.

    Today, as the Complexity of the world that we live in and the systems that are being developed are increasing at an ever-expanding rate, there is an increased need for approaches that are rigorous and robust and can cope with these high levels of Complexity. Systems Engineering is such an approach.

    Defining systems engineering

    When considering Systems Engineering as a topic, it is important to understand exactly what is meant by the key terms that are being used. One aspect of all engineering (and all other professions, for that matter) that will emerge from this book very quickly is that there is seldom a single, definitive definition for any term. This creates a potential problem as communication, as will be discussed later in this chapter, is key to successful Systems Engineering.

    In order to address this potential problem, this chapter will introduce, discuss, and define specific concepts and their associated terminology that will be used throughout the book. This will enable a Domain-Specific Language to be built up, which will then be used consistently throughout this book. Wherever possible and appropriate, the terminology adopted will be based on international best practices, including standards such as ISO 15288 (ISO, 2015), to ensure the provenance of the information presented here.

    Defining a System

    The first concept that will be discussed is that of a System. A System will be defined in different ways by different people, depending on the nature of the System. So, first of all, some types of Systems will be identified to illustrate some of the typical types of Systems that may be encountered in Systems Engineering.

    There are many different classifications, or taxonomies, of Systems and one of the more widely accepted classifications is the one defined by Peter Checkland (Checkland, 1999), which is illustrated in the following diagram:

    [image: Figure 1.1 – Checkland's five types of system ]
    Figure 1.1: Checkland’s five types of System

    The diagram in Figure 1.1 shows Checkland’s five types of generic Systems, which are as follows:

    
      	Natural Systems, which represent open Systems whose characteristics are beyond the control of humans. Such Systems include weather systems, nature, the environment, time, and so on.

      	Designed Physical Systems, which represent what most people would immediately think of when considering a System, such as smartphones, tablets, helicopters, cars, trains, planes, spaceships, boats, TVs, cameras, bridges, computer games, satellites, and even domestic appliances. The list is almost endless. The Systems will typically consist of physical artifacts that represent the real-world manifestation of the System.

      	Designed Abstract Systems, which represent Systems that have no physical artifacts but that are used by people to understand or explain an idea or concept. Examples of such Systems include models, equations, thought experiments, and so on.

      	Human Activity Systems, which are people-based Systems that can be seen or observed in the real world. These Systems will typically consist of different sets of people interacting to achieve a common goal or purpose. Examples of such Systems include a political system, social groups, people-based services, and so on.

      	Transcendental Systems, which are Systems that go beyond our current understanding. Examples of such systems include deities, unknown problems, and Numberwang.

    

    This is a good set of classifications, which we will use as a reference in this book. These classifications are a good way to think about different types of Systems, but the important point to understand here is that we can apply Systems Engineering to all five of these different categories of Systems.

    Also, it should be kept in mind that it is possible to have systems that actually fit into more than one of these categories. Imagine, for example, a transport system that would have to take into account vehicles (Designed Physical Systems), operating models (Designed Abstract Systems), the environment (a Natural System), and a governing political system (a Human Activity System). In real life, the Complexity of Systems is such that it is typical, rather than unusual, to encounter examples of these Systems that can fit into multiple categories.

    Characteristics of a System

    The five different broad types of Systems have been introduced, but there is also a common set of characteristics that may be associated with all of these types of systems. These characteristics allow the Systems to be understood and developed. Let’s explore these in the following sections.

    System elements – characterizing System structure

    Any system will have its own natural structure and may be thought of as a set of interacting System Elements, as shown in the following diagram:

    [image: Figure 1.2 – Basic structure of a system – system elements ]
    Figure 1.2: Basic structure of a System – System Elements

    The diagram in Figure 1.2 shows that a System is made up of a set of system elements and that there are two types of Systems: a System of Interest and an Enabling System. A System of Interest refers to a System that is under development, whereas an Enabling System refers to any System that has an interest in, or interacts with, a System of Interest.

    One point to note here is that the structure of the System is actually more complex than this, as a System Element itself may be broken down into lower-level System Elements, which will lead to a System hierarchy of several levels being identified for a specific System. For the purposes of this initial discussion, the number of levels will be kept low in order to keep the explanations simple. Later in this book, when Systems are discussed in more detail, examples of hierarchies that span multiple levels will be considered.

    The next key point for discussion here is that System Elements interact with other System Elements. This is a key concept in understanding true Systems and applying Systems Engineering. When considering any System, or System Element, it is important to understand that they will interact with other System Elements, rather than existing in isolation. In Systems Engineering, everything is connected to something else and so understanding the relationships between System Elements, which form the basis of the interactions between them, is just as important as understanding the System Elements themselves.

    The interactions between System Elements also allow interfaces to be identified and defined between them. Understanding interfaces between System Elements is crucial to be able to specify and define all types of Systems. As part of understanding interfaces, it is also necessary to understand the information or the material (anything that is not information) that flows across the interfaces.

    System structures and interfaces will be discussed in far more detail in Chapter 3, Systems and Interfaces.

    Stakeholders – characterizing who or what has an interest in the system

    One of the key aspects of a System that it is essential to understand as part of any Systems Engineering endeavor is the Stakeholders that are associated with the System, as shown in the following diagram:

    [image: Figure 1.3 – Defining who or what has an interest in the system – stakeholders ]
    Figure 1.3: Defining who or what has an interest in the System – Stakeholders

    The diagram in Figure 1.3 shows that a Stakeholder has an interest in the System. Understanding Stakeholders is key to successful Systems Engineering, and the definition of a Stakeholder is the role of any person, organization, or thing that has an interest in the System.

    There are a number of subtleties associated with understanding Stakeholders:

    
      	When considering Stakeholders, it is the role of the Stakeholder that is of interest, not the name of the person, organization, or thing that is associated with it. For example, consider a person, named Jon, who owns a car. 

    

    The person, Jon, is not a Stakeholder associated with the car; rather, the Stakeholder is the role that Jon plays when interacting with the car. So, in this example, Jon will play a number of Stakeholder roles, such as owner, driver, passenger, sponsor, maintainer, and so on. Each of these Stakeholder roles will view the System of the car in different ways. It is important, therefore, that rather than thinking about Jon, the person, we should consider the Stakeholder roles that Jon plays.

    
      	Stakeholders are not necessarily people and can be many other things, such as organizations or just about anything. For example, when considering the System of the car, the Stakeholder role of the owner could be taken on by the person, Jon, but it may be a company car that is owned by a business, in which case it is the organization that takes on the Stakeholder role, rather than the person. Equally, the law has an interest in the car, which means that the law is also a Stakeholder.

      	There is not a one-to-one correlation between Stakeholders and the person, organization, or thing that takes on the role. For example, it has already been shown that a single person, Jon, may take on multiple Stakeholder roles but, equally, it is possible for many people to take on the same Stakeholder role. Consider the passengers that travel in the vehicle along with the driver. In this situation, we may have several people all taking on the same Stakeholder role of passenger.

      	Stakeholders lie outside the Boundary of the system, as do Enabling Systems. With the definition of a Stakeholder being anything that has an interest in the System, then it follows that an Enabling System is actually just a special type of Stakeholder, as the basic definition is the same.

    

    Identifying Stakeholders is an essential part of Systems Engineering as Stakeholders will each look at the same system in different ways, depending on the Stakeholder role that they play. This leads to the important concept of Context, which will be discussed in more detail later in this chapter.

    Attributes – characterizing system properties

    It is possible to describe the high-level properties of any given system by identifying a set of Attributes, as shown in the following diagram:

    [image: Figure 1.4 – Describing properties of a system – attributes ]
    Figure 1.4: Describing properties of a System – Attributes

    The diagram in Figure 1.4 shows that Attributes describe a System. Attributes are shown here as relating to the concept of the System but, bearing in mind that a System comprises a number of System Elements, these Attributes may also apply to the System Elements.

    These Attributes will typically be represented as nouns that may take on a number of different values and be of a specific, pre-defined type, and may also have specific units. Examples of simple types of Attributes could be as follows:

    
      	Dimensions, such as length, width, and height, which would be typed as real numbers and may have units of millimeters associated with them.

      	Weight, which would be typed as a real number and have the unit of kilograms associated with it.

      	Element number, which may be an integer and may not have a unit associated with it.

      	Name, which may be a character/text and may not have a unit associated with it.

    

    Attributes may also take on more complex types, for example:

    
      	Timestamp, which may be a set of simple types brought together to provide a more complex type. In this case, the timestamp may be a combination of the day (an integer between 1 and 31), month (an integer between 1 and 12), year (an integer ranging from 0,000 upward), hour (an integer between 1 and 24), minute (an integer between 0 and 59), and second (an integer between 0 and 59).

      	Data structures, which may represent an entire audio or video file that complies with a specific protocol, such as MP3, MP4, and so on.

    

    The full set of possible Attributes is almost limitless, so the list provided here is intended to provide food for thought rather than be any sort of comprehensive list.

    Boundaries – defining the scope of a System

    Each System will have at least one Boundary associated with it, which helps to explain the scope of the System, as shown in the following diagram:

    [image: Figure 1.5 – Defining the scope of a system – boundary ]
    Figure 1.5: Defining the scope of a System – Boundary

    The diagram in Figure 1.5 shows that the Boundary defines the scope of the System.

    There are many types of Boundary that may exist, including the following:

    
      	Physical Boundary: This may be some sort of enclosure that surrounds the System and separates it from the outside world. This could be a cabinet that houses a number of System Elements, such as the body of a car, a barrier that surrounds a piece of land, a wall and doors that define a room, and so on.

      	Conceptual Boundary: This is a non-Physical Boundary that can be imagined but not necessarily observed. An example of this is the Boundary between a car and the GPS satellite that it interacts with. In this case, where is the Boundary of the System considered to be? Is it the transmitter and receiver in the car, the transmitter and receiver on the satellite, the waves that are transmitted, or the protocols that are used as part of the transmission?

      	Stakeholder Boundary: Different Stakeholders may look at the same System in different ways and, therefore, where they perceive the Boundary of the system to be may change depending on the Stakeholder. Consider again two different Stakeholders for a car. A passenger may consider the Boundary of the car as being the physical body, or the shell of the car, whereas the maintainer of the car may also consider the Conceptual Boundary of the link between the car and the satellite as the Boundary.

    

    The Boundary of a System allows a number of key aspects of the System to be understood:

    
      	What is inside the Boundary: It is important to understand which System Elements are considered to be inside the Boundary of the System and which are considered to be outside the Boundary of the System. System Elements that are considered inside the Boundary of the System will help to define exactly what the scope of the System is.

      	What is outside the Boundary: In the same way that understanding what is inside the Boundary is important, in terms of System Elements, it is also important to understand what lies outside the Boundary of the System. Things that exist outside the Boundary of the System are considered to be either Stakeholders or Enabling Systems, or as was discussed previously, both.

      	Where key interfaces exist: Every time an interaction occurs across the Boundary of a System, it identifies an interface to that System. Identifying interfaces is an important part of Systems Engineering, and a Boundary can be used to identify all interfaces between a System and the outside world.

    

    Bearing in mind these discussion points, defining the Boundary of a given System may not be as simple as it first appears, as different Stakeholders may identify different Boundaries. This is not necessarily a problem, but it is important to bear this in mind and ensure that no conflicts occur because of these differences.

    Needs – the purpose of the System

    Each System must have a purpose, and this purpose is expressed by defining a set of Needs, as shown in the following diagram:

    [image: Figure 1.6 – Defining the purpose of the system – needs ]
    Figure 1.6: Defining the purpose of the System – Needs

    The diagram in Figure 1.6 shows that Needs describe the purpose of the System. A Need describes the concept of something that shows the purpose of the System. The diagram also shows that there are different types of Needs, three of which are listed here:

    
      	Requirement: A Requirement represents a statement of something that is desirable for the System to do. These are often related to the desired specific functionality of the System. For example, a Requirement for a car may be that the driver must be able to slow the car down using the brake pedal, the car must have seat belts, or the car must travel at a top speed of at least 100 miles per hour.

      	Feature: A Feature represents a higher-level Need of the System that does not necessarily relate to a specific function, but may relate to a collection of functions. An example of a Feature may be that the car must have adaptive cruise control, the car must self-park, or the car must have crash prevention capabilities.

      	Goal: A Goal is a very high-level Need that represents a Need of the overall System. An example of this may be to transport a driver and three passengers over a distance of 300 miles on a single charge.

    

    It should be stressed here that there are many different terms used for all aspects of Needs, which differ vastly from organization to organization and from industry to industry. For example, the term “capability” is often used in the aerospace and defense industries, whereas the term “Feature” is more typically used in transport industries, such as automotive and rail. In a way, it does not matter which terminology is adopted, provided that it is adopted consistently.

    Constraints – limiting the realization of the System

    All Systems will be limited in some way in terms of how they can be realized, and these limitations are referred to as Constraints, as shown in the following diagram:

    [image: Figure 1.7 – Defining limitations on the realization of the system – constraints ]
    Figure 1.7: Defining limitations on the realization of the System – Constraints

    The diagram in Figure 1.7 shows that Constraints limit the realization of the System. All Systems will have Constraints associated with them that will limit how the System may be realized, and these are often grouped into a number of categories, examples of which are as follows:

    
      	Quality Constraints: In almost all Systems, there will be Constraints that relate to best practice sources, such as standards. It is typical for a number of standards to be identified that the development approach used to deliver the System must comply with. These standards will typically relate to the development processes used to describe the overall Systems Engineering approach. For example, a standard that is often used for cars in the automotive industry is ISO 26262.

      	Implementation Constraints: These Constraints will limit the way that the System can be built. This may limit the materials that are used; for example, a car may be limited to being made out of aluminum rather than steel.

      	Environmental Constraints: All Systems must be deployed somewhere and many Systems will be defined in a natural environment, which may lead to certain Constraints coming into play. For example, a car may be limited in its emissions in order to minimize the impact on the environment.

      	Safety Constraints: Almost all Systems will have Constraints placed on them that ensure that the System can operate in a safe manner, particularly if things go wrong. For example, a car may be required to have functions in place that will protect the driver and passengers in the event of a crash.

    

    The preceding list provides a broad set of categories for different types of Constraints, but it is by no means exhaustive.

    It should also be kept in mind that these Constraints can be complex themselves and actually belong to more than one of these categories. For example, a car may have a limitation that all of the materials used must be recyclable, which could place it in both the Environmental Constraints and Implementation Constraints categories.

    It should also be pointed out that some of these Constraints lend themselves to different stages of the system life cycle. The system life cycle is an important concept that will be discussed in more detail later in this book.

    Constraints are also often described as special types of Needs as they are often represented as being related to specific Needs rather than directly to the System itself. This will be discussed in more detail in Chapter 6, Needs and Requirements, which focuses specifically on Needs.

    Summary of System concepts

    All of the concepts that have been introduced and discussed in this section may now be brought together to provide an overview of how they relate to the concept of a System:

    [image: Figure 1.8 – Summary of the key concepts associated with a system ]
    Figure 1.8: Summary of the key concepts associated with a System

    The diagram here shows a summary of the key concepts associated with Systems that will be used throughout this book. It is important that these are all well understood as they will all be used from this point forward.

    Defining Systems Engineering

    There are many definitions of the term Systems Engineering, and there are various publications that discuss many of these and compare and contrast them (Holt and Perry, 2019, and INCOSE, 2018). For the purposes of this book, the main definition that will be used is taken from ISO 15288 (ISO, 2015), which, in turn, is used in the INCOSE Systems Engineering Handbook (INCOSE, 2016), which defines Systems Engineering as:

    
      “The realization of successful systems.”

    

    This is shown pictorially in the following diagram:

    [image: Figure 1.9 – Basic definition of systems engineering ]
    Figure 1.9: Basic definition of Systems Engineering

    The diagram in Figure 1.9 shows the basic definition of Systems Engineering. This diagram may seem trivial, but it will enable the general term to be related to all of the other concepts that are discussed consequently in this chapter.

    This is a simple but effective definition of the term, but there are a few factors that must be kept in mind when reading this description:

    
      	Systems Engineering is a multidisciplinary approach that takes into account all areas of engineering, including mechanical, electrical, civil, software, and so on. Crucially, however, it should also be recognized that Systems Engineering is not just limited to engineering disciplines, but includes many other diverse areas, such as management, mathematics, physics, psychology, and just about any other area!

      	Systems Engineering is applied across the entire life cycle of a System and is not restricted to any single stage. This means that Systems Engineering is considered right from the point in time that the very first idea for the System is conceived until the System is ultimately retired. Even when working on a single stage, it is important that all stages of the life cycle are considered.

      	Systems Engineering does not remove the need for intelligence, as systems engineers must never blindly follow instructions, and requires a healthy dose of common sense in order to be effective.

    

    With these considerations in mind, the initial definition may be expanded upon to be redefined as (Holt and Perry, 2007):

    
      Systems Engineering is a multi-disciplinary, common-sense approach that enables the realization of successful systems.

    

    Now the definitions have been established, it is necessary to understand why Systems Engineering is needed in the first instance.

    The need for Systems Engineering

    The need for Systems Engineering is actually very simple. In real life, it is very easy for things to go wrong. Projects overrun, airplanes fall out of the sky, the environment is damaged, people are hurt or killed, software and IT bring organizations to their knees, and whole societies are crippled by non-joined-up government and management, all of which are the result of system failures at one level or another.

    Since it is so easy for things to go wrong, it is important to understand why. Fundamentally, there are three main causes for such System failures, which are as follows:

    
      	Complexity, where Complexity is not identified and, therefore, cannot be managed or controlled.

      	Communication, where communication fails or is ambiguous.

      	Understanding, where different points of view are not taken into account, and assumptions are made.

    

    The problem is actually worse than this as these three main causes feed into one another, so unmanaged Complexity will lead to communication failure and a lack of understanding, communication failure will lead to Complexity and a lack of understanding, and a lack of understanding will lead to increased Complexity and communication problems (Holt, 2001).

    These three causes are often referred to as the “Three Evils of Systems Engineering” and each will be discussed in more detail in the following sections.

    Complexity

    Complexity exists in every system and may be thought of as being one of two types, as shown in the following diagram:

    [image: Figure 1.10 – Types of complexity ]
    Figure 1.10: Types of Complexity

    The diagram in Figure 1.10 shows that Systems manifest Complexity. There are two main types of Complexity:

    
      	Essential Complexity is the natural Complexity that is inherent in the system. The term “Essential” is used here as it refers to Complexity that manifests in the essence of the System. It is not possible to lower the Essential Complexity of a System, but it is possible to manage and control this Complexity, provided, of course, that it has been identified in the first instance.

      	Accidental Complexity is not natural and is introduced by inefficiencies in the people, processes, and tools that are employed to implement Systems Engineering, which will be discussed later in this chapter. Accidental Complexity can certainly be lowered, and this forms a natural part of Systems Engineering.

    

    Complexity manifests itself in the relationships between things, whether these are between the System Elements that make up the System or between Systems themselves. There are many subtleties to Complexity, which will be discussed in more detail in the following sections.

    An example…

    In order to illustrate and, therefore, understand how Complexity has changed and evolved over the last few decades, a simple example of a System will be introduced, which will be used throughout this book to explain the various concepts and techniques that will be used as part of the overall approach to Systems Engineering.

    For this example, the System that will be considered is a motor car, so now consider two such cars: one that was developed and built 50 years ago, around 1970, and one that was developed and built in the modern age, around 2020.

    Consider the basic Need for the System. The purpose of any car is to transport a number of people from point A to point B. The user interface of the car is, basically, a steering wheel, gear stick, and three pedals (accelerator, brake, and clutch pedals).

    This basic Need, or purpose, of a car has not really changed over the last 50 years, but the point of discussion here is that the complexity of the car has changed in four different ways, which will be discussed in turn in the following sections.

    The Complexity of the System Elements

    In order to illustrate how the Complexity of the System Elements has changed over the last 50 years, each of the cars will be discussed separately and then compared and contrasted:

    [image: Figure 1.11 – Basic breakdown of a car ]
    Figure 1.11: Basic breakdown of a car

    The diagram in Figure 1.11 shows a simple example System of a car. There are four System Elements at the next level down that make up the car, which are as follows:

    
      	The Body, which includes lower-level System Elements such as wings, doors, mirrors, and so on.

      	The Chassis, which includes lower-level System Elements, such as brakes, wheels, suspension, and so on.

      	The Interior, which includes lower-level System Elements such as seats, dashboard, controls, and so on.

      	The Drive Train, which includes lower-level System Elements such as the motor and the gearing.

    

    The System Elements that make up the 50-year-old car are entirely mechanical and electrical in nature. On top of this, almost all of the System Elements will be mechanical; very few of them will be electrical.

    Electrical System Elements will be limited to the lights, indicators, fan, wipers, and starter motor, and that is really the extent of the electrical System Elements. The mechanical elements, however, will make up all of the other System Elements that relate to the Body, Chassis, Drive Train, and Interior. The vast majority of the System Elements, therefore, are mechanical with only a handful of them being electrical. This means that almost all of the interfaces between the System Elements will be mechanical in nature, with only a few being electrical or electro-mechanical.

    In order to build this car, it is largely a matter of integrating self-contained System Elements that have well-defined interfaces. Also, any electrical connections will require quite simple point-to-point wiring.

    Now consider the modern car. There are two new major types of System Elements that now exist that did not exist at all on the 50-year-old car, which are electronic and software-based System Elements. The vast majority of System Elements in a modern car will fall into one of these two categories. Electronic System Elements will include the following:

    
      	Controllers (such as light controllers, indicator controllers, and so on)

      	Sensors (such as temperature, pressure, rotation, and so on)

      	Actuators (such as levers, small gears, motors, and so on)

      	Display elements (such as dashboard lights, audio alerts, and so on)

    

    All modern cars contain a vast amount of software and, in every case, this software will be split across multiple nodes across the whole vehicle. On top of the software itself, the software must be connected to its associated electronic components, which will, in turn, lead to the need for communication buses, such as Controller Area Networks (CANs), which will themselves use communication protocols.

    In order to build the modern car, it is no longer a matter of simply integrating System Elements because the interfaces between the elements are now far more complex and will involve subtle changes in voltage and current levels, data transfer, communication protocols, and complex wiring.

    The complexity of the System Elements that make up the car has, therefore, greatly increased between the two vehicles. Indeed, not only has it increased in terms of the number of System Elements but also in their nature.

    The Complexity of Constraints

    It has already been stated that the basic Need for a car has not really changed at a high level in the last 50 years. The basic Need is to transport people from point A to point B. In the past, the emphasis of most cars was to make them go as quickly as possible with little regard for anything else. One of the major things that has changed over the last 50 years is not necessarily the basic needs, but the Constraints that are now imposed on those Needs:

    [image: Figure 1.12 – Simple constraints ]
    Figure 1.12: Simple Constraints

    The diagram in Figure 1.12 shows a simple Need that is named Develop car, and there are two main Constraints associated with this, which are Be safe and Be fast. This diagram here represents, at a very high level, the basic Needs and Constraints associated with the 50-year-old car.

    The number of Constraints associated with the older car is very small compared to that of the modern car, which is shown in the following diagram:

    [image: Figure 1.13 – Complex constraints ]
    Figure 1.13: Complex constraints

    The diagram in Figure 1.13 shows the Constraints associated with the modern car. The first thing to notice when comparing the two sets of Constraints is that the number of Constraints themselves has increased dramatically. There are new sets of Constraints that simply did not exist in the older car; for example, Be secure is now an issue that was not really a main consideration previously. Likewise, there is a whole set of new Constraints associated with Provide a positive driving experience. This increase in the number of Constraints will lead to an increased number of relationships between the basic Needs and Constraints, which will naturally lead to an increase in the Complexity of the Needs and Constraints.

    It is not just the increase in the number of Constraints that leads to an increase in Complexity but also the Complexity of individual Constraints has increased. There are a number of Constraints now that are related to best-practice models, such as Comply with standards and Comply with legislation. This is interesting from a Complexity point of view as these Constraints will also relate directly to other Constraints. Consider Be safe, which was previously seen as a standalone Constraint. In the modern vehicle, this Constraint will also have both of the compliance Constraints associated with it. Since there are far more legislation and standards in place now that apply to cars that did not exist 50 years ago, the Complexity of individual Constraints has increased, along with the increase in dependencies between Constraints.

    The Complexity of a System of Systems

    Another area where the car has increased in Complexity over the last 50 years occurs when a higher-level System of Systems is considered. A System of Systems is not just a collection of interacting Systems; it is a collection of interacting Systems exhibiting some behavior that is not exhibited by any of its Constituent Systems. Therefore, it can be argued that a fleet of vehicles is not a System of Systems, as it is simply a collection of Systems that does little more than make the overall System slightly more complicated. A true higher-level System of Systems may be the transport network that a car forms part of. The overall transport System of Systems exhibits a number of behaviors, such as ensuring an efficient journey from end to end, keeping traffic moving when accidents occur, and providing seamless links with smart cities and other transport systems, such as rail.

    A modern car is now truly part of a System of Systems as the vehicle itself interacts with other Systems, such as smart cities, smart roads, the cloud, satellites, and so on, which did not occur with an older vehicle. The modern car also takes over some of the skills that were previously the sole domain of the driver, such as parking, maintaining constant speeds, identifying potential dangers, and so on.

    The Complexity of the car System has therefore increased due to the fact that the car is now truly part of a wider System of Systems.

    Complexity shift

    The final aspect of increased Complexity that will be discussed does not necessarily manifest as an increase in the same type of Complexity but, rather, represents a shift in Complexity due to increases in other aspects of Complexity.

    Consider again the older car and its motor. The motor in the 50-year-old car is an internal combustion engine, which mainly comprises mechanical System Elements with a handful of electrical System Elements. The internal combustion engine may be considered to have quite a high level of mechanical Complexity, which is naturally exhibited.

    Now consider a modern electric car. The motor in the modern electric car is an electric motor that has a single moving part, that of the motor shaft. The mechanical Complexity of the modern car is practically non-existent when compared with the older car. The Complexity of the modern car lives mainly in the software that monitors the rest of the car and controls the electric motor. There is no software whatsoever in the older car.

    The older car, therefore, has high mechanical Complexity and zero software Complexity. The modern car has very low mechanical Complexity and very high software Complexity.

    The Complexity in the modern car has therefore shifted in nature – in this case, away from mechanical Complexity and toward software Complexity.

    Bringing it all together

    It can be seen that the Complexity of a typical System has increased dramatically over the last few decades. In the example we have used, the car increases in Complexity for four different reasons, which have been discussed.

    This increase in Complexity does not apply just to automotive systems but to any and all types of Systems. In reality, these four types of increased Complexity will actually have interdependencies, which, in turn, will also increase the overall Complexity. For example, the increase in the Complexity of the System Elements will also lead to a complexity shift and, potentially, an increase in the System of Systems Complexity, which, in turn, will lead to an increase in the number of Constraints.

    Identifying Complexity

    The key to managing Complexity is identifying where the Complexity lives in a System. This is a topic that will be followed up throughout the book, particularly when artifacts and models are discussed.

    The next section discusses the problems associated with communication, which, alongside Complexity and understanding, is one of the Three Evils of Systems Engineering.

    Communication

    Communication is key to successful Systems Engineering. It has already been discussed that Systems Engineering naturally brings together people from multiple and disparate backgrounds, which will lead to an increase in potential communication problems. Poorly-specified information, Language, and protocols lead to ambiguity, which will lead to poor or inefficient communication.

    Communication can exist at many levels, such as the following:

    
      	Between people: The obvious form of communication is between people. People interacting with other people is key to any successful project and is a matter that is more complex than it first appears, as will be discussed in this section.

      	Between and within organizations: A successful business relies on different organizations or organizational units within the same company being able to communicate effectively. The media for these communications may be through documents, agreements, contracts, and so on but the same communication problems will occur.

      	Between and within Systems and System Elements: It is essential that the Systems that are relied upon for our business and projects can also communicate effectively. This includes IT systems, other technical systems, and service-based systems, to name but a few.

    

    When thinking about communication, another way to think about it is that communication must be effective and efficient between all Stakeholders, whether they are represented by people, organizations, or things (such as Systems). When considering communication in the world of Systems Engineering, it is inter-Stakeholder communication that is being addressed.

    These communication problems are further compounded by the fact that communication can also exist between these different types, such as between people and Systems, people and organizations, and so on.

    Defining common Languages

    One of the main solutions that is vaunted for improving communication is to get all parties to “speak a common Language.” This is an obvious solution and an important one, but speaking a common Language is actually more complex than it may at first appear.

    When considering a common Language, there are actually two types of Language that must be defined, as shown in the following diagram:

    [image: Figure 1.14 – Aspects of the common language ]
    Figure 1.14: Aspects of the common Language

    The diagram in Figure 1.14 shows that Stakeholders communicate using a Language, so it is essential that this Language is as clear and unambiguous as possible. This Language, however, has two aspects: Spoken Language and Domain-Specific Language.

    The first aspect that will be considered is that of the Spoken Language, which provides a basic mechanism for communication. An example of Spoken Language is the fact that this book is written in the English Language. In order to understand the information in this book, it is essential that the reader can speak English. Clearly, there are many more spoken Languages than the English Language, but the decision that has been made for this book (or System) was to select English as the chosen Spoken Language. This is clearly an obvious decision that needs to be made, but just because everyone reading this book speaks English does not mean that there will be no ambiguity or misunderstandings. This is because the second aspect of Language that needs to be considered is Domain-Specific Language.

    Domain-Specific Language defines the specific concepts and terminology that will be used for a given application or domain. For example, consider the word “function.” The word “function” is a common English Language word but a word that will actually take on different meanings, depending on which Stakeholder is reading it.

    It is essential that the Domain-Specific Language is defined, as it forms the cornerstone for successful Systems Engineering. This chapter actually defines the Domain-Specific Language for Systems Engineering that is used throughout this book. Each diagram in this chapter contributes toward defining the full set of concepts and the associated terminology that is used for Systems Engineering in this book.

    Languages for Systems Engineering

    When it comes to Languages that can be used for Systems Engineering, both the Spoken Language and the Domain-Specific Language must be defined:

    
      	In terms of the Spoken Language, there are several standard Languages that can be adopted that are used throughout the industry across the world, such as the Unified Modeling Language, Systems Modeling Language, and Business Process Modeling Notation, among others. For the purposes of this book, the Spoken Language that has been selected is the Systems Modeling Language (SysML), which will be discussed in more detail in Chapter 2, Model-Based Systems Engineering.

      	In terms of the Domain-Specific Language, this will be different for every organization. A generic Domain-Specific Language for Systems Engineering is defined in this chapter and used throughout this book, and may be used as a basis for readers to use in a Language that fits their specific business.

    

    Both types of Language must be defined for successful Systems Engineering.

    The next section discusses the problems associated with understanding, which, alongside complexity and communication, is one of the Three Evils of Systems Engineering.

    Understanding

    It is essential that all Stakeholders share an understanding of the System; however, different Stakeholders will perceive the System in different ways due to their different backgrounds and knowledge, which creates a potentially large problem. This problem may be addressed by considering the concept of “Context.” In order to understand the concept of Context, consider a set of generic Stakeholders, as shown in the following diagram:

    [image: Figure 1.15 – Generic set of stakeholders ]
    Figure 1.15: Generic set of Stakeholders

    The diagram in Figure 1.15 shows a generic set of Stakeholders associated with the car System.

    There are three broad categories of Stakeholder, which are as follows:

    
      	Customer, which represents the set of roles that will ultimately benefit from the System that is being developed. The diagram here shows that Customer has two types, which are User, such as the Driver of the vehicle, and Operator, such as the Maintainer of the vehicle.

      	External, which represents the set of roles that have an interest in the System that will limit or restrict the system in some way. The diagram here shows that there is a single type of External Stakeholder, which is Standard.

      	Supplier, which represents the set of roles that are interested in developing and delivering the Systems, such as Engineer.

    

    The identification of Stakeholders is an essential part of Systems Engineering, as it is this complete set of Stakeholders whose expectations need to be understood and managed, rather than just the end user of the System.

    When considering the complete set of Stakeholders, it should be kept in mind that different Stakeholders may look at the same System and perceive different Needs or, as in almost all Systems, they may look at the same Need and interpret it in a different way, depending on their point of view. When something is interpreted in a different way from a different point of view, this is referred to as a “Context.”

    The concept of Context is one of the single most important aspects of representing a System that must be understood for successful Systems Engineering, yet is one that is often overlooked or ignored altogether.

    In order to illustrate this crucial concept of Context, imagine that there is a statement of Need associated with a System, which is the System must be safe. At first glance, this may seem like a straightforward statement with little or no room for ambiguity, but the actual meaning of this statement will be different for each of the different Stakeholders. For example, from the point of view of the Driver, this statement may be interpreted as the car must have seatbelts, airbags, driver-assist technology, and so on. From the point of view of the Maintainer, this statement may mean that the Drive Train must be developed in such a way that the battery can be turned off to ensure that no parts of the car are live when maintaining the vehicle. From the point of view of the Standard Stakeholder, there may be several safety aspects, such as meeting specific requirements for crash impact. Finally, from the point of view of the Engineer, the system may have to satisfy a number of scenarios relating to the safety case for the vehicle.

    The point here is that there are multiple interpretations for the same set of Needs. In order to manage the expectations of all Stakeholders, it is important that all of these different points of view, or Contexts, can be understood.

    Now that the Three Evils of Systems Engineering have been discussed, it is time to consider the implementation of Systems Engineering

    The implementation of Systems Engineering

    In order to implement Systems Engineering successfully, there are three aspects of implementation that must be considered, which are shown in the following diagram:

    [image: Figure 1.16 – The classic systems engineering mantra – people, process, and tools ]
    Figure 1.16: The classic systems engineering mantra – People, Process, and Tools

    The diagram in Figure 1.16 shows three main concepts: People, Process, and Tools. These are referred to as the Systems Engineering Mantra (Holt and Perry, 2019).

    These three concepts are very important, but it is the relationships between them that provide a true understanding of what information is being conveyed. It is important that these People enable the overall Process, as the competencies associated with the People are worth nothing if they do not enable the overall approach. Also, the overall approach must drive the choice of Tools, rather than the Tools affecting the Process.

    These concepts are expanded upon in the following diagram:

    [image: Figure 1.17 – Expanded concepts of People, Process, and Tools ]
    Figure 1.17: Expanded concepts of People, Process, and Tools

    The diagram in Figure 1.17 shows the expanded concepts that were first introduced in Figure 1.16. By considering each of the main concepts in turn, it is possible to enhance the original descriptions:

    
      	People: It is the Competence of the people that is of interest, rather than the presence of the people themselves. It is essential that people have the appropriate sets of knowledge and skills and the attitude that is required to do the task at hand effectively and efficiently. It is also important not to confuse the concept of People with that of Stakeholders. As was discussed previously, People may hold any number of Stakeholder roles and it is the Competence associated with these roles that may be thought of as the ability of the individual.

      	Process: It is the overall approach that is being followed, rather than just a set of individual processes. The term Process here may be thought of as the overall ability of the organization or organizational unit to carry out a specific task.

      	Tools: The set of software, resources, or, in fact, anything that is intended to allow People to carry out their Process in a more effective or efficient manner. Such Tools may include software design and modeling tools, management tools, pen and paper, standards, notation, and so on.

    

    Overall, it is important that there is a balance between People, Process, and Tools to enable successful Systems Engineering.

    Summary

    This chapter introduced the main concepts and terminology associated with Systems Engineering, which may be thought of as the Domain-Specific Language that will be used throughout this book. This domain-specific Language is captured in all of the diagrams in this chapter. It is important to understand this Domain-Specific Language, so these diagrams must be well understood and the following points considered:

    
      	Each diagram is made up of a series of boxes with words in them that are joined together by lines.

      	The main concepts for Systems Engineering are captured in the boxes and the lines between the boxes.

      	The terminology for Systems Engineering is what is written inside the boxes and on the lines.

    

    The relevance of these diagrams will be discussed further in the next chapter, in which models and modeling are introduced.

    Questions

    After reading the chapter, you should be able to answer the following questions:

    
      	Which definition of Systems Engineering works best for you?

      	How do Spoken Language and Domain-Specific Language match the concepts and terminology used in your organization?

      	Can you redefine the terms in each of the diagrams in this chapter to suit your own organization?

      	Can you identify any areas of ambiguity with these concepts in your organization?

      	Can you identify one key System that you work with and some of its characteristics?

    

    References

    
      	(Wilkinson, 2011) Wilkinson L.A. (2011) Systems Theory. In: Goldstein S., Naglieri J.A. (eds) Encyclopedia of Child Behavior and Development. Springer, Boston, MA.

      	(Bertalanffy, 1968) von Bertalanffy, L. 1968. General system theory: Foundations, development, applications. Revised ed. New York, NY: Braziller.

      	(Holt, 2001) Holt J., UML for Systems Engineering. 1st edition. Stevenage, UK: IEE; 2001.

      	(Holt and Perry, 2019) Holt J., Perry S. SysML for Systems Engineering – a model-based approach, Third edition. Stevenage, UK: IET; 2008.

      	(Checkland, 1999) Checkland, P. B. 1999. Systems Thinking, Systems Practice. Chichester, UK: John Wiley & Sons.

      	(ISO, 2015) ISO/IEC. ISO/IEC 15288:2015 Systems and Software Engineering – System Life Cycle Processes. 1st edn. International Organisation for Standardisation; 2015.

      	(Holt and Perry, 2008) Holt J., Perry S. SysML for Systems Engineering. Stevenage, UK: IET; 2008.

      	(INCOSE, 2016) INCOSE. Systems Engineering Handbook – A Guide for System Life Cycle Processes and Activities. Version 4. INCOSE; 2016.

    

    Learn more on Discord

    To join the Discord community for this book – where you can share feedback, ask questions to the author, and learn about new releases – follow the QR code below:

    https://packt.link/xjBEI

    [image: ]

  


  
    2

    Model-Based Systems Engineering

    In this chapter, the main approach to Systems Engineering will be introduced and discussed, and its key properties described. This approach is known as Model-Based Systems Engineering, or MBSE, which is the common abbreviation. The information contained in this chapter concerning MBSE is essential learning for any modern-day Systems engineer. A good MBSE approach will provide a set of effective tools and techniques that will enable the realization of successful Systems while managing the complexity of today’s connected Systems, and allowing all relevant aspects of the System to be understood in as simple a manner as possible. This will also enable all information concerning the System to be communicated to the appropriate Stakeholders.

    This chapter covers the following topics:

    
      	An introduction to MBSE: Here, the key concepts associated with MBSE will be introduced, discussed, and collected together using “MBSE in a slide.”

      	The evolution of MBSE: Here, the transition from a document-based approach to a model-based approach to Systems Engineering will be discussed.

      	Modeling with MBSE: In this section, the fundamentals of modeling for MBSE will be described.

      	The spoken language – the Systems Modeling Language (SysML): Here, the chosen notation, the Systems Modeling Language, or SysML, is described and an example is given.

      	The domain-specific language – the Ontology: At this point, the Ontology that forms the cornerstone of any MBSE endeavor will be introduced in detail.

    

    This chapter will provide the basis for all of the techniques that are used throughout the rest of this book.

    An introduction to MBSE

    Before the main concepts of MBSE are discussed, it is important to understand a key philosophical point.

    Firstly, MBSE is not a subdivision, nor a subset, of Systems Engineering; MBSE is a complete approach to Systems Engineering and, therefore, is used for all aspects of Systems Engineering. One way to look at MBSE is that it is Systems Engineering achieved through a rigorous approach, illustrated in the following diagram:

    [image: Figure 2.1 – MBSE is a type of systems engineering ]
    Figure 2.1: MBSE is a type of Systems Engineering

    The diagram in Figure 2.1 shows that MBSE is actually a type of Systems Engineering, rather than a subset or component part of Systems Engineering. This is essential to understand, and you must be very clear about this matter.

    The International Council on Systems Engineering (INCOSE) defines a worldwide vision of the future of Systems Engineering on a periodic basis. The INCOSE Vision 2035 (INCOSE 2022), predicts that by the year 2035, all Systems Engineering will be moving “towards a fully Model-Based Systems Engineering environment” and that it is key to all digital transformation.

    The question arises, therefore, of what exactly is meant by MBSE and how is it different from traditional Systems Engineering. The next few sections will discuss these questions in some detail.

    Abstracting the System

    When considering Systems Engineering, it is important to never lose sight of the goal of Systems Engineering, which is to develop a successful System. This seems like an obvious statement, but it is essential that every activity that is carried out as part of Systems Engineering contributes to this goal.

    When considering MBSE, compared to traditional Systems Engineering, the main thing that must be understood is where the knowledge, information, and data concerning the System resides. In the case of traditional Systems Engineering, all of the knowledge concerning a System resides in the set of documents that describes the System. In the case of MBSE, all of the knowledge concerning the System resides in the Model that abstracts the System:

    [image: Figure 2.2 – The concept of the model ]
    Figure 2.2: The concept of the Model

    The diagram in Figure 2.2 shows the most fundamental concept of MBSE, which is that the Model abstracts the System. An abstraction may be thought of as a representation or simplification of the System. The Model must be a simplification of the System; otherwise, it would be the System. As the Model is a simplification of the System, it then follows, by its very nature, that the information contained in the Model is incomplete. This sometimes leads to the fatuous argument that all Models are wrong. The aim of a Model in MBSE is to provide an abstraction of the System to realize that System successfully. The aim of the Model in MBSE is not to contain as much information as possible, nor to attempt to capture all of the information concerning a System. The aim is to capture enough relevant information to realize the System successfully.

    It is important to always remember this, as it is very easy to generate more and more information as part of the Model that is of no use to anyone. It is essential that all information contained in the Model is useful.

    The information contained in the Model is grouped into specific collections known as Views, as shown in the next diagram:

    [image: Figure 2.3 – The model is made up of views ]
    Figure 2.3: The Model is made up of Views

    The diagram in Figure 2.3 shows that the Model is made up of a number of Views. Each of these Views represents a collection of information; however, it is essential that this is relevant information that adds value to the overall Systems Engineering endeavor – otherwise, it is a waste of time. Therefore, to ascertain whether a collection of information is a View and, therefore, a valid part of the overall Model, there are a number of questions that must be answered:

    
      	Which Stakeholders would want to look at the View? To answer this question, it is essential that each View is related to a set of Stakeholders who are interested in the System. The concept of Stakeholders was discussed in Chapter 1, Introduction to Systems Engineering, and it was stated that identifying the correct set of Stakeholders is an essential part of Systems Engineering. Whenever any information is requested concerning the System, it is the Stakeholders who make these requests.

      	Why would these Stakeholders want to look at the View? It is essential to understand why each relevant Stakeholder wants to look at the View. Every View created as part of the Model must add value to the Systems Engineering endeavor. To do that, at least one Stakeholder must gain some sort of benefit from looking at the View.

      	What information must be contained in the View? It is important to know what information, out of the complete Model, must be made available for the relevant Stakeholders to look at.

    

    If it is not possible to answer these three questions for each of the Views, then the result is quite simple – it is not a valid View and, therefore, must not be considered as part of the Systems Engineering endeavor. It is very easy to generate information, in the form of Views, that is of no use to anyone. By asking these questions each time a View is considered, means that the validity of each View can be guaranteed.

    There is also a fourth question that should be considered once the first three have been answered successfully:

    
      	What language is the Stakeholder expecting to use when looking at the View? It is imperative when communicating with various Stakeholders that the communication is carried out in a language that the Stakeholder is fluent in. This applies to both the spoken and the domain-specific language, each of which will be discussed later in this chapter. The importance of communication was discussed in Chapter 1, Introduction to Systems Engineering, and this is one of the areas where effective communication comes into play. Stakeholders may speak different languages and, when considering MBSE, this translates into the fact that different Stakeholders may want to see a single View visualized in different ways.

    

    It is essential that these questions are asked for every View; otherwise, there will be information contained in the Model that adds no value, which is one of the biggest risks associated with MBSE.

    The other big risk associated with the Views that comprise the Model is associated with the fact that the Views must be consistent with each other. An essential and defining part of any Model is consistency. If there is a set of Views where each View is consistent with all other Views, then it is a Model. If there is a set of Views where each View is not consistent with all other Views, then it is data.

    Once the Model has been established (all Views add value and are consistent), then it is used as the main repository for all information that relates to the System. This means that whenever any Stakeholder wants to know anything concerning the System, then it is the Model that is interrogated to ascertain the answer.

    The Model is sometimes referred to as a single source of truth. This is an important definition and consists of two main points:

    
      	The Model is the only representation of the System – it is the single source.

      	All information in the Model is viewed as being the truth as far as can be determined, hence the single source of truth.

    

    This definition can be misleading as it does not imply that the Model is contained in a single location. The idea is that conceptually, the Model is a single entity, even though, in reality, it may be split across several locations, databases, or tools.

    The Model may be imagined to be a large, complex collection of information, and each View is analogous to opening up a small window into that Model. It is necessary to open up enough of these windows to provide confidence to all of the Stakeholders that the Model is understood well enough to realize a successful System or, to put it another way, to carry out Systems Engineering.

    One final aspect of Views that needs to be understood is that a View may be visualized in many different ways or, to put it another way, may be communicated in any number of different languages. This is the same concept as different Stakeholders speaking different languages and will be the focus of the next section.

    Visualizing the Model

    The way that each View is visualized is crucial to the successful communication and understanding of the System among its Stakeholders. In terms of MBSE, the various languages that each Stakeholder may speak are referred to as Notation, as shown in the following diagram:

    [image: Figure 2.4 – Notations, diagrams, and visualization ]
    Figure 2.4: Notations, diagrams, and visualization

    The diagram in Figure 2.4 introduces the concepts of Notations and Diagrams to the original definition of Systems and Models.

    The Notation represents some sort of language that is used to communicate with a number of Stakeholders. This Notation represents the spoken language that was introduced in Chapter 1, Introduction to Systems Programming, or, to put it another way, it represents a basic communication mechanism that can be used to communicate with a set of Stakeholders.

    The Notation comprises a set of Diagrams that provide the actual communication mechanism that is used by the Notation. The term Diagram is used in its most general sense here and the concept of a Diagram may not even be graphical, as the Notation may be realized by almost any language, as follows:

    
      	The Notation may be a visual, or graphical, language that uses graphics as its communication mechanism. Examples of this include the Unified Modeling Language (UML) (UML 2019), SysML (SysML 2017), SysML2.0 (SysML 2022), the Business Process Modeling Notation (BPMN) (BPMN 2011), Flowcharts (ISO 1985), and so on.

      	The Notation may be mathematically based, using equations or some sort of formal method as its communication mechanism. Examples of this include languages based on first-order predicate calculus and set theory, such as the Vienna Development Method (VDM) (VDM 1998), Z (Z 1998), the Object Constraint Language (OCL 2014), and so on.

      	The Notation may be based on a natural language that uses structured or unstructured text as its basic communication mechanism.

    

    The Notation and its Diagrams are used to visualize the Views that comprise the Model. If the Model is imagined to be a large, complex collection of information and each View is analogous to opening up a small window into that Model, then the Diagrams may be thought of as applying different filters or lenses to each window. In the same way that it is possible to apply a number of different optical filters to change the appearance of whatever is on the other side of a window, it is possible to visualize each View in any number of different ways.

    As an example of this, consider a View that contains text-based descriptions of a number of Need statements, which will be referred to as a Need Description View. It needs to be established whether or not this is a valid View, and the following points address this:

    
      	The Stakeholders that are interested in the Need Description View are the requirements engineer and the requirements manager.

      	The Need Description View is required so that the Stakeholders can both gain a high-level appreciation for the number of needs and get a brief idea of what each need entails.

      	The Need Description View contains a set of needs, each of which has a number of properties identified with it, such as its name, identifier, description, and priority.

    

    The three basic questions have now been answered, so the View can be confirmed as a valid View. The next question to ask is which language do the Stakeholders speak? and this will dictate how they are spoken to. In terms of the modeling, this will mean that different Notations may be used, as follows:

    
      	The Need Description View may be visualized using structured text, with each need being a paragraph and the properties being bullet points displayed under each paragraph.

      	The Need Description View may be visualized using UML Notation – specifically, a Diagram known as the class diagram, where each need is represented as a UML class and each property is represented by a UML attribute. Class diagrams in UML are very similar to block definition diagrams in SysML and, indeed, are the basis for block definition diagrams.

      	The Need Description View may be visualized using SysML using a requirement diagram, where each need is represented by a SysML requirement block and each of its properties is represented by a SysML property.

    

    This list represents just three possible options for visualizing the same View, making the point that any View may be visualized in any number of different ways.

    For the purposes of this book, a single Notation will be selected and used for all of the examples throughout. The Notation that will be adopted is SysML, which will be discussed in a lot more detail later in this chapter; therefore, the spoken language selected will be SysML. The next section will add to these concepts by introducing the two main concepts that comprise the approach.

    Defining the approach

    When developing a Model by creating a number of Views, it is obviously important that all of the Views are created in the same way, and this is one of the areas where the approach comes into play, as shown in the following diagram:
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    Figure 2.5: Introducing the approach for MBSE

    The diagram in Figure 2.5 introduces part of the overall approach that is required for MBSE in the form of the Framework and its associated Viewpoints and Ontology.

    Consider a situation where it is desirable to ensure that all documents of a similar type have the same structure and contents. When dealing with documents, the answer to this is quite straightforward, in that a template would be defined for the document to ensure that all future documents are consistent and have the same look and feel. When considering MBSE and the creation of Views, the answer is the same, in that a template of sorts is considered. The template for the Views is referred to as a Viewpoint, which, when defined properly, will ensure that all of the Views that are created and that are based on the same Viewpoint will be consistent.

    This is achieved by answering three basic View questions and storing the answers as part of the Viewpoint. Therefore, each Viewpoint contains the answers to the following questions:

    
      	Which Stakeholders are interested in looking at the View?

      	Why are they interested in looking at the View – or, to put it another way, what value will they realize?

      	What information is contained in the View?

    

    Each Viewpoint, therefore, contains the answers to these three questions, which ensures that the structure and content of all Views that are based on the Viewpoint are consistent.

    In order to ensure that all of these Viewpoints are consistent with all of the other Viewpoints, it is necessary to have a common set of concepts and associated terminology that form the basis of the content for the Views. This is referred to as Ontology and is actually the domain-specific language that was introduced and discussed in Chapter 1, Introduction to Systems Engineering.

    Ontology is arguably the single most important part of MBSE as all of the other elements that make up MBSE are ultimately traceable back to the Ontology. Ontology will be discussed in a lot more detail in Domain Specific Language. When the Ontology and the Viewpoints are put together, they form what is known as a Framework. A Framework is created as a template, or blueprint, for a complete Model. One of the common terms that you may have encountered is that of the architecture Framework, which provides the template for System architecture.

    There is a very close relationship between modeling and architecture, but it is beyond the scope of this book to enter into a lengthy discussion and dialog concerning this relationship. It is sufficient for us to think about the two in this way: all architectures are Models, but not all Models are architectures.

    The second part of the overall approach that must be considered is that of the Process Set, as shown in the following diagram:
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    Figure 2.6: Introducing the Process Set for MBSE

    The diagram in Figure 2.6 introduces the concept of the Process Set to the overall approach to MBSE. The Process Set represents the collective set of individual processes that are used by the Framework in a number of ways:

    
      	The Process Set is used to show how to develop the Framework, its Ontology, and its associated Viewpoints.

      	The Process Set is used to show how to develop the Views that comprise the Model, based on the definition of the Viewpoints in the Framework.

    

    It is the combination of the Framework and the Process Set that provides the overall approach to MBSE. There are some key points to bear in mind when considering these two parts of the approach:

    
      	The Framework focuses only on defining the structure, content, and consistency of the information that is produced and that is used to develop the Model in terms of its Views. The Framework, therefore, may be thought of as defining the “what” of the approach: what information must be produced to develop the Model?

      	The Process Set focuses on the steps involved with both developing and using the Framework. The Process Set, therefore, may be thought of as the “how” of the approach: how is the Framework developed and used?

    

    This conceptual separation between the Framework (what) and Process Set (how) means that it is possible to have a number of different Process Sets that use the same Framework. This is important, as different projects may follow different processes, depending on the nature of the project, but the underlying Framework will be the same. So, for example, there may be a research demonstrator project that has a timescale of only a few weeks that follows a set of high-level, technically light processes to develop its Model. In the same organization, there may be another project that is business-critical that may take a number of years to complete. The processes that are followed as part of this project will be far more detailed and rigorous and take far more time. However, the point here is that each project, despite following different Process Sets, may actually share the same Framework. This means that the Model produced by each project will use the same Framework and, therefore, the Views from each project may be compared and contrasted on a like-for-like basis.

    At this point, it is a good idea to take a short interlude and reconsider what has been discussed so far in this chapter.

    Grouping the MBSE concepts

    The information discussed so far is crucial to understanding MBSE, so it is worthwhile to take a brief pause to revisit the information collated so far and to add another level of information.

    To this end, the diagram that has evolved so far in this chapter has been grouped into three main areas, as shown in the following diagram, which is known in the Systems Engineering community as MBSE in a slide (Holt & Perry 2019):
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    Figure 2.7: “MBSE in a slide” – adding the groups

    The diagram in Figure 2.7 is used widely in the Systems Engineering community to disseminate the key concepts associated with MBSE.

    The three groups that have been added here are as follows:

    
      	Approach: Groups together the Framework that comprises the Ontology and Viewpoints and the Process Set. Remember, the Framework focuses on what information must be produced for the Model, whereas the Process Set focuses on how that information must be produced and used.

      	Goal: Groups together the System and the Model and its associated Views. Remember that the goal of any Systems Engineering endeavor is to develop the System. The goal of MBSE is also to develop the System, but this is achieved by developing the Model and its associated Views. Remember that each View is like opening a window to look at a small, focused part of the Model.

      	Visualization: Groups together the Notation and its associated Diagrams. The Notation is the set of spoken languages that are being used as a basic communication mechanism for Systems Engineering. Remember that each Diagram is like opening a small window into the Model and looking at it through a lens or filter.

    

    All of the concepts that have been discussed so far may now be expanded upon by considering the Implementation and Compliance associated with MBSE.

    Implementing the Notation

    The next step in looking at essential elements for MBSE is to look at how the visualizations of the Views may be implemented in a pragmatic manner as part of an MBSE project. At this point, therefore, it is pertinent to introduce the idea of tools by expanding MBSE in a slide, as shown in the following diagram:
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    Figure 2.8: Expanding “MBSE in a slide” to include Implementation

    Tools are an important part of MBSE and will allow the full range of benefits of MBSE to be realized.

    There are two relationships that come out of the tools in the diagram: the Tool implements the Notation and the Tool implements the Framework. Let’s take a look at them:

    
      	The Tool implements the Notation: This is important, as whichever Notation is adopted must be adopted correctly according to the syntax and semantics of the underlying language. When considering tools, it should be kept in mind that different tools will offer different levels of support for the Notation. For example, if a tool for a graphical Notation such as SysML is being considered, then it is possible to use any tool with a basic drawing capability to create the Diagrams, such as an Office tool. There is more to using SysML, however, than simply drawing the correct shapes and lines on a page, as the language itself has an underlying syntax and semantics that must be followed. When using a good MBSE modeling tool, the knowledge of the syntax and semantics will be built into the tool and, therefore, the tool can enforce the correct Notation by running syntactical and semantic checks on the Model. When producing a text-based document that is written in English, any good word processor will allow the author to run spelling and grammatical checks on the text. Imagine the syntax and semantics checks on a modeling tool to be analogous to the spelling and grammar checks in an Office-based tool. Remember that the Notation is the spoken language, so the tool will help to ensure that this spoken language is implemented correctly. Choosing an appropriate modeling tool means that the tool will speak the spoken language straight out of the box.

      	The Tool implements the Framework: This is important, as the Framework is a large part of the overall approach and it means that the tool will, therefore, implement a large part of the approach. The approach itself may be implemented by embedding the Ontology into the tool and by defining the set of Viewpoints (by answering the key questions for each View) into the tool. The approach contains the Ontology and, as the Ontology is the domain-specific language, this means that the tool can be tailored to speak the domain-specific language for the System. The tool will not be able to do this straight out of the box, and this Framework must be programmed into it. All good tools have the ability to create profiles that allow the tools to be tailored to implement, among other things, a specific Framework.

    

    Tools are an essential part of MBSE, and it is important to choose one that satisfies the modeling needs of the project. The next section introduces the final new concept, that of compliance.

    Showing compliance

    The final enhancement to the MBSE in a slide diagram is to add the concept of Compliance. When this has been added, the diagram is complete and is referred to in the MBSE community as MBSE in a slide and a bit, as shown in the following diagram:
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    Figure 2.9: Completed diagram – “MBSE in a slide and a bit”

    The final piece of information that has been added is that of Compliance, which contains Best Practice, as it is important in Systems Engineering that every activity performed is carried out in a rigorous, robust, and repeatable manner. This is achieved by demonstrating that the MBSE approach complies with various best practice sources. These sources may be the following:

    
      	Process-based standards, which may exist at different levels, such as international standards, industry standards, in-house standards, and so on. Typically, standards that relate to how to carry out an approach are based on processes; therefore, the Process Set must be shown to be compliant with the best practices. There are many process-based standards that exist, and the most widely used standard for Systems Engineering is ISO 15288 – Software and Systems Engineering life cycles and processes (ISO 2015).

      	Framework-based standards, which may exist at different levels, such as international standards, industry standards, and in-house standards. Typically, standards that are based on the information that must be produced as part of an approach are based on the Framework; therefore, this Framework must be shown to be compliant with the best practices. There are many Framework-based standards that exist. At the international level, the most widely used standard is ISO 42010 – Systems and software engineering — Architecture description (ISO 2011). There are also many industry standards, such as MODAF (MODAF 2010), DoDAF (DoDAF 2007), and NAF (NAF 2007), as well as the UAF (UAF 2017) for the defense industry. Zachman (Zachman 2008) is also used extensively in the IT industry, among others.

      	Application-based standards, some applications of Systems Engineering have their own specific standards that may be used in any number of different industries. Examples of such standards include best practice sources for areas such as safety, security, usability, maintainability, and so on.

    

    This set of best practice sources is not intended to be exhaustive but provides an indication of the types of standards and related sources that may be considered. The next section focuses on how to use the information presented so far in the context of MBSE.

    Using MBSE

    The concepts shown in Figure 2.7 and Figure 2.9 must be understood in order to properly understand and, therefore, be able to implement Systems Engineering using MBSE.

    These diagrams are also important for a number of other practical reasons when it comes to deploying MBSE into an organization.

    These diagrams may be used as an indication of the current MBSE capability within an organization or organizational unit. Every organization must start its MBSE deployment somewhere, and this diagram provides an overview of the five main areas, shown as the groups that must be considered as part of this deployment.

    It must be stressed that the diagram is not read from left to right, and it is certainly not the case that the MBSE activities are also put into place in the same way. The diagram should be used in the first instance as a checklist to ascertain what capability exists for each group.

    Once the capability for each group has been determined, it is then possible to perform a gap analysis and decide which groups need to be implemented, and then prioritize each group.

    In order to illustrate this, consider these two common examples:

    
      	An organization has decided that it wants to implement MBSE and, as a first step, has decided to adopt the SysML Notation and, as part of this adoption, has purchased a number of tools. There is nothing wrong with this as a first step per se, but the mistake that many organizations make is to think that MBSE can be successfully implemented simply by buying tools. It is clear from the diagram that there is no approach in place and, therefore, compliance cannot be demonstrated. Also, it will not be possible to tailor the tool to adopt the approach, as there is no approach in place. In this situation, it may be appropriate to look at getting the approach in place and then the compliance in order to deploy MBSE.

      	An organization has decided that it wants to implement MBSE and so has identified an architecture Framework that is used by a similar company, and has also identified that ISO 15288 is the standard that they would like to follow. Again, there is nothing wrong with this as a first step. The organization may think that it has a good approach in place, but it has confused the approach (architecture Framework) with the compliance (standard). A Process Set must be developed that complies with the standard and suits the way that the organization works. Also, what is to say that the architecture Framework that has been chosen is actually suitable for the nature of the business?

    

    Problems such as the ones illustrated here are not necessarily easy to address, and one way to get additional insight into them is to consider the maturity of MBSE in the business by looking at its evolution. This will be discussed in the next section.

    The evolution of MBSE

    One key factor that must be considered when implementing MBSE into an organization is the maturity of the MBSE activities, which may be addressed by looking at the evolution of MBSE.

    The evolution of MBSE may be thought of as ranging from a document-based approach to Systems Engineering, all the way to a full Model-based approach to Systems Engineering. This is not a simple transition, however, and there are five conceptual stages that must be considered, as shown in the following diagram (Holt & Perry 2020):
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    Figure 2.10: The evolution of MBSE (Holt & Perry 2020)

    The diagram in Figure 2.10 shows the evolution of MBSE by identifying five key stages that help to understand how MBSE can be implemented and deployed in an organization. Each stage will be described by discussing the following criteria:

    
      	Outcomes: In Chapter 1, Introduction to Systems Engineering, the implementation of MBSE was covered very briefly by discussing how the people, processes, and tools need to be effectively managed and balanced. Each stage, therefore, considers the people, process, and tools outcomes that will typically be in place for each of the stages.

      	Knowledge ownership: The ownership of the knowledge and where the knowledge resides will change as the evolution progresses through the five stages, and it is important to understand exactly how this happens.

      	Pre-conditional activities: In order to be in any one of the stages, there are a number of activities that must have been performed before the stage can be entered.

    

    Each stage will now be discussed according to these criteria.

    Stage 1 – Document-Based Systems Engineering

    Stage 1 of the evolution of MBSE is referred to as Document-Based Systems Engineering. For Stage 1 in the diagram in Figure 2.10, a large pile of documents is depicted. This implies that there are lots of documents associated with this stage of evolution. While this is true, it must also be kept in mind that the knowledge associated with the System is spread throughout these documents, rather than being contained in a single location.

    At this stage, the people, process, and tools outcomes may be considered as follows:

    
      	People: The people involved in this stage are assumed to have basic competence in Systems Engineering. The reality is that any organization that is delivering Systems must have a Systems Engineering capability, even if it is a tacit capability that is not formally captured or documented. When people are in this situation, it may be that they claim to want to put a basic Systems Engineering capability in place before considering MBSE. This is a huge mistake. Remember that MBSE is Systems Engineering, so there is no point in doing both – just aim straight for MBSE.

      	Process: The process that is in place may or may not be documented, but there will be a process in place. In either case, the main artifacts, that is, the inputs and outputs of the process, will be documents. These documents will be predominantly text-based and also include tables, graphs, lists, and so on.

      	Tools: The tools involved in Stage 1 will usually be Office-based tools, such as word processors, presentation applications, and spreadsheets.

    

    In Stage 1, all of the knowledge, information, and data concerning the System will be contained solely in the document set that is created as a result of executing the process. There is no Model whatsoever in place, so everything is both contained and owned by the documentation.

    The basic pre-condition for Stage 1 is that there must be some sort of basic need for MBSE that has been identified within the organization.

    Stage 2 – Document-Centric Systems Engineering

    Stage 2 of the evolution of MBSE is referred to as Document-Centric Systems Engineering. For Stage 2 in the diagram in Figure 2.10, a large pile of documents is again depicted, but this time, with two main changes. Firstly, the pile of documents has increased slightly. Secondly, rather than being mainly text-based, there is some evidence of people starting to use Notations as part of the documents. The knowledge associated with the System is still entirely contained in the documents, as there is still no presence of a Model.

    In this stage, the people, process, and tools outcomes may be considered as follows:

    
      	People: The people involved in this stage are assumed to have a basic competence in Systems Engineering, the same as in Stage 1. This time, however, there will be evidence of people applying Notations at an informal level. The reality of this is that what is being produced is a set of pictures rather than true Views that will make up a Model, but this is typical at this stage, as the people will be experimenting with different Notations in an ad hoc manner.

      	Process: In this stage, the artifacts associated with the process are still documents but, in line with the previous point, there will be the beginning of Notations being used to support the text descriptions.

      	Tools: In this stage, the tools will be the same as in Stage 1 but the difference is that actual drawing packages may have been used to create the diagrams that form part of the documentation.

    

    In Stage 2, all of the knowledge, information, and dates concerning the Systems are still solely contained in the document set. This is important, as the diagrams that have been produced are not truly part of a Model and cannot, therefore, own any of the knowledge associated with the System. Also notice that, at this stage, the pile of documents has actually become slightly taller, which represents the increase in information. At this stage, like Stage 1, all of the data, information, and knowledge associated with the System is contained in the documents. As the data, information, and knowledge are contained in the document and this is the only place where it resides, the documents may be thought of as owning all of this information.

    The basic pre-conditions for Stage 2 are the following:

    
      	The goals for MBSE must be formally captured. This will include what the scope of MBSE implementation will be and which Stakeholders exist. For each of the Stakeholders, a set of benefits must be identified. This is crucial as, otherwise, it cannot be demonstrated whether the MBSE initiative has been successful or not. If the goals or needs for the initiative have not been identified and defined, then it is impossible to validate these needs.

      	A basic assessment of the current MBSE in the organization must be ascertained. This will include identifying the current MBSE capability of the organization, which can be realized by looking at the MBSE in a slide that was introduced in the previous section in Figure 2.7 and Figure 2.9. The second part of the assessment is that the current maturity of the MBSE capability must also be ascertained. This can be realized by looking at the evolution of MBSE in Figure 2.10.

    

    During this stage, it may also be that some MBSE may be used to carry out the previous points without people actually realizing it. When this happens, it is often referred to as MBSE by stealth, where MBSE is actually being used in order to implement MBSE without people realizing that this is going on.

    Stage 3 – Model-Enhanced Systems Engineering

    Stage 3 of the evolution of MBSE is referred to as Model-Enhanced Systems Engineering. This is interesting, as it is the first stage where the term Model is introduced. The diagram in Figure 2.10 shows the Model starting to emerge from the pile of documents, which implies that the knowledge is now split between the Model and the document set.

    In this stage, the people, process, and tools outcomes may be considered as follows:

    
      	People: The people involved in this stage have now investigated Notations in more detail and have received some sort of formal notational training so that they exhibit notational competence. Also, the people will have an awareness level of the competence of MBSE concepts or, to put it another way, they are familiar with the “MBSE in a slide” concepts that were introduced and described in Figure 2.7 and Figure 2.9.

      	Process: In this stage, the true Model comes into existence and emerges from the documents. The Model contains and owns some of the knowledge associated with the System. The knowledge is now split between the Model and documents, rather than being solely owned by the documents. Also, the pile of documents starts to reduce in size. In this stage, MBSE will start to be applied in a serious manner, usually by implementing the emerging MBSE approach on a pilot project with a limited scope. By doing this, it is possible to demonstrate the benefits of MBSE, based on the goals identified previously, before rolling it out across the rest of the organization.

      	Tools: In Stage 3, there is typically more than one tool that is being used as part of the modeling. It is always advisable to carry out a full tool evaluation where possible and, in such cases, there will be a set of candidate tools that have been previously identified for potential use in the organization.

    

    In Stage 3, all of the knowledge, information, and data associated with the System are split between the now-emerging Model and the documentation set. This is important, as it really represents the first time that MBSE is being applied properly in any project.

    The basic pre-conditions for Stage 3 are the following:

    
      	People will have had some formal Notation training to enable them to start modeling in an effective way, rather than in the ad hoc way that it has been applied previously.

      	A formal tool evaluation should have been considered in order to narrow down the set of candidate tools to a single preferred tool.

    

    In many cases, Stage 3 may be an initial goal for MBSE in the short term in order to demonstrate the benefits of applying such an approach. Indeed, for some organizations, achieving Stage 3 may actually be the final goal, but it is more usual for Stage 3 to be a short-term goal.

    Stage 4 – Model-Centric Systems Engineering

    Stage 4 of the evolution of MBSE is referred to as Model-Centric Systems Engineering. At this stage, the Model is almost complete, as shown in the diagram in Figure 2.10, and owns most of the knowledge associated with the System.

    At this stage, the people, process, and tools outcomes may be considered as follows:

    
      	People: The people involved at this stage now exhibit competence in MBSE and also in the use of the candidate tool. The people now have a very strong understanding of MBSE and are using it to great effect. The tool is being used in an efficient manner and is being driven by the MBSE approach that is in place.

      	Process: In this stage, the approach is almost fully MBSE-based. The initial Framework is now in place, including the Ontology, and as a set of Viewpoints that are being used as a basis for the modeling. Consistency is also enforced through the use of the Framework, and the Views in the Model are created according to an initial Process Set. In this stage, the pilot project that was introduced in the previous stage is measured and assessed in order to demonstrate how effective the MBSE approach has been. The pilot project must be measured and assessed according to the goals that were established prior to Stage 2.

      	Tools: In Stage 4, the preferred tool has been selected and is now being used on real projects.

    

    In Stage 4, almost all of the knowledge, information, and data associated with the System are contained and owned by the Model with only small pockets still residing in the document set. As a consequence of this, the pile of documents is now significantly reduced.

    The basic pre-conditions for Stage 4 are as follows:

    
      	Formal MBSE training has now taken place so that all relevant team members now have the right set of skills to implement the MBSE approach.

      	The initial Process Set has been defined and is being applied to generate the Views that make up the Model.

      	The initial Framework, including the Ontology and Viewpoints, has now been developed and is being applied to real projects.

      	The preferred tool(s) has now been selected from the set of candidate tools. In large organizations, it is not unusual for several to have been selected.

      	The people have been trained formally in the use of the preferred tools.

    

    Stage 4 sees MBSE being applied at an advanced level, with many of the benefits that were anticipated now being realized.

    Stage 5 – MBSE

    The final stage of MBSE evolution, Stage 5, is the ultimate goal for any MBSE endeavor. Stage 5 sees all of the knowledge associated with the System being contained and owned in the Model, which has now fully emerged and exists as an entity in its own right. This stage is, of course, MBSE.

    In this stage, the people, process, and tools outcomes may be considered as follows:

    
      	People: The people involved in this stage now have mastery over MBSE and its application in the organization. The people strive to continuously maintain and even improve their competence so that the approach can be enabled as efficiently and effectively as possible.

      	Process: The approach is now entirely Model-based. The Framework and Process Set are now mature and are being applied on multiple projects as part of a company rollout. Advanced application of MBSE is now being implemented, including the implementation of advanced applications, such as pattern identification, definition, and application; process and competence modeling; variant modeling; and so on.

      	Tools: The tools that are being used are now tailored to allow the approach to be enforced automatically. This will include applying automatic domain-specific language consistency checks based on Ontology, automatic document generation, and other advanced tool functionality using profiles. In this stage, various different types of tools will also interoperate in a seamless fashion so, for example, management tools will interact with MBSE modeling tools, which will interact with mathematical modeling tools, and so on.

    

    In Stage 5, all of the knowledge, information, and data associated with the System are contained and owned by the Model. The diagram in Figure 2.10 shows that the Model is now fully formed and exists in its own right. Although no documents are shown here, there will always be some documents that exist.

    The point here is that the documents do not own any of the knowledge and, in fact, should be perceived as just another set of Views that make up the Model, albeit text-based Views.

    The basic pre-conditions for Stage 5 are as follows:

    
      	Advanced applications are being applied, including competence and process modeling, variant modeling, project-related applications, and so on.

      	The MBSE approach that is in place is being continually measured, assessed, and improved by applying competency assessment, process maturity assessment, and Model maturity assessment.

      	The tool has been tailored by creating profiles that enable various types of automation to be possible.

    

    Stage 5 is the ultimate goal, but it is essential that the whole MBSE approach is always continuously assessed and improved. The next section introduces concepts that may be applied across all of our MBSE in the form of cross-cutting concepts.

    Cross-cutting concerns

    As can be seen in the evolution of MBSE, the Model has its origins in Stage 2, starts to emerge in Stage 3, is almost complete in Stage 4, and is whole in Stage 5. From the point of making the decision to implement MBSE (which is Stage 1), it is important that several key mechanisms are put into place in order to ensure that the Model can be properly managed and controlled throughout the whole evolution. These mechanisms are referred to as cross-cutting concerns and include the following:

    
      	Configuration management: The Model is a living entity and its evolution must be controlled by applying effective configuration management.

      	Change control: It needs to be clear how changes are managed and what the process is for requesting and making changes to the Model. Also, the permission must clearly define which Stakeholders are allowed to view, edit, or create different parts of the Model.

      	Consistency: The Model must be valid and, therefore, consistency must be ensured throughout the life of the System.

      	Traceability: It is essential that all parts of the Model, whether directly or indirectly, are traceable to all other parts of the Model. This is important for impact analysis, change control, and so on.

      	Maintenance: The Model must be able to be edited, checked, and appended according to the change control processes, but the Model must also be available to the relevant Stakeholders using the tool.

    

    Most of these cross-cutting concerns will be covered to a certain extent by existing engineering processes within a business.

    Modeling with MBSE

    This section introduces the key concepts of modeling, as well as the spoken language that will be used throughout the rest of this book – the Systems Modeling Language, or SysML, as it is commonly known.

    It is important to understand exactly what is meant by modeling and also why modeling is needed in the first place.

    It is also very important to understand exactly what SysML is and what it is not, as there are many misconceptions associated with SysML and much confusion about how it fits in with the whole of MBSE. Indeed, one of the most common misconceptions is that SysML is actually the same as MBSE!

    Before the main discussion begins, it should be pointed out that there are many different types of modeling, as discussed previously in this book. For the purposes of the discussion in this chapter and for the remainder of the book, when the term modeling is used, it is referring to visual modeling, which means that diagrams are being used as a basis for the spoken language.

    At the heart of MBSE lies the act of modeling, so it is crucial that some key concepts concerning MBSE are both well defined and well understood, and it is also necessary to understand the need for modeling in the first instance.

    The need for modeling

    The fundamental reasons why modeling is needed come back to the same fundamental reasons of why it is necessary to carry out Systems Engineering: the three evils of Systems Engineering, as discussed in Chapter 1, Introduction to Systems Engineering. These three evils will be revisited now, but with an emphasis on how and why modeling can help to address them.

    The first evil of Systems Engineering is identified as being the complexity that is manifested by a System, whether it is essential (inherent in the System) or accidental (caused by the people, process, and tools associated with the approach). 

    Modeling can help with complexity, as the visual nature of the Views that are created provides an instant visual assessment of both the complexity and, importantly, where the complexity lives within the Model. Identifying the complexity is key to managing and controlling it. For essential complexity, once the complexity has been identified, then the dependency on the parts of the System where the complexity manifests itself the most can be limited and, therefore, controlled. For accidental complexity, once the complexity has been identified, it can be rationalized and minimized to keep the level of complexity as low as possible.

    The second evil of Systems Engineering is a lack of understanding at various points in the life cycle. Modeling can help here, as there are two very simple rules that can be applied when modeling any sort of information. Rule 1 is that if the Model is easy to generate, then it means that the source information is well specified and, therefore, well understood. In such situations, the Model seems to naturally fall out of the source information, and the modeling activity is very quick and straightforward. Rule 2 is the complement of Rule 1. If the Model is very difficult to generate with lots of ambiguity, uncertainty, and missing information, then the source information is poorly understood and poorly specified. In such situations, the Model is very difficult to abstract from the source information, and the whole modeling activity is time-consuming and effort-intensive.

    The third evil of Systems Engineering is identified as poor communication between various Stakeholders. Modeling helps in two ways here. It was discussed, in Chapter 1, Introduction to Systems Engineering, how efficient and effective communication requires a common language, which actually requires both a spoken language and a domain-specific language. Modeling helps to realize both of these; the choice of Notation is the spoken language and the definition of Ontology is the domain-specific language. Each of these is explored in more detail in the next two major sections.

    So, modeling helps to address the three evils of Systems Engineering, which also explains why MBSE is such a powerful approach to realizing Systems Engineering itself. The next section covers how we begin to define the Model.

    Defining the Model

    The Model was defined earlier in this chapter as being an abstraction of the System. Think of abstraction as being a simplified representation of the System, in this case, using graphics or diagrams as the medium. As the Model is an abstraction of the System, it is, by necessity, a simplification of the System, which means that it cannot contain every single possible piece of information associated with the System. The Model must be a simplification of the System and, therefore, there will be information associated with the System that is not contained in the Model. 

    This does not mean that the Model is wrong or incomplete, providing that all of the relevant and necessary information is contained in the Model.

    There is an inherent danger in this, as it means that it is important to be able to ascertain whether there is any missing relevant information or not. There is no way that this can be guaranteed 100%, but by applying a good, solid MBSE approach in the form of a Process Set and Framework, the risk of omitting such information is vastly reduced.

    As well as being an abstraction of the System, the Model was defined as comprising a number of Views, each of which has a target audience, a need, and a defined set of information contained therein. The definition of each Viewpoint is key in order to have confidence that no relevant information is missing.

    The next part of the definition of the Model was that each View must be consistent with every other View. This is essential. If the Views are modeled and they are not consistent, there is no Model, just a collection of pictures. If the Views are modeled and they are consistent with each other, then there is a Model. Consistency is key when it comes to modeling, and this cannot be stressed enough.

    The use of a good Notation, such as SysML, is important as it will provide mechanisms within the Notation that will demonstrate whether the diagrams that are used to visualize the Views are consistent or not.

    Two aspects of the Model

    When creating a Model, it is important to understand there are always two aspects to the Model: the structure and the behavior. Let’s look at these in more detail:

    
      	Structure: The structure of the Model defines the what of the Model – what the main elements in the Model are, what the relationships between these elements are, and what each of the elements does. The structure will also allow hierarchies of the System, both in terms of taxonomy (types of System elements) and the breakdown of conceptual levels (compositions of System elements). The relationships between the System elements are just as important as the System elements themselves, which is the key tenet of Systems thinking.

      	Behavior: The behavior of the Model defines the how of the Model. Here, we look at what order things happen, under what conditions they happen, and what the timing constraints are. While structure allows the Model to be broken down into hierarchies, the behavior tends to apply to specific levels of the hierarchy. Also, the relationships are considered dynamically, rather than statically.

    

    Every Model will have both structure and behavior associated with it, which, in real terms, means that there will be structural Views and behavioral Views that make up the Model. As all of the Views in the Model must be consistent in order for it to be considered a Model, this means that the structural and behavioral aspects of the Model must be consistent with each other.

    The Notation that is used in this book is SysML, which describes nine different diagrams that can be used to visualize the structural and behavioral aspects of the Model.

    When and where to Model

    There is often a lot of debate about at which point in the life cycle (where) and under what circumstances (when) modeling should be applied. The answers to these two points are quite simple.

    Modeling should be applied at any stage in the life cycle where the following apply:

    
      	There is unidentified, unmanaged, or uncontrolled complexity in the System (evil number 1).

      	There is a need to understand any aspect of the System (evil number 2).

      	There is a need to communicate effectively and efficiently with any of the Stakeholders (evil number 3).

    

    In terms of under what conditions, or when, modeling should be applied, it should only be applied when value is being added by carrying out the modeling.

    This last point is quite abstract but crucial. Every activity that is performed as part of MBSE must add value and contribute toward realizing the System successfully. If this is not the case, then it should not be done! Sometimes, it is necessary to go a step too far with the modeling and to arrive at the conclusion that, as there is no longer any value being added, the modeling should be stopped. The use of an effective Framework will address this because the reasons why each View is needed will have already been decided and, providing that people adhere to the Framework, no Views will ever be created where there is no defined need or benefit.

    The spoken language – the Systems Modeling Language

    SysML is a general-purpose visual modeling language. SysML is itself based on another general-purpose visual modeling language, known as UML. UML is a language that has its roots firmly in the software engineering world and was created for very pragmatic reasons. Prior to 1997, when the first version of UML was released, there was a whole plethora of modeling notations and methodologies that were being used for software engineering. In fact, there were over 150 different recognized approaches available.

    Bearing in mind that one of the aims of a modeling notation is to provide a basic mechanism for communication, there were simply way too many available, which made the choice of Notation both bewildering and difficult. In the mid-1990s, therefore, the software industry collectively decided that there were too many languages and that there should be a single, standardized, common language that everybody could use. It was important that the language would not be proprietary and, therefore, it was decided that the Object Management Group (OMG), which is an international standards body that manages and configures standards relating to object technology, would own the new language. In 1997, UML was formally released to the software engineering world.

    As UML was a general-purpose modeling language, it actually had a far wider scope than just software and, indeed, it was used extensively in the Systems Engineering community (Holt 2001). UML was adopted so widely that, in 2004, it was decided by INCOSE that there should be a variation of UML that could be applied specifically to the Systems Engineering world, hence SysML was born.

    
      SysML is still owned, managed, and configured by OMG, and the standard itself can be downloaded from the OMG website.

    

    SysML is technically a profile of UML. You should think of the relationship between these two languages as UML being the parent language and SysML as a dialect of that language.

    This section will begin by discussing exactly what SysML is and what it is not. This is important, as there are many myths concerning the nature of SysML. Nine SysML diagrams will then be introduced at a high level and more specific examples of structural and behavioral Models will be provided.

    What SysML is (and what it is not)

    Many of the previously available modeling Notations were actually methodologies in that they had an in-built process that was used alongside the Notation that dictated which diagrams to use and at which point in the development.

    SysML is purely a Notation and has no inherent process. This is a very important point that needs to be very clear and well-understood. Looking back to “MBSE in a slide” in Figure 2.7 and Figure 2.8, SysML sits on the right-hand side of the Visualization group. SysML is just one, albeit an essential, part of an overall MBSE solution; it is not MBSE.

    The SysML diagrams

    SysML may be thought of as a toolbox that contains nine different diagrams that collectively allow both the structural and behavioral aspects of the Model to be visualized.

    The structural diagrams are as follows:

    
      	The block definition diagram (bdd) is by far the most widely used of all the SysML diagrams. Every Model will contain Views that are visualized using bdds, and it is important to have a good grasp of the basics of this diagram.

      	The internal block diagram (ibd) is actually a variation on the bdd and is used to show the structure inside specific blocks and configurations.

      	The requirement diagram (rd) is a block diagram with a few specialized elements of Notation that can be used to specify text-based requirements, or needs, and a set of predefined properties for each. Requirement diagrams are used primarily for requirements management, as opposed to requirements engineering.

      	The parametric diagram (par) allows properties of blocks (contained in block diagrams and internal block diagrams) to be reasoned about by applying constraints, such as equations and heuristics. The parametric diagram forms the bridge between the visual world of MBSE modeling and the formal, mathematical world of Model-Based Engineering (MBE) modeling.

      	The package diagram (pd) allows groups of elements on other diagrams to be collected together and partitioned. It is one of the lesser-used SysML diagrams, but packages can also appear on other diagrams, which is a more typical use.

    

    One of the key points to observe here is that all the structural diagrams are closely related. In fact, they are all either a variation of, or very closely linked to, the bdd. When beginning with SysML, it is a good idea to simply default to using bdds for the structural aspect of the Model and to bring in the other diagrams as and when they are required.

    The behavioral diagrams are as follows:

    
      	The use case diagram (uc) allows high-level behavior, such as context, to be visualized. It is particularly useful for needs modeling, such as requirements engineering. Use case diagrams are one of the more widely used SysML diagrams, but are also undoubtedly the most badly used of all the SysML diagrams!

      	The sequence diagram (sd) allows scenarios to be modeled and focuses on the interactions between Model elements, such as blocks. Sequence diagrams are typically used at high levels of the Model and are a key tool for any Systems Model.

      	The state machine diagram (smd) focuses on the behavior inside individual blocks and their instances. State machine diagrams are typically used at a low level of detail and may be driven by states or events, and are widely used throughout Systems Engineering.

      	The activity diagram (ad) allows very detailed behavior inside specific operations to be modeled. Activity diagrams are often used for the implementation modeling and reverse engineering of legacy Systems, and are based on classic flow charts for their notation, (whereas the semantics are based on token-flow semantics, such as Petri nets). Hence, many people will feel comfortable using them, as they have seen something similar before in terms of syntax.

    

    Behavioral diagrams are typically applied at different levels of abstraction, whereas structural diagrams allow multiple levels of abstraction to be shown on the same diagram.

    There is obviously a very close relationship between diagrams of the same type (structure or behavior), but also between diagrams of different types (structure and behavior). It is these relationships that form the basis of the Notation and of the consistency checks that can be applied to any SysML Model to demonstrate that it is compliant with the underlying SysML Notation.

    It should be remembered that this book is not a book that is focused on SysML, but rather, one that uses SysML as its preferred Notation. With this in mind, the full syntax of SysML will not be covered in great detail, but the basics of SysML will be introduced as and when they are used throughout the book.

    The next section will introduce some of the key SysML diagrams by considering the existing example System of a car, but this time, using SysML, rather than the generic “squares and lines” Notation that has been used thus far in the book.

    Example structural modeling

    It was mentioned in the last section that the go-to diagram for structural modeling in SysML is the bdd, which is an abbreviation of the term block definition diagram. In this section, the basics of bdds will be introduced and discussed. It should be remembered that these are only the basics, and this is not intended to be an exhaustive description of bdd elements.

    Identifying basic blocks and relationships

    A bdd comprises two main elements, which are as follows:

    
      	The block: This represents a concept of something that forms part of the System. A block is represented graphically by a rectangle with the word <<block>> in it. The <<block>> word is used to reference that it is a stereotype of a UML element called a class. Stereotypes are an advanced modeling concept that will be discussed later in the book. For now, it is enough to understand that the term <<block>> is used simply to identify a block.

      	The relationship: This relates one or more blocks in the System to one another. There are various types of relationships that will be discussed as this section progresses.

    

    In order to illustrate these two elements, consider the following diagram:

    [image: Figure 2.11 – Bdd – simple block and association ]
    Figure 2.11: bdd – simple block and association

    The diagram in Figure 2.11 shows two blocks – Driver and Car – which are somehow related. The blocks are shown as rectangles with the term <<block>>, and the relationship, known as an association, is shown by simply drawing a line between the two blocks.

    Any SysML diagram should be able to be read out loud and it should make sense. If this diagram was read out loud, it would read as “there are two blocks – Driver and Car – and there is a relationship between them.” This does read as a good sentence but does not convey too much information about the car or driver and about the relations between them. This diagram can be easily enhanced by adding some more information about the relationship, as shown:

    [image: Figure 2.12 – Bdd – named association ]
    Figure 2.12: bdd – named association

    The diagram in Figure 2.12 includes some adornment on the relationship, as the association has now been given a name and a direction. The name is drives and the direction shows that the association is to be read from left to right, which is indicated by the small triangle that is shown above the association line. This diagram now reads Driver drives Car, which is far more precise than what was shown in Figure 2.11.

    Each block represents the concept of something, so both Driver and Car represent the concepts of Driver and Car rather than any specific, real-life examples of them. Such specific, real-life examples of a block are referred to as instances. So, for example, Car is a concept, whereas Jon’s car is a specific, real-life example of a car and is, therefore, an instance.

    When naming associations, the words written on the line are typically verb constructs that, when read out loud, will form a natural sentence. Here, Driver drives Car is a perfectly correct English sentence that will make sense to most people when they hear it.

    The direction indicator shows which direction to read the association name in and is very important for the overall meaning of the diagram. It is also possible to show a two-way, or bidirectional, association by simply omitting the small triangle. Caution must be exercised here, however, as if the direction is accidentally omitted, it has meaning in SysML!

    This diagram may be enhanced further by showing numbers between the two blocks:

    [image: Figure 2.13 – Bdd – multiplicity ]
    Figure 2.13: bdd – multiplicity

    The diagram in Figure 2.13 shows how numbers may be added to each end of the association, which is known in SysML as multiplicity. This diagram may be read as one Driver drives one Car. This sentence is correct, but there is a subtlety to the numbering that can easily be mistaken. The numbers on each end of the association do not refer to absolute numbers but actually refer to the ratio of instances of each block at each end of the association. This diagram does not imply that there is only one driver and only one car, which it may look like at first glance. What this actually states is that for each real-life example of Driver, there will be one real-life example of Car. The word “each” is important here, as it conveys this meaning far less ambiguously than using the term “one.” This diagram should be read, therefore, as each Driver drives one Car.

    Each end of the association has its multiplicity shown, and there are a number of standard options that can be used:

    
      	1 indicates one instance, as shown in this example.

      	1…* indicates one to many instances.

      	0…1 indicates zero to one instance.

      	0…* indicates zero to many instances.

      	1…10 indicates a range of between 1 and 10 instances.

      	2,4,6,8 indicates one of a set number of instances.

    

    As an example of this, consider the following diagram:

    [image: Figure 2.14 – Bdd – adding more blocks and multiplicities ]
    Figure 2.14: bdd – adding more blocks and multiplicities

    The diagram shown in Figure 2.14 has added a new block called Passenger that has an association with Car. This section of the diagram is read as between zero and four passengers ride in each car. Note how the multiplicity this time is shown as 0…4, which shows that there may not even be any passengers, and that passengers are optional, whereas Driver is not optional and must always be present.

    It should also be noted that when writing the names of the blocks and the words that make up the association, the singular should always be used. Therefore, the block is Passenger and never Passengers and the verb constructs assume the singular, so the verb is rides in rather than ride in. Always show the blocks and verbs in their singular form and imply the plurality using multiplicity.

    Associations typically show the relationships between multiple blocks, but it is also possible to show a self-association – that is, a relationship from one block back to itself, with the same multiplicity rules applying.

    There is also a variation of an association that shows a relationship from a block to an association, rather than to another block, as shown in the following diagram:

    [image: Figure 2.15 – Bdd – the association block ]
    Figure 2.15: bdd – the association block

    The diagram in Figure 2.15 shows an association block that is named Control Panel. An association block relates a block to an association, rather than to another block. It is a good way to provide more detailed information about a relationship or interaction between blocks. The expression to use when reading an association block out loud is the word via. The diagram here, therefore, reads as “Each Driver drives a Car via a Control Panel.”

    Describing a block in more detail

    Each block may also be described in more detail, by identifying and defining its features – mainly, its properties that describe what the block looks like and its operations that describe what the block does.

    When describing any block, there is the option to add more detail by identifying a number of properties that describe specific features of a block, as shown in the following diagram:

    [image: Figure 2.16 – Describing blocks – identifying properties ]
    Figure 2.16: Describing blocks – identifying properties

    The diagram in Figure 2.16 shows the Car block, but this time, a number of properties have been added that describe specific features of the block. Properties are shown by adding an additional compartment underneath the name of the block. A number of properties may then be added inside that compartment. Each property should describe a single feature of the block and should be a singular noun. In the example here, there are three properties that have been identified, which are as follows:

    
      	Make, which refers to the manufacturer of the car.

      	Model, which refers to the specific variation or configuration of the car that is available to buy.

      	Registration, which refers to the unique registration number that is allocated to the actual car.

    

    It is important that each of these properties can take on a number of different values and these values are defined when the block is initiated. To illustrate this, consider the Car block, which has three generic properties that will apply to all instances of Car. When a real-life example of Car is considered, let’s use the instance of Jon’s car, then the properties will have their actual values defined, so the Make property may be set to the value Mazda, the Model property may be set to the value Bongo, and so on.

    When properties have been identified, it is also important that they are defined in more detail, to avoid any unnecessary ambiguity, as shown in the following diagram:

    [image: Figure 2.17 – Describing blocks – defining properties  ]
    Figure 2.17: Describing blocks – defining properties

    The diagram in Figure 2.17 shows the same Car block with its three properties but, this time, more information has been added to define the nature or type of values that each property may take. In SysML, everything is “typed,” which means that everything must have a definition of the types of values that it may take on. These types may be simple or more complex.

    Simple types are similar to standard variable types from the software engineering world, such as the following:

    
      	int: Integer number

      	char: Character

      	real: Real number

      	bool: Boolean, true or false

    

    The list continues, but these are well-established types that are generally known and well understood.

    Each type is indicated by having a colon after the property name and then showing the type name immediately after it. It is also possible to show ranges of values and default values for each property, and these shall be described where appropriate as the book progresses.

    It is also possible to define more-complex types, in which case it is possible to create another block, identify and define its properties, and then use that as a type. An example of this is shown in the diagram with the block Reg_Type. The Registration property is not a simple type but is a construct of a number of alpha-numeric characters in a specific order with a specific meaning. In the UK, the standard registration number comprises three main elements, which are as follows:

    
      	Area_ID: A set of two letters that indicate where the car originated

      	Year_ID: A set of two single-digit numbers that indicate which year, and which half of the year, the car was manufactured

      	Number_ID: A set of three letters that provide the final part of the unique identifier for the car

    

    This block may now be used as the type for the property of Registration on the Car block.

    When defining the set of properties, SysML states that they should appear in alphabetical, rather than logical, order as, strictly speaking, no order should be inferred from the set of properties.

    The properties of a block describe what a block looks like, and it is also possible to show what a block does by describing its operations, as shown in the following diagram:

    [image: Figure 2.18 – Describing blocks – identifying operations ]
    Figure 2.18: Describing blocks – identifying operations

    The diagram in Figure 2.18 shows a more-complete diagram, with more properties shown for the blocks that have been identified so far. Note that the two blocks Driver and Passenger each have a default value for Age indicated by showing it after the equals (=) sign after the type definition.

    In addition to the properties, the Driver block has an additional compartment shown that has an operation identified as drive in it. Operations allow elements of behavior to be identified and defined that are associated with a specific block. It should be noted that operations show what the behaviors are, rather than how they behave – that is, they’re done by using behavioral diagrams in SysML.

    Each operation should be a verb to reflect its behavioral nature. These operations have parentheses after them, which allow return values and various parameters to be defined. Again, these will be dealt with when the need arises throughout the book.

    Describing relationships in more detail

    In the same way that blocks may be described in more detail, there are also several special types of relationships that allow more details to be added to the diagrams.

    The basic type of relationship is the association, which has been discussed already and shows a simple relationship between one or more blocks. A variation on this, the association block, was also described, which allows a via relationship to be added.

    Another standard type of relationship, which is actually a special type of association in SysML, is known as composition, and is used to show structural hierarchies, as shown in the following diagram:

    [image: Figure 2.19 – Describing relationships – composition ]
    Figure 2.19: Describing relationships – composition

    The diagram shown in Figure 2.19 shows the concept of composition, which is shown graphically as a filled-in diamond shape at one end of the association. When this symbol is seen, the words is composed of or comprises should be used when reading the diagram. The composition is read from the diamond end, and the usual rules of multiplicity apply.

    This diagram, therefore, reads as Car is composed of one Body, one Chassis, one Interior, and one Drive Train.

    The diagram actually has four separate compositions on it, one for each lower-level block, but these are usually shown as overlapping, as is the case here, for reasons of clarity and readability.

    Composition allows a block to be decomposed into lower-level blocks so that structural hierarchies may be shown. The diagram here only has a single level of decomposition, but there is no reason why multiple levels cannot be shown on the same diagram, and, indeed, this is quite common.

    There is also a variation in a composition that is known as aggregation. An aggregation also shows an is made up of-type relationship, but the main difference is that of ownership. Consider the following diagram:

    [image: Figure 2.20 – Describing relationships – aggregation ]
    Figure 2.20: Describing relationships – aggregation

    The diagram in Figure 2.20 shows a more complete and, as is often the case, more complex View that focuses on the breakdown of the Drive Train block. This increase in complexity is partly due to the fact that there are simply more blocks in this diagram, but also because this diagram is also showing the associations that exist between the various blocks, as well as the compositions. There is also an example of aggregation, which is represented by an empty diamond, as opposed to the filled-in diamond of the composition relationship. In order to illustrate the difference between the composition and aggregation relationships, consider the following:

    
      	The Drive Train is made up of a Gear Box, a Motor or two, a Control Unit, and a Battery. This is expressed using composition, and it means that the four blocks that are part of the Drive Train via the composition are owned by that block. That is to say, the Drive Train owns the Gear Box, Motor, Control Unit, and Battery.

      	The Drive Train is made up of a Charger. This is expressed using aggregation, and it means that the Charger is part of the Drive Train, but that it is not owned by the Drive Train.

    

    This is a subtle difference, but an important one. The diagram actually shows that the Drive Train is made up of five blocks, four of which it owns, and one of which it does not. This means that the Charger is required to make sure the Drive Train is complete, but that it is owned by some other System element. The Drive Train needs the Charger; otherwise, it will not work, as there is nothing to charge the Battery.

    However, this Charger may be part of any other Systems element that happens to own a Charger. The difference between composition and aggregation is, therefore, one of ownership.

    Both composition and aggregation are actually special types of association, but there is another very widely used type of relationship that is not a type of association and stands on its own. This is the type of relationship, referred to as either specialization or generalization. This is demonstrated as follows:

    [image: Figure 2.21 – Describing relationships – generalization and specialization ]
    Figure 2.21: Describing relationships – generalization and specialization

    The diagram in Figure 2.21 shows the type of relationship that allows generalization and specialization to be modeled, and it is shown graphically as an empty triangle. This is a very powerful concept, as it allows classification hierarchies, or taxonomies, to be modeled. The diagram shows that there are two types of Motor, which are Combustion Engine and Electric Motor. Also, Combustion Engine has two types, which are Petrol Engine and Diesel Engine.

    The fact that there are two different terms for this type of relationship can lead to confusion, but the reality is actually straightforward, as the difference between generalization and specialization is simply one of the reading direction of the relationship. This relationship can, therefore, be read in the following two ways:

    
      	Combustion Engine and Electric Motor are both types of Motor. When reading up the relationship (toward the triangle), the blocks are becoming more abstract or more general. This is referred to as generalization.

      	Motor has the Combustion Engine and Electric Motor types. When reading down the relationship (away from the triangle), the blocks are becoming less abstract or more specific. This is referred to as specialization.

    

    The difference, therefore, is simply one of reading direction, which is purely a personal preference for the person reading the diagram. When two specializations of a block are present, there must be something that distinguishes them from each other, or that makes them “special.” This is usually the set of properties, operations, or relationships that are specific to each specialized block.

    When showing generalization and specialization, there is a very important concept known as inheritance that applies to any properties, operations, or relationships that relate to the blocks in the taxonomy. The Motor block has a property named Power Rating defined. As both Combustion Engine and Electric Motor are both types of Motor, then it is reasonable to assume that they will also have the same property, as they are specializations. This is known as inheritance, which states that any specializations associated with a block will inherit all of the properties and operations associated with its generalized block.

    To put this another way, both Combustion Engine and Electric Motor will inherit the Power Rating property from the Motor block as they are types of Motor. Furthermore, as Combustion Engine has two types, Petrol Engine and Diesel Engine, these will also inherit the Power Rating property as the concept of inheritance applies to all levels of specialization.

    Note that the Combustion Engine block has its own property, which is Fuel Type, which will be inherited by its specialization. It is not inherited by its generalized block, Motor, as inheritance only applies to specializations and not generalizations.

    Inherited properties and operations are usually not shown on the blocks – therefore, the Electric Motor block actually has the Power Rating property despite it not being shown on the block. The exception to this is when inherited properties are constrained in some way, such as with the Petrol Engine and Diesel Engine blocks, whose inherited properties are as follows:

    
      	The Petrol Engine block shows its inherited property, as the property value is always set to Petrol and it can never be changed.

      	The Diesel Engine block shows its inherited property, as the property value is always set to Diesel and it can never be changed.

    

    When a property has a value that can never be changed, it is referred to as an invariant in SysML, and invariants are often the distinguishing feature between two specialized blocks.

    Example behavioral modeling

    The other aspect of modeling that must be considered as part of any Model is the behavior. So far, the structural aspect of the Model has been discussed, but the Model cannot be complete without modeling the behavior.

    As was seen with modeling structure with bdds, it is possible for several levels of abstraction to be shown on the same diagram, by using composition, aggregation, and generalization/specialization. It helps to think about this as a structure being able to show multiple levels of abstraction vertically.

    Behavior, however, does not work like this, and behavior Views apply across single levels of abstraction. It helps to think about this as behavior being able to show a single level of abstraction horizontally.

    Typically, these horizontal levels may be applied like so:

    
      	At the highest, contextual level: This will focus on interactions between the System and its Stakeholders, or enabling Systems, and will allow interaction across the System boundary to be modeled. Typical SysML diagrams that will be used at this level include use case diagrams and sequence diagrams.

      	At the high level, between System elements: This will focus on interactions between System elements, such as blocks on a bdd. Typical diagrams that are used at this level are sequence diagrams.

      	At the medium level, within a System element: This will focus on interactions within a single System element, such as a block on a bdd. Typical diagrams that are used at this level are state machine diagrams.

      	At the low level, within System element behaviors: This will focus on interactions within a single System element behavior, such as an operation on a block in a bdd. Typical diagrams that are used at this level are activity diagrams.

    

    It should be stressed that these are the typical diagrams that are used at each level and that the levels indicated here are generic.

    The common thread among all of these points is the word interaction, as behavioral modeling is concerned with how interactions occur at various levels of abstraction.

    In order to illustrate modeling behavior, two of these levels will be considered in the first instance: modeling interactions within a System element and between System elements.

    Modeling interactions within a System element

    The first level of abstraction that will be considered is the medium level, where we will be looking at interactions within a System element.

    In SysML, any block in a block diagram may have its behavior defined using a state machine diagram. For this example, consider again the following diagram:

    [image: Figure 2.22 – Focus on Charger and Battery ]
    Figure 2.22: Focus on Charger and Battery

    The diagram in Figure 2.22 shows a bdd that is a subset of the diagram shown in Figure 2.20, but this time, it is specifically using the Battery and Charger blocks. Notice how each block has a number of features (properties and operations) defined. It is quite usual to show a high-level View with no features and then to focus on a subset in a separate View showing these features.

    Each of these blocks may now have its behavior defined using a state machine diagram, so consider the behavior of Battery, as shown in the following diagram:

    [image: Figure 2.23 – Modeling behavior within a system element – smd for the Battery block ]
    Figure 2.23: Modeling behavior within a System element – state machine diagram for the Battery block

    The diagram in Figure 2.23 shows the behavior within a System element (in this case, the behavior of the Battery block), using a state machine diagram. A state machine is created for each System element that has a behavior at the conceptual level. In SysML terms, this means that a state machine diagram will be defined for a specific block. This state machine, like the block, is conceptual. When the block is instantiated, its state machine is executed.

    This means that if a block is instantiated multiple times, then the same state machine will be copied and executed multiple times. Therefore, it is entirely possible and usual for multiple copies of the same state machine to be executed simultaneously. Remember, define a state machine once for the block, then execute for each instance.

    The basic Model elements of a state machine are as follows:

    
      	The state, which describes the situation of a block at a specific moment during its execution.

      	The transition, which shows the legal paths to leave one state and execute another.

      	The event and condition, which show what criteria must be met in order to cross a transition.

    

    There are three types of state shown in Figure 2.23, which are as follows:

    
      	Start state, which is shown graphically by the filled-in circle and represents the creation of an instance, or the birth, of a block

      	End state, which is shown graphically by the bull’s-eye symbol and represents the destruction, or the end of life, of a block

      	State, which is shown graphically by a box with rounded corners and represents a specific moment in time when the block is satisfying a particular condition, is performing an action, or is waiting for something else to occur

    

    There are a number of transitions in this diagram, which are shown graphically by directed lines (lines with arrows on them) and show the possible execution paths between the various states.

    There are also two types of events that are shown in the diagram, which are as follows:

    
      	Send event, which represents sending some sort of message outside the boundary of the state machine. This is represented graphically by the five-sided shape showing a convex point.

      	Receive event, which represents receiving some sort of message from outside the boundary of the state machine. This is represented graphically by the five-sided shape showing a concave point.

    

    There are also two conditions that are shown in the diagram, each of which is shown in square brackets ([ ]) and represents a logical decision that is represented graphically by the diamond symbol. When making a decision and checking the values of a property, that property must exist on the block that owns the state machine diagram.

    This is the first of many examples of consistency between the two different types of diagrams. One of the key points to check when considering more than one diagram is the consistency between different diagrams. Remember that the difference between pictures and a Model is consistency. In this diagram, it can be seen that the property that is being checked as part of the decision check is also present on the parent block. In the following example, several more examples of consistency will be identified and discussed:

    [image: Figure 2.24 – Modeling behavior within a system element – smd for the Charger block ]
    Figure 2.24: Modeling behavior within a System element – state machine diagram for the Charger block

    The diagram in Figure 2.24 shows a state machine diagram for the Charger block. In this diagram, there is more detail and consistency with the Charger parent block.

    This diagram shows some explicit executable behavior, which, in SysML, may be defined at two levels of granularity:

    
      	Action: This represents atomic behavior. This means that once started, the execution of the action cannot be interrupted. As a result of this, actions are often (but not always) short in terms of the time that they take to execute. In fact, many people consider actions to be instantaneous and take zero time, despite this being impossible. Actions are shown graphically by the / symbol followed by the action. In the diagram shown here, the actions are used to show how the value of the Status property is set at different points in the state machine. Actions may exist on transitions or inside states.

      	Activity: This represents non-atomic behavior, which means that once started, it may be interrupted. As a result of this, activities are often perceived as taking time. Activities are shown graphically by the do keyword, which is immediately followed by / and that then references an operation from the parent block. Activities are shown inside blocks and may not be shown on transitions.

    

    The use of actions and activities allows behavior to be added to the state machine as well as allows consistency to be enforced with the parent block.

    Another aspect of consistency that may also be enforced is the send and receive events that are sent and received across the boundary of the various state machines. Consider the start charge and start discharge send events; they must go somewhere to be received.

    Now consider again the state machine diagram for Battery that is shown in Figure 2.25. It can be seen that these same messages are also seen, but this time, as receive events. Remember that send and receive events show the broadcast and receipt of messages, which must be consistent.

    Modeling behavior between elements

    This leads neatly to looking at behavior modeling at a higher level of abstraction by modeling behavior between Systems elements using sequence diagrams, as shown in the following diagram:

    [image: Figure 2.25 – Modeling behavior between system elements – sequence diagram  showing a basic charging scenario ]
    Figure 2.25: Modeling behavior between System elements – sequence diagram showing a basic charging scenario

    The diagram in Figure 2.25 shows an example of modeling behavior between System elements using a sequence diagram. Sequence diagrams are the most widely used of all the behavior diagrams and they have a multitude of uses that will be explored throughout the book. In the first instance, sequence diagrams will be used to help us to understand how messages are passed between System elements in a single, simple scenario. A scenario shows a specific sequence of occurrences that result in a specific outcome and that allow “what ifs” to be explored. Unlike the state machine diagram, it is not possible to show all possible execution paths on a single diagram, which is why there will usually be several scenarios (using sequence diagrams) for different combinations of interacting blocks.

    The basic modeling elements that comprise a sequence diagram are as follows:

    
      	Life lines: These represent a number of instances to be shown. These are shown graphically as boxes with a block name preceded by a colon. This box has a dotted line underneath it that represents the passage of logical time, or the sequence of interactions that enter or leave the life line. As life lines represent collections of instances, they must relate directly back to blocks.

      	Interactions: These show the communications between different life lines and allow the flow of messages to be visualized. Interactions are instances of associations from block diagrams and show messages that can be seen in other behavioral diagrams, such as the state machine diagram.

      	Gates: These show an entry point to the sequence diagram without necessarily showing where it comes from. These are represented graphically by small boxes.

    

    The sequence diagram in Figure 2.25 shows several examples of consistency:

    
      	The :Battery and :Charger life lines are consistent with the Battery and Charger blocks from the bdd.

      	The plug in and start charge interactions are consistent with the charge association from the bdd.

      	The shut down self-interaction is consistent with the shut down operation on the bdd.

      	The start charge and start discharge interactions are consistent with the start charge and start discharge events on the state machine diagram.

    

    The sequence diagram here shows a single normal scenario, where Charger is plugged in and Battery charges successfully. Of course, there are a number of other normal scenarios that may be explored, such as discharging. One of the powerful uses of scenario modeling is to show abnormal, or atypical, scenarios, such as where things go wrong. The combination of normal and abnormal scenarios is often referred to as sunny day and rainy day scenario modeling. This will be explored in more detail when needs modeling is considered.

    The domain-specific language – the Ontology

    The previous section provided a detailed discussion about the spoken language and, in particular, the use of SysML as this language. This section looks at the other half of having a common language – the domain-specific language or, to use the modeling term, the Ontology.

    The importance of Ontology will be discussed and then example Ontology Views will be presented that will be used throughout this book.

    Understanding Ontology – the cornerstone of MBSE

    The Ontology is the single most important construct within MBSE, as it provides the basis for the Model. The Ontology is used for almost every aspect of MBSE, including the following:

    
      	The domain-specific language: The main concepts and their associated terminology must be defined for successful Systems Engineering, as discussed in Chapter 1, Introduction to Systems Engineering. The Ontology is the visualization of the domain-specific language.

      	The basis for structure and content of Viewpoints: The Model comprises a number of Views, and the consistency and rigor of the Views are ensured through the use of templates or Viewpoints that define the structure and content of each View. The Viewpoint uses subsets of the Ontology to identify and define what exactly is permitted to be visualized in each View.

      	The basis for consistency of the Model: The Model must be consistent, otherwise it is a random collection of pictures, rather than a consistent set of Views. This consistency must be enforced in terms of the spoken language, which is achieved through the use of SysML, and the domain-specific language, which is achieved through the use of the Ontology. The relationships between all of the ontological elements provide all of the consistency paths needed to assure that the Model is correct.

      	The basis for traceability: It is essential that any artifact that is produced as part of the Systems Engineering approach can be followed backward (known as traceability) or forward (known as impact) in the Model. This ensures that if any changes are made at any point in the project to any part of the Model, then it can be easily and quickly established which other parts of the Model may be affected.

    

    The Ontology, therefore, is an essential part of MBSE and one that it is important to get right. The next section will introduce the Ontology that will be used and built upon throughout the book.

    Visualizing Ontology

    The domain-specific language was introduced in Chapter 1, Introduction to Systems Engineering, and a number of simple diagrams were used to show how the concepts related to one another.

    By using the SysML that has been introduced so far in this chapter, it is now possible to define the Ontology using the SysML Notation to make it more precise and meaningful than the informal diagrams that were used in Chapter 1, Introduction to Systems Engineering, and at the beginning of this chapter.

    The Ontology that will be presented here will now be built upon and used for the rest of the book. This will be referred to as the MBSE Ontology and is based on the best-practice MBSE Ontology that is used extensively in the MBSE community (Holt & Perry 2014).

    For reasons of clarity and readability, the MBSE Ontology will be broken down into four diagrams. Here is the first one:

    [image: Figure 2.26 – The MBSE ontology – systems engineering ]
    Figure 2.26: The MBSE Ontology – Systems Engineering

    The diagram in Figure 2.26 shows the MBSE Ontology with a focus on Systems Engineering.

    This diagram may be read as follows.

    Systems Engineering realizes successful Systems. There are three evils that hinder Systems Engineering, which are Understanding, Communication, and Complexity. MBSE is a type of Systems Engineering that mitigates these evils via the Model.

    Each System exhibits complexity, of which there are two types: Essential Complexity and Accidental Complexity.

    A number of Stakeholders have an interest in the System and they communicate with each other via a Common Language. The Common Language has two Aspects, which are the Spoken Language and the Domain-Specific Language.

    The next diagram follows directly from this one and expands upon Systems Engineering by considering its implementation:

    [image: Figure 2.27 – The MBSE ontology – implementing systems engineering ]
    Figure 2.27: The MBSE Ontology – implementing Systems Engineering

    The diagram in Figure 2.27 shows the MBSE Ontology with a focus on implementing Systems Engineering.

    This diagram may be read as follows.

    Systems Engineering is made up of one (or more) Person (people!), Process, and Tool. The Process drives the Tools and also realize a number of Capabilities. The Capabilities describe the ability of an Organizational Unit that comprises an Organization.

    A number of Person work for a number of Organizational Units and people hold the roles of any number of Stakeholders. Competence describes the ability of each Person.

    The next diagram starts to consider the nature of a System:

    [image: Figure 2.28 – The MBSE ontology – system structure ]
    Figure 2.28: The MBSE Ontology – System structure

    The diagram in Figure 2.28 shows the MBSE Ontology with a focus on the System structure.

    This diagram may be read as follows.

    A System has two types – Enabling System and System of Interest – each of which comprises a number of System Elements that it owns, and may also be made up of a number of System Elements that it does not own.

    There are three types of System Element:

    
      	Subsystem, which comprises a number of Assemblies that it owns, and may also be made up of a number of Assemblies that it does not own

      	Assembly, which comprises a number of Components that it owns, and may also be made up of a number of Components that it does not own

      	Component, which is the lowest level of the System Element

    

    Stakeholders have an interest in the System and there are three types of Stakeholders: Customer, Supplier, and External. Stakeholders also communicate with each other.

    The next diagram also considers Systems by expanding on other concepts associated with the System:

    [image: Figure 2.29 – The MBSE ontology – other system concepts ]
    Figure 2.29: The MBSE Ontology – other System concepts

    The diagram in Figure 2.29 shows the MBSE Ontology with a focus on other System concepts that were introduced previously in Chapter 1, Introduction to Systems Engineering.

    This diagram may be read as follows.

    Feature describe each System and a number of boundaries define the scope of the System.

    Need describe the purpose of the System, and Constraint, which is a special type of Need, limits the realization of the System.

    Note how the descriptions for each of the diagrams that make up the Ontology were created by simply reading the diagram out loud as a set of English sentences. This is how all good Models should be read.

    Summary

    This chapter has introduced the concept of MBSE. It should always be remembered that MBSE is not a sub-branch of Systems Engineering, but it is Systems Engineering that is performed in a consistent and rigorous fashion.

    In MBSE, all the knowledge, information, and data concerning the System are contained in a single source of truth, which is the Model and is an abstraction of the System. Whenever any Stakeholder needs to know anything concerning the System, the Model is interrogated.

    Now that the subject of MBSE has been introduced, the next chapter of the book focuses on a specific application of MBSE, that of Systems and their associated interfaces, and how the concepts introduced in this chapter can be applied in more detail.

    Self-assessment tasks

    
      	Revisit the “MBSE in a slide” diagrams in Figure 2.7 and Figure 2.9 and redraw them using SysML block diagrams. Focus on the relationship types and multiplicities.

      	Based on the new block diagrams, write out a description for each of the blocks, using consistent terminology used in the diagrams.

      	Consider the System structure concepts that were described in Figure 2.28 and redraw the diagram to represent your own organization.
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    Section II

    Systems Engineering Concepts

    This section provides a concise definition of all the concepts and their associated terminology. This terminology must be understood in order for it to be effective in implementing Systems Engineering.

    This section has the following chapters:

    
      	Chapter 3, Systems and Interfaces

      	Chapter 4, Life Cycles

      	Chapter 5, Systems Engineering Processes

    

  


  
    3

    Systems and Interfaces

    This chapter will focus on the two key concepts of Systems and Interfaces. In particular, the importance of different levels of abstraction of Systems will be considered and the need to constrain the number of hierarchical levels. Once these Systems and their levels have been discussed, the way that these different levels interact will be explored by introducing the crucial concepts of Interfaces.

    In particular, this chapter covers the following topics:

    
      	Defining Systems: Here, we will introduce and discuss the key concepts that will be used throughout the chapter.

      	Describing Interfaces: This will show how to identify and define Interfaces of different types and at different levels.

      	Defining the Framework: Here, all Views that are used in the chapter will be captured at a high level in the MBSE Framework that is being developed in this book.

    

    Understanding System Interfaces is one of the most important aspects of developing any System, as they form the backbone of the System Model. The fundamental building blocks of any System are the System Elements that make up the hierarchy and the Interfaces between these various System Elements.

    Remember, the entire approach to MBSE is based on having a consistent and coherent Ontology in place. Therefore, before the different levels of abstraction can be discussed in detail, it is important to understand how all of the Views that comprise the Model can be demonstrated to be consistent with the underlying MBSE Ontology.

    Defining Systems

    A key aspect of Systems Engineering that needs to be established as quickly as possible is that of the System itself. The first step in this chapter, therefore, will be to define the MBSE Ontology with the concepts and terminology that relate to Systems and Interfaces. This will include identifying the key terminology, but also defining exactly what is meant by the following terms:

    
      	System hierarchy: How many levels of hierarchy will be permitted to exist? Many people will think of the concept of a Subsystem, but rarely think of any additional levels of abstraction that may exist below the Subsystem. Therefore, the question needs to be addressed as to how many other levels exist below each Subsystem.

      	Interactions between System Elements: What interactions will be permitted between similar System Elements, for example, Systems to Systems, and Subsystems to Subsystems?

      	Interaction between levels: What interactions will be permitted between levels of hierarchy, for example, between Systems and Subsystems?

    

    The cornerstone of successful MBSE is having a good Ontology in place. The Ontology provides the domain-specific language, as described in Chapter 2, Model-Based Systems Engineering, but also provides the basis for consistency of all the Views that comprise the Model, which will be discussed in this section.

    A key part of defining the System and its System Elements is, therefore, defining the MBSE Ontology. The Ontology will be developed in a step-by-step fashion, and it will be demonstrated how this Ontology is then used to help create Views. In this case, these Views will be related to the System and its Interfaces.

    Demonstrating consistency between the Ontology and System hierarchy

    When modeling a System, it is important that the Model represents the System of Interest as accurately as possible or, to put this another way, as accurately as is necessary to develop the System successfully.

    All Systems have a natural hierarchy and it is, therefore, an essential part of the modeling endeavor to capture this hierarchy and ensure that all Elements in the Model adhere to the captured hierarchy. This is achieved by capturing the hierarchy of the System as part of the Ontology. This was touched on briefly in Chapter 2, Model-Based Systems Engineering, when the concept of Ontology was introduced. In this section, we will look at this in more detail, and the importance of what is captured in the Ontology will be discussed, along with variations in the hierarchy.

    The discussion will begin by considering the simplest of hierarchies, as shown in the following diagram:

    [image: Figure 3.1 – A simple system hierarchy with a single level ]
    Figure 3.1: A simple System hierarchy with a single level

    The diagram in Figure 3.1 shows a very simple System hierarchy with only one lower level of abstraction, that of the Subsystem, using a SysML block definition diagram. The Stakeholders that have an interest in the System sit at the same level of abstraction as the System. This may be inferred from the fact that the relationship between Stakeholder and System is visualized using an association that makes both Model Elements exist at the same level. The relationship between System and Subsystem, however, uses a composition that means that the Subsystem sits at a lower level of abstraction than that of the System.

    This is a good visual clue that can be easy to identify when looking at block diagrams. By locating the compositions (and aggregations, which will be discussed shortly), it is possible to quickly identify the various levels of abstraction that exist in the diagram and to easily identify the highest level. This is important as it provides a good starting point for reading the diagram. In this diagram, therefore, the natural place to start to read it is at the highest level of abstraction, which means that the diagram will be read as:

    One or more Stakeholders have an interest in the System, and each System comprises a number of Subsystems.

    Each of the SysML modeling Elements that exist in this diagram forms part of the overall MBSE Ontology that will be built upon throughout the book. Each of the blocks in the diagram represents an Element in the Ontology and this is shown visually by using the «ontology element» stereotype. 

    Each relationship on the diagram, in this case, an association and a composition, represents a relationship in the Ontology and this is shown visually by using the «ontology relationship» stereotype. The entire Ontology is made up of a set of Ontology Elements and Ontology relationships and all the remaining Ontology Views that are shown in this book will follow this.

    From this point forward, the «ontology element» stereotype will be shown; however, for reasons of clarity and to keep the diagrams as clean and legible as possible, the «ontology relationship» stereotype will be omitted. It may be read as if it is present, though.

    The preceding diagram uses a single composition between System and Subsystem, which means that the concept of a System owns all of the Subsystems that comprise it. This is where it is possible to introduce a slight variation to the Ontology by adding in a new relationship, in this case, an aggregation, as was discussed in Chapter 2, Model-Based Systems Engineering:

    [image: Figure 3.2 – A simple hierarchy showing one level with both composition and aggregation ]
    Figure 3.2: A simple hierarchy showing one level with both composition and aggregation

    The diagram in Figure 3.2 shows the same basic hierarchy that was shown in Figure 3.1, using a SysML block definition diagram. This time, a new relationship has been introduced, which is the aggregation between System and Subsystem.

    This new addition is subtle but potentially very important for the entire structure of the System. This diagram may now be read as follows:

    One or more Stakeholders have an interest in the System, and each System comprises a number of owned Subsystems. The System may also be made up of optional Subsystems that are not owned by the System.

    This now means that the System itself is still made up of Subsystems, but that these Subsystems may be owned by the System of interest or may be owned by other Systems. This allows for much more flexibility in terms of the Systems that may be realized in the Model. In order to illustrate this point, a number of Views will be considered:

    [image: Figure 3.3 – Simple structural breakdown view showing consistency with the ontology ]
    Figure 3.3: Simple Structural Breakdown View showing consistency with the Ontology

    The diagram in Figure 3.3 shows an example View that is based on, and therefore consistent with, the Ontology shown in Figure 3.1, using a SysML block definition diagram. If the diagram is consistent with the Ontology, then it is a valid View. If, however, the diagram is not consistent with the Ontology, then it is a picture. Remember, in MBSE, it is crucial that Views are created as part of the Model and not pictures. It is a simple matter to demonstrate that the diagram is consistent with the Ontology by ensuring that every Element in the diagram is an instance of one or more of the Ontology Elements or Ontology relationships shown in the following list:

    
      	Driver in the diagram is an instance of Stakeholder from the Ontology.

      	drives in the diagram is an instance of has an interest in from the Ontology.

      	Car in the diagram is an instance of System from the Ontology.

      	Chassis, Body, Drivetrain, and Interior are all instances of Subsystem from the Ontology.

      	All compositions between Car and Chassis, Body, Drivetrain, and Interior are instances of the composition between System and Subsystem from the Ontology.

    

    As each Element in the diagram is an instance of an Ontology Element or Ontology relationship, it is a valid View and, just as importantly, is guaranteed to be consistent with any other Views that use the same Ontology, in this case, the one shown in Figure 3.1.

    The diagram here shows its consistency by using the Stakeholder, System, and Subsystem stereotypes that are derived from the Ontology. The same holds true for the relationships but, again, these are omitted from the diagram for clarity.

    This is a good example of using stereotypes to enforce the Ontology and it forms one of the key features of a profile that may be created using modeling tools.

    The diagram in Figure 3.3 is therefore consistent with the Ontology in Figure 3.1, but it is also consistent with the Ontology in Figure 3.2. This is because the diagram is consistent with a subset of the Ontology and, therefore, is still consistent. The same is not true for the following diagram:

    [image: Figure 3.4 – Example structural breakdown view showing compositions and aggregation ]
    Figure 3.4: Example Structural Breakdown View showing compositions and aggregation

    The diagram in Figure 3.4 shows the same basic System that was shown in Figure 3.3, but it has been enhanced by the addition of the Bike Rack, using a SysML block definition diagram. Notice that the 0..1 multiplicity implies that the Bike Rack is optional. If you need a refresher on multiplicity, we covered this in Chapter 2, Model-Based Systems Engineering.

    It is now possible to perform the same consistency check that was applied previously to demonstrate whether the diagram is consistent with the Ontology as shown in Figure 3.2:

    
      	Driver in the diagram is an instance of Stakeholder from the Ontology.

      	drives in the diagram is an instance of has an interest in from the Ontology.

      	Car in the diagram is an instance of System from the Ontology.

      	Chassis, Body, Drivetrain, and Interior are all instances of Subsystem from the Ontology.

      	All compositions between Car and Chassis, Body, Drivetrain, and Interior are instances of the composition between System and Subsystem from the Ontology.

      	Bike Rack in the diagram is an instance of Subsystem from the Ontology.

      	The aggregation between Car and Bike Rack is an instance of the aggregation between System and Subsystem.

    

    This demonstrates that the diagram is consistent with the Ontology in Figure 3.2, but it cannot be consistent with the original Ontology in Figure 3.1 as the aggregation between the System and Subsystem only exists in Figure 3.2 and does not exist in Figure 3.1.

    This is one of the most important points to understand in MBSE. All Views must be consistent with the underlying Ontology; otherwise, they are not Views and, therefore, are not part of the Model.

    The use of a set of stereotypes based on the Ontology allows a simple way to quickly demonstrate consistency with the Ontology. From this point forward, all Views shown in this book will use a set of stereotypes that originate from the MBSE Ontology that will be evolved throughout the rest of this book.

    The question that may arise at this point is which of these two Ontologies is correct? The answer is that they are both potentially correct, but it will depend on exactly what information is to be included in the Model. The Ontology in Figure 3.1 does not contain as much information as that in Figure 3.2 and cannot, therefore, show as much information in the Views. This does not mean that it is incorrect, however! It is important that, when defining the Ontology, the implications of each Ontology Element and Ontology Relationship are fully considered before including them in the Ontology. Remember, the aim is not to model as much information as possible, but to model as much information as is necessary in order to deliver a successful System.

    Defining the System hierarchy

    The System hierarchy may now be expanded to include a number of lower levels of abstraction, as shown in the following diagram:

    [image: Figure 3.5 – Expanding the ontology to include more levels of hierarchy ]
    Figure 3.5: Expanding the Ontology to include more levels of hierarchy

    The diagram in Figure 3.5 shows an expanded Ontology that defines several new levels of hierarchy, using a SysML block definition diagram. 

    Each level is represented by stating a higher level and a lower level:

    
      	Each System comprises a number of owned Subsystems (shown by SysML composition) and may be made up of an optional number of non-owned Subsystems (shown by SysML aggregation).

      	Each Subsystem comprises a number of owned Assemblies (shown by SysML composition) and may be made up of an optional number of non-owned Assemblies (shown by SysML aggregation).

      	Each Assembly comprises a number of owned Components (shown by SysML composition) and may be made up of an optional number of non-owned Components (shown by SysML aggregation).

    

    This results in a set of four levels of System hierarchy that may be permitted to exist in the Views.

    The relationships between each of the levels are shown by both compositions and aggregations, as was discussed in the previous section. This allows for the flexibility of each level having both owned and non-owned lower-level Elements. Although this will allow greater flexibility, remember that the goal is not flexibility; the goal is to represent what is necessary in the hierarchy. Each of these relationships must be considered carefully before inclusion in, or exclusion from, the Ontology.

    The presence of these relationships shows the legal relationships that may be visualized in the Views. Any relationships that are not present are, therefore, illegal in the Views. For example, it is clear that it is legal for a System to comprise at least one Subsystem, as it is in the Ontology. The following relationships, however, are not legal:

    
      	A System comprises a number of Assemblies.

      	A System comprises a number of Components.

      	A Component comprises a number of Subsystems.

    

    This list shows just a few of the relationships that are illegal as their corresponding relationship does not exist in the Ontology.

    The Ontology therefore shows the legal Ontology Elements and Ontology Relationships that may be visualized in Views and prohibits the visualization of anything that is not in the Ontology.

    The diagram in Figure 3.4 shows an example of legal visualizations of the Ontology. Therefore, it is a valid View that forms part of the overall Model.

    Now that the basic System hierarchy has been discussed and is understood, it is time to consider the interaction relationships that exist between the Elements at the same levels of the hierarchy.

    Defining interaction relationships

    The basic hierarchy has now been established, but it is also important to understand the legal interaction relationships between the individual levels of the hierarchy.

    These interaction relationships can be seen in the following expanded Ontology:

    [image: Figure 3.6 – Expanded ontology showing the interaction relationship between hierarchy levels ]
    Figure 3.6: Expanded Ontology showing the interaction relationship between hierarchy levels

    The diagram in Figure 3.6 shows how the Elements at individual hierarchy levels can interact with the same Element at each level, using a SysML block definition diagram. In fact, there are five different types of interaction that can be identified from this diagram, which are as follows:

    
      	Stakeholder to Stakeholder

      	Stakeholder to System

      	SubSystem to SubSystem

      	Assembly to Assembly

      	Component to Component

    

    The associations in the diagrams, in this case, in this Ontology, identify points where the different Elements that make up the View interact with one another. This not only clarifies where the points of potential interaction are but also where interactions may not take place. This is very important as each line that appears on the Ontology is weighted with meaning. This Ontology, for example, currently does not allow for any of the following interactions:

    
      	System to System

      	System to SubSystem

      	SubSystem to Assembly

      	Assembly to Component

    

    This is not intended to be an exhaustive list but serves to illustrate the discussion. Consider the fact that there are no interactions allowed, according to this Ontology, between Systems and other Systems. The immediate question that arises is, is this correct? In this case, the interaction between a System and another System is represented by the relationship between Stakeholder and System, as other Systems are considered to be Stakeholders. This may be fine, but for a different organization, this may not be correct, in which case an additional relationship should be added, such as each System interacting with one or more other Systems.

    It is important to get away from the notion that there can only be one correct definition, as different organizations (and, indeed, different groups within the same organization) may look at the same concepts differently. The crucial thing to get right is to ensure that the Ontology accurately reflects the domain-specific language of the organization of interest, rather than trying to create an Ontology that satisfies the needs of all organizations. Note that these interactions are occurring horizontally between Model Elements that sit at the same level of abstraction in the System hierarchy.

    The next set of illegal interactions to be discussed are those that exist between different levels of the System hierarchy: System to Subsystem, Subsystem to Assembly, and Assembly to Component. In the case of the Ontology shown here, there is no interaction permitted between adjacent levels or, for that matter, between any of the levels. This is an important aspect of the Ontology to get right. It may be tempting to allow interaction vertically, between levels, as well as horizontally across the same levels. There is nothing wrong with this per se but, from the point of view of managing the complexity of the Model, it is almost always advisable to constrain the number of interactions and not to allow every possible interaction for the sake of it.

    In Chapter 1, Introduction to Systems Engineering, it was discussed that complexity manifests itself in the interactions between Model Elements. The Ontology allows precisely this complexity to be managed and controlled, as it identifies and defines all the legal interactions and controlling the number and nature of these interactions in the Ontology is a strong positive step toward managing complexity in the System as a whole.

    Describing Interfaces

    Whenever such interactions have been defined, there is also the potential to identify Interfaces between these Model Elements. Controlling Interfaces is a crucial part of Systems Engineering as it allows the control of interactions between different Model Elements. MBSE allows Interfaces to be identified, defined, and managed using an established set of modeling Views. This section will describe a set of Views that allow any Interface to be modeled.

    Identifying Interfaces

    For the sake of this discussion, the relationship between the three lowest levels of the System hierarchy will be focused on, as shown in the following diagram:

    [image: Figure 3.7 – Identifying generic interfaces between system elements ]
    Figure 3.7: Identifying generic Interfaces between System Elements

    The diagram in Figure 3.7 shows the concept of Interfaces existing between System Elements, using a SysML block definition diagram. From a modeling point of view, note how a generalization relationship has been introduced to group the Subsystem, Assembly, and Component together into a new, generic Model Element named System Element. This diagram may be read as follows (ignoring the compositions and aggregations that were discussed previously for now):

    There are three types of System Element, which are Subsystem, Assembly, and Component. Each System Element interacts with one or more other System Elements via an Interface.

    Note that the fact that there is an interacts with relationship between System Element blocks means that this relationship is inherited down to its specialized blocks. This certainly makes the diagram more elegant than the alternative, which is shown here:

    [image: Figure 3.8 – Identifying explicit interface types ]
    Figure 3.8: Identifying explicit Interface types

    The diagram in Figure 3.8 shows an alternative way to define Interfaces, using a SysML block definition diagram, this time by defining explicit Interfaces between specific levels of the System hierarchy. This diagram therefore reads as follows:

    Each Subsystem interacts with one or more other Subsystems via a Subsystem Interface. Each Assembly interacts with one or more other Assemblies via an Assembly Interface. Each Component interacts with one or more other Components via a Component Interface. Subsystem Interface, Assembly Interface, and Component Interface are all types of Interface.

    The Ontology in Figure 3.8 is clearly more complex than the one in Figure 3.7 and, as can be seen by the text descriptions for each, the Ontology that uses the System Element generalization is, at first glance, certainly simpler and more elegant.

    It is important, however, to look beyond the initial complexity and consider the precision of each of these Ontologies. The simpler, more elegant Ontology in Figure 3.7 pays the price for its enhanced readability as it actually allows for more complex Views, compared to the Ontology in Figure 3.8.

    The previous section discussed the fact that allowing more interaction between Model Elements can actually lead to an increase in the complexity of the Model. This is the case in point here. Defining the new generalization of System Elements and then defining a System Element self-interaction lowers the number of Interface types defined and, therefore, the association blocks that are needed.

    However, the Ontology in Figure 3.7 states that any System Element may interact with any other System Element. This actually means that a Subsystem (a System Element) may interact with an Assembly (also a System Element), which would be an interaction vertically between levels. Indeed, it is also possible for a Component (being a System Element) to interact with a Subsystem (also a System Element), which would be an interaction that jumps between more than one level.

    Again, both of these are correct, but it is important to understand the implications of choosing to use different modeling constructs. Again, the aim is not to make the Ontology as simple as possible but to make it as simple as necessary in order to realize the System successfully.

    Defining Interfaces

    The Ontology has been used to explicitly identify where Interfaces may exist in the overall Model. Identifying Interfaces is important, but it is also important to define exactly what is meant by an Interface and what Views may be used to represent the Interface. This is achieved by expanding the Ontology, specifically by expanding the Interface Ontology Element, as shown in the following diagram:

    [image: Figure 3.9 – Defining the interface concept ]
    Figure 3.9: Defining the Interface concept

    The diagram in Figure 3.9 shows how the concept of the Interface may be described further by defining other Ontology Elements and relating them to an Interface, using a SysML block definition diagram.

    The diagram here follows on from the Ontology in Figure 3.7 but can also be easily related to the Ontology in Figure 3.8. The definition of the Interface itself is the same for both, the difference being that where there is only a single owns relationship between the System Element and Port, this would be expanded into three separate relationships between the Port and the Subsystem, Assembly, and Component.

    Reading the diagram, therefore, the following can be seen:

    Each System Element interacts with one or more other System Elements via an Interface. Each System Element may own zero or more Ports and each Port exposes one or more Interfaces.

    Each System Element may own zero or more Ports, meaning that Ports are optional, and it is possible to have a System Element (whether it is a Subsystem, Assembly, or Component) that does not own any Ports. This allows for flexibility in the Model. Each Port may be thought of as a connection point between two Elements. In real life, these may be almost anything where two Elements join and may be as diverse as electrical sockets, ports on a computer, doors between rooms, eyes and ears on a person, fingers, holes in a wall, and so on. It is important to not constrain the concept of a Port to plugs and sockets on computers, which is often what people first think of when the term Port is used. Real-life Ports are incredibly varied and diverse in the world of Systems Engineering.

    Each Port exposes one or more Interface that refers to what may be passed between Ports, whether this be Services or the Flow of material. These will be elaborated upon shortly.

    Continuing reading the diagram, it can be seen that one or more Ports connect to one or more other Ports via Port Connectors. There are two types of Port – the Flow Type, which uses Flows, and the Service Type, which uses Messages.

    Let’s now turn our attention to the beginning of this sentence: one or more Ports connceting to one or more other Ports via Port Connectors emphasizes that Ports are the connection points between System Elements. The medium that is used to make that connection is referred to as the Port Connector. As Ports may take on many different forms in real life, the same holds true for Port Connectors, examples of which include pipes, wires, air, corridors, and lenses.

    There are two types of Ports – the Flow Type, which uses Flows, and the Service Type, which uses Messages – and all Ports may be classified as one of these two types.

    Service Type Ports use Messages. A Service may be thought of as a level of function that is made available to System Elements and that may be realized by a number of processes (this will be discussed in more detail in Chapter 5, Systems Engineering Processes, which discusses modeling processes). Services are quite limited as to what they represent, and examples include software-type Services (which is often what most people will think of when referring to Services) and also human-type Services. A Service is a behavioral construct (as opposed to a structural one) that is made available (rather than flowing) across an Interface, and that allows the passing of Messages across the Interface.

    Flow Type Ports use Flows. A Flow represents the passage of material that travels between one Port and another. Flows can be many and varied and examples include power, force, fluids, gas, people moving, and data. A Flow is a structural construct (as opposed to a behavioral one) that passes across (rather than being made available to) an Interface.

    Modeling Interfaces

    This section considers how Interfaces may be modeled using SysML. There is always more than one way to model anything, so what is presented here will be based on best practices.

    As with all Models, it is necessary to consider both the structural and behavioral aspects of Interfaces:

    
      	When considering the structural modeling of Interfaces, it is necessary to identify Interfaces, define Interfaces, Ports, and their relevant Flows and Services, and also define the connectivity of Ports.

      	When considering the behavioral modeling of Interfaces, it is necessary to consider the sequence of Services and their associated Messages between Ports, as well as any protocols that may exist.

    

    Structural and behavior modeling is performed by creating a number of Views, each of which will be visualized using a number of different SysML diagrams. Of course, it is possible to visualize the same Views using any suitable notation but, for the purposes of this book, only the SysML notation will be considered.

    Modeling the Structural Breakdown View

    The first View that will be considered is one that allows Ports and their associated Interfaces to be identified for each of the System Elements that own a Port. 

    It is possible, therefore, to consider any of the System Elements that were described as part of the overall structure. For this example, consider the Assemblies that make up the Subsystem Drivetrain, as described previously in Chapter 2, Model-Based Systems Engineering:

    [image: Figure 3.10 – Structural breakdown view of the drivetrain subsystem ]
    Figure 3.10: Structural Breakdown View of the Drivetrain Subsystem

    The diagram in Figure 3.10 shows a Structural Breakdown View of the Drivetrain Subsystem, using a SysML block definition diagram. Note the use of the term View here, as it is important to distinguish between the View and the visualization of the View by the SysML block diagram. Before continuing, consider the View, in this case, the Structural Breakdown View:

    
      	It has a target audience of Systems Engineers, design Engineers, and managers.

      	The purpose of the View is to provide an overview of a single Subsystem and to identify its constituent Assemblies and the relationships between them.

      	The content of the View is a single Subsystem and one or more Assemblies. Assemblies may be related to the chosen Subsystem by either composition or aggregation. Assembly interaction relationships may also be shown along with types of Assemblies.

    

    In defining these points, it has now been established that it is a valid View.

    The Structural Breakdown View is visualized using a SysML block definition diagram.

    The Structural Breakdown View may be read as follows:

    The Drivetrain comprises no Gearbox, or just a single one, one or two Motors, a single Control Unit, and one or two Batteries, all of which it owns. It is also made up of no Charger, or just a single one, that it does not own.

    The Charger charges one or more Batteries and each Battery provides power for the Control Unit and Electric Motor. The Control Unit controls both the Gearbox and the Motor, of which there are two types: Combustion Engine and Electric Motor. No Gearbox, or a single one, determines the power ratio of the Motor.

    In showing the relationships between the different Assemblies, the View also helps to identify potential Interfaces between Assemblies. In fact, every relationship between Assemblies is a potential Interface.

    Modeling the Interface Identification View

    The next diagram visualizes an Interface Identification View, which will allow Interfaces to be identified and allocated to individual System Elements:

    [image: Figure 3.11 – Interface identification view: focusing on the motor assembly ]
    Figure 3.11: Interface Identification View: focusing on the Motor Assembly

    The diagram in Figure 3.11 shows an Interface Identification View that focuses, in this case, on a single Assembly – the Motor, using a SysML block definition diagram.

    The SysML diagram used to visualize this View is a block definition diagram, but this time there is some advanced syntax introduced that will allow the modeling of Interfaces. The next few paragraphs will, therefore, describe the SysML constructs and how they are used before they are applied fully to the example.

    In SysML, connections between blocks may be shown by identifying a number of SysML ports. These are represented graphically by small rectangles that overlay the edge of the block. The diagram here therefore shows three SysML ports, each represented by a small square that represents a connection point. It can be seen from the diagram that there are two different types of SysML ports shown here, which are as follows:

    
      	The standard SysML port, which is a simple rectangle (a square on this diagram). This allows the identification of SysML interfaces, which facilitates the identification of a set of SysML services. The symbol for a SysML interface is a line that emerges from the SysML port with either a ball (not shown here, but shown on later diagrams) or a cup (as shown here), which represents either a SysML-provided interface (ball) or a SysML-required interface (cup). A SysML-provided interface represents a set of SysML services realized by, or provided by, the block. A SysML-required interface represents a set of SysML services that a block needs in order to operate. This is shown as the MCI port

      	The SysML flow port, which is shown as a rectangle (a square on the diagram) with an arrow on it. A SysML flow port allows SysML flows to be represented and the arrow inside the rectangle shows the direction of the SysML flow. The direction can be in (pointing toward the inside of the block) or out (pointing toward the outside of the block), or it may be a two-way SysML flow, inout (a double-headed arrow).
    This View, therefore, shows three SysML ports. These are an in SysML flow port named MPI, an out SysML flow port named MTO, and a SysML service port named MCI.


    

    
      	In SysML, ports are always typed, which is shown in the diagram as the name on the right-hand side of the colon next to the port name. In this example, therefore, we have the following:
          	There is an in flow port named MPI, which is of the Power In Port type.

          	There is an out flow port named MTO, which is of the Torque Out Port type.

          	There is a standard port named MCI, which is of the Control Port type.

        

      

    

    Note that this View only identifies where Interfaces exist; it does not define the nature, or type, of the Interfaces, as that will be described in the next View.

    The final point to make here concerns the use of stereotypes. As stated previously, the stereotypes (the words in the «chevrons») refer to the Ontology Elements that are being realized in this View. This can lead to some confusion as the terminology used in the Ontology (the domain-specific language) is very similar to the terminology used in SysML (the spoken language). 

    The following list shows the mapping between the two:

    
      	The Interface Identification View is visualized using a SysML block definition diagram.

      	«assembly» from the Ontology is visualized using a SysML block.

      	«flowPort» from the Ontology is visualized using a SysML flow port (note that the two terms used are the same – one for the concept from the Ontology, which is capitalized, and one for the SysML construct, which is in lower case).

      	«servicePort» from the Ontology is visualized using a SysML standard port.

    

    This terminology can be quite confusing, but it is essential to be able to differentiate between Ontological terms from the Ontology and language-specific terms from the notation.

    This View may now be expanded to include other Assemblies, as shown here:

    [image: Figure 3.12 – Interface identification view showing multiple assemblies ]
    Figure 3.12: Interface Identification View showing multiple Assemblies

    The diagram in Figure 3.12 shows an Interface Identification View, using a SysML block definition diagram, but, this time, multiple Assemblies are shown. This is a very useful View as it can be seen as providing a library of standard Elements that can be used when configuring Systems – more on this in a later View.

    Notice also that both provided (balls) and required (cups) interfaces are shown here as part of the definitions of different Assemblies. These Views can also be very technical and may not be as readable to a non-SysML expert as some of the other Views due to the advanced SysML syntax being used. This is another reason why it is so important to consider which Stakeholders will be looking at this View when deciding on its content.

    Modeling the Port Definition View

    Now that the Interfaces have been identified via their Ports, it is possible to describe each of these Ports by creating a Port Definition View. A single Port will be considered initially, as shown in the following diagram:

    [image: Figure 3.13 – Port definition view focusing on the Torque Output port ]
    Figure 3.13: Port Definition View focusing on the Torque Output Port

    The diagram in Figure 3.13 shows a Port Identification View that focuses on a single Flow Type Port, in this case, the Power In Port, visualized using the SysML block definition diagram. The Flow Type Port is visualized in SysML using a block with a special compartment underneath that has the SysML label of flow properties. This compartment is used to identify the Flows that pass across the Port. In the case shown here, this is an incoming Flow, indicated by the SysML keyword that is named Power In.

    The Port definition may also be enhanced by adding extra information in the form of properties, as described in Chapter 2, Model-Based Systems Engineering. An example of this is shown in the following diagram:

    [image: Figure 3.14 – Port definition view for the Power In port showing an additional property ]
    Figure 3.14: Port Definition View for the Power In Port showing an additional property

    The diagram in Figure 3.14 is essentially the same as that in Figure 3.13, but it has been expanded to include greater description of the Flow Type Port using a SysML property and visualized using a SysML block definition diagram. In this case, the property is named Connector_Type. Note how this property has been typed to char and has a default value (an invariant constraint) set to 3-pin.

    In the preceding example, the property describes a physical feature of the Port. In this case, it is stating the type of Connector that is associated with the Port. It could easily be expanded further to include other general features, such as size, position, manufacturer, material, and color, to name but a few.

    The other type of Port, the Service Type Port, is also typed as a block, but uses different SysML syntax to describe it, as shown in the following diagram:

    [image: Figure 3.15 – Port definition view for Control Port ]
    Figure 3.15: Port Definition View for the Control Port

    The diagram in Figure 3.15 shows another Port Definition View, using a SysML block definition diagram. This time, it is describing a Service Type Port rather than a Flow Type Port. The SysML block has two compartments, which are as follows:

    
      	Properties, shown here in the first compartment (the middle of the three boxes), which are represented in the usual way in that they are typed and can show default values. The properties on a Service Type Port will often represent the data that is being used by the Services, especially when software Services are being modeled.

      	Services, shown here in the second compartment (the lowest of the three boxes), which are represented as SysML operations. These operations represent the Services that are made available across an Interface, whether they are perceived as being provided or required Services.

    

    It is also possible to define the Flow Types in a similar way by creating a Flow Type Definition View, which will be discussed in the following section.

    Modeling the Flow Type Definition View

    The Flows that form part of the Interfaces may also be defined in a similar way to the previous View. An example of the Flow Type Definition View is shown in the following diagram:

    [image: Figure 3.16 – Flow type definition view ]
    Figure 3.16: Flow Type Definition View

    The diagram in Figure 3.16 shows a Flow Type Definition View that is visualized using a SysML block diagram. The diagram shows a generic Flow Type that has four properties, which are as follows:

    
      	Name, which is the full name of the Flow Type. This may seem like repetition as the name of the block is often the same as the value of this property name. This, however, is not always the case as the block name can often be an abbreviated form of the full name.

      	Symbol, which shows the SI symbol (where there is one), or the short form, where there isn’t.

      	Type, which represents how the magnitude of the Flow Type is represented, be it integer, short, long, float, and so on.

      	Unit, which represents the official SI unit, where there is one.

    

    This View also shows two specializations of Flow Type, which are Torque and Power. Notice how the values for each of the properties have been filled in using invariant constraints.

    Modeling the Interface Connectivity View

    All the Views shown so far have been generic in nature and may be used very effectively to form libraries that may be reused in different Models. This is a very efficient way to use Models as it means that the information only needs to be defined once and then never again. This is a very good time-saver, and it automatically applies consistency to the Model through reuse.

    One of the main ways in which these libraries may be reused is to create different Connectivity Views that allow different configurations to be defined. There are two ways to show this in SysML, one using block definition diagrams, and one using a diagram known as the internal block diagram. The following diagram shows an example of where a block definition diagram is used:

    [image: Figure 3.17 – Connectivity view: example configuration of a drivetrain using a block definition diagram ]
    Figure 3.17: Connectivity View: example configuration of a Drivetrain using a block definition diagram

    The diagram in Figure 3.17 shows a Connectivity View with an example configuration of a Drivetrain using a SysML block definition diagram. Showing connectivity using a block diagram is typically done because there is only a single possible configuration of the System Elements and only a single instance of each block.

    SysML Connectors connect the Flow Ports in the diagram together. An item Flow, typed as a Flow Type, is shown overlaying the Connector line with a filled-in triangle. Here, the item Flow is power.

    The Flow Port definitions must be compatible, so the in and out flows must correspond on the diagrams. These Ports need not necessarily be the same type, but the Flows must be consistent. It is possible to have the same Type definition for a Port being used at both ends, even though the ins and outs for each Port will be reciprocal. For example, in a situation where two Ports have the same definition and a single Flow, it will be an out Flow for one Port and an in Flow for the other. This creates a potential problem, but this reciprocal relationship can be shown using the ~ symbol to show that one Port is a conjugated Port. A conjugated Port is simply a Port where the in Flows and out Flows have been reversed, while still using the same Port definition. In such a situation, the ~ is shown next to the Port on the diagram, and the direction arrow for the Port is reversed.

    When connecting Service Ports together, the cup and ball symbols are used to show the provided and required Interfaces, and these must be of the same type. It should also be noted that a provided Interface may only be connected to a required Interface and it may not be connected to another provided Interface. The cup and ball symbols provide a simple visual indicator of this.

    The more usual diagram that is used to show connectivity is the internal block diagram, an example of which is shown here:

    [image: Figure 3.18 – Connectivity view: example configuration of the  drivetrain using an internal block diagram ]
    Figure 3.18: Connectivity View: example configuration of the Drivetrain using an internal block diagram

    The diagram in Figure 3.18 indicates another way to show a possible configuration of the Drivetrain, this time using a SysML internal block diagram.

    The internal block diagram makes use of a very powerful concept in SysML, that of the part. In SysML, there are three levels of abstraction of concepts that may be modeled, and these are as follows:

    
      	The SysML block. The block allows concepts to be visualized at the highest level. For example, blocks are typically used to show an overview of the concept of a car. The SysML syntax for a block is Car, where the block name is simply written inside the rectangle.

      	The SysML part. Parts allow collections of instances to be visualized to show configurations of System Elements. For example, there are multiple configurations of a car that will be based on the generic concept of a car and will provide the template for the instances of a car. The SysML syntax for a part is Bongo:Car, where the part name is shown on the left-hand side of a colon, with the relevant block name shown on the right.

      	The SysML instance. An instance allows a real-life example of a System Element to be visualized – for example, an actual car that has been purchased, is owned, and may be driven around. The SysML syntax for an instance is JonsCar:Bongo:Car or JonsCar:Car. The colon is still used, but this time the whole name is underlined, indicating it is an instance, rather than a part. Either of these may be used, with the only difference being whether the part name is shown as well as the block name.

    

    Internal block diagrams allow configurations to be specified using parts. The diagram in Figure 3.18 shows what looks like a large block that is named Reserve Battery:Drivetrain, but this is, according to the syntax, a part named Reserve Battery of the Drivetrain block. Graphically, the part looks like a large block with several other parts contained within. The syntax here allows anything that is either a composition or an aggregation of a block to be shown inside its part without the need to show the composition or aggregation lines explicitly. Therefore, the diagram here shows that part of the Drivetrain contains the following:

    
      	A single part of an electric Motor: This is an anonymous part, as it has nothing shown to the left of the colon. It is still a part, but the modeler has decided that no distinguishing name is required.

      	A single part of a Control Unit: Again, this is an anonymous part with no name shown.

      	Two parts of the Battery: The two parts are shown with different explicit names; in this case, one is the primary and one is the backup.

    

    The use of parts is very useful, therefore, as it allows multiple parts to be shown for a single block in the same configuration, as in the case of a Battery.

    Note how this View is still consistent with the Structural Breakdown View that was shown in Figure 3.10 and, indeed, it is possible to show multiple Connectivity Views for a single Structural Breakdown View.

    The internal block diagram, therefore, allows the internal connections and relationships of a block to be analyzed and specified by considering different configurations of its composite and aggregate parts.

    It is possible to differentiate between compositions and aggregations in the internal block diagram as compositions are shown using solid lines for the boxes, whereas aggregations are shown using dashed lines for the boxes.

    Modeling behavioral Views for Interfaces

    It was previously stated that when modeling, it is necessary to model both the structural and behavioral aspects of the System, and Interfaces are no different. Alongside the structural Views that have been discussed so far, it is essential that behavioral Views are also shown; otherwise, they cannot be considered to be complete.

    As Interfaces show relationships between System Elements, then the main diagram that is used to capture the behavior is the SysML sequence diagram, as this allows interactions between System Elements to be modeled, as discussed in Chapter 2, Model-Based Systems Engineering.

    The following sequence diagram shows a simple scenario for the Drivetrain, based on the structural Views:

    [image: Figure 3.19 – Interface behavior view: example scenario for the drivetrain  using a basic sequence diagram ]
    Figure 3.19: Interface Behavior View: example scenario for the Drivetrain using a basic sequence diagram

    The diagram in Figure 3.19 shows an example scenario for the Drivetrain using a simple SysML sequence diagram. As was discussed previously, any number of these Interface Behavior Views may be created for the single Structural Breakdown View and its associated Connectivity Views. This may see quite a large increase in the number of Views that are created as part of the overall Model.

    Note the consistency between the Views:

    
      	Lifelines to blocks: Each lifeline on the sequence diagram relates directly back to a block from the Structural Breakdown View.

      	Interactions with associations: Every interaction between blocks relates back to an association between blocks from the Structural Breakdown View.

      	Interaction names to operations: The names of the individual interactions relate back to the Services on the Port Definition Views that are visualized by operations on the block.

    

    The application of consistency ensures that the overall set of Views for the Interface definition provides a full and complete definition.

    It is also possible to go into an extra level of detail using advanced notation on the sequence diagrams. It is possible to not only show the general interaction between lifelines (and, hence, blocks) but also show the specific Ports that are involved in these interactions. An example of this is shown in the following diagram:

    [image: Figure 3.20 – Interface behavior view: example scenario for the drivetrain using a basic sequence diagram with advanced notations ]
    Figure 3.20: Interface Behavior View: example scenario for the Drivetrain using a basic sequence diagram with advanced notations

    The diagram in Figure 3.20 shows the same scenario that was shown in Figure 3.19, still using a sequence diagram, but in this case, some advanced syntax is being used.

    Each lifeline now has its relevant ports shown underneath it, and the specific interactions between the ports are shown. Note how the self-interactions, for example, check_speed, are shown on the original lifeline as they represent internal interactions. These internal interactions will be shown as operations on the parent block, but will not be represented as Service operations on the port definition, as these are internal operations, rather than operations being shown between blocks.

    Again, this diagram is consistent with the Structural Breakdown View and its associated Connectivity Views, but it shows an extra level of detail.

    Note how the more detailed a diagram becomes, then the more expert interpretation is required on behalf of the person reading the diagram. To put this another way, the more advanced syntax makes the diagram less readable to a non-SysML expert, so caution must be applied when deciding which Stakeholders will be shown any View that uses advanced SysML syntax.

    Defining the Framework

    The Views that have been created so far represent the center part of MBSE in a slide, which was discussed in detail in Chapter 2, Model-Based Systems Engineering. Each of the Views has been visualized using SysML, which represents the right-hand side of MBSE in a slide. These Views are combined to form the overall Model, but it is essential that these Views are all consistent; otherwise. they are not Views, but pictures! This is where the left-hand side of MBSE in a slide comes into play as it is important that the definition of all of the Views is captured in the Framework. The Framework comprises the Ontology and a set of Viewpoints. Therefore, it is now time to make sure that these Viewpoints are defined thoroughly and correctly, which is the aim of this section.

    Defining the Viewpoints in the Framework

    It was discussed in Chapter 2, Model-Based Systems Engineering, that it is necessary to ask a number of questions for each View to ensure that it is a valid View. There is also a set of questions that must be asked of the whole Framework, as well as the Views and the combination of these results in a set of questions that allow the whole Framework to be defined:

    
      	Why is the Framework required? This question may be answered using a Framework Context View.

      	What are the overall concepts and terminology used for the Framework? This question may be answered using an Ontology Definition View.

      	What Views are necessary as part of the Framework? This question may be answered using a Viewpoint Relationship View.

      	Why is each View needed? This question may be answered using a Viewpoint Context View.

      	What is the structure and content of each View? This question may be answered using a Viewpoint Definition View.

      	What rules should be applied? This question may be answered using a Ruleset Definition View.

    

    When these questions are answered, then it can be said that a Framework has been defined. Each of these questions can be answered using a special set of Views that is collectively known as the Framework for Architecture Framework (FAF) [Holt and Perry, 2019]. At this point, simply think about creating a specific View to answer each question, as described in the following sections.

    Defining the Framework Context View

    The Framework Context View specifies why the whole Framework is needed in the first instance. It will identify the relevant Stakeholders that have an interest in the Framework and also identify what benefits each of the Stakeholders hopes to achieve from the Framework.

    There will be a single Framework Context Viewpoint for each organization. This View will differ for each organization as different organizations will have different sets of needs in terms of the Framework.

    The Framework Context View will be visualized using a SysML use case diagram, and this will be described fully in Chapter 6, Needs and Requirements.

    Defining the Ontology Definition View

    The Ontology Definition View captures all the concepts and associated terminology associated with the Framework in the form of an Ontology. The good news is that this has already been done as the Ontology for the System-related Views was defined in Figure 3.6. The Ontology Elements shown in this View provide all of the stereotypes that have been used for the actual Views that have been created so far in this chapter.

    Defining the Viewpoint Relationship View

    The Viewpoint Relationship View identifies which Views are needed and, for each set of Views, identifies a Viewpoint that will contain its definition. These Viewpoints may be collected together into a perspective, which is simply a collection of Viewpoints with a common theme.

     In this chapter, the emphasis has been on defining a set of Views relative to Systems and Interfaces. Therefore, it is appropriate to create the Systems perspective. The basic set of Views that has been discussed so far is shown in the following View:

    [image: Figure 3.21 – Viewpoint relationship view for the system perspective ]
    Figure 3.21: Viewpoint Relationship View for the System perspective

    The diagram in Figure 3.21 shows the Viewpoint Relationship View for the System perspective using a SysML block definition diagram. The concept of the Viewpoint shown here is the one that was introduced in MBSE in a slide in Chapter 2, Model-Based Systems Engineering.

    Each set of Views has an associated Viewpoint that contains the definition of the Views. Alongside identifying these Viewpoints, it is also important to identify the relationships between them, as these will come in useful later when it comes to defining rules associated with the Framework.

    It is also possible to use the SysML specialization relationship to show variations in terms of specific Views, an example of which can be seen in the following diagram:

    [image: Figure 3.22 – Viewpoint relationship view for the system perspective showing greater detail ]
    Figure 3.22: Viewpoint Relationship View for the System perspective showing greater detail

    The diagram in Figure 3.22 shows the Viewpoint Relationship View for the System perspective using a SysML block definition diagram. This time, however, the Structural Breakdown Viewpoint has been expanded upon. Consider the Ontology that was presented in Figure 3.6, which had four levels of abstraction: System, Subsystem, Assembly, and Component. The same Structural Breakdown Viewpoint may be applied at three levels, as follows:

    
      	System-Subsystem Structure: Focuses on a specific System and shows how it is broken down into various Subsystems

      	Subsystem-Assembly Structure: Focuses on a specific Subsystem and shows how it is broken down into various Assemblies

      	Assembly-Component Structure: Focuses on a specific Assembly and shows how it is broken down into various Components

    

    Each of these is actually a special type of Structural Breakdown Viewpoint, which is shown in the diagram using a specialization relationship. It is by no means necessary to show this level of detail, but it is up to the modeler to decide whether or not adding the extra level of detail adds value to the Model.

    Defining the Viewpoint Context View

    The Viewpoint Context View specifies why a particular Viewpoint and, therefore, its set of Views, is needed in the first instance. It will identify the relevant Stakeholders that have an interest in the Viewpoint and also identify what benefits each of the Stakeholders hope to achieve from the Framework.

    There will be a Viewpoint Context View for each Viewpoint. Each Viewpoint Context View will trace back to the Framework Context View as it must contribute to the overall expectations of the organization. The combined set of Viewpoint Context Views will, therefore, satisfy the overall needs represented in the Framework Context View.

    The Viewpoint Context View will be visualized using a SysML use case diagram, and this will be described fully in Chapter 6, Needs and Requirements.

    Defining the Viewpoint Definition View

    The Viewpoint Definition View defines the Ontology Elements that are included in the Viewpoint. It shows the following:

    
      	Which Ontology Elements are allowed in the Viewpoint

      	Which Ontology Elements are optional in the Viewpoint

      	Which Ontology Elements are not allowed in the Viewpoint

    

    An example of a Viewpoint Definition View for the Structural Breakdown Viewpoint, specifically, the System-Subsystem structure, is shown in the following diagram:

    [image: Figure 3.23 – Viewpoint definition view for the structural breakdown  view – System-Subsystem Structure ]
    Figure 3.23: Viewpoint Definition View for the Structural Breakdown View – System-Subsystem structure

    The diagram in Figure 3.23 shows the Viewpoint Definition View for the Structural Breakdown Viewpoint, using a SysML block definition diagram. This time, however, the diagram shows specifically the System-Subsystem structure specialization of that Viewpoint.

    This View is a very important one as it defines the exact content of what is allowed in all the Views that are described by the Viewpoint. This Viewpoint will always contain the following information:

    
      	The Viewpoint name, stereotyped by «viewpoint», which is the focus of this View. The Viewpoint that is identified here must come from the Viewpoint Relationship View that was shown in Figure 3.22.

      	A number of Ontology Elements, stereotyped by «ontology element». Each of these Ontology Elements must come from the Ontology Definition View shown in Figure 3.6.

    

    This View may seem quite straightforward at first glance, as it contains a single Viewpoint and then a subset of the Ontology, but there are a number of subtleties associated with the Ontology Elements in this View. The presence of each Ontology Element is clearly important as it identifies the Ontology Elements that are permitted to appear in this Viewpoint. Consider the following Ontology Elements:

    
      	Stakeholder must appear on the diagram, as the multiplicity indicates 1. If Stakeholder were optional, then the multiplicity would be 0…1 or 0…* or a variation thereof.

      	Stakeholder has a multiplicity of 1, which means that there must be one, and only one, Stakeholder shown on the Viewpoint. If it were permitted for there to be more than a single Stakeholder on this Viewpoint, then the multiplicity would have to be set to 1..* or a variation thereof.

      	System must appear on the diagram and, similar to the Stakeholder, there must be one and only one System on the Viewpoint.

      	Subsystem must appear on the Viewpoint, and there must be at least one Subsystem.

    

    Now consider the following Ontology relationships:

    
      	One or more Stakeholders have an interest in the System. This means that there must be an association between Stakeholder and System on the Viewpoint.

      	Each System is made up of one or more Subsystems that it owns. This means that there must be at least one composition relationship between System and Subsystem on the Viewpoint. This is because of the 1…* multiplicity for Subsystem, which makes it mandatory.

      	Each System is made up of zero or more Subsystems that it does not own. This means that there may or may not be at least one aggregation relationship between System and Subsystem. This is because of the 0...* multiplicity for the Subsystem, which makes it optional.

    

    It is important to think very hard about every Ontology Element and Ontology Relationship that is present in the Viewpoint Definition View as this dictates the content of every View that is based on it.

    Defining the Ruleset Definition View

    The Ruleset Definition View identifies and defines a number of rules that may be applied to the Model to ensure that it is consistent with the Framework.

    The rules are based primarily on the Ontology Definition View and the Viewpoint relationships View. In each case, the rules are defined by identifying the key relationships and the associated multiplicities that exist:

    
      	Between Viewpoints on the Viewpoint Definition View

      	Between Ontology Elements on the Ontology Definition View

    

    Some examples of these rules are shown in the following diagram:

    [image: Figure 3.24 – Example ruleset definition view ]
    Figure 3.24: Example Ruleset Definition View

    The diagram in Figure 3.24 shows an example of a Ruleset Definition View using a SysML block definition diagram. Each block on the diagram represents a rule, which is derived from either the Ontology Definition View or the Viewpoint relationship View.

    These rules are defined as follows:

    
      	For each Structural Breakdown View, there must exist at least one Port Identification View. This rule is derived directly from the Viewpoint relationship View shown in Figure 3.22.

      	Each System must be made up of at least one Subsystem via a composition. This rule is derived directly from the Ontology Definition View shown in Figure 3.6.

      	Each System may be made up of one or more Subsystems via an aggregation. This rule is derived directly from the Ontology Definition View shown in Figure 3.6.

    

    Of course, any number of other rules may be defined here, but not every relationship will lead to a rule, as this is at the discretion of the modeler.

    Summary

    In this chapter, the concept of a System and its Interfaces was explored in more detail.

    The different concepts associated with a System, such as the levels of abstraction, the interactions between these levels, and the presence of Stakeholders, were defined in the Ontology. Where interaction between different Elements occurs, it is possible to identify an Interface.

    Interfaces were defined in terms of their different types, either Service-based or Flow-based, and several properties were defined for each, such as Flows and Services. It was then shown how to model these Interfaces by describing a standard set of Views that allows different aspects of any Interface to be represented.

    Finally, all of these Views were captured as part of an overall Framework definition using the FAF. This Framework itself comprises a number of Views that are used to describe the Model.

    Understanding the fundamental structure of a System is an essential part of developing any successful System. If the System is not understood, then it can never be judged to be successful. Understanding the interactions between different System Elements is an essential part of managing the complexity of the System and this is achieved through effective Interface modeling. The skills that were therefore introduced in this chapter are essential for any Systems Engineering endeavor.

    The success of the delivery of the final System will depend on the System satisfying its original needs, which will form the subject of the next chapter.

    Self-assessment tasks

    
      	Create a Structural Breakdown View for part of a System in your organization based on the Ontology described in this chapter. Choose a single System and identify its main Subsystems.

      	Based on the answer to the previous question, consider the relationships between the levels of abstraction, in terms of composition and aggregation, as well as the relationships on each level of abstraction in terms of associations and where the Interfaces exist.

      	Identify at least one Interface that exists between the Subsystems in your View and provide a description by creating an Interface Identification View, a Port Definition View, a Flow Definition View, a Connectivity View, and an Interface Behavior View.

      	Define a configuration of your System, based on your previous answers.

      	Select any Viewpoint from the Viewpoint relationship View in Figure 3.22 and create a Viewpoint Context View using text and a Viewpoint Definition View using a block diagram.
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    Life Cycles

    This chapter introduces the key concept of the Life Cycle and its relationship to Systems Engineering. Understanding and managing Life Cycles is crucial to the success of any Systems Engineering initiative.

    The concept of a Life Cycle is relatively simple; however, there is a lot of hidden complexity associated with Life Cycles and, as a consequence, a lot of ambiguity and misunderstanding in this area. There are two main areas of misunderstanding – the types of Life Cycles and the Interactions between Life Cycles, both of which will be discussed in this chapter.

    In this chapter, we will study the following topics:

    
      	Defining the main concepts associated with Life Cycles: The chapter begins by defining the main concepts associated with Life Cycles by expanding the MBSE Ontology that has been developed so far in this book.

      	Discussing the different types of Life Cycles that may exist, along with examples: The different types of Life Cycles that may exist will then be discussed, and examples will be provided. An in-depth example will be provided based on a Systems Engineering best-practice Life Cycle and its associated Stages.

      	The execution of Life Cycles, with examples of how the chosen Life Cycle Model influences Project execution: The execution of Life Cycles will be described, and various examples of Life Cycle Models will be discussed, along with the influence that they have on the overall Project execution.

    

    This chapter will give you a full understanding of the different types of Life Cycles that are relevant to MBSE and how to model them.

    Introduction to Life Cycles

    This section introduces the main concepts associated with Life Cycles. These concepts will be described using the modeling techniques that have been introduced so far in this book, specifically by expanding the existing MBSE Ontology to include the Life Cycle concepts. As the MBSE Ontology expands, the scope of the overall Ontology will increase to include more concepts, but, very importantly, it will be consistent with everything else described so far in the book.

    One of the key concepts associated with any Life Cycle is that of the Stage, and this will form the starting point of the discussion in the next section, which describes the key concepts associated with Life Cycles.

    Defining Life Cycle concepts

    There are several main concepts and associated terminology that need to be understood in order to perform Systems Engineering successfully. These main concepts are shown in the following diagram, which shows the first version of the Ontology for Life Cycle definition:

    [image: Figure 4.1 – An ontology definition view for life cycle concepts ]
    Figure 4.1: An Ontology Definition View for Life Cycle concepts

    Figure 4.1 shows the main Life Cycle concept. Any number of Life Cycles describes the evolution of one or more Entities over time. There are many types of Entities, and they will be explored later in this section, but for now, think of an Entity as a System. Therefore, this part of the diagram may be read as follows:

    One or more Life Cycles describe the evolution of one or more Entities (Systems).

    Each Entity should be thought of as a living Entity that will evolve over time. A System, therefore, may be thought of as something that evolves as it is developed and as it is deployed. The next important aspect of Figure 4.1 to consider is that of the Stage:

    Each Life Cycle comprises one or more Stages.

    The basic constituent part of a Life Cycle is the Stage. A Stage represents a distinct period of time that describes a specific point in the evolution of an Entity. We will study examples of the different types of Stages later in this section.

    The final part of Figure 4.1 that will be considered is that of the Life Cycle Model:

    One or more Life Cycle Models describe the execution of a Life Cycle.

    A Life Cycle may be thought of as a representation of the structure with which an Entity evolves. It defines what Stages are involved in the Life Cycle. A Life Cycle Model, on the other hand, may be thought of as the behavioral representation of the evolution of an Entity. Therefore, the Life Cycle shows what, while the Life Cycle Model shows how. In relation to the Stages that comprise the Life Cycle, the Life Cycle identifies what Stages exist, whereas the Life Cycle Model describes the order in which these Stages are executed.

    The Stages that exist will depend on the nature of the Entity that the Life Cycle is describing, and there are many types of Entities that may be considered. Refer to the following diagram:

    [image: Figure 4.2 – An ontology definition view showing different types of entities ]
    Figure 4.2: An Ontology Definition View showing different types of Entities

    The preceding figure shows an Ontology Definition View that uses a SysML block definition diagram to show seven different types of Entities, each of which will have a Life Cycle that describes its evolution. Examples of these Life Cycles and their associated Stages will be discussed in the following sections.

    Defining a Life Cycle for Systems

    The concept of a System is perhaps the main type of Entity that is thought of in the world of Systems Engineering. It is also the one that will have its own Life Cycle, potentially interacting with other Life Cycles.

    The term System Life Cycle is used frequently, but it is important to understand exactly what it means. The most widely used definition for a System Life Cycle is described in ISO 15288 and describes the development of a System. Indeed, sometimes the term System Development Life Cycle may be used to describe a System. Refer to the following diagram now:

    [image: Figure 4.3 – A life cycle definition view showing the stages of a system life cycle ]
    Figure 4.3: A Life Cycle Definition View showing the Stages of a System Life Cycle

    Figure 4.3 contains a Life Cycle Definition View that shows the six Stages that are identified for the System Life Cycle using a SysML block definition diagram:

    
      	Conception: This Stage is concerned with identifying and defining the needs of the System. This will also typically cover Stakeholder analysis and the definition of verification and validation criteria for the needs.

      	Development: This Stage is concerned with identifying potential candidate solutions for the problem that are associated with the needs and finding the preferred solution. This Stage may also involve developing a prototype prior to the Production Stage.

      	Production: This Stage takes the preferred solution and creates the actual System itself. This will also involve all the various testing activities to ensure that the System is built right (verification) and that the right System is built (validation).

      	Utilization: This Stage describes what happens when the System is being used by the end users and the operator Stakeholders. This Stage will also include training the appropriate Stakeholders to use the System effectively. This Stage will take place in parallel with the support Stage.

      	Support: The support Stage is concerned with providing all the support services, such as reporting errors, maintenance, and so on, which will ensure that the System is being run effectively. This Stage will take place in parallel with the utilization Stage.

      	Retirement: This Stage describes how and when the System is to be decommissioned and disposed of in a safe and secure manner.

    

    These Stages may be executed in different sequences, and even some Stages omitted, depending on the nature of the System, which is described by the Life Cycle Model.

    These same six Stages may also be used as the Stages for the following:

    
      	Project Life Cycle: The Project Life Cycle describes the evolution of a specific Project. It is possible for several Project Life Cycles to be contained within a single System Life Cycle. Likewise, as a Program comprises a number of Projects, there is also a strong link between these two.

      	Program Life Cycle: The Program Life Cycle sits at a level of abstraction above the Project Life Cycle, as a Program comprises a number of Projects. A Program, therefore, relates to a number of Projects or a portfolio of Programs.

      	Product Life Cycle: The Product Life Cycle refers to the end result of a Project or the thing that is sold to the end customer. There is a close relationship between a Product and a System as it may be considered that all Products are Systems, but not all Systems are Products.

    

    The use of the same set of Stages for a number of different Life Cycles can lead to confusion, which is why it is so important to understand exactly the scope of the Life Cycle that is being considered.

    Also, the natures of the Entities that these Life Cycles describe are also very similar and easy to confuse with each other. So, Programs and Projects are very closely related, Systems and Products are closely related, Projects and Products are closely related, and so on.

    It is essential, therefore, that when the term Life Cycle is being used, the exact nature of the Life Cycle is understood.

    Defining a Life Cycle for Procurement

    The System Life Cycle describes the evolution of the development of a System. This System Life Cycle is often carried out within a higher-level Life Cycle, which is commonly known as a Procurement Life Cycle or an Acquisition Life Cycle.

    These Procurement Life Cycles are usually used by organizations that are not developing their own Systems but issuing tenders for other organizations to bid on the development of their Systems. A Procurement Life Cycle will, therefore, often overarch one or more System Life Cycles. An example of a Procurement Life Cycle is shown in the following figure.

    In our previously considered car example, a car manufacturer may buy some of the subsystems, such as the Motor, from other suppliers. A Procurement Life Cycle allows this Acquisition of Motors to be captured and defined in the Model. Refer to the following diagram:

    [image: Figure  4.4 – A life cycle definition view showing the stages of a procurement life cycle ]
    Figure 4.4: A Life Cycle Definition View showing the Stages of a Procurement Life Cycle

    Figure 4.4 shows a Life Cycle Definition View, using a SysML block definition diagram, that shows the six Stages that are identified for the Procurement Life Cycle:

    
      	Concept: The Concept Stage is concerned with understanding the needs of the System to be procured and issuing the tender that is used for the basis of bidding.

      	Assessment: The Assessment Stage is concerned with taking the bids that have been received against the tender and assessing them. On the basis of this assessment, one (or sometimes more) preferred bid will be chosen and taken forward to the next Stage.

      	Demonstration: The Demonstration Stage is concerned with making sure that the preferred supplier is in a position to be able to manufacture the System by demonstrating their manufacturing capabilities.

      	Manufacture: The Manufacture Stage is concerned with undertaking Production and ensuring the delivery of the final System.

      	In-service: The In-service Stage is concerned with providing all the support capability that is needed in order to ensure that the System performs correctly.

      	Disposal: The Disposal Stage is concerned with carrying out plans for efficient, effective, and safe disposal of the System.

    

    The Procurement Life Cycle is important as it will often sit at a higher level than the System Life Cycle but will have various Interaction Points.

    Defining a Life Cycle for Technology

    The successful deployment of a System will depend on a number of Technologies that are being used throughout the System Life Cycle. This is referred to as the Technology Life Cycle. In cases where the System Life Cycle is very long, for example, if the System has long Support and Utilization Stages, it is important to consider the Life Cycle of these Technologies. For very long-term Products, it may be necessary to ensure that the Technology that was used as part of the solution remains available for the duration of the Life Cycle, even if the Technology becomes obsolete. As an example of this, consider music media being played in a car.

    In the 1980s, this would have been a cassette; in the 1990s, a compact disc; in the 2000s, a connected device (such as a phone or media player); and in the 2010s, this would tend toward direct streaming. 

    It is important, therefore, to understand the Stages that are involved in a Technology Life Cycle, as shown in the following diagram.

    [image: Figure 4.5 – A life cycle definition view showing the stages of a technology life cycle ]
    Figure 4.5: A Life Cycle Definition View showing the Stages of a Technology Life Cycle

    Figure 4.5 shows a Life Cycle Definition View, using a SysML block definition diagram, that shows the four Stages identified for this Life Cycle:

    
      	Research and Development: The Research and Development Stage represents the point where investment is being made in new Technology that has yet to establish a return. The risk of adopting such Technology is high.

      	Ascent: The Ascent Stage represents the point where there is more widespread adoption of the Technology. The risk associated with adopting such Technology is lower than in the previous Stage but still exists.

      	Maturity: The Maturity Stage represents a well-established Technology where the risk associated with adoption is low.

      	Decline: The Decline Stage represents the point where the Technology is no longer being used as widely as before and the end of its adoption can be foreseen. There is an increased risk associated with adopting Technology at this Stage.

    

    The Technology Life Cycle is important as the System Life Cycle will depend on it since it is dictated by the type of Technology adopted as part of the System solution. This is particularly important where the System Life Cycle is long (for example, if it is measured in years), as Technologies will become obsolete over time.

    Defining a Life Cycle for Assets

    The final type of Life Cycle that will be considered is Asset Life Cycle. Again, the Asset Life Cycle will be closely related to the System Life Cycle, as an example of an Asset is a System. However, the scope of an Asset is far wider, as an Asset can be anything that has value to an organization and, therefore, may also be people, infrastructure, equipment, data, and so on.

    It is important to understand the Stages that are involved in the Asset Life Cycle, which are shown in the following figure:

    [image: Figure 4.6 – A life cycle definition view showing stages for an asset life cycle ]
    Figure 4.6: A Life Cycle Definition View showing Stages for an Asset Life Cycle

    Figure 4.6 shows a Life Cycle Definition View for an Asset Life Cycle and is visualized using a block definition diagram. There are four Stages that are identified for this Life Cycle:

    
      	Planning: The Planning Stage is concerned with establishing the Asset needs, based on an evaluation of the existing Assets and their potential to meet existing needs.

      	Acquisition: The Acquisition Stage includes the activities involved in procuring an Asset.

      	Operation and Maintenance: The Operation and Maintenance Stage is concerned with providing all the support services that are required to ensure that an Asset is installed, managed, and controlled in a way that ensures that it satisfies the original needs.

      	Disposal: The Disposal Stage is concerned with the safe and effective retirement of the Asset from active service.

    

    The Asset Life Cycle is very closely related to the Procurement Life Cycle and has some obvious overlaps. Indeed, the Asset Life Cycle may be thought of as sitting at a higher level than the Procurement Life Cycle, as one of the Stages in the Asset Life Cycle is the Acquisition Stage, which is concerned with the overall Procurement of the Asset.

    Describing the Vee Life Cycle

    One of the most common examples of a Life Cycle that is seen in the real world is the so-called Vee Model. There is a very widespread misconception regarding the Vee Model: contrary to popular belief, it does not describe a Life Cycle at all but actually shows the relationships between Processes that exist within a specific Life Cycle.

    The Vee cycle, therefore, will be discussed in more detail in Chapter 5, Systems Engineering Processes, as that chapter is focused on Processes.

    There is a strong relationship between Processes and Life Cycles, and many people confuse Stages and Processes. In fact, Processes are executed during each Stage, and in some cases, there is a one-to-one relationship between a Stage and a Process, which can lead to a blurring of the concepts.

    This definition is shown clearly in the next section, where the Life Cycle Ontology is expanded to include additional concepts.

    Expanding the Life Cycle concepts

    The Life Cycle Ontology that was introduced in Figure 4.1 may now be expanded to include several other key concepts, as shown in the following diagram:

    [image: Figure 4.7 – Expanded ontology definition view for life cycle concepts ]
    Figure 4.7: Expanded Ontology Definition View for Life Cycle concepts

    Figure 4.7 shows a Life Cycle Definition View using a SysML block definition diagram that shows that the first new concept is that of the Gate, which is associated with each Life Cycle Stage. A Life Cycle Gate provides an assessment mechanism, such as a review meeting, that controls the Stage, and dictates the tests that must be applied at the end of each Stage. 

    It seems intuitive that once one Stage comes to an end, another Stage will begin its execution, but this is not always the case. This transition is controlled by the Stage Gate. A Stage Gate may result in one of several typical next steps:

    
      	Progress on to the next Stage: If the Stage has been completed successfully, then the next Stage in the Life Cycle is executed.

      	Stay in the current Stage: If the Stage has not been completed successfully, then it may be necessary to stay in the current Stage until all the success criteria for the Stage have been met.

      	Go back to a previous Stage: If the Stage has not been completed successfully and it is deemed that there are serious problems with the work carried out in the current Stage, then it may be necessary to go back to a previous Stage.

      	Cancel Life Cycle: If the Stage has failed catastrophically or something has happened to seriously disrupt the System development, then it may be necessary to cancel the whole Life Cycle. This is an extreme next step and not one that is usually desirable, but it is nevertheless one that must be taken into consideration.

    

    In reality, a Gate will be realized by an assessment Process of some description, which will involve all relevant Stakeholders and have a predefined set of success criteria associated with it. It is essential to consider Life Cycle Gates in order to control and manage any Life Cycle successfully.

    The next key concept is Process. Chapter 5, Systems Engineering Processes, will be focused on Processes, and therefore will go into a lot of detail on the nature and modeling of Processes. For now, it is adequate to think of a Process as a set of activities that is executed in order to result in a specific set of outcomes.

    Any number of Processes may be executed in any number of Stages, which means the following:

    
      	A single Process may be executed in a single Life Cycle Stage.

      	Multiple Processes may be executed in a single Life Cycle Stage.

      	The same single Process may be executed in more than one Life Cycle Stage.

      	The same set of multiple Processes may be executed in more than one Life Cycle Stage.

    

    It is crucial to be able to differentiate between a Process and a Stage. A Stage represents a distinct period of time that describes different points in the evolution of an Entity. A Process represents a set of activities that is executed in order to achieve a set of outcomes. People often confuse the two concepts and think that the two are interchangeable, but this is simply not the case.

    Another common misconception associated with Processes and Stages is that a single Process is executed in each Stage. Although this is possible, it is almost never the case in reality.

    The ability to execute any number of Processes in any number of Stages makes the Life Cycle very flexible in terms of what can be achieved in each Stage.

    One key aspect of Life Cycles that has already been discussed briefly and is often overlooked is that there is more than one type of Life Cycle that exists at any point in time. This was explained by describing several different types of Life Cycles in the previous section. Another point that was touched upon was that some of these Life Cycles interact with each other. This leads directly to the final two new concepts:

    
      	Life Cycle Interaction Point: This is a structural concept and identifies where two or more Life Cycles will interact, and it is applied to the Life Cycle and its Stages.

      	Life Cycle Interaction: This is a behavioral concept that describes the Interaction of two or more Life Cycles. Life Cycle Interactions may be thought of as instances of Life Cycle Interaction Points.

    

    Examples of both Life Cycle Interaction Points and Life Cycle Interactions will be provided later in this chapter in the Identifying Interactions between Life Cycles section.

    Now that the concepts have been described, it is time to look at some examples of the different types of Life Cycles in Systems Engineering.

    Defining Life Cycle Models

    Life Cycles are defined by identifying a set of Stages that describe the evolution of an Entity. A Life Cycle is a structural construct. A Life Cycle Model, on the other hand, is a behavioral construct that describes the execution of a Life Cycle, specifically the order of execution of the Stages.

    In terms of visualizing the various Life Cycle Models, as the emphasis is on the order of the execution of the Stages that comprise the Life Cycle, a SysML sequence diagram will be used. This is good for the consistency of the overall Model but can lead to diagrams that differ in appearance compared to some of the traditional visualizations of Life Cycle Models. This is because most Life Cycle Models are visualized using non-standard, ad hoc notations, which leads to a set of very different-looking and difficult-to-compare diagrams. This illustrates one of the benefits of using a standard notation, such as SysML, as all of the different Life Cycle Models may be compared and contrasted easily as they are visualized in the same way.

    There are several well-established Life Cycle Models that may be used on different types of Projects and will be described in the following sections.

    Defining a linear Life Cycle Model

    In a linear Life Cycle Model, the Stages are executed in a simple linear sequence. The classic example that is often used to illustrate a linear Life Cycle Model is the Waterfall Model by Royce (1970). The Waterfall Model is arguably the original Life Cycle Model and, like many of them, it has its origins in the world of software engineering. An example of a linear Life Cycle Model, based on the Waterfall Model, is shown in the following figure:

    [image: Figure 4.8 – A life cycle model view showing a simple linear life cycle model ]
    Figure 4.8: A Life Cycle Model View showing a simple linear Life Cycle Model

    Figure 4.8 shows an example of a Life Cycle Model View visualized using a SysML sequence diagram. The execution of each Stage of the Life Cycle is visualized using a lifeline, and the Interactions show the order of execution of the Stages.

    In a linear Life Cycle Model, each Stage is executed in a specific order and each Stage is executed after the completion of the previous Stage. There is typically no route to go back to a previous Stage.

    The linear Life Cycle Model is used predominantly for Projects where the original needs are well specified and not likely to change. Also, the Product being developed and the Technologies being used are typically well understood. In terms of the Project, the resources are easily managed and readily available and the timeframe for such Projects tends to be short.

    There tends to be little variation, if any, in the Processes that are executed in each Stage and, indeed, it is very often the case that there is only a single Process executed in each Stage.

    The linear Life Cycle Model is still used extensively in industry, primarily for small, well-understood Projects where the needs are robust. It has the advantage of being simple and easy to understand with a very clear Process application and clearly defined Gates for each Stage.

    This Model is not suitable for large, complex Projects and Systems where the needs are prone to change. It does not work well for long-term Projects as the Products are delivered in a single release at the end of the Project. Bearing in mind that Systems Engineering is typically applied to complex Projects and Systems, the linear Life Cycle Model is not particularly well suited to it.

    Defining an iterative Life Cycle Model

    The iterative Life Cycle Model differs from the linear Life Cycle Model in that instead of a single pass through the Life Cycle Stages, there are several passes through the Stages, which are known as iterations. Iterative Life Cycle Models have been used successfully for decades and have seen a resurgence in the last two decades with the widespread use of Agile techniques, which employ an iterative Life Cycle Model. Refer to the following figure:

    [image: Figure 4.9 – A life cycle model view showing an iterative life cycle model ]
    Figure 4.9: A Life Cycle Model View showing an iterative Life Cycle Model

    Figure 4.9 shows an example of an iterative Life Cycle Model View that is visualized using a SysML sequence diagram. The execution of each Stage of the Life Cycle is visualized using a lifeline and the Interactions show the order of execution of the Stages.

    The basic approach of an iterative Life Cycle works on the assumption that if a linear Life Cycle Model works well for short, well-defined Projects and Systems, then it is possible to break a large, complex System into a series of shorter, simpler Projects. Each of these mini Life Cycles is known as an iteration.

    Each iteration represents a single pass through the Stages, starting at the Concept Stage and progressing through until after the Production Stage and into utilization. The result of each iteration is a workable version of the final System that can be deployed in the target environment.

    This has a number of advantages as each iterative release of the System is a more complete and typically improved version compared to the previous one. This also means that if a specific release of the System does not work or is a disaster in some way, then it is relatively easy to go back to a previous release and restore some level of functionality.

    Each iteration will also take a short period of time. In some cases, the first iteration may take longer than the subsequent iterations, in order to get the original working release completed. It is quite usual for these subsequent iterations to be very short indeed, and in many organizations that are employing an Agile approach, new versions of the System may be produced on a weekly or even daily basis.

    The classic iterative approach is used heavily in the software world, rather than on large Systems Projects, due to the perceived ease of creating software releases. This also has the disadvantage that the emphasis is often on getting a release out on time rather than waiting for something that works.

    There is often a misconception that MBSE cannot be applied to iterative approaches, but this is simply not the case. A model-based approach can be applied at any point in a Life Cycle where there is a need to control complexity, define understanding, and communicate with Stakeholders.

    One of the disadvantages of applying an iterative approach to Systems Projects is that the basic needs may be changed quite frequently by Stakeholders, so it is important to have a good, robust needs Process in place, which is often not the case.

    Defining an incremental Life Cycle Model

    The incremental Life Cycle Model is similar in some ways to the iterative Life Cycle Model. In this, there is not just a single pass through the Stages but multiple passes, so that the final System is deployed in a number of releases. Indeed, both iterative and incremental Life Cycle Models are often known collectively as evolutionary Life Cycle Models.

    In this approach, the concept Stage is executed as the first Stage but will cover all the needs. The subsequent development and Production of the System take different subsets of the needs and produce a partial solution that does not comprise the whole System and can be deployed in the target environment:

    [image: Figure 4.10 – A life cycle model view showing an incremental life cycle model ]
    Figure 4.10: A Life Cycle Model View showing an incremental Life Cycle Model

    Figure 4.10 shows an example of a Life Cycle Model View that shows a simple linear Life Cycle Model, visualized using a SysML sequence diagram. The execution of each Stage of the Life Cycle is visualized using a lifeline and the Interactions show the order of execution of the Stages.

    The incremental Life Cycle Model results in the System being deployed in an incremental fashion, rather than as a single release as in the case of the linear Life Cycle Model. This is a clear advantage as the final System can be seen to be working and the System is deployed, albeit in a reduced form, compared to how it was relatively early in the Project. The incremental Life Cycle Model is, therefore, very good for very long Projects where some functionality of the System is required before the end of the Project.

    There is a downside to this, as not all Systems can be broken down into subsets of the overall System, and, in such cases, this approach is not suitable.

    This section has shown some of the different types of Life Cycles that relate to Systems Engineering. There is an added complexity that must be considered at this point, as these Life Cycles often co-exist and interact with each other. The following section discusses how these Interactions between Life Cycles may be explored and defined using the Model.

    Interacting Life Cycles and Life Cycle Models

    The fact that there are various types of Life Cycles has already been discussed. Alongside this, the Stages that comprise each Life Cycle may be executed in different sequences as Life Cycle Models depending on the type of Project or System. These Life Cycles and Life Cycle Models rarely exist in isolation as they can interact with each other in different ways. Interactions, of course, lead to complexity, so it is important that these Interactions can be modeled to be managed and that the Interactions can be understood.

    In order to understand these Interactions, two new Views will be introduced that allow Interactions to be identified so their associated behavior can be understood—the Interaction Identification View and the Interaction Behavior View.

    Let’s see what each is.

    Identifying Interactions between Life Cycles

    The Interactions between Life Cycles are identified by considering the following:

    
      	A number of specific Life Cycles: Each Life Cycle that will potentially interact is identified.

      	The Stages in each Life Cycle: For each of the identified Life Cycles, their associated Stages are identified.

      	The Interaction Points between Stages from different Life Cycles: Rather than considering the Interaction between Stages for an individual Life Cycle, as has been the case so far, Interactions between Stages from different Life Cycles are identified, which are known as Life Cycle Interaction Points.

    

    These Life Cycle Interaction Points existing between Life Cycles are then used for the basis of the modeling. Refer to the following figure:

    [image: Figure 4.11 – Interaction identification view showing life cycle interaction points between life cycles ]
    Figure 4.11: Interaction Identification View showing Life Cycle Interaction Points between Life Cycles

    Figure 4.11 shows an Interaction Identification View that shows the Life Cycle Interaction Points that exist between different Life Cycles using a SysML block definition diagram.

    The View here shows each Life Cycle using a SysML package with the name of the Life Cycle shown at the top of the package. Each package contains a set of blocks, each of which represents a single Stage within the Life Cycle.

    An interesting point to note here is that not all the Stages need to be shown in each package, only the ones that are relevant to the Model. The example here represents the situation where one organization acquires a System from a second organization. The first organization uses an Asset Life Cycle as they are interested in acquiring a System as an Asset. 

    The second organization is developing a System and is, therefore, using a development Life Cycle. In this example, however, the second organization is only developing the System and, therefore, is only implementing the first three Stages of the Life Cycle—Conception, Development, and Production. The remaining Stages of Utilization, Support, and Retirement are not relevant and, therefore, are not included.

    The potential Life Cycle Interaction Points between the Stages of different Life Cycles are identified using SysML Interactions, shown by the dotted line with the <<Life Cycle Interaction Points>> stereotype being used. In this example, there are two Life Cycle Interaction Points that have been identified:

    
      	The Life Cycle Interaction Point between Acquisition (Asset Life Cycle) and Conception (development Life Cycle): This Life Cycle Interaction Point shows that at some point during the Acquisition Stage, there will be an Interaction, typically a transition, with the Concept Stage.

      	The Life Cycle Interaction Point between Production (development Life Cycle) and Acquisition (Asset Life Cycle): This Life Cycle Interaction Point shows that there will be a return Interaction from some point in the Production Stage back to the Acquisition Stage.

    

    Note that the Interaction Identification View only shows the Life Cycle Interaction Points between the Stages and does not show the exact point in the Stage where the Interaction occurs. This information can only be shown when the Processes in each Stage are considered, which will be discussed in Chapter 5, Systems Engineering Processes.

    The Interaction Identification View is visualized using a SysML block definition diagram, which is, of course, a structural diagram. As is very often the case when modeling, once a structural View has been described, it is possible to describe a corresponding behavioral View. In this case, this is the Interaction Behavior View, which is discussed in the next section.

    Defining the behavior of Interactions

    Now that the potential Life Cycle Interaction Points between Stages in different Life Cycles have been identified, it is possible to model how these Stages interact by considering an Interaction Behavior View. Observe the following figure:

    [image: Figure 4.12 – An interaction behavior view showing the sequence of life cycle interactions ]
    Figure 4.12: An Interaction Behavior View showing the sequence of Life Cycle Interactions

    Figure 4.12 shows an Interaction Behavior View where the sequence of Life Cycle Interactions is described using a SysML sequence diagram.

    In this View, each Stage is represented using a SysML lifeline in a similar way to the Life Cycle Model View that was shown in Figure 4.8, Figure 4.9, and Figure 4.10. The Life Cycle Model Views only showed Stages from a single Life Cycle, whereas the Interaction Behavior View shows its Stages from different Life Cycles.

    The Interactions between Stages are shown using SysML interactions (note that this is the SysML construct of interaction), whereas the Interactions between Stages from different Life Cycles are shown using the SysML interactions using «interaction».

    The Interaction Behavior View is really an expanded version of the Life Cycle Model View but one that includes Stages from different Life Cycles, rather than it being the usual situation of just a single Life Cycle.

    This concludes the discussion of Life Cycles and how they may be modeled. The final section in this chapter defines the Framework and its associated Viewpoints that form the overall MBSE Framework that is being developed throughout this book.

    Defining the Framework

    The Views that have been created so far represent the central part of the MBSE diagram that was discussed in detail in Chapter 2, Model-Based Systems Engineering. Each of the Views has been visualized using SysML, representing the right-hand side of the MBSE diagram. 

    These Views come together to form the overall Model, but it is essential that these Views are all consistent; otherwise, they are not Views but pictures! This is where the left-hand side of the MBSE diagram comes into play, as it is important that the definition of all of the Views is captured in the Framework. The Framework comprises the Ontology and a set of Viewpoints; therefore, it is now time to make sure that these Viewpoints are defined thoroughly and correctly, which is the aim of this section.

    Defining the Viewpoints in the Framework

    It was discussed in Chapter 2, Model-Based Systems Engineering, that it is necessary to ask a number of questions of each View to ensure that it is a valid View. There is also a set of questions that must be asked of the whole Framework, as well as of the Views, to form a set of questions that will allow the whole Framework to be defined. It is worthwhile, therefore, to have a reminder of what these questions are:

    
      	Why is the Framework required? This question may be answered using a Framework Context View.

      	What are the overall concepts and terminology used for the Framework? This question may be answered using an Ontology Definition View.

      	What Views are necessary as part of the Framework? This question may be answered using a Viewpoint Relationship View.

      	Why is each View needed? This question may be answered using a Viewpoint Context View.

      	What is the structure and content of each View? This question may be answered using a Viewpoint Definition View.

      	What rules should be applied? This question may be answered using a Ruleset Definition View.

    

    When these questions are answered, it can be said that a Framework has been defined. Each of these questions can be answered using a special set of Views that are collectively known as the Framework for Architectural Frameworks (FAF), defined by Holt and Perry in 2019. At this point, simply think about creating a specific View to answer each question, as described in the following sections.

    Defining the Framework Context View

    The Framework Context View specifies why the whole Framework is needed in the first place. It will identify the relevant Stakeholders that have an interest in the Framework and also identify what benefits each of the Stakeholders hopes to gain from the Framework.

    There will be a single Framework Context Viewpoint for each organization. This View will differ for each organization as different organizations will have a different set of needs for the Framework.

    The Framework Context View will be visualized using a SysML use case diagram, and this will be described fully in Chapter 6, Needs and Requirements.

    Defining the Ontology Definition View

    The Ontology Definition View captures all the concepts and associated terminology associated with the Framework in the form of an Ontology. This has already been done, as the Ontology for the Life Cycle-related Views was defined in Figure 4.1, Figure 4.2, and Figure 4.7. The Ontology Elements shown in this View provide all of the stereotypes that have been used for the actual Views that have been created so far in this chapter.

    Ontology Elements that are related will often be collected into a Perspective, as was introduced in Chapter 2, Model-Based Systems Engineering. In Chapter 3, Systems and Interfaces, a Systems Perspective was created that contained all the Ontology Elements that relate to Systems and Interfaces. In this chapter, a new Perspective has been created that relates to Life Cycles.

    Defining the Viewpoint Relationship View

    The Viewpoint Relationship View identifies which Views are needed and, for each set of Views, identifies a Viewpoint that will contain its definition. Remember that a Viewpoint may be thought of as a type of template for a View. These Viewpoints can be collected together into a Perspective, which is simply a collection of Viewpoints with a common theme. In this chapter, the emphasis has been on defining a set of Views related to Life Cycles, so it is appropriate to create a Life Cycle Perspective.

    The basic set of Views that has been discussed so far is shown in the following View:

    [image: Figure 4.13 – A viewpoint relationship view for the life cycle perspective ]
    Figure 4.13: A Viewpoint Relationship View for the Life Cycle Perspective

    Figure 4.13 shows a Viewpoint Relationship View for the Life Cycle Perspective using a SysML package diagram. The Perspective is shown as a SysML package that is stereotyped as «Perspective» and simply collects together a number of Viewpoints:

    
      	Life Cycle Viewpoint, which defines the structure and content of the Life Cycle Views and identifies the Stages for a specific Life Cycle. This is a structural View and was visualized using a SysML block definition diagram.

      	The associated behavior for the Life Cycle Viewpoint is shown in the Life Cycle Model Viewpoint. Note that it is possible to have multiple instances of the Life Cycle Model Viewpoint (the Life Cycle Model Views) for each instance of the Life Cycle Viewpoint (the Life Cycle View), as indicated by 1..*. This is because it is possible to have multiple different sequences of Stages (Life Cycle Models) for each structural set of Stages (Life Cycle).

      	The Life Cycle Viewpoint and the Life Cycle Model Viewpoints focus on single Life Cycles, whereas the Interaction Identification Viewpoint and the Interaction Behavior Viewpoint focus on multiple Life Cycles and the relationships between them.

      	Interaction Identification Viewpoint allows points where two or more different Life Cycles interact, by identifying Life Cycle Interaction Points. This is a structural View and was visualized using a SysML block definition diagram.

      	The associated behavioral Views associated with the Interaction Identification Viewpoint come under the Interaction Behavior Viewpoint. Whereas the Interaction Identification Point identified where the different Life Cycles interact, the Interaction Behavior Viewpoint shows how these Interactions occur. As this is a behavioral View that focuses on Interactions between elements (in this case, the Life Cycle Stages), a SysML sequence diagram was used to visualize it.

    

    Defining the Viewpoint Context View

    The Viewpoint Context View specifies why a particular Viewpoint and its set of Views is needed in the first place. It will identify the relevant Stakeholders that have an interest in the Viewpoint and also identify what benefits each of the Stakeholders hopes to gain from the Framework.

    There will be a Viewpoint Context View for each Viewpoint. Each Viewpoint Context View will trace back to the Framework Context View as it must contribute to the overall expectations of the organization. The combined set of Viewpoint Context Views will, therefore, satisfy the overall needs represented in the Framework Context View.

    The Viewpoint Context View will be visualized using a SysML use case diagram, and this will be described fully in Chapter 6, Needs and Requirements.

    Defining the Viewpoint Definition View

    The Viewpoint Definition View defines the Ontology Elements that are included in the Viewpoint. It shows the following:

    
      	Which Ontology Elements are allowed in the Viewpoint

      	Which Ontology Elements are optional in the Viewpoint

      	Which Ontology Elements are not allowed in the Viewpoint

    

    The Viewpoint Definition View focuses on a single Viewpoint, and particular care and attention must be paid to not just the Ontology Elements that are selected but also the relationships that exist between these Ontology Elements. Obviously, the Ontology Elements and their relationship must be consistent with the original Ontology, but it is possible to see some changes in the multiplicities between some of the elements, and this will be discussed in the next few sections.

    An example of two Viewpoint Definition Views will now be shown and a comparison between the two will be discussed to show some of the subtleties of the modeling that is used to visualize them. The first example is the Life Cycle Viewpoint:

    [image: Figure 4.14 – A viewpoint definition view for the life cycle viewpoint ]
    Figure 4.14: A Viewpoint Definition View for the Life Cycle Viewpoint

    Figure 4.14 shows the Viewpoint Definition View for the Life Cycle Viewpoint, using a SysML block definition diagram.

    This View defines the exact content of what is allowed in all the Views that are described by the Viewpoint. This Viewpoint will always contain the following information:

    
      	The Viewpoint name, stereotyped by «viewpoint», which is the focus of this View. The Viewpoint that is identified here must come from the Viewpoint Relationship View that was shown in Figure 4.13.

      	A number of Ontology Elements, stereotyped by «ontology element». Each of these Ontology Elements must come from the Ontology Definition View shown in Figure 4.7.

    

    Notice how the SysML aggregation is used in the Viewpoint description Views, rather than the SysML composition between the Viewpoint and the Ontology Elements. This is because the Viewpoint does not own the Ontology Elements; it is just identifying which Ontology Elements are permitted to be contained in the Viewpoint.

    This View may seem quite straightforward at first glance, as it contains a single Viewpoint and then a subset of the Ontology, but there are a number of subtleties associated with the Ontology Elements of this View.

    The presence of each Ontology Element is clearly important as it identifies the Ontology Elements that are permitted to appear in this Viewpoint. However, the multiplicities associated with each of the Ontology Elements and the Ontology relationships are also important.

    Consider the following Ontology Elements:

    
      	Life Cycle must appear on the View as the multiplicity is 1. If the presence of the Life Cycle was optional, then the multiplicity would be 0…1, 0..*, or a variation thereof.

      	Stage must appear on the View as the multiplicity of 1..*. If the presence of the Life Cycle was optional, then the multiplicity would be 0…1, 0..*, or a variation thereof.

    

    Now consider the following Ontology relationships:

    
      	Life Cycle Viewpoint is made up of one Life Cycle: The multiplicity of 1 here is very important as it shows that the presence of the Life Cycle is mandatory in this View, as discussed previously. However, it also dictates that one and only one Life Cycle must be shown on the View. This means that it is not possible to show more than one Life Cycle in this View. Therefore, there will be one of these Views for each Life Cycle that exists.

      	Each Life Cycle comprises one or more Stages: This means that not only must the Stages be shown but also the relationships between the Stage and the Life Cycle, which is, in this case, visualized by the composition symbol.

    

    It is important to think very hard about every Ontology Element and Ontology relationship that is present in the Viewpoint Definition View as it is dictating the content of every View that is based on it.

    For comparison purposes, consider the Viewpoint Definition View for the Interaction Identification Viewpoint that is shown in the following diagram:

    [image: Figure 4.15 – A viewpoint definition view for the interaction identification viewpoint ]
    Figure 4.15: A Viewpoint Definition View for the Interaction Identification Viewpoint

    Figure 4.15 is very similar to Figure 4.14, with the most obvious difference being that there is an additional Ontology Element, that of the Life Cycle Interaction Point. There are, however, some other subtle differences that make a big difference to the resulting Views, which are listed as follows:

    
      	The multiplicity of the aggregation to the Life Cycle is 1..* in Figure 4.15, whereas in Figure 4.14, the multiplicity was only 1. This small difference actually has a big impact on the View, as it means that the Interaction Identification Views may contain multiple Life Cycles, whereas the Life Cycle Views focus on one, and only one, Life Cycle.

      	The association that shows each Life Cycle interacts with one or more other Life Cycles via the Life Cycle Interaction Point. Again, this is only possible due to the 1..* multiplicity on the Life Cycle aggregation. If the multiplicity was only 1, as in the Life Cycle View, it would not be possible to show any Interactions as there would only be a single Life Cycle.

    

    The point of discussing this is to illustrate just how important the multiplicities are when it comes to describing the Viewpoint description Views. Each multiplicity must be considered in turn as there are big implications with the resulting Views for each number.

    Defining the Ruleset Definition View

    The Ruleset Definition View identifies and defines a number of rules that may be applied to the Model to ensure that it is consistent with the Framework.

    The rules are based primarily on the Ontology Definition View and the Viewpoint Relationship View. In each case, the rules are defined by identifying the key relationships and their associated multiplicities that exist, which are in the following places:

    
      	Between Viewpoints in the Viewpoint Definition View

      	Between Ontology Elements in the Ontology Definition View

    

    Some examples of these rules are shown in the following figure:

    [image: Figure 4.16 – Example ruleset definition view ]
    Figure 4.16: Example Ruleset Definition View

    Figure 4.16 shows an example of a Ruleset Definition View using a SysML block definition diagram. Each block on the diagram represents a rule that is derived from either the Ontology Definition View or the Viewpoint Relationship View.

    These rules are defined as follows:

    
      	For each Life Cycle View, there must be one or more associated Life Cycle Model Views: This rule is derived directly from the Viewpoint Relationship View shown in Figure 4.13. This rule helps to define how many Views associated with each Viewpoint may be created as part of the Framework, which is indicated by the multiplicities.

      	Each Life Cycle View must contain a single Life Cycle: This rule is derived directly from the Ontology Definition View shown in Figure 4.7. This rule enforces the subtlety that was discussed in the previous section regarding the number of Life Cycles that may be shown in the specific View.

      	In a Life Cycle View, all Stages must be owned by a single Life Cycle: This rule is derived directly from the Ontology Definition View shown in Figure 4.7. The rule also enforces the same subtlety that was discussed in the previous section regarding the multiplicities.

    

    Notice how the rules are derived from the Viewpoint Relationship View, and therefore the Viewpoints and the Ontology Definition View, and therefore the Ontology Elements. The actual rule descriptions themselves apply to the instances of the Viewpoints (Views) and instances of the Ontology Elements.

    Of course, any number of other rules may be defined here, but not every relationship will lead to a rule, as this is at the discretion of the modeler.

    Summary

    In this chapter, the concept of the Life Cycle was explored in more detail.

    Life Cycles are an essential part of any Systems Engineering endeavor but one that is often oversimplified as they can exhibit a high level of complexity.

    One of the most common incorrect assumptions that are made in the world of Systems Engineering is that there is only a single Life Cycle. There are, in fact, different Life Cycles that can be applied to many different aspects of Systems Engineering, and it is therefore essential that these different Life Cycles are both identified and defined.

    Following directly on from the point that there are multiple Life Cycles, these Life Cycles will interact with each other at different points. The concept of the Life Cycle Interaction Point was introduced, with each point showing where each Life Cycle interacts by identifying which Stages are the start and end points for the Interaction.

    As with all Views that comprise a Model, there are structural Views and behavioral Views, which are closely related to each other.

    Finally, all of these Views were captured as part of an overall Framework definition using the FAF; this Framework itself comprises a number of Views that are used to describe the Model.

    This chapter provided you with an overview of the different types of Life Cycles that relate to Systems Engineering and the ability to capture, analyze, and define any Life Cycles using the modeling techniques shown throughout the book.

    The next chapter is closely related to Life Cycle Modeling and introduces the idea of Processes and how they relate to Systems Engineering.

    Self-assessment tasks

    
      	Create a Life Cycle View for System development in your organization based on the Ontology described in this chapter. Choose a single Life Cycle and identify its main Stages.

      	Choose another aspect of Systems Engineering in your organization and define another, different Life Cycle. This may be based on the examples discussed in this chapter, such as Acquisition, Technology, or Assets, or you may create one that was not discussed.

      	Create an Interaction Identification View to identify a set of Life Cycle Interactions that exist between the two Life Cycles that were created in question 1 and question 2. Identify which Stages in each Life Cycle form the start and end points for the Interactions.

      	Create at least one Interaction Behavior View that shows a possible scenario based on the Interaction Identification View that was created for question 3.

      	Select any Viewpoint from the Viewpoint Relationship View in Figure 4.13 and create a Viewpoint Context View using text and a Viewpoint Definition View using a block diagram.
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    Systems Engineering Processes

    In this chapter, the focus will be on one of the fundamental aspects of Systems Engineering and, therefore, of Model-Based Systems Engineering – the Process.

    Understanding Processes is key to understanding Systems Engineering. Remember that Systems Engineering describes an approach to realizing successful Systems. One of the main applications of Process modeling is to understand approaches to doing things; therefore, it is not surprising that Processes lie at the heart of a good Systems Engineering approach. In fact, it is a Framework alongside a set of Processes that provide the overall Model-Based Systems Engineering (MBSE) approach that is described in this book. Think back to the MBSE diagram from Chapter 2, Model-Based Systems Engineering; the left-hand side of the diagram focused on an approach that comprised the Process Set and the Framework.

    In the same way that modeling was applied to the Framework, modeling will also be applied to the Process.

    This chapter covers the following topics:

    
      	First, some of the problems associated with Processes will be discussed, along with the different types of Processes and their desired properties.

      	The subject of Process modeling will be discussed by defining the concepts associated with Processes in a now-usual way: by building up an Ontology that will show the structure of a typical Process and its related concepts. The different types of Processes that may exist will then be discussed, which will provide insight into some of the different ways that Process modeling can be applied.

      	The Views that make up the Process Perspective that forms part of the larger Framework will be introduced, and some examples will be provided.

      	Finally, some of the typical Processes that are important for Systems Engineering will be used in an example based on ISO 15288. We shall discuss how Processes are grouped into Process Groups, according to whether they are Technical Processes, Management Processes, Organizational Processes, or Agreement Processes.

    

    Process modeling will also be used in all subsequent chapters of this book.

    Understanding Process fundamentals

    This section introduces the fundamental aspects of Processes that must be understood in order to define a good MBSE approach. This includes the following topics:

    
      	Defining Process properties, where the key features of Processes will be discussed

      	Defining Process types, where different specializations of Processes will be discussed

    

    This section sets the scene for the rest of the chapter.

    Defining Process properties

    The whole area of Processes and Process modeling is fundamental to MBSE, and there are a number of desirable properties associated with Processes that it is important to understand:

    
      	Processes must be repeatable: It is essential that Processes can be executed in a way that can be repeated by any Stakeholders who choose to do so. This is important, as consistency in execution is important. If Processes can be executed in different ways, then the results of these Processes cannot be compared.

      	Processes must be measurable: According to the old adage, if something can’t be measured, then it can’t be controlled, and it is essential that Processes can be controlled. Efficiency is a key part of any Process, and it’s often cited that making Processes more efficient will improve overall business performance. It is impossible to show how efficient something is if it cannot be measured.

      	Processes must be demonstrable: Bearing in mind that Processes form the heart of any approach, it is essential that this approach can be demonstrated to any relevant Stakeholders in order to inspire confidence in the overall approach. Also, it is almost always desirable to show how Processes comply with best practice sources, such as Standards.

    

    Alongside these desirable properties, there are a number of common problems that are associated with Processes:

    
      	Processes can be complex: Processes can be convoluted, particularly if the scope of a Process is not well defined. It is quite common to find Processes that are overly simplified (leading to hidden complexity) and Processes that are over-specified (leading to too much complexity and detail). This is also one of the three evils of Systems Engineering, and therefore, it makes the subject of Processes ideal for modeling and, indeed, forms the heart of any MBSE approach.

      	Processes can be difficult to understand: Processes will often use language that is difficult to understand, whether it is spoken language, such as English, or, more usually, a domain-specific language, such as technical jargon. This problem can often be traced back to the fact that Processes are often written by a different set of Stakeholders than the ones that were involved in executing them.

      	Processes can be unrealistic: This follows on from the previous point because Processes are often written by Stakeholders that were not involved in their execution. Because of this discrepancy, the authors of the Process will often not hold enough domain knowledge to make the Process usable in the real world. What may seem like a good idea to outsiders is often impractical or wrong to Stakeholders who are directly involved in the work.

      	Processes can be difficult to communicate to Stakeholders: The language used in some Process definitions can be obscure or even incorrect. A lot of discussion of the importance of a common language has been had in this book, particularly on domain-specific language. It is essential that the correct terminology is used.

      	Processes can be irrelevant: A lot of Processes are actually irrelevant to the work Activities that are being carried out, as their purpose has not been ascertained either properly or at all. Again, this is a common theme in MBSE, as it is essential that the question why is asked for each Process. This can be answered by ensuring that a Process Context is produced for each Process.

      	Processes can go out of date: Just because a Process works when it is defined does not mean that it will still work at a later date. It is essential that the Process is revisited periodically in order to ensure that it is still fit for purpose. Again, this can be addressed by reviewing the Process Context on a regular basis.

    

    The next topic to consider is the different types of Processes that may exist.

    Defining Process types

    Processes exist at many levels and can take on different forms, such as very high-level Processes (international Standards), high-level Processes (industry Standards), medium-level Processes (in-house Processes and Standards), low-level Processes (in-house Procedures), and very low-level Processes (guidelines and work instructions).

    The fundamentals of Processes will now be discussed, before we move on to discuss Process modeling.

    Process concepts

    This section will follow the same structure as Chapter 4, Life Cycles, by introducing and discussing Process concepts and developing an Ontology that will form part of a broader MBSE Ontology.

    The first few concepts that must be understood are shown in the following figure:

    [image: Figure 5.1 – An ontology definition view for process concepts ]
    Figure 5.1: An Ontology Definition View for Process concepts

    The diagram in Figure 5.1 shows the initial Ontology Definition View for Process concepts, visualized using a SysML block definition diagram.

    The main concept in this View is the Process, which describes an approach to doing something or achieving an aim of some description. As can be seen in the preceding figure, the Process is made up of three main elements:

    
      	Activities: An Activity describes a behavioral step that must be performed in order to execute the Process. A typical Process will be made up of a number of these Activities, each of which will have inputs, which are consumed, and outputs, which are produced by the Activity. These inputs and outputs are referred to as Artifacts.

      	Artifacts: Each Artifact represents a property of a Process and may be realized by a document, a Model or View, software, hardware, or electronics – in fact, anything that may be produced or consumed by an Activity. Artifacts may be thought of as structural concepts, as they do not do anything, but they are produced by behavioral Activities.

      	Stakeholders: It was discussed in previous chapters that a Stakeholder represents the role of a person, organization, or thing that has an interest in a System. When it comes to Process modeling, then the System may be considered a Process, and therefore, the Stakeholders have an interest in the Process. In fact, the Stakeholders are responsible for the execution of the various Activities.

    

    Note that a SysML aggregation is used in the diagram, rather than a composition, as the Process does not own any of the Artifacts, Activities, or Stakeholders, but merely groups them together.

    These elements form the core of any good Process, but there are other concepts that sit alongside these, which are shown in the following diagram:

    [image: Figure 5.2 – An ontology definition view for expanded process concepts ]
    Figure 5.2: An Ontology Definition View for expanded Process concepts

    Figure 5.2 shows an Ontology Definition View for expanded Process concepts, visualized using a SysML block definition diagram.

    The first new concept is the Process Group, which groups together a set of Processes. Notice that the SysML composition symbol is used here, which implies that the Processes that comprise the Process Group are actually owned by that Process Group. A Process Group provides a mechanism that allows Processes that are related to the same topic to be grouped together. Most international Standards provide a set of predefined Process Groups, an example of which can be seen in the following diagram:

    [image: Figure 5.3 – An ontology definition view showing types of process group ]
    Figure 5.3: An Ontology Definition View showing types of Process Group

    The diagram in Figure 5.3 shows a simple Ontology Definition View that shows the different types of Process Group, visualized by a SysML block definition diagram.

    The diagram here shows that there are four types of Process Group:

    
      	Project Process Group: The project Process Group collects together Processes that are related to management in some way and that are applied on a project-by-project basis. Examples of such Processes include planning, assessment, and control Processes.

      	Technical Process Group: The Technical Process Group collects together Processes that are typically associated with day-to-day Systems Engineering Activities, such as a Stakeholder needing definition, architectural design, and implementation.

      	Enterprise Process Group: The enterprise Process Group collects together Processes that are applied across an entire business and includes Processes such as enterprise management, investment management, and System Life Cycle Management Processes.

      	Agreement Process Group: The Agreement Process Group collects together Processes that relate to whole customer/supplier relationships. This group covers Processes such as acquisition and supply Processes.

    

    These Process Groups are used purely as a convenience to help people understand the set of Processes at a higher level, rather than just having a flat set of Processes. The names of the Process Groups shown here are based on those in ISO 15288. These Process Groups will be explored in more detail later in this chapter when modeling Standards are discussed. It is important to have a good, high-level understanding of a typical set of Processes, as they form the heart of the Systems Engineering approach.

    The next new Process concept taken from Figure 5.2 is that of the Process Context. In all aspects of Systems Engineering, it is essential to always ask why something is needed, and this can be captured using the concept of a Context – in this case, the Process Context. It is essential that the purpose behind a set of Processes and individual Processes is well understood. If the basic need for something is not known, then it is impossible to demonstrate that this thing is fit for purpose. This makes sense, as the purpose would not be known! Indeed, the list of problems that was discussed in the previous section identifies the Process Context as the answer to addressing the problems. The whole topic of defining Contexts for various purposes will be discussed in detail in Chapter 6, Needs and Requirements.

    Each Process is defined individually, but it is also important to define different ways that the Processes can be executed in order to satisfy the Process Context. When Processes are executed in a specific sequence, this is referred to as a Process Execution Group. The Process Execution Group is also used extensively in conjunction with Life Cycle modeling. In the previous chapter, Life Cycle Stages were executed in a specific sequence in a Life Cycle Model. Each of the Stages may be broken down into more detail, and the set of Processes in each may be defined using the Process Execution Group.

    The Process Execution Group may also be used in order to define a Service. A Service is a behavioral construct that offers a specific outcome according to a specific request. These Services may be, for example, software-type Services or human-type Services. Services are realized by a set of Processes.

    The final concept in Figure 5.2 is that of the Resource. A Resource is something that is required in order to execute one or more Activities that form part of a Process. Examples of Resources include people, money, time, a building, rooms, equipment, and so on.

    Now that the concepts have been introduced and discussed, it is time to apply them to Process modeling.

    Process modeling

    This section builds on the previous discussion on Process concepts and shows how they are applied to Process modeling.

    Defining the Process Context

    It was mentioned in the previous section that understanding why a Process, or a set of Processes, is required is essential. The concept of a Context has been mentioned on a number of occasions so far in this book. In this section, an example will be provided for the first time with a high-level explanation, and a detailed description of Contexts will be provided in the next chapter.

    The car example will be revisited for the Process-modeling Views that will be presented, the first of which is shown in the following figure:

    [image: Figure 5.4 – A process context view showing the rationale for the process set ]
    Figure 5.4: A Process Context View showing the rationale for the Process Set

    The preceding figure contains a Process Context View that shows the rationale for a set of Processes, visualized using a SysML use case diagram. This is the first time that a use case diagram has been seen in this book, and therefore, a brief explanation of the basic notation is appropriate. A use case diagram comprises the following modeling elements:

    
      	Use case: The main construct in a SysML use case diagram is, quite obviously, the use case, and each is visualized by an ellipse. A use case shows some sort of need for a System that is described from a specific point of View. Such points of View are known as Contexts, and therefore, use case diagrams may be used to show different Contexts associated with a System. A use case, therefore, shows the description of a need in a specific Context.

      	Boundary: A boundary in a use case diagram shows a conceptual border between what is considered inside the System – the use cases – and what lives outside the System – the actors. Each boundary represents a single Context.

      	Actor: A number of SysML actors can be seen in this diagram, each of which is visualized using a stick figure. An actor represents the role of something that lives outside the boundary of the Context and has an interest in some of the use cases inside the boundary. Actors are used to indicate Stakeholders that have an interest in the System.

    

    The subject area for this diagram concerns a set of Processes that relate to the maintenance of a car. A Context shows a set of needs that are represented from a specific point of View. The diagram in Figure 5.4 may be read, therefore, in the following way:

    
      	The main aim is to ensure the continuous operation of the car.

      	The Car Owner actor has an interest in ensuring the continuous operation of the car.

      	There is a single use case that must be satisfied in order to achieve this, which is to provide maintenance.

      	There are two types of Provide maintenance: Provide planned maintenance and Provide unplanned maintenance.

      	All types of Provide maintenance include the two use cases: Arrange appointment, which is of interest to the Vendor Admin; and Maintain car, which is of interest to the Vendor maintenance actor.

      	The Provide maintenance use case is constrained by the use case Meet legislation, which is of interest to the Legislation actor.

    

    The whole subject of Contexts and their visualization using use case diagrams will be discussed in more detail in the next chapter.

    Defining the Process library

    The next View that will be considered is the Process Content View. The Process Content View allows the set of Processes being considered to be captured in a single View. This can be done in two ways: a Process Content View that focuses on a single Process and a Process Content View that focuses on a set of Processes.

    An example of a Process Content View that focuses on a single Process is shown in the following diagram:

    [image: Figure 5.5 – A process content view showing a single process ]
    Figure 5.5: A Process Content View showing a single Process

    The diagram in Figure 5.5 shows a Process Content View that focuses on a single Process, visualized by a SysML block definition diagram.

    The Process in question here is Maintenance Setup Process, visualized by a single SysML block. The use of the SysML block here allows a clever piece of modeling to be applied by the use of SysML properties and SysML operations.

    It was discussed in the Ontology in Figure 5.2 that each Process comprises the following:

    
      	A number of Artifacts: Each Artifact represents something that is produced or consumed by an Activity. Each of these may be represented rather neatly by using a SysML property.

      	A number of Activities: Each Activity represents something that must be done in order to perform the Process. Each Activity may be represented rather neatly by a SysML operation.

    

    This means that all the Artifacts and Activities associated with a single Process may be shown in a single SysML block using properties and operations.

    Each Artifact represented by a SysML property may be typed, and these types are defined using blocks in the Information View, which will be discussed presently.

    It is very useful to be able to represent a single Process in this way, but it is also useful to be able to see more than one Process in a single View, as seen in the following diagram:

    [image: Figure 5.6 – A process content view showing multiple processes ]
    Figure 5.6: A Process Content View showing multiple Processes

    Figure 5.6 shows a Process Content View that contains multiple Processes and is visualized using a SysML block. This diagram, as opposed to the one in Figure 5.5, shows more than one Process: Car Monitoring Process, Maintenance Setup Process, and Car Maintenance Process. Also, notice that these Processes do not show any of the Artifacts or Activities for the Processes. This is actually completely optional, and it is up to the modeler to decide whether or not they should be shown in this particular View. Bear in mind that the Artifacts and Activities will be present in the Model even if they are not shown in this specific View. Remember that it is possible to filter the information that is shown in any View.

    This View also shows a new type of SysML relationship that has not been seen before, which is the SysML dependency. A dependency is shown graphically by a dotted line with an arrow on the end, indicating the direction of the dependency relationship. In order to illustrate the meaning of this, consider the following relationship: Maintenance Setup Process depends on Car Monitoring Process. This can mean the following:

    
      	If Car Monitoring Process changes in some way, then it may have an impact on Maintenance Setup Process.

      	The execution of Maintenance Setup Process is dependent on the previous execution of Car Monitoring Process.

    

    The diagram in Figure 5.6 showing multiple Processes also shows the Process Group that owns these Processes, and that is called the Maintenance Process Group. The Process Group is really just a container for a number of similar-themed Processes and allows them to be managed more easily than if they just existed in a flat structure.

    The Process Content View allows Processes to be gathered together to form a library of Processes. This is particularly useful at the beginning of a project when it is necessary to understand exactly what capabilities are required by a project and also what capabilities the organization possesses.

    The Processes on a Process Content View show the Artifacts and Activities from the Ontology but do not show the Stakeholders, which are discussed in the next section.

    Defining the Process Stakeholders

    The one concept that comprises each Process that was not discussed in the previous section is that of the Stakeholder. Stakeholders were already introduced previously in this book as one of the essential concepts to understand Systems. Understanding Stakeholders is essential to have a good Systems Engineering approach in place, so it is not surprising that Stakeholders crop up again and again when Processes are considered.

    This is also a very good example of being able to reuse specific Views for different aspects of Systems Engineering, as can be seen in the following familiar-looking diagram:

    [image: Figure 5.7 – A stakeholder view showing the maintenance process group stakeholders ]
    Figure 5.7: A Stakeholder View showing the Maintenance Process Group Stakeholders

    The preceding figure shows a Stakeholder View of the Maintenance Process Group and is visualized by a SysML block definition diagram.

    The Stakeholder View shows a taxonomy, or classification hierarchy, of the different types of Stakeholder that exist and uses a specialization relationship. The general pattern of this View was seen before in this book, and the top level of specializations shows that there are three types of Stakeholders: Customer, External, and Supplier.

    The next level of specializations shows the following:

    
      	There is one type of Customer Stakeholder, which is the Car Owner.

      	There is one type of External Stakeholder, which is the Legislation.

      	There are two types of Supplier Stakeholder, which are the Vendor Admin and the Vendor Maintenance.

    

    Understanding Stakeholders is crucial for Process modeling and one of the key aspects of each Process so that they can show what the responsibility is of each Stakeholder. Remember from Figure 5.1 that each Stakeholder is responsible for one or more Activities, and this is something that will be explored in more detail when the Process Behavior View is described in a subsequent section.

    Defining the Process Artifacts

    The Artifacts that are associated with each Process allow the inputs and outputs of the Activities and, therefore, the Processes to be represented in the Model. The Artifacts associated with each Process are captured in an Information View, an example of which is shown in the following figure:

    [image: Figure 5.8 – An example information view for the maintenance setup process ]
    Figure 5.8: An example Information View for the Maintenance Setup Process

    The previous figure shows an example of an Information View for the Maintenance Setup Process, visualized with a SysML block definition diagram.

    Each Artifact that was identified as being part of the Process in Figure 5.8 is represented by a SysML block on the diagram. Also, each Process will have its own Information View.

    The main aim of this View is to show each Artifact but, more importantly, the relationships between these Artifacts. This is essential for traceability between the Artifacts and can be used to identify audit trails.

    Notice also that various properties have been shown for some of the Artifacts, which allows more information about them to be captured.

    The Information View may also be used at a slightly higher level of abstraction in order to focus on the relationship between the Processes, not just within a single Process, but between multiple Processes. An example of this can be seen in the following diagram:

    [image: Figure 5.9 – An example information view showing relationships between artifacts in multiple processes ]
    Figure 5.9: An example Information View showing relationships between Artifacts in multiple Processes

    The diagram in Figure 5.9 shows more example information, this time focusing on the relationships between Artifacts from multiple Processes, which is, again, visualized by a SysML block definition diagram.

    The syntax of this View is the same as in Figure 5.8, where each Artifact is visualized using a SysML block. This time, however, the properties of each Artifact are not shown, although this is optional, and they may be shown if so desired.

    The Artifacts shown here, however, come from two different Processes, rather than a single Process. In this case, the Artifacts are Maintenance Schedule and Completion Report. Note how the associations now show the relationships between Artifacts in a single Process but also the relationship between Artifacts from two different Processes.

    This higher-level View is used predominately to identify audit trails, and also to identify relationships and dependencies between Processes that may be performed by Stakeholders in different workgroups. When two or more Processes are executed in different groups, it identifies a working interface between these two groups and helps to establish the information, in the form of the Artifacts, that is passed between them.

    Defining the Process Behavior

    The Views that have been considered so far have been mainly concerned with the structure of the Processes. One of the Views that is most associated with Process modeling is the Process Behavior View, an example of which is shown in the following diagram:

    [image: Figure 5.10 – An example of a process behavior view for the maintenance setup process ]
    Figure 5.10: An example of a Process Behavior View for the Maintenance Setup Process

    The diagram in Figure 5.10 shows an example Process Behavior View for the Maintenance Setup Process, visualized using a SysML activity diagram.

    The SysML activity diagram has not been considered in any detail so far in this book, so it is worth taking a little time to look at the syntax of the diagram.

    The activity diagram allows Behavior to be modeled, usually at a detailed level. In this case, the activity diagram will be used to model the detailed behavior of a block. Remember that the Process Content View in Figure 5.5 visualized a Process using the following SysML constructs:

    
      	A SysML block to show a single Process

      	SysML properties to show the Process Artifacts

      	SysML operations to show Process Activities

    

    When modeling the behavior of a block using an activity diagram, the following syntax is used:

    
      	The whole activity diagram represents the block.

      	Objects show Artifacts. Each object is represented graphically by a rectangle.

      	Actions show Activities. Each action is represented graphically by a rounded box.

    

    Remember that behavior diagrams show the order of execution of things, and, in this case, it is the order of execution of the actions that is shown.

    The syntax of an activity diagram is similar to that of a state machine diagram, which has already been discussed – indeed, the activity diagram is actually a special type of state machine diagram. The start states (represented graphically by a solid circle) and the end state (represented graphically by the bull’s-eye symbol) are the same as in a state machine diagram and show the creation and destruction of an instance of a block, respectively.

    There is a new piece of syntax on this diagram that has not been seen before, which is known as a swim lane in SysML and is shown graphically by the large bottomless rectangles. A swim lane allows different groups of behavior to be collected together according to their responsibility. Each swim lane is titled with whatever holds the responsibility. In this example, each swim lane is titled by referring to a Stakeholder from the Process Model. All of the behavior that is the responsibility of the Stakeholder is contained in the swim lane. In this example, these behaviors are the Activities from the Process Model.

    This is a very convenient construct when applying Process modeling, as it has already been discussed that Stakeholders are responsible for Activities.

    This View is particularly interesting when it comes to considering the consistency between all of the Views that have been discussed so far. This includes the following:

    
      	The Activities in this View are the same as the Activities that were shown in the Process Content View in Figure 5.5. In this View, the Activities are represented graphically by SysML actions, whereas in the Process Content View, they are represented graphically by SysML operations.

      	The Artifacts in this View are the same as the Artifacts that are shown in both the Process Content View in Figure 5.5 and the Information View in Figure 5.8. In this View, the Artifacts are visualized by SysML objects, whereas in the Process Content View, they are visualized using SysML properties, and in the Information View, they are visualized using SysML blocks.

      	The Stakeholders in this View are the same as the Stakeholders that are shown in both the Stakeholder View in Figure 5.7 and the Process Context View in Figure 5.4. In this View, the Stakeholders are visualized using SysML swim lanes, whereas in the Stakeholder View, they are visualized using SysML blocks, and in the Process Context View, they are visualized using SysML actors.

    

    As can be seen, the Process Behavior View really emphasizes the consistency between several of the other Views. It is worth noting here that a concept, or Ontology Element, in one View may be visualized using different modeling elements in different Views. This is a good example of different visualizations being relevant for a single Entity, as we discussed in Chapter 2, Model-Based Systems Engineering.

    The Process Behavior View focuses on the behavior within a Process, but it is also useful to be able to Model the behavior between Processes, which will be discussed in the next section.

    Defining a sequence of Processes

    A Process Behavior View shows detailed behavior inside a Process, but it is also important to be able to execute Processes in a number of different sequences, which is shown using a Process Instance View, an example of which can be seen in the following diagram:

    [image: Figure 5.11 – An example process instance view showing the behavior between processes ]
    Figure 5.11: An example Process Instance View showing the behavior between Processes

    The diagram in Figure 5.11 shows an example of a Process Instance View that shows the behavior between Processes, and it is visualized using a SysML sequence diagram.

    In this View, each Process is visualized using a SysML lifeline, and the information and messages passed between these Processes are shown using SysML interactions.

    The Process Instance View is particularly useful for two main reasons:

    
      	It shows that Processes are consistent with one another in terms of the Artifacts that are passed between Processes. This is very important when it comes to ensuring that the complete set of Processes is consistent.

      	It allows the Processes to be validated against the original rationale that was captured in the Process Context View.

    

    The Process Instance View also provides several very strong consistency relationships with the other Process modeling Views:

    
      	The Processes in this View are the same as the Processes in the Process Content View in Figure 5.6. Each Process in this View is visualized using a SysML lifeline, whereas in the Process Content View, each Process is visualized using a SysML block.

      	The second consistency check is unusual in that the entire Process Instance View is consistent with a single need in the Process Context View in Figure 5.4. In this View, the entire View is visualized by the SysML sequence diagram, whereas in the Process Context View, the need is visualized using a SysML use case.

    

    As can be seen, the consistency between all of the Views is very strong, and through enforcing this consistency, confidence in the Process Model becomes very high.

    The Views that have been presented so far are known collectively, and quite unimaginatively, as the seven-Views approach to Process modeling. This approach is very flexible and very powerful and can be applied to a number of applications, including modeling Standards, which will be discussed in the following section.

    Modeling Standards using Process modeling

    One of the key aspects of MBSE that was introduced in the MBSE diagram from Chapter 2, Model-Based Systems Engineering, is the idea of compliance. It is important that everything that we do in MBSE is demonstrable to the relevant Stakeholders in terms of the quality of the work that is being carried out. An obvious way to achieve this is to show compliance with key Standards, and an excellent way to do this, and an excellent application of MBSE, is to apply Process modeling to Standards.

    In this chapter, therefore, the following points will be considered:

    
      	Standards: Why Standards are so important and what the key Systems Engineering-related Standards are

      	Modeling Standards: How the seven-Views approach to Process modeling may be applied to a specific Standard

      	Types of Process: How to use this Process Model to identify the different Processes that may be used as part of a wider MBSE application

    

    This is just one of the many applications of Process modeling, and it will be revisited throughout the book. In the next few chapters, some specific Processes for MBSE will be considered, and then they will be mapped back onto the best practice Standard Model that is developed in this section.

    Identifying Systems Engineering Standards

    Standards play an important role in any MBSE endeavor as they provide an example of best practices that may be used as a basis for compliance. This is important as it is essential that any defined approach to MBSE may be demonstrated to comply with established best practices. Bearing in mind that the whole approach to MBSE that is advocated in this book has been defined using MBSE techniques, it makes sense that compliance with best practice should also be carried out using MBSE techniques. This is an excellent application of Process modeling, as the seven-Views approach may be used to capture an understanding of any Standard.

    In the case of MBSE, the main Standard that will be considered is ISO 15288 – software and Systems Life Cycle Processes. This is the most widely used Systems Engineering Standard in the world and is mandated by many organizations that use Systems Engineering at any level.

    The Standard itself is not focused on modeling but on general Systems Engineering concepts. However, it has been stated on a number of occasions in this book that MBSE is just a way of achieving Systems Engineering, and if this is indeed true, then there should be a clear mapping between best-practice Systems Engineering and MBSE concepts.

    Modeling ISO 15288

    When modeling any Process-based Standard, such as ISO 15288, it is possible to apply the seven-Views approach to creating the associated Standard Model.

    When modeling Process Standards, it should be borne in mind that Standards are aimed at quite a high level of abstraction when it comes to their application. Standards, therefore, tend to dictate what should be done and produced, rather than going into detail and dictating how things should be done and produced. Because of this, only a subset of the seven Views will be used to model the Standard.

    ISO 15288 – the Need Context View

    The Need Context View shows why a particular Process or Process Set is needed, and therefore, when applied to a Standard, it will show why a particular Standard is needed. The Need Context View for ISO 15288 is shown in the following diagram:

    [image: Figure 5.12 – The need context view for ISO 15288 ]
    Figure 5.12: The Need Context View for ISO 15288

    The diagram in Figure 5.12 shows the Need Context View for ISO 15288, visualized using a SysML use case diagram. The use cases on this diagram are shown to be of type «concern», which are basically the needs for the Standard. These may read as follows:

    
      	The main aim of the Standard is to establish a common framework to describe the life cycle of Systems. This summarizes everything that the Standard is concerned with.

      	One of the next use cases is to Define processes, which has an include relationship with the main use case, Establish common framework for describing life cycle of systems. The Processes that need to be defined cover four areas, which are shown by the four specializations of this use case.

      	Define processes is specialized by …for managing life cycle stages. This covers the Life Cycle definition and analysis that was described in Chapter 4, Life Cycles.

      	Define processes is specialized by …for support of process definition. This covers the definition of Processes, and the seven-Views approach described in this chapter can be used to achieve this.

      	Define processes is specialized by …for support of process control. This covers managing and controlling the execution of Processes, and the seven-Views approach described in this chapter can be used to achieve this.

      	Define processes is specialized by …for support of process improvement. This covers improving the Processes and ensuring that they remain fit for purpose over a period of time. The seven-Views approach described in this chapter can be used to achieve this.

      	Define terminology that is an inclusion on the main use case, Establish common framework for describing life cycle of systems. This relates to the fact that this Standard defines a Standard set of concepts and associated terminology for Systems Engineering. This has been covered extensively in this book by Ontology modeling.

      	Allow use of processes has an include relationship with the main use case, Establish common framework for describing life cycle of systems. This provides a mechanism to set the scope of what areas of the Process the Standard covers and has two specializations.

      	Allow use of processes is specialized by …for acquisition. This shows that the Standard is concerned with acquisition-type Processes; this may be modeled using the seven-Views approach.

      	Allow use of processes is specialized by …for supply. This shows that the Standard is concerned with supply-type Processes; this may be modeled using the seven-Views approach.

      	Finally, Harmonize with other standards covers compliance with other Standards, which is covered in this very section and may be performed using the seven-Views approach.

    

    Notice how all the use cases that are shown here and that represent the needs of ISO 15288 may be met by using the seven-Views approach. This goes to show how powerful and flexible this approach is for many aspects of Processes and Process modeling.

    One of these use cases, Define terminology, may be satisfied by creating an Ontology, which is shown in the following section.

    ISO 15288 – the Process Structure View

    The Process Structure View defines the Ontology for the Standard and, as such, defines the main concepts and terminology associated with the Standard. The Ontology for ISO 15288 is shown in the following diagram:

    [image: Figure 5.13 – A process structure view for ISO 15288 ]
    Figure 5.13: A Process Structure View for ISO 15288

    The diagram in Figure 5.13 shows the Process Structure View for ISO 15288, visualized using a SysML block definition diagram.

    ISO 15288:2015 is made up of four Process Groups, and each Process Group comprises and owns a number of Processes.

    Moreover, ISO 15288:2015 also proposes the use of a Life Cycle.

    Refer to the following properties:

    
      	Focusing on the Process: Each Process comprises a number of Outcomes and a number of Activities.

      	Focusing on the Activity: Each Activity comprises a number of Tasks, one or more of which contributes to one or more Outcomes.

      	Returning back to Process: Each Process has a single Process Purpose that describes the goals of the Process, and one or more Processes utilize/consume a number of Resources.

      	Focusing on Life Cycle: Each Life Cycle comprises one or more Stages, and one or more Processes is executed during one or more Stages.

    

    It should be quite clear from this Ontology that there are obvious similarities with the MBSE Ontology that is used in this book. This is because ISO 15288 is one of the main best-practice references that is used throughout the book.

    It is now possible to focus on the Life Cycle concept and to break it down into more detail, as shown in the following diagram:

    [image: Figure 5.14 – A process structure view focusing on the life cycle concept ]
    Figure 5.14: A Process Structure View focusing on the Life Cycle concept

    The diagram in Figure 5.14 shows an additional Process Structure View, but this time with a focus on the Life Cycle concept, visualized using a SysML block definition diagram.

    The diagram shows that each Life Cycle comprises a number of Stages and a number of Decision Gates. Furthermore, each Stage is controlled by a single Decision Gate, as explained in the following points:

    
      	Focusing on the Decision Gates: Each Decision Gate comprises a single Decision Option, of which there are five types: Execute Next Stage, Continue this Stage, Go to Previous Stage, Hold Project Activity, and Terminate Project.

      	Focusing on the Stages: The different types of Stages are Conception, Development, Production, Utilization, Support, and Retirement.

    

    Again, notice the similarities between this Ontology for ISO 15288 and the one that was introduced in Chapter 4, Life Cycles, concerning Life Cycles.

    ISO 15288 – the Stakeholder View

    The Stakeholder View is concerned with identifying the Stakeholders that have an interest in the System. In this case, the System is the Standard itself, so the Stakeholder View is concerned with identifying the Stakeholders that have an interest in the Standard, as shown in the following diagram:

    [image: Figure 5.15 – The stakeholder view for ISO 15288 ]
    Figure 5.15: The Stakeholder View for ISO 15288

    The diagram in Figure 5.15 shows the Stakeholder View for ISO 15288, which is visualized by a SysML block definition diagram.

    Notice the same high-level structure for the three basic types of Stakeholders that have been seen several times already in this book: the Customer, External, and Supplier Stakeholders.

    The Customer Stakeholders are broken down into two subtypes:

    
      	User, which is split into two further types, Organization and Project, both of which are identified as the main benefactors applying the Standard.

      	System, which will benefit by having been Systems-engineered in a rigorous fashion by applying the Standard.

    

    The External Stakeholder has a single type, Standard, which itself has a single type, Life Cycle Standard. This refers to the fact that ISO 15288 relates to Life Cycles and the Processes associated with them.

    The Supplier Stakeholder has a single type, which is Standard Developer, who is responsible for the creation, development, and maintenance of the Standard.

    ISO 15288 – the Process Content View

    The Process Content View shows an overview of the Processes that are available for inclusion in the Life Cycle and that may be thought of as a Process library. In terms of ISO 15288, the Process Content View is by far the most populous of the Views.

    A high-level Process Content View that focuses on the Process Groups from the Ontology is shown in the following diagram:

    [image: Figure 5.16 – A process content view for ISO 15288, focusing on process groups ]
    Figure 5.16: A Process Content View for ISO 15288, focusing on Process Groups

    The preceding figure shows a high-level Process Content View for ISO 15288 that focuses on the Process Groups, which is visualized using a SysML block definition diagram.

    The diagram shows that there are four types of Process Group:

    
      	Agreement Process Group, which is concerned with all Processes that relate to the customer and supplier relationships and covers areas such as acquisition and supply.

      	Organizational Project-Enabling Process Group, which is concerned with Processes that apply across an entire organization and are relevant to everyone in the business.

      	Technical Management Process Group, which is concerned with Processes that are applied on a project-by-project basis to manage the technical Activities.

      	Technical Process Group, which is concerned with the sort of Processes that are usually associated with Systems Engineering Activities, such as needs modeling, design, verification and validation, and so on.

    

    Each of these Process Groups may be broken down to show individual Processes, which will be discussed in the next four sections.

    Process Content View for the Technical Process Group

    This section shows the Processes that comprise the Technical Process Group, as shown in the following diagram:

    [image: Figure 5.17 – A process content view for ISO 15288, focusing on the technical process group ]
    Figure 5.17: A Process Content View for ISO 15288, focusing on the Technical Process Group

    The previous figure shows a Process Content View for ISO 15288 that focuses on the Technical Process Group, which is visualized using a SysML block definition diagram.

    The diagram shows that there are 14 Processes that make up this Process Group:

    
      	Business or Mission Analysis Process, which is concerned with the definition of a business, mission problem, or opportunity; characterizing the solution space; and determining potential solutions for the System.

      	Stakeholder Needs and Requirements Definition Process, which is concerned with the definition of the Stakeholder needs and subsequent requirements for the System in the target environment.

      	System Requirements Definition Process, which is concerned with the transformation of the Stakeholder needs and requirements into a technical View of a solution.

      	Architecture Definition Process, which is concerned with the generation of the System architecture options and the selection of one or more alternatives that satisfy the original needs.

      	Design Definition Process, which is concerned with the provision of a System Model to enable the implementation of a solution that is consistent with the Views of the System architecture.

      	System Analysis Process, which is concerned with the provision of a fundamental understanding of the System Model to aid decision-making across the Life Cycle.

      	Implementation Process, which is concerned with the realization of a specified System element. This includes transforming the needs, architecture, and design models, including the interfaces, into a System element.

      	Integration Process, which is concerned with the integration of a set of System elements into a realized System that satisfies the original needs.

      	Verification Process, which is concerned with providing objective evidence that a System or System element fulfills its specified needs.

      	Transition Process, which is concerned with the transition of a System to the operational environment.

      	Validation Process, which is concerned with providing objective evidence that the System, when in use, fulfills its intended purpose in its intended operational environment.

      	Operation Process, which is concerned with the use of the System in its target environment to deliver its Services.

      	Maintenance Process, which is concerned with sustaining the ability of the System to fulfill its intended purpose.

      	Disposal Process, which is concerned with the disposal of a System element or System and ensuring that it is appropriately handled, replaced, or retired.

    

    Each of these Processes may be shown in more detail, also using a Process Content View, an example of which is shown in the following figure:

    [image: Figure 5.18 – A process content view for ISO 15288, focusing on the Stakeholder Needs and Requirements Definition Process ]
    Figure 5.18: A Process Content View for ISO 15288, focusing on the Stakeholder Needs and Requirements Definition Process

    The diagram in Figure 5.18 shows the Process Content View for ISO 15288, focusing on the Stakeholder Needs and Requirements Definition Process, which is visualized using a SysML block definition diagram. The individual parts of the diagram are visualized as follows:

    
      	The Process itself is visualized using a SysML block.

      	Each Artifact is visualized using a SysML property.

      	Each Activity is visualized using a SysML operation.

    

    This Process, and some of the other Processes in the various Process Groups, will be discussed in more detail in subsequent chapters of this book.

    Process Content View for the Agreement Process Group

    This section shows the Processes that comprise the Agreement Process Group, as shown in the following diagram:

    [image: Figure 5.19 – A process content view for ISO 15288, focusing on the agreement process group ]
    Figure 5.19: A Process Content View for ISO 15288, focusing on the Agreement Process Group

    The diagram in Figure 5.19 shows the Process Content View for the ISO 15288, this time focusing on the Agreement Process Group, visualized using a SysML block definition diagram.

    The Processes that comprise the Agreement Process Groups are as follows:

    
      	Acquisition Process, which is concerned with obtaining a Product or Service in accordance with a customer’s needs

      	Supply Process, which is concerned with providing a customer with a Product or Service that meets the agreed needs

    

    Notice that there are only two Processes shown here, as opposed to 14 in the Technical Process Group. This demonstrates how the emphasis in this Standard is on technical and engineering Activities.

    Process Content View for the Organizational Project-enabling Process Group

    This section shows the Processes that comprise the Organizational Project-enabling Process Group, as shown in the following diagram:

    [image: Figure 5.20 – A process content view for ISO 15288, focusing on the organizational project-enabling process group ]
    Figure 5.20: A Process Content View for ISO 15288, focusing on the Organizational Project-enabling Process Group

    The diagram in Figure 5.20 shows the Process Content View with an emphasis on the Organizational Project-enabling Process Group, visualized using a SysML block definition diagram.

    The Processes that comprise the Organizational Project-enabling Process Group are as follows:

    
      	Life Cycle Model Management Process, which is concerned with the definition, maintenance, and assurance of the availability of Life Cycle Processes used by an organization.

      	Infrastructure Management Process, which is concerned with the provision of infrastructure and Services to projects to support the organization and project throughout the Life Cycle.

      	Portfolio Management Process, which is concerned with the provision of suitable projects in order to meet the strategic objectives of the organization.

      	Human Resource Management Process, which is concerned with the provision of appropriate people with the appropriate competencies according to the organization’s business needs.

      	Quality Management Process, which is concerned with ensuring that the quality Process Sets meet organizational and project quality objectives and achieve customer satisfaction.

      	Knowledge Management Process, which is concerned with creating the capability and assets needed to enable the organization to meet its commercial objectives.

    

    Again, note the number of Processes here in comparison to the other two Process Groups that have been discussed so far.

    Process Content View for the Technical Management Process Group

    This section shows the Processes that comprise the Technical Management Process Group, as shown in the following diagram:

    [image: Figure 5.21 – A process content view for ISO 15288, focusing on the  technical management process group ]
    Figure 5.21: A Process Content View for ISO 15288, focusing on the Technical Management Process Group

    The diagram in Figure 5.21 shows the Process Content View for ISO 15288 with an emphasis on the Technical Management Process Group, visualized using a SysML block definition diagram.

    The Processes that comprise the Technical Management Process Group are as follows:

    
      	Project Planning Process, which is concerned with producing effective and workable plans.

      	Project Assessment and Control Process, which is concerned with assessing and ensuring that the Management Plans are consistent and feasible.

      	Decision Management Process, which is concerned with providing a structured analytical Framework for decision-making at any point in the Life Cycle.

      	Risk Management Process, which is concerned with identifying and analyzing risks throughout the Life Cycle.

      	Configuration Management Process, which is concerned with managing and controlling System elements and their configurations over the Life Cycle.

      	Information Management Process, which is concerned with the control, dissemination, and disposal of information to the relevant Stakeholders over the Life Cycle.

      	Measurement Process, which is concerned with collecting, analyzing, and reporting data and information to support effective management and demonstrate the quality throughout the Life Cycle.

      	Quality Assurance Process, which is concerned with ensuring the effective application of an organization’s Processes.

    

    Again, notice the difference in the number of Processes within each Process Group, which provides an indication of where the emphasis of this Standard lies, which is mainly in the technical and technical management areas.

    Demonstrating compliance with ISO 15288

    One of the main applications of a Model of a Standard is to use it as the basis for compliance.

    If a Process Set is developed using the seven-Views approach and then any number of Standards are also modeled using the same approach, then the resulting models may be directly related together to demonstrate any areas of compliance and non-compliance. Indeed, this is an application that will be explored in subsequent chapters of this book, where specific techniques for MBSE will be discussed and their provenance demonstrated by mapping them back to the ISO 15288 Process Model.

    Now that Process modeling has been discussed, we will look at the Framework that defines the Views that we have described so far in this chapter.

    Defining the Framework

    The Views that have been created so far represent the central part of the MBSE diagram that we discussed in detail in Chapter 2, Model-Based Systems Engineering. Each of the Views has been visualized using SysML, and they come together to represent the right-hand side of the MBSE diagram. 

    These Views combine to form the overall Model, but it is essential that these Views are all consistent; otherwise, they are not Views but pictures! This is where the left-hand side of the MBSE diagram comes into play, as it is important that the definition of all the Views is captured in the Framework. The Framework comprises the Ontology and a set of Viewpoints; therefore, it is now time to make sure that these Viewpoints are defined thoroughly and correctly, which is the aim of this section.

    Defining the Viewpoints in the Framework

    It was discussed in Chapter 2, Model-Based Systems Engineering, that it is necessary to ask a number of questions about each View to ensure that it is a valid View. There is also a set of questions that must be asked of the whole Framework, as well as of the Views. A combination of these results in a set of questions, allowing the whole Framework to be defined. It is worthwhile, therefore, to have a reminder of what these questions are:

    
      	Why is the Framework required? This question may be answered using a Framework Context View.

      	What are the overall concepts and terminology used for the Framework? This question may be answered using an Ontology Definition View.

      	What Views are necessary as part of the Framework? This question may be answered using a Viewpoint Relationship View.

      	Why is each View needed? This question may be answered using a Viewpoint Context View.

      	What is the structure and content of each View? This question may be answered using a Viewpoint Definition View.

      	What rules should be applied? This question may be answered using a Ruleset Definition View.

    

    When these questions are answered, it can be said that a Framework has been defined. Each of these questions can be answered using a special set of Views that is collectively known as the Framework for Architecture Frameworks (FAF) [Holt and Perry 2019]. At this point, simply think about creating a specific View to answer each question, as described in the following sections.

    Defining the Framework Context View

    The Framework Context View specifies why the whole Framework is needed in the first place, and in this case, it will define the basic need for the seven-Views approach to Process modeling in the form of a Process Perspective, which is shown in the following diagram:

    [image: Figure 5.22 – A framework context view for the seven-views approach to process modeling ]
    Figure 5.22: A Framework Context View for the seven-Views approach to Process modeling

    The diagram in Figure 5.22 shows the Framework Context View for the seven-Views approach to Process modeling, visualized using a SysML use case diagram.

    The main aim of the seven-Views approach to Process modeling is to define an approach for process modeling, an approach that includes the following three needs: 

    
      	Provide a needs definition, which allows the basic purpose of the Process Set to be modeled to be defined

      	Provide a process definition, which allows the Processes in the Process Set to be defined

      	Provide a process validation, which demonstrates how the Process Set satisfies the original needs

    

    The main aim is also constrained by the following:

    
      	Ensure consistency with an MBSE approach, which includes Define Ontology. This makes sure that the overall approach is based on MBSE best practices.

      	Allow mapping between processes, which allows compliance with other Processes to be demonstrated.

      	Be expandable, which has three specializations: …for competence, …for life cycles, and …for projects. This makes sure that the approach is flexible and can be adapted for other Process-related applications.

      	Be applicable to different levels of the process, which has three specializations: …standards, …processes, and …guidelines. This makes sure that the approach is flexible enough to be applied at different levels of abstraction of the Process.

    

    This is only a brief explanation, as use case diagrams will be covered in depth in the next chapter.

    Defining the Ontology Definition View

    The Ontology Definition View captures all the concepts and associated terminology associated with the Framework in the form of an Ontology. This has already been done, as the Ontology for the Process-related Views was defined in Figure 5.1, Figure 5.2, and Figure 5.3. The Ontology Elements shown in this View provide all the stereotypes that have been used for the actual Views created so far in this chapter.

    Ontology Elements that are related will often be collected into a Perspective, as was discussed in all previous chapters. In this chapter, a new Perspective has been created that relates to Processes.

    Defining the Viewpoint Relationship View

    The Viewpoint Relationship View identifies which Views are needed and, for each set of Views, identifies a Viewpoint that will contain its definition. Remember that a Viewpoint may be thought of as a type of template for a View. These Viewpoints may be collected into a Perspective, which is simply a collection of Viewpoints with a common theme.

    In this chapter, the emphasis has been on defining a set of relations between Views and Life Cycles, so it is appropriate to create the Process Perspective. The basic set of Views that has been discussed so far is shown in the following View:

    [image: Figure 5.23 – A viewpoint relationship view for the process perspective ]
    Figure 5.23: A Viewpoint Relationship View for the Process Perspective

    The diagram in Figure 5.23 shows the Viewpoint Relationship View for the Process Perspective using a SysML block definition diagram.

    The Process Perspective is shown using a SysML package, stereotyped as <<perspective>>, which simply collects a number of Viewpoints, as follows:

    
      	Process Structure Viewpoint, which allows the Ontology to be captured.

      	Process Content Viewpoint, which defines a Process library for the Process Set.

      	Requirement Context Viewpoint, which defines the need for each Process in the Process Set.

      	Stakeholder Viewpoint, which allows all relevant Stakeholders to be identified

      	Process Behavior Viewpoint, which specifies how a single Process operates internally

      	Information Viewpoint, which defines the Artifacts associated with either a single Process or the Process Set and their inter-relationships.

      	Process Instance Viewpoint, which allows sequences of Processes to be executed in order to satisfy the original need.

    

    The number of Viewpoints defined here gave rise to the original name for the approach: the seven-Views approach to Process modeling.

    Defining the Viewpoint Context View

    The Viewpoint Context View specifies why a particular Viewpoint and, therefore, its set of Views is needed in the first place. It will identify the relevant Stakeholders that have an interest in the Viewpoint and identify what benefits each of the Stakeholders hopes to gain from the Framework.

    There will be a Viewpoint Context View for each Viewpoint. Each Viewpoint Context View will trace back to the Framework Context View, as it must contribute to the overall expectations of the organization. The combined set of Viewpoint Context Views will, therefore, satisfy the overall needs represented in the Framework Context View.

    The Viewpoint Context View will be visualized using a SysML use case diagram, and this will be described fully in Chapter 6, Needs and Requirements.

    Defining the Viewpoint Definition View

    The Viewpoint Definition View defines the Ontology Elements that are included in the Viewpoint, showing the following important distinction:

    
      	Which Ontology Elements are allowed in the Viewpoint

      	Which are optional

      	Which are not allowed

    

    The Viewpoint Definition View focuses on a single Viewpoint, and particular care and attention must be paid to not just the Ontology Elements that are selected but also the relationships that exist between these Ontology Elements. An example of a Viewpoint Definition View is shown in the following diagram:

    [image: Figure 5.24 – A viewpoint definition view for the process behavior viewpoint ]
    Figure 5.24: A Viewpoint Definition View for the Process Behavior Viewpoint

    Figure 5.24 shows the Viewpoint Definition View for the Process Behavior Viewpoint, using a SysML block definition diagram.

    The Process Behavior Viewpoint, therefore, contains the following Ontology Elements:

    
      	One or more Artifacts

      	One or more Activities

      	One or more Stakeholders

    

    Alongside these Ontology Elements, the following Ontology relationships are also included in the Viewpoint:

    
      	One or more Activities produce/consume one or more Artifact.

      	Each Stakeholder is responsible for one or more Activities.

    

    Remember, not all Ontology relationships from the Ontology need to be included, only the ones that manifest themselves in the Views.

    Defining the Ruleset Definition View

    The Ruleset Definition View identifies and defines a number of rules that may be applied to the Model to ensure that it is consistent with the Framework.

    The rules are based primarily on the Ontology Definition View and the Viewpoint Relationship View. In each case, the rules are defined by identifying the key relationships and their associated multiplicities that exist in the following places:

    
      	Between Viewpoints in the Viewpoint Definition View

      	Between Ontology Elements in the Ontology Definition View

    

    An example of a rule for the Process Perspective is shown in the following diagram:

    [image: Figure 5.25 – Example ruleset definition view ]
    Figure 5.25: An example Ruleset Definition View

    Figure 5.25 shows an example of a Ruleset Definition View using a SysML block definition diagram. Each block on the diagram represents a rule that is derived from either the Ontology Definition View or the Viewpoint Relationship View.

    The rule is as follows:

    
      	Each process must have at least one Process Behavior View. This is based on the relationship between the Process Content Viewpoint and the Process Behavior Viewpoint from the Viewpoint Relationship View.

    

    Of course, any number of other rules may be defined here, but not every relationship will lead to a rule, as this is at the discretion of the modeler.

    Summary

    This chapter has introduced the concepts of Processes and why they are so important to MBSE. Processes are collected into a Process Set to form the heart of any good MBSE approach, alongside the Framework.

    An approach to modeling Processes was introduced that is known as the seven-Views approach to Process modeling, and it was used to show how a Process may be defined.

    The same approach was then also used to show how a Standard may be modeled; this will be referred back to in subsequent chapters in this book.

    Finally, the Framework for the Process Perspective was defined.

    The next chapter looks at the whole area of needs modeling. The Process modeling that we have learned about in this chapter will also be used to define a needs-based Process.

    Self-assessment tasks

    
      	Consider the Ontology for Processes that was presented in Figure 5.1 and map this onto the concepts and terminology in your organization.

      	Identify a single Process in your organization and create a set of seven Views to Model this Process.

      	Take the Process Model created in question 1 and map it onto the ISO 15288 Process Model that was created in this chapter. Use the Process Structure View to map between concepts and the Process Content View to map between Processes.
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    Section III

    Systems Engineering Techniques

    In this section, you will learn some specific techniques that will allow you to realize the concepts discussed in Section 2, Systems Engineering Concepts, of the book.

    This section has the following chapters:

    
      	Chapter 6, Needs and Requirements

      	Chapter 7, Modeling the Design

      	Chapter 8, Modeling Verification and Validation

      	Chapter 9, Methodologies

      	Chapter 10, Systems Engineering Management

    

  


  
    6

    Needs and Requirements

    This chapter focuses on introducing one of the most important techniques associated with MBSE, that of modeling Needs and Requirements.

    Understanding Needs is crucial to the success of any System as they are used to provide the definitions of all aspects of the System, such as the intended use, performance, function, form, and intent of the System.

    Without understanding the Needs of a System, it is impossible to say whether the delivered System is fit for purpose. This is because the purpose of that System is not known, as it is the Needs that describe its purpose. Therefore, it is crucial that all Needs are well defined and also that they are well understood by all of the Stakeholders of the System. This is important as different Stakeholders may interpret these Need statements in different ways, depending on their Context. Indeed, the topic of Context will be described in detail as it is one of the most important aspects that must be clearly specified before the Needs can be truly understood and accepted by the relevant Stakeholders.

    This chapter covers the following:

    
      	Introducing Needs and Requirements

      	Visualizing Needs using different SysML diagrams

      	Defining the Framework

    

    Our discussion begins by considering the fundamental concepts associated with Needs and Requirements.

    Introducing Needs and Requirements

    This section introduces the key concept of Needs and discusses the different types that Needs exist, such as Requirements, Capabilities, and Goals. We will discuss the importance of defining the exact meaning of the terminology, and the MBSE Ontology that has been developed throughout this book so far will also be expanded upon to introduce these new concepts. We will start by looking at what Needs actually are…

    Defining Needs

    One of the most important concepts associated with Systems Engineering is that of the Need, as shown in the following diagram:

    [image: Figure 6.1 – Ontology definition view showing basic needs ]
    Figure 6.1: Ontology Definition View showing basic Needs

    The diagram in Figure 6.1 shows an Ontology Definition View that introduces the concept of a Need and its relationship to a System, which is visualized using a SysML block definition diagram.

    The diagram shows that one or more Needs describe the purpose of one or more Systems. The concept of a Need is important for several main reasons:

    
      	It provides a statement of a desired feature of a System.

      	It provides an agreed consensus between the customer and supplier Stakeholder roles as to what is to be delivered as part of the System.

      	It describes how a System may be accepted by the customer. To put this another way, a System may only be accepted by the customer once it has been demonstrated that all the agreed Needs have been satisfied.

    

    Remember from Chapter 1, Introduction to Systems Engineering, that the main aim of Systems Engineering is to realize a successful System, and it is satisfying these Needs that ensures that the System is successfully realized.

    Also, the Needs will be traced back through the development Life Cycle to ensure that the project is consistently and continuously satisfying its overall purpose.

    There are three main areas of Needs that will be discussed in this chapter: defining the different types of Needs that exist, describing each Need using Use Cases, and validating Use Cases and Needs using Scenarios.

    Defining types of Needs

    The concept of a Need is a generic one, and there are many different types of Needs that may be identified, depending on the type of System that is being developed and the domain in which the System will be deployed. Some examples of different types of Needs are shown in the following diagram:

    [image: Figure 6.2 – Ontology definition view types of need ]
    Figure 6.2: Ontology Definition View types of Need

    The diagram in Figure 6.2 shows the basic concept of a Need by showing three different types of Needs, visualized using a SysML block definition diagram.

    It can be seen that there are three types of Needs, which are as follows:

    
      	Requirement: Contributes to describing the purpose of the System and delivers one or more Capabilities. A Requirement describes a specific Need of a System and may be applied at different levels of System elements, such as the System, Subsystem, and so on (note that this is not shown in this diagram). For example: “The motor shall produce XXKW of electrical power”.

      	Capability: Contributes to describing the purpose of the System that is delivered by one or more Requirements and that meets one or more Goals. For example: ‘the car shall have adaptive cruise control’.

      	Goal: Contributes to describing the purpose of the System that is met by one or more Capabilities. For example: ‘The car shall be best-in-class compared to our competitors’.

    

    These types of Needs are often referred to as functional Needs as they describe a specific function of a System that has to be delivered. This term will not be used explicitly in this book; only the terminology that is specified in the Ontology Definition Views.

    Notice that at this point, the Needs themselves are not being described individually as this will be done in two ways in the next section when Need Descriptions and Use Cases are discussed. Several examples of these different types of Needs will be provided at that point.

    It should be stressed that the three types of Need that are shown here are examples and, as such, are provided for guidance only. It is up to you to define the types of Needs that suit your own ends.

    There is also another type of Need that must be considered at this point and that may be applied to all three Needs, and that is shown in the following diagram:

    [image: Figure 6.3 – Ontology definition view showing constraints ]
    Figure 6.3: Ontology Definition View showing Constraints

    The diagram in Figure 6.3 introduces the concept of the Constraint, and is visualized using a SysML block definition diagram.

    A Constraint is a special type of Need, but it sits alongside the three types of Needs that were introduced in Figure 6.2. This is a subtle yet important point from a modeling point of View. When two separate specializations are used, as seen here, they are actually considered different types of specialization altogether. Therefore, the following three situations are possible:

    
      	A Need may be both a type of Requirement and a type of Constraint.

      	A Need may be both a type of Capability and a type of Constraint.

      	A Need may be both a type of Goal and a type of Constraint.

    

    This is a very powerful modeling mechanism that provides considerable flexibility when defining specialization in SysML.

    One or more Constraints limit the realization of a System in some way. Needs state a desired feature of a System whereas Constraints, while still being Needs, will limit the way that a Need may be realized in the System.

    Constraints are often referred to as non-functional Requirements, but this term will not be used explicitly in this book; only the terminology that is specified in the Ontology Definition Views.

    Constraints can often be more difficult to satisfy than standard Needs. Also, it is possible to develop a System that satisfies all the original Needs but, without also satisfying the Constraints, it will be impossible to deploy the System.

    There are many different types of Constraints that may exist, such as the following:

    
      	Quality Constraints: Satisfying a particular Standard; for example, all cars in Europe must satisfy the basic Requirements of ISO 26262: Road Vehicles – functional safety; otherwise they are not permitted to be used on public roads.

      	Environmental Constraints: Limiting the emissions of a System; for example, a car may be limited to using an electric motor, rather than an internal combustion engine, due to the levels of emissions generated by a petrol or diesel engine.

      	Performance Constraints: Specifying efficiency measures associated with a System; for example, the power of a motor may Need to be less than what is possible according to its parameters as there may be a Constraint associated with ensuring a predefined distance that Needs to be traveled between refueling or recharging.

      	Implementation Constraints: Using a specific material or prohibiting the use of a specific material in the construction of the System; for example, only certain types of solder may be used in the construction of the circuit boards in a car due to the lead content of some solders.

    

    Of course, this is not intended to be an exhaustive list of Constraints but should provide you with some indication of the sheer diversity of Constraints that may limit the realization of the System in some way.

    Constraints, as will be seen later in this chapter, must be related to other Needs, or to put it another way, they must constrain an existing Need.

    Describing Needs

    Both Needs and Constraints (themselves a special type of Need) are conceptual and must be described in some way. This will be achieved in two ways: by creating Need Descriptions and by defining Use Cases for the Needs. The following diagram introduces the first of these two – the Need Description.

    [image: Figure 6.4 – Ontology definition view for need descriptions ]
    Figure 6.4: Ontology Definition View for Need Descriptions

    The diagram in Figure 6.4 expands to introduce several new concepts using a SysML block definition diagram. There are three new concepts in this diagram, which are as follows:

    
      	Need Description, which provides a set of text-based features that describe an individual Need. These features are typically a list of attributes, such as name, description, identifier, and priority, among others, that must be defined for each Need Description.

      	Source Element, which provides a reference to the origin of the Need. All Needs must come from somewhere and the Source Element provides a set of legal sources for the Needs.

      	Rule, which provides guidance that may limit the way that a Need Description may be defined. Rules will constrain a Need Description so, for example, a Rule may prohibit the use of some words, such as should, could, reasonable, and so on.

    

    Need Descriptions are an important part of describing a set of Needs but there is a major pitfall that will often manifest itself when describing Needs using only text-based Need Descriptions, which is the Context of the Need Description. In many cases, it is difficult to explicitly see the Context, or point of View, from which the Need Description has been written. This can lead to different Stakeholders having different interpretations of a single Need Description, without these differences being apparent. This can be catastrophic for gaining a true understanding of the Needs as a whole and, therefore, it is essential that Needs are also described using Use Cases, which are shown in the following diagram.

    [image: Figure 6.5 – Ontology definition view showing use cases ]
    Figure 6.5: Ontology Definition View showing Use Cases

    The diagram in Figure 6.5 shows several new concepts that have been realized using a SysML block definition diagram. There are two new concepts in this diagram, which are as follows:

    
      	Use Case, which provides a Context-based description of a Need. This Context may completely change the interpretation of a specific Need depending on which Context has been selected.

      	Context, which describes the point of View from which the Use Case has been defined.

    

    There is potential for confusion between a Need Description and a Use Case as both describe a Need. The difference between the two, which is absolutely crucial to understand, is that Use Cases describe Needs explicitly via a specific Context, whereas Need Descriptions do not. Both are important for different reasons:

    
      	Need Descriptions will often provide a contract for a Project to deliver a System.

      	Need Descriptions are used extensively for Needs management, rather than engineering (understanding) the Need.

      	Use cases provide Context and, therefore, a true understanding of the many different interpretations of a single Need.

    

    It is possible and usual, therefore, to have a single Need Description for a single Need, and also for that single Need to have multiple interpretations that are captured in the Model by multiple Use Cases.

    Validating Needs and Use Cases

    If it is accepted that a single Need can have multiple interpretations in the form of multiple Use Cases, then the way that each Need may be validated will also be open to multiple interpretations. These multiple validations are captured in the Model using Scenarios, which are introduced in the following diagram.

    [image: Figure 6.6 – Ontology definition view showing scenarios ]
    Figure 6.6: Ontology Definition View showing Scenarios

    The diagram in Figure 6.6 shows that Scenarios provide a mechanism for validating a Need via its Use Cases. It is essential to demonstrate that each Need can be satisfied in order for the System that is being developed to be successful. As each Need may have multiple Use Cases, it is important that each of these may be demonstrated to have been satisfied. This is achieved by defining a number of Scenarios that validate each Use Case.

    A Scenario may be realized in the following two different ways:

    
      	Operational Scenarios, which show a sequence of events or actions that results in a specific outcome. These Operational Scenarios are typically sequential in nature.

      	Performance Scenarios, which allow the parameters of a System to be changed in order to demonstrate that it can satisfy specific outcomes. These Performance Scenarios are typically mathematical in nature.

    

    The concepts that have been introduced to us in this section provide the Ontology Definition View for Needs. We will discuss the realization of a number of Views based on this Needs Ontology in detail in the next section, which discusses visualizing Needs.

    Visualizing Needs using different SysML diagrams

    The previous section defined the concepts associated with Needs in the form of the Needs Ontology. This section looks at each of these in more detail and shows how Needs may be realized using a number of different Views, each of which will be visualized using the SysML notation.

    Visualizing Source Elements

    This section discusses the importance of defining Source Elements and introduces the Source Element View, which is used to visualize these Source Elements. It is important that all Needs have a provenance, and Source Elements allow us to identify exactly where each Need has come from. There are five basic reasons why we need to identify these Source Elements, which are as follows:

    
      	To identify the origin of all the Needs that are defined for a System: This is something that is often overlooked or neglected altogether, but this is important for a number of reasons.

      	To demonstrate the provenance of all Needs: It is essential to be able to identify where each Need originated. This must include an actual reference to the origin so that the source information may be identified and checked in the event that the Need is queried in some way.

      	To identify the source Stakeholder: If a Need cannot be traced back to a Stakeholder, then it is not a Need! Stakeholders have been defined as having an interest in the System; therefore, all Needs must trace back to one or more Stakeholders.

      	To prevent unspecified Needs: It is a common problem that some Needs are actually introduced by workers on a project and have not been formally identified by a specific Stakeholder. This can result in extra Needs being introduced that are not required or Needs that are detrimental to the System.

      	To identify what a legal Source Element: Depending on the nature of a System and how critical it is, it is important to identify what constitutes a legal Source Element and what does not.

    

    The Ontology Element that must be considered, therefore, is that of the Source Element, but it is always advisable that the different types of Source Elements are specified explicitly by expanding the Ontology Definition View, as shown in the following diagram.

    [image: Figure 6.7 – Expanded ontology definition view showing types of source elements ]
    Figure 6.7: Expanded Ontology Definition View showing types of Source Elements

    The diagram in Figure 6.7 shows the four new types of Source Elements introduced here that are indicated using the SysML specialization relationship and are as follows:

    
      	Marketing Material, which represents information that is used by the marketing Stakeholders in order to provide an indication of the final Product that is being developed. In the case of a car, this may be sales literature, for example, that provides features of a new car that may be desirable for potential customers and that may have to be introduced into a new car System under development.

      	Standard, which represents some sort of best practice reference that is relevant to the car. This may be a safety standard, such as ISO 26262 or the ENCAP rating standard that is used as part of the promotion for new cars. Of course, these standards may cover any aspect of the System or the project that is being run to develop that System.

      	Publication, which may be a book (such as this one!) or a scientific paper that may give rise to Needs. For example, a book may be used as the industry standard for best practices in a particular field, such as MBSE.

      	Customer Request, which may be a specific request from existing customers. For example, customers using an old version of a car may all have a similar complaint that may be resolved by introducing a new Need for subsequent versions of the car.

    

    Note that each of the new types of Source Element has a number of properties associated with it that allow reference to be made to the specific Source Element.

    In the same way that legal Source Elements may be identified, it may also be desirable to identify Source Elements that will not be accepted as valid, as shown in the following diagram.

    [image: Figure 6.8 – Ontology definition view showing legal and forbidden source elements ]
    Figure 6.8: Ontology Definition View showing legal and forbidden Source Elements

    The diagram in Figure 6.8 shows another expanded Ontology Definition View that introduces a new level of specialization of Source Elements.

    The diagram in Figure 6.7 shows types of Source Elements, but Figure 6.8 introduces a new level of classification by defining the following:

    
      	Legal Source Element, which is the same collection of types of Source Elements that was seen previously. This time, however, they are explicitly identified as being legal and, therefore, may be permitted in the Model.

      	Forbidden Source Element, which provides a new collection of Source Elements (in this case, only one – Website) that is deemed to be illegal. Note that there are no additional properties on the forbidden Source Elements as they may not be added to the Model and, therefore, do not require an explicit specification.

    

    This provides a very neat way of stating exactly what is permitted and not permitted to be a Source Element. Also, in the case of legal Source Elements, the properties required to reference the Source Element precisely are identified.

    This expanded Ontology may then be used as a basis for a Source Element View, an example of which is shown in the following diagram.

    [image: Figure 6.9 – Example Source Element view ]
    Figure 6.9: Example Source Element View

    Each block in the diagram in Figure 6.9 represents a single Source Element but uses stereotypes that are taken from the expanded Ontology Definition View from Figure 6.6, all of which are types of Source Elements. Notice how each of the Source Elements now has its property values filled in to specify exactly what the Source Element is.

    The Source Element View is visualized here using a SysML block definition diagram, but it could have very easily been visualized using text or a simple table. The use of the block definition diagram, however, has a number of advantages over using only text:

    
      	The View must be part of the Model: As discussed in Chapter 2, Model-Based Systems Engineering, it does not matter how each View is visualized provided that the View is truly part of the Model and is consistent with all the other Views (which is the very definition of a View!). By using SysML to visualize the View and an underlying Ontology, this is far simpler than using text.

      	The View provides a bridge to the actual Source Element: Each Source Element on the View is a reference to the actual Source Element; for example, the block Car Brochure is not the actual brochure but is a reference to it. All SysML tools will allow a hypertext link to be inserted as part of the block description, which will allow a direct bridge between the Model, in this case, the Source Element, and the actual document, such as the Car Brochure.

      	Traceability is assured: Following on from the previous two points, full traceability across the Model is now assured as everything in the Model and the Source Element files that sit outside the Model are now fully traceable.

    

    The Source Element View is often overlooked but it is a very important View that must always be present in any Needs Model.

    As with all the Views in a particular Framework, there is no inherent order for creating the Views and, therefore, the Source Element View may be created at any point. In some cases, it may be the first View that is created if, for example, the start point of the Needs modeling is a set of source documents. As another example, the start point of the Needs modeling may be creating Contexts, in which case the Source Element View would not be the first View to be created.

    Visualizing Need Descriptions

    When defining Needs of any kind (Requirements, Capabilities, or Goals, according to the Ontology presented here), it is both natural and intuitive to want to describe each Need in turn using text. This is both useful and important and forms a key part of any Needs modeling exercise. In many cases, this will be the first View that is generated due to the historical tradition of defining Needs using text as part of a Needs management activity.

    When defining an individual Need, it is common to identify a number of properties that relate to each Need and that, when taken together, form the description of that Need. This is captured in the Ontology by the Need Description.

    There is no definitive set of properties that must be defined for each Need and it is ultimately up to the modeler to decide which are appropriate, but a typical set is shown in the following diagram:

    [image: Figure 6.10 – Ontology definition view focusing on need description ]
    Figure 6.10: Ontology Definition View focusing on Need Description

    The diagram in Figure 6.10 shows a single Ontology Element shown on the View, which is the Need Description that was discussed previously in this chapter, shown in Figure 6.1. This time, however, a number of properties have been identified, which are as follows:

    
      	Description, a text-based description that uses plain English to describe the Need in detail.

      	Identifier, which provides a unique reference for the Need Description that can be used later for traceability purposes.

      	Name, which provides a high-level label that can be used as a simple description of the Need.

      	Origin, which refers directly to the Stakeholder that was responsible for identifying the original Need that relates to this Need Description.

      	Priority, which provides an indication of how important the Need is; typically, this may be set as mandatory, desirable, or optional.

      	Validation, which refers directly to the number of Scenarios that will be used to demonstrate that the Need has been satisfied. Scenarios will be discussed later in this chapter.

    

    Each Need that has been identified will have a single Need Description associated with it and these may be modeled using a SysML Requirement diagram. The SysML requirement diagram is a new diagram that has not been discussed in detail so far in this book. The requirement diagram is actually a variation of the SysML block definition diagram and comprises two basic elements:

    
      	Requirement, which is a special type of block that is stereotyped as «requirement» in SysML and has two predefined properties associated with it: id, which provides a unique identifier, and text, which allows a text description to be defined.

      	Relationships, which allow requirement blocks to be related together.

    

    These SysML requirement diagrams, therefore, may be used to visualize a set of Need Descriptions in a Need Description View, an example of which is shown in the following diagram.

    [image: Figure 6.11 – Example need description view for a single need description ]
    Figure 6.11: Example Need Description View for a single Need Description

    The diagram in Figure 6.11 shows a Need Description View that focuses on a single Need Description and that is visualized using a SysML requirement diagram.

    In this example, there is a single Need Description named Access car that is represented on the diagram using a SysML requirement block. Notice how the properties for the Need Description have been filled in with appropriate values.

    This diagram also shows how the basic SysML language must be tailored, in some cases, to suit the specific Needs of the project. In the SysML language, there are only two predefined properties on a requirement block, which is not nearly enough to fully describe a Need Description. However, this is not an oversight of SysML and is actually quite deliberate. By only specifying a small number of properties (in this case, just the ID and the text properties), it allows the modeler to define their own set of properties to suit their own ends. In this example, the properties that are used are the ones that were defined in the Ontology and depicted in Figure 6.9.

    The example here focuses on a single Need Description and, of course, in a real project, there would never be a Need Description View that contains only a single Need Description, as it would be more typical to show multiple Need Descriptions and the relationships between them. An example of this can be seen in the following diagram:

    [image: Figure 6.12 – Example need description view showing multiple need descriptions ]
    Figure 6.12: Example Need Description View showing multiple Need Descriptions

    The diagram in Figure 6.12 shows another Need Description View that shows multiple Need Descriptions and that is visualized using a SysML requirement diagram.

    In this example, there are two high-level Need Descriptions that are shown along with their associated lower-level Need Descriptions. This decomposition is shown in SysML by using a nesting symbol (the circle with the cross), which is just one of the many relationships that may be used on a SysML requirement diagram. The nesting construct allows Need Descriptions to be broken down into lower-level Need Descriptions.

    Another useful relationship that may be used on requirement diagrams is that of the «trace» relationship. Refer to the following diagram:

    [image: Figure 6.13 –  Need description view showing traceability ]
    Figure 6.13: Need Description View showing traceability

    The diagram in Figure 6.13 shows another Need Description View showing traceability, which is visualized using a SysML requirement diagram.

    In this example, the «trace» relationship has been used to show explicit traceability between Need Descriptions and Source Elements (in this case, the two specializations of Source Element: «standard» and «customer request»). The ability to show traceability is very powerful, but it is essential that whatever traceability path is being shown is consistent with the Ontology. In this case, the «trace» relationship shows explicit traceability between the Need Description and the Source Elements. This is consistent with the Ontology in Figure 6.3, which shows a traceability path from Need Description to Need and then on to the Source Element. If this traceability path did not exist in the Ontology, then the «trace» relationship in this View would be incorrect and would break the Model! Everything in each one of the Views, including both the elements and relationships, must be a direct instance of Ontology Elements and Ontology relationships from the Ontology.

    There are several other types of relationships that may be used in a requirement diagram, which are as follows:

    
      	Copy, which shows that a SysML requirement block is an exact and direct copy of another. This is useful when disparate Source Elements may result in multiple copies of a single Need Description.

      	Derive, where one SysML requirement block has been created that did not exist previously, directly as a result of an existing SysML requirement block.

      	Refine, where one SysML requirement block has been changed or modified based on an existing SysML requirement block. This may be, for example, where the wording has been correct or, as will be seen in the next section, as a result of some Use Case modeling.

      	Satisfy, where other aspects of the Model may be related back to a SysML requirement block to show either verification or validation.

    

    Caution must be exercised when using SysML requirement diagrams as they are intended to be used for managing Needs rather than understanding those Needs. Historically, the SysML requirement diagram was based on standard Views from several commercial requirements management tools; hence, the names of the standard relationships may be familiar to some readers.

    There is a great potential danger in this as many people will produce text descriptions of Needs (Need Description Views) and then mistakenly believe that they have engineered those Needs. This is simply not true, as this type of View and the associated SysML requirement diagram are intended for use in managing Needs rather than engineering them. As a result of this, there can be little or no confidence in a set of Needs that consists solely of Need Description Views.

    The Need Description View is an important View, but it is only a single View. In order to gain a complete, thorough, and rigorous understanding of the Needs, it is essential to consider the complete set of Views that is presented there. An essential aspect of the other Views that must be considered is the concept of the Context, which is often ignored or missed out altogether when only text-based descriptions are considered.

    This crucial concept of Context, and how it may be modeled, is described in the following section.

    Visualizing the Context Definition

    The next View that will be discussed is the Context Definition View. When modeling Needs, identifying and defining Contexts is essential to gaining an understanding of the underlying Needs.

    Each Context provides a point of View, from which each Need is considered. Looking at Needs from different Contexts provides a very rich understanding of the different interpretations of each Need, which is essential for engineering the Needs correctly. These Contexts may be based on a number of different sources and two will be considered in this chapter: Stakeholder Contexts and System Contexts.

    A number of different Contexts may be identified based on different Stakeholders that exist for the System. This is a very common source of Contexts and one that is mandatory for any rigorous Needs modeling exercise.

    Each Stakeholder that exists for the System may look at a single Need and, potentially, each Stakeholder may interpret that Need in a different way. These different interpretations are known as Use Cases and these will be discussed in the next section. For now, the important thing is to have a good idea of what Stakeholders exist. This is good news as identifying Stakeholders is something that has already been discussed previously in Chapter 1, Introduction to Systems Engineering, as Stakeholder identification is an essential part of any Systems Engineering endeavor. Consider, therefore, the set of Stakeholders that has been identified in the following diagram:

    [image: Figure 6.14 – Context Definition View based on stakeholders ]
    Figure 6.14: Context Definition View based on Stakeholders

    The diagram in Figure 6.14 shows a Context Definition View that is visualized using a SysML block definition diagram. This is very similar to some of the Stakeholder Views seen previously in this book, but this View has a different name. This is because this View may not necessarily be based on Stakeholders but may be based on the System structure, for example, in which the diagram would look different (this will be considered in the next diagram). Therefore, the term Context Definition View is used as this allows the View to focus on other sources for the Context, not just Stakeholders.

    Note that the classification hierarchy of the Stakeholders is the same as was seen previously but, this time, there have been more Stakeholders added to the View. There are 11 different Stakeholders in total shown in this View, which means that, potentially, there will be 11 different interpretations of each Need as there are 11 different Contexts. Initially, this can be quite intimidating as it can lead to a lot of work being carried out to provide a thorough understanding of the Needs. This is true, but it is a very good example of how complex Needs can be and makes the case for modeling. If the modeling was not carried out, then the different interpretations of each Need may become hidden and would not be considered at this point. This hidden complexity almost always leads to problems later on in the Life Cycle when these different interpretations come to light.

    Another source of Contexts that should always form part of a thorough Needs modeling exercise is that of the System structure. In order to illustrate this, consider the following diagram.

    [image: Figure 6.15 – Context Definition View based on system structure ]
    Figure 6.15: Context Definition View based on System structure

    The diagram in Figure 6.15 shows how this View is the same type of View as the one in Figure 6.14 but it looks very different as the emphasis in this View is on the System structure, rather than the Stakeholders. Indeed, notice how System was present in Figure 6.14 as a single block with the Stakeholders being shown in detail, whereas Stakeholder is present in Figure 6.15 and the System is shown in detail.

    When considering Contexts based on Stakeholders, each type of Stakeholder gives rise to its own Context. When considering Contexts based on the System structure, then it is each level in the System hierarchy that gives rise to a Context.

    Now that these Context Definition Views have been defined, it is now possible to look at the Contexts themselves and to consider Use Case modeling, which will be discussed in the next section.

    Visualizing Contexts

    The previous section identified a number of Contexts, and this section will look at how each Context can be modeled. This requires looking at Use Cases and for each Need, a SysML use case diagram will be used to model these Use Cases. The SysML use case diagram has been seen already in this book, particularly when looking at Contexts for Framework and Viewpoint definitions, but they were only considered at a very high level. In this section, use case diagrams will be discussed in detail and the various modeling constructs will be illustrated based on the existing car example.

    The SysML use case diagram is one of the most widely used diagrams but it is very often misused or is not used correctly. The main reason for this is that use case diagrams are intended to be very simple, which leads to the misconception that they are easy to produce. The simplicity of a good use case diagram can, therefore, be deceptive as it can take a lot of effort and structured thinking to get them right.

    The use case diagram has four main modeling constructs, which are as follows:

    
      	Use case: Each SysML use case represents a conceptual Use Case from the Ontology. (This leads to confusion as the two terms are the same! Note that when capitalized, Use Case refers to the Ontology Element, whereas when in lower case, use case refers to the SysML modeling element.) Each SysML use case is visualized by an ellipse in the use case diagram.

      	Actor: Each SysML actor represents a Stakeholder from the Ontology. Each actor is visualized by a stick person in the use case diagram.

      	Boundary, which represents the actual Context: Each boundary is visualized using a large rectangle that encapsulates use cases and that has actors outside.

      	Relationships, which represent relationships between use cases and between a use case and actor: These are represented by various lines, depending on the nature of the relationship. These will be discussed in more detail later in this section.

    

    One of the ways that SysML use case diagrams are typically used is to capture source Needs in the form of SysML use cases. This is often seen as a somewhat straightforward exercise and consists of taking source Needs and redrawing each one in an ellipse so that it becomes a SysML use case, and then joining these up with SysML actors. The result of such an exercise will often look something like the following diagram which, it must be stressed, is not best practice!

    The SysML use case diagram is one of the most widely used of all the SysML diagrams, but is almost certainly the most badly used of all the diagrams! This is mainly because of the confusion about what exactly a SysML use case represents.

    [image: Figure 6.16 – Example of how not to create SysML use case diagrams ]
    Figure 6.16: Example of how not to create SysML use case diagrams

    The diagram in Figure 6.16 shows an example of how not to create a SysML use case diagram. 

    In the diagram in Figure 6.16, a set of initial Need Descriptions has been taken and, essentially, this has been redrawn using a SysML use case diagram by creating a SysML use case for each Need Description. Indeed, consider the two use cases Be safe and Travel from A to B and then compare them to the Need Descriptions from Figure 6.11. It should be very clear that these are the same. The SysML use cases shown here, therefore, directly represent the Need Descriptions that were initially identified. This is fundamentally wrong as the SysML use cases should be representing Use Cases from the Ontology, not Need Descriptions.

    This can be quite confusing due to the same terms being used in SysML and in the modeling world, so consider the following points:

    
      	Each Need is described by a single Need Description. This is taken directly from the Ontology Definition View in Figure 6.1.

      	Each Need is described by one or more Use Cases, via a Context. This is also taken directly from the Ontology Definition View in Figure 6.1.

    

    The difference, therefore, between the Ontology Elements of Need Description and Use Case is that a Use Case is based on Context, whereas a Need Description is not.

    Now consider the SysML use case diagram and its associated SysML use cases:

    
      	Each SysML use case must represent the Ontology Element of a Use Case (a description of a Need in Context).

      	Each SysML use case must not represent the Ontology Element of Need Description directly, as there is no Context defined.

    

    The first major problem with the diagram in Figure 6.16 is that the SysML use cases are representing Need Descriptions and not Use Cases.

    The second major problem with the diagram in Figure 6.16 is concerned with the fundamentals of Systems Engineering and Systems thinking. The diagram here has no relationships between the SysML use cases and, therefore, there is no indication of the complexity of the View that is being shown. One of the key aspects of modeling is that modeling will identify areas of complexity due to the fact that relationships between key Model elements are shown visually and are not ignored, which leads to hidden complexity.

    There are several basic types of relationship between SysML use cases that may be used to identify relationships and dependencies between SysML use cases, as shown in the following diagram:

    [image: Figure 6.17 – Basic SysML use case diagram relationships ]
    Figure 6.17: Basic SysML use case diagram relationships

    The diagram in Figure 6.17 shows the basic SysML use case diagram relationship visualized using a SysML use case diagram.

    There are four basic types of relationship that may be used between SysML use cases, which are as follows:

    
      	The «include» relationship. This is read as Use Case 1 includes Use Case 2. This means that use case 1 will always contain use case 2 or, to put this another way, in order to satisfy use case 1, then use case 2 must also be satisfied. This may be thought of as a mandatory dependency between the two SysML use cases.

      	The «extend» relationship. This is read as Use Case 2 extends the functionality of Use Case 1. This means that use case 1 will sometimes contain use case 2, depending on the circumstances and specific conditions. To put this another way, it may be read that in order to satisfy use case 1, it is sometimes necessary to satisfy use case 2. This may be thought of as an optional dependency between the two SysML use cases.

      	The «constrain» relationship. This is read as Use Case 2 constrains Use Case 1. To put this another way, it means that use case 2 will limit the way that use case 1 can be realized.

      	The generalization/specialization relationship. This is read as Use Case 2 is a type of Use Case 1 or Use Case 1 has a type of Use Case 2. This works in exactly the same way as the generalization/specialization from the block definition diagram, including inheritance of the specialization.

    

    These four basic types of relationships allow dependencies between the SysML use cases to be defined and provides a powerful mechanism for increasing the understanding of the underlying use cases.

    There is one other type of relationship that is drawn between actors and SysML use cases and that identifies some sort of interest in a particular SysML use case by a specific actor.

    In order to illustrate how these relationships work, consider the following diagram, which expands upon Figure 6.15 by adding some new use cases but, more importantly, shows how the relationships may be used.

    [image: Figure 6.18 – Need context view for the driver ]
    Figure 6.18: Need Context View for the driver

    Figure 6.18 shows that there are many interesting facets to this diagram from a modeling point of View. Firstly, the Need Context View represents a single Context. In this case, the Context is based on the point of View of the Driver Stakeholder. When describing a Context based on Stakeholders, the Context must be based on one of the Stakeholders that exists in the Context Definition View; in the case of this example, this is the diagram shown in Figure 6.14.

    Potentially, each Stakeholder from the Context Definition View may have its own Context, which will result in there being a Need Context View for each one of the Stakeholders.

    The name of the Context – in this case, Driver – is written inside the boundary box (the large rectangle) in the diagram. The fact that the use case diagram has a boundary shows that it is representing a Context. It is possible to have use case diagrams that do not have boundaries and, therefore, do not represent a Context. In such cases, these use case diagrams will be decompositions of higher-level use cases from another use case diagram. In this way, it is possible to Need Context use case diagrams but, ultimately, the highest level must be a Context with its own boundary.

    The boundary, therefore, indicates a Context and, as a result of this, the associated Stakeholder will not be shown on the diagram. For this example, there is no Need to show the Driver Stakeholder in the diagram, as the whole diagram itself is representing the driver’s point of View or Context.

    The boundary shows the SysML use cases that are relevant to the Context inside the boundary and the actors that have an interest in the Context sit outside the boundary of the Context. If a Stakeholder has an interest in a Context, it is represented by a SysML actor and then an association is drawn between the actor symbol (stick person) and the SysML use cases that it has an interest in. This is shown graphically by a straight, unadorned line and examples of this can be seen in Figure 6.18, such as between Safety Engineer and Be safe, and Vendor Maintenance and Be safe, among others.

    When reading a SysML use case diagram, it is useful to look for the highest-level SysML use case as a start point. In this case, it is the Travel from A to B use case. This is because it has its own inclusions, but is not included in any higher-level use cases. The use cases in this diagram, therefore, may be read in the following way:

    
      	Travel from A to B includes Drive and Access car: The «include» relationship means that the two included use cases must always be satisfied in order for Travel from A to B to be satisfied.

      	Travel from A to B is constrained by Be safe, Be secure, Seat five people, Be comfortable, and Be efficient: This means that the constraining use case will limit the way that Travel from A to B can be realized. For example, it would be possible to satisfy the Travel from A to B use case by producing a System where the passengers are balanced precariously on top of the car. Although this would satisfy Travel from A to B, it would not satisfy Be safe and therefore would limit how Travel from A to B could be realized.

      	Access car is extended by Escape car: This means that Escape car is not always part of Access car but may be depending on certain conditions. In this case, the conditions may be related to an emergency occurring such as crashing the car. Extensions are often used for atypical conditions that, in an ideal world, will never have to be satisfied but, for safety (in this case), must still be considered.

      	There are two types of Drive, which are Drive manually and Drive autonomously: Each of these types will include all three of the inclusions that sit below Drive. Any differences between the two specializations may be added to their specific use cases.

      	Drive includes Navigate, Park, and Cruise: Again, these use standard «include» relationships as discussed previously in this list.

    

    These relationships are very important and provide a more complete understanding of the use cases. In fact, changing one of the relationships can completely change the overall meaning of the diagram. Say, for example, the Navigate use case had an «extend» relationship, rather than an «include». This would mean that navigation would not be needed all of the time, whereas with the original «include» it would always be needed.

    Exploring different Contexts

    The defining feature of a Use Case, as opposed to a Need Description, is that Use Cases have Context and, therefore, may take on different interpretations, depending on the Viewpoint of the Stakeholder. In this section, this will be explored in more detail and some examples of these different interpretations will be provided. In order to illustrate this, we will consider the use case Be safe and explore its meaning from several Contexts. The SysML use case Be safe has been created from the Need Descriptions in Figure 6.10 but, in order for it to become a true modeling Use Case (from the Ontology), it may take on a different meaning according to its Context.

    The first Context that will be considered is that of the Driver and is shown in the following diagram.

    [image: Figure 6.19 – Need Context View focusing on Be safe from the Driver context ]
    Figure 6.19: Need Context View focusing on Be safe from the Driver Context

    The diagram in Figure 6.19 shows the Need Context View from the Driver Context that focuses on the Be safe use case, and that is visualized using a SysML use case diagram.

    The exact meaning of the Be safe use case may be explored by adding on additional use cases and adding in the relevant relationship to Be safe.

    From the Driver Context, it can be seen that Be safe has two inclusions, which are Prevent injury and Prevent accidents.

    Understanding the Context is quite straightforward: just imagine that you are the driver in this example and ask the question what does Be safe mean to you? When this is answered, it provides a true Use Case, that is to say, a specific interpretation of the Be safe use case from the point of View of the driver.

    Notice that the Safety Engineer Stakeholder is represented here by a SysML actor that sits outside the boundary of the Context. This will become important in the next discussion when the Context of the Safety Engineer is considered.

    Now consider the same use case but from a different Context, as shown in the following diagram:

    [image: Figure 6.20 – Need Context View focusing on Be safe from the Safety Engineer context ]
    Figure 6.20: Need Context View focusing on Be safe from the Safety Engineer Context

    The diagram in Figure 6.20 shows that, in order to understand the Use Case of Be safe from the Safety Engineer Context, you should carry out the same exercise – imagine that you are the Safety Engineer and ask the same question: what does Be safe mean to you? In this Context, the answer is that Be safe is all about meeting safety standards, which is shown by the Constraint Meet safety standards. In fact, this then goes one step further by specifying two different types of safety standards by introducing two new Use Cases: Meet standards for restraints and Meet standards for impact.

    Notice here the presence of the Driver Stakeholder, which is shown by a SysML actor outside the boundary of the System. This Stakeholder must exist here as Figure 6.19 showed the Context for the Driver and the Safety Engineer Stakeholder was shown as an actor. If, therefore, the Driver Context has an interest from the Safety Engineer Stakeholder, then the converse must also be true – the Safety Engineer Context must have the Driver Stakeholder as an actor outside the Context boundary. Indeed, the association line between the Safety Engineer actor and the Be safe Use Case in Figure 6.19 is the same line as between the Driver actor and the Be safe Use Case in Figure 6.20. This shows that the two Use Cases are connected in some way. In this example, these two Use Cases have the same name, but this needn’t be the case. In fact, this is a powerful way to identify which Use Cases are related and, therefore, if they are complementary, the same, or in conflict with each other.

    The following diagram shows the same SysML use case from another Context that will allow its own interpretation to be understood.

    [image: Figure 6.21 – Need Context View focusing on Be safe from the Manufacturer context ]
    Figure 6.21: Need Context View focusing on Be safe from the Manufacturer Context

    The diagram in Figure 6.21 shows the Need Context View from the Manufacturer Context. The emphasis is on providing features for the car that relate to safety. Again, this is a very different interpretation of the Be safe use case.

    Notice that there is a Stakeholder in the diagram that is represented by the Vendor Maintenance actor. This will mean that there will be a Context for the Vendor Maintenance Stakeholder and that Manufacturer will appear here as a Stakeholder. Indeed, this can be seen in the following diagram.

    [image: Figure 6.22 – Need Context View focusing on Be safe from the Vendor Maintenance context ]
    Figure 6.22: Need Context View focusing on Be safe from the Vendor Maintenance Context

    The diagram in Figure 6.22 shows that, in this Context, the emphasis is on making sure that the car is safe when it is being maintained.

    All four of these examples demonstrate that there can be many interpretations of a single Need that are captured in the Model using Use Cases. It is essential that multiple Contexts are considered in order to gain a thorough understanding of the Needs of the System.

    Contexts based on Stakeholders are an essential consideration as they provide a very good understanding of exactly what the different Stakeholders’ expectations of the System are. Even if the final Goal is to understand the Needs of the System, it is impossible to do this successfully without understanding what the Stakeholders require of the System.

    When considering the System, again, considering Context is key to gaining a thorough understanding of what the System Needs are. The System Context may be based on the level of abstraction of the System, which provides different interpretations of the same Need in the form of different Use Cases.

    Consider the Need Description that is named Be efficient and now consider the four different levels of abstraction that were defined for the System in Figure 6.13. For each of these levels of abstraction, the following interpretations may apply:

    
      	System level: This may be the car itself and Be efficient may refer to the car having to travel a minimum number of miles between refueling or recharging.

      	SubSystem level: This may refer to the motor in the car and Be efficient may refer to delivering a certain power throughput for a given use of fuel.

      	Assembly level: This may refer to an electronic motor control assembly, which may use different algorithms to achieve different efficiency modes.

      	Component level: This may apply to a specific bolt, which may have to be made of an especially light material that will reduce the weight of the whole car, making it more efficient.

    

    Again, different interpretations and, therefore, Use Cases, for different Contexts, this time based on the levels of abstraction.

    The concept of Context is an essential one and it leads directly to the next topic, which is validation. If it is accepted that different interpretations of a single Need exist (Use Cases), then the ways that it is demonstrated that these Needs have been satisfied will all differ, depending on the Use Case. This whole topic of validation is addressed by considering Scenarios, which will be discussed in the next section.

    Visualizing Scenarios

    One of the most important aspects of a Systems Engineering project is to be able to demonstrate that the original Needs of the System have been satisfied. Satisfying the original Needs is referred to as validation and a System cannot be accepted into service unless it can be validated.

    There is an important distinction that needs to be made clear at this point, as the term validation is often confused with the term verification. The definitions that are used in this book are as follows:

    
      	Verification allows us to demonstrate that we have built the System right.

      	Validation allows us to demonstrate that we have built the right System.

    

    This is a subtle but important difference as it is essential that any System can be verified and validated.

    Validation is concerned with demonstrating that the right System has been built or, to put it another way, that it satisfies the original Needs. Therefore, it is important to have a thorough understanding of all the original Needs.

    The previous section introduced the concept of Context and discussed how different Contexts lead to different interpretations of the same Need. Therefore, if the interpretation of Needs may be different, then it becomes important that all of these different interpretations can be satisfied. As a result of this, the Needs of the System are satisfied by demonstrating that their associated Use Case can be satisfied.

    The mechanism that is used in modeling to perform validation is to create a number of Scenarios for each Use Case.

    A Scenario may be realized in two different ways:

    
      	Operational Scenarios, which show a sequence of events or actions that results in a specific outcome. These Operational Scenarios are typically sequential in nature.

      	Performance Scenarios, which allow the parameters of a System to be changed in order to demonstrate that it can satisfy specific outcomes. These Performance Scenarios are typically mathematical in nature.

    

    SysML may be used to visualize both types of Scenarios, as will be discussed in the next two sections.

    All the SysML use cases in each Context must be validated using either type of Scenario, or both.

    Visualizing Operational Scenarios

    Operational Scenarios are a very powerful and essential part of any Needs modeling exercise. They allow different options to be explored by asking what if for each of the Use Cases. The following diagram shows an example of an Operational Scenario.

    [image: A diagram of a car  Description automatically generated with medium confidence]
    Figure 6.23: Validation View showing an Operational Scenario – the successful manual application of brakes for the Drive manually Use Case

    The diagram in Figure 6.23 shows that a Scenario is defined as an instance of a Use Case. Instances of blocks have already been discussed in Chapter 2, Model-Based Systems Engineering, and were used to represent a real-life example of a block. Instances of SysML use cases work in exactly the same way in that a number of real-life examples of how a Use Case may be realized are explored.

    The first step is to identify a SysML use case that needs to be validated. In the example here, the SysML use case that has been selected is Drive manually from the Driver Context that is shown in Figure 6.18. The next step is to identify any Stakeholders that have an interest in the selected Use Case. In this example, it can be seen that both Car and Road User are related to the Drive manually Use Case and are inherited via its parent Use Case, Drive.

    It is now possible to create a sequence diagram using the Context Stakeholder as a SysML lifeline and the two related Stakeholders as other lifelines.

    Next, it is necessary to think of an unintended outcome of the selected Use Case, give it a name, and then think of a sequence of events that leads up to this outcome being realized.

    In this example, the Scenario may be named the successful manual application of brakes. This name sums up the intended outcome nicely and succinctly.

    Next, the events are drawn onto the diagram. The first event is an interaction between the Driver and the Car, which has been named drive car(). Next, there is an interaction between the Driver and a Road User, which is called monitor road(), and then there is a direct response to this, which is car spotted(). The Driver then interacts with the car again with the apply brakes() interaction.

    When defining Scenarios for Use Cases, the language that is used to name the interactions is deliberately written at a high, non-technical level. The language used should be one that the target Stakeholder who will be looking at this diagram will understand. At this point, the main Goal is to make the Scenario easy to understand and communicate, so the language is written with this in mind.

    The sequence diagram must be consistent with the SysML use case diagram, and the following SysML consistency checks must be applied:

    
      	Each lifeline on the sequence diagram must be an actor or boundary on the use case diagram.

      	Each interaction on the sequence diagram must be an instance of an association between an actor and use case on the use case diagram.

    

    If the two diagrams are not consistent, then either the sequence diagram or the use case diagram Needs to be changed to make them consistent. For example, if there was a lifeline in the sequence diagram that was not in the use case diagram, then it would either need to be added to the use case diagram or removed from the sequence diagram.

    It is usual to show multiple Scenarios for each Use Case and to explore how the Model can react to different events for the same outcome to understand how the System must behave under typical conditions. These Scenarios are often referred to as sunny-day Scenarios as they represent everything going well. A very powerful aspect of this is to explore what happens when something goes wrong and to explore so-called rainy-day Scenarios. An example of this is shown in the following diagram:

    [image: A diagram of a car  Description automatically generated with medium confidence]
    Figure 6.24: Validation View showing an Operational Scenario – the automatic application of brakes for the Drive manually Use Case

    The diagram in Figure 6.24 shows a Scenario for the same Use Case as the Scenario in Figure 6.22 but it looks quite different. In this example, the Scenario considers what happens if the Driver is driving the Car and the Car itself spots another Road User and then applies the brakes itself. This Scenario is titled the automatic application of brakes.

    The Scenario starts in the same way, with the Driver interacting with the Car, but this time, it is the Car that is monitoring the road for other Road Users. The brakes are still applied but, this time, the brakes are applied by the Car, rather than the Driver.

    The number of Scenarios generated for each Use Case can also be interesting and reveal something about the level of abstraction for each Use Case. Consider the following three Rules of thumb:

    
      	Only one Scenario for a single Use Case: The Use Case is too detailed and should be abstracted up into a higher-level Use Case.

      	Between two and nine Scenarios for a single Use Case: A good number of Scenarios demonstrating a clear understanding of the Use Case.

      	More than 10 Scenarios for a single Use Case: The Use Case is too high-level and should be broken down into lower-level Use Cases.

    

    These three Rules are actually quite powerful as they provide another level of checking for the use case diagram.

    The second type of Scenarios, Performance Scenarios, will be discussed in the next section.

    Visualizing Performance Scenarios

    Performance Scenarios work in the same way as Operational Scenarios in that they allow different what-ifs to be explored. However, rather than being based on a sequence of events with a specific outcome, they consider how values of parameters may be varied in order to result in a specific outcome.

    Performance Scenarios are visualized using SysML parametric diagrams but, in order for a parametric diagram to be used, there must also be an associated block definition diagram that defines a number of parametric Constraints. An example of this can be seen in the following diagram.

    [image: Figure 6.25 – Validation view showing constraint definition for the Be efficient use case ]
    Figure 6.25: Validation View showing the Constraint definition for the Be efficient Use Case

    The diagram in Figure 6.25 shows a validation View that shows Constraint definitions for the Be efficient Use Case, and that is visualized using a SysML block definition diagram.

    For this example, consider the Use Case Be efficient from the Driver Context in Figure 6.19.

    The diagram here shows four blocks that are stereotyped as «constraint», which is a standard SysML construct. Each constraint block has three compartments:

    
      	Name: The name of the constraint

      	Constraint definition: The definition of the constraints using an equation, heuristic, Rule, or any other notation

      	Parameter definition: The definition of each of the parameters that is used in the constraint definition

    

    In this example, there are four constraints that have been defined:

    
      	Power out (Pout), defined by the Product of torque and angular velocity

      	Power in (Pin), defined by the Product of voltage and current

      	Efficiency (E), defined by the ration of Pout/Pin

      	Decision, which is defined by a simple heuristic

    

    These constraints may be predefined as part of a standard library or defined specifically for the System. In either case, it is possible to build up a library of constraints that may be used across multiple projects.

    The constraints are used by instantiating them and then connecting them together to form a network using a SysML parametric diagram, an example of which can be seen in the following diagram.

    [image: Figure 6.26 – Validation view showing parametric usage for the Be efficient use case ]
    Figure 6.26: Validation View showing parametric usage for the Be efficient Use Case

    The diagram in Figure 6.26 shows a validation View for the Be efficient Use Case that is visualized using a SysML parametric diagram.

    In SysML, parametric diagrams comprise three main elements, which are as follows:

    
      	Parametric, which is visualized with a box with rounded corners. Each parametric is an instantiation of one of the Constraints that were defined in Figure 6.25. Note the use of the colon to separate the name of the parametric usage from its type (the Constraint). Each parametric also has a number of parameters associated with it that are visualized by the small rectangles on the inside of the main box.

      	Parameter blocks, which are visualized by the rectangles on the left-hand side of the diagram. These reference a block from somewhere in the Model and then a specific property of the block that is the origin of the required parameter. The notation that is used to separate the block name from its property is a full stop (.) with the block name on the left and its property on the right.

      	Connections, which are visualized by lines. The connections link together the parameters from the Model with the specific parameters of the parametric constraint.

    

    These parametric diagrams show the network of parametric constraints and their connections. In this way, it is possible to change some of the input parameters and to monitor the resulting output. For example, it would be possible to try different Scenarios where the parametrics represent different batteries to see if the car would still satisfy the Be efficient Use Case.

    The potential value of parametric diagrams is very large indeed; however, this value is often not realized due to the widely varying capabilities of different tools. The parametric diagrams form a natural bridge between the visual world of SysML and the mathematical world of, for example, simulation. It is often desirable, therefore, to be able to use such parametric diagrams in conjunction with mathematical tools in order to realize the full benefits of the Model. This then becomes a major tool issue as the interoperability of the tools becomes of paramount concern.

    For real projects, the use of Operational Scenarios and Performance Scenarios together is a very powerful mechanism that allows many different Scenarios to be explored and, hence, the underlying Use Cases and Needs to be satisfied. If it is possible to define these Scenarios and then obtain agreement from the relevant Stakeholders that they are correct, then they will form the heart of the validation and, hence, acceptance of the final System. This is a very good thing to have defined as soon as possible in any project, as all subsequent design work may be demonstrated to trace back and satisfy these Scenarios, providing continuous validation through the project Life Cycle.

    Life Cycle and Processes

    The Needs modeling that has been discussed in this chapter is carried out during a typical development Life Cycle. With this in mind, consider the following development Life Cycle Model, which was introduced in Chapter 4, Life Cycles.

    [image: Figure 6.27 – Example development life cycle model ]
    Figure 6.27: Example development Life Cycle Model

    The diagram in Figure 6.27 shows an example development Life Cycle that is visualized using a SysML sequence diagram. The stages in this Life Cycle Model are those from ISO 15288 and the execution of the stages is a simple linear sequence.

    The obvious place for the Needs modeling to occur is during the first stage in the diagram, Concept. This is where the majority of the Needs modeling will take place, but the Needs will also be revisited throughout the entire Life Cycle as Needs will change as time goes on and, very importantly, some of the Contexts associated with the Needs may change.

    The approach to Needs modeling must map to best practices and this is an example of how the Process modeling from Chapter 4, Life Cycles, may be used for compliance. Using the seven-Views approach that was discussed in Chapter 5, Systems Engineering Processes, the following Process Context View may be used, which was abstracted from ISO 15288.

    [image: Figure 6.28 – Process context view for the Stakeholder Needs and Requirements Definition Process from ISO 15288 ]
    Figure 6.28: Process Context View for the Stakeholder Needs and Requirements Definition Process from ISO 15288

    The whole Process is represented by the SysML block, whereas the outcomes are shown using SysML properties and the activities are shown using SysML operations. The Process shown here represents the minimum recommended activities and resultant outcomes rather than a prescriptive approach. If it is possible to map the Needs modeling techniques that have been discussed in this chapter to this best-practice Process, then it provides both credibility and provenance to the modeling approach.

    The activities that are required by ISO 15288 map to the modeling as follows:

    
      	Prepare for stakeholder needs definition(): In modeling terms, this relates to identifying the Source Elements that will be used for the Needs modeling and will result in the creation of the Source Element View.

      	Define stakeholder needs(): This relates to capturing the initial Needs in the form of the Need Description View.

      	Analyze Stakeholder requirements(): This relates to analyzing the Contexts, which involves both identifying the relevant Contexts and then defining each of the Contexts. This will result in a number of Context definition Views being created and then their associated Need Context Views being developed.

      	Develop operation concept(): This relates to developing the Operational Scenarios and Performance Scenarios that will allow the concept of operation to be explored. This will result in the creation of various validation Views.

      	Transform Stakeholder needs into stakeholder requirements(): This relates to applying the same modeling techniques at a different level of abstraction. For example, the Ontology would have two types of Needs defined: Stakeholder Needs and Stakeholder Requirements, which would be related to each other. Each of these two types of Needs could have any or all of the Need Views defined for them.

      	Manage stakeholder needs and requirements definition(): This relates to the overall management and traceability of the Needs Model. Thanks to the Ontology, traceability is inherent to the Model and the Framework View definitions provide all of the management, in terms of the rationale, content, and structure of each View along with the View traceability.

    

    The outcomes that are required by ISO 15288 are mapped to the Model Views as follows:

    
      	Constraint: This maps to any Use Cases that have a «constraint» relationship associated with them.

      	Context of use: This maps to the Operational Scenarios.

      	Performance measure: This maps to the Performance Scenarios.

      	Priority: This is a property of a Need on the Need Description View.

      	Resource: Again, this will map to a property of a Need on the Need Description View.

      	Stakeholder: This will map to the Stakeholders on the Context definition Views.

      	Stakeholder agreement: The combined set of Views will provide the Stakeholder agreement.

      	Stakeholder Need: This maps to the Need Description Views.

      	Traceability: This is captured in the Framework by the Ontology Definition View and the Viewpoint relationship View.

    

    These modeling Views may now be collected together and defined from the Need Perspective, which will be discussed in the next section.

    Defining the Framework

    The Views that have been created so far represent the center part of the MBSE in a slide diagram, which was discussed in detail in Chapter 2, Model-Based Systems Engineering. Each of the Views has been visualized using SysML, which represents the right-hand side of MBSE in a slide. These Views combine together to form the overall Model, but it is essential that these Views are all consistent; otherwise, they are not Views, but pictures! This is where the left-hand side of MBSE in a slide comes into play as it is important that the definition of all of the Views is captured in the Framework. The Framework comprises the Ontology and a set of Viewpoints; therefore, it is now time to make sure that these Viewpoints are defined thoroughly and correctly, which is the aim of this section.

    Defining the Viewpoints in the Framework

    It was discussed in Chapter 2, Model-Based Systems Engineering, that it is necessary to ask a number of questions for each View to ensure that it is a valid View. There is also a set of questions that must be asked of the whole Framework, as well as the Views, and the combination of these results is a set of questions that allows the whole Framework to be defined. It is worthwhile, therefore, to have a reminder of what these questions are:

    
      	Why is the Framework required? This question may be answered using a Framework Context View.

      	What are the overall concepts and terminology used for the Framework? This question may be answered using an Ontology Definition View.

      	What Views are necessary as part of the Framework? This question may be answered using a Viewpoint Relationship View.

      	Why is each View Needed? This question may be answered using a Viewpoint Context View.

      	What is the structure and content of each View? This question may be answered using a Viewpoint Definition View.

      	What Rules should be applied? This question may be answered using a Ruleset Definition View.

    

    When these questions are answered, then it can be said that a Framework has been defined. Each of these questions can be answered using a special set of Views that is collectively known as the Framework for Architecture Frameworks (FAF) [Holt and Perry, 2019]. At this point, simply think about creating a specific View to answer each question, as described in the following sections.

    Defining the Framework Context View

    The Framework Context View specifies why the whole Framework is needed in the first instance. It will identify the relevant Stakeholders that have an interest in the Framework and also identify what benefits each of the Stakeholders hopes to achieve from the Framework:

    [image: Figure 6.29 – Framework Context View for the needs framework ]
    Figure 6.29: Framework Context View for the Needs Framework

    The diagram in Figure 6.29 shows the Framework Context View for the Needs Framework, which is visualized using a SysML Use Case diagram.

    Note the application of the use case diagram here to capture the Context, the approach to which was described in this chapter. This is the SysML diagram that will be used from this point forward in this book to define any Context.

    This diagram is read as follows:

    
      	The main Use Case is to Support capture of needs, which is done in four different ways: 
          	Support capture of concerns

          	Support capture of requirements

          	Support capture of capabilities

          	Support capture of goals

        

      

      	The main Use Case includes the lower-level Use Cases to 
          	Describe each Need

          	Consider needs in Context, which itself includes both Define validation approach and Identify contexts

        

      

      	The main Use Case is also constrained in four ways: 
          	Must be model-based

          	Comply with standards

          	Ensure traceability of needs

          	Ensure consistent style

        

      

    

    Notice that in this diagram, each of the SysML use cases is stereotyped as a «concern». A Concern is a Need that relates specifically to a Framework or one of its Viewpoints.

    Defining the Ontology Definition View

    The Ontology Definition View captures all the concepts and associated terminology associated with the Framework in the form of an Ontology. This has already been done as the Ontology for the Life Cycle-related Views was defined in Figure 6.5. The Ontology Elements shown in this View provide all of the stereotypes that were used for the actual Views that have been created so far in this chapter.

    Ontology Elements that are related will often be collected into a Perspective, as was discussed in other chapters. In this chapter, a new Perspective has been created that relates to Needs.

    Defining the Viewpoint Relationship View

    The Viewpoint Relationship View identifies which Views are Needs and, for each set of Views, identifies a Viewpoint that will contain its definition. Remember that a Viewpoint may be thought of as a type of template for a View. These Viewpoints may be collected together into a Perspective, that is, simply a collection of Viewpoints with a common theme. In this chapter, the emphasis has been on defining a set of Views’ relations to Life Cycles; therefore, it is appropriate to create a Need Perspective. The basic set of Views that has been discussed so far is shown in the following View:

    [image: Figure 6.30 – Viewpoint Relationship View for the need perspective ]
    Figure 6.30: Viewpoint Relationship View for the Need Perspective

    The diagram in Figure 6.30 shows the Viewpoint Relationship View for the Need Perspective using a SysML block definition diagram.

    The Need Perspective is shown using a SysML package, stereotyped as «perspective», which simply collects together a number of Viewpoints. There are six Viewpoints that are defined in the Need Perspective:

    
      	Source Element Viewpoint, which identifies all the sources for the Needs that will form the Model. Both the Need Description Viewpoint and the Need Context Viewpoint are based on the Source Element Viewpoint.

      	Rule Set Definition Viewpoint, which defines the Rules that will constrain the information contained in the Need Description Viewpoint.

      	Need Description Viewpoint, which provides a text-based description of each individual Need and is constrained by the Rule Set Definition Viewpoint and based on the Source Element Viewpoint.

      	Need Context Viewpoint, which describes a set of Use Cases that is based on the information contained in the Source Element Viewpoint, and has its Context defined by the Context Definition Viewpoint. The Need Context Viewpoint is also validated by the Validation Viewpoint.

      	Context Definition Viewpoint, which defines the Context for the various Need Context Viewpoints.

      	Validation Viewpoint, which validates the Use Cases that are defined in the Need Context Viewpoint.

    

    Each of the Viewpoints that have been identified here may now be described by its own Viewpoint Context View and its Viewpoint Definition View.

    Defining the Viewpoint Context View

    The Viewpoint Context View specifies why a particular Viewpoint and, therefore, its set of Views is needed in the first instance. It will identify the relevant Stakeholders that have an interest in the Viewpoint and also identify what benefits each of the Stakeholders hopes to achieve from the Framework.

    [image: Figure 6.31 – Viewpoint Context View for the Need Description Viewpoint ]
    Figure 6.31: Viewpoint Context View for the Need Description Viewpoint

    The diagram in Figure 6.31 shows the Viewpoint Context View for the Need Description View, visualized using a SysML use case diagram.

    Notice that, at first glance, this diagram looks very similar to the one in Figure 6.29 and this makes sense as each of the Viewpoint Context Views must be consistent with the higher-level Framework Context View. Indeed, it is quite common for the higher-level Use Cases on the Viewpoint Context View to be taken directly from the Framework Context View, as is the case here.

    The main differences are what is included in this View and what is omitted from this View:

    
      	The diagram includes the Use Case Describe each need, which is then broken down into three lower-level Use Cases, which are Define attribute values, Define traceability to source, and Define relationships between need descriptions.

      	The diagram deliberately excludes the Use Case Define Need in Context from Figure 6.29 as this is not one of the Concerns for this Viewpoint but, rather, will be included in the Viewpoint Context View for the Need Context Viewpoint.

    

    Care must be taken here to include only the Use Cases that are relevant to the Viewpoint under scrutiny, as this is the whole point of a Context.

    Now that the reason why the Viewpoint must exist has been established, the Viewpoint Definition View may be considered.

    Defining the Viewpoint Definition View

    The Viewpoint Definition View defines the Ontology Elements that are included in the Viewpoint and shows the following:

    
      	Which Ontology Elements are allowed in the Viewpoint.

      	Which Ontology Elements are optional in the Viewpoint.

      	Which Ontology Elements are not allowed in the Viewpoint.

    

    The Viewpoint Definition View focuses on a single Viewpoint and particular care and attention must be paid to not just the Ontology Elements that are selected but also to the relationships that exist between these Ontology Elements.

    An example of a Viewpoint Definition View for the Need Description Viewpoint is shown in the following diagram.

    [image: Figure 6.32 – Viewpoint Definition View for the Need Description Viewpoint ]
    Figure 6.32: Viewpoint Definition View for the Need Description Viewpoint

    The diagram in Figure 6.32 shows the Viewpoint Definition View for the Need Description Viewpoint, using a SysML block definition diagram.

    This View defines the exact content of what is allowed in all the Views that are described by the Viewpoint. This Viewpoint will always contain the following information:

    
      	The Viewpoint name, stereotyped by "viewpoint", which is the focus of this View. The Viewpoint that is identified here must come from the Viewpoint Relationship View that was shown in Figure 6.30.

      	A number of Ontology Elements, stereotyped by "ontology element". Each of these Ontology Elements must come from the Ontology Definition View, shown in Figure 6.1.

    

    The two Ontology Elements that are legal on the Views associated with this Viewpoint are as follows:

    
      	Source Element, which represents the origin of the Needs

      	Need Description, which, along with the properties that are shown here, will describe each Need

    

    The Viewpoints and the Ontology Elements that are permitted in each Viewpoint are constrained by a number of Rules, which will be described in the Ruleset Definition View for the Need Perspective.

    Defining the Ruleset Definition View

    The Ruleset Definition View identifies and defines a number of Rules that may be applied to the Model to ensure that it is consistent with the Framework.

    The Rules are based primarily on the Ontology Definition View and the Viewpoint Relationships View. In each case, the Rules are defined by identifying the key relationships and their associated multiplicities that exist:

    
      	Between Viewpoints on the Viewpoint Definition View

      	Between Ontology Elements on the Ontology Definition View

    

    Some examples of these Rules are shown in the following diagram.

    [image: Figure 6.33 – Example Ruleset Definition View ]
    Figure 6.33: Example Ruleset Definition View

    The diagram in Figure 6.33 shows an example of a Ruleset Definition View using a SysML block definition diagram. Each block on the diagram represents a Rule that is derived from either the Ontology Definition View or the Viewpoint Relationship View.

    These Rules are defined as follows:

    
      	For each Need Context View, there must be a Context Definition View: This Rule is derived directly from the Viewpoint Relationship View shown in Figure 6.29. This Rule helps to define how many Views associated with each Viewpoint may be created as part of the Framework, which is indicated by the multiplicities.

      	For each Need Description View, there must be at least one Source Element View: This Rule is derived directly from the Viewpoint Relationship View shown in Figure 6.30. This Rule helps to establish that the traceability for all Need Descriptions is mandatory, indicated by the 1…* multiplicity.

      	For each Need Context View, there must be at least one Validation View: This Rule is derived directly from the Viewpoint Relationship View shown in Figure 6.30. This Rule establishes that validation for each Use Case that is in the Need Context View is mandatory. Otherwise, there is usually a pop-up along the lines of Error! Reference source not found.

    

    Notice how the Rules are derived from the Viewpoint Relationship View and, therefore, the Viewpoints and the Ontology Definition View and, therefore, the Ontology Elements. The actual Rule descriptions themselves apply to the instances of the Viewpoints (Views) and instances of the Ontology Elements.

    Of course, any number of other Rules may be defined here, but not every relationship will lead to a Rule, as this is at the discretion of the modeler.

    The Viewpoints that are shown here form the Need Perspective. Remember that a Framework groups its Viewpoints into collections that are known as Perspectives. This allows a little more structure to be introduced into the Framework, which is particularly important when the Framework starts to grow.

    Summary

    In this chapter, the concept of Needs has been explored and the modeling associated with the different concepts covered has been discussed.

    Initially, the importance of the concept of Needs and the different types of Needs, such as Requirements and Capabilities, was discussed. This led to understanding how to analyze Needs in two ways: by describing each Need using text-based properties and descriptions, and by gaining a true understanding of the underlying Needs by exploring the Contexts of each Need.

    Context was introduced as one of the single most important aspects of Needs modeling and, in order to establish this understanding, how important it is to understand the Stakeholders that have an interest in the System. Each of these Stakeholders has the potential to interpret each Need in a different way from all other Stakeholders, which is known as a modeling Use Case.

    Each Use Case, and therefore its related Need Descriptions, must be validated, and two ways of validation were discussed: performance validation and operational validation, which were modeled using Scenarios and captured in validation Views.

    The importance of best practice was also discussed and this was related to the Views by considering a specific Process from ISO 15288 and relating the modeling View directly to its activities and outcomes.

    Finally, all of these Views were captured as part of an overall Framework definition using the FAF. This Framework itself comprises a number of Views that are used to describe the Model.

    This chapter has shown, therefore, how to take simple, text-based Needs and fully explore and understand them using MBSE modeling techniques.

    The next chapter moves forward from Needs modeling and discusses design and how to model its different aspects.

    Self-assessment tasks

    
      	The concept of a concern was introduced as a Need that relates specifically to a Framework or Viewpoint definition. Revisit Figure 6.6 and add on the concept of concern.

      	Consider a set of Stakeholders that is specific to your organization and capture these in a Context Definition View.

      	Choose a single Need that relates to any project that you are familiar with and describe it using text by creating a Need Description View.

      	Based on your answers to Questions 1 and 2, take your Need Description and consider it from three or four different Stakeholders’ points of View. For each, create a Need Context View.

      	Choose any Use Case from the Need Context Views and define some validation Views. Try out performance-based Scenarios and Operational Scenarios. Now compare and contrast each Scenario.

      	There is an inconsistency in Figure 6.31 as an Ontology relationship has been omitted from the diagram. Check each Ontology Element and its relationships and deduce which is missing.
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    Modeling the Design

    This chapter discusses how solutions can be defined by developing effective designs. Various levels of design abstraction are discussed, such as architectural designs and detailed designs. Also, different aspects of design, such as Logical, Functional, and Physical designs, are introduced, and the relationships between them are defined. There is then a discussion on how designs fit into the System Life Cycle and which Processes are relevant, and how to comply with them. This chapter is, therefore, structured as follows:

    
      	We’ll look at defining different types of design and, in particular, discuss architectural and detailed design. These are both important yet different in many ways.

      	The three different aspects of designs are introduced, with examples of Logical, Functional, and Physical System Elements and how design Views can be used to model each.

      	The modeling techniques that can be used for these different types and aspects of design are then related to international best practice, by mapping the various Views onto ISO 15288.

      	The Views that are discussed are then captured in the Model-Based Systems Engineering (MBSE) Framework, specifically the Design Perspective that has been developed throughout this book.

    

    Finally, there will be a number of self-assessment tasks for you to carry out to test your achievement of the learning objectives of this chapter.

    Defining design

    When considering the development of any System, there are three concepts that may be considered in the early Stages of the Life Cycle:

    
      	Understanding the Need: This involves identifying the Needs of the System, such as the Goals, Capabilities, and Requirements of the System. This was covered in Chapter 6, Needs and Requirements. This is typically carried out in the Concept Stage of the ISO 15288 Life Cycle.

      	Understanding the problem: This involves analyzing the Needs of the System in order to understand the problem or problem domain. In Systems Engineering, this is addressed by context modeling and scenario modeling, which were also discussed in Chapter 6, Needs and Requirements. This is typically carried out in the Concept Stage of the ISO 15288 Life Cycle.

      	Understanding the solution: This is concerned with solving the problem that arises as a result of understanding the System Needs. This is typically carried out in the Development Stage of the ISO 15288 Life Cycle.

    

    Design is associated with the third of these three points.

    There are many ways to solve a problem and, therefore, there are many techniques that can be applied to design. It is important to consider not just one but several solutions to a given problem. These different solutions can then be assessed and the most appropriate one can be selected. These different solutions are referred to as candidate solutions and they can be considered at any level of design.

    In this chapter, we will look at some of the modeling techniques that can be applied when carrying out a design.

    There are two main levels at which a design can be applied, which are architectural design and detailed design.

    Architectural design

    An architectural design, or high-level design, as it is sometimes referred to, is mainly concerned with considering a System as a single Entity and how it breaks down into subsystems. These architectural design Views are also often conceptual in nature. The following diagram shows the System Structure View that was first introduced in Chapter 2, Model-Based Systems Engineering, and will form the basis for our discussion of architectural designs:

    [image: Figure 7.1 – An ontology definition view showing high-level system concepts ]
    Figure 7.1: An Ontology Definition View showing high-level System concepts

    The diagram in Figure 7.1 shows an Ontology Definition View that shows the high-level System concepts, visualized using a SysML block definition diagram.

    An architectural design mainly comprises the following:

    
      	One or more Stakeholder interacts with the System.

      	Each System comprises a number of Subsystems, some of which are owned and some of which are not owned.

    

    An architectural design, therefore, is mainly focused on the System and the way that it interacts with entities at the same level of abstraction (Stakeholders) and its composition (Subsystems). An architectural design solves a problem by considering the System and its associated Interfaces.

    Any design aspects that are applied at lower levels than this are considered part of the detailed design.

    Detailed design

    Whereas an architectural design is concerned with the System and its associated Stakeholders and Subsystems, a detailed design is concerned with the lower levels of abstraction, as shown in the following diagram:

    [image: Figure 7.2 – Expanded ontology definition view showing more detailed system concepts ]
    Figure 7.2: Expanded Ontology Definition View showing more detailed System concepts

    The preceding figure is an expanded Ontology Definition View that shows more detailed levels of System structure, visualized using a SysML block definition diagram.

    A detailed design is concerned with taking each Subsystem and breaking it down into its constituent parts – in this case, Assemblies and their Components.

    In a detailed design, the focus is on understanding the Subsystems, Assemblies, and Components and their Interfaces.

    In both design cases, we use the following Views to represent the design:

    
      	System Structure Views, where System Elements and their relationships are considered

      	System Configuration Views, where specific relationships between System Elements for individual Configurations are considered

      	System Behavior Views, where the interactions between System Elements are considered

      	Interface Identification Views, where the location of the Ports on various System Elements are considered

      	Interface Definition Views, where each individual Port and Interface is specified

      	Interface Behavior Views, where the interactions between Ports and Interfaces are considered

    

    All of these Views were introduced in Chapter 3, Systems and Interfaces, and, on top of these, some new Views will be introduced that are aimed at functional modeling:

    [image: Figure 7.3 – Expanded ontology definition view showing abstract types of system elements ]
    Figure 7.3: Expanded Ontology Definition View showing abstract types of System Elements

    The diagram in Figure 7.3 shows another Ontology Definition View that has been expanded to show abstract types of System Elements, visualized using a SysML block definition diagram.

    The diagram shows that there are three types of System Elements:

    
      	Logical System Element: Satisfied by a Functional System Element.

      	Functional System Element: Satisfies Logical System Elements. Allocated to one or more Physical System Elements.

      	Physical System Element: To which Functional System Elements are allocated.

    

    There is an interesting SysML modeling construct in this diagram, as we can see that there are two specialization relationships that emerge from the System Element. Usually, these would all be joined with a single generalization, but it is possible to show two completely different types of generalization that are related to the same Model Element. These two generalizations are differentiated by adding a qualifying term – in this case, abstract type and system type, which are known as discriminators. Therefore, the diagram tells us that there are two different generalizations:

    
      	Abstract type, which shows three types of System Elements that are based on the type of abstraction of the System Element

      	System type, which shows the different types of System Elements based on the System hierarchy

    

    When these discriminators are used, it is possible for the parent block – in this case, the System Element – to have two types associated with it, one from the abstract type and one from the system type. For example, it is possible for a System Element to be both Logical and a Subsystem. This provides tremendous flexibility as it now means that it is possible for each of Subsystem, Assembly, and Component to be one of Logical, Functional, and Physical.

    It should be stressed at this point that the Definitions of these terms, defined using the Ontology Definition View, are entirely up to the modeler. This is important as it means that what is presented in Figure 7.3 is only the Definition of the concepts and terms that will be used in this book. The Ontology must be defined to satisfy your own Needs and must represent the way that you work in your organization.

    In this chapter, we will consider how to use these specifically to carry out three different types of modeling that can be applied at the architectural and detailed levels: Logical modeling, Functional modeling, and Physical modeling.

    Defining Logical Model Elements

    In a Logical Model, each of the Model Elements represents an abstract concept of something. Crucially, Elements in a Logical Model are independent of any particular solution. As an example of this, consider the following diagram:

    [image: Figure 7.4 – Logical system structure view for the Car system ]
    Figure 7.4: Logical System structure View for the Car System

    The diagram here shows the Logical System Structure View for the Car System, visualized using a SysML block definition diagram.

    Each of the blocks in this diagram represents a Logical Element. Each Logical Element is a concept and is independent of any solution. Therefore, Drive Train is the concept of a Drive Train and does not refer to any specific implementation of a Drive Train. This is a very powerful modeling technique, and Logical models are very common in real-life projects. One of the reasons for this is that it is possible to have a common Logical Model that can be applied across all projects but realized in different ways in different projects.

    The Drive Train Logical System Element can now be broken down into more detail, as shown in the following diagram:

    [image: Figure 7.5 – Logical system structure view showing Drive Train ]
    Figure 7.5: Logical System Structure View showing Drive Train

    The diagram in Figure 7.5 shows a Logical System Structure View that focuses on Drive Train, visualized using a SysML block definition diagram.

    This diagram was discussed previously in Chapter 3, Systems and Interfaces, but it now takes on more meaning as we now know that it is a Logical View and, therefore, each of the blocks in the diagram represents a Logical System Element. This can be confusing as you may wonder how it is possible to know that each of the System Elements on the diagram is Logical, rather than Functional or Physical. This can be cleared up quite easily and neatly by using multiple stereotypes, as shown in the following diagram:

    [image: Figure 7.6 – Logical system structure view showing the Drive Train using multiple stereotypes ]
    Figure 7.6: Logical System Structure View showing the Drive Train using multiple stereotypes

    The diagram here shows the same Logical System structure View that was shown in Figure 7.5, but this time it uses multiple stereotypes, and it is still visualized using a SysML block definition diagram.

    Each of the System Elements in this diagram now has two stereotypes, which is perfectly legal in SysML. The two stereotypes correspond to the two different sets of specializations that were defined in the Ontology Definition View in Figure 7.3 and qualified using SysML discriminators. So, looking at these stereotypes, it is clear to see that Drive Train is both a Subsystem (in terms of the type of the System Element) and Logical (in terms of its abstract type). 

    Each of its lower-level System Elements is both an Assembly (in terms of the type of the System Element) and Logical (in terms of its abstract type). In this way, it is now totally clear exactly what each Element in the diagram represents.

    The use of these Logical System Elements means that the Concept of a Logical Drive Train will always have the same basic structure. However, as these are Logical System Elements, there is no implication of how each of these blocks will be realized in a real project. This is useful to define something that is often known as a Reference Model or something that’s part of a Reference Architecture. When defining a Reference Model, the Logical Views form a baseline from which all of the more solution-oriented Views, such as the Functional and Physical Views, can be derived. This allows a common set of Logical Elements to be defined that can then be specialized for specific solutions. This will be expanded upon in the next two sections where both Functional and Physical System Elements will be discussed.

    Defining Functional Model Elements

    In this section, the concept of Functional Model Elements will be discussed, and one of the main new concepts that will be introduced is that of the Function. The term Function is arguably one of the most contentious terms used in almost any industry, as it can take on so many different meanings in different domains. The following list is just a small sample of some of the possible different interpretations of the term Function:

    
      	A Function can be a mathematical Function that, based on a set of input parameters, performs one or more mathematical operations, and then returns a result.

      	A Function can be a department in an organization; for example, there may be an engineering Function, a management Function, a human resources Function, and so on.

      	A Function can be a job title; for example, a person can have a Systems Engineering Function that defines their job in a business.

      	A Function can be a unit of activity that is performed by a System Element; for instance, a brake pedal in a car may invoke a braking Function.

      	A Function can be a software Function, where a set of parameters are passed to a distinct module that performs some transformation, before returning a specific value.

      	A Function can be a party or social event.

    

    This is by no means an exhaustive list of all the different interpretations of the term but is given here to show the diversity of different meanings that can be attributed to the word.

    The term Function, therefore, will be defined in the following diagram, but you must bear in mind that this is the definition that will be used throughout this book and that the definition may very well be different in your own organization:

    [image: Figure 7.7 – An ontology definition view introducing the term function ]
    Figure 7.7: An Ontology Definition View introducing the term Function

    The diagram here shows an Ontology Definition View that introduces the term Function to the Ontology that has been developed throughout this book, and it has been visualized using a SysML block definition diagram.

    The term Function is defined as follows:

    
      	One or more System Elements realizes one or more Functions: A Function represents some sort of task that is realized by the combined execution of one or more System Elements. Remember that System Elements can be Subystems, Assemblies, or Components; therefore, Functions can exist at any or all these levels.

      	One or more Functions satisfies one or more Requirements: The execution of a single Function, or a combination of Functions, results in one or more of the Requirements for the System being satisfied.

    

    It should also be borne in mind that Functions are, in a similar way to Logical Elements, independent of any specific solution. Defining specific solutions to a problem will be discussed when we consider Physical System Elements.

    The addition of the new Function Ontology Element also has wider implications for the broader Ontology, as shown in the following diagram:

    [image: Figure 7.8 – Ontology definition view showing Function and expanding on Need ]
    Figure 7.8: Ontology Definition View showing Function and expanding on Need

    The diagram here shows an Ontology Definition View that shows the term Function again, but this time expanding on the types of Need, realized by a SysML block definition diagram.

    The Concept of Need has been expanded to include the two other types of Need that were defined in Chapter 6, Needs and Requirements, those of Capability and Goal. This makes the Concept of the Function very important for the wider Ontology as it provides a crucial link between the world of Needs modeling and the solution, in terms of System-related Views. The Concept of a Function, therefore, is an essential part of traceability across the Model. For example, it is now possible to trace the relationship between a System Element and any of the types of Need by following the path between the Ontology Elements. For example, it is possible to trace the relationship between a System Element and one of the original Goals by following the following path:

    
      	A System Element realizes a Function

      	A Function satisfies a Requirement

      	A Requirement delivers a Capability

      	A Capability meets a Goal

    

    Traceability is a very important Concept that applies across the whole of Systems engineering and is a basic requirement of ISO 15288, which dictates that all Needs must be traceable across the whole System Life Cycle.

    This is another excellent use of the Ontology as, when there is an Ontology in place, the traceability of the whole System development is inherent in the Model. When this is implemented using a modeling tool, then this traceability can be automated to make it effortless. Traceability is important for many reasons, including the following two:

    
      	Impact analysis: Here, the traceability is applied in a forward manner, to see what impact a change in a Need may have on the solution. For example, if one of the Goals changes, then it is possible to then trace its related Elements across the whole Model up to, in this instance, the System Elements.

      	Regression analysis: Here, the traceability is applied in a backward manner, to see what effect a change in the solution may have on the Needs. For example, if a System Element changes, it is possible to trace back to any of the original Needs (Requirements, Capabilities, and Goals) it may be related to.

    

    The Function also has an important relationship with all the different types of System Elements, as shown in the following diagram:

    [image: Figure 7.9 – Ontology definition view showing Function and expanding on System Element ]
    Figure 7.9: Ontology Definition View showing Function and expanding on System Element

    The diagram here shows an Ontology Definition View that shows Function, but that has the Concept of the System Element expanded, visualized using a SysML block definition diagram.

    The Ontology now has the Concept of the Function relating directly to the Concept of the System Element. This provides an interesting insight, as System Elements have three specializations: Subsystem, Assembly, and Component. As the specialization relationship has been used, the Concept of inheritance applies from the System Element to its three types. This means that the relationship between the Function and the System Element is now inherited by the three specializations. From this, we can now infer that the Function can be applied at any of the three levels of abstraction (indicated by the compositions and aggregations) that apply to the System Element.

    This may lead to some confusion, as when the term Function is used, it will need to be made clear what level of the System Element hierarchy it applies to. This may be achieved implicitly in the diagram or explicitly when the structure of the Function is considered.

    Defining the structural aspect of Functions

    It is always a good idea to be explicit wherever possible as relying on implicit concepts leads to people making assumptions about the Model. There are two main ways that the relationship between Functions and System Elements can be represented in the Model, the first of which is shown in the following diagram:

    [image: Figure 7.10 – A function allocation view showing explicit relationships using allocations ]
    Figure 7.10: A Function Allocation View showing explicit relationships using allocations

    The diagram in Figure 7.10 shows how to Model explicit relationships between a Function and a System Element using allocations, visualized by a SysML block definition diagram.

    The diagram shows several blocks, which are qualified using two stereotypes:

    
      	«assembly»: This is a type of System Element and represents the owning block to which the Functions will be allocated. This is shown as the Electric Motor block, stereotyped as «assembly».

      	«function»: This represents the actual Functions, which are represented as stereotyped SysML blocks and will be allocated to the owning «assembly» block. These are shown as the start motor and stop motor blocks, where the «function» stereotype has been applied.

    

    The Functions and Assemblies are related using the SysML construct of an allocation. An allocation is shown in SysML by using a dependency relationship where the «allocate» stereotype has been applied.

    This is a very good way to show the allocation of Functions to System Elements – in this case, Assemblies – explicitly. However, this can become quite cumbersome when there are many Functions, as each Function is represented as a block, which can lead to a large amount of space on the diagram being taken up with «function» blocks.

    An alternative way to show the allocation of Functions to System Elements is shown in the following diagram:

    [image: Figure 7.11 – A function allocation view showing explicit relationships using a function compartment ]
    Figure 7.11: A Function Allocation View showing explicit relationships using a Function compartment

    The diagram in Figure 7.11 shows an alternative way to show the explicit allocation of Functions to Systems Elements using a Function compartment, realized using a SysML block definition diagram.

    In this example, the same set of Functions (start_motor and stop_motor) are shown as allocated to the same System Element (the Assembly named Electric Motor). Rather than the Function allocation being shown with a relationship to a stereotyped block, the Functions are given their own compartment on the owning block, stereotyped as «function».

    Notice how much less space this approach takes up on the diagram. A second «assembly», named Pedal, and a third, named Control Unit, are included in the diagram, yet the diagram takes up less space than that in Figure 7.10.

    As to which of these two representations is better, it is up to the discretion of the modeler to make that decision, as there are pros and cons to each:

    
      	The use of the «allocate» dependency makes the allocation far more visually striking. Also, it is possible to show relationships between the Functions, if necessary. For example, it may be desirable to show dependencies between various Functions that can be used when defining the behavior of the Functions.

      	The use of the «function» compartment makes the diagram smaller and, it may be argued, more elegant. It is certainly possible to show far more allocations on a single diagram compared to the previous approach.

    

    Now that the structural aspects of the Functions have been defined, it is now possible to consider their behavioral aspects.

    Defining the behavioral aspect of Functions

    The standard way of modeling that has been promoted throughout this book has been to always consider the structural and behavioral aspects of the Model. So far, we have considered the structural aspect of defining the exact meaning of a Function and how to allocate Functions to System Elements at different levels of abstraction. The next step, therefore, is to look at how the Functions interact with each other by considering the behavioral aspect of Functions.

    In order to do this, we will use the SysML activity diagram that was first introduced in Chapter 5, Systems Engineering Processes. To illustrate this, consider the Pedal «assembly» from Figure 7.11, which has a number of Functions; therefore, it is possible to construct the following diagram:

    [image: Figure 7.12 – A functional behavior view showing the interaction between  functions for the Pedal system element ]
    Figure 7.12: A Functional Behavior View showing the interaction between Functions for the Pedal System Element

    The diagram here is a Functional Behavior View that shows the interactions between Functions for the Pedal System Element, visualized using a SysML activity diagram.

    The diagram shows the basic flow of execution of the various Functions, as follows:

    
      	The first Function is to press accelerator.

      	Immediately following this, the next step must always be to release accelerator.

      	Once the accelerator has been released, there are two possibilities: go back and press accelerator again or move forward and apply brake.

      	Immediately following apply brake, the next Function is always to release brake. Following this, there are three options: press accelerator, apply brake, or finish the diagram.

    

    This Functional Behavioral View only applies to the single System Element block of Pedal, which is perfectly valid from a modeling point of view. This View may be expanded to include the use of SysML swim lanes. Swim lanes are typically used to show allocation to specific SysML elements, and in this case, we show functional allocation across various System Elements. This is illustrated in the expanded Functional Behavioral View that is shown in the following diagram:

    [image: Figure 7.13 – A functional behavior view showing the interaction between  functions across several system elements ]
    Figure 7.13: A Functional Behavior View showing the interaction between Functions across several System Elements

    The diagram here shows an expansion of the Functional Behavior View that shows the interactions between Functions, but this time across several System Elements, visualized using a SysML activity diagram.

    In this View, SysML swim lanes are used to represent the three System Elements («assembly») that were shown in Figure 7.11. Each of the swim lanes shows the relevant System Element – in this case, Pedal, Electric Motor, and Control Unit; but, most importantly, the Functions for each of these are shown in their appropriate swim lanes. This allows the Functional flow between different System Elements to be shown in a single diagram, which is a very powerful mechanism indeed.

    Note the differences between Figure 7.12 and Figure 7.13, especially these:

    
      	When considering a single System Element, as in Figure 7.12, it is only possible to show the Functional flow within that System Element. Therefore, the flow goes directly from press accelerator to release accelerator.

      	When considering the functional flow across multiple System Elements, as shown in Figure 13, it is easier to see the flow between Functions from different System Elements. Therefore, the flow from press accelerator now goes to check speed, which is a Function that is allocated to the Control Unit System Element.

    

    The whole Concept of Functional modeling should still be independent of any particular solution, and this is what will be discussed in the next section, where we will discuss Physical modeling.

    Defining Physical Elements

    In a Physical Model, each of the Model Elements is a concrete representation of a real-life artifact. Whereas both Logical Elements and Functional Elements were firmly in the Conceptual world, Physical Elements are rooted in the real world. When we looked at Logical and Functional Elements, we considered a Conceptual solution to a problem that could be realized in several ways depending on the specific technologies and techniques that could be applied. When we consider Physical Elements, we look at real solutions to a problem using specific technologies and specific techniques.

    Modeling the System structure of Physical Elements

    In order to illustrate this, we shall consider the breakdown of the Electric Motor System Element. So far, we have considered the electric motor as a Logical System Element, but it is also possible to think of it as a Physical System Element. This is shown in the following diagram:

    [image: Figure 7.14 – A physical structure view showing the breakdown of Electric Motor ]
    Figure 7.14: A Physical Structure View showing the breakdown of Electric Motor

    The diagram here is a Physical Structure View that shows the breakdown of the Electric Motor System Element, visualized using a SysML block definition diagram.

    There are several interesting points to consider regarding this diagram:

    
      	Firstly, notice again the use of multiple stereotypes to allow for the two different types of System Elements that were defined using SysML differentiators.

      	The second point is that the Electric Motor block is now stereotyped as «assembly» and «physical». This differs from when we saw it in Figure 7.10, when the stereotypes applied were «assembly» and «logical». This is perfectly acceptable from a modeling point of view, but it is essential that both occurrences of Electric Motor in the Model must be separate Model Elements. This can potentially lead to some confusion as there will now be two Model Elements with the same name but stereotypes applied.

      	The next point is that there is a situation here where there is a block that is stereotyped as «assembly» and made up of two other blocks that are also stereotyped as «assembly». This does not comply with the original Ontology, as it would require a composition or an aggregation (or both) from Assembly back to itself. This is a good example of how the Ontology will evolve over time to reflect the application of the modeling of the System.

    

    This diagram can be read as follows:

    
      	Electric Motor comprises a single Stator and a single Rotor.

      	Rotor slides into Stator.

    

    All three blocks represent Physical System Elements that are Assemblies.

    Each of the blocks is a Physical Assembly, so this is an actual solution representing a real-life electric motor. The stereotypes help to convey the fact that this is a Physical Model rather than a Logical Model. The fact that this is a solution, rather than being Logical, means that when the Stator and Rotor are broken down into more detail, we will also deal with Physical System Elements, as shown in the following diagram:

    [image: Figure 7.15 – A physical structure view of the Rotor assembly ]
    Figure 7.15: A Physical Structure View of the Rotor Assembly

    The diagram here shows a Physical Structure View for the Rotor Assembly, visualized using a SysML block definition diagram.

    This System structure View focuses on decomposing a single Assembly (the Rotor) into its constituent Components. Each of these Components is also a Physical System Element. This is indicated, again, through the use of two stereotypes on each block to show exactly what the block represents.

    This diagram can be read as follows:

    
      	Rotor comprises two End Ring blocks and a single Rotor Core.

      	The two Rotor Ring blocks are placed on each side of the Rotor Core.

      	Rotor Core comprises a single rod, one or more Steel Lamination blocks, and one or more Slot blocks.

      	Rod runs through the center of one or more Steel Lamination blocks.

      	Each Steel Lamination is placed alongside a Slot block.

    

    Notice how the System Structure View is imprecise about the exact numbers of some of the composite blocks, using 1…* rather than a specific number. Also, the relationships do not explicitly represent Interfaces between blocks, but they will be consistent with the Interfaces. Both the Interfaces and the specific numbers of instances of blocks will be considered when Configuration Views are created in the next section.

    The following diagram shows a breakdown of the other major Assembly, the Stator:

    [image: Figure 7.16 – A physical structure view of the Stator assembly ]
    Figure 7.16: A Physical Structure View of the Stator Assembly

    The diagram here shows the Physical Structure View for the Stator Assembly and is visualized using a SysML block definition diagram.

    Again, this diagram uses multiple stereotypes to show that all System Elements are Physical and that there is a single Assembly and multiple Components associated with it.

    This diagram can be read as follows:

    
      	Stator comprises a single Stator Core, a single Frame, one or more Conducting Wire blocks, and two End Bell blocks.

      	Stator Core is placed in Frame and comprises one or more Ring blocks.

      	Each Ring is laminated with one or more other Ring blocks and is also insulated from one or more other Ring blocks.

      	Conducting Wire is wrapped around Ring.

      	There are three types of Conducting Wire, which are Phase 1, Phase 2, and Phase 3.

    

    This View is quite straightforward and simple to read, as all Views should be; however, there is something here that deserves a second look. When considering any View, it is important to look for anomalies that may lead to potential questions about the View itself. In this case, consider End Bell and notice that, apart from the composition, it has no relationship with any other Element on the diagram. This is unusual on any diagram and should always be questioned. In many cases, a block with no relationships to other blocks will indicate that there is a relationship missing. In this case, there should be a link between End Bell and the Ring piece on the diagram.

    It is important to always be on the lookout for such modeling anomalies and to always question them. It is the responsibility of the modeler to answer such questions, and this should be viewed as constructive feedback rather than criticism. Remember that the goal is to end up with a Model that is correct and that it will evolve as the project progresses, so querying any diagram is a good way to ensure that the content is correct.

    Modeling the Configuration of Physical Elements

    Now that the generic structure of the System has been modeled, it is possible to model the specific Configurations of the solution. The idea of modeling Configurations was introduced in Chapter 3, Systems and Interfaces, but this now starts to make more sense when we consider Physical modeling, as each Configuration will show a specific solution for the System.

    The following diagram shows an example of this:

    [image: Figure 7.17 – A physical configuration view for a simple rotor with two laminations ]
    Figure 7.17: A Physical Configuration View for a simple rotor with two laminations

    The diagram here shows a Physical System Configuration View for a specific Configuration of a simple rotor, visualized using a SysML internal block diagram.

    Notice how this diagram is consistent with the Physical structure View that was shown in Figure 7.15 for the rotor Assembly.

    In this example, the Configuration is for a simple rotor, which has been indicated by the Assembly part name, defined as Simple: Rotor. It has just two laminations, which can be seen in the diagram. This is a useful mechanism as it allows multiple different Configurations to be defined. These different Configurations can form different candidate solutions. In this case, the candidate solution can just be represented by a different Configuration, or, of course, it can be a completely different structure using different System Elements. In order to illustrate this, consider the following Configuration:

    [image: Figure 7.18 – A physical configuration view for a more-complex rotor with multiple laminations ]
    Figure 7.18: A Physical Configuration View for a more-complex rotor with multiple laminations

    The diagram here shows another possible Physical Configuration View, this time showing a more complex Configuration of a rotor with multiple laminations, visualized using a SysML internal block diagram.

    Notice how this diagram is also consistent with the Physical Structure View that was shown in Figure 7.15. This is important as it demonstrates how it is possible to have the same Physical Structure View but have multiple Configurations using Physical Configuration Views associated with it that, in this case, show multiple candidate solutions.

    There are also some interesting modeling observations that can be made about this more complex Configuration:

    
      	Multiplicity on the «component» parts. Notice how there is a multiplicity of [24] associated with the :Slot, :Steel Lamination, and :Rod Components. This is a useful mechanism that allows us to show that there are actually multiple parts, without having to show each one explicitly. This can be considered as a way to show a short-hand version of repeated Elements, where showing all of them on a single View would make the View far too complex and, therefore, unreadable.

      	More detail on the Port definitions. In this View, the Port definition has its types and names shown. This adds more detail to the View but does make the diagram busier and potentially less readable.

    

    Both of these points are important as they demonstrate how the skill and judgment of the modeler are important. When considering visualizing any View, it is important to think about which Stakeholder will be reading the diagram. For example, if it was an engineer reading the View, then it may be more appropriate to show more detail, as in Figure 7.18, whereas if it was a manager looking at the View, it may be better to show a simple View, as in Figure 7.17. So, remember to consider the skills, knowledge, and background of the Stakeholder and gear the visualization toward a representation that will be natural for them. It comes down to the discretion of the modeler, but either way, it is important to make an informed decision.

    Defining System behavior

    The focus so far has been very much on structural Views but, as has been one of the themes in this book, it is important to consider both structure and behavior. Wherever we have Views that show System Elements and their structure, particularly when there are specific Configurations, it is vital to show some possible behaviors associated with these different Configurations. An example of this can be seen in the following diagram:

    [image: Figure 7.19 – A system behavior view showing a braking scenario  ]
    Figure 7.19: A System Behavior View showing a braking Scenario

    The diagram here shows a System Behavior View for a braking Scenario that is visualized using a SysML sequence diagram.

    System Behavior Views, such as the one shown here, are very flexible and powerful as they can be applied to almost any structure View. For example, the example here relates to the Logical Assemblies that were described in Figure 7.10 and Figure 7.11, so the behavior relates to Logical Assemblies. However, the same type of View, the System Behavior View, could just as easily be applied to Physical Configuration Views, such as those in Figure 7.17 and Figure 7.16. This demonstrates how flexible this View can be and is also a good example of consistency between different Views.

    The Views that have been discussed so far have used good modeling practice, and it is now time to consider how this modeling relates to international best practice, by looking at ISO 15288 again and, specifically, the Processes that relate to design activities.

    Complying with best practice Processes

    The techniques to apply Model-based techniques to architectural designs and detailed designs that have been introduced and discussed so far in this chapter can be used to comply with international best practices – in this case, ISO 15288 – software and Systems Engineering Life Cycle Processes.

    The two Processes that are of interest are both taken from the technical Process group and are the Architecture Definition Process and the Design Definition Process. Each of these will be discussed in the following two sections.

    Complying with the ISO 15288 Architecture Definition Process

    The ISO 15288 Process that is relevant for architectural design is the Architecture Definition Process. This was captured and modeled using the approach described in Chapter 5, Systems Engineering Processes. Refer to the following diagram:

    [image: Figure 7.20 – A process content view for the ISO 15288 process architecture definition process ]
    Figure 7.20: A Process content View for the ISO 15288 Process Architecture Definition Process

    The diagram here shows the Process content View for the ISO 15288 Architecture Definition Process, shown using a SysML block definition diagram.

    The diagram uses standard SysML to represent the Process Perspective Ontology Concepts, as follows:

    
      	The block name shows the Process name.

      	The middle compartment shows the Outcomes associated with the Process, represented as stereotyped SysML properties.

      	The bottom compartment shows the activities associated with the Processes, represented as SysML operations.

    

    The Outcomes associated with the ISO Process map onto the Views that have been discussed so far, as follows:

    
      	Alignment of architecture with requirements: This is to do with establishing traceability from the architectural design View back to the Needs. As there is an Ontology in place, this traceability is inherent in the Model.

      	Architecture basis for the process: This is to do with establishing Processes for the architectural design that can be integrated with all the other Processes across the Life Cycle. Again, this is already covered in the Model by defining specific Processes using the seven-Views approach and mapping them back to best practice. This was discussed in detail in Chapter 5, Systems Engineering Processes.

      	Architecture candidate: There will be multiple solutions for the System that are expressed as different sets of Architecture Views. These candidate architecture Views are then assessed and narrowed down to find the preferred solution.

      	Architecture Model: This is a collection of Views deemed necessary to form the architecture. This will include, for example, all the Views that were discussed in this chapter, the Systems- and Interface-related Views that were discussed in Chapter 3, Systems and Interfaces, the Life Cycle Views developed in Chapter 4, Life Cycles, the Processes that were developed in Chapter 5, Systems Engineering Processes, and also the Needs models that were discussed in Chapter 6, Needs and Requirements. Indeed, the Architecture Model may contain any of the Views that are discussed throughout this book.

      	Architecture viewpoint: These Viewpoints are defined as part of the overall Framework along with the Ontology. These Frameworks were developed throughout this book and form a complete MBSE Framework.

      	Concepts: These concepts are defined as part of the Ontology that forms part of the overall MBSE Framework being developed throughout this book.

      	Context: The Context of the architecture defines the reason why the Framework is needed. This was defined for each of the Perspectives that have been developed throughout the book and is described using the approach to Needs modeling from Chapter 6, Needs and Requirements.

      	Enabling systems: The enabling Systems are covered in the Ontology that was developed in Chapter 3, Systems and Interfaces, and exist outside the boundary of the System of interest. These may also be considered as a special type of Stakeholders.

      	Stakeholder concern map: This maps the Views in the architecture back to the original Context for the architecture, which comprises a number of Stakeholder concerns.

      	System elements and Interface: Again, this was covered by the design Views in both this chapter and Chapter 3, Systems and Interfaces.

      	Traceability: This is a subject that is key to Systems engineering but one that is addressed implicitly when applying an MBSE approach, as all the traceability is established in the Framework through both the Ontology and the Viewpoint Definitions.

    

    The Activities that are identified in the Process are mapped onto the modeling activities as follows:

    
      	Assess architecture candidates(): This Activity is concerned with taking the various candidate architectures and their associated Views and assessing them for compliance with the underlying Needs, including the constraints. As a result of this, the preferred solution is selected in the form of the candidate architecture.

      	Develop architecture viewpoints(): This Activity is concerned with ensuring that the Framework for the architecture is sufficiently defined.

      	Develop models and views of candidate architectures(): This Activity is focused on populating the architecture Views based on the architecture Framework. This is where the Model itself and its associated Views are created.

      	Manage the selected architecture(): This Activity focuses on ensuring that Processes are in place that will allow the architecture to evolve and grow as the project develops. These Processes will cover areas such as governance of the architecture, developing an architecture strategy, and ensuring that it is met.

      	Prepare for architecture definition(): This Activity ensures that the original Context for the architecture and how it will be evaluated are defined. This will also include having enough of an understanding of the relevant Stakeholders (including the enabling System) so that the architecture can be developed, as well as identifying any specific tools and notations to be used.

      	Relate the architecture to the design(): Again, this Activity relates to the traceability of the architecture, this time to the design. Once again, all the traceability paths are defined as an inherent part of the Framework.

    

    Notice how all the modeling that has been described in this book is now coming together to form part of the overall architecture. It is interesting at this point to revisit the MBSE in a slide:

    [image: Figure 7.21 – MBSE revisited ]
    Figure 7.21: MBSE revisited

    The diagram here shows the MBSE in a slide that was originally introduced in Chapter 2, Model-Based Systems Engineering. The original diagram was shown using no specific notation, but at this point in the book, it is pertinent to show it was realized using a SysML block definition diagram.

    All the information in ISO 15288 that relates to the Architecture Definition Process can easily be mapped onto MBSE in a slide. Indeed, if the word Model in the diagram was replaced with the word Architecture, it would be a perfect visualization of what needs to be done as a part of the Process.

    This also shows how closely related architecture and MBSE are. It is worth remembering that all architectures are Models, whereas not every Model is an architecture. Modeling, therefore, is an essential part of any architecture Definition.

    In the same way that modeling is essential to architectural design activities, the same is true for detailed designs.

    Complying with the ISO 15288 Design Definition Process

    The ISO 15288 Process that is relevant for detailed designs is the Design Definition Process. This was captured and modeled using the approach described in Chapter 5, Systems Engineering Processes. The Process content View for this Process is shown in the following diagram:

    [image: Figure 7.22 – A process content view for the ISO 15288 design definition process ]
    Figure 7.22: A Process content View for the ISO 15288 Design Definition Process

    The diagram here shows the Process content View for the ISO 15288 Design Definition Process, shown using a SysML block definition diagram.

    The Outcomes associated with the ISO Process map onto the Views that have been discussed so far, as follows:

    
      	Allocated System requirements: All the System Elements must be allocated to the original Needs. This is a traceability exercise and one that is, once more, straightforward, as traceability between all System Elements and the different types of Needs is established and inherent in the Framework.

      	Assessed design alternatives: In the same way that there were several potential candidate architectures that had to be assessed, there may also be multiple candidate designs for specific System Elements. Again, these are assessed and the preferred design is selected.

      	Design artifact: This is a generic term that applies to any of the Views that relate to any aspect of the detailed design. These Views were discussed both in this chapter and in Chapter 3, Systems and Interfaces.

      	Design characteristics for system elements: Each System Element may have a number of design-related characteristics associated with it. These can be, for example, performance-related characteristics, quality characteristics, environmental characteristics, and so on. The terms that are used to describe these different types of characteristics may look familiar, and there is a good reason for this. These characteristics may be derived directly from the constraints that were identified when modeling the Needs. Bearing in mind that all the detailed design Views can be traced back to the Needs, it is relatively straightforward to see which constraints apply to which System Elements using the traceability relationships that are inherent in the Framework. These were discussed in detail in Chapter 6, Needs and Requirements.

      	Design enablers: These design enablers may include selecting specific methodologies, techniques, notations, or tools that are required or recommended for specific design-related activities.

      	Enabling systems: This is very much the same as in the previous section. The enabling Systems that interact with specific System Elements must be identified and modeled to such a degree that the System Elements themselves may be designed.

      	Interfaces: The Interfaces between the System Elements and the external Interfaces to enabling Systems must be identified and defined, and their connections must be specified. Interfaces were discussed in detail in Chapter 3, Systems and Interfaces.

      	Traceability: Yet again, traceability is inherent in the Framework and, therefore, is already well established.

    

    The Activities associated with the ISO Process map onto the Views that have been discussed so far as follows:

    
      	Assess alternatives for obtaining system elements(): This activity relates to the assessment of various candidate solutions, this time for the System Elements.

      	Establish design characteristics and enablers for system elements(): This covers the identification of the various constraints that must be applied to the System Elements.

      	Manage the design(): This covers the Processes that must be in place in order for the detailed design Views to be managed, configured, and governed during the project Life Cycle.

      	Prepare for design definition(): This activity ensures that the original Context for the detailed design and how it will be evaluated are defined. This will also include having enough of an understanding of the relevant Stakeholders (including the enabling Systems) so that the detailed design Views can be developed, as well as identifying any specific tools and notations that will be used.

    

    The whole approach that was introduced and discussed in this chapter has been shown to comply with current international best practice in the form of ISO 15288. All the Views that have been shown must be defined as part of the overall Framework, and the next section builds on the existing Framework Views by adding some of the architectural design and detailed design Views to the Framework.

    Defining the Framework

    The Views that have been created so far represent the center part of the MBSE-in-a-slide diagram that was discussed in detail in Chapter 2, Model-Based Systems Engineering, and that was also revisited in the previous section. Each of the Views was visualized using SysML, representing the right-hand side of the MBSE diagram. These Views come together to form the overall Model, but it is essential that these Views are all consistent; otherwise, they are not Views but pictures! This is where the left-hand side of the MBSE diagram comes into play, as it is important that the Definition of all of the Views is captured in the Framework. The Framework comprises the Ontology and a set of Viewpoints; therefore, it is now time to make sure that these Viewpoints are defined thoroughly and correctly, which is the aim of this section.

    Defining the Viewpoints in the Framework

    It was discussed in Chapter 2, Model-Based Systems Engineering, that it is necessary to ask a number of questions about each View to ensure that it is a valid View. There is also a set of questions that must be asked about the whole Framework, as well as the Views and the combination of these results, to allow the whole Framework to be defined. It is worthwhile, therefore, to have a reminder of what these questions are:

    
      	Why is the Framework Required? This question can be answered using a Framework Context View.

      	What are the overall Concepts and terminology used for the Framework? This question can be answered using an Ontology Definition View.

      	What Views are necessary as part of the Framework? This question can be answered using a Viewpoint Relationship View.

      	Why is each View needed? This question can be answered using a Viewpoint Context View.

      	What is the structure and content of each View? This question can be answered using a Viewpoint Definition View.

      	What rules should be applied? This question can be answered using a Ruleset Definition View.

    

    When these questions are answered, then it can be said that a Framework has been defined. Each of these questions can be answered using a special set of Views that is collectively known as the Framework for Architecture Frameworks (FAF) [Holt and Perry 2019]. At this point, simply think about creating a specific View to answer each question, as described in the following sections.

    Defining the Framework Context View

    The Framework Context View specifies why the whole Framework is needed in the first place. It will identify the relevant Stakeholders that have an interest in the Framework and also identify what benefits each of them hopes to gain from the Framework:

    [image: Figure 7.23 – Framework context view for the design framework ]
    Figure 7.23: Framework Context View for the Design Framework

    The diagram here shows the Framework Context View for the Design Framework, visualized using a SysML use case diagram.

    Note the application of the use case diagram here to capture the Context, an approach that was described in Chapter 6, Needs and Requirements.

    This diagram can be read as follows:

    
      	The main aim of the Design Framework is to Provide design Capability. This is a generic term that is used to capture, in a single statement, the overall intent of the entire Context. It is useful to be able to identify which of the use cases in any given Context diagram is the main one. This can be achieved by looking out for use cases that have multiple «include» relationships coming out of them and multiple «constrain» relationships going into them. This will typically identify a high-level use case, and it is the suggested starting point for reading any Context View.

      	There are two main types of design, which are shown by the two specialization relationships from the main use case: Support architectural design and Support detailed design. This is a powerful construct to use here as it means that anything that is attached to the parent use case – in this case, Provide design capability – will also be inherited by the specializations, for both of the child use cases.

      	The overall design Capability Must be model-based. This is a common use case that will appear on all of our Systems engineering Context Views; as MBSE is the approach advocated by this book, it is not surprising to see it repeated here.

      	Another common theme throughout this book is to Comply with standards so, again, it appears as a use case here. This will enforce best practice for everything that we do in Systems engineering and allow our overall approach to be demonstrable to any interested Stakeholders.

      	One of the common Activities that is mentioned in almost every Systems engineering standard relates to Ensure traceability. This is vital to demonstrate compliance with the original Needs as well as allow engineering to carry out impact analyses when changes have been made to the Model.

      	There are four «include» relationships on the main use case, the first of which is Define candidate solutions. An important aspect of any robust design is to consider multiple solutions that explore different ways to solve the same problem.

      	Following on from the previous point, it is also necessary to be able to compare and contrast the solution in order to Assess candidate solutions. This will provide a mechanism for ensuring that the assessment is fair and covers all of the criteria explored during the Needs modeling.

      	A key part of any design at any level is to Define Interfaces, so this becomes an important part of both architectural designs and detailed designs.

      	It is impossible to define a good solution without considering what goes on outside the boundary of the System of interest, and this is achieved by being able to Understand enabling Systems. This allows the wider Context of the System to be understood and a design to be developed that integrates with any enabling Systems.

      	Finally, it is essential at any point in the Life Cycle to be able to Demonstrate compliance with Needs. This forms the heart of delivering any successful System and is the main goal of Systems engineering.

    

    Notice that in this diagram, each of the SysML use cases is stereotyped as a Concern. A Concern is a Need that relates specifically to a Framework or one of its Viewpoints.

    Defining the Ontology Definition View

    The Ontology Definition View captures all the Concepts and terminology associated with the Framework in the form of an Ontology. This has already been done, as the Ontology for the design-related Views was defined in Figure 7.2. The Ontology Elements shown in this View provide all of the stereotypes that were used for the actual Views created so far in this chapter.

    Ontology Elements that are related will often be collected into a Perspective, as was discussed in other chapters. In this chapter, a new Perspective was created that relates to design.

    Defining the Viewpoint Relationship View

    The Viewpoint Relationship View identifies which Views are Needed and, for each set of Views, identifies a Viewpoint that will contain its Definition. Remember that a Viewpoint can be thought of as a type of template for a View. These Viewpoints can be collected together into a Perspective, which is simply a collection of Viewpoints with a common theme.

    In this chapter, the emphasis is on defining a set of Views related to design, so it is appropriate to create the Design Perspective. The basic set of Views that has been discussed so far is shown in the following View:

    [image: Figure 7.24 – A viewpoint relationship view for the design perspective ]
    Figure 7.24: A Viewpoint Relationship View for the Design Perspective

    The diagram here shows the Viewpoint Relationship View for the Design Perspective using a SysML block definition diagram.

    The Need Perspective is shown using a SysML package, stereotyped as <<perspective>>, that simply collects a number of Viewpoints. There are six Viewpoints that have been defined in this chapter that make up the Design Perspective. There are actually more possible Views for this Perspective, which will be discussed after these basic Viewpoint descriptions:

    
      	Logical System Structure Viewpoint: Identifies the high-level Logical System Elements and the basic relationships between them

      	Function Allocation Viewpoint: Identifies the key Functions and allocates them with various System Elements at different levels of abstraction

      	Function Behavior Viewpoint: Allows specific Functions to be broken down and their behaviors described

      	Physical Structure Viewpoint: Shows how the various Functions can be realized using Physical System Elements

      	Physical System Configuration Viewpoint: Shows a number of different Configurations for specific Physical System Elements

      	System Behavior Viewpoint: Shows several possible behaviors for each of the Configurations

    

    This set of Viewpoints is focused on the design of the System. Of course, this is just an example, and there may be many more Viewpoints that are described and relate to design. For example, all the Interface-related Viewpoints that were described in Chapter 3, Systems and Interfaces, will also be included in this Perspective.

    It should also be pointed out that, at this point, people may start to refer to the Design Perspective as the architecture of the Systems. Although the architecture will certainly include all the design Viewpoints, the architecture has a far-wider scope. For example, any of the Viewpoints and their Perspectives, such as the Life Cycle Perspective (Chapter 4, Life Cycles), Process Perspective (Chapter 5, Systems Engineering Processes), and Needs Perspective (Chapter 6, Needs and Requirements), will also be included in the wider architecture Framework.

    Each of the Viewpoints that were identified here can now be described using its own Viewpoint Context View and its Viewpoint Definition View.

    Defining the Viewpoint Context View

    The Viewpoint Context View specifies why a particular Viewpoint and, therefore, its set of Views, is needed in the first place. It will identify the relevant Stakeholders that have an interest in the Viewpoint and also identify what benefits each of them hopes to gain from the Framework, as shown in the following diagram:

    [image: Figure 7.25 – A viewpoint context view for the logical system structure viewpoint ]
    Figure 7.25: A Viewpoint Context View for the Logical System Structure Viewpoint

    The diagram here shows the Viewpoint Context View for the Logical System Structure Viewpoint, visualized using a SysML use case diagram.

    This diagram can be read as follows:

    
      	The main aim of the Logical System structure Viewpoint is to Develop logical design structure. Note that this has been identified as the highest-level use case due to the fact that it has two «include» dependencies coming out of it and two «constrain» dependencies going into it.

      	Identify logical system elements is important as it sets the scope for which types of System Elements this Viewpoint focuses on. In this case, it is explicitly the Logical System Elements, and we can infer from this that it does not apply to the Functional System Elements nor the Physical System Elements. When modeling, it is important to see what is in the scope of a Viewpoint but also what is not included in it.

      	Identify relationships between logical system elements is again important as it explicitly states the relationship and does not specify actual Interfaces. This tells us that only generic relationships will be shown and not specific Interfaces or their connections.

      	Apply to Subsystems and Apply to Assemblies. These two use cases allow us to see that the Logical System Elements are only applied at two levels of abstraction: the Subsystem level and the Assembly level. Again, we can infer from this that these Logical System Elements do not apply to the System or the Component System Elements.

    

    Now that the reason why the Viewpoint must exist has been established, the Viewpoint Definition View can be considered.

    Defining the Viewpoint Definition View

    The Viewpoint Definition View defines the Ontology Elements that are included in the Viewpoint. It shows the following:

    
      	Which Ontology Elements are allowed in the Viewpoint

      	Which Ontology Elements are optional in the Viewpoint

      	Which Ontology Elements are not allowed in the Viewpoint

    

    The Viewpoint Definition View focuses on a single Viewpoint, and particular care and attention must be paid to not only the Ontology Elements that are selected but also the relationships that exist between these Ontology Elements.

    An example of a Viewpoint Definition View for the Need description Viewpoint is shown in the following diagram:

    [image: Figure 7.26 – A viewpoint definition view for the logical system structure viewpoint ]
    Figure 7.26: A Viewpoint Definition View for the Logical System Structure Viewpoint

    The diagram here shows the Viewpoint Definition View for the Logical System structure Viewpoint, using a SysML block definition diagram.

    This View defines the exact content of what is allowed in all the Views that are described by the Viewpoint. This Viewpoint will always contain the following information:

    
      	The Viewpoint name, stereotyped by «viewpoint», which is the focus of this View. The Viewpoint identified here must come from the Viewpoint Relationship View that was shown in Figure 7.24.

      	A number of Ontology Elements, stereotyped by «ontology element». Each of these Ontology Elements must come from the Ontology Definition View shown in Figure 7.3.

    

    The Ontology Elements that are allowed on the Views associated with this Viewpoint are as follows:

    
      	Logical, which refers to the Logical System Elements. This is important as the other two types of Functional and Physical are not shown here, which limits the scope of this Viewpoint.

      	Subsystem and Assembly. These are also important as they exclude both the System and Components from the scope.

    

    These subtleties regarding the scope are important as it goes to show just how important explicitly defining the Viewpoint Definition View can be. Another subtlety is that the System Element is not included in this Viewpoint as there is no aggregation relationship to the Viewpoint name. This is because the System Element has no direct instances; it is abstract and, therefore, is not explicitly included in the Viewpoint.

    The Viewpoints and Ontology Elements that are permitted in each Viewpoint are constrained by a number of rules, which will be described in the Ruleset Definition View for the Needs Perspective.

    Defining the Ruleset Definition View

    The Ruleset Definition View identifies and defines a number of rules that may be applied to the Model to ensure that it is consistent with the Framework.

    The rules are based primarily on the Ontology Definition View and the Viewpoint relationships View. In each case, the rules are defined by identifying the key relationships and their associated multiplicities, which exist in the following places:

    
      	Between Viewpoints in the Viewpoint Definition View

      	Between Ontology Elements in the Ontology Definition View

    

    Some examples of these rules are shown in the following diagram:

    [image: Figure 7.27 – Example ruleset definition view ]
    Figure 7.27: Example Ruleset Definition View

    The diagram here shows an example of a Ruleset Definition View using a SysML block definition diagram. Each block on the diagram represents a rule that is derived from either the Ontology Definition View or the Viewpoint Relationship View.

    These rules are defined as follows:

    
      	Rule1: Each system element must be defined in terms of its abstract type and system type: This rule is taken from the Ontology Definition View that was shown in Figure 7.3, showing that each System Element has two different specializations associated with it, defined by the SysML discriminator.

      	Rule2: Each function allocation View must have at least one function behavior view associated with it: This rule is taken from the Viewpoint Relationship View that was shown in Figure 7.24.

      	Rule3: Each physical system configuration view must have at least one System Behavior View associated with it: This rule is also taken from the Viewpoint Relationship View that was shown in Figure 7.24.

    

    Notice how the rules are derived from the Viewpoint Relationship View, and, therefore, the Viewpoints and the Ontology Definition View, and, therefore, the Ontology Elements. The actual rule descriptions themselves apply to the instances of the Viewpoints (Views) and instances of the Ontology Elements.

    Of course, any number of other rules can be defined here, but not every relationship will lead to a rule, as this is at the discretion of the modeler.

    We have seen, therefore, the Viewpoints that relate to System Design have been defined and discussed here, which will form part of the overall MBSE Framework used throughout this book.

    Summary

    In this chapter, the fundamental issue of design was discussed. Design involves providing the solution to a specific problem that is specified by given Needs. Design can be applied at two broad levels, generally referred to as the architectural design level and the detailed design level. We discussed that architectural design is generally more abstract and applies at a high level, such as the System and Subsystem level. Detailed design, on the other hand, focuses more on detailed aspects of the overall solution and focuses on the structure of Subsystems, Assemblies, and Components.

    We also discussed that the System Elements that we saw previously in Chapter 3, Systems and Interfaces, can actually take on different types. In the Ontology example in this chapter, these types were Logical, Functional, and Physical. We saw that Functional System Elements satisfy Logical System Elements, whereas Physical System Elements realize Functional System Elements.

    The importance of best practice was also discussed, and this was related to Views by considering a specific Process from ISO 15288 and relating the modeling View directly to its Activities and Outcomes.

    Finally, all these Views were captured as part of an overall Framework Definition using the Framework for architecture Frameworks. This Framework itself comprises a number of Views that are used to describe the Model.

    In the next chapter, we will look at verification and validation modeling techniques that will be used to test the design Views shown in this chapter.

    Self-assessment tasks

    
      	Revisit the Ontology Definition View in Figure 7.3 and consider how this applies to your organization. Change, where necessary, the different types of System Element to reflect your organizational Needs.

      	Think about the term “Function” and what it means to you in your organization. Update the Ontology to reflect your specific interpretation of this term. Relate it to both the design-related terms that were used in this chapter and the Needs-related terms that were used in Chapter 6, Needs and Requirements.

      	Compare and contrast the two different ways to visualize the allocation of Functions in Figure 7.11 and Figure 7.12. Which do you prefer, and why?

      	There is an inconsistency between what is shown in Figure 7.14 and the Ontology shown in Figure 7.3. Identify this inconsistency and correct it on the Ontology.

      	Add to the Viewpoint Relationship View in Figure 7.24 to include any other Perspectives that you feel may be important to create a Viewpoint Relationship View for an architecture.

      	Define the Viewpoint Context View and the Viewpoint Definition View for at least one other Viewpoint that was shown in Figure 7.24.
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    Modeling Verification and Validation

    The modeling that has been introduced so far in this book has been concerned with the creation of several Views related to specifying and defining the System and that contribute to delivering the System successfully. Remember that the main aim of Systems Engineering is to deliver successful Systems.

    Alongside these modeling activities, it is also important to be able to test that what we have produced is correct, and this is done in two main ways:

    
      	Verification: This helps us demonstrate that the System works. This was summed up, very famously, by Boehm by asking the question, have we built the System right?

      	Validation: This helps us demonstrate that the System actually does what it is supposed to – that it is fit for purpose. This was again summed up neatly by Boehm by asking the question, have we built the right System?

    

    It is essential that the System can be both verified and validated, and it must be remembered that achieving one of these in no way means that we have necessarily achieved the other.

    This chapter is structured as follows:

    
      	Defining testing concepts: To understand Verification and Validation, it is necessary to understand the concepts associated with testing. This will be done by the now-familiar approach of building up the MBSE Ontology to cover testing concepts.

      	Modeling Verification and Validation: In this section, we discuss why modeling the Testing Context is important, along with modeling the testing setup and execution of the actual testing activities.

      	Using existing Views for testing: This is a crucial part of MBSE, as the more that we can reuse existing Views from the Model, the more value we will add with our MBSE activities.

      	Complying with best practice: Again, we shall map everything that we discuss in this chapter to the Processes contained in ISO 15288.

      	Defining the Framework: This is where we define some of the Views introduced in this chapter.

    

    Finally, we will wrap up with some conclusions and a set of self-assessment exercises.

    Defining testing concepts

    Before considering the main testing concepts, it is necessary to take a step back and consider what can be tested in any given System. In modeling terms, the contents of the Model are defined by the Views and, in turn, these Views have their structure and content defined by a set of Viewpoints that comprise part of the Framework. This was covered in detail in Chapter 2, Model-Based Systems Engineering. The Viewpoints themselves are based on the Ontology, which, as has been demonstrated throughout this book, is the cornerstone to achieving successful MBSE and, hence, Systems Engineering. The Ontology, we can therefore infer, forms the heart of the Views (and, therefore, the Model) as each Element that appears on a View is actually an instance of an Ontology Element.

    If we now ask the question, which Elements that make up the Model can be tested?, then the answer is that any Element in the Model can be tested to some degree or other.

    We can now infer that testing may be applied to any Ontology Element. This is shown in the following diagram:

    [image: Figure 8.1 – Meta-model showing cross-cutting element ]
    Figure 8.1: Metamodel showing Cross-Cutting Element

    The diagram here shows a Metamodel that focuses on the Cross-Cutting Element and that is visualized using a SysML block definition diagram.

    This diagram introduces a new generic modeling concept, which is that of the Metamodel. A Metamodel, in its simplest terms, may be defined as a Model of a Model. In fact, we have seen a number of Metamodels in every chapter of this book as an Ontology is actually a special type of Metamodel; it is a Model of a Model that allows us to identify concepts and terminology for a specific System. Indeed, every Ontology is a Metamodel, but not every Metamodel is an Ontology.

    The use of the Metamodel in this diagram allows us to relate a new concept to every type of Ontology Element that comprises the Ontology. An Ontology Element that may be applied to any number of other Ontology Elements is referred to as a Cross-Cutting Element as it may be applied across the entire gamut of Model Elements.

    The diagram in Figure 8.1 may be read as follows:

    
      	An Ontology comprises one (or more) Ontology Element.

      	One or more Cross-Cutting Element is applied to one or more Ontology Element.

      	There is a single type of Cross-Cutting Element, which is the Testable Element.

      	Therefore, using the law of inheritance, one or more Testable Element is applied to one or more Ontology Element.

    

    This is a very powerful mechanism as we have now defined a new Ontology Element that can be applied to potentially any other Ontology Element. If this was done using just the MBSE Ontology, then it would be necessary to draw an association between the Cross-Cutting Element and every single Ontology Element that comprises the Ontology, which would render the Ontology unreadable!

    It is now possible to take the concept of the Testable Element and expand upon it to identify and define a number of other testing-related concepts, as shown in the following diagram:

    [image: Figure 8.2 – Ontology definition view showing system under test ]
    Figure 8.2: Ontology Definition View showing System Under Test

    The diagram here shows an Ontology Definition View that focuses on the concept of a System Under Test, visualized using a SysML block definition diagram.

    This diagram may be read as follows:

    
      	Each System Under Test comprises one or more Testable Element.

      	There is a special type of Testable Element, which is an Element Under Test.

    

    The concept of a System Under Test may be thought of as just a special type of System (not shown in the diagram) that is specifically being tested. In the same way, there is a special type of Testable Element, which is specifically the Element Under Test. This special type of Testable Element is needed as not all Testable Elements will be tested in every single Test Case, therefore it is a useful mechanism that allows us to differentiate between the two.

    This Ontology may now be expanded, as shown in the following diagram:

    [image: Figure 8.3 – Expanded ontology definition view showing the concept of a Test Case ]
    Figure 8.3: Expanded Ontology Definition View showing the concept of a Test Case

    The diagram here shows an expanded Ontology Definition View that includes the new concept of a Test Case, and has been visualized using a SysML block definition diagram.

    The concept of the Test Case represents an individual test that will be applied to a specific set of Testable Elements. It can also be seen that the Test Case tests the Testable Element using Test Data. This is important as there is usually a specific dataset that must be used for each Test Case to make sure that the appropriate aspects of the Testable Element are tested and that the Test Case can be repeated using the same input criteria.

    Each Test Case is executed on the Testable Elements according to a specific structure, shown in the following diagram:

    [image: Figure 8.4 – Expanded ontology definition view showing the structure of the Test Case ]
    Figure 8.4: Expanded Ontology Definition View showing the structure of the Test Case

    The diagram here shows an Ontology Definition View that has been expanded to show the structure of a Test Case, and is visualized using a SysML block definition diagram.

    A Test Case comprises four Elements, which are as follows:

    
      	Test Description: This provides a simple text-based description of the Test Case, such as the name of the Test Case, a unique identified version number, and so on. This would be used largely as a management enabler.

      	Test Configuration: This provides details on how the Testable Elements must be configured for the Test Case to be executed. This is important as the Test Case may require a specific set of connections, for example, between the Testable Elements.

      	Test Behavior: This provides a series of sequential steps that must be followed to carry out the Test Case successfully. This Test Behavior will also be applicable to a specific Test Configuration for it to be valid.

      	Test Record: This provides a mechanism for capturing the results of each Test Case.

    

    These Test Cases are grouped together, as shown in the following diagram:

    [image: Figure 8.5 – Expanded ontology definition view showing Test Set and Test Schedule ]
    Figure 8.5: Expanded Ontology Definition View showing Test Set and Test Schedule

    The diagram here shows an expanded Ontology Definition View that focuses on the concepts of Test Set and Test Schedule, and is visualized using a SysML block definition diagram.

    Test cases are collected into two higher-level groupings as follows:

    
      	Test Set, which collects Test Cases into a set that has a specific purpose.

      	Test Schedule, which collects all of the Test Sets and, therefore, all of the Test Cases into a single entity. The Test Schedule describes a complete set of Test Cases.

    

    These groupings are a good way to introduce levels into testing, which allows effective management. However, there is still something crucial missing from this Ontology and that is the concept of a Testing Context, which is shown in the following diagram:

    [image: Figure 8.6 – Complete ontology definition view for testing ]
    Figure 8.6: Complete Ontology Definition View for testing including Testing Context

    The diagram here shows the complete Ontology Definition View for testing that introduces the Testing Context, and is visualized using a SysML block definition diagram.

    One of the themes that runs through this book is to always ask why something is being done, and this has been captured in the Model using various types of Context, as described in Chapter 6, Needs and Requirements. The concept of testing is no different and it is essential to understand the rationale behind why the testing is being carried out in the first instance. Of course, the obvious answer to this question is to make sure that the System works as it should, but we have already discussed that there are two broad reasons to test anything, which are Verification and Validation. There are also many other types of testing that exist, for example, testing that may be applied at different levels of abstraction of the System. The Verification techniques are as follows:

    
      	Unit testing: This is applied at the lowest level of abstraction of the System and, referring to the examples that we have used throughout this book, would apply to the Component level of our System.

      	Integration testing: This brings together the unit tests and aggregates them into higher levels. In the examples that have been used throughout this book, integration testing would apply to the Assembly and Subsystem levels of the System.

      	System testing: This brings together the integration tests and aggregates them at the highest level. In our examples, this would apply to the System as a whole.

    

    All these types of testing may be thought of as Verification techniques as they are testing that the System works against various specifications and design Artifacts, which would be the Model Views. However, it is also important that we apply testing for Validation purposes, such as the following:

    
      	Acceptance testing, where it is demonstrated to the appropriate customer Stakeholder that the System actually satisfies its original needs.

      	Alpha testing, where the System is released internally to the supplier Stakeholders so that it can be operated in a near real-world environment to test whether it meets the original needs.

      	Beta testing, where the System is released to a typically limited set of customers so that they can put the System through its paces in a real-world environment and test to see whether it satisfies the original needs.

    

    There are also other types of testing that apply to the non-functional aspects of the System, such as performance testing, load testing, recovery testing, soak testing, and so on. All these types of non-functional testing must relate back to the constraints that were originally applied to the needs of the System and then carried through the analysis and design of the System.

    The types of testing identified here are really just a small sample of the different types of testing that may be applied to a System and there are literally hundreds to choose from. Due to this plethora of different testing techniques, each of which has its own set of purposes, it is essential that the reason behind the testing is captured in the Model, which is achieved by creating the Testing Context. When defining the Testing Context, there are several concepts that need to be captured. These are as follows:

    
      	Testing Need: This captures why the testing is being applied.

      	Enabling System: This refers to any other System that is required for the testing to be carried out.

      	Testing Boundary: This identifies the scope of the testing and identifies exactly what is included in the Test Set.

    

    Now that the concepts associated with testing and Verification and Validation have been discussed, it is appropriate to consider how these concepts may be realized using modeling techniques.

    Modeling Verification and Validation Views

    It should be clear by now that Verification and Validation are important to delivering a successful System and, therefore, are essential parts of MBSE. In this section, we shall consider how modeling techniques may be applied to visualize the different aspects of testing and Verification and Validation.

    One of the major advantages of modeling within a Model-based approach comes into play now, as it is possible to reuse many of the Views that have been generated so far as part of Systems development for testing purposes. The more Views that can be reused, the more value is added to the overall project as a direct result of modeling.

    There are also other benefits to reusing existing Views. One such advantage is that by using the same Views that were used to develop the System, it is guaranteed that all of the information that is being used for the testing activities will be consistent, as it is using the same Model. Remember that all the way back in Chapter 2, Model-Based Systems Engineering, the Model was referred to as the single source of truth, and this is an excellent example of this.

    Modeling the Testing Context

    It has been discussed that understanding why testing is required is important and that this may be captured by creating a Testing Context. The Testing Context is created in the same way as all the other Contexts in this book, by using the techniques discussed in Chapter 6, Needs and Requirements. An example of a Testing Context for the example Car System is shown in the following diagram:

    [image: Figure 8.7 – Testing context view for the car system ]
    Figure 8.7: Testing Context View for the Car System

    The diagram here shows the Testing Context for the Car System, and is visualized using a SysML Use Case diagram.

    The Use Cases in this diagram represent the testing needs and are stereotyped as «testing need» These testing needs are as follows:

    
      	Test Car System: This is the highest-level «testing need» and applies to the Testable Elements that are being tested and the enabling Systems that are required for the testing to be carried out successfully.

      	Validate system: This means that there is a need to demonstrate that the System satisfies all of its original needs, and, because of this, there is a link to the need Model.

      	Satisfy all Use Cases: This is part of the Validation but explicitly refers to the Use Cases that exist in the System Model.

      	Satisfy all contexts: This, again, is a part of the Validation but refers to the Contexts that contain the Use Cases in the System Model.

      	Verify system: This means that there is a need to demonstrate that the Car System works and has been developed according to its various specifications and designs, which will, of course, refer to the Model Views that have been created as part of the System development.

      	Ensure all design views are implemented: This forces the checking of the System against the Model. This is important as it also provides a coverage check that ensures that the Model in its entirety, or specified parts of the Model, are implemented. This includes both Verification and Validation.

      	Meet quality standards: This is a quality check against a set of identified Standards, and it applies to the Standard Stakeholder.

      	Apply at all system levels: This is a high-level constraint that means that all of the Verification Use Cases must be applied at the four levels specified in the diagram, which are:
          	Apply at system level

          	Apply at subsystem level

          	Apply at assembly level

          	Apply at component level

        

      

    

    The diagram in Figure 8.7 is modeled at a high level and the Use Cases are still quite generic. Of course, any of these Use Cases may be broken down into their own diagrams and specific techniques may be identified.

    This goes to highlight another interesting point associated with the reuse of Model Views, as this Testing Context View may be applied as the starting point in almost any type of System. At the moment, the diagram refers specifically to the Car System but, if this was changed to refer to a generic System, then this diagram would be applicable to almost every System.

    The reuse of these generic Views not only saves much time and effort but is also useful as an initial start point that may be Viewed as a sophisticated checklist. For example, using this View as a generic start point will remind the testers that there is a minimum set of needs for the testing, represented by the Use Cases in the Testing Context.

    The testing activities that will satisfy these Use Cases must be structured in some way, and this is discussed in the next section, which considers modeling the testing setup.

    Modeling the testing setup

    The structure of the Test Schedule, Test Set, and Test Case was shown in the diagram in Figure 8.6, and this can be visualized very neatly using a single View, as shown in the following diagram:

    [image: Figure 8.8 – Test schedule structure view ]
    Figure 8.8 – Test Schedule Structure View

    The diagram here shows a Test Schedule Structure View for the Car System that is visualized using a SysML block definition diagram.

    The three levels of abstraction from the Ontology Definition View in Figure 8.6 can be seen using the following stereotypes:

    
      	«test schedule», which is visualized by a SysML block and represents the highest level of the testing setup concepts and comprises a collection of one (or more) «test set».

      	«test set», which is visualized by a SysML block and forms part of the «test schedule» and itself comprises a collection of one (or more) «test case».

      	«test case», which is visualized by a SysML operation and represents the actual test that will be executed.

    

    This View is a neat way to show the entire hierarchy of the testing that needs to be carried out and, of course, may include many more Test Sets and, therefore, Test Cases, than those shown here.

    Due to the fact that this is a structural View, the «test set» blocks show which Test Sets need to be executed but it does not show the order in which the Test Sets need to be executed. This may be specified using a Behavioral View, as shown in the following diagram:

    [image: Figure 8.9 – Test set behavior view ]
    Figure 8.9: Test Set behavior View

    The diagram here shows the Test Set Behavior View for the Car Test Schedule that was shown in Figure 8.8, and that is visualized using a SysML sequence diagram.

    The SysML lifelines in this View represent instances of the Test Sets that were first identified in Figure 8.8 but, because this is a behavioral diagram, we are seeing the actual sequences that the Test Sets must be executed in. There is an interesting modeling point here between the View in Figure 8.8 and that in Figure 8.9. Notice that in Figure 8.8, there is a SysML dependency, represented by the dashed directed line between Validation Test Set and Verification Test Set. This dependency manifests itself in the sequence diagram in the order that the Test Sets are executed. Since the Validation Test Set is dependent on the Verification Test Set, it is possible to infer the mandated ordered sequence between these Test Sets – the Validation Test Set must always follow the Verification Test Set due to the dependency between them.

    From a modeling point of view, each of the Test Sets has several operations on them and, therefore, the behavior for each must be specified. This may be modeled as shown in the following diagram:

    [image: Figure 8.10 – Test case behavior view for the verification test set ]
    Figure 8.10: Test Case Behavior View for the Verification Test Set

    The diagram here shows a Test Case Behavior View for the Verification Test Set and is visualized using a SysML state machine diagram.

    In this View, each of the SysML states represents a testing state. In the example shown here, there is only a single Test Case, shown by the SysML activities, in each state. It is possible to show more than one activity here, according to the standard SysML modeling guidelines that were discussed in Chapter 2, Model-Based Systems Engineering. Note that this state machine diagram not only shows the order of execution of the Test Cases, but also shows that if the first Test Case, functional testing, fails, then the testing activity stops and, only in the event that this Test Case is passed can the testing progress onto the quality testing Test Case.

    The presence of these decision points and the relevant subsequent actions are very important from a testing point of view, as some Test Cases are dependent on the successful execution of another Test Case and, in the event that a previous one fails, there is no point continuing with the testing.

    The Views shown so far show the setup of the testing and the Testing Context and the order that they must be executed, along with any conditions. It is also necessary to Model the actual Test Cases, which will be discussed in the following section.

    Modeling the Testing Configuration

    Each Test Case relies on the different System Elements in the Element Under Test being connected together into a specific configuration. This may be based on the existing Configuration Views that were discussed in Chapter 3, Systems and Interfaces, and Chapter 7, Modeling the Design. An example of this is shown in the following diagram:

    [image: Figure 8.11 – Example test configuration view ]
    Figure 8.11: Example Test Configuration View

    The diagram here shows an example of a Test Configuration View visualized using a SysML internal block diagram.

    This View shows how the System and its System Elements must be connected together for a specific configuration. This may be used for a variety of testing purposes. Firstly, it will allow the connections between the physical System Elements to be verified by ensuring that they exist and that they are connected to the appropriate System Element. It will also allow the connections between these physical System Elements to be checked in terms of the connector types, and so on. These Views may also be used as part of the System Setup Views, in that they may be used to show specific System Configurations for particular Test Cases. This contributes towards the Ensure all design views are implemented Use Case.

    Using existing Views for testing

    The diagram in Figure 8.7 showed the Testing Context for the Car System, which laid out the basic needs for the testing activities. The Use Cases in this diagram represent a generic set of Needs that will be applicable to most types of System. When considering these generic Use Cases, one of the great benefits of MBSE comes to light, which is the concept of reuse.

    Whenever we create any View, it takes time and effort and consumes resources and, therefore, ultimately costs the project money. If it was possible to take one of the Views that we had previously created and then to use it for some other activity during the life cycle, then clearly this would represent a saving of cost, time, and resources. Using something that already exists is known as reuse, and, when the modeling has been applied correctly, reuse should be common in any development.

    Therefore, if it was possible to satisfy the Use Cases presented as the Needs for the testing in Figure 8.7 by using existing Views, then this would offer a very attractive saving of valuable project resources. We shall revisit each of these Use Cases and consider whether any of the Views that we have generated so far in this book can be used for testing.

    Both structural and behavioral Views can be used for testing and, as a general Rule, the behavioral Views will be used directly as part of the Test Case descriptions for specific tests. The structural Views will be used more for ensuring that the System is set up and configured correctly.

    Satisfying the Validate System Use Case

    Validation, as has already been discussed, demonstrates that we are building the right System and is based on the initial needs of the System. It seems logical, therefore, to look at the needs Views that were generated in Chapter 6, Needs and Requirements, and to see if any of them may be used as part of the Validation activities. These Views include the following:

    
      	Source Element View: This View may be used in a number of ways that contribute towards the Satisfy all Use Cases Validation Use Case. Firstly, it can be used to ensure that all of the Use Cases that must be satisfied have a valid source and, therefore, are valid Use Cases in their own right. Any Use Cases that cannot be traced back to a Source Element are immediately suspect and must be investigated to ensure that they have a valid source. If not, they must be removed. The Source Element View may also be used as part of the traceability of the whole Model, as it represents the start point for all the information that will be contained in the set of Views.

      	Needs Description View: This View may be used to help satisfy the Satisfy all use cases Validation Use Case. The Need Description View is often used as part of the contract and will form the legal basis for demonstrating that the System that is delivered is fit for purpose. This View is also very good for showing to non-technical Stakeholders, as it will be text-based and, therefore, more accessible to any Stakeholders that do not understand any of the technical notation, such as SysML.

      	Context Definition View: This View contributes to the Satisfy all contexts Use Case, which is used to identify all the relevant Contexts that need to be considered to deliver the System. This is an essential part of any Validation as it provides the start point for ensuring that all the relevant points of View of all the relevant Stakeholders are being considered.

      	Need Context View: This View forms the basis of the Satisfy all contexts Use Case as each View represents a single Context. A combination of this Need Context View and the Context Definition View will ensure that all the relevant Contexts have been both identified and defined.

      	Validation View: It helps to satisfy the Satisfy all contexts and Satisfy all use cases Use Cases. This is the set of Views that provides the criteria for demonstrating that any specific Use Case, or collection of Use Cases, in a Context has been satisfied. These Views can be used directly as testing scripts for the testing activities.

      	Need Rule Set View: This View will contribute to all the Validate system Use Cases as it will ensure that the set of needs Views are correct in themselves and comply with the Needs Framework.

      	Traceability Views: These Views are an important part of any testing activity as they allow impact and regression testing to be carried out. For example, if a specific Test Case fails, then it is possible to use the traceability paths that are inherent in the Framework, through the Ontology and Viewpoint definitions, to identify which other System Elements may be affected by the Test Case failure. This may be traced forwards, in terms of impact testing or, indeed, traced back to see which other Test Cases may need to be re-executed due to the original failure.

    

    The Needs Views, therefore, can all be reused as part of the Validation testing activities. This not only saves a lot of costs, time, and effort but also provides a single consistent set of information, a single source of truth, represented by the Model.

    Satisfying the Verify System Use Case

    Verification allows us to demonstrate that we are building the System right. This means that the System has been developed according to the approach dictated and according to the development Views generated during the development of the life cycle.

    The Verify System Use Case includes two lower-level Use Cases, which we will consider in turn.

    The first of these Use Cases is to ensure all design Views are implemented, so the obvious place in the Model to start looking for relevant Views would be the design Perspective, which was discussed in Chapter 7, Modeling the Design, and also the Interface Views that were discussed in Chapter 3, Systems and Interfaces. As part of the design Perspective, the following Views were discussed:

    
      	Logical System Structure Viewpoint: This View allows logical System Elements to be defined and, therefore, can be used to satisfy the Ensure all design views are implemented Use Case. It also satisfies three of the other Use Cases, which are: Apply at system level, Apply at subsystem level, and Apply at assembly level, as these are the levels that the Logical System Element was valid for. For example, there may be variations on the Logical System Structure Viewpoint (which is applied at the System level), such as the Logical Subsystem Structure View (applied at the Subsystem level), and the Logical Assembly Structure View (applied at the Assembly level). These Views can then be used to test that the structure of the System Under Test matches that in the specified design Perspective Views.

      	Function Allocation Viewpoint: This View allows the functions to be identified and then to be allocated to Logical or Physical System Elements in the Model, depending on the level of abstraction of the Views. Again, this allows the System Under Test to be checked to ensure that all the functions exist and are allocated to the correct corresponding System Element in the design Perspective Views. This contributes towards the Ensure all design Views are implemented Use Case.

      	Function Behavior Viewpoint: This View specifies the behavior for an individual Function. These are very powerful for testing and, like all the Behavior Views, may be used directly as part of the testing scripts for Test Cases. The SysML activity diagram that is used to visualize this View provides the testing steps that must be carried out to execute the Test Case. This contributes towards the Ensure all design Views are implemented Use Case.

      	Physical Structure Viewpoint: This View identifies the physical System Elements that comprise the overall System and its hierarchy. This View provides a check that all the Physical System Elements are present in the System Under Test. This contributes towards the Ensure all design views are implemented Use Case.

      	Physical System Configuration Viewpoint: This View shows how the System and its System Elements must be connected for a specific configuration. This may be used for a variety of testing purposes. Firstly, it will allow the connections between the Physical System Elements to be verified by ensuring that they exist and that they are connected to the appropriate System Element. It will also allow the connections between these Physical System Elements to be checked in terms of the connector types, and so on. These Views may also be used as part of the System Setup Views, in that they may be used to show specific System Configurations for particular Test Cases. This contributes towards the Ensure all design Views are implemented Use Case.

      	System Behavior Viewpoint: These Views specify the behavior of different configurations of System Elements (both physical and logical) by defining Scenarios. These Scenarios, where they are operational Scenarios (using SysML sequence diagrams) or performance Scenarios (using SysML parametric diagrams), may also be directly as a part of the test scripts for each Test Case. These behavioral Views contribute in a major way towards the Ensure all design views are implemented Use Case.

      	Interface Identification View: These Views allow the Interfaces to be identified on specific System Elements, whether they are logical or physical. These Views are important as they allow each System Element to be assessed as to whether each Interface exists in the appropriate place. They may also be used to provide a specification for the acquisition (whether this is a commercial, off-the-shelf acquisition or bespoke acquisition) of specific System Elements. In both cases, these Views contribute towards the Ensure all design views are implemented Use Case.

      	Interface Definition View: These Views specify exactly what each Interface looks like. They may also be used to provide a specification for the acquisition (whether this is a commercial, off-the-shelf acquisition or bespoke acquisition) of specific System Elements. In both cases, these Views contribute towards the Ensure all design views are implemented Use Case.

      	Interface Behaviour View: These Views allow an Interface to be tested by treating each Interface as a black box and testing the terminal inputs and outputs associated with each. Again, they may be used to provide a specification for the acquisition (whether this is a commercial, off-the-shelf acquisition or a bespoke acquisition) of specific System Elements. In both cases, these Views contribute towards the Ensure all design views are implemented Use Case.

    

    The second Use Case that made up the Verify System Use Case was Meet quality standards. At first glance, it may appear that this has not yet been covered in this book, but it has been covered in great detail by demonstrating compliance of the MBSE approach with international best practice Standards in two different places. The first example of this was shown at a high level in Chapter 5, Systems Engineering Processes, where it was shown how to use modeling to define a set of Processes. The seven-Views approach that was used to Model the MBSE Process Set (the Source Process Model) is also used to Model the Standard (or set of Standards) that must be complied with (the Target Process Model), as was shown in the example of ISO 15288. The MBSE Process Set and the Model of the chosen Standard may then be mapped together to demonstrate compliance. This mapping is carried out using the seven Views as follows:

    
      	Process Structure View: This View forms the Ontology for the chosen Process or Standard. As such, it is an excellent means to establish the basic mapping between the MBSE Process Set (the Source Process Model) and the chosen Standard (the Target Process Model) that must be complied with as it maps the terminology used in each. This is an excellent example of using the Ontology as the domain-specific language for the Source and Target Process Models. This mapping then forms the basis for all the remaining compliance, as discussed in the next bullet points.

      	Process Content View: This View allows the set of Processes to be identified and summarized in terms of their Artifacts and activities, and may be thought of as a Process library. These Process libraries for both the Source and Target Process Models may now be mapped together: between the actual Processes; between the activities in each Process; and between the Artifacts in each Process. It must be remembered that when mapping between the Source and Target Process Model, there will not necessarily be a one-to-one mapping between the Processes, Artifacts, or activities, which is perfectly normal and acceptable. Examples of specific Process Content Views may be found in Chapter 5, Systems Engineering Processes; Chapter 6, Needs and Requirements; and Chapter 7, Modeling the Design.

      	Process Context View: This View provides the reason why each Process Model is needed and defines the scope of each. Mapping the Process Context View for the Source and Target Process Models provides valuable insight into whether or not the two Process Models are compatible, by allowing the scope to be compared. This is also useful where non-compliance is identified between the Process Content Views (as discussed in the previous bullet point), as the difference in scope may account for the non-compliance.

      	Information View: This View provides an overview of the various Artifacts associated with the Source and Target Process Models, along with the structure of each (this usually applies to the Source Process Model, rather than the Target Process Model) and the relationships between the Artifacts. This is useful as a basic mapping but also provides a good source of traceability between the various Artifacts. Again, there may not be a one-to-one mapping between the Source and Target Artifacts, but this is quite normal.

      	Stakeholder View: This View allows the Stakeholders that are relevant to each Process Model to be identified. The mapping between these two is useful as it helps to identify any gaps in Stakeholders that may be used to identify any skill gaps or lack of personnel.

      	Process Behavior View: This provides the detailed behavior of a specific Process. This will typically only exist for the Source Process Model as most Standards do not go into this level of detail. In these cases, these Process Behavior Views are mapped to the Process content Views in both the Source and Target Process Models.

      	Process Instance View: This View shows how executing Processes in specific sequences may be carried out to demonstrate that the original Use Cases in the Process Context Views can be validated. Again, these Views will usually only be present in the Source Process Model as it is very detailed information regarding specific Processes. However, these may still be used to validate that the Context of the Target Process Model has been satisfied by the Source Process Model.

    

    When carrying out any of the mappings described here, it is possible to identify where the Target and Source Process Models comply and any gaps in compliance. These compliance gaps can be resolved in one of, typically, two ways. The first way is to provide a justification for why the non-compliance exists, such as a Process in the Target Process Model being out of scope. Where compliance cannot be justified, then the Source Process Model must be changed to reflect the non-compliance and updated, for example, by adding new Processes, Artifacts, or activities, to ensure that the gap is removed.

    The second way that compliance of the MBSE approach can be demonstrated against relevant Standards is by comparing the Models of the Framework itself. The MBSE Framework that has been described throughout this book may be demonstrated to satisfy Framework-based Standards, such as ISO 42010 – Systems and software engineering—architecture description, by considering the following Framework Views:

    
      	Framework Context View: This View captures why the Framework is needed and can be mapped onto the Target Framework’s equivalent View. This can also provide a basis for mapping to the Process Context View for any Process-based Standard.

      	Ontology Definition View: This View captures the main concepts and terminology used by the Target Standard. This can be used to map to the Ontology Definition View in a Framework-based Standard, or the Process Structure View in a Process-based Standard.

      	Viewpoint Relationship View: This View identifies the various Viewpoints and the relationships between them. This View can be mapped to its equivalent View in a Framework-based Standard or the Information View from a Process-based Standard.

      	Viewpoint Context View: This View captures the basic Need for each Viewpoint. This can be mapped to the equivalent View in a Framework-based Standard or the Process Context View in a Process-based Standard.

      	Viewpoint Definition View: This View identifies the Ontology Elements that will be present on each Viewpoint. This can be mapped to the equivalent Ontology Definition View from the Target Standard or the Process Structure View from a Process-based Standard.

    

    The two Standards mentioned here form an excellent basis for compliance for any Systems Engineering endeavor.

    Standards compliance is an essential part of MBSE as it is important that we can provide a provenance for all of the Views that we create as part of the Model. Indeed, all of the work in this book complies with these two Standards.

    Complying with best-practice Processes

    The techniques for applying Model-based practices to Verification and Validation that have been introduced and discussed so far in this chapter may be used to comply with international best practice – in this case, ISO 15288 – software and Systems Engineering life cycle Processes.

    The two Processes that are of interest are both taken from the technical Process group and, unsurprisingly, are the Verification Process and the Validation Process. Each of these will be discussed in the following two sections.

    Complying with the ISO 15288 Verification Process

    The ISO 15288 Process that is relevant for Verification is the Verification Process. This has been captured and modeled using the approach described in Chapter 5, Systems Engineering Processes. The Process Content View for this Process is shown in the following figure:

    [image: Figure 8.12 – Process content view for the ISO 15288 Verification Process ]
    Figure 8.12: Process Content View for the ISO 15288 Verification Process

    The figure here shows the Process Content View for the ISO 15288 Verification Process, and that is shown using a SysML block definition diagram.

    The diagram uses standard SysML to represent the Process Perspective Ontology concepts as follows:

    
      	The block name shows the Process name.

      	The middle section shows the Outcomes associated with the Process, represented as stereotyped SysML properties.

      	The bottom section shows the activities associated with the Processes, represented as SysML operations.

    

    The Outcomes associated with the ISO Process map to the Views that have been discussed so far as follows:

    
      	Enabling system: This represents any other System that is necessary to perform the Verification. This maps directly onto the Enabling System concept from the Ontology Definition View that was shown in Figure 8.6.

      	Constraint set: This represents any limitations that are placed on the Verification activities and are captured as part of the Testing Context from Figure 8.6 and, specifically, the Testing Need.

      	Data: This represents the information that is being used to directly perform the Verification activity on the Element Under Test. This is represented in Figure 8.6 by Test Data, which is between the Test Case and the Testable Element. In reality, this Test Data will take the form of the Views that have been generated as part of the MBSE activities. Actual hard data, such as parameter values, will be present on these Views as SysML property values and SysML parametric values.

      	Evidence: This represents the information that is generated as part of the Verification activity and that contributes towards the final result set. This is represented in Figure 8.6 by the Test Record.

      	System element: This represents the System or the System Element that is the subject of the Verification activity. This is represented in Figure 8.6 by the Testable Element and, specifically, the Element Under Test.

      	Traceability: This is a subject that is key to Systems Engineering, but one that is addressed implicitly when applying an MBSE approach, as all the traceability is established in the Framework through both the Ontology and the Viewpoint definitions.

      	Result set: This captures the final results that are generated by the Verification activity. This is represented in Figure 8.6 by the Test Record.

    

    The activities that are identified on the Process are mapped onto the modeling activities as follows:

    
      	Manage results of Verification(): This Activity is associated with managing the Test Records that are generated as a result of the Verification activity. All this information must be carefully recorded and held under effective configuration management and control.

      	Perform Verification(): This Activity is concerned with the actual execution of the Verification activity. This is related to applying the Test Cases to the Testable Elements using the Test Data, as shown in Figure 8.6. From an MBSE point of view, this Activity will use as many of the existing Views as necessary from the Model that will contribute towards verifying the System.

      	Prepare for Verification(): This Activity is concerned with understanding why the Verification Activity is being carried out along with all the necessary enabling Systems that are required to do this. This will also include setting up the Test Cases, Test Set, and Test Schedule. This is achieved by creating the Views associated with Testing Context and Test Case in Figure 8.6.

    

    The Verification Process is complemented by the Validation Process, which is discussed in the next section.

    Complying with the ISO 15288 Validation Process

    The ISO 15288 Process that is relevant for Validation is Validation Process. This has been captured and modeled using the approach described in Chapter 5, Systems Engineering Processes. The Process Content View for this Process is shown in the following figure:

    [image: Figure 8.13 – Process content view for the ISO 15288 process Validation Process ]
    Figure 8.13: Process Content View for the ISO 15288 Process Validation Process

    The diagram here shows the Process Content View for the ISO 15288 Process Validation Process, and that is shown using a SysML block definition diagram.

    The Outcomes associated with the ISO Process map onto the Views that have been discussed so far as follows:

    
      	Enabling system: This represents any other System that is necessary to perform the Validation. This maps directly onto the Enabling System concept from the Ontology Definition View that was shown in Figure 8.6.

      	Constraint set: This represents any limitations that are placed on the Validation activities and are captured as part of the Testing Context from Figure 8.6 and, specifically, the Testing Need.

      	Evidence: This represents the information that is generated as part of the Validation activity and that contributes towards the final result set. This is represented in Figure 8.6 by the Test Record.

      	Services required: This represents any additional Services that may be necessary in order to perform the Validation activity. This is analogous to the Enabling System concept and is represented as such in Figure 8.6. In Chapter 3, Systems and Interfaces, we defined a service as a special type of System, so this mapping holds true here.

      	System element: This represents the System or the System Element that is the subject of the Validation activity. This is represented in Figure 8.6 by the Testable Element and, specifically, the Element Under Test.

      	Traceability: This is a subject that is key to Systems Engineering but one that is addressed implicitly when applying an MBSE approach, as all the traceability is established in the Framework through both the Ontology and the Viewpoint definitions.

      	Validation criteria: This represents the information that is being used to directly perform the Validation activity on the Element Under Test. This is partially represented in Figure 8.6 by Test Data and will also directly refer to a subset of Views that have been generated as part of the MBSE activities. Although the specific Views that are used here may change, depending on the project, the mandatory Views that will be used will be the two main types of Validation Views that were discussed in Chapter 6, Needs and Requirements. Actual hard data, such as parameter values, will be present on these Views as SysML property values and SysML parametric values.

      	Result set: This captures the final results that are generated by the Validation activity. This is represented in Figure 8.6 by the Test Record.

    

    The activities that are identified on the Process are mapped onto the modeling activities as follows:

    
      	Manage results of Validation(): This Activity is associated with managing the Test Records that are generated as a result of the Validation activity. All of this information must be carefully recorded and held under effective configuration management and control.

      	Perform Verification(): This Activity is concerned with the actual execution of the Validation activity. This is related to applying the Test Cases to the Testable Elements using the Test Data, as shown in Figure 8.6. From an MBSE point of view, this Activity will use as many of the existing Views as necessary from the Model alongside the mandatory Validation Views that will contribute towards validating the System.

      	Prepare for Validation(): This Activity is concerned with understanding why the Validation activity is being carried out along with all the necessary Enabling Systems that are required to do this. This will also include setting up the Test Cases, Test Set, and Test Schedule. This is achieved by creating the Views associated with the Testing Context and the Test Case from Figure 8.6.

    

    Both the Verification and Validation Processes are complementary and, indeed, very similar. This can be seen by directly comparing the two Process Content Views shown in Figure 8.11 and Figure 8.12. This is another advantage of carrying out the Process modeling – it enables the similarities between the Processes to be visualized very easily.

    This similarity should not be too surprising as Verification and Validation activities relate to different aspects of testing. Again, this is something that is easily seen through the modeling, as Verification and Validation use the same Ontology, as seen in Figure 8.6, which tells us that the concepts relating to each are the same.

    The whole approach that has been introduced and discussed in this chapter has been shown to comply with current international best practice in the form of ISO 15288. The Views that have been shown must be defined as part of the overall Framework and the next section builds on the existing Framework Views by adding some of the Verification and Validation Views to the Framework.

    Defining the Framework

    The Views that have been created so far represent the center part of MBSE in a slide that was discussed in detail in Chapter 2, Model-Based Systems Engineering, in Figure 2.9, and that was also revisited in the previous section. Each of the Views has been visualized using SysML, which represents the right-hand side of MBSE in a slide. These Views combine to form the overall Model, but it is essential that these Views are all consistent otherwise they are not Views but pictures! This is where the left-hand side of MBSE in a slide comes into play as it is important that the definition of all of the Views is captured in the Framework. The Framework comprises the Ontology and a set of Viewpoints, therefore, it is now time to make sure that these Viewpoints are defined thoroughly and correctly, which is the aim of this section.

    Defining the Viewpoints in the Framework

    It was discussed in Chapter 2, Model-Based Systems Engineering, that it is necessary to ask a number of questions for each View to ensure that it is a valid View. There is also a set of questions that must be asked of the whole Framework, as well as the Views, and the combination of these results in a set of questions that allow the whole Framework to be defined.

    When these questions are answered, then it can be said that a Framework has been defined. Each of these questions can be answered using a special set of Views that is collectively known as the Framework for Architecture Frameworks (FAF) (Holt and Perry 2019). At this point, simply think about creating a specific View to answer each question, as described in the following sections.

    Defining the Framework Context View

    The Framework Context View specifies why the whole Framework is needed in the first instance. It will identify the relevant Stakeholders that have an interest in the Framework and also identify what benefits each of the Stakeholders hopes to achieve from the Framework. The Framework Context View for the Verification and Validation Perspective is shown in the following diagram:

    [image: Figure 8.14 – Framework context view for the verification and validation framework ]
    Figure 8.14: Framework Context View for the Verification and Validation Framework

    The diagram here shows the Framework Context View for the Verification and Validation Framework that is visualized using a SysML Use Case diagram.

    Note the application of the Use Case diagram here to capture the Context, the approach of which was described in Chapter 6, Needs and Requirements.

    This diagram may be read as follows:

    
      	The main aim of the design Framework is to Define testing in two ways: Define testing for Verification activity and Define testing for Validation activity. Due to the inheritance that is associated with the specialization relationship, the following three inclusions apply not only to the Define testing Use Case but also to its two specializations.

      	Define Testing Context, which means that the reason for the testing, for both Verification and Validation, must be captured in the form of a Testing Context.

      	Define tests, which requires that the actual tests must be defined in terms of their structure (Define test structure) and their Test Cases (Define test cases).

      	Define test setup, which requires that the overall setup that is required for the Test Cases to be executed must be defined.

    

    Notice that in this diagram, each of the SysML Use Cases is stereotyped as a «concern». A concern is a need that relates specifically to a Framework or one of its Viewpoints.

    Defining the Ontology Definition View

    The Ontology Definition View captures all the concepts and terminology associated with the Framework in the form of an Ontology. This has already been done as the Ontology for the design-related Views was defined in Figure 8.6. The Ontology Elements shown on this View provide all of the stereotypes that have been used for the actual Views that have been created so far in this chapter.

    Ontology Elements that are related will often be collected into a Perspective, as was discussed in other chapters. In this chapter, a new Perspective has been created that relates to Verification and Validation.

    Defining the Viewpoint Relationship View

    The Viewpoint relationship View identifies which Views are needed and, for each set of Views, identifies a Viewpoint that will contain its definition. Remember that a Viewpoint may be thought of as a type of template for a View. These Viewpoints may be collected into a Perspective, that is, simply a collection of Viewpoints with a common theme. In this chapter, the emphasis has been on defining a set of Views related to design, therefore it is appropriate to create the Verification and Validation Perspective. The basic set of Views that has been discussed so far is shown in the following View:

    [image: Figure 8.15 – Viewpoint relationship view for the Verification and Validation Perspective ]
    Figure 8.15: Viewpoint Relationship View for the Verification and Validation Perspective

    The diagram here shows the Viewpoint Relationship View for the Verification and Validation Perspective using a SysML block definition diagram.

    The Verification and Validation Perspective is shown using a SysML package, stereotyped as «perspective» that simply collects together a number of Viewpoints. There are nine Viewpoints shown here, but it should be noted that two of these Viewpoints are actually abstract Viewpoints. When a SysML block is identified as being abstract, it means that it has no direct instances and, therefore, is typically used to show the situation where a block is being used as a generic type that is not instantiated directly. Abstract blocks are shown visually by italicizing the block name, therefore the two abstract blocks here are Test Setup Viewpoint and Test Case Viewpoint.

    These two Viewpoints, therefore, will not have any Views associated with them; they are being used as generic categorizations for their specialized Viewpoint. The non-abstract Viewpoints are as follows:

    
      	Test Context Viewpoint, which defines the reason why the testing is needed in the first place.

      	Test Structure Viewpoint, which is a type of the abstract Test Setup Viewpoint, and it defines the structure of the testing, in terms of Test Cases, Test Sets, and the Test Schedules.

      	Test Schedule Behavior Viewpoint, which is a type of the abstract Test Setup Viewpoint, and it describes the order that the Test Sets must be executed in for each Test Schedule.

      	Test Set Behavior Viewpoint, which is a type of the abstract Test Setup Viewpoint, and it describes the order that the Test Cases must be executed in for each Test Set.

      	Test Configuration Viewpoint, which is a type of the abstract Test Case Viewpoint, and it defines the configuration of the Testable Elements and any enabling Systems that are necessary to carry out the Test Cases.

      	Test Behavior Viewpoint, which is a type of the abstract Test Case Viewpoint, and it describes the behavior for each Test Case that in turn describes the order that the specific testing steps must be carried out in. This may be thought of as a kind of script for the Test Case.

      	Test Record Viewpoint, which is a type of abstract Test Case Viewpoint, and records the results of each Test Case and any other relevant information that is generated as a result of executing the Test Case.

    

    This set of Viewpoints is focused on the Verification and Validation activities and they are concerned with defining, setting up, and running the Test Cases. The information that is used in the execution of each Test Case, referred to as the Test Data on the Ontology Definition View in Figure 8.6, will take the form of existing Views and associated parametric values.

    Each of the Viewpoints that has been identified here may now be described by its own Viewpoint Context View and its own Viewpoint Definition View.

    Defining the Viewpoint Context View

    The Viewpoint Context View specifies why a particular Viewpoint and, therefore, its set of Views, is needed in the first instance. It will identify the relevant Stakeholders that have an interest in the Viewpoint and also identify what benefits each of the Stakeholders hopes to achieve from the Framework. The following diagram shows the Viewpoint Context View for the Testing Context Viewpoint:

    [image: Figure 8.16 – Viewpoint context view for the Testing Context Viewpoint ]
    Figure 8.16: Viewpoint Context View for the Testing Context Viewpoint

    The diagram here shows the Viewpoint Context View for the Testing Context Viewpoint, which is visualized using a SysML Use Case diagram.

    This diagram may be read as follows:

    
      	The main aim of the logical System structure Viewpoint is Define Testing Context. Note that this has been identified as the highest-level Use Case due to the fact that it has four «include» dependencies coming out of it and two specializations that emerge from it. These two specializations represent the two main types of testing, which are Identify Verification needs and Identify Validation needs.

      	Identify required Systems and Services is important as it identifies any enabling Systems, such as other Systems or Services, that may be needed as part of the Test Configuration.

      	Identify testing need sources identifies anything that is required in terms of testing data that is necessary to carry out the Test Cases. This may be specific Views that are used as a part of the testing (…relevant views) when verifying that the System Under Test meets its design or a Standard (… relevant standards) that may be needed when verifying that the Model satisfies a particular best-practice reference, such as a Standard.

      	Identify System hierarchy level relates to identifying exactly which part of the System Under Test will be tested, from the various Testable Elements.

      	Identify testing types and techniques allows any specific testing requirements to be addressed and any constraints to be identified. For example, there may be a need for regression testing to be applied (a type of testing) using state-based Views (a specific technique).

    

    Now that the reason why the Viewpoint must exist has been established, the Viewpoint Definition View may be considered.

    Defining the Viewpoint Definition View

    The Viewpoint Definition View defines the Ontology Elements that are included in the Viewpoint. It shows the following:

    
      	Which Ontology Elements are allowed in the Viewpoint

      	Which Ontology Elements are optional in the Viewpoint

      	Which Ontology Elements are not allowed in the Viewpoint

    

    The Viewpoint definition View focuses on a single Viewpoint and particular care and attention must be paid to not just the Ontology Elements that are selected, but also to the relationships that exist between these Ontology Elements.

    An example of a Viewpoint Definition View for the Test Context Viewpoint is shown in the following diagram:

    [image: Figure 8.17 – Viewpoint definition view for the Test Context Viewpoint ]
    Figure 8.17: Viewpoint Definition View for the Test Context Viewpoint

    The diagram here shows the Viewpoint Definition View for the Test Context Viewpoint, using a SysML block definition diagram.

    This View defines the exact content of what is allowed in all the Views that are described by the Viewpoint. The Ontology Elements that are legal on the Views associated with this Viewpoint are as follows:

    
      	Testing Context: It is the focal point of the Viewpoint. Each Test Context Viewpoint is concerned with a single Testing Context.

      	Testing Need: This allows all the needs and the constraints associated with the Testing Context to be captured. As these needs are contextual, they will be represented by Use Cases.

      	Enabling System: This represents other Systems or Services that are needed in order to execute the Test Cases.

      	Testing Boundary: This helps to define the scope of exactly what is included in the Testing Context.

    

    The Viewpoints and the Ontology Elements that are permitted in each Viewpoint are constrained by a number of Rules, which will be described in the Ruleset Definition View for the Needs Perspective.

    Defining the Ruleset Definition View

    The Ruleset Definition View identifies and defines a number of Rules that may be applied to the Model to ensure that it is consistent with the Framework.

    The Rules are based primarily on the Ontology Definition View and the Viewpoint Relationships View. In each case, the Rules are defined by identifying the key relationships and the associated multiplicities that exist:

    
      	Between Viewpoints on the Viewpoint Definition View

      	Between Ontology Elements on the Ontology Definition View

    

    Some examples of these Rules are shown in the following diagram:

    [image: Figure 8.18 – Example Ruleset Definition View ]
    Figure 8.18: Example Ruleset Definition View

    The diagram here shows an example of a Ruleset Definition View using a SysML block definition diagram. Each block in the diagram represents a Rule that is derived from either the Ontology Definition View or the Viewpoint Relationship View.

    These Rules are defined as follows:

    
      	Rule 1: A Test Context View must exist for each Test Schedule: This Rule is taken from the Viewpoint Relationship View shown in Figure 8.14 and states that a Test Context is required for each Test Schedule that exists.

      	Rule 2: Each Testing Need must be satisfied by one or more Test Case: This Rule is taken from the Ontology Definition View that was shown in Figure 8.6.

      	Rule 3: Each Test Structure Viewpoint must include a Test Schedule that comprises at least one Test Set: This Rule is also taken from the Viewpoint Relationship View that was shown in Figure 8.14.

    

    Notice how the Rules are derived from the Viewpoint Relationship View and, therefore, the Viewpoints and the Ontology Definition View, and therefore, the Ontology Elements. The actual Rule descriptions themselves apply to the instances of the Viewpoints (Views) and instances of the Ontology Elements.

    Of course, any number of other Rules may be defined here, but not every relationship will lead to a Rule, as this is at the discretion of the modeler.

    The Viewpoints that are shown here form the Verification and Validation Perspective. Remember that a Framework groups its Viewpoints into collections that are known as Perspectives. This allows a little more structure to be introduced into the Framework, which is particularly important when the Framework starts to grow.

    Summary

    In this chapter, the fundamental issues of Verification and Validation were discussed, both of which relate to testing activities. The key difference between the two is that Verification shows that we have built the System right whereas Validation shows that we have built the right System.

    Verification and Validation are particularly interesting from an MBSE point of view as the structure, content, and behavior of the testing activities are defined using our standard MBSE techniques for Processes (see Chapter 5, Systems Engineering Processes) and Frameworks, however, we are able to reuse many of the Views that we have generated as a part of our MBSE activities.

    This is a very important aspect of MBSE, as the more that we can reuse Views from any part of the Model, then the more time and effort we will save.

    Finally, we looked at how the techniques used in this chapter comply with international best practice, in the form of ISO 15288, and we looked at the partial Framework for the Verification and Validation Perspective.

    The next chapter deals with some of the management concerns that relate to Systems Engineering, and how these may be modeled using our MBSE techniques.

    Self-assessment tasks

    
      	Revisit the Ontology Definition View in Figure 8.6 and consider how this applies to your organization. Wherever necessary, change the different types of System Elements to reflect your organizational needs.

      	Think about the different types of testing that are important for your organization. Which Views from which Perspectives that we have discussed so far in this book may be reused as part of this testing?

      	Define a test Behavior View for any System Element using a SysML activity diagram.

      	Define the Viewpoint Context View and Viewpoint Definition View for at least one other Viewpoint that was shown in Figure 8.14.
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    Methodologies

    Industry methodologies adopt standard, established Life Cycle approaches, such as linear, incremental, and iterative, which were discussed in Chapter 4, Life Cycles. In this chapter, we shall consider two of these methodologies: the Scaled Agile Framework (SAFe) and the Object-Oriented Systems Engineering Methodology (OOSEM). Each was selected based on its different yet complementary approaches and the different Practices that they advocate.

    In this chapter, we will cover the following topics:

    
      	Introducing methodologies, where we will briefly discuss methodologies and how they apply to Systems Engineering

      	Introducing SAFe, which is an agile, iterative, and incremental Framework

      	Introducing OOSEM, which may be applied to traditional linear approaches but also agile, linear, incremental, and iterative approaches

      	Methodologies and MBSE, where we will discuss how the methodologies covered may be used as part of a broader MBSE Activity

    

    This will give you a good overview of two prominent methodologies and show you how the knowledge and skills that we have provided so far in this book can be applied to existing methodologies.

    Introducing methodologies

    Methodologies are an important part of any Systems Engineering endeavor. Methodologies sit firmly in the Approach section of the MBSE in a slide diagram that has been referred to throughout this book, and that is also shown in Figure 9.13.

    Methodologies may include Aspects of both Frameworks and Process Sets but differ from Frameworks and Process Sets in that they will define more details regarding actual techniques that may be used at specific points in a Process, or they will define specific Views in a Framework. For example, a Process will define the Activities that need to be executed and Artifacts that must be created by such Activities. However, a typical Process does not go into detail about how each Activity should be realized, as there may be many ways to do so, whereas a Methodology does. It may be, for instance, that a specific Methodology uses a particular notation and toolset, whereas another Methodology may realize the same Activity using a different notation and toolset.

    There are two main methodologies that will be discussed in this chapter:

    
      	SAFe: The agile approach is one that is of much interest in the Systems Engineering community.

      	OOSEM: This Methodology has been chosen as it is widely used in industry and is also mentioned in the INCOSE Systems Engineering handbook as a good Practice.

    

    Of course, there are many more methodologies, but the purpose of this chapter is to provide an overview of just two, as the techniques that we introduce here to analyze these methodologies may be applied to any. Also, we will see how we can apply MBSE techniques to understand and explain the methodologies, and then we will conclude by considering how these methodologies may contribute to MBSE.

    Introducing SAFe

    SAFe is an approach that supports both lean and agile approaches to development. The difference between these concepts is the following:

    
      	A lean approach is one where the emphasis is on making delivery more efficient by managing and controlling the workflow. Lean was initially developed and deployed in the manufacturing sector by Toyota.

      	An agile approach is one where the emphasis is on working in collaborative teams to develop and deliver a Product in an incremental manner. An agile approach is intended to allow businesses to quickly adapt and respond to emerging competitive threats. Agile was initially developed as a way to develop software-based Systems, although this has now been broadened to include business- and System-oriented applications.

    

    The SAFe approach embraces both of these concepts and is aimed at improving the way that businesses operate; it is claimed that SAFe helps to sustain and also drive faster time-to-market rates, has good upward scaling in Productivity and quality, and improves employee engagement.

    Defining the SAFe concepts

    SAFe was first published in the wider community in 2011 where it was focused firmly on software, but it has since had its scope extended to cover Systems and enterprises. The basic philosophy of SAFe is captured in the following diagram:

    [image: Figure 9.1 – Ontology definition view for SAFe ]
    Figure 9.1: Ontology Definition View for SAFe

    The diagram here shows a high-level Ontology Definition View for the SAFe approach, visualized using a SysML block definition diagram.

    The starting point for SAFe is the assumption that due to the ever-changing face of business and its increased dependency on software-based Systems, the presence of agility will determine the winners and losers in business. When referring to businesses, there are three main types, as follows: Commercial Business, Non-Profit Business, and Government Agency.

    All types of businesses operate according to two Business Operation Systems, which are as follows:

    
      	The Hierarchical Business Operation System, which is found in most businesses already. This is a more traditional approach that provides the necessary capability, in terms of Processes, Services, and so on, to meet current business needs.

      	The Customer-Centric Network Business Operation System, which aims to efficiently identify and deliver customer needs and maintain quality for a variety of Products that may form part of a higher-level portfolio.

    

    SAFe enables the Customer-Centric Network Business Operation Model.

    At first glance, it may not be immediately apparent how such an approach may be applied to Systems Engineering, but by analyzing the structure of SAFe, some parallels will emerge. The structure of SAFe is shown in the following diagram:

    [image: Figure 9.2 – Ontology definition view for SAFe, focusing on the structure ]
    Figure 9.2: Ontology Definition View for SAFe, focusing on the structure

    The diagram here shows an Ontology Definition View for SAFe with an emphasis on the structure and its main concepts, visualized using a SysML block definition diagram.

    The diagram shows that SAFe is used to develop one or more Systems, each of which comprises Products and/or Services. There is an immediate similarity between Systems Engineering here and the MBSE Ontology that we have developed throughout the book. Indeed, way back in Chapter 1, Introduction to Systems Engineering, one of the first concepts that we looked at was how Systems Engineering is used to develop successful Systems.

    The next really interesting point from this diagram is that SAFe applies three types of approaches, which are the lean approach, the agile approach, and the Systems Thinking approach. The first two of these yield no surprises, as they are embedded in to the very core of the whole SAFe philosophy. The third approach, however, that of Systems Thinking, as discussed in Chapter 1, Introduction to Systems Engineering, has not been mentioned so far in the overall description of SAFe, yet it makes an appearance here as a fundamental part of SAFe. The whole area of Systems Thinking is touted as a key approach, but it is not covered in much detail in the literature. Systems Thinking is a very important Aspect of SAFe, though, and it is held at the same level as lean and agile; plus, there is a clear link back to the world of Systems Engineering.

    SAFe comprises seven Core Competencies and several Mindsets and Principles. These will be delved into in the next section in much more detail, to help the reader understand where the discussion will lead.

    Each Core Competency is made up of and described by knowledge, skills, and behaviors. Each Core Competency is also made up of three dimensions, each of which may comprise several Aspects.

    As an example of this, there is a Core Competency identified as continuous learning culture, which has three dimensions: learning organization, innovation culture, and relentless improvement. The relentless improvement dimension is made up of five Aspects, which are constant sense of competitive danger, optimize the whole, problem-solving culture, reflect at key milestones, and fact-based improvement. These Core Competencies relate to some of the Processes, particularly the Agreement, Organizational, and Management Process Groups, from ISO 15288. It should be stressed, however, that the nature of some of these Processes will change as SAFe employs lean and agile, which is often not the case with traditional Systems Engineering Processes.

    The Mindsets and Principles are supported by a number of Practices. These Practices include examples such as specify, architect, design, implement, test, deploy, and operate. Clearly, there are parallels between the technical Processes in ISO 15288 and what are identified as Practices here. Again, the nature of these Processes may differ to take the lean and agile Processes into account.

    The concepts of Mindsets and Principles are explored in more detail in the following diagram:

    [image: Figure 9.3 – Ontology definition view for SAFe focusing on mindsets and principles ]
    Figure 9.3: Ontology Definition View for SAFe focusing on Mindsets and Principles

    The diagram here shows the Ontology Definition View for SAFe with an emphasis on the structure of Mindsets and Principles, visualized using a SysML block definition diagram.

    The Mindsets and Principles comprise two Mindsets and ten Principles.

    The two types of Mindset are as follows:

    
      	Fixed Mindset, which is based on a traditional, linear way of Thinking about things.

      	Growth Mindset, one type of which is the SAFe Mindset. Here, we see a combination of traditional approaches with the more agile SAFe Mindset.

    

    The SAFe Mindset comprises the following:

    
      	The House of Lean, which has four Lean values

      	The Agile Manifesto, which comprises 12 Agile Principles

    

    So, here we see examples of explicit references to the agile and lean approaches that were mentioned in Figure 9.2. Interestingly, there is no mention at this point of the third approach, Systems Thinking.

    Alongside the two Mindsets and 12 Principles, there are also four SAFe core values: Alignment, Built-in Quality, Transparency, and Program Execution.

    So far, we can see a good relationship between SAFe and a Systems Engineering approach, as defined in this book. This can be achieved by comparing the ontologies and identifying relationships between them.

    SAFe also defines additional information concerning how the System is developed, and this is shown in the following diagram:

    [image: Figure 9.4 – Ontology definition view for SAFe focusing on system evolution ]
    Figure 9.4: Ontology Definition View for SAFe focusing on System evolution

    The diagram here shows an Ontology Definition View for SAFe that emphasizes the evolution of the System, visualized using a SysML block definition diagram.

    SAFe develops one or more Systems, and these Systems have associated information roadmaps that describe their evolution. The roadmap evolution comprises 12 steps.

    Previously, when we discussed the evolution of Systems, we used Life Cycles, Life Cycle Models (as described in Chapter 4, Life Cycles), and their associated Processes (as described in Chapter 5, Systems Engineering Processes). This is directly analogous to the information roadmaps and their associated steps. Again, this is another strong parallel with Systems Engineering.

    In the next section, we shall explore the SAFe core concepts in more detail.

    Defining the SAFe core concepts

    The Core Competencies form a major part of SAFe and are elaborated upon in the following diagram:

    [image: Figure 9.5 – Ontology definition view for SAFe focusing on core competencies ]
    Figure 9.5: Ontology Definition View for SAFe focusing on Core Competencies

    The diagram here shows an Ontology Definition View for SAFe that emphasizes the Core Competencies, visualized using a SysML block definition diagram.

    We know from Figure 9.2 that SAFe comprises seven Core Competencies, which are expanded upon in this diagram:

    
      	Team and Technical Agility describes the Lean-Agile Skills, Principles, and Practices that Agile Teams use to create successful Systems for Stakeholders. The three dimensions associated with this Core Competency are Agile Teams, teams of Agile Teams, and built-in quality.

      	Agile Product Delivery utilizes a Customer-Centric approach that can help to define, build, and then release a continuous flow of valuable Products and Services to customers and users. This incremental delivery of the System in discrete releases is key to the whole philosophy of Agile. The three dimensions associated with this Core Competency are Customer-Centric and design thinking, develop on cadence, release on demand, and DevOps and the continuous delivery pipeline.

      	Enterprise Solution Delivery is to do with how to apply Lean-Agile Principles and Practices (such as specify, develop, deploy, operate, and evolve) to the largest and most complex Systems. The three dimensions associated with this Core Competency are lean System and solution engineering, coordinating trains and suppliers, and continually evolving live Systems.

      	Lean Portfolio Management is concerned with addressing the fundamental issue of what solutions should be built and why. This involves addressing portfolio concerns specifically. The three dimensions associated with this Core Competency are strategy and investment funding, Agile portfolio operations, and lean governance.

      	Lean Agile Leadership is concerned with ensuring that key Stakeholders, such as business leaders, are responsible for the adoption and success of a lean and agile approach and the Competencies that enable business agility. Such Stakeholders must have an appropriate level of responsibility to be able to effect business change by creating Agile Teams. The three dimensions associated with this Core Competency are Mindset and Principles, leading by example, and leading change.

      	Continuous Learning Culture describes values and Practices that encourage individuals, and the entire business, to continually improve all their Activities. The three dimensions associated with this Core Competency are learning organization, innovation culture, and relentless improvement.

      	Organizational Agility is concerned with ensuring that an organization is able to respond quickly to cope with any challenges and opportunities that arise that relate to the System. The three dimensions associated with this Core Competency are lean-thinking people and agile teams, lean business operations, and strategic agility.

    

    A key theme that runs throughout these Core Competencies is that of Agile Teams, and this is elaborated upon in the following diagram:

    [image: Figure 9.6 – Ontology definition view for SAFe focusing on teams ]
    Figure 9.6: Ontology Definition View for SAFe focusing on teams

    The diagram here shows the Ontology Definition View for SAFe with an emphasis on teams, visualized using a SysML block definition diagram.

    It can be seen that SAFe is executed by one or more collaborating Agile Teams. These Agile Teams focus on shared goals and adhere to quality standards. There are six types of Agile Teams identified, which are Software Team, Hardware Team, Business Team, Operations Team, Support Team, and Cross-Cutting Team.

    The main emphasis in SAFe is on the fact that none of these Agile Teams exist or work in isolation, and hence collaboration is the key to success. To this end, these Agile Teams may be grouped into higher-level teams of teams.

    SAFe Configurations

    Another feature of SAFe, which is not too surprising, is that it is scalable to different sizes and types of projects. This scalability is realized in practical terms by tailoring the base Framework and configuring it in different ways. The following diagram shows four possible Configurations of SAFe:

    [image: Figure 9.7 – Ontology definition view for SAFe focusing on configurations ]
    Figure 9.7: Ontology Definition View for SAFe focusing on Configurations

    The diagram here shows the Ontology Definition View for SAFe that focuses on Configurations, visualized again using a SysML block definition diagram.

    It can be seen here that SAFe is described according to four Configurations, which are as follows:

    
      	Full Configuration includes all seven Core Competencies and is aimed at organizations that develop portfolios of large, integrated, and complex Systems.

      	Portfolio Configuration is aimed at businesses where the portfolio must be aligned with the overall business needs and strategy.

      	Large Solution Configuration is aimed at enabling organizations to develop large, complex Systems.

      	Essential Configuration is the simplest of the Configurations and is the starting point for implementing an agile and lean approach.

    

    Remember from Figure 9.2 that SAFe comprises, among other things, seven Core Competencies as described in Figure 9.5; it is the inclusion or exclusion of these Core Competencies that determines the Configurations.

    Summarizing the SAFe method

    SAFe provides a powerful and widely used approach for developing successful Systems, often referred to as solutions, that employs both the lean and agile approaches.

    It also states that a Systems Thinking approach is also provided, but this is not focused on in much of the literature.

    In terms of MBSE, SAFe sits firmly in the Approach section of the MBSE in a slide diagram and, in particular, it sits with the Process Set rather than with the Framework part of the MBSE approach. This may seem counter-intuitive at first but remember that when we define a Framework in MBSE, we are referring to a blueprint for the Model, and the emphasis is on the information. The use of the term Framework in SAFe is subtly different and the emphasis is more on changing how we do things, which is more related to the Process Set than the Framework.

    In the next section, we shall look at another popular Methodology that has a different emphasis, OOSEM.

    Introducing OOSEM

    OOSEM was originally developed by Systems Engineers from Lockheed Martin and the Systems and Software Consortium. OOSEM is a Systems-level development method that combines object-oriented concepts with traditional Systems Engineering Practices.

    OOSEM was originally based on the Unified Modeling Language (UML), developed by the Object Management Group (OMG), but since SysML was developed, it has been revisited to use SysML to capture the System Model. Because of this, there are explicit mappings between the Artifacts in OOSEM and specific SysML diagrams that may be used to visualize them.

    Defining OOSEM concepts

    The basic structure of OOSEM is shown in the following diagram:

    [image: Figure 9.8 – Ontology definition view for OOSEM ]
    Figure 9.8: Ontology Definition View for OOSEM

    The diagram here shows the Ontology Definition View for the structure of OOSEM, visualized using a SysML block definition diagram.

    The OOSEM comprises one or more Activities, each of which is made up of one or more Modeling Artifacts and one or more Actions (please note that there is no explicit term for this concept, so the term Action will be used for the purposes of this explanation). So far, this part of the Ontology looks very similar to the MBSE Ontology for Process Modeling that was introduced in Chapter 5, Systems Engineering Processes, Figure 5.2, with Activity mapping to Process in the MBSE Ontology, Modeling Artifact mapping to Artifact in the MBSE Ontology, and Action mapping to Activity in the MBSE Ontology.

    
      As a slight aside, this is an excellent example of exactly why we need to have a good Ontology in place. We have the same term, Activity, being used here and in the MBSE Ontology, but each time it represents a different concept.

    

    The Activities in OOSEM do map to the Processes in the MBSE Ontology and they do have the same structure; however, they are applied at different levels of abstraction. As can be seen in the diagram, Activities support one or more Development Processes, and this is a point of equivalence between the two ontologies. As OOSEM is a Methodology as opposed to a Process, it goes into more detail regarding specific techniques that can be used to develop the Modeling Artifacts. Processes generally state what needs to be done but not how to do it, whereas methodologies state how to do something.

    OOSEM is not intended to be used in isolation but to support any number of different Development Processes. This means that it is not trying to represent the whole Process Set from MBSE in a slide, but is instead providing valuable additional information on exactly how to carry out the Processes in the Process Set.

    OOSEM can be used to model different types of Systems, as shown in the following diagram:

    [image: Figure 9.9 – Ontology definition view for OOSEM focusing on systems ]
    Figure 9.9: Ontology Definition View for OOSEM focusing on Systems

    The diagram here shows an Ontology Definition View for OOSEM that puts an emphasis on Systems, visualized using a SysML block definition diagram.

    An important part of OOSEM is this relationship: OOSEM specifies and designs one or more Systems. This is quite subtle, but OOSEM is intended to be used only for specification and design and does not cover the implementation, support, or retirement of the System. This is important as it sets the scope for the OOSEM Activities.

    OOSEM has been designed to be used at a high level and, indeed, it advocates a traditional, top-down, functional decomposition approach to System development. As such, it can be applied to many types of Systems, including the following:

    
      	Enterprise System means a System that can be used to specify and design entire organizations and their associated businesses.

      	Operational System means a System that is used and operated by customer Stakeholders, such as trains, planes, and automobiles.

      	Enabling System means a System that may be used to help with Systems Engineering Activities, such as Processes, Frameworks, and so on. Please note that this is a different definition of the term Enabling System from the one that was used in Chapter 1, Introduction to Systems Engineering.

      	System of Systems means an interacting Set of Systems that delivers some emergent Behavior that may not be realized by any single one of its constituent Systems.

    

    All these different Systems can interact with one another to form a higher-level System or, indeed, a System of Systems.

    In the next section, we shall discuss how we can define the OOSEM approach.

    Defining the OOSEM approach

    One of the most powerful Aspects of OOSEM is that it is designed to be flexible; this is further elaborated upon in the following diagram:

    [image: Figure 9.10 – Ontology definition view for OOSEM focusing on approaches ]
    Figure 9.10: Ontology Definition View for OOSEM focusing on approaches

    The diagram here shows an Ontology Definition View for OOSEM that emphasizes approaches, visualized using a SysML block definition diagram.

    This diagram really emphasizes that OOSEM is not intended to be used as a standalone Methodology, but that it should be used in conjunction with other approaches. There are many such approaches, but the two main ones that are mentioned in the literature are as follows:

    
      	Systems Engineering approach, which is hardly surprising

      	Agile approach, which is interesting as it provides a link between what is defined as part of OOSEM and its potential use with an Agile approach, such as SAFe

    

    OOSEM Activities

    Now that the main structure of OOSEM has been discussed, it is time to look at the Activities that form the focus of OOSEM. The OOSEM Activities are shown in the following diagram:

    [image: Figure 9.11 – Process content view for OOSEM ]
    Figure 9.11: Process content View for OOSEM

    The diagram here shows a high-level Process content View for OOSEM that is visualized using a SysML block definition diagram. The Process content View is one of the Views discussed in Chapter 5, Systems Engineering Processes, and is part of the seven Views approach to Process modeling.

    The Activities defined in OOSEM are as follows:

    
      	Analyze Stakeholder Needs, which captures both the as-is and to-be Stakeholder needs that describe the System of interest. This is all captured by use cases and scenarios, and measures of effectiveness are also defined.

      	Analyze System Requirements, which allows the Stakeholder needs to be refined into Systems requirements; the interactions between the System and its Stakeholders are analyzed.

      	Define Logical Architecture, where a conceptual solution is captured that satisfies the original needs but is independent of any specific solution.

      	Synthesize Candidate Physical Architecture, which develops several specific solutions to the generic one that was generated in the previous Activity.

      	Optimize and Evaluate Alternatives, where trade-offs are assessed, and the different solutions are evaluated for effectiveness.

      	Manage Requirements Traceability, which ensures that all the information generated by the Modeling Artifacts is traceable back to the original needs.

      	Validate and Verify System, where it is demonstrated that the right System was built and that the System was built right.

    

    These Activities are intended to be carried out in a linear fashion; however, the approach allows for a high degree of iteration between these Activities. Therefore, the overall execution of these Activities may be linear, but there is not a single path of flow between them all.

    These Activities may also be used in an incremental fashion; it is possible to execute many sweeps through the Activities, each of which results in an increment of the final System delivery. Again, this is another example of how flexible OOSEM can be when applied using different approaches, as described in Figure 9.10.

    We shall take the description of the Activities one step further by focusing on a single Activity, as shown in the following diagram:

    [image: Figure 9.12 – Process content view for OOSEM focusing on the Analyze Stakeholder Needs activity ]
    Figure 9.12: Process content View for OOSEM focusing on the Analyze Stakeholder Needs Activity

    The diagram here shows the Process content View for OOSEM with an emphasis on the Analyze Stakeholder Needs Activity, visualized using a SysML block definition diagram. Again, the Process content View forms part of the overall seven Views approach, but this time we are emphasizing the Modeling Artifacts and the Actions that comprise the Activity.

    We can see here that the Analyze Stakeholder Needs Activity comprises the following Modeling Artifacts:

    
      	Use Case, which represents the needs and capabilities of the System from the contexts of different Stakeholders.

      	Scenario Analysis, which captures different what if situations to be explored using sunny-day and rainy-day scenarios. These are used to help identify measures of effectiveness for the System.

      	Causal Analysis, which captures the impact of the interactions between different Stakeholders and the System to be explored. The limitations of the current as-is System form part of this Modeling Artifact.

      	Context Diagram, which captures overall contexts, based on both Stakeholders and the System to be defined.

    

    The Analyze Stakeholder Needs Activity comprises the following Actions:

    
      	Analyze as-is enterprise(), which captures the current needs of the System

      	Analyze to-be enterprise(), which captures the desired needs of the System

      	Identify capabilities(), which identifies the desired capabilities of the System based on the higher-level needs

      	Define measures of effectiveness(), which may be based on the scenarios that were generated as part of the scenario and causal analyses

      	Define context(), where the various contexts are captured based on the previous analyses

    

    The other Activities in OOSEM may also be captured in the same way as illustrated here. Now, let’s revise what we have learned in this section.

    Summarizing the OOSEM method

    OOSEM provides a flexible Methodology that can be used to help specify and design a number of different types of Systems. It is important to remember that OOSEM is not a full Life Cycle Methodology and focuses on the specification and design of the System rather than its implementation, support, or retirement.

    OOSEM is also designed to work specifically with SysML (originally UML), which may be attractive to many Systems engineers.

    Also, OOSEM has been designed for use in conjunction with other approaches, which makes it a potentially valuable addition to any MBSE toolkit.

    Now that we have discussed the two Methodologies, it is useful to relate these back to the MBSE Principles that have been the subject of this book.

    Methodologies and MBSE

    This section looks at how the two different methodologies discussed in this chapter fit into the big picture of MBSE. This discussion is limited to these two methodologies, but the concepts and discussion points may be applied to any Methodology.

    One of the fundamental mechanisms used to explain and understand MBSE throughout this book has been the use of MBSE in a slide, which was introduced back in Chapter 2, Model-Based Systems Engineering. As a refresher, this diagram is shown again in the following figure:

    [image: Figure 9.13 – MBSE in a slide (and a bit) – recap ]
    Figure 9.13: MBSE in a slide (and a bit) – recap

    The diagram here shows the now-classic MBSE in a slide used to identify the key Aspects of MBSE that must be understood in order to implement MBSE effectively. This is visualized using a SysML block definition diagram.

    One of the uses for MBSE in a slide is to be able to not only understand the main five concepts of MBSE but also to map existing abilities to this diagram.

    The next sections, therefore, will relate the two methodologies that we have discussed so far to MBSE in a slide.

    Methodologies and approach

    The Approach section of MBSE in a slide is concerned with Process Sets and Frameworks. We shall start the discussion by considering the Process Sets, or their equivalents, in MBSE in a slide.

    The two methodologies that were chosen here to be discussed were selected because, between them, they exhibit properties of linear, incremental, and iterative approaches. This was discussed in Chapter 4, Life Cycles, which illustrated the difference between these different approaches using different Life Cycle Models. Remember that a Life Cycle simply identifies the evolutionary stages of a System, whereas a Life Cycle Model shows how these stages are executed in different sequences. It is the execution of these sequences of stages, and the Process executions contained within them, that allows these different approaches to be visualized.

    A very important Aspect of Life Cycle modeling is the interactions between the different types of Life Cycles – for example, between the procurement and development Life Cycles. The way that these different types of Life Cycles are executed may differ; for example, linear, incremental, or iterative approaches can be used. The Methodologies that we have discussed here must be related back to the Life Cycles as the Methodologies will dictate some of the sequences in the associated Life Cycle Models.

    The emphasis of the SAFe Methodology is on improving the effectiveness of a business by changing its overall approach to business, ensuring that it can react to change. It may also be applied at all different levels of abstraction, from portfolios down to individual Systems. The SAFe Methodology uses both agile and lean approaches, which themselves utilize incremental and iterative execution of their Processes. The equivalent of a Life Cycle is the information roadmap, which describes the evolution of the System. The equivalent of a Process in SAFe is the concept of a Practice, which maps closely to the technical Processes in ISO 15288. The rest of the SAFe approach focuses on the various Management and Organizational Activities, captured in the Core Competencies, that need to be put into place.

    The emphasis of the OOSEM Methodology is on specifying and designing different types of Systems. It may also be used at different levels of abstraction, ranging from Systems of Systems to specific-System development. The OOSEM Methodology uses more of a classic linear approach that uses many iterations, and it may also be used as part of an overall incremental development System. The equivalent of a Process is an Activity, but it exists i.e., an activity at a lower level of abstraction and, as such, is intended to support the implementation of traditional Systems Engineering Processes.

    There are, therefore, strong similarities between the ways these two methodologies can be executed with regard to the Process Set part of MBSE in a slide.

    The second part of Approach in MBSE in a slide is the Framework, which focuses on the blueprint and structure of the Model.

    In SAFe, the information to be produced is described as part of the Core Competencies that relate to Agile Release Trains (ARTs) and solution trains.

    In SAFe, the emphasis is on changing the way that organizations work by changing Mindsets, creating and empowering effective teams, and reacting effectively to business change. SAFe advocates enterprise architecture and the role of the enterprise architect but does not specify any specific architecture Framework.

    In OOSEM, there is a distinct structure to the Model, which is based on the Modeling Artifacts generated as part of the Activity execution. Although there is no specific Framework defined for OOSEM, the number of Views and, therefore, Viewpoints is relatively low, and it would be straightforward to capture the Framework for OOSEM.

    Methodologies and Goals

    The Goal section of MBSE in a slide focuses on the Model and its Views, and how they relate to the System.

    In SAFe, the emphasis is on the enterprise and how to make it work effectively. SAFe does consider portfolios of Systems and individual Systems as part of the Core Competencies. Modeling is referred to in the context of mental Models, operation Models, abstraction Models, and so on. Again, these relate to Aspects of the enterprise.

    In OOSEM, the Model is central to everything that is done and, therefore, is truly an abstraction of the System, regardless of the type of System.

    Methodologies and visualization

    The Visualization section of MBSE in a slide focuses on the notations used to visualize the Views.

    In SAFe, there are no explicit nor mandatory notations that must be used. Having said that, SAFe can be implemented using any appropriate notation, hence leading to a flexible implementation.

    In OOSEM, the notation used is explicitly SysML. Originally, this was UML, but as SysML is a profile of UML, there is a straightforward and intuitive transition between the notations.

    Methodologies and implementation

    The Implementation section of MBSE in a slide focuses on the tools that can be used to visualize Views.

    There are several commercial tools available that implement SAFe from a number of different vendors.

    For OOSEM, there are no dedicated commercial tools available. However, there are several generic MBSE tools that have profiles available, typically for free, that allow OOSEM to be implemented as part of the tool.

    Methodologies and compliance

    The Compliance section of MBSE in a slide is concerned with standards and other best-practice sources.

    The SAFe Methodology formally states that Agile Teams adhere to quality standards. Notice again that the emphasis is on the people Aspect and that compliance relates to the teams.

    In OOSEM, compliance with certain best-practice sources, including ISO 15288, has been mapped out and is freely available. It should be noted that it is the Activities in OOSEM that map to the standards.

    We have now seen, therefore, how the methodologies form part of the bigger picture of MBSE that was described in MBSE in a slide. This provides an important frame of reference for methodologies and validates just how important the overarching concepts contained in MBSE in a slide are to any Systems Engineering initiative.

    Summary

    This chapter introduced two example methodologies: SAFe and OOSEM. Both may be used as part of a wider Systems Engineering endeavor, but they have quite different purposes.

    Each Methodology was modeled using ontologies.

    Finally, each Methodology was mapped to the MBSE in a slide diagram that has been referred to throughout this book. It should be clear that both methodologies fit in with MBSE and can be used to satisfy the different Aspects of MBSE in a slide.

    Relating these existing methodologies to what we have learned so far in this book illustrates how we can use MBSE to incorporate any approach into a wider Systems Engineering initiative.

    In the next chapter, we will understand the management Processes and associated techniques to be considered and implemented.

    Self-assessment tasks

    
      	Create a Framework context View for both methodologies discussed in this chapter. Now analyze each of them with regard to how they fit into the MBSE approach introduced in this book.

      	Create a Process content View for SAFe, based on its Practices. Now relate this to the Process content View that was discussed for OOSEM in Figure 9.11.

      	Map the Process content Views for SAFe and OOSEM to the Process content View for ISO 15288 that was introduced in Chapter 5, Systems Engineering Processes, in Figure 5.16.

      	Finally, come to your own conclusion as to whether these two methodologies could be used together. Use the Ontology Definition Views and Process content View to back up your conclusion.
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    Systems Engineering Management

    This chapter provides an overview of some of the key management Processes and associated techniques that need to be taken into account and how they can be implemented. The relationship between management and technical techniques is also discussed. We will then have a discussion on how designs fit into the System’s Life Cycle and which Processes are relevant and how to comply with them.

    This chapter covers the following topics:

    
      	Introducing management

      	The Project Planning Process

      	The Decision Management Process

      	The Project Assessment and Control Process

      	The Risk Management Process

      	The Information Management Process

      	The Configuration Management Process

      	The Measurement Process

      	The Quality Assurance Process

    

    This chapter provides you with an overview of how the basic management-related Processes in ISO 15288 can be realized using the MBSE techniques described so far in this book. Each Process references other relevant chapters where example Views can be found.

    This demonstrates that MBSE activities activities are not just limited to technical Processes but may be used for any aspect of Systems Engineering.

    Introducing management

    A key part of any Systems Engineering endeavor is ensuring that the System is delivered successfully, including not only the technical aspects of the System but also the management aspects.

    It is essential that the System satisfies its basic Needs, which has been a running theme throughout this book. Remember that these Needs are captured according to several different contexts, which include looking at the Needs from different points of view, and one of these points of view must consider the management aspects.

    For example, it is not good enough to deliver a System that satisfies the technical Needs if it is delivered late, is over budget, or consumes too many resources. The best-practice standard, ISO 15288, which we have used as the main source for compliance throughout this book, has a Process Group that is dedicated to Technical Management Processes, and this will form the basis for our discussion on management.

    The Processes that are contained in the Technical Management Process Group are shown in the following diagram:
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    Figure 10.1: Process content view showing the processes in the technical management process group from iso 15288

    The Process Content View here is visualized using a SysML block definition diagram.

    The Process Content View is one of the Views that comprises the seven Views approach to Process modeling, which was described in Chapter 5, Systems Engineering Processes. 

    By way of a recap, the Process Content View allows the library of Processes to be defined at a high level by showing which Processes are contained in which Process Group, as shown in Figure 10.1. It may also show the specific outcomes and activities associated with each Process, which will be used in the more detailed discussion for each specific Process in the following sections.

    The Processes that comprise the Technical Management Process Group are as follows:

    
      	Project Planning Process: The aim of this Process is to produce effective plans for the project.

      	Project Assessment and Control Process: The aim of this Process is to assess the suitability of the plans that have been generated for the project and control the execution of these plans to ensure that they satisfy the original Needs.

      	Decision Management Process: The aim of this Process is to provide a set of structured techniques that will allow the project’s progress to be assessed at key points and, where necessary, for alternative action to be taken.

      	Risk Management Process: The aim of this Process is to identify, understand, and control any risk that occurs throughout the project.

      	Configuration Management Process: The purpose of this Process is to control the evolution of the information produced as part of the System development throughout the project.

      	Information Management Process: The aim of this Process is to ensure that all the information concerning the project is managed and maintained throughout the project, and to ensure that the appropriate Stakeholders have access to relevant information.

      	Measurement Process: The aim of this Process is to provide techniques that will allow objective information concerning the project to be captured to manage the project effectively.

      	Quality Assurance Process: The aim of this Process is to ensure that the Systems Engineering Processes are applied effectively to the project.

    

    Each of these processes will now be introduced in turn and the use of the modeling and Views that have been presented in this book will be discussed.

    One of the themes discussed throughout this book is that whenever we need to understand something, we can model it to gain a thorough and complete analysis. Therefore, we will present the Process Content Views introduced in Chapter 5, Systems Engineering Processes, which will provide a simple overview of what outcomes need to be generated and what activities need to be executed for each process.

    The Project Planning Process

    The Project Planning Process is concerned with defining the project, planning the project, and activating the project, as shown in the following diagram:
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    Figure 10.2: Process Content View for the Project Planning Process

    A SysML block is used to show the Process itself and the following outcomes, represented by SysML properties, which are identified for this Process, described as follows:

    
      	Execution of plan: This outcome ensures that the plans for the execution of the project are activated.

      	Objectives and plan: This outcome ensures that the objectives and plans for the project have been defined.

      	Resources and services: This outcome ensures that the resources and services that are necessary for the achievement of the aims and objectives that were previously defined are identified and acquired.

      	Roles defined: This outcome ensures that the roles, responsibilities, accountabilities, and authorities are defined.

    

    These outcomes are achieved by executing several activities, each of which comprises a number of tasks. These activities will now be discussed in more detail and reference will be made to the various modeling Views that have been discussed in the book.

    Applying modeling to the “Activate the project()” activity

    The Activate the project() activity comprises the following three tasks:

    
      	Implement Project plans.

      	Obtain authorization for the Project.

      	Submit requests and obtain commitments for the necessary resources to perform the Project.

    

    All these tasks are concerned with initiating the Project based on the information generated by executing the last two activities: defining the Project and planning the project and Technical Management. All of the Views that were discussed as part of these activities may now also be used to activate the project. For example, the obtain authorization for the Project task can be realized by using the Life Cycle and Process Views, combined into the Schedule View, to obtain authorization.

    Applying modeling to the “Define the project()” activity

    The Define the project() activity comprises the following five tasks:

    
      	Define and maintain a Life Cycle model that comprises stages using the defined Life Cycle.

      	Define and maintain the Processes to be applied to the project.

      	Define the project scope as established in the agreement.

      	Establish a work breakdown structure based on the evolving System architecture.

      	Identify project objectives and constraints.

    

    At first glance, there may seem to be a lot of action required to achieve these tasks, but the good news is that all these tasks have already been addressed by the modeling carried out so far in this book.

    Now consider Task 1, which is concerned with defining the Life Cycle that will be used for the project. This has already been covered completely in Chapter 4, Life Cycles. In particular, the following Viewpoints and their associated Views are of direct relevance:

    
      	The Life Cycle View, which defines the stages that comprise the Life Cycle.

      	The Interaction Identification Viewpoint, which identifies points where the System development Life Cycle can interact with other Life Cycles.

    

    Next, consider Task 2 and Task 4, which are both concerned with the Processes and their associated work breakdown structures. Again, all of this has been covered in the modeling in Chapter 4, Life Cycles, and Chapter 5, Systems Engineering Processes, as follows:

    
      	The Process Content Viewpoint from Chapter 5, Systems Engineering Processes, identifies the Processes available to be executed on the project. Either all these Processes or a subset of these Processes may be selected for any specific project.

      	The Life Cycle Model Viewpoint from Chapter 4, Life Cycles, can be used to provide the highest level of project behavior. Remember that Processes are executed in Process Execution Groups, which live within each Life Cycle stage. This Viewpoint, therefore, provides an excellent overview of the Life Cycle stages, which Processes are realized in each, and which can be used for the highest level of the work breakdown structure.

      	The Process Behavior Viewpoint from Chapter 5, Systems Engineering Processes, is used primarily, at this point, for the work breakdown structure, as it shows how each of the activities associated with each Process is executed.

    

    Finally, consider Task 3 and Task 5 from the list. Both tasks are associated with identifying and defining the overall scope, in terms of the objectives of the project, along with the constraints associated with these objectives.

    This was the topic of Chapter 6, Needs and Requirements, and the whole modeling approach described in that chapter can be applied here. In particular, the following Viewpoint and its associated Views are of direct interest:

    
      	The Need Context Viewpoint, where the overall aims are identified and defined using use cases. These aims are defined from different points of View, or contexts, and form the heart of the whole System development. As part of this View, the constraints are also defined using use cases, and the relationships to their relevant aims-based use cases are identified.

    

    The next activity that will be considered is planning the project and Technical Management.

    Applying modeling to the “Plan project and technical management()” activity

    The Plan project and technical management() activity comprises the following seven tasks:

    
      	Define the achievement criteria for the Life Cycle stage decision gates and delivery gates.

      	Define and maintain a project schedule based on management and technical objectives.

      	Define roles, responsibilities, accountabilities, and authorities.

      	Define the costs and plan a budget.

      	Define the infrastructure and services required.

      	Generate and communicate a plan for the project and Technical Management, as well as the execution.

      	Plan the acquisition of materials and enable System services supplied from outside the project.

    

    Again, all these tasks can be addressed by existing Views discussed previously in this book.

    Consider Task 1, which is associated with the gates for each of the stages, and the following Viewpoints are relevant to this:

    
      	The Life Cycle View, which defines the stages that comprise the Life Cycle

      	The Interaction Identification Viewpoint, which identifies points where the System development Life Cycle may interact with other Life Cycles

    

    Consider Task 2, Task 4, Task 5, and Task 7, all of which are concerned with creating and maintaining the project plan. The following Viewpoints and their associated Views may be used as a basis for these tasks:

    
      	The Life Cycle Model Viewpoint from Chapter 4, Life Cycles, can be used to provide the highest level of project behavior. This Viewpoint provides an excellent overview of the Life Cycle stages that are used as the highest-level entities in the project schedule. The Life Cycle itself applies across the entire project, and each stage within the Life Cycle represents the next level of abstraction down.

      	The Process Instance Viewpoint from Chapter 5, Systems Engineering Processes, identifies the Processes that are executed in each Process Execution Group on the project. Each Process Execution Group collects together a set of Processes that are executed in a specific sequence inside a gate. It is possible for more than one of these Process Execution Groups, visualized by a Process instance View, to be executed inside a single gate. This provides the next level of abstraction for the behavior of the schedule.

      	The Process Behavior Viewpoint from Chapter 5, Systems Engineering Processes. This is used to describe how each Process behaves internally by showing the detailed order of execution of the activities within each Process. This provides the fine detail of behavior for each Process that is used to define the project schedule.

    

    These three Viewpoints and their associated Views are interesting as they all have a direct impact on the overall project schedule, which is not too surprising as they are all behavioral Views. The diagram that is used predominantly in the project management world to visualize a project schedule is the Gantt chart, which shows the planned behavior of a project, along with its milestones, resources, and so on. The Gantt chart is, of course, not a SysML diagram, but this certainly does not mean that it should not be used as part of Systems Engineering management. Consider the classic MBSE in the first figure that was first introduced in Chapter 2, Model-Based Systems Engineering, and that has been used throughout this book. 

    The right-hand side of this diagram shows the visualization of the Views that comprise the model and, very importantly, it has been discussed at some length how the notation that is used for this visualization is largely irrelevant, provided, of course, that it is consistent with the underlying Viewpoint that defines the set of Views.

    Indeed, the information that is required to create a Gantt chart has already been defined as part of our MBSE approach and is readily available in the Views that were described in the previous bullet list. In order to illustrate this, consider the following generic Gantt chart:
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    Figure 10.3: Generic project schedule showing the different levels of a task

    The figure here shows a generic project schedule in a Gantt chart, which traditionally emphasizes the various levels of a task in a project schedule and then shows the timing associated with each (such as the start date, end date, duration, and so on, which are represented by the blue lines), along with any major project gates, milestones, and resources. For the purposes of this discussion, we will focus purely on the levels of task information and, therefore, all the other information has been omitted from the diagram for clarity.

    A Gantt chart is basically a structured table with several columns and rows that describe the properties of the project. Note the second column, titled Task Name, which is a typical way to describe the actions that are taken on a Gantt chart. If we now go down this column and consider each row, the tasks actually exist at a number of levels of abstraction or detail, as shown by the numbering System and indentations applied. In fact, despite the main column being labeled Task Name here, it is quite clear that there are several levels as follows:

    
      	Row ID: 1 – Project X, showing the highest level of Task applied to the project as a whole

      	Row ID: 2 – Task 1, showing the next highest level of Task and starts the main numbering System as 1

      	Row ID: 3 – Task 1.1, showing the Task the next level down and continuing the breakdown indicated by the numbering System as 1.1

      	Row ID: 4 – Task 1.1.1, showing the next level down, again as level 1.1.1

      	Row ID: 5 – Task 1.1.1.1 and Row ID: 6 – Task 1.1.1.2, each showing the lowest level on this diagram and indicated using 1.1.1.x

      	Row ID: 7 – Task 1.1.2, which goes back up a level

      	Row ID: 8 – Task 2, which goes up again another level

      	Row ID: 9 – Task 2.1, which starts to descend through the levels again

    

    Note how each Task level is still referred to as Task, which makes the numbering Systems and indentations essential to understanding the chart, as the indentations signify the level of the Task. Also, because the same term, Task, is used, it can easily lead to potential confusion when referring to different types of tasks. Indeed, this type of confusion was discussed at length in Chapter 2, Model-Based Systems Engineering, and is one of the reasons why having a good, solid, unambiguous Ontology in place is so important. Another problem with this is that there is potentially no end to the level it can descend to, so it would be possible, for example, to have a task 1.2.3.4.5.6.7.8.9.20.1.2.4.5 as there is no bounding the level of abstraction.

    All these potential problems can be solved easily and effectively by applying an Ontology to the levels. To illustrate this, consider the following revised schedule:
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    Figure 10.4: Generic project schedule using Ontology Elements for levels of tasks

    The diagram here shows the same generic schedule as in Figure 10.3 with tasks defined by the Ontology and visualized as a Gantt chart.

    The information in this diagram is the same, and it has the same number of levels of abstraction for tasks, but this time, the levels are based on the concepts from the MBSE Ontology that we have developed throughout this book. Using these Ontology Elements as a basis for the task levels, the following can be observed:

    
      	Row: ID 1 – Life Cycle: Project X, which shows the highest level of the task, represented as Life Cycle within the Ontology.

      	Row ID: 2 – Stage 1: Concept, which shows the next highest level of the task and is represented as a Stage within the Ontology; in this case, this stage is Concept from ISO 15288.

      	Row ID: 3 – Project Needs, which shows the task the next level down and is represented as a Process Execution Group, in this case, named Project Needs.

      	Row ID: 4 – Stakeholder Needs and Requirements Definition Process, which shows the next level down again and represents the concept of a Process within the Ontology, in this case, Stakeholder Needs and Requirements Definition Process.

      	Row ID: 5 – Define Stakeholder Needs and Row ID: 6 – Analyze Stakeholder requirements, which each show the lowest level on this diagram and represent the Activity concept from the Ontology.

      	Row ID: 7 – System Requirements Definition Process, which goes back up a level and represents another Process within the Ontology.

      	Row ID: 8 – Stage 2: Development, which goes up again another level to represent another Stage within the Ontology, in this case, the Development stage from ISO 15288.

      	Row ID: 9 – Candidate Design Development, which starts to descend through the levels again, and represents another Process Execution Group.

    

    The use of these Views from the model to create a schedule is very important and very powerful. Ensuring that all the information in the schedule comes directly from the Ontology means that the schedule is a proper View in the model. The use of a Gantt chart, therefore, just becomes a matter of visualizing the Schedule View.

    All the other information required for the Schedule, such as the Stakeholders, resources, and gates, is also part of the overall Ontology and can, therefore, also be derived directly from the model. This is crucial as the schedule is directly based on the overall MBSE approach, rather than just being fabricated with no real basis by a project manager.

    Summary of the Project Planning Process

    All the activities related to this Process and all of the outcomes necessary for the successful completion of the Process can be achieved by using existing Views from the model.

    Notice that the Views that have been utilized are primarily from the Life Cycle perspective and the Process perspective, which is to be expected as they both deal with the running of projects.

    The next section will discuss the next Process from ISO 15288, the Decision Management Process.

    The Decision Management Process

    The main aim of the Decision Management Process is to provide mechanisms for exploring alternative options for making decisions at any point in the Life Cycle, and is shown in the following diagram:
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    Figure 10.5: Process Content View for the Decision Management Process

    The outcomes, represented by SysML properties, that are identified for this Process are described as follows:

    
      	Alternative course of action identified identifies the options available at key decision points that were identified in the previous outcome.

      	Decisions identified identifies the key decision points available at any point in the Life Cycle.

      	Preferred course of action selected, where based on the previous outcomes, the most appropriate course of action is selected.

    

    These outcomes are achieved by executing several activities, each of which comprises a number of tasks. These activities will now be discussed in more detail and reference will be made back to the various modeling Views discussed in the book.

    Applying modeling to the “Prepare for decisions()” activity

    The Prepare for decisions() activity comprises the following tasks:

    
      	Define a Decision Management strategy.

      	Identify the circumstances and the Need for a decision.

      	Involve relevant Stakeholders in decision-making.

    

    The first of these tasks is a general one that the other two can contribute to. The main task here is the second one, Identify the circumstances and the Need for a decision. As these Tasks refer to the Need for a decision and Stakeholders, then we can use the Views that we generated as part of the Need perspective in Chapter 6, Needs and Requirements. These decision points can be easily identified based on the following Viewpoints and their associated Views from the model:

    
      	Life Cycle Model Viewpoint: This behavioral Viewpoint from Chapter 4, Life Cycles, may be used to identify the main decision points and, by considering any different Life Cycle scenarios that have been modeled, allows different options to be explored.

      	Process Instance Viewpoint: This behavioral Viewpoint from Chapter 5, Systems Engineering Processes, may be used in a similar way to the previous Viewpoint, by identifying decision points and different scenarios.

      	Process Behavior Viewpoint: This behavioral Viewpoint, also from Chapter 5, Systems Engineering Processes, describes the internal behavior of specific Processes. As part of this, there are explicit decision points identified as part of the View, such as checking whether a review has been passed, making decisions regarding which path to take next, and so on.

    

    The next activity that will be discussed is analyzing the decision information.

    Applying modeling to the “Analyze the decision information()” activity

    The Analyze the decision information() activity comprises the following four tasks:

    
      	Determine the desired outcomes and measurable selection criteria.

      	Evaluate each alternative against the criteria.

      	Identify the trade space and alternatives.

      	Select and declare the Decision Management strategy for each decision.

    

    Each of these four tasks uses the same three sets of Viewpoints – the Life Cycle Model Viewpoint, Process Instance Viewpoint, and Process Behavior Viewpoint – that were described for the previous activity. While the previous activity was more concerned with identifying the decision points and criteria, this activity uses the same information to execute the activity. In some cases, additional information may be recorded and associated with the different Views. For example, the reasoning behind why one alternative was chosen over another may be captured as a SysML note and stored as part of the overall View.

    This is very closely related to the third activity of making and managing decisions, which is discussed next.

    Applying modeling to the “Make and manage decisions()” activity

    The Make and manage decisions() activity comprises the following tasks:

    
      	Determine the preferred alternative for each decision.

      	Record the resolution, decision rationale, and assumptions.

      	Record, track, evaluate, and report decisions.

    

    Again, these three tasks are so closely related to the tasks in the previous two activities that the same set of Viewpoints, the Life Cycle Model Viewpoint, Process Instance Viewpoint, and Process Behavior Viewpoint, can be used to address these tasks.

    The emphasis of this activity is on capturing and recording the results, the rationale behind them, and any other information. All this information, and any other information that may be required, can be annotated onto any View by adding SysML notes to the View. If necessary, the relevant Views can be copied and saved as marked-up versions based on the decisions made.

    Summary of the Decision Management Process

    This Process may, again, be largely met by reusing the existing Views that form part of the overall MBSE approach. This is, of course, good news as it minimizes the amount of new work that needs to be carried out but, very importantly, it ensures that all the decision-making is based on the same set of consistent information. This is another excellent example of how a single source of truth, the model, is used time and again to provide the basis for running the Project.

    This Process also relies on the fact that additional information, such as the rationale, results, and so on, for decision-making can be added to the original information. Fortunately, SysML has a built-in mechanism for this in the form of SysML notes that can be added to any diagram.

    The next Process that will be discussed is the Project Assessment and Control Process.

    The Project Assessment and Control Process

    The main aim of the Project Assessment and Control Process is to assess the management plans that have been put in place and to monitor the progress of the Project against these plans. This Process is very closely related to the Project Planning Process as it is concerned with ensuring that all the outcomes of that Process are fit for purpose and are executed appropriately. 

    The Project Assessment and Control Process is shown in the following figure:
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    Figure 10.6: Process Content View for the Project Assessment and Control Process

    The outcomes, represented by SysML properties, identified for this Process are described as follows:

    
      	Corrective action ensures that the Decision Management Process is applied effectively.

      	Deviation also ensures that the Decision Management Process is applied effectively.

      	The Performance measure ensures that the Measurement Process is applied effectively.

      	The Project action ensures that the gate reviews are carried out effectively.

      	The Project objective ensures that the outcomes of the Project Planning Process are implemented effectively.

      	Project replanning ensures that the Decision Management Process is applied effectively.

      	Resource adequacy relates to the resources needed to execute the problem and ensures that they are available and valid.

      	Role adequacy relates to the Stakeholders and how they are defined in terms of their responsibilities and so on.

      	Stakeholders informed relates to ensuring that each Stakeholder has the information that is relevant to them.

      	Technical progress review ensures that technical reviews are carried out effectively.

    

    These outcomes are achieved by executing a number of activities, each of which comprises a number of tasks. These activities will now be discussed in more detail and reference will be made to the various modeling Views that have been discussed in the book.

    Applying modeling to the “Plan for project assessment and control()” activity

    The Plan for project assessment and control() activity comprises the following single task:

    
      	Define the Project Assessment and Control strategy

    

    This activity will be covered by the Processes that are defined as part of the overall MBSE Process set. This was covered in Chapter 5, Systems Engineering Processes, and will specifically relate to the following Views from the Process perspective:

    
      	The Process Content Viewpoint, which identifies all the Processes in the form of a Process library.

      	The Process Behavior Viewpoint, where the specific Processes are defined. The Processes that relate to Project Assessment and Control are relevant here.

      	The Information Viewpoint, where the artifacts from each Process are identified, related together, and defined.

    

    The next activity that will be discussed is assessing the Project.

    Applying modeling to the “Assess the project()” activity

    The Assess the project() activity comprises the following 11 tasks:

    
      	Assess the alignment of the Project objectives and plans with the Project context.

      	Assess the management and technical plans against the objectives to determine adequacy and feasibility.

      	Assess the Project and technical status against the appropriate plans to determine the actual and projected cost, schedule, and performance variances.

      	Assess the adequacy of roles, responsibilities, accountabilities, and authorities.

      	Assess the adequacy and availability of resources.

      	Assess progress using measured achievement and milestone completion.

      	Conduct the required management and technical reviews, audits, and inspections.

      	Monitor critical Processes and new technologies.

      	Analyze Measurement results and make recommendations.

      	Record and provide the status and findings from assessment tasks.

      	Monitor Process execution within the Project.

    

    Several tasks in this list, Task 1, Task 2, Task 3, Task 6, Task 7, Task 8, and Task 11, are all covered by ensuring that the Project schedule is being followed and implemented correctly. The Viewpoints and associated Views that are relevant to this are as follows:

    
      	The Need Context Viewpoint, which defines the aims of the overall Project, as described in Chapter 6, Needs and Requirements.

      	The Life Cycle Viewpoint and the Life Cycle Model Viewpoint, which describe the Life Cycle and how it is to be followed, as described in Chapter 4, Life Cycles.

      	The Process Behavior Viewpoint, which describes how each Process is executed, as described in Chapter 5, Systems Engineering Processes.

    

    These Viewpoints and their associated Views are the ones that were identified as being relevant for the Project Planning Process, as they are concerned with the execution of the behavior of the Project. So, the Life Cycle Viewpoint and the Life Cycle Model Viewpoint describe the overall behavior of the Project, while the Process Behavior Viewpoint describes the behaviors inside each Process.

    The next two tasks that will be considered are Task 4 and Task 5. The aim of Task 4 is to ensure that Stakeholders are identified and their involvement in the execution of the Project schedule is defined, whereas Task 5 is related to resources. These may be achieved by considering the following Viewpoints from the Process perspective, which were described in Chapter 5, Systems Engineering Processes:

    
      	The Stakeholder Viewpoint, which identifies the Stakeholders in the form of a classification hierarchy

      	The Process Behavior Viewpoint, which allows the Stakeholder and resource involvement in each Process to be defined

    

    The next task is Task 9, which relates to the Measurement of the Project and then making recommendations based on these Measurements. The Measurement aspect of this task will be covered by the Measurement Process, which will be covered in the The Measurement Process section. The recommendations and further actions that are required are covered by the Decision Management Process, which was discussed in the previous section.

    The final task that must be considered is Task 10, which is concerned with recording information about the execution of the Project. This will be covered by the Information Management Process, which will be discussed later in this chapter.

    The final activity is controlling the Project, which is the subject of the next section.

    Applying modeling to the “Control the project()” activity

    The Control the project() activity comprises the following four tasks:

    
      	Initiate the necessary actions needed to address the identified issues.

      	Initiate the necessary Project replanning.

      	Initiate change actions when there is a contractual change to cost, time, or quality due to the impact of an acquirer or supplier request.

      	Authorize the Project to proceed toward the next milestone or event, if justified.

    

    All these tasks are covered by existing Views and Processes.

    The first three tasks are all covered by the Decision Management Process and are concerned with ensuring that this Process is applied effectively.

    The fourth task is concerned with the gate reviews, covered by the usual set of Viewpoints from the Process perspective, which are as follows:

    
      	The Process Content Viewpoint, which identifies all the Processes in the form of a Process library.

      	The Process Behavior Viewpoint, where the specific Processes are defined. The Processes that relate to Project Assessment and Control are relevant here.

      	The Information Viewpoint, where the artifacts from each Process are identified, related together, and defined.

    

    Summary of the Project Assessment and Control Process

    This Process is particularly interesting as it is really concerned with ensuring that the other Technical Management Processes are applied effectively. Notice that all the Viewpoints and associated Views mentioned here have already been discussed, or will be discussed later in this chapter, in relation to other Processes from the Technical Management Process Group in ISO 15288.

    The next Process that will be discussed is the Risk Management Process.

    The Risk Management Process

    The main aim of the Risk Management Process is to identify, analyze, and, where necessary, treat the risks that relate to executing the Project. This Risk Management must also be planned and managed throughout the entire Life Cycle of the Project.

    A high-level representation of the Risk Management Process is shown in the following diagram:

    [image: Figure 10.7 – Process content view for the risk assessment process ]
    Figure 10.7: Process Content View for the risk assessment Process

    The diagram here shows the Process Content View for the risk assessment Process from ISO 15288 and is visualized using a SysML block definition diagram.

    The outcomes, represented by SysML properties, that are identified for this Process are described as follows:

    
      	Risk treatment identified: This ensures that there is an effective strategy for Risk Management in place.

      	Risks analyzed: This outcome ensures that the risks are fully understood.

      	Risks evaluated: This monitors the progress of risks and where they are with regard to their treatment.

      	Risks identified: This ensures that risks can be identified whenever they occur.

      	Treatment implemented: This outcome ensures that identified risks are treated appropriately.

    

    These outcomes are achieved by executing several activities, each of which comprises a number of tasks. These activities will now be discussed in more detail and reference will be made to the various modeling Views that have been discussed in the book.

    Applying modeling to the “Plan risk management()” activity

    The Plan risk management() activity comprises the following two tasks:

    
      	Define and record the context of the Risk Management Process.

      	Define the Risk Management strategy.

    

    This activity is key to everything that needs to be done for effective Risk Management. One of the running themes throughout this book has been to always question why something is being done and, as part of this, to always consider the context of what we are doing. Context, as has been pointed out many times, is key to successful MBSE. Notice that Task 1 explicitly calls for the context of the Risk Management Process to be defined. Only when this has been done can the strategy be defined, which is the subject of Task 2.

    The whole subject of risk covers every aspect of MBSE and there are many applications of risk, including technical risk, financial risk, safety risk, security risk, and so on. Depending on which types of risk are identified, this list will differ. It is beyond the scope of this book to go into great detail concerning the different types of risk, but the modeling that we have considered so far may be applied to identify these types. The following Viewpoints and their associated Views are relevant to this activity:

    
      	The Viewpoints contained in the Process perspective section in Chapter 5, Systems Engineering Processes. By applying the modeling approach to the Risk Management Process, it is possible to identify the context of the risk.

      	The Viewpoints contained in the Needs perspective section in Chapter 6, Needs and Requirements. If further investigation is required to define the context of the risks, then the Process Context Viewpoint from the Process perspective may be enhanced by applying more Viewpoints from the Needs perspective.

    

    The whole area of Risk Management is a prime example of where a new risk perspective could be defined. This will not be covered in any detail in this book, but some Viewpoints may form a starting point for any of you who wish to take this further.

    Following this, the analyze risks activity is considered next.

    Applying modeling to the “Analyze risks()” activity

    The Analyze risks() activity comprises the following four tasks:

    
      	Identify risks in the categories described in the Risk Management context.

      	Estimate the likelihood of their occurrence and the consequences of each identified risk.

      	Evaluate each risk against its risk thresholds.

      	For each risk that does not meet its risk threshold, define and record the recommended treatment strategies and measures.

    

    All these tasks rely on the fact that an Ontology must be in place with appropriate properties for the different types of risk to be calculated. The basic formula for generic risk is as follows:

    Risk = likelihood of occurrence x severity of outcome

    This formula, however, will vary depending on the type of risk. The formula will be captured as part of the Measurement Process and the associated Measurement strategy.

    The modeling Viewpoints and their associated Views that can be used as part of this analysis include the following:

    
      	The Need Context Viewpoint from the Needs perspective. This provides the reason why the risks may exist and provides the context for the different types.

      	The Validation Viewpoint from the Needs perspective. This is a crucial set of Views as it captures the scenarios associated with each use case from its context. These scenarios can be used to identify the likelihood of occurrences and the severity of the outcomes by considering the rainy-day scenarios to explore these outcomes.

      	The Ontology Definition Viewpoint, which will need to be defined to cover the risk concepts.

    

    Notice again how a combination of Viewpoints and therefore Views is used to achieve our desired outcomes. It is also interesting to note how we can use the same sets of Views that we discussed previously to address new problems.

    The next activity that will be discussed is manage the risk profile.

    Applying modeling to the “Manage the risk profile()” activity

    The Manage the risk profile() activity comprises the following three tasks:

    
      	Define and record the risk thresholds and conditions under which a level of risk may be accepted.

      	Establish and maintain a risk profile.

      	Periodically provide the relevant risk profile to Stakeholders based on their Needs.

    

    The risk profile is concerned with allocating threshold values to the risks that have been identified. This has not been covered explicitly in this book, but it is an area where a risk Ontology would be required, to define concepts and terminology associated with risk for a given organization. 

    A key part of this Ontology would be to explicitly define the different types of risk, as identified in the previous activity. Based on this Ontology, it is then possible to allocate properties to Ontology Elements that will allow thresholds to be defined. This will also relate to the Measurement Process, which is discussed later in this chapter, and the Information Management Process.

    Applying modeling to the “Monitor risks()” activity

    The Monitor risks() activity comprises the following three tasks:

    
      	Continually monitor all risks and the Risk Management context for changes and evaluate the risks when their state has changed.

      	Implement and monitor measures to evaluate the effectiveness of risk treatments.

      	Continually monitor for the emergence of new risks and sources throughout the Life Cycle.

    

    These tasks are concerned with monitoring risks throughout the Project Life Cycle. Both Task 1 and Task 3 are related to the analyze risks activity, where they are to be continually monitored for the occurrence of risks.

    Task 1 also relates back to the plan Risk Management activity, which defined the original context for risk. In this task, this context is monitored for any changes that may have occurred.

    The evaluation of risks is also covered here by Task 2, which will relate closely to the Measurement Process.

    Applying modeling to the “Treat risks()” activity

    The Treat risks() activity comprises the following four tasks:

    
      	Identify the recommended alternatives for risk treatment.

      	Implement risk treatment alternatives for which the Stakeholders determine that actions should be taken to make a risk acceptable.

      	When the Stakeholders accept a risk that does not meet its threshold, consider it a high priority and monitor it continually to determine whether any future risk treatment actions are necessary.

      	Once a risk treatment is selected, coordinate management action.

    

    All these tasks relate to how risks are treated once they have been identified. The Viewpoints and Views that may be used to contribute toward this are similar to the previous activity, specifically as follows:

    
      	The Need Context Viewpoint from the Needs perspective. This provides a reason why the risks may exist and provides context for the different types. This is useful here as it identifies the core use cases and, very importantly, the extensions to these core use cases that allow alternative actions to be explored.

      	The Validation Viewpoint from the Needs perspective. This is a crucial set of Views as it captures the scenarios associated with each use case from its context. These scenarios may be used here to explore and define alternative sets of actions that may be followed to treat the different types of risk.

    

    Again, notice how we are reusing Views used for previous activities. This reuse is a very powerful aspect of MBSE as not only does it allow savings in terms of time and effort but it also ensures that all the information used or created is consistent as it is from a single source of truth – the model.

    Summary of the Risk Management Process

    The Risk Management Process is a very interesting one, as it justifies a whole perspective for itself, including an Ontology for risk. The whole topic of risk is one that has a vast scope and multiple meanings, so it is a good candidate for its own perspective, which would be bespoke to a specific organization. The core of Risk Management, in terms of how the risks are identified, measured, analyzed, and treated, will be different for many organizations and, therefore, will depend on the specific risk Ontology for that organization.

    Having stated this, however, it has also been discussed that many of the Viewpoints that we have already seen in this book can be reused for the control and management of risk and many benefits can be gained from doing this. In particular, the context of risk can be modeled and defined using use cases, and then the scenarios associated with these use cases can be used for many aspects of the identification, analysis, Measurement, and treatment of these risks.

    The next Process that will be discussed is the Information Management Process.

    The Information Management Process

    The main aim of the Information Management Process is to capture, control, and disseminate all the knowledge, information, and data associated with a System and its development. This is of particular interest to MBSE as all the relevant knowledge, information, and data associated with a System is contained in the model as the single source of truth. In the context of MBSE, the Information Management Process is primarily concerned with the management of the model. 

    Indeed, all of the Information Management outcomes, activities, and tasks can be related directly back to MBSE in a slide, which was introduced in Chapter 2, Model-Based Systems Engineering, and has been referenced throughout this book. Refer to the following figure:

    [image: Figure 10.8 – Process content view for the information management process ]
    Figure 10.8: Process Content View for the Information Management Process

    The diagram here shows the Process Content View for the Information Management Process from ISO 15288 and is visualized using a SysML block definition diagram.

    The outcomes, represented by SysML properties, that are identified for this Process are described as follows:

    
      	Information available: This outcome is concerned with specific information related to particular Stakeholders, which is captured as part of the Viewpoint definition in MBSE in a slide, as introduced in Chapter 2, Model-Based Systems Engineering, in Figure 2.9.

      	Information identified: This outcome applies to the Process set and framework from MBSE in a slide, which defines the information that needs to be identified.

      	Information obtained: This outcome relates to the control of all the information that is referred to in MBSE in a slide.

      	Information representations defined: This outcome applies directly to the notation identified in MBSE in a slide.

      	Information status identified: This outcome relates to the configuration of the information contained in MBSE in a slide.

    

    These outcomes are achieved by executing several activities, each of which comprises a number of tasks. These activities will now be discussed in more detail, and we will then reference the various modeling Views that have been discussed in the book.

    Applying modeling to the “Prepare for information management()” activity

    The Prepare for information management() activity comprises the following five tasks:

    
      	Define the strategy for Information Management.

      	Define the items of information that will be managed.

      	Designate authority and responsibilities for Information Management.

      	Define the content, formats, and structure of an information item.

      	Define information maintenance actions.

    

    All these tasks can be related back to MBSE in a slide. The first task, Task 1, is concerned with defining the context and, therefore, the strategy for the Information Management Process, which will be captured using the Viewpoints from the Process perspective that were defined in Chapter 5, Systems Engineering Processes.

    The information items referenced in Task 2 and their structure and content referred to in Task 4 are all defined in the Process set and framework that form the approach to MBSE. All of these are, therefore, already defined by the Process perspective for the Process set and then all the other perspectives that comprise the MBSE framework.

    The authorities responsible for the Information Management in Task 3 and the maintenance in Task 5 will be defined as part of the Process set definition, which is contained in the Process perspective.

    The next activity that will be discussed is the Perform Information Management activity.

    Applying modeling to the “Perform information management()” activity

    The Perform information management() activity comprises the following five tasks:

    
      	Obtain, develop, or transform the identified items of information.

      	Maintain information items and their storage records and record the status of information.

      	Publish, distribute, or provide access to information and information items to designated Stakeholders.

      	Archive designated information.

      	Dispose of unwanted, invalid, or unvalidated information.

    

    All these tasks relate to model management and can be defined and captured as part of the overall Process set. These tasks are also closely related to those that form part of the Configuration Management Process, which is discussed later in this chapter.

    Summary of the Information Management Process

    Information management for MBSE is concerned with managing the model, as all the information that is pertinent to developing the System is contained in the model. This can be achieved relatively easily by defining a model management Process. As all the information, knowledge, and data that is required to develop the System is contained in one conceptual place – the model – the management of the model is relatively simple compared to managing many disparate types of documents. Of course, there will still be documents that exist and the same issues will apply to those as would exist in any document-based Systems Engineering approach.

    However, in a true MBSE approach, these documents become visualizations of Views and are, therefore, part of the model. It is when documents exist that live outside the model and contain and own information that is not contained in the model that the Information Management Process becomes very complex. In this situation, it is not a true MBSE approach but is more likely to be model-centric or model-enhanced, as discussed in Chapter 2, Model-Based Systems Engineering.

    The Configuration Management Process

    The main aim of the Configuration Management Process is to identify and control configuration items that exist as part of the System development across the Life Cycle.

    Configuration items may be directly related to particular aspects of the model and, as a consequence of this, the whole Configuration Management Process for an MBSE approach is typically far simpler than one applied to a document-based Systems Engineering approach. Refer to the following figure:
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    Figure 10.9: Process Content View for the Configuration Management Process

    The diagram here shows the Process Content View for the Configuration Management Process from ISO 15288 and is visualized using a SysML block definition diagram.

    The outcomes, represented by SysML properties, that are identified for this Process are described as follows:

    
      	Configuration items identified: This outcome identifies which Elements in the model are classed as configuration items and will, therefore, be held under configuration control.

      	Configuration baselines identified: This outcome allows different sets of configuration items to be grouped together into specific baselines.

      	Changes controlled: This outcome ensures that changes made to the configuration items in the model are controlled.

      	Configuration status: This outcome uses a configuration naming System to allow the specific status of any configuration item to be established.

      	Configuration items audited: This outcome ensures that all configuration items and baselines can be assessed in terms of their structure and content or in terms of the Processes that apply to them. Basically, this audit ensures that the MBSE approach is being applied effectively to the configuration items.

      	System releases controlled: This outcome ensures that the System releases, themselves configuration items, are controlled, along with the other configuration items.

    

    These outcomes are achieved by executing several activities, each of which comprises a number of tasks. These activities will now be discussed in more detail and reference will be made to the various modeling Views that have been discussed in the book.

    Applying modeling to the “Plan configuration management()” activity

    The Plan configuration management() activity comprises the following two tasks:

    
      	Define a Configuration Management strategy.

      	Define the archiving and retrieval approach for configuration items, Configuration Management artifacts, and data.

    

    Both Task 1 and Task 2 here may be achieved by defining the context and defining the Process effectively. This will be done by developing the Views described in the Viewpoints from the Process perspectives described in Chapter 5, Systems Engineering Processes.

    The next activity that will be discussed is closely related to this one and is the “Perform configuration identification()” activity.

    Applying modeling to the “Perform configuration identification()” activity

    The Perform configuration identification() activity comprises the following five tasks:

    
      	Identify the System Elements and information items that are configuration items.

      	Identify the hierarchy and structure of System information.

      	Establish the System, System Elements, and information item identifiers.

      	Define baselines through the Life Cycle.

      	Obtain an acquisition and supply agreement to establish a baseline.

    

    The first four of these tasks can be carried out by considering the framework that forms part of the overall MBSE approach. In Chapter 8, Modeling Verification and Validation, we discussed the idea of a cross-cutting concept that could be applied at the meta-model level and would allow any Ontology Elements to be further classified. In the examples in Chapter 8, Modeling Verification and Validation, the concept of a testable element was defined and then applied as a second stereotype to specific Ontology Elements from the Ontology definition View in order to identify them as such. The same principle can be applied here to identifying a configuration item, as shown in the following diagram:
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    Figure 10.10: Ontology definition View showing a configuration item

    The diagram here shows an Ontology definition View that identifies a configuration item as a type of cross-cutting element and is visualized using a SysML block definition diagram.

    The concept of the cross-cutting element applies at the meta-model level, which is to say that it applies to conceptual model elements. In this case, these model elements are the Ontology Element and the Viewpoint. This means that any Ontology Element or any Viewpoint can be held as a configuration item. Remember that the diagram here is generic and should be applied to the Ontology and the Viewpoints. This is carried out by applying the configuration item stereotype to the following two Viewpoints and their associated Views from the MBSE framework definition:

    
      	The Viewpoint Relationships Viewpoint, which will allow specific Viewpoints to be identified as configuration items. In reality, this will apply to every Viewpoint that forms part of the framework and, therefore, will apply to every View that comprises the actual model.

      	The Ontology Definition Viewpoint, which will allow specific Ontology Elements to be classified as configuration items. Technically, all Ontology Elements may be identified as configuration items but, in reality, only a subset of the Ontology Elements will be identified as such. This is important for change control, as the configuration item identifies the level of granularity at which change control will be applied.

    

    Once the configuration items have been identified (Task 1), their structure will also be discerned through the following:

    
      	The Ontology Definition Views, in the case of the configuration items applying to Ontology Elements

      	The Viewpoint Relationship Views and the Viewpoint Definition Views, in the case of the configuration items applying to the Viewpoints

    

    These two items also fulfill Task 2, which is concerned with the structure of the configuration items. Indeed, the same approach can be taken to identify the specific baselines, as required to satisfy Task 4.

    As all the configuration items relate to different elements in the model, they may be automatically identified by their instance classifiers in the model. Remember that all model elements are actually instances of Ontology Elements, which provide the basis for model consistency; therefore, each model element has its own identifier, which is contained as part of the model. Following this, each configuration item is also part of the model and will, therefore, have its own unique identifier within the model. This satisfies Task 3 in the list.

    The final task, Task 5, relates to the Information Management Process, in that it identifies which Stakeholders are interested in the specific information in the model (Viewpoints and Ontology Elements) that forms the baselines that were defined as part of Task 4.

    The next activity that will be discussed is closely related to this one and is the perform configuration change management activity.

    Applying modeling to the “Perform configuration change management()” activity

    The Perform configuration change management() activity comprises the following four tasks:

    
      	Identify and record requests for change and requests for variance.

      	Coordinate, evaluate, and disposition requests for change and requests for variance.

      	Submit requests for review and approval.

      	Track and manage approved changes to the baseline, requests for change, and requests for variance.

    

    All these tasks relate to the change control of the configuration items. Again, because all the configuration items form part of the overall model, the Process becomes simpler as everything is contained in the model.

    To achieve these tasks, therefore, a change management Process for the model must be put into place. This involves defining the Process, as described in Chapter 5, Systems Engineering Processes. Firstly, the context for the process is defined. Then, using the other views outlined in the Process perspective, the Process is described.

    Applying modeling to the “Perform configuration status accounting()” activity

    The Perform configuration status accounting() activity comprises the following two tasks:

    
      	Develop and maintain the Configuration Management status information for System elements, baselines, and releases.

      	Capture, store, and report Configuration Management data.

    

    These two tasks can be easily achieved when using an MBSE approach but will depend heavily on the use of a modeling tool. The status information for all the configuration items may be held and recorded easily in the tool by defining the status as part of the model element definition in the tool, satisfying Task 1. Many tools will allow a configuration status to be assigned to a model element, and even tools that don’t have this specific capability will allow information to be recorded against any element anyway.

    Once this information is in the model, it has been captured and stored and may be retrieved easily by running a report that is part of any modeling tool, satisfying Task 2. Of course, the exact way this is achieved will depend on the specific tool.

    Applying modeling to the “Perform configuration evaluation()” activity

    The Perform configuration evaluation() activity comprises the following six tasks:

    
      	Identify the Need for Configuration Management audits and schedule the events.

      	Verify that the product configuration meets the configuration requirements.

      	Monitor the incorporation of approved configuration changes.

      	Assess whether the System meets the baseline functional and performance capabilities.

      	Assess whether the System conforms to the operational and configuration information items.

      	Record the CM audit results and disposition action items.

    

    This activity is primarily concerned with ensuring that the configuration items are fit for their purpose and meet their original Needs. The key to this is defining the context for the Configuration Management Process and establishing the use cases that represent the Needs. This may be achieved by creating the Views based on the Viewpoints in the Needs perspective that were described in Chapter 6, Needs and Requirements. This contributes to satisfying Task 1 and Task 2.

    Following directly on from this, the Needs perspective may also be used to create several scenarios using validation Views. These will be the two types that were discussed in Chapter 6, Needs and Requirements: operational scenarios used to establish the functional capabilities of the configuration items, and performance scenarios used to capture the performance capabilities. This contributes to satisfying Task 4 and Task 5.

    In terms of Task 3, which is concerned with managing changes to the configuration items, it is covered by a previously discussed activity: performing configuration change management.

    The final task, Task 6, is covered by the Information Management Process.

    The final activity that will be discussed is the perform release control activity.

    Applying modeling to the “Perform release control()” activity

    The Perform release control() activity comprises the following two tasks:

    
      	Approve System releases and deliveries.

      	Track and manage System releases and deliveries.

    

    The releases of the System will be based on a specific configuration that can be described using the Viewpoints discussed in the Systems perspective, which was described in Chapter 3, Systems and Interfaces. These Views will form the basis for the approval Process required by Task 1 and the System can be tracked by creating instances of the configuration items, using the Views described in the Systems perspective, as required by Task 2.

    Summary of the Configuration Management Process

    The Configuration Management Process is crucial to a successful MBSE as the model is a living entity that will evolve as time goes on, and this evolution must be controlled by applying effective Configuration Management. In a true model-based approach, the actual management is easier than in a document-based approach as all the information is contained in a single place, which is the model. Therefore, if the model can be controlled, then so can all the information that we intend to use to develop and deliver the System.

    Also, configuration items, whether these are model elements, Views, or baselines (based on configurations of the System), can all be identified and defined using the Ontology, which provides the basis for consistency across the whole model.

    Almost every organization will already have a Configuration Management Process in place, so, in most cases, it will be a matter of tailoring that existing Process to cope with models, rather than creating the Process from scratch. Of course, all of this should be done using modeling, as described in Chapter 5, Systems Engineering Processes.

    The Measurement Process

    The aim of the Measurement Process is to define how different attributes of the Project will be identified and measured. The Process Content View for the Measurement Process is shown in the following diagram:

    [image: Figure 10.11 – Process content view for the measurement process ]
    Figure 10.11: Process Content View for the Measurement Process

    The diagram here shows the Process Content View for the Measurement Process from ISO 15288 and is visualized using a SysML block definition diagram.

    The outcomes, represented by SysML properties, that are identified for this Process are described as follows:

    
      	Data analyzed: This outcome is concerned with ensuring that the data from the Measurements is understood.

      	Information item: This outcome is concerned with ensuring that all relevant information items that are to be measured are identified.

      	Information needs identified: This outcome is concerned with ensuring that the context for the Measurement Process is adequately captured and understood.

      	Measures identified: This outcome ensures that relevant measures are identified, based on the context.

      	Required data collected: This outcome makes sure that the data created as a result of the Measurement is managed effectively.

    

    These outcomes are achieved by executing several activities, each of which comprises a number of tasks. These activities will now be discussed in more detail and reference will be made back to the various modeling Views discussed in the book.

    Applying modeling to the “Prepare for measurement()” activity

    The Prepare for measurement() activity comprises the following seven tasks:

    
      	Define the measurement strategy.

      	Describe the characteristics of the organization that are relevant to the measurement.

      	Identify and prioritize the information needs.

      	Select and specify measures that satisfy the information needs.

      	Define the data collection, analysis, access, and reporting procedures.

      	Define the criteria for evaluating the information items and the measurement Process.

      	Identify and plan for the necessary enabling systems or services to be used.

    

    This activity relies on an effective understanding of the underlying Needs of the Measurement Process, which can be captured by creating Need Views based on the Viewpoints described in the Needs perspective outlined in Chapter 6, Needs and Requirements. This satisfies Task 1, Task 2, and Task 3.

    The Needs perspective can also be used to achieve Task 4, as the performance scenarios that are created as part of the validation Views may be used to define what these actual measures use SysML constraint blocks for. Also, and very importantly, as these measures are captured in validation Views, they can then be related directly back to the original use cases from the context, which satisfies Task 4 and Task 6.

    Task 5 is covered by the Information Management Process, which was discussed previously in this chapter. The final task, Task 7, may be satisfied by considering the configurations of the System described in the Systems perspective, where other enabling Systems and services were identified.

    Applying modeling to the “Perform measurement()” activity

    The Perform measurement() activity comprises the following four tasks:

    
      	Integrate procedures for data generation, collection, analysis, and reporting into the relevant processes.

      	Collect, store, and verify data.

      	Analyze data and develop information items.

      	Record results and inform the measurement users.

    

    All the tasks for this activity rely heavily on the Information Management Process.

    The first task, Task 1, can again be achieved by applying the approach described in Chapter 5, Systems Engineering Processes, where the Process perspective was described.

    The remaining tasks, Task 2, Task 3, and Task 4, are all covered by applying the Information Management Process effectively. These will also use the Views that were created as part of the previous activity to define the actual measures.

    Summary of the Measurement Process

    The Measurement Process is concerned with defining several measures that can be applied to different pieces of information. As a result of this, the Measurement Process relies heavily on the Information Management Process.

    As with all the Processes that have been described, there is a strong Need to establish the context of exactly what needs to be done for the Process to achieve its ends. Again, this can be achieved successfully by applying the Process perspective described in Chapter 5, Systems Engineering Processes.

    The Quality Assurance Process

    The main aim of the Quality Assurance Process is to ensure that all the Processes, products, and services that are associated with the System are fit for purpose. Refer to the following figure:
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    Figure 10.12: Process Content View for the Quality Assurance Process

    The diagram here shows the Process Content View for the Quality Assurance Process from ISO 15288 and is visualized using a SysML block definition diagram.

    The outcomes, represented by SysML properties, identified for this Process are described as follows:

    
      	Evaluation results provided: This outcome ensures good communication with the Stakeholders.

      	Incidents resolved: This outcome covers what needs to happen if any non-conformity is discovered.

      	Problems treated: This outcome also relates to resolving issues.

      	Project products evaluated: Consistent with quality management policies, procedures, and requirements, this relates to evaluating the actual Processes for Quality Assurance.

      	QA criteria identified: This ensures that the quality attributes can be measured.

      	QA procedures defined: This outcome ensures that Processes are defined for Quality Assurance.

    

    These outcomes are achieved by executing several activities, each of which comprises a number of tasks. These activities will now be discussed in more detail and reference will be made to the various modeling Views discussed in the book.

    Applying modeling to the “Prepare for quality assurance()” activity

    The Prepare for quality assurance() activity comprises the following two tasks:

    
      	Define a Quality Assurance strategy.

      	Establish independence of Quality Assurance from other Life Cycle Processes.

    

    Both tasks are covered by creating an effective Process context View for the Quality Assurance Process set and framework.

    Applying modeling to the “Perform product or service evaluations()” activity

    The Perform product or service evaluations() activity comprises the following two tasks:

    
      	Evaluate products and services for conformity with the established criteria, contracts, standards, and regulations.

      	Perform verification and validation of the outputs of the Life Cycle Processes to determine conformity with the specified requirements.

    

    Both tasks are satisfied by validating the context. This includes ensuring that the constraints are satisfied, Task 1, and ensuring that all the other Needs are satisfied, Task 2.

    Applying modeling to the “Perform process evaluations()” activity

    The Perform process evaluations() activity comprises the following three tasks:

    
      	Evaluate the Project’s Life Cycle Processes for conformity.

      	Evaluate tools and environments that support or automate the Process for conformance.

      	Evaluate supplier Processes for conformance to Process requirements.

    

    All these tasks may be achieved by mapping thae Process perspective Views to the source tools or supplier Processes. This is another good use of the Process perspective that was described in Chapter 5, Systems Engineering Processes.

    Applying modeling to the “Treat incidents and problems()” activity

    The Treat incidents and problems() activity comprises the following seven tasks:

    
      	Incidents are recorded, analyzed, and classified.

      	Incidents are resolved or elevated to problems.

      	Problems are recorded, analyzed, and classified.

      	Treatments for problems are prioritized and implementation is tracked.

      	Trends in incidents and problems are noted and analyzed.

      	Stakeholders are informed of the status of incidents and problems.

      	Incidents and problems are tracked to closure.

    

    All these tasks relate to the correct execution of the Quality Assurance Processes. As these Processes will be fully modeled, it is relatively easy to identify any non-conformity or any other issues by considering two of the Views in the Process perspective:

    
      	The Process Behavior Views: These Views will show any deviation from the intended flow of the Processes.

      	The Information Views: These Views will show any deviation from the defined structure and content of any artifacts associated with the Processes.

    

    Also, as the Stakeholders have already been identified in the Stakeholder View, and the activities they are responsible for are defined in the Process Behavior View as described in Chapter 5, Systems Engineering Processes, then communication with Stakeholders has already been established.

    Applying modeling to the “Manage quality assurance records and reports()” activity

    The Manage quality assurance records and reports() activity comprises the following three tasks:

    
      	Create records and reports related to Quality Assurance activities.

      	Maintain, store, and distribute records and reports.

      	Identify incidents and problems associated with product, service, and Process evaluations.

    

    Again, these tasks will be achieved by using the Views defined in the Process perspective, which covers the Information Management Processes.

    Summary of the quality assurance Process

    The Quality Assurance Process is relatively straightforward as, once more, almost all the information called for by the standard is contained in existing Views in the model.

    At the heart of any Quality Assurance Process lies a well-defined set of Processes, and we have already seen in Chapter 5, Systems Engineering Processes, how this is an excellent application for modeling. It is no surprise, therefore, that the Process perspective is used extensively for Quality Assurance.

    Summary

    This chapter has considered, at a very high level, the Technical Management Processes that are demanded by the ISO 15288 standard. It should be very clear by now that almost all the information required to satisfy ISO 15288 is already contained in the model.

    The main aim here is to show how the model Views that we have created and discussed throughout this book can be used to help define the approach for MBSE in terms of the Processes specified in the standard. The more that we can reuse these Views, the more value we can demonstrate from each View.

    Remember that MBSE is an approach, and the heart of this approach comprises the Process set and the framework. Both have already been defined in a rigorous fashion by modeling, as has been demonstrated throughout this book.

    The next chapter looks at some specific examples of methodologies that may be useful for MBSE activities.

    Self-assessment tasks

    
      	Create a high-level Process Content View, based on the one in Figure 10.1, but add dependencies between the Processes.

      	Now, tailor the Process Content View created in Task 1 to your own organization.

      	Select one of the management Processes and define it for your organization.

    

    Learn more on Discord

    To join the Discord community for this book – where you can share feedback, ask questions to the author, and learn about new releases – follow the QR code below:

    https://packt.link/xjBEI
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    Section IV

    Next Steps

    This final section of the book provides direction on where you can go next in order to continue with Systems Engineering.

    This section has the following chapters:

    
      	Chapter 11, Deploying MBSE 

      	Chapter 12, The Art of Modeling

      	Chapter 13, Best Practices
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    Deploying MBSE

    In this chapter, we shall introduce the concept of MBSE deployment, which is concerned with how to implement MBSE into an organization.

    In this chapter, we will discuss:

    
      	An introduction to Trinity, which provides an overview of the Trinity approach and why it is so important.

      	Defining the rationale for MBSE, which explains how to capture the Reason why an organization would want to implement MBSE in their business, and forms one of the three prongs of Trinity.

      	Defining the MBSE Capability, which discusses how to assess the current and target the MBSE Capability of an organization, and forms another of the three prongs of Trinity.

      	Defining the MBSE Maturity, which discusses how to assess the current and target MBSE Maturity of an organization, which forms the final prong of Trinity.

      	Defining the MBSE strategy, which takes the output of the three prongs of Trinity and combines them to create an MBSE deployment strategy.

    

    Finally, as in all chapters, we shall wrap up with some conclusions.

    This chapter will draw upon the information that has run through this entire book and provide a solid way forward to deploy all of the techniques that we have discussed so far.

    Introduction to Trinity

    One of the discussion points that has been raised throughout this book is how MBSE is a natural evolution of traditional Systems Engineering, and how its adoption in industry has also increased. This increase in the adoption of MBSE has led to a natural evolution of the Maturity of MBSE in industry – as more organizations adopt MBSE, the Maturity of its use also evolves. If we look back over the last 30 years (which is how long the author has worked in the field of MBSE), we can see empirical evidence as to how the use of MBSE has changed, broadly speaking:

    
      	In the 1990s and early 2000s, the main question that was asked why should modeling be applied in the first place? The argument for modeling was a compelling one, but many people were still reluctant, or even fearful, to start to adopt modeling. The creation of UML at the end of 1997 went a long way to encourage the adoption of modeling, with the creation of a single Unified Modeling Language as opposed to over 150 different existing Notations. Despite its widespread adoption in the Software Engineering industry, as has been discussed previously, there was still a reluctance to adopt such techniques in Systems Engineering.

      	In the mid to late 2000s, the question changed from why should we model? to how do we model effectively and efficiently? This was helped by the introduction of SysML in 2006, which made many previously reluctant System Engineers become more comfortable with modeling.

      	In the late 2010s, the question changed again to how do we deploy these techniques in our industry? There is now a real need to understand how best to deploy MBSE.

    

    This is the position that we find ourselves in today, where there is a great need for MBSE in industry but a lack of practical knowledge concerning how to implement it in an existing organization.

    It is important that MBSE is deployed in an effective manner; otherwise, the whole initiative may fail, or even worse, the doomed implementation may lead people to assume that it is MBSE itself at fault, and not the deployment.

    Empirical evidence suggests that the most common reasons for MBSE failing to be deployed effectively are:

    
      	The organization deploying MBSE does not understand it. This can be related directly back to MBSE in a slide because, as we discussed previously, many people do not appreciate what must be considered for effective MBSE. An example of this is where an organization buys a modeling tool, makes it available to their engineers, and then expects MBSE to be deployed effectively. Clearly, without appropriate consideration of the Notations, Model, Frameworks, Process Sets, and Standards, this will be, at best, an incomplete exercise.

      	The organization deploying MBSE has unrealistic expectations concerning the time and effort involved in deploying MBSE. This can be related directly back to the MBSE Evolution that was discussed previously. An example of this is when an organization currently sits at Stage 1: Document-Based Systems Engineering but wants to prioritize a Stage 4: Model-Centric Systems Engineering or Stage 5: Model-Based Systems Engineering activity. It is quite common for an organization to want to implement, for example, a technique known as variant modeling, which is classed according to our evolutionary scale, as an advanced application immediately, when they are at Stage 1.

      	The organization deploying MBSE does not understand why they want to implement MBSE into their business. It is essential to understand why MBSE is to be deployed, what the intended benefits are, and how they can be demonstrated before an MBSE solution can be put into place. If this is not the case, then the organization is essentially putting in place a solution to a problem that is not understood in the first place.

    

    The three reasons for MBSE failure that are provided here form the basis for Trinity, and the next sections will explore each of these in detail.

    Before the Trinity assessment can begin in earnest, it is essential to set the scope of the assessment. When we refer to the scope, we can think of this as setting the boundary of the assessment so that we know what is included in it and what is not. So, for example, we may consider the following options:

    
      	Will the assessment apply to the whole organization? In all but the smallest of organizations, the answer to this will be no. When we deal with any medium or large organization, there will be a lot of variability in the Capability in any given area, so it is important that we can set a boundary for this. In the case of small organizations, this may very well be feasible. In small organizations, it is far more probable that it works in a coherent and common fashion. As an organization gets larger in size, this becomes more difficult, and so the next two options are more usual.

      	Will the assessment apply to a particular group within the organization? This is a far more common situation where a particular group within an organization, sometimes referred to as an organizational unit, forms the boundary of the assessment. This is interesting as multiple assessments may be carried out on different groups within the business, and their results may then be compared to provide a bigger picture of the organization’s overall MBSE implementation strategy.

      	Will the assessment apply to a particular System? Another common way to set the scope is to define it based on a particular System being developed. This provides the advantage of limiting the scope, but it makes it open to different organizational units that may be involved in this development.

    

    Once the scope has been defined, then the assessment proper can begin, as detailed in the next three sections.

    Defining the rationale for MBSE

    In this section, we will look at how to capture the rationale, or Reason, for MBSE deployment. It is essential that this is formally captured and agreed upon for several reasons, including the following:

    
      	The need for MBSE is different for each organization. It is crucial to understand what specific Needs MBSE will address in a particular organization, and also the associated benefits the organization wants to deliver from MBSE.

      	The team must demonstrate that the benefits have been satisfied. There is no point in identifying the Needs and associated benefits if there is no agreed mechanism to demonstrate that they have been met successfully.

      	If the need is not understood, then an appropriate solution cannot be put into place. Again, this cannot be stressed enough – putting a solution in place for a problem that does not exist is, at best, a lottery with a minimal chance of success.

    

    With these points in mind, we shall now explore just how to capture the rationale behind an MBSE deployment.

    Understanding the Context for MBSE deployment

    To capture the rationale behind anything, we essentially ask the question, why? Whenever we ask this question, we ask which Stakeholders are relevant and what benefits each Stakeholder is expected to realize. The modeling techniques that we can use to capture this information are the same as the ones discussed in Chapter 6, Needs and Requirements.

    When we discussed modeling Needs and Requirements, one of the key aspects of understanding these Needs was to understand the various Contexts behind them, which will yield the true reason behind them.

    If we were to perform an Internet search on the benefits of MBSE, the results that would come back would predominantly relate to the features of various modeling tools. 

    This is not the same as understanding the Reason why you want to deploy MBSE. The Reason why an organization or program wants to deploy MBSE will differ significantly from organization to organization and program to program, as the need for MBSE is contextual.

    The Context, by way of a recap, represents a specific point of view from which to look at anything, bearing in mind that we can look at the same statement of Need, and it will potentially take on a different meaning, or interpretation, depending on this Context.

    It was established that there were several types of Context that could be considered, and the one that we shall use primarily here is the Stakeholder Context. To understand the Stakeholder Context, we must first identify and define the various Stakeholders involved in the MBSE deployment.

    The following diagram shows a generic set of Stakeholders that forms a starting point to identify a full set of Stakeholders.
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    Figure 11.1: A Stakeholder View identifying a generic Stakeholder set for MBSE deployment

    The diagram in Figure 11.1 shows a Stakeholder View that identifies a generic set of Stakeholders related to MBSE deployment, visualized using a SysML block definition diagram.

    The basic structure of the diagram is the same as the other Stakeholder Views seen so far in this book, in that there are three specializations that sit beneath the top-level Stakeholder, which are:

    
      	The «Customer» Stakeholder, who represents the target beneficiaries of the System that are often necessary to compromise with.

      	The «External» Stakeholder, who represents the independent Stakeholders that are typically difficult to influence, yet still have an interest in the System.

      	The «Supplier» Stakeholder, who has the responsibility for realizing the System successfully.

    

    So far, these Stakeholders are the same as discussed previously, but it is at the next level of specialization where we start to see the roles that have an interest in realizing the System successfully:

    
      	The «User» Stakeholder, who is responsible for utilizing the final System.

      	The «Operator» Stakeholder, who is responsible for ensuring that the System can be used in the way it was intended.

      	The «System Sponsor» Stakeholder, who is responsible for funding the realization of the System.

      	The «Standard» Stakeholder, which represents any best-practice source, such as an international standard, certification, legislation, etc.

      	The «Tool» Stakeholder, which represents modeling tools, management tools, simulation tools, CAD tools, etc.

      	The «Manager» Stakeholder, which represents the set of roles responsible for delivering the System on time and within budget.

      	The «Engineer» Stakeholder, which represents the set of roles to realize the System successfully.

      	The «MBSE Sponsor», who is responsible for deploying MBSE in the business.

    

    Each Stakeholder has their own Context, which will be, potentially, different from the others, as each looks at the deployment of MBSE from a different point of view. To illustrate this, we will look at some different Contexts.
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    Figure 11.2: Need Context View – MBSE deployment – Engineer Context

    The diagram in Figure 11.2 shows a Need Context View that focuses on the deployment of MBSE from the point of view, or Context, of the Engineer, and it is visualized using a SysML use case diagram.

    The overall aim of this View is to show the Reasons why the Engineer wants to implement MBSE in the business. 

    In this example, the emphasis is on “Improve system development,” and this has three inclusions to: “Improve the use of tools,” “Demonstrate compliance,” and “Improve information consistency.” There are also three constraints shown here that reflect the need to address the three evils of Systems Engineering – it is left to the reader to read the rest of this View.

    It should be emphasized that this is an example of why an Engineer may want to implement MBSE, and that this will change from organization to organization. Other examples of Reasons why an Engineer may want to implement MBSE include to reduce development time, improve tendering, improve certification compliance, improve collaboration with other organizations, etc. Consider other such Reasons and think about how they may change the Context shown here. Remember, these Contexts are personal to you and your business or program, so they must reflect your overall Reason.

    Let us now look at another Context and see how the Reasons may change because the Context has changed:
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    Figure 11.3: MBSE deployment – MBSE Sponsor Context

    At this point in the book, it is left to the reader to read this View before our discussion regarding it.

    The first thing to notice here is just how different these two Contexts appear, which is because they show two very different points of View. This is a crucial point and forms the essence of why we need to consider Context in any situation – different Contexts interpret the same things in very different ways.

    What is clear now is that when considering the MBSE solution that will be put in place, there are now two very different Contexts that need to be satisfied. Demonstrating the satisfaction of each of the use cases in these two Views is key to managing the different Stakeholder expectations, and if we want the MBSE deployment to be successful, then we must put effort into satisfying all relevant Stakeholders.

    When the various Contexts have been defined, there are two main options for the next step:

    
      	Leave the Contexts as they are, identify and resolve any conflicts, and use them as the basis to assess the success level of the MBSE deployment.

      	Combine the Contexts into a single, high-level Context, with the individual Contexts sitting below. This is sometimes more desirable when there are multiple Contexts and the overarching Reasons behind MBSE deployment may be unclear. It is up to the reader to decide which will add the most value to their organization.

    

    The Contexts that have been considered so far have been created by simply talking about the Reasons and capturing them using SysML use case diagrams, and this is a perfectly acceptable approach when the Stakeholders are Systems Engineers or have a technical background. There will be instances, however, where the target Stakeholders do not have a technical background, and so other techniques may need to be employed, one of which is discussed in the following section.

    Context Modeling using TeamStorming

    The previous section showed how to capture Contexts using the techniques that have been highlighted so far in this book, by using MBSE Notation, such as SysML directly. In many cases, however, this may not be appropriate as the target audience of Stakeholders may not have a technical background and may be intimidated or scared by the prospect of using what is perceived as a technical language like SysML. In such situations, this is where we should consider employing MBSE by stealth, which was first discussed in Chapter 2, Model-Based Systems Engineering. One such technique that is very useful for this is known as TeamStorming [TeamStorming 2019a] [TeamStorming 2019b].

    TeamStorming is a powerful way to brainstorm ideas and promote team building at the same time. The target audience for TeamStorming is non-technical Stakeholders, such as board members (CEOs, CTOs, CIOs, etc.), customers, business managers, and other Stakeholders who do not necessarily have a technical background. TeamStorming is also very powerful when there are large numbers of Stakeholders involved, in the tens or even over a hundred!

    The aim of the approach is to answer a pre-defined question, which can be anything that relates to business but, for purposes of Trinity, is what are our Reasons for wanting to implement MBSE in our organization?

    The approach itself comprises a number of well-proven educational-based games, played either as individuals or in small groups.

    The flow begins with a game called “X Factors” being played. The aim of this game is to identify any key factors that may be of importance to the business, such as key Stakeholders, products, services, Systems, etc. In MBSE terms, this provides an input into identifying the key Contexts that need to be considered.

    Following on, the next game is known as “To Affinity and Beyond” where the factors that were introduced in the previous game are grouped together and prioritized. This provides an excellent basis for the Context definition, which is created in the next game, “Empathy, Empathy”. The aim of this game is to provide an indication of what a successful implementation would look like to a chosen Stakeholder in terms of what they are feeling, saying, thinking and hearing, known as an empathy map. This is, essentially, providing the basis for a Context Definition View.

    Continuing to the next game, which is “Morning Glory”, the participants now take their empathy maps and describe a typical storyboard that will enact, or enable, the results of the empathy map. This maps directly to creating sunny-day Scenarios, which is part of our standard approach to MBSE.

    These story boards are now considered by the participants in a game called “Animal Magic” and, at each point in the storyboard, the participants identify enabling actions, which will contribute in a positive way to the outcome of the storyboard; they also create monkey wrenches, which are disruptive actions that will ruin the storyboard, all of which are recorded on cards.

    These cards are now played out on the storyboard during “Showdown,” which allows the participants to think about how things can wrong, what needs to be in place to enable them to achieve success and, crucially, identify new actions to mitigate any unsolved monkey wrenches. This allows the participants to carry out a full Scenario analysis based on the Context.

    All of these outputs are now brought together and fed back to the participants in the final game, which is “The Big Picture”.

    TeamStorming is a full MBSE approach that allows us to identify the underlying Reason behind the MBSE initiative, which can then be mapped directly to a more formal, SysML interpretation of the game results. 

    TeamStorming, however, does not appear to be an MBSE approach – it involves writing and drawing on cards, sticky notes, and paper. Because of this friendly-face approach, it does not appear to be MBSE and is, therefore, far more accessible to non-experts. TeamStorming is a perfect example of deploying MBSE by stealth!

    For more details of TeamStorming, see [TeamStorming 2019a] and [TeamStorming 2019b].

    Defining the MBSE Capability

    In this section, we shall look at how to define the MBSE Capability based on the scope previously defined.

    When we talk about Capability, we talk about the ability of an organization or organizational unit. Therefore, when we talk about the MBSE Capability, then we talk about the ability of the organization or organizational unit to carry out MBSE.

    Previously in this book, we discussed the MBSE Capability, although we did not explicitly refer to it as such. Indeed we have discussed, and referred back to, on many occasions MBSE in a slide, which we may actually use as basis for our MBSE Capability definition. We stated that MBSE in a slide provides an overview of the considerations that must be thought about when implementing MBSE, and this forms the basis for the MBSE Capability.

    When we consider MBSE implementation, we really talk about changing the business for the better. When we talk about any kind of business change, we must consider two things:

    
      	The current situation, or the now. This gives us a baseline from which we can plan a future deployment or change – in this case, the implementation of MBSE.

      	The target situation or the to-be. This provides us with a target at which to aim when we consider MBSE deployment.

    

    We can capture both of these by considering the scope of the assessment and asking ourselves, where are we now? Where do we want to be?

    We can then plot these directly onto MBSE in a slide.

    Capturing the current MBSE Capability

    The current MBSE Capability must be captured in terms of the concepts described by MBSE in a slide, but with the qualifier of asking, where are we now? It is crucial at this point that the responses that are provided to the question are 100% honest and are not exaggerated in any way to save face. Remember, the aim of the whole Trinity assessment is to provide the basis for business change that will improve the way that the organization, or organizational unit, operates.

    The current situation must be captured, therefore, which covers the following areas:

    
      	The Implementation group from MBSE in a slide. This area of MBSE in a slide covers the use of tools. Remember at this point that we are not just limiting ourselves to MBSE tools, but using any tools that can be used by the organization, such as MBSE tools, simulation tools, office tools, CAD tools, management tools, PLM tools, pen and paper, drawing packages, and so on. We need to identify which tools are currently being used and also what their level of use is. 

      	The Visualization group from MBSE in a slide. This area of MBSE in a slide covers the use of any specific language or notation. Again, we are not necessarily limiting ourselves to notations such as SysML, but we may cover any number of notations, such as another visual modeling language (UML, BPMN, etc.), formal languages (VDM, Z, etc.), simulation languages (including both continuous and discrete event languages), model-based engineering languages that are specific to different areas of engineering (CAD, electrical circuits, heat flows, etc.), or any languages based on constraints such as safety and security, etc. This list goes on. 

      	The System group from MBSE in a slide. This area of MBSE in a slide covers how the system development is currently carried out. This will include asking if the current Systems Engineering development is document-based or model-based. Also, is there any consistency between the artifacts produced by the development?

      	The Approach group from MBSE in a slide. This area of MBSE in a slide covers the two main aspects of the approach: the Framework (which provides the blueprint for the Model) and the Process Set (which shows how to use the Framework and will cover methods, methodologies, etc.). In each case, we are looking to establish if there is a current Framework and Process Set in place and if they are fit for purpose. This will also reflect back on the previous point, as whether there is a document-based or model-based approach in place will make a difference here.

      	The Compliance group from MBSE in a slide. This area of MBSE in a slide allows us to capture what Standards (or any other best-practice source such as certification, legislation, etc.) are applicable. Also, we need to capture whether the approach, which was discussed in the previous point, maps to these Standards.

    

    The answers to these questions can now be added to MBSE in a slide as annotations to the original diagram, as shown below.
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    Figure 11.4: Example of the current situation for MBSE Capability

    The diagram in Figure 11.4 shows an example of how the answers to each of the questions were recorded and added to the original MBSE in a slide diagram as annotations. In this example, the following answers were uncovered:

    
      	With regards to Implementation, there were two tools identified as being in place, which were a Requirements management tool and a simulation tool. Notice that the lack of an MBSE tool was also captured here as part of the answer.

      	With regards to the Notation, there was no formal visualization. Although diagrams were used frequently in many documents, these were all ad hoc with no specific notation behind them. As there was no specific notation, there was no consistency between any of the diagrams, rendering them as drawings rather than Views that make up a Model. Alongside these drawings, there was also the output from the simulation tools. These simulation outputs, although being self-consistent, were not consistent with any of the other drawings that were produced.

      	With regards to the System, all information that was collected as part of the System development was located in, and was owned by, the set of documents. Again, there was no consistency of information between these documents and any consistency checks in place were carried out manually.

      	With regards to the Approach, there was no formally documented Process Set in place, with all process-related information being decided upon and executed by individuals on the project. Also, there was no Framework whatsoever in place.

      	With regards to Compliance, the organization was aware of standards and that, indeed, they should really be doing something about them, but there was no demonstrable compliance in place in the business.

    

    These answers were summarized and, as can be seen, added to the original MBSE in a slide. The next step is to ask questions based on the same groups in MBSE in a slide but, rather than asking what the current situation is, we ask what the target situation should be. We answer this based on the aspirational or desirable situation that we would like to see as the best possible outcome of the assessment. This information is captured in a similar way, as shown in the following diagram.
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    Figure 11.5: Example of the target situation for MBSE Capability

    The diagram in Figure 11.5 shows the target situation for MBSE implementation. This is arrived at by asking about where we want to be in an ideal implementation of MBSE. In the same way as previously, we can now annotate the original diagram with the answers to the new question, as follows:

    
      	With regards to the Implementation, there is a desire to use a SysML modeling tool, but also to retain the use of both the requirements management tool and the simulation tool. In addition to this, there is a need to integrate the SysML tool with the requirements management tool. This is interesting because it identifies the whole area of tool interoperability as being important. Also, going under the banner of tool interoperability, there is a desire to implement automatic document generation from the modeling tool. This means that the modeling tool must be able to integrate with the standard office suite of tools that is being used currently in the business.

      	With regards to the Visualization, it was decided that the only extra Notation needed was SysML. This was to be used in conjunction with the simulation language identified as part of the tools.

      	With regards to the System, it was decided that a model-centric approach would be necessary to implement the System. One of the benefits of using a Model is, of course, that all the information contained in the Model will be consistent. This is something that the organization wanted to be enforced by implementing automated consistency checking across the Model.

      	With regards to the Approach, this is where most of the discussion was directed. The Approach was to include a full Framework that covered not only the traditional areas of Systems Engineering but also emphasized two specific areas of interest, those of safety modeling and variant modeling. The use of the Framework should also be captured in a formal Process Set, which, in conjunction with the Framework, would form the overall approach. Another factor that emerged from the discussion was that the organizational unit wanted to maintain the Framework and Process Set in the future themselves, rather than rely on external experts.

      	With regards to Compliance, it was decided that no further action was required at this point in time. This may seem unusual, but it is not totally unheard of. What is important, however, is that the topic of compliance was raised and discussed, and the conclusion was to take no further action. This is important as it demonstrates that there was a formal decision being made not to pursue this subject, rather than just an implication or assumption.

    

    This now means that we have established both the current and target Capability for the MBSE deployment within the organization. These will be used as inputs to generate the overall MBSE strategy. The MBSE Capability forms the second prong of the Trinity approach, which leaves the third prong, defining the MBSE Maturity, to be discussed in the next section.

    Defining the MBSE Maturity

    In this section, we shall look at how to define the MBSE Maturity based on the scope that was previously defined.

    When we talk about the Maturity of MBSE, we basically talk about how far down the evolutionary scale the organization is on its transition from document-based Systems Engineering to Model-based Systems Engineering. Again, this was discussed at length in this book when we described the Evolution of MBSE.

    In the same way that we did for the MBSE Capability, it is important to establish both the current and target situation in the organization with regards to the Capability. Continuing the same example, the current MBSE Maturity can be seen in the following diagram.
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    Figure 11.6: Example of the current situation for MBSE Maturity

    The diagram in  Figure 11.6 shows an example of the current level of Maturity of the organization based on the MBSE Maturity scale.

    It was decided that the organization, based on the defined scope, currently sits at Stage 2: Document-centric Systems Engineering. This is based on the following outcomes, which are shown as annotations to the diagram:

    
      	The current situation has “Staff with SE Competence,” which is typical for both Stage 1 and Stage 2. The fact that the organization is still in business and is currently developing Systems means that there must be staff with Systems Engineering competence; otherwise, they would not be delivering Systems. Typically, the organization has delivered Systems for many years, but the complexity of the Systems has evolved and increased so much that their current approach to Systems Engineering is no longer fit for purpose.

      	The organization has an “MBSE Champion in place”. The MBSE Champion is a Stakeholder who is responsible for the deployment and promotion of MBSE within the business. The MBSE Champion forms the focal point for MBSE in the business, and although they must have some MBSE knowledge, they needn’t be an expert, as long as they are established as a common point for other staff to go to in order to answer any questions concerning the MBSE deployment. This is typical for an organization at Stage 2, as opposed to Stage 1, where some initial steps toward MBSE have been taken.

      	The organization has an “Informal, undocumented document-based process” in place. This may, at first glance, seem like an oxymoron, but when we say undocumented here, we are referring to a tacit approach that exists only inside people’s heads, rather than having been committed to a document, so there is no formal reference for how the process works. When we refer to document-based here, we are referring to the artifacts produced by the tacit approach. Therefore, there is no formally recorded approach in place, yet documents are being produced as the output of the process. Again, this is typical for an organization sitting at either Stage 1 or Stage 2 on the evolutionary scale.

      	The organization is “Using Office tools, including drawing packages”. ‘This is typical of Stage 2, as opposed to Stage 1, as some initial forays into modeling, albeit simply drawing pictures, are currently being made.

      	There is a “Well-established use of Cradle Requirements Management Tool” in the business. The use of tools, even if they are not MBSE modeling tools, is again typical of Stage 2. It shows that tools were previously embraced by the organization in an attempt to improve, and potentially automate, the approach.

      	There is also a “Well-established use of simulation tools.” This is the same as the previous point and, again, is typical of an organization at Stage 2.

    

    The conclusion, therefore, is that this organization is currently sitting at Stage 2: Document-centric Systems Engineering.

    The descriptions here are describing the outcomes that would be seen at each Stage. These are unique for each organization but may be based on the generic outcomes that were introduced in the description of each evolutionary Stage in Chapter 2, Model-Based Systems Engineering.

    Notice how this information has been annotated at the evolutionary scale, along with a clear indication of the current Stage, shown by the dashed vertical line on the diagram.

    Now that the current situation has been established, it is time to consider the target situation, which describes where the organization sees itself being as a result of successful MBSE implementation, which is shown in the following diagram.
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    Figure 11.7: Example of the target situation for MBSE Maturity

    The diagram in Figure 11.7 shows the target situation for MBSE Maturity based on the example.

    At first glance, this diagram is a lot busier than the one shown in Figure 11.6, as it contains all the original information, plus a lot more.

    The first major addition to this diagram is the description of the outcomes that are associated with each Stage that can be seen at the bottom of the diagram, which are as follows:

    
      	To achieve Stage 3, we must see the following outcomes: “Practical SysML competence,” “Knowledge of key MBSE concepts,” “Initial Framework,” “Initial process model,” “EA tool familiarity,” “Interface with Cradle,” and “Some automated checks.”

      	To achieve Stage 4, we must see the following outcomes: “Increasing knowledge of MBSE,” “Mature framework,” “Mature process model,” “Use of standard patterns,” “Simple document generation,” “Initial safety profile,” and “Increasing automated checks.”

      	To achieve Stage 5, we must see the following outcomes: “Able to create frameworks and profiles,” “Full framework,” “Full process model,” “Inclusion of Variant Modeling in the framework,” “Full document generation,” and “Fully automated checks”.

    

    There are some interesting discussion points that arise from this. Firstly, notice how many of the outcomes map back to the MBSE Capability in terms of MBSE in a slide. So, for example, at Stage 3, we start to see mention of the Notation (SysML), the tool (Cradle and EA), the consistent relationship between Notations (the automated checks), and the introduction of the initial Framework and Process Set. Remember that to implement MBSE effectively, we must address all of the elements of the MBSE in a slide diagram; therefore, it makes sense that we should see them appear on the evolutionary scale. We can also see more elements from MBSE in a slide mentioned at Stage 4 and Stage 5.

    Alongside the standard elements from MBSE in a slide, we can also see new outcomes being introduced. For example, at Stage 3, we see interfacing between tools and some automation; at Stage 4, we see the use of patterns and a new profile for safety; and at Stage 5, we see the ability to create Frameworks and profiles and a complete Framework that covers an advanced application such as Variant Modeling.

    Again, although these may be based on the generic outcomes that were discussed in Chapter 2, Model-Based Systems Engineering, these are only used as a starting point for discussion as every organization is potentially unique in what it wants to achieve.

    The second major discussion point that arises from the diagram lines along the top of the diagram refers back to the activities that must be put into place in order to achieve the outcomes that were just described. In the same way that the outcomes are based on the previously defined generic outcome, the activities are based on the generic activities that were described as part of the original evolutionary scale.

    In this example, we can see that there are three major transitions between the Stages with a set of associated activities, which are as follows:

    
      	The Stage 1 to Stage 2 transition requires the implementation of the following activities: “SysML training,” “MBSE mentoring,” “Framework and process workshops,” “Framework and process implementation,” “Framework and process training,” “Tool training,” “Script development,” and “Cradle integration.”

      	The Stage 2 to Stage 3 transition requires the implementation of the following activities: “MBSE training,” “Document generation mentoring,” “Safety profile implementation,” and “Safety profile mentoring.”

      	The Stage 3 to Stage 4 transition requires the implementation of the following activities: “Framework creation mentoring” and “Scripting mentoring.”

    

    Notice how, depending on the desired outcomes, the activities will change based on the Stage. For example, where “Initial framework” is a required outcome for Stage 3, the associated activities for the transition to Stage 3 are “Framework and process workshops” and “Framework and process implementation.” When we get to Stage 4, the required outcomes are “Maturing framework” and “Initial safety profile,” which leads to not only the continued activities of “Framework and process workshops” and “Framework and process implementation” but also the activities of “Safety profile implementation” and “Safety profile mentoring.” By the time we arrive at Stage 5, these activities are now supported by the activity ‘Framework creation mentoring’ as the desired outcome for this Stage is “Able to create framework and profiles.” So, the activity “Able to create framework and profiles” would be inappropriate at previous Stages as there was no desired outcome relating to the organization having the capability to be “Able to create frameworks and processes.”

    Clearly, these activities will vary from organization to organization based on the required capabilities and an understanding of the rationale.

    In these last two sections, we have discussed how to capture and define the MBSE Capability and the MBSE Maturity, but we have not described in any detail any techniques that we may use to achieve this. In the next section, we shall discuss a specific technique that allows us to do this.

    A Technique to capture the MBSE Capability and MBSE Maturity

    In the previous two sections, we discussed how to capture both the MBSE Capability and the MBSE Maturity for the organization based on the rationale itself. When we discussed defining the rationale for the MBSE deployment, we introduced two specific techniques (Context Modeling and TeamStorming) that could be used to affect the capture of the rationale. In this section, we shall introduce a technique that can be used to capture both the MBSE Capability and the MBSE Maturity of an organization, known as RAVEnS. 

    The term RAVEnS is a backronym for Review and Assessment for the Visualization of Enabling Strategies, which is a bit of a mouthful and, therefore, shall simply be referred to as RAVEnS from this point forward.

    When we initially discussed MBSE implementation way back in Chapter 2, Model-Based Systems Engineering, we introduced the MBSE Mantra, which stated that to implement MBSE we needed to consider three aspects of Systems Engineering, which were:

    
      	People, by which we really meant competence.

      	Process, by which we meant the overall approach.

      	Tools, by which we meant any tool, ranging from pen and paper to the full-blown engineering and management suites of tools that enable us to carry out our Systems Engineering effectively.

    

    The second two points here (Process and Tools) were expanded upon when we introduced MBSE in a slide. Indeed, we may view MBSE in a slide as a modern-day interpretation of these two aspects.

    The first point here (People) is not really covered by MBSE in a slide but was considered when we looked at the MBSE evolutionary scale, where we considered the outcomes that relate to all three of these points.

    Following on from this, it makes sense that the MBSE Mantra is core to the capture of both MBSE Capability and MBSE Maturity.

    An excellent way to capture any information while, at the same time, obtaining a consensus from a group of people is to run a workshop. Therefore, when capturing the MBSE Capability and Maturity, it is highly recommended to run such a workshop where the topics of discussion are the three elements of the MBSE Mantra – namely, People, Process, and tools. However, as with any workshop, it is far more efficient and effective if we use specific techniques to drive the discussion. Therefore, in the same way that we use TeamStorming to facilitate a workshop to capture the rationale for the Trinity assessment, we can use RAVEnS to facilitate the capture of the MBSE Capability and Maturity.

    RAVEnS can be used as a standalone basic process, but it is greatly enhanced through the use of some basic physical tools, which will be described in the following two sections.

    The basic RAVEnS process

    In this short section, we shall introduce a simple Process that describes how the RAVEnS Process works. Consider the following simple Process Behavior View.
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    Figure 11.8: Process Behavior View (PBV) for basic RAVEnS Process

    The diagram in Figure 11.8 shows a simple Process Behavior View for the RAVEnS Process, which is visualized using a SysML activity diagram. This approach to modeling Processes was described in Chapter 5, Systems Engineering Processes.

    The Process begins with the Facilitator introducing the scope for the assessment (“introduce agreed scope”) that has been previously agreed as part of defining the rationale for Trinity. This is then immediately followed by the Facilitator introducing the idea of RAVEnS and the basic Process that will be followed by the participants (“introduce RAVEnS”)

    The workshop then begins in earnest where the Facilitator facilitates the main session (“facilitate”), with the participants coming together over a table and using the RAVEnS pieces to discuss the People, Process, and tools that are of interest to their organization (“discuss people, process, and tools”). This is where the RAVEnS pieces first come into play. 

    The RAVEnS pieces are essentially a set of cutout pieces that allows a 3D visualization of the People, Process, and tools. These pieces can be cut out of paper or cardboard, or, in the case shown in this example, they can be laser-cut into plastic pieces. These pieces comprise five types:

    
      	The central hub, which is a triangle with “Ontology” printed on one side. This can be used as an indication of the presence of an Ontology, using the printed side, or left empty, using the blank side.

      	Three main branches, each of which is a long rectangle and labeled with either “People”, “Process,” or “Tools.”

      	Main topics, which are large squares printed with main topics associated with each branch. For example, the “Process” branch may have main topics such as “Standards”, “Systems Engineering Processes”, “Patterns,” etc. Notice how each of these will relate either directly (such as Standards) or indirectly (such as Patterns, which is a type of Framework) back to the main considerations in MBSE in a slide.

      	Specific topics, which are small squares printed with specific topics that may relate to a main topic. For example, the main topic standards may have specific topics, such as ‘ISO 15288,’ ‘ISO 42010,’ ISO 15504,’ and so on.

      	Linking pieces, which allow topics, both main and specific, to be linked together, if desired.

    

    These pieces are made available to the participants who lay them out on a large table (or on the floor, if a table is not available) to form what looks like a large puzzle. What is key here is that the participants lay the pieces down while the Facilitator is there, purely to advise on what the pieces may represent. Also, some blank pieces for each type are provided for participants to write on any topics not covered in the basic RAVEnS set.

    Once a consensus has been arrived at (“achieve consensus”), the participants are then asked to prioritize the topics using small, plastic, colored counters using the following code:

    
      	A red counter means that there is no current Capability in the business

      	An amber, or yellow, counter means that there is some Capability but that it is incomplete

      	A green counter means that there is a complete, or almost complete, Capability in the business.

    

    The next step is to prioritize based on the implementation (“prioritize implementation”) where, again, colored counters are used with the following code:

    
      	A white counter indicates that there is a low priority for implementing the desired Capability.

      	A blue counter indicates that there is a strong desire to implement the priority.

    

    This is all then followed by the Facilitator performing a review of what has been agreed (“review”).

    The following diagram shows an overview of the RAVEnS pieces for the example.
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    Figure 11.9: Overview of RAVEnS pieces showing Capability priority

    The diagram in Figure 11.9 shows the RAVEnS pieces assembled into, what looks like, a puzzle. Note the central hub is the black triangle with “Ontology” printed on it. This is because, as readers should be aware by now, the Ontology is the cornerstone of successful MBSE. If it is felt that the use of the term Ontology may confuse the participants then, of course, this may be flipped over to show the blank side.

    The three main branches can be clearly seen, with “People” being red, “Process” being blue, and “Tools” being purple.

    The Facilitator will lay out the central triangular hub and the three main branches, and then it is over to the participants to add the relevant main topics, specific topics, and link pieces.

    In this example, the Capability priorities may also be seen as the red, amber, and green circular counters that are placed on each topic.

    The following diagram shows the same RAVEnS puzzle but focuses on the “People” branch.
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    Figure 11.10: RAVEnS puzzle focusing on the ‘People’ branch

    The diagram in Figure 11.10 shows the same RAVEnS puzzle as in Figure 11.9, but this time it is focused solely on the “People” branch.

    There are three main branches identified:

    
      	“Professional Registration,” which has two specific topics, “Accreditation” and “Chartership.” The red counter indicates that this is aspirational and that no current Capability exists in this area.

      	“Retention of Staff,” which is hand-drawn. This means that it is a topic that is not usually raised during an assessment but one that the business feels is important to them. This is prioritized as amber, which means that the business has gone some way to achieving this Capability.

      	“Competence,” which has two link pieces, “Mentoring” and “Training.” These lead to two other main topics, which are “Bespoke Framework” with the specific topic “Competency Framework,” indicating that the business has identified a need for its own Competency Framework; and “Upskilling,” where there are three specific topics: “SysML,” “MBSE training,” and “MBRE (Model-based Requirements Engineering) training.”

    

    When the RAVEnS puzzle has been constructed and the Capability priorities established, then implementation priorities can be considered, as shown in the following diagram.
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    Figure 11.11: RAVEnS puzzle showing the implementation priorities

    The diagram in Figure 11.11 shows the same RAVEnS puzzle, but this time, the implementation priorities have been identified.

    Now that the puzzle is complete, it is a relatively straightforward matter to look at it and then assess:

    
      	The current and target MBSE capabilities. This is done by annotating the standard MBSE in a slide diagram with information taken directly from the completed RAVEnS puzzle as shown in Figure 11.5  and then Figure 11.6.

      	The current and target MBSE Maturity. This is done by annotating the standard MBSE evolutionary scale diagram with information taken directly from the completed RAVEnS puzzles, as shown in Figure 11.7 and Figure 11.8.

    

    The information shown here is just a brief overview of all the RAVEnS techniques. A far-more in-depth description, along with more detail and cutout templates for the RAVEnS pieces, can be found in [Trinity 2020].

    Now that the MBSE Capability and MBSE Maturity have been defined, it is possible to move on to the final step, which is to define the overall MBSE implementation strategy.

    Defining the MBSE Strategy

    This section provides an overview of how to take the information that was gathered so far in the Trinity assessment and use that to create an MBSE implementation strategy. In reality, this will be a Trinity Assessment Report that is, essentially, a document-based visualization of the Model that was produced during the assessment.

    The ultimate strategy needs to cover, at a minimum, the following four areas:

    
      	An overview of the Trinity assessment itself. The extent to which this is covered is up to the Trinity assessment team. For example, some clients may prefer a detailed overview of the whole approach, with the artifacts produced at each point shown formally in the main part of the Trinity Strategy Report. This will include all the workshop outputs (such as TeamStorming and RAVEnS, the MBSE Capability summary (MBSE in a slide annotated for current and target situations), MBSE Maturity (annotated for both current and target situations), timelines, work package definitions, and so on. In other cases, most of this can be provided as an annex to the main report, which can be kept short and sweet and just include the timelines and work package definitions.

      	The timelines. This is crucial as it shows the time frames over which each of the evolutionary Stages will be achieved, what outcomes are expected at each Stage, and what activities will need to be carried out.

      	Work packages. Based on the activities identified as part of the target situation for the Maturity of MBSE, as seen in Figure 11.7, a set of work packages is identified and defined. These are important as they provide a statement of discrete work activities, which can then be used as a basis for tendering for other organizational units (whether internal to the current organization, or external organizations).

      	Validation against the original Reason. The final part of the strategy is to demonstrate that the work packages relate to the original statements in the Reason definition.

    

    The following table shows an example of what a timeline could look like, presented in a simple table.

    
      
        
          	
            Starting Stage: Stage 2: Document-centric

          
        

        
          	
            Target Stage

          
          	
            Timescale (from Start)

          
          	
            Capabilities to achieve in Stage

          
          	
            Activities needed to achieve Stage and Capabilities

          
        

      
      
        
          	
            Stage 3: Model-enhance

          
          	
            3 months

          
          	
            
              	Practical SysML competence

              	Knowledge of key MBSE concepts

              	Initial framework

              	Initial process model

              	EA tool familiarity

              	Interface with Cradle

              	Some automated checks

            

          
          	
            
              	SysML training

              	MBSE mentoring

              	Framework and process workshops

              	Framework and process implementation

              	Framework and process training

              	Tool training

              	Script development

              	Cradle integration

            

          
        

        
          	
            Stage 4: Model-centric

          
          	
            6–9 months

          
          	
            
              	Increasing knowledge of MBSE

              	Maturing framework

              	Maturing process model

              	Use of standard patterns

              	Simple document generation

              	Initial safety profile

              	Increasing automated checks

            

          
          	
            As for Stages 2 to 3 plus:

            
              	MBSE training

              	Document generation mentoring

              	Safety profile implementation

              	Safety profile mentoring

            

          
        

      
    

    Table 11.1: Example timeline for MBSE strategy

    Table 11.1 shows an example of a timeline for a Trinity assessment.

    The table itself comprises four columns, which are:

    
      	Target Stage: This shows the number of target stages that have been identified based on the information captured in Figure 11.7. In this case, the start stage was Stage 2: Document-centric Systems Engineering, and the two target stages were Stage 3: Model-enhanced Systems Engineering and Stage 4: Model-centric Systems Engineering.

      	Timescale: The second column shows the predicted timescale from the start of the project, in which it is estimated that each target Stage will be achieved. In this example, the time is shown relative to the start of the project, rather than showing explicit dates. Of course, either approach can be adopted, which will depend on the specific assessment that is carried out.

      	Capabilities to achieve in Stage: The information in the third column is taken directly from the information in Figure 11.6 where target capabilities were identified. 

      	Activities needed to achieve Stage and Capability: The final column shows the required activities identified in Figure 11.7.

    

    Notice how all the information in this table has been derived from our two worksheets that show MBSE Capability Figure 11.5) and MBSE Maturity Figure 11.7).

    From an MBSE point of view, this table is simply a visualization of a View, but rather than using SysML as the Notation, we use a tabular format, which can be more user-friendly to non-technical Stakeholders.

    The next item in the MBSE strategy will be the definition of the work packages, an example of which is shown in the following table.

    
      
        
          	
            Work Package 1

          
          	
            Task

          
          	
            Effort

          
          	
            Rate

          
        

      
      
        
          	
            WP1.1 MBSE training

          
        

        
          	
            MBSE awareness training

          
          	
            Key Project team members MBSE awareness training, for up to 12 participants

          
          	
            1 day per instance

          
          	
            Remote training

          
        

        
          	
            Introduction to MBSE

          
          	
            Key project staff who will cary out MBSE activities on the project, for up to 12 participants

          
          	
            3 days per instance

          
          	
            Remote training

          
        

        
          	
            WP1.2 Framework and Process Set definition

          
        

        
          	
            Framework and Process Workshop

          
          	
            Run an interactive workshop with key project members. Deliverable: agreed workshop output notes

          
          	
            1 day per workshop

          
          	
            Consultancy

            (on-site)

          
        

        
          	
            Initial Framework and Process modeling. Deliverable: initial version of the MBSE Model

          
          	
            10 days 

          
          	
            Back office

          
        

        
          	
            Framework and Process Definition Workshop

          
          	
            Framework and Process Definition Workshop. Deliverable: agreed workshop output notes

          
          	
            2 days

          
          	
            Consultancy

            (on-site)

          
        

      
    

    Table 11.2: Example work package definition

    Table 11.2 shows an example of a work package definition, based on the activities identified as part of the timeline for the MBSE strategy.

    There are no strict rules on the format of the work package definition, as this will vary from organization to organization and depend on the exact Needs of the clients. In this example, we have simply shown:

    
      	The work package name. In this example we can see that there are two main work packages, WP1.1 and WP1.2, each of which is split into several lower-level work packages.

      	The task names. These tasks identify the exact piece of work that must be carried out.

      	The effort. In this case, the effort for each task is defined in terms of person-days.

      	The rate. This defines the rate that will be charged for the different tasks, depending on the nature of the work.

    

    The information shown here is based on an example organization and uses their own Ontology, so terms like ‘work package,’ ‘task,’ and ‘rate’ have a specific meaning for that particular organization. Obviously when carrying out a Trinity assessment, the relevant Ontology will be used.

    The final part of the MBSE strategy is the validation of the original Reason, as shown in the following table.

    
      
        
          	
            Reason

          
          	
            Met by (Capabilities and Activities)

          
        

      
      
        
          	
            Implement MBSE

          
          	
        

        
          	
            Develop MBSE competence of staff

          
          	
            
              	Knowledge of key MBSE concepts

              	Increasing knowledge of MBSE

            

          
        

        
          	
            
              	MBSE training

              	MBSE mentoring

            

          
        

        
          	
            Develop staff’s competence with SysML

          
          	
            
              	Practical SysML competence

            

          
        

        
          	
            
              	SysML training

            

          
        

      
    

    Table 11.3: Validation of the original Reason

    Table 11.3 shows the final part of the MBSE strategy where we map the Capabilities and Activities identified during the assessment back to the original Reason statements that were made.

    This is important as it provides an additional validation check that demonstrates how the MBSE strategy will satisfy the original Reason.

    The table itself is relatively simple and shows, in this example, just two columns, which are the original Reason statements in the first column and the relevant Capabilities and Activities that satisfy these in the second column.

    Summary

    In this chapter, we saw how we can go to the next level of MBSE by considering its implementation and deployment in a real organization by carrying out a Trinity assessment. The Trinity assessment comprises three crucial parts, which are:

    
      	Defining the rationale for MBSE, which explains how to capture the Reason why an organization would want to implement MBSE in their business and forms one of the three prongs of Trinity.

      	Defining the MBSE Capability, which discusses how to assess the current and target MBSE Capability of an organization and forms another of the three prongs of Trinity.

      	Defining the MBSE Maturity, which discusses how to assess the current and target MBSE Maturity of an organization and that forms the final prong of Trinity.

    

    All of this information is then used as input to define the MBSE strategy, which provides a detailed set of timelines, the work packages, and the overall validation of the original Reason statements.

    This chapter has only provided a very high-level overview of Trinity; for more information, see [Trinity 2020].

    Self-assessment tasks

    
      	Identify the rationale for MBSE in your organization by creating a set of Reason statements.

      	Carry out a simple assessment to identify the MBSE Capability in terms of the current situation and the target situation. Record this information on the MBSE in a slide diagram.

      	Carry out a simple assessment to identify the MBSE Maturity in terms of the current situation and the target situation. Record this information on the MBSE evolution diagram.
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    The Art of Modeling

    In this chapter, we depart from the previous structure of the book by providing some insights, hints, and tips about how to apply Model-Based Systems Engineering (MBSE) effectively. The content of this chapter is based solely on the author’s personal experiences of working in the field of MBSE for the last 30+ years. As such, the information presented here is often anecdotal and based on empirical evidence and should be taken in the form of general advice, rather than being carved in stone.

    In this chapter, we shall discuss topics such as:

    
      	The philosophy of MBSE. Some of the general considerations that we must consider to apply MBSE effectively, inducing the difference between the noun Model and the verb model, and some psychological considerations to bear in mind when modeling.

      	Some practical strategies for modeling. This includes how to model in an iterative manner and how to use alternative visualizations, including the essential, if somewhat deceptive, practice of MBSE by stealth.

      	How to handle complexity. This includes the impact of complexity on understanding, but also how to quantify complexity in formal, informal, and very informal ways.

      	How to inspire confidence in Models. We must be able to inspire confidence in our Stakeholders in the modeling that we carry out and be able to demonstrate the value of modeling.

    

    Overall, this chapter is intended to provide friendly advice on how to model effectively and efficiently.

    The Philosophy of MBSE

    In this section, we shall consider some of the philosophical implications of applying an MBSE approach.

    As has been discussed previously throughout this book, there are many misconceptions associated with MBSE, some of which will be expanded upon here.

    Perhaps the biggest philosophical point to get across, which has been stated previously, is that MBSE is Systems Engineering. It is not a subset of Systems Engineering, such as Needs modeling, Design, Verification, or Validation, as it covers the whole of Systems Engineering. Anything that we can do with Systems Engineering, we can do with MBSE. Therefore, if we can view something as a System, then we can apply MBSE to it.

    One of the consistent points made throughout this book is that we have been applying MBSE to not just the technical aspects of System development, but also to define our overall approach. At first glance, this may seem a little odd, as it comes across that we are using MBSE to define MBSE, but this is exactly what we are doing! All that we need to do to clarify this is to imagine that our actual business is a System, and then matters begin to become clearer.

    If we consider our business to be a System then, of course, we can apply MBSE to it.

    This is a powerful statement and one that has far-reaching implications across our wider organization. Indeed, this is the approach that we have been applying throughout the book through the definition of various Frameworks and Process Sets.

    The Model versus Modeling

    When we initially start to think about MBSE, it is important that we understand exactly what we mean by the term. Obviously, the key to this is the word Model. Just the term Model is fraught with ambiguity as different people will have different definitions of exactly what they mean by that term, which we can clarify by effective use of an Ontology.

    A common misunderstanding, however, that often arises comes from the fact that the word Model can be both a noun and a verb, which leads us to two main discussion points, which are related to each other.

    Firstly, consider the word Model when used as a noun; so, we may be referring to “a Model” or “the Model.” When we use the word as a noun, we are really talking about a simplified representation of something, or an abstraction. 

    Therefore, it could be a mathematical model, a graphical model, a text statement, etc. Another aspect of the term Model when used as a noun is that all of the information in the Model must be consistent; otherwise, it is not a Model, it is just a collection of information.

    This last point is crucial to get clear because when we use the expression MBSE, we are actually using the noun form of Model and not the verb. This is important because when we talk about MBSE, we are really carrying out Systems Engineering with a single, consistent set of information. This is also from where we get expressions such as single source of truth and single point of reference.

    This is a very important philosophical point and one that must be completely understood!

    The Psychology of Modeling

    When we model something, there are some important psychological considerations to bear in mind, particularly when we are beginning our modeling. Very often, we will apply the modeling right at the beginning of a piece of work, especially when we are trying to understand the fundamentals of a problem, which is often referred to as brainstorming.

    When carrying out this early modeling, it is very important that we use the Model as the communication medium. Imagine a situation where we have three or four people in a room who are gathered around a whiteboard and are trying to get their heads around a new problem.

    One strategy that is often adopted here is for the participants to discuss the problem and, when they have reached a conclusion, to write it on the board as a summary in the form of a Model. In this way, we are using the Model to capture the output of a discussion, but the main medium for discussion is the conversation and not the Model. There is nothing per se wrong with this as an approach, but it is not nearly as efficient as using the Model itself as the communication medium. No matter how long the discussion is, as soon as the summary is committed to the whiteboard in the form of a Model, experience has taught us that there will be some immediate changes and it will not be as perfect as people envisaged.

    One of the most difficult things to do when modeling is to know the first thing that should be written on the board. You can stare at a blank board for as long as you want, but as soon as you write the first element of the Model on the board, someone will have an opinion and question what is written.

    One of the ways to view modeling is that it is a way of getting information out of people’s heads and onto paper or, in this case, a whiteboard. We will discuss the iteration of Models later in this chapter, but for now, bear in mind that whatever we write down initially, it will not be what we end up with in terms of the Model. In that case, get to the Model as soon as possible and start to write the Model on the board.

    One strategy that is very powerful is to have a rough first guess of the Model and to put that up on the board, even though you know that it is not correct. In this way, we are inviting comment from the participants, rather than telling them what the answer is. It is far more effective and efficient to start with something and then correct it than to start with a blank sheet of paper and expect the correct answer immediately.

    Consider an example of this in which we are trying to define an Ontology, in the form of an Ontology Definition View, for a specific team within the business. We could just ask the participants what the most important concepts are and then sketch whatever people say. If this approach is adopted, there will be a lot of silence before anyone puts forward any suggestions, and whatever is suggested first will be questioned anyway. A far better way is to put up a generic Ontology as a starting point, such as one of the basic Ontologies that we have seen in this book, and then invite comments. It is far easier for people to comment on something that already exists than to give the correct answer immediately. Most people do not know the correct answer immediately (hence the workshop!) and cannot articulate what they want to get across. However, most people will know when they see something that they disagree with and will not be shy about offering their opinion in this situation. Of course, this will not apply to everyone as some people may not want to offer an opinion, but modeling certainly encourages a higher level of interaction.

    Another large advantage of using the Model as the communication medium is that it depersonalizes the information. When we have a discussion, if somebody initiates an opinion and then the other participants immediately start to question this opinion, it can be very intimidating. All the participants will be looking directly at the initiator and posing questions directly to them, which can be very upsetting and even deter the initiator from putting any more opinions forward. This is not the way to encourage communication amongst a team nor to achieve a true consensus.

    When we use the Model as the communication medium, all the participants will be looking at the whiteboard rather than at a specific person. This is far more encouraging in terms of the discussion. Rather than questioning the individual, we are now questioning the Model, which we want all participants to contribute to and, therefore, own. Encourage the participants to take the pen and sketch up their own opinions. In this way, the Model is truly owned by everyone, which depersonalizes the information.

    By depersonalizing the information in the form of the Model, we are encouraging and stimulating healthy debate and discussion, and it is a very powerful way to achieve a true consensus.

    Strategies for Practical Modeling

    When we previously discussed modeling and, more specifically, how we perform the activity of how to model, we related this to the three evils of Systems Engineering, namely: complexity, communication, and understanding. In this section, we shall discuss a number of specific modeling strategies and relate them to the three evils.

    From source material to models, and back

    One of the main activities that we perform when modeling is to start with some source information and, from this, to create a Model. This source information may take many forms, such as documents, drawings, other Models, equations, operational descriptions, and so on. Indeed, it is often desirable to go from natural, spoken language into a Model. All of these make sense when we think about it because whenever we capture any information, regardless of the format, then we are essentially representing it in the form of some language. At a basic level, therefore, when we perform the act of modeling, we are translating from one form of language (whatever the source information is described using) to another language (our target modeling language). In our case, we shall treat this target modeling language as the SysML Notation.

    When we translate from any language to another, we look for constructs that we recognize and understand and map them onto similar constructs in the target language.

    One of the pieces of advice that have been given throughout this book is that when we are reading SysML, for example, we read the diagrams out loud. One indication that the SysML is well structured is that we should be able to read the SysML out loud and that somebody else who is only listening should be able to understand what is being said.

    This is one of the main reasons that we attribute spoken-language phrases with specific SysML constructs so that when we read SysML out loud, it makes sense. But the reverse also holds true – if we can look out for these same phrases in the way that people speak, or the way that people write things down, then we can start to abstract the Model from the text, whether it is spoken or written down.

    As an example, let us consider some of the statements that have been made previously in this book regarding MBSE evolution:

    MBSE Evolution comprises a number of Stages. There are five Stages, Stage 1 through to Stage 5. Each Stage is described by a number of Outcomes, each of which is categorized by one of People, Processes, and Tools. In order to move from one Stage to another, we cross a transition, and a number of Activities are executed to effect this.

    First of all, this reads like natural English and should not be too difficult for anyone to understand. So, let us try to abstract some modeling constructs from this.

    One of the simplest things to do initially is to just identify any nouns that exist in the text.

    MBSE Evolution comprises a number of Stages. There are five Stages, Stage 1 through to Stage 5. Each Stage is described by a number of Outcomes, each of which is categorized by one of People, Processes, and Tools. In order to move from one Stage to another, we cross a transition, and a number of Activities are executed to effect this.

    These nouns can now be shown, on the iteration, as SysML blocks on a SysML block definition diagram:
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    Figure 12.1: Iteration #1 – Capturing nouns as SysML blocks

    The diagram in Figure 12.1 shows the nouns that have been identified from the text and that are shown as simple SysML blocks. Notice that we have shown the nouns in their singular form, with the exception of People, which is more natural-looking as its plural.

    One of the key tenets of Systems Thinking and also of modeling is that we do not think about concepts in isolation, but that we always relate them together. A good next step, therefore, is to try to identify any relationships between these nouns from the original text. When we introduced SysML, we mentioned that relationships often manifest themselves as verb constructs, so we now look for any verb constructs where the nouns are the verb’s subject and object.

    Bearing this in mind, we can now produce another iteration of our block diagram:
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    Figure 12.2: Iteration #2 – verbs shown as basic relationships

    The diagram in Figure 12.2 shows the relationships that were abstracted from the original text, shown as very simple SysML association relationships that are annotated with the reading-direction arrow. This is now starting to look a little more like the type of modeling that we have been carrying out so far.

    The next step may be to look at the relationships and ask ourselves if there are any specific constructs in our modeling Notation that will allow us to make the diagram more precise. Also, we can start to ask if there is any information missing from the text that we may identify because of the modeling. So, for example:

    
      	When we see text that states things like “is made up of,” “comprises,” “is constituted of,” etc., we know that there is the SysML construct of composition that we can use to express this.

      	When we see text that states things like “is a type of,” “has types,” “categorizes,” “group together,” etc., we know that there is the SysML construct of generalization that we can use to express this.

      	When we see text that states: “via,” “to move from… to,” “cross,” etc., we know that there is the SysML construct of the association block that we can use to express this.

      	When we see text that states: “…through to…,” “ranging from … to…,” etc., this can often reveal that there is information missing from the diagram, in which case we may need to talk to the relevant Stakeholders for clarification.

    

    It is now possible to create a new iteration that applies this information, as shown below:
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    Figure 12.3: Iteration #3 – adding more specific relationships

    The diagram in Figure 12.3 shows the next iteration, where we have added some SysML-specific relationships to the diagram. There are a few interesting points to note here.

    Firstly, some of the relationships have translated very nicely and directly into SysML special relationships, such as the composition between the MBSE Evolution and Stage, and the generalization that applies to the Outcome. The generalization that applies to Stage, however, is somewhat different. In this case, we started with the original statement of “There are five Stages, Stage 1 through to Stage 5.” This is clearly telling us that there are five Stages, or five types of Stage, but the text only goes on to mention two of them. This shows us that there is missing information in the original text, which allows us to go back to the relevant Stakeholder and question this statement. In this case, it turns out that there are five Stages and that each actually has its own name, rather than just a number, so we can add this information to the diagram to make it more complete and more precise. This is a good example of how just applying the modeling allows us to understand the source information even more by forcing us to ask questions about the information presented.

    The next point of interest here is the addition of the SysML association block that goes from Stage to Stage. Originally, we had a simple “crosses” association but, upon further consideration, it was decided that it would be a better representation of the intent of the source information to show this as the association block. The diagram now reads: “Stage crosses to Stage via a Transition” rather than “Stage crosses Transition.” Again, the very act of modeling is forcing us to question what is initially presented and to increase our level of understanding.

    The final iteration, in our example, will add the relevant multiplicities to the diagram. In this case, we are looking for elements of the original statements that relate to numbers, such as “number of,” “five,” “each,” “one or more,” “some,” etc. This results in the following diagram:
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    Figure 12.4: Iteration #4 – adding the multiplicities

    The diagram in Figure 12.4 shows the fourth iteration of our block diagram, this time with the relevant multiplicities added.

    In this example, we see a number of multiplicities, including explicit numbers (5), ranges of numbers (1…*), referencing each (1), and a number of different ratios of the numbers (1 to 1, 1 to 1…*).

    Now that the diagram is complete, you can also imagine taking this diagram as the source information and translating this into the English spoken language. We will create some text statements, similar to the original statements, but actually more complete and more precise and, therefore, better than the original.

    Iterative Modeling and the Brontosaurus of Complexity

    In Chapter 2, Model-Based Systems Engineering, we introduced the popular fellow that we now know as the Brontosaurus of Complexity. This was initially introduced to show how the complexity of the System will evolve through its Life Cycle and that MBSE will enable us to control the length of the transition between smiley face and tail, and also control the thickness of the belly of the Brontosaurus. The Brontosaurus of Complexity may also allow us to gain an insight into how we model iteratively.

    In the previous section, we built up our View, visualized by a SysML block definition diagram, over a number of iterations. This is for very practical reasons.

    In reality, we never get things right the first time around. Forget inspirational quotations that make grandiose statements such as “first time, on time, every time” because they relate to a fool’s paradise that simply does not exist in the real world. In the real world, we simply do not get things right the first time that we do them, so we need to accept this and work with it to our own advantage.

    For examples of this, look at the way that we, as humans, solve problems (bearing in mind that, as engineers, our job is to solve problems). We state the problem, understand the problem, and then solve the problem, but this never happens in a linear way. We try to look at the problem from different points of view (Contexts) and we try out different (candidate) solutions to the problem until we find one that we think will work. Then, we test and refine the solution until it satisfies our original statement of the problem. This is simply not a linear process, and we end up going back and forth and revisiting previous statements, ideas, and theories.

    Exactly the same is true for modeling – we try out different ideas, we iterate between Views, and we evolve these Views until they are fit for purpose. This is what we saw in the simple example in the previous section where we started with a simple visualization (Figure 12.1), then evolved this by adding specific SysML constructs (Figure 12.2 and Figure 12.3), and then used these constructs to question the source information until we ended up with a View that we were happy with (Figure 4).

    When we model, therefore, consider the Brontosaurus of Complexity once more. What we start off with will not be the end result, so don’t worry about it. The complexity of our Model, the number of Views, the visualization of our Views, and so on will evolve as time goes on until we end up at the tail of the Brontosaurus with an optimum solution.

    Changing the Visualization

    So far, we have discussed going from text into SysML and vice versa, but we also need to consider going into other Notations. One of the points that has been discussed regarding MBSE is that we must speak to each Stakeholder using a spoken language that they both understand and that they are familiar with. This is essential to addressing the evil of communication and its associated problems.

    When we are moving from text to a technical language, such as SysML, UML, BPMN, etc., we can apply the same approach as we did in the previous section, where we build up a View over a number of iterations. 

    It is also perfectly possible, and often very desirable, to use a completely non-technical language to communicate Views to Stakeholders who do not necessarily have knowledge or fluency in any technical languages. Using language that is too technical for a non-technical Stakeholder will often scare them off and can, potentially, have a very detrimental effect on the project or System. With this in mind, let us visualize the previous example View but, this time, let us use non-technical language:

    [image: Figure 2.10 – The evolution of MBSE (Holt & Perry 2020) ]
    Figure 12.5: Visualization of a View in non-technical language

    The diagram in Figure 12.5 shows a visualization of the View that we built up in Figure 12.1 through Figure 12.4 but this time, rather than using SysML, we are using graphics.

    Of course, you will remember this diagram from when it was introduced in Chapter 2, Model-Based Systems Engineering, and various other chapters throughout the book. We can now see that what was presented previously as just a picture is actually a proper View; it has just been visualized in an informal manner. Indeed, we could easily define what we have here as a formal View and produce Viewpoint Context View and associated Viewpoint Description View that defines the View explicitly so that it can be used as a formal part of our Framework definition. In fact, every diagram throughout this book, whether it looks like SysML (which the majority are) or not, is actually Views from a Framework that have been visualized in different ways. This is very powerful as it ensures that all of our information is consistent and correct (a Model) regardless of what it looks like.

    When we apply MBSE but it does not appear to be MBSE, we refer to this as MBSE by stealth, a phrase that we introduced briefly in Chapter 11, Deploying MBSE. The application of MBSE by stealth is a very powerful way to use MBSE as it provides the rigor of MBSE by disguising it so as not to intimidate non-technical Stakeholders.

    We have seen several examples of MBSE by stealth throughout this book, including:

    
      	In Chapter 1, Introduction to Systems Engineering, we built up a set of diagrams that we used to explain Systems Engineering concepts and relate them together. The diagrams that we used were just generic diagrams showing boxes and lines between them to introduce the concepts. In reality, we were building up a set of Ontology Definition Views that were visualized in SysML in Chapter 2, Model-Based Systems Engineering, and that have been used in every other chapter of the book.

      	In Chapter 2, Model-Based Systems Engineering, we used general graphics to introduce and discuss the evolution of MBSE, which was the example that we used earlier in this section in Figure 12.5. This was then supported by some text descriptions (textually-visualized Views!) that described typical Outcomes in terms of People, Processes, and Tools for each Stage.

      	In Chapter 11, Deploying MBSE, we built upon the View from Figure 12.5 by expanding it over a number of diagrams to include transitions and activities on the original diagram. These diagrams then formed the main input to our MBSE strategy. In fact, when we took the classic MBSE in a slide View and added textual annotations, we can also see this as another example of changing the visualization to suit the Stakeholder.

      	In Chapter 11, Deploying MBSE, we described two techniques that we could use to capture and define the reason why we want to deploy MBSE. One of these techniques used SysML and the other, known as TeamStorming, used no technical Notations but actually achieved the same end. What is not apparent to participants as they play the games in a TeamStorming session is that they are actually performing MBSE, they just don’t realize it!

      	Also in Chapter 11, Deploying MBSE, we discussed a technique known as RAVEnS as a useful way to populate our MBSE Capability worksheets and our MBSE Maturity worksheets (themselves Views!). The RAVEnS technique is presented as almost-like puzzle pieces that are made of thick plastic and therefore very tactile to the participants. Again, this appears to have constructed a physical snapshot of where they are and where they want to be in terms of their business but again, in reality, they are performing MBSE.

    

    These are just some examples of how we can apply MBSE by stealth, which is a very powerful approach to getting people to use MBSE without them realizing it. MBSE by stealth is an incredibly powerful approach and can allow you to start to embed MBSE into the business before people have any idea that they are doing it.

    Modeling through the Life Cycle and the Brontosaurus of Complexity

    We have discussed the importance of the Brontosaurus of Complexity and how it allows us to visualize the evolution of the complexity of the Model throughout the development of a System. Indeed, the subject of complexity formed a large discussion point in both Chapter 1, Introduction to Systems Engineering, and Chapter 2, Model-Based Systems Engineering.

    Complexity is one of the three evils of Systems Engineering and, as with all of the evils, it feeds into the other two. We have, so far, viewed complexity as one of these evils, but it is actually a very useful thing to be able to quantify, as it provides us with good indication of how easy something is to communicate and also how well the information is understood.

    When we model any source information the very act of modeling can give us an insight as to the complexity of the source information. We must bear in mind that it is the complexity of the source information that will make it difficult to model, rather than the length, or size, of the source information. For example, you may be put in a situation where you need to understand two documents, so you are going to model each to provide this understanding. One of the documents is 20 pages long and the other is 200 pages long – which is the more difficult to model? The temptation here is to immediately decide that it is the larger of the two documents, but this is often not the case. The aspect of the document that will dictate how difficult or easy it is to model is not the size of the document, but the complexity of the information that it contains. In many cases, it may be that the 200-page document is easier to model as the information is well understood, well laid out, and written concisely. It may be that the shorter document has many ambiguities and inconsistencies and may be missing information. The truth is that it is almost impossible to say before we start to model.

    When we start to model something, there is a simple rule of thumb that we can apply:

    
      If the source information is well understood and well presented, then it will be easy to model. If, on the other hand, the source information is not well understood and is badly presented, then the modeling will be difficult.

    

    This is a relatively simple, and not terribly scientific, rule of thumb, but it is a very powerful one.

    This leads us to ask the following question: exactly how do we measure the complexity of our Model? There are a number of ways that we can measure or estimate the complexity of a Model, which range in terms of their usefulness, ease of applicability, and scientific rigor. Measuring complexity is a whole research area in itself, and it is not within the scope of this book to provide a treatise on all approaches, but the following few paragraphs provide an overview of different techniques at different levels of rigor.

    The first way that we will discuss is to measure the complexity of the Model using complexity metrics. There are many metrics that can be applied to the Model as a whole to individual Views, and to specific diagrams in particular Notations. As an example of this, we shall consider a single generic metric that can be applied to almost every View that uses SysML as its visualization. The metric is referred to as McCabe’s cyclomatic complexity [McCabe 1976]. This is one of the classics of complexity metrics that was first developed by Thomas McCabe as far back as 1976. The original metric was developed to measure the complexity of software code provided that it is represented as a structured graph. This may be applied very easily to our SysML visualizations, as all SysML diagrams are graphs that contain graphic nodes (shapes) and graphic paths (lines).

    The basic equation for cyclomatic complexity is:

    M = E – N + 2P

    Where:

    
      	M is the cyclomatic complexity.

      	E is the number of edges on the graph, which translates into SysML as the number of graphic paths.

      	N is the number of nodes on the graph, which translates into SysML as the number of graphic nodes.

      	P is the number of connected components, or connected nodes. This will typically be equal to 1 for a good View, as we should not have any sets of Model Elements that are not connected.

    

    As an example, if we consider the diagram in Figure 12.2, we have:

    
      	E, the number of edges (graphic paths), is 9.

      	N, the number of node (graphic nodes), is 10.

      	P, the number of connected components, is 1.

    

    Therefore:

    M = 9 – 10 + (2x1) = 1

    This low complexity measure reflects the fact that it is a simple diagram.

    This is a relatively simple equation to apply and can be very easily implemented manually, or automatically by programming it as a rule into a modeling Tool.

    The complexity measure is often seen as being simplistic but nonetheless provides a simple, effective complexity measure that is easy to implement.

    Another way to measure complexity is even simpler, but less scientific, which is to apply the 7+/-2 rule. This rule comes from the world of psychology and was first defined by George Miller in 1956. Miller postulated that there is, typically, a certain number of objects that an average human can hold in their head at any point in time, which he defined as the magic number 7+/-2.

    We can apply this very simple rule when we are creating Views. As a general rule, if we have 10 or more elements in our View, then it will not be able to be understood immediately as it is too complex. On the other hand, if our View contains fewer than five elements, then it may be deemed as being too simple.

    This rule is actually a very useful one, but not one that is carved in stone, nor one that should be applied rigidly. If you end up with 10 or more elements in a View, it should simply give you pause for thought rather than force you to change the View. This may be applied to the View or, indeed, an element with a View, such as a SysML block – if we have 10 or more operations or properties on a single block, then we should consider whether it is perhaps too complex.

    A final example of how to judge complexity that is, without doubt, the most informal, is simply to look at a View and decide whether it looks complex or not! This is very informal, but should not be dismissed out of hand as it can be a valuable way to ascertain how readable a View may be. Sometimes the messy look of a View is due to the layout of the View rather than the complexity, and this is something that we must bear in mind. The overall readability of a View is important when we consider the communication aspect of the View. With this in mind, there are a few simple rules that we can apply to make our Views more readable and easier on the eye. The recommendation here applies to SysML but may equally apply to any graphical visualization:

    
      	Lay out the graphical nodes on a SysML diagram in a structured manner. Try to align the set of blocks both horizontally and vertically to make the diagram easier to read. Also, try to space elements out evenly where possible. Most Tools will have built-in capabilities to make the layout of the elements relatively simple.

      	Maintain a consistent size for graphical nodes. Wherever possible, try to make the height and width of graphical nodes the same across the diagram, which creates a common look and feel for the diagram.

      	Lay out the graphical paths on a SysML diagram orthogonally. Try and keep the lines at right angles where possible and avoid the unnecessary crossing of lines. When using composition, aggregation, generalization, and specialization, overlay the lines to give the appearance of fewer lines on the diagram.

      	Avoid unnecessary elaboration of diagrams. For reasons best known to modeling Tool vendors, the default look for diagrams often includes shadows on all elements, rounded corners on shapes and lines, and shading effects on graphical nodes. These not only look ridiculous but detract from the meaning of the diagram.

      	Adopt a style for the way that text is presented on diagrams. For example, use capitalized words for block names, sentence case for property names, lowercase for association names and operation names, etc. This is the style that is adopted in this book, but it really does not matter what style you adopt. It is a useful thing to do and makes the diagrams a lot more readable.

    

    The list here is not intended to be exhaustive but provides some simple and practical examples of how to make diagrams more readable and make them appear as simple as possible.

    Inspiring Confidence in Models

    The importance of confidence in the Model cannot be understated and it is a very powerful attribute of the Model. Confidence in the Model will lead directly to confidence in the System.

    Consistency Is King

    So far in this book, we have discussed the concept of consistency and how it can be applied to our Models. Indeed, we have stated that consistency is an inherent attribute of a Model and that an inconsistent Model is simply a collection of information and not a Model. Consistency is one of the main indicators of confidence in the Model.

    For the purpose of this discussion, we need to refer back to a small subset of the original MBSE on some slides, which is shown in the following diagram:
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    Figure 12.6: A subset of MBSE in a slide

    The diagram in Figure 12.6 shows a subset of MBSE on some slides that focuses on the Model and the Notation, which will allow us to discuss the nature of consistency. There are, however, a number of different types of consistency that we can apply to our Model, which are outlined briefly in the following sections.

    Notational

    We can see the notational  consistency checks on the diagram in Figure 12.1 as the association that goes between Diagram and then back to itself, and that is labeled “is consistent with.” This level of consistency applies to the Notation only. Remember that the Notation is the spoken language, therefore these checks are telling us that the Notation that is being used is correct. These notational consistency checks are based on the underlying Notation definition so, for example, when SysML is used, the SysML Notation itself (comprising its syntax, semantics, and rules) are being enforced. The SysML Notation is defined in SysML (technically, it’s UML) in what is known as the SysML meta-model. All of the consistency-checking rules are taken directly from this meta-model.

    If we were using an actual spoken language here, such as English, as the Notation, then these consistency checks would be the equivalent of a spell-checker and grammar-checker in a word-processing Tool. Taking this analogy further, just because we have a document, for example, that has been spell-checked and grammar-checked, it does not mean that the content of the document is correct, only that the language is being properly inspected.

    Most modeling Tools that support SysML will have some level of consistency checking built into the Tool, which will allow these checks to be performed on the Model automatically.

    Ontological

    The second type of consistency checking that we will discuss here is what is known as ontological consistency checking. This can be seen in the diagram in Figure 2.1 on the association from the View and back to itself, which is labeled “is consistent with.” This consistency checking is crucial as it is what makes the Model a Model. 

    Remember that we have stated several times that the very definition of a Model means that it only contains consistent information; this, then, is the consistency we are talking about here. The reason that we refer to this as ontological consistency is that it is derived from the Ontology, whereas the notational consistency is derived from the SysML meta-model. This is completely in line with how we have discussed the two aspects of the common language in this book: the spoken language is the Notation, upon which the notational consistency exists; whereas the domain-specific language is the Ontology upon which the ontological consistency exists.

    The Views are based directly on the Viewpoints, which may be thought of, at the simplest level, as templates for the Views. These Viewpoints, however, are based directly on the Ontology, and so it is this indirect relationship between the Views and the Ontology that forms the basis for the consistency.

    The Ontology forms the backbone of the Framework, and these Frameworks may be either commercial ones, which are pre-built into some Tools, or they may be bespoke, in which case they will need to be programmed into the Tool using a profile. Once the Framework and, hence the Ontology, is embedded into the Tool, these ontological consistency checks can be enforced in two ways. The checks can be automated by the Tool and, much in the same way as the notational checks, they may be executed explicitly in the Tool at the click of a button. Alternatively, the consistency checks can be automatically enforced by the Tool through the use of the profile. In this situation, the Tool will not allow a user to create a View that does not comply with the Viewpoint, therefore enforcing the ontological checks as the Model is being created.

    Validation of System

    The final type of consistency check is what we refer to as the validation of the System. In this check, we are actually checking that the Model is fit for purpose and that it is meeting the end goals of the Model. This is represented on the diagram in Figure 12.1 as the association between System and Model that is labeled “abstracts.”

    This is the ultimate check because we need to know that the level of abstraction of the Model is correct and that it contains all the information required to realize the System successfully.

    Given current technology, this is a manual check that must be carried out by a competent person. Perhaps in the future, with the increased use of AI, this may be automated to a certain degree.

    Applying Consistency

    So, we have three types of consistency checking, and the next question is how do we apply these checks effectively?

    To illustrate this, let us consider a situation where a team is applying a traditional, document-based approach to Systems Engineering, and they are producing a document as one of the main artifacts that will ultimately be put forward for formal review.

    For the sake of the example, imagine that you are one of the Stakeholders involved in checking the document and that you have been asked to provide an informal review of this document. Imagine a situation now in which you have been given the document and it is riddled with spelling and grammatical errors. Ask yourself how confident you would be that this is a good document and how much confidence you would have in it. The answer to this is not a lot! It is not the job of a professional engineer to correct spelling and grammar in a document.

    Let us now move on and say that the document has now been spell-checked and grammar-checked and that it has been submitted for review. This time, although the document is well written, it is full of ambiguous language and logical inconsistencies and the information is incomplete. Again, how confident could you be in that document? Also, this is once more not the most valuable contribution of a professional engineer in correcting inconsistencies.

    Let us now consider that the document has been spell-checked and grammar-checked, and that it uses unambiguous language, is complete, and contains no (or, in reality, few) inconsistencies. The document has now been submitted for formal review as part of, for example, a Project Gate review. The role of the professional engineer now is to ascertain whether the document is fit for purpose. Will it contribute to allowing the System to be realized successfully? Does it yield benefits and value to the target audience of Stakeholders? This is the correct use of the skills of a professional engineer.

    This discussion should not be too contentious to anybody reading this, and it seems to be perfectly reasonable. Indeed, it is highly probable that many of the readers of this book will have some sympathy for this situation, having experienced it themselves.

    This being the case, why do we tolerate the same level of behavior in modeling? When asked to review a Model, it is certainly not unreasonable to expect that Model to have met a minimum set of quality criteria, specifically:

    
      	The Model has been subjected to notational checks, and a minimum agreed level of compliance with the underlying Notation has been achieved. This is analogous to the spell-checking and grammar-checking of the document.

      	The Model is complete and consistent and uses unambiguous language, and a minimum agreed level of compliance with the underlying Ontology has been achieved. This is analogous to the consistency checking of the document.

    

    Now we are in a position to carry out a formal review of the Model.

    It is not unreasonable to ask for this level of consistency before a formal review, and we need to get to a level where this is standard practice, rather than the exception.

    This is a good indication of the maturity of MBSE because when we start to achieve Stage 4 and Stage 5 on the MBSE evolutionary scale, then this is established practice. Therefore, we can see how establishing these three levels of consistency checking as best practice is a significant contributor to the confidence that people have in the Model.

    Demonstrating Benefits and Value

    To inspire confidence in our Model, it is essential that we can demonstrate the benefits and value that the Model adds.

    The recipients of the value are the Stakeholders, so getting the Stakeholders right is essential and will be discussed in the following sections.

    Identifying the Stakeholders

    Clearly, we cannot demonstrate value to Stakeholders if we do not know the set of Stakeholders. This initial exercise of identifying Stakeholders is crucial and has been explored several times in this book. So far, however, we have been talking about Stakeholders as a means to get the Needs right, to manage our Processes, and to contribute to our Framework definition. It is this last point that forms the focus of this discussion.

    We have previously discussed how the Model must only contain as much information as necessary, and not as much information as possible. We also discussed how we capture this as part of the Framework definition, specifically in the Framework Context View (demonstrating the value of the Framework) and the Viewpoint Context Views (demonstrating the value of each of the Views).

    These Views are often overlooked or are seen as unnecessary, but they are crucial to inspiring confidence.

    How on earth can we inspire confidence in a Model if we do not understand the value that the Model, both overall and for each View in the Model, is delivering? Therefore, if you want to inspire confidence in the Model, make sure that you understand why the Model and each View is there.

    Summary

    In this chapter, we have seen how we have provided some practical hints and tips that relate to MBSE, how to produce an effective Model, and how to model effectively.

    We have discussed the important difference between using the word Model as a noun (the single source of truth) and the word model as a verb (the art of modeling).

    We also discussed how to model in an iterative fashion and how important it is to understand that what we start with is not what we will end up with. Therefore, we should not worry too much about our first attempt or iteration but use it as a way to achieve our end goal of a good Model.

    We then discussed the importance of understanding the complexity of a Model as it evolves across the System’s development, via the Brontosaurus of Complexity.

    Finally, we finished up by talking about how to inspire confidence in our Model in all the relevant Stakeholders that have an interest in our System.

    Overall, this chapter has looked at and discussed some of the softer, more human aspects of MBSE and has, hopefully, provided some valuable insights into MBSE based on the author’s experience.

    Self-assessment tasks

    
      	Take an example statement from a specification or other document and create a View based on this. Follow the steps that were discussed here – identify the nouns and represent them as blocks, identify verbs and show them as relationships, refine the relationships, and then finish off by defining multiplicities.

      	Create a general graphical-based representation of the View that you created in the previous question. Make each element correspond to what was previously shown in SysML.

      	Consider the View that was created in the previous questions and, using your knowledge of what we have learned in terms of Framework Definition throughout this book, create a Viewpoint Context View (the who and the why for the set of associated Views) and a Viewpoint Description View (the structure and content of the associated set of Views, based on the Ontology). Pay particular attention to the Viewpoint Context View as this will define the benefits and value of the View.

      	Using the same View again, apply the McCabe cyclomatic complexity equation to it and see how the complexity turns out. Also, apply the magic number 7+/-2 rule to see if it complies.

      	Finally, lay out your diagram for your View in a structured way and apply a style to the words that are used.
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    Best Practices

    This short chapter provides information that can be used by you to continue your Systems Engineering work in your own organization. This includes the following:

    
      	A brief look at modern Standards, specifically ISO 15288, which has been used as a reference throughout this book

      	Best practice sources such as guidelines, specifically the INCOSE Competency Framework, which provides valuable insight into the people side of Systems Engineering

      	A short list of organizations that actively promote Systems Engineering and provide valuable resources

    

    Finally, as with all the other chapters, we shall conclude with a brief summary.

    At this point in the book, we shall leave it to you to read the diagrams and understand them in order to test the modeling knowledge that you have gained from this book.

    By the end of this chapter, you will have a good idea of what best practice sources exist and where to find more information about the different aspects of Systems Engineering.

    Introducing key Standards

    Standards form an important part of any Systems Engineering endeavor and allow us to demonstrate that the approach we have taken complies with some established norm. Standards are typically mandatory in projects.

    The main Standard that has been used throughout this book is ISO 15288 – Systems and software engineering – System Life Cycle processes, and that will be discussed in the next section.

    ISO 15288 – Systems and software engineering Life Cycle Processes

    By applying the techniques that we have introduced and discussed in this book, in particular in Chapter 5, Systems Engineering Processes, it is possible to capture and present some of the key Views associated with the Standard. The emphasis has previously been on looking at specific Processes and relating MBSE techniques to them to demonstrate compliance. Rather than repeating these Views, in particular the Process Content View, we shall look at some of the higher-level Views for the Standard, starting with the Process Context View:

    [image: Figure 11.1 – Process context view for ISO 15288 ]
    Figure 13.1 – Process Context View for ISO 15288

    The diagram here shows a Process Context View for ISO 15288, visualized using a SysML use case diagram.

    There are a few key points that are worth considering:

    
      	One of the main use cases is Define terminology. This is a central part of the Standard and may be realized by creating an effective Ontology.

      	Notice how there is an explicit need to Harmonize with other standards, which reinforces the mapping between Standards that has been covered in this book in Chapter 5, Systems Engineering Processes.

      	All four types of Define processes that are identified here have also been covered in both Chapter 4, Life Cycles, and Chapter 5, Systems Engineering Processes.

      	Again, the two types of Allow use of processes have also been discussed in this book.

    

    Notice how all the use cases for the Standard have been covered by the MBSE activities described in this book. This makes the whole development of a Systems Engineering approach using MBSE very effective. Indeed, this in itself is an excellent example of applying MBSE.

    The next diagram addresses one of these points explicitly by looking at the Ontology for ISO 15288:

    [image: Figure 11.2 – Ontology definition view for ISO 15288 ]
    Figure 13.2: Ontology Definition View for ISO 15288

    The diagram here shows the Ontology Definition View for ISO 15288 and is visualized using a SysML block definition diagram.

    Again, the reading of this diagram is left to you, but notice how the Ontology for ISO 15288 compares to the generic MBSE Ontology that has been developed during this book.

    The final View that we shall be considering here is the high-level Process Content View, as shown in the following diagram:

    [image: Figure 11.3 – High-level process content view for ISO 15288 ]
    Figure 13.3: High-level Process Content View for ISO 15288

    The diagram here shows a high-level Process Content View that has been visualized using a SysML block definition diagram.

    Notice how the four types of Process Groups have been defined and how they relate to the Processes that have been used throughout this book.

    Other Standards

    Some other Standards that are worth looking at in more detail include the following:

    
      	CMMI for Development: By the Carnegie Mellon University Software Engineering Institute. Available at https://resources.sei.cmu.edu/library/asset-View.cfm?assetid=9661. This covers Process maturity and its assessment.

      	Systems and Software Engineering – Architecture Description ISO/IEC/IEEE 42010: This is the main international Standard for architecture and architecture Framework descriptions.

    

    Another topic that is strongly related to Standards and also covers best practice sources is that of guidelines, which are discussed in the next section.

    Introducing key guidelines

    Guidelines are another very useful resource that can be used for best practice compliance. Guidelines, unlike Standards, are typically not recognized at such a high level and are not typically mandated but just recommended. Having said that, they are a very powerful resource and the techniques that we can apply to modeling Standards may also be used to model guidelines.

    The main guideline that we shall be focusing on is the INCOSE Competency Framework, which will be discussed in the next section.

    The INCOSE Competency Framework

    The ISO 15288 Standard focuses on the Processes and Life Cycles associated with Systems Engineering, but it is also important to consider the people aspect, which can be done by looking at a Competency Framework. The Competency Framework that is most relevant for our purposes is the one that has been developed by INCOSE and is known as the INCOSE Competency Framework, and this is presented in this section. We shall start by looking at the Context for the INCOSE Competency Framework:

    [image: Figure 11.4 – Framework context view for the INCOSE Competency Framework ]
    Figure 13.4: Framework Context View for the INCOSE Competency Framework

    The diagram here shows the Framework Context View for the INCOSE Competency Framework, visualized using a SysML use case diagram.

    Notice how the emphasis here is on the uses of the Competency Framework and the Stakeholders that may be interested in each use.

    The next few diagrams will focus on the main concepts that are used in the Framework by considering a few Ontology Definition Views:

    [image: Figure 11.5 – Ontology definition view showing Capability ]
    Figure 13.5: Ontology Definition View showing Capability

    The diagram here shows an Ontology Definition View that focuses on the concept of Capability, visualized using a SysML block definition diagram.

    Notice how Capability here describes the ability of an organization, which has been discussed previously in Chapter 5, Systems Engineering Processes, with the addition of three new concepts that contribute to defining Capability: Competence, Facility, and Equipment.

    The next diagram focuses on the concept of Competence:

    [image: Figure 11.6 – Ontology definition view focusing on Competence ]
    Figure 13.6: Ontology Definition View focusing on Competence

    The diagram here shows an Ontology Definition View that focuses on Competence and, again, is visualized using a SysML block definition diagram.

    Notice how we are evolving the Ontology by focusing on a different element in each View. This is typically how an Ontology will be presented, rather than trying to fit all the concepts onto a single View. With this in mind, we’ll now take a look at the structure of the Framework in the following diagram:

    [image: Figure 11.7 – Ontology definition view showing the structure of the framework ]
    Figure 13.7: Ontology Definition View showing the structure of the Framework

    The diagram here shows an Ontology Definition View describing the structure of the Framework.

    Notice how the term Competency relates back to Figure 11.6, providing consistency between the Ontology Definition Views:

    [image: Figure 11.8 – Ontology definition view focusing on Level ]
    Figure 13.8: Ontology Definition View focusing on Level

    The diagram here shows an Ontology Definition View that focuses on Level and is, once more, visualized using a SysML block definition diagram.

    The combination of these Ontology Definition Views provides a good overview of the Framework itself, and you are encouraged to take a look at the Framework and identify a set of Competencies that relate to your Systems Engineering activities.

    It is also interesting to note that there is a Core Competency: Systems Modelling and Analysis Theme that covers MBSE. Notice how this is included in the Core Theme for Systems Engineering in Figure 13.7, which reinforces just what an essential skill modeling and, therefore, MBSE is for all systems engineers.

    Other guidelines

    Other guidelines that are worth looking into include the following:

    
      	INCOSE Systems Engineering Handbook – A Guide for System Life Cycle Processes and Activities. Version 5. INCOSE; 2023. This provides an in-depth description of the Life Cycle and Processes that are described in ISO 15288 in the form of general guidance.

      	The UK Standard for Professional Engineering Competence (UK-SPEC). Available from https://www.engc.org.uk/Standards-guidance/Standards/uk-spec/. This provides the benchmark for all UK professional bodies for Competence and Competency Frameworks.

      	Skills Framework for the Information Age (SFIA). Available from https://sfia-online.org/en. This provides a Competency Framework that is aimed primarily at the IT sector but has many crossovers with Systems Engineering.

      	APM Competence Framework. Available from http://www.apm.org.uk/. This provides a Competency Framework that is aimed primarily at the project management sector but has much crossover with Systems Engineering.

      	APMP Competency Framework. Available from http://www.apmp.org/. This provides a Competency Framework that is aimed primarily at the proposal management sector but has much crossover with Systems Engineering.

      	OMG Systems Modeling Language (OMG SysMLTM). Version 1.6. Object Management Group. Available from http://www.omg.org/spec/SysML/1.6. This provides the original specification for the Systems Modeling Language, version 1.6.

      	A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 7th edition. Newtown Square, PA: Project Management Institute (PMI); 2021. This is the official body of knowledge concerning project management.

    

    One other valuable set of resources alongside Standards and guidelines is organizations that provide Systems Engineering-related resources.

    Organizations

    This section identifies just a few of the organizations that provide information or resources associated with Systems Engineering.

    The Institute for Systems Engineering (IfSE) is a UK-based Professional Engineering Institute providing benefits for systems engineers across the world.

    IfSE started life in 2022 and evolved from what was the UK chapter of the International Council on Systems Engineering (INCOSE – see next section). As part of its Professional Engineering Institute license from the Engineering Council, IfSE is authorized to assess candidates for inclusion on the national register of professional engineers (CEng) and technicians (EngTech). IfSE also engages with the Royal Academy of Engineering through its Professional Engineering Committee, National Engineering Policy Centre, and initiatives on topics such as diversity, inclusion, and ethics within the UK engineering community.

    IfSE runs a number of events (such as its Annual Systems Engineering Conference – the ASEC), produces professional publications (such as paper, books, posters, guides, etc.), and provides a number of professional services (such as the Endorsed Training Provider scheme).

    See www.ifse.com for more details.

    INCOSE is a global Systems Engineering organization. INCOSE is a not-for-profit membership organization founded to develop and disseminate the transdisciplinary principles and practices that enable the realization of successful systems. At the time of writing, INCOSE has over 18,000 members worldwide across three main sectors, which are the Americas; Europe, the Middle East, and Africa; and Asia and Oceania. Each sector comprises a number of chapters and there are a total of 74 chapters spread across 35 countries.

    Chapters are typically set up based on geography and are responsible for organizing a multitude of professional and social programs; attracting new members from industry, government, and academia; supporting technical activities striving to advance the state and art of Systems Engineering; and showcasing INCOSE as the international authoritative body on Systems Engineering that it is.

    In real terms, INCOSE runs a number of events at the organizational, sector, and chapter levels, such as workshops, symposia, and conferences. It also produces technical services and publications (such as books, papers, posters, and journals) and provides routes to professional recognition through certification and accreditation.

    INCOSE also has a number of working groups, which function within individual chapters as well as at the organizational level and are one of the main drivers behind the technical products, services, and events that are produced.

    It is this combination of activities at the local chapter level, as well as at the organizational international level, that makes INCOSE stand out in the world of Systems Engineering.

    There are several other organizations that promote Systems Engineering or are related to Systems Engineering in some way, and these include the following:

    
      	Institute of Electrical and Electronic Engineering (IEEE): The IEEE is the world’s largest technical professional organization dedicated to advancing technology for the benefit of humanity. The IEEE hosts an annual international symposium on Systems Engineering and has several Systems Engineering-related groups that are active in promoting the overall field of Systems Engineering.

      	Institution of Engineering and Technology (IET): The IET has been involved in Systems Engineering for many years and used to run several Systems Engineering-related groups and professional networks. Their contribution is currently limited to publishing books and providing training courses, both live and virtually through the IET Academy. It should be noted that the IET was formerly known as the IEE (short for Institution for Electrical Engineering), which should not be confused with the IEEE!

      	Object Management Group (OMG): The OMG owns, manages, and configures industry Standards that relate to object technology. For the purposes of Systems Engineering, they are responsible for both the Unified Modeling Language (UML) and its Systems Engineering-related spin-off language, SysML. Interestingly, both of these Standards are now full ISO Standards, such is the recognition that they have achieved.

    

    Of course, there are many more such organizations throughout the world, and this list presents just a few of them.

    Summary

    This chapter has completed the book by providing a good starting point for you to go and find out more about the fascinating world of Systems Engineering. It has included some Standards, guidelines, and organizations that will be of interest to those who want to continue their study of Systems Engineering.
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